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Abstract—In recent years, a significant progress in the field of 

research dedicated to the treatment of disabilities has been 

witnessed. This is particularly true for neurological diseases, 

which generally influence the system that controls the execution 

of learned motor patterns. In addition to its importance for 

communication with the outside world and interaction with 

others, the voice is a reflection of our personality, moods and 

emotions. It is a way to provide information on health status, 

shape, intentions, age and even the social environment. It is also a 

working tool for many, but an important element of life for all. 

Patients with Parkinson’s disease (PD) are numerous and they 

suffer from hypokinetic dysarthria, which is manifested in all 

aspects of speech production: respiration, phonation, 

articulation, nasalization and prosody. This paper provides a 

review of the methods of the assessment of speech disorders in 

the context of PD and also discusses the limitations.  

 
Index Terms—Parkinson’s Disease; Voice Analysis; Speech 

Processing; Parkinson’s Disease Assessment. 

 

I. INTRODUCTION 

 

Parkinson’s disease (PD) is one of many neurological 

disorders, including Alzheimer and epilepsy. These diseases 

cause negative physical and psychological effects in patients 

and their families. PD is generally seen in people aged over 60 

years [1]. It is estimated that, world wide, nearly 10 million 

people suffer from this disease [2] [3]. The burden of PD is 

very expensive, and its costs may increase in future [4] [5]. At 

the moment, there is no efficient cure for it; therefore, patients 

require periodic monitoring and treatment. For PD patients, 

physical visits are very difficult. To this end, the development 

of easy to use self-monitoring and tele-monitoring is crucial to 

lower cost and facilitate treatment. Significant developments 

in information technology and telecommunication offer a good 

opportunity for tele-monitoring and tele-medicine [6] [7] to 

improve the quality of the diagnosis for such patients. In 

addition, this novel technology can improve outdated 

electronic health record maintenance systems in medical 

centres [8] [9] [10]. Now the question is how can these 

opportunities be exploited? Today, the major challenge for 

medicine is to correctly recognise PD in its early stages [11] 

[12] [13], in order to avoid the suffering of patients due to 

delayed treatment, since there is no cure at the moment [14]. 

Some studies have shown that PD causes vocal impairments in 

approximately 90% of patients [4] [15] [16] [17], and may 

indicate the early stages of the disease [18]. Since the speech 

processing is not a difficult task to manage, using vocal 

impairments to detect PD patients has caught the attention of 

many researchers [41] [19] [20]. PD represents a particular 

mode of dysfunction of the Central Nervous System (CNS) 

[21] [2] [22]. It is characterised by progressive nigrostriatal 

dopaminergic denervation, which leads to chronic dysfunction 

of the basal ganglia system [23] [22]. This system is essential 

to control the execution of learned motor plans [22]. 

Therefore, the impairment of the CNS causes partial or full 

loss in motor reflex, speech and other vital functions [21] [2]. 

The etiology of PD is currently unknown, although research 

into the causes behind the appearance of the disease is 

performed all over the world. Currently, there is a focus on 

several different diagnostic methods, such as DNA loci [24], 

deep brain stimulation [25], transcription phase [26], and gene 

therapy [27]. The symptoms of PD were described as 

“Shaking palsy” by Doctor James Parkinson [28]; this 

includes shaking in hands, arms, legs, face and jaw [29].  

Speech production, particularly, highlights the concepts of 

automation (after learning and acquisition) and sequential or 

simultaneous organisation of motor plans [22]. It is a dynamic 

system whose behaviour at a given moment depends on its 

previous states [22]. The complex organisation of articulatory 

gestures of speech production is under control of the CNS, and 

especially the basal ganglia [22]. The impairments in normal 

production of vocal sounds known as dysphonia [30], lead to 

reduced loudness, breathiness, roughness, reduced energy in 

higher parts of the harmonic spectrum and overdone vocal 

tremor [4] [2] [31]. There are also other voice impairments 

caused by PD, such as hypophonia (reduced volume), 

dysarthria (problems in voice articulations) and monotone 

(reduced pitch range) [2]. Hypokinetic dysarthria is considered 

as an important characteristic of voice disorders observed in 

PD patients. The characteristics of this hypokinetic dysarthria 

are the reduction of articulatory movements and decreased 

prosodic modulation of speech, which is described as 

monotone [32]. According to [33], one of the treatment 

methods consists of injecting a small quantity of botulinum 

toxin into the larynx area. This treatment provides temporary 

rehabilitation for 3 to 4 months, and then the dysphonic 

symptoms return [8]. There were different rehabilitative 

methods aiming to increase the vocal intensity of PD patients, 

such as Lee Silverman Voice Treatment (LSVT) [34] [35] 

method, which increases vocal intensity by phonatory and 

respiratory efforts, and Pitch Limiting Voice Treatment 

(PLVT) [36] method, which increases vocal intensity and 
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maintains lowest pitch.  

To assess these symptoms, many vocal tests and approaches 

have been introduced [4] [30]. The most used approaches are 

sustained phonations [4] [30] [37] [38], where patients are 

asked to pronounce sustained vowels at a comfortable level, 

hold as long as possible [4] [30], and running speech [4] [30] 

[38], where patients are asked to speak standard sentences, 

which are constructed from representative linguistic units [4] 

[30]. Any one of these symptoms may give us enough 

information for detecting the severity of PD [4] [30]. The 

running speech tests are considered as more realistic in actual 

everyday usage, but it may contain many linguistic 

components and/or confounding effects of articulation [4] 

[30]. Long and sustained vowels represent the most stable 

vocal performances and allow a relatively simple acoustic 

analysis. Therefore, most studies used the first approach to 

detect dysphonia symptoms. There have been many studies of 

measurement of voice disorders in general [4] [39] [40] [41]. 

Moreover, other studies have focused on the analysis of voice 

disorders in the context of PD [20] [42] [43]. Generally, 

during standard tests, speech samples are recorded using a 

microphone and subsequently analysed using different 

measurement and algorithms implemented in some specific 

software like Praat [44], Multi-dimensional Voice Program 

MDVP [45], etc. Other measurements, such as complex 

nonlinear aperiodicity, aero acoustic, turbulent, non-Gaussian 

randomness of the sound may be used to increase the clinical 

efficacy of the PD diagnosis systems [39]. The main 

traditional measurements used to detect speech disorder 

include, the fundamental frequency F0; absolute sound 

pressure, which indicates the relative loudness of speech; jitter 

measurement, which represents cycle to cycle variation in F0; 

shimmer measurement, which represents cycle to cycle 

variation in speech amplitude; harmonic to noise ratio, which 

represents the degree of acoustic periodicity in speech signal; 

and, many others [4] [2] [30] [29] [46] [47] [8] [48]. By 

comparing PD patients with healthy people, studies have 

shown variations in all these measurements, which mean that 

these could be useful in assessing voice disorders in the 

context of PD [4] [49].  

Vocal production is a nonlinear dynamic system, is it 

affected by the impairments of the vocal organs, muscles and 

nerves [4]. The changes in the system can be detected by 

nonlinear time series analysis tools [4] [50]. Voice recordings 

and measurements methods change according to the acoustic 

environment, physical conditions and characteristics of subject 

[4]. In order to have as much reliability as possible, all these 

measurement methods should be chosen to be highly robust in 

uncontrolled variations [4]. Measurements like absolute sound 

pressure level limit the reliability of these measures in 

telemedicine because they require costly calibration 

equipment, which is difficult to obtain [4].  

 

II. THE CHARACTERISTICS OF VOICE 

 

The speech sounds have as origins aerodynamic and 

acoustic phenomena. They are produced on an air flow 

coming from the lungs to the outside the human body. There 

are different mechanisms that allow the movement of a 

sufficient airflow in order to make audible the articulatory and 

phonatory actions (Figure 1) [51]. The most used mechanism 

by people for speaking is the use of the respiratory apparatus 

(diaphragm, lungs, and trachea) [52], it provides energy and 

the required airflow to generate the voice. The larynx is the 

first source of speech sounds; it is a phonatory organ (Figure 

1). It controls the vocal folds (Figure 2 - A); it is like a 

regulator of the lungs air, releasing the airflow toward the 

supra-glottis part (Figure 1) [52]. The place of articulation 

extends from vocal folds to lips, including the following 

resonances and articulators cavities (Figure 1): 

 The pharynx (or pharyngeal cavity) is a leading 

musculo-membrane; it is located between mouth and 

esophagus on one hand and between nasal cavity and 

larynx on the other hand [54]. 

 The nasal fossae (or nasal cavities) (Figure 1) are two 

cuneiform cavities separated by a vertical wall [54]. A 

nasal resonance is very characteristic (twang). The air 

passes through the nose when the velum (muscle 

extension of the osseous palate) is lowered. 

 The mouth (or oral cavity) (Figure 1) is separated from 

the nasal fossae by a partition called the palate. The 

articulators are located in this cavity; some are fixed 

(passive), and others moving (active) [54]. 

 The labial cavity is a cavity that is created when 

projecting the lips forward (labial protrusion). 

 Speech is a succession of two types of sound events; 

voiced sounds (vowels) which are characterised by the 

vibration of the vocal folds, and unvoiced sounds, 

which do not involve the vocal folds.   

The voiced signal is a pseudo-periodic signal, having more 

or less important frequency areas. These maximum envelope 

frequency areas are called formants (F1, F2, F3 etc.) as can be 

seen in figure 2 - B. The spectrum (figure 2 - C) of the sound 

emitted by the vocal folds is modulated by the vocal tract and 

the position of the lips. The different modifications in these 

resonators, lead to the production of different sounds. The 

 
Figure 1: Vocal tracts. Modified from Teston [53] 
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model of speech production is represented in Figure 3. As can 

be seen, the vibrations of the vocal folds in the larynx generate 

a complex periodic signal (voiced sound), which is constituted 

of a fundamental frequency F0. The multiples of F0 are called 

harmonics. The representation of the amplitude of these 

frequency components is called the acoustic spectrum. The 

representation of the evolution of the spectra as a function of 

time (time-frequency analysis) is called a spectrogram.  

The variations of F0 define the melody of the voice; it 

depends on pulmonary pressure and especially on the larynx 

neuromotor control. The intensity of the voice depends on the 

pulmonary pressure. The formant frequency (F1, F2 and F3) 

depends on the distance between the highest point of the 

tongue and the roof of the oral cavity, the distance between 

this point and the larynx, and the rounding and the projection 

of the lips. 

Each language has its own phonetic system that manages 

the existence of sounds in languages depending on two 

factors: Physiological constraints imposed by the vocal 

apparatus, and Phonetic system of the language or the way of 

using speech articulators.  

It is often forgotten that the vocal apparatus is not 

biologically destined in priority for speech production 

activities; its main function is to ensure respiration and 

nutrition. Indeed, the lungs are the respiratory apparatus, the 

larynx has a role of control of respiratory functions and at 

level of supra-glottis structures are operating the mastication 

and the deglutition of food [52]. 

 

III. ASSESSMENTS OF PARKINSON’S DISEASE IN LITERATURE 

 

There are two different assessments of voice disorders in the 

literature consisting on distinguishing PD patients from 

healthy people, and predicting the severity of PD. 

 

A. The assessment of voice disorders for detecting PD 

patients 

In 2009, Max Little et al. [4] presented an assessment of 

voice disorder in order to discriminate healthy people from 

patients with PD by detecting dysphonia. In their work, they 

used pitch period entropy, which is a robust measure against 

noisy environment and healthy voice frequency. The database 

used in their work comprises 23 patients with PD and eight 

healthy people. After examining all possible combinations, 

they selected four of ten measurements, which lead to a 

correct classification accuracy of 91.4% using a kernel 

Support Vector Machine (SVM). There are many novel 

methods for the assessments of dysphonia in the context of 

PD. However, according to Little et al. [4], there is no efficient 

method, which may characterise this dysphonia in the 

presence of certain other factors such as subject gender and 

variable acoustic environments. To overcome this problem, 

Little et al. [4] introduced a new method to measure dysphonia 

called Pitch Period Entropy (PPE). It is a robust measure 

sensitive to changes in speech in the context of PD [4]. 

Relying only on statistical significance is insufficient to 

determine which measurement or set of measurements is 

useful to asses dysphonia in the context of PD. Using methods 

of statistical learning theory, such as Support Vector Machines 

(SVM) and Linear Discriminate Analysis (LDA) [55] are 

preferred since they can directly select the best measurement 

that discriminates patients with PD from healthy people. Also, 

it is possible with such classification methods to combine 

measures to improve discrimination. Theoretical 

considerations show that the classification accuracy decreases 

when a large feature size is used [55]. Therefore, it is 

important to use a minimum number of measurements, which 

contain an optimal amount of information for more reliable 

classification [55]. However, this is not guaranteed to produce 

an optimal feature set [56].  As a compromise, Little et al. [4] 

removed redundant measures, and then tested all possible 

combinations with an SVM classifier. 

The database used by Little et al. [4] contains 195 sustained 

vowel phonations from a set of 31 people. There were 23 

patients with PD and eight healthy people. For PD patients, 

the time since diagnosis ranged from 0 to 28 years, and the age 

of patients ranged from 46 to 85 years (mean 65.8, standard 

deviation 9.8).  Each participant gave an average of six 

records ranging from 0 to 36 seconds in length. This study has 

paved the way for many researches to improve the accuracy of 

PD diagnosis. This is achievable due to the availability of the 

database used by little Max on the UCI machine learning 

repository website [57].  

Shahbaba et al. [58] introduced a new nonlinear model for 

classification using Dirichlet process mixtures for PD 

detection. They compared the results with, multinomial logit 

A B 

 

 
Figure 3:  Speech production model 

 

 
 

Figure 2: Representation of the speech production system from the Lungs to the 
outside of human body and the role of each part of this system. A- Vocal folds 

are the source spectrum of the vocal signal. B- Vocal tract (pharyngeal, nasal, 

labial cavities and lips) filter the signal provided from the vocal folds. C- Vocal 
signal is the convolution product between the vocal folds signal and vocal tract 

filters. 
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models, decision trees and SVM, the best obtained 

classification accuracy was 87.7%. To seek effective diagnosis 

of PD Resul das [59] compared four independent classification 

schemes. Various evaluations methods were employed to 

calculate the performance score of Neural Networks, 

DMneural, and Regression and Decision Tree [59] using SAS 

based software [60]. This software makes the data mining 

procedure simpler, from data access to model valuation, and 

supports all essential tasks within a single, integrated solution 

and offers the flexibility for efficient collaborations [60]. In his 

study, Resul das [59] described efficient approaches to 

distinguish between affected and healthy people. A maximum 

discriminative accuracy of 92.9% was achieved using neural 

networks. Furthermore, he compared his results with the 

results of a previous study [61]. 

To provide medical decision boundaries for PD detection, 

and create learning feature functions on the basis of ordinary 

feature data (features of voice), Guo et al. [62] combined 

genetic programming and the expectation maximisation 

algorithm (GP-EM), the best classification accuracy of 93.1% 

was obtained. With the aim of developing remote diagnosis of 

PD, Sakar et al. [63] selected a minimal subset of dysphonia 

features with maximal common relevance to discriminate PD 

patients from healthy people. In addition, to maximise the 

generalisation of their predictions, they built a predictive 

model with minimal tendency in order to perform well with 

unseen test examples. In their study, they applied a joint 

information measure with a permutation test for assessing the 

statistical significance of the relations between the dysphonia 

features and the discriminative results. Furthermore, they 

classified these features according to the Maximum Relevance 

Minimum Redundancy (mRMR) criterion. For classification, 

they used SVM to build and test a model with a leave-one-

individual-out cross-validation scheme, instead of using 

conventional bootstrapping or leave-one-out validation 

methods. They also evaluated the success of the model 

according to its accuracy, sensitivity, and specificity. A 

maximum classification accuracy of 92.75% was achieved 

using the validation method subset of mRMR-4. In order to 

design high performance computer-aided diagnosis systems, 

Ozcift et al. [64] constructed rotation forest (RF) ensemble 

classifiers of 30 machine learning algorithms to evaluate and 

detect patients with PD, the best achieved classification 

accuracy was 87.13%.  AStröm et al. [65] aimed to predict PD 

by using a parallel feed-forward neural network structure. The 

maximum obtained classification accuracy was 91.20% using 

nine networks. Spadoto et al. [66] applied evolutionary-based 

techniques in order to find the subset of features, which 

maximise the accuracy of the Optimum-Path Forest classifier 

(OFP). The best classification accuracy obtained was 84.01% 

using Gravitational Search Algorithm (GSA-OPF) technique 

with eight features. Li et al. [67] proposed a fuzzy-based non-

linear transformation method along with SVM classifier to 

improve PD diagnosis, the best classification accuracy 

achieved was 93.47%. In the same context, Mandal et al. [8] 

presented different reliable methods, such as Bayesian 

network [68] [69], Sparse  Multinomial  Logistic  Regression  

(SMLR)  [70], SVM, Boosting  methods  [71], Artificial  

Neural  Networks  (ANNs) [72] [73] and  other  machine  

learning models. Furthermore they used Rotation Forest (RF) 

[74] [75] consisting of logistic regression [76]. Haar wavelets 

were used [77] [78] as projection filter. They also presented 

new computational methods of machine learning ensembles. 

This includes rotation forest (RF) [74] [75] used as a 

projection filter integrated  with  the logistic  regression 

classifier to  enhance  the  accuracy  of  logistic  regression. 

The RF method was used by Oscift [79]; the maximum 

accuracy achieved was 96.93% [79]. The best obtained result 

was 100% using SMLR classifier [8]. 

In a similar vein, Wan-li Zuo et al. [48] presented an 

efficient diagnosis system based on particle swarm 

optimisation (PSO) and reinforced by fuzzy KNN. The PSO 

technique was first developed by Eberhart and Kennedy [80] 

with the aim of treating each individual as a particle in d-

dimensional space, where the position and the velocity of the 

particle are represented. This system, called PSO-FKNN, was 

first developed for predicting successfully bankruptcy [81] 

[82]. However, in their study, this system was used to explore 

the maximising classification performance for discriminating 

PD patients from healthy people [48]. Both continuous and 

binary versions of PSO were used to optimise parameters and 

select features at the same time. First, the FKNN classifier was 

adaptively specified by the continuous PSO algorithm. 

Subsequently, a binary PSO approach was used to identify the 

most discriminant subset of features for prediction. A mean 

accuracy achieved was 97.47% by using 10-fold CV method 

[48]. In order to develop an efficient diagnosis for detecting 

PD, Hui-Ling Chen et al. [29] used time fussy KNN (FKNN) 

[83] with 10-fold cross validation method which outperformed 

SVM classifier, showing a mean classification accuracy of 

96.07%. Recently, Hariharan et al. [84] used a hybrid  

intelligent  system, the maximum classification accuracy 

obtained was 100% using feature  pre-processing,  feature  

reduction/ selection, and classification with least-square  

SVM,  probabilistic  neural  network and  general  regression  

neural  network. 

In order to develop predictive tele-diagnosis and tele-

monitoring systems for detecting voice disorders in PD, Betul 

et al. [2] used multiple vocal tests per subject, including 

sustained vowel phonation and running speech [2]. After 

applying different machine learning tools on the database, they 

found that the most discriminative information is carried by 

sustained vowels. On other hand, they used a central tendency 

and dispersion metrics in order to improve and generalise the 

predictive model instead of using each voice sample 

independently [2]. They also compared the success of 

alternative cross-validation methods for PD diagnosis [2]. 

Extracted features were fed into SVM and KNN classifiers for 

PD diagnosis by using a Leave-One-Subject-Out (LOSO) 

cross-validation scheme and summarized Leave-One-Out. 

They also evaluated the success of the models according to 

their accuracy, sensitivity, specificity and Matthews 

correlation coefficient scores [2]. In their work, they were able 

to discriminate PD patients from healthy people using multiple 

types of voice recording with a best classification accuracy of 

85%. 

The database used by Betul et al. [2] consisted of 20 

patients with PD (6 women, 14 men) and 20 healthy people 

(10 women, 10 men). For PD patients, the time since diagnosis 

ranged from 0 to 6 years. The age of PD patients ranged from 
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43 to 77 (mean: 64.86, standard deviation: 8.97) and the age of 

the healthy subjects ranged from 45 to 83 (mean: 62.55, 

standard deviation: 10.79). Another database was used in their 

study as an independent test set to validate the results obtained 

from the multiple sound recordings database.  

In order to discriminate PD patients from healthy people, 

Jaafari [30] presented a combinational feature extraction 

method using voice samples. The extracted features used in 

this study contained seven nonlinear features and 13 Mel 

frequency cepstral coefficients (MFCC). In addition to 

nonlinear phonetic features, such as pitch period entropy 

(PPE), recurrent period density entropy (RPDE), noise-to-

harmonic ratio (NHR), detrended fluctuation analysis (DFA) 

and fractal dimension (FD), Jaafari [30] introduced two new 

methods to measure dysphonia: EDC-PIS (energy distribution 

coefficient of peak index series) and EDS-MPS (energy 

distribution coefficient of peak magnitude series). These two 

measurements are said to be robust to several uncontrollable 

confounding effects such as noisy environment [30]. MFCC 

have been widely used in speech processing tasks such as 

speech recognition and speaker identification. The 20 

extracted features were fed into a Multi-layer perception 

(MLP) neural network classifier with one hidden layer. The 

best obtained discrimination accuracy was 97.5%. The 

database used by Jaafari [30] consists of 200 voice samples 

from a group of 25 PD patients (5 women, 20 men) with 

different severity levels and 10 healthy people (2 women, 8 

men). The age of PD patients ranged from 49 to 70 (mean 

58.64) and that of the healthy subjects from 39 to 63 (mean 

50.7). 

In [85], different methods to discriminate PD patients from 

healthy subject were used. A number of cepstral coefficients 

between from 1 to 20 Mel Frequency Cepstral Coefficients 

(MFCC) were extracted from a set of 34 people (17 PD 

patients and 17 healthy people). The frames of the MFCC 

were compressed using Vector Quantification (VQ) with is six 

codebook sizes (1, 2, 4, 8, 16 and 32). For classification, 

LOSO validation scheme was used along with SVM. The 

maximum classification accuracy achieved was 100%, and the 

mean classification accuracy was 82%. In the same context, in 

another work [86], the same work used in [85] was replicated 

except that instead of using MFCC, Perceptual Linear 

Prediction (PLP) technique was used. The maximum 

classification accuracy achieved was 91.17% and the best 

average result obtained was 75.79%.  As a related work, in 

[87] the frames of the PLP was compressed by calculation 

their average value in order to extract the voiceprint of each 

subject, the best classification accuracy achieved was 82.35%. 

In other work [88], a database, which contains 14 PD patients 

(7 women, 7 men) and 6 healthy people (2 women, 4 men) 

was used.  And then, from these samples, the best acoustic 

features were extracted according to the pathological 

thresholds defined by the MDVP. Subsequently, a 

hybridisation metrics was used along with SVM and KNN for 

classification. The best discriminative accuracy achieved was 

95% using only four acoustic features and SVM. 

 

B. The assessment of voice disorders for detecting the 

severity of PD  

The assessment of voice disorders in PD may be useful in 

other applications in addition to distinguishing PD patients 

from healthy people. Recent studies have shown that there is a 

strong relation between speech degradation and PD 

progression [89]. The progression of the disease is monitored 

using different empirical tests and physical examinations, 

which are mapped using one of the famous clinical metrics, 

known as the "Unified Parkinson’s Disease Rating Scale" 

(UPDRS) [46]. Recently, there have been many reports of 

approaches in the aim of mapping map PD dysphonias to 

UPDRS scores [30] [46] [89] [90]. 

To improve the applications of automated assessment of PD 

symptom progression from voice signals Tsanas et al. [46] 

used Praat [44] to compute classical dysphonia measures. such 

as Jitter, Shimmer and harmonics to noise ratio. They also 

used MDVP [45] prefix to associate measures, which are 

equivalent to the results of the Kaypentax MDPV. Also, they 

suggested that in addition to these measures, log-transformed 

classical measures, which convey superior clinical information 

and are selected by an automatic feature selection algorithm, 

are more appropriate for UPDRS prediction. In order to reduce 

the number of features used and enhance the quality of log-

transformed classical measures, Tsanas et al. [46] used Least 

Absolute Shrinkage and Selection Operator regression, which 

searches for all possible combinations to minimise prediction 

error. The database used in this study, consists of 42 patients 

(14 women, 28 men) with idiopathic PD diagnosis, who had a 

mean age of 64.4 years (standard deviation: 9.24). The motor-

UPDRS average was 20.84 ± 8.82 points and the total UPDRS 

average was 28.44 ± 11.52 points [46]. 

Recently, Tsanas et al. [31] investigated the potential of 

using sustained phonation of the vowel /a/ to automatically 

duplicate a speech expert’s assessment of the voices of PD 

patients. The results of the assessment may be acceptable (a 

clinician would allow persisting during the rehabilitation 

treatment) or unacceptable (a clinician would not allow 

persisting during the rehabilitation treatment) [31]. Tsanas et 

al. [31] extracted and mapped the most informative feature 

subset in order to reduce from 309 to ten most informative 

dysphonia measures. The maximum performance achieved 

was 90% using an SVM classifier. The database used in this 

research had 14 PD patients (6 women, 8 men). The age of the 

patients ranged from 51 to 69 years (mean: 61.9, standard 

deviation 6.5). Each patient produced nine phonations, 25% of 

these phonations were repeated in order to qualify intra-rater 

ratability, which gave a total of 156 voice samples. 

 

IV. ASSESSMENTS METHODS IN LITERATURE 

 

A. Subjective methods 

Perceptual assessments of speech disorder are made by 

listening to patient when talking, and then focusing on simple 

aspects of his vocal production, such as pitch, intensity, 

rhythm and the intelligibility of his speech. [91]. Many 

perceptual methods have been proposed for assessing the 

quality of the voice [92] [93] [94]. Among all these methods, 

the GRBAS scale [93] appears to be the most widely used [32] 

[53]. Dysarthria in PD can be assessed with a speech 

assessment grid, which was proposed by the multidimensional 

rating scale for PD called [95] [96] [97]. In fact, the UPDRS 

scale is not necessary for diagnosis, but it is useful for 



Journal of Telecommunication, Electronic and Computer Engineering 

108 ISSN: 2180-1843   e-ISSN: 2289-8131   Vol. 8 No. 9   September – December 2016  

monitoring the disease. It describes five stages of increasing 

severity of the speech [32]: 

 0 = normal speech 

 1 = slight decrease of intonation and volume 

 2 = monotone speech, blurred but understandable, 

clearly disturbed 

 3 = marked disturbance of speech difficult to 

understand 

 4 = speech unintelligible 

Beyond the UPDRS, neurologists have been involved in 

multidisciplinary approaches that aim to carefully assess the 

anomalies of the various interferences in the function of the 

speech production system (respiration, phonation, resonance 

and articulation), without ignoring the cognitive and 

psychological dimensions of speech communication [91]. For 

this reason, they have adopted more objective methods. 

 

B. Objective methods 

 

a. Aerodynamic methods 

The aerodynamic is fundamental in the speech production. It 

is the origin of all sound events. In fact, the pulmonary air 

column is the source of the speech signal, which is modulated 

by various constrictions of the vocal tract [91]. The 

aerodynamic parameters are formed by air flows at the mouth 

(oral) and nostrils (nasal), and intraoral and subglottic 

pressures [91]. Rousselot (1895) [98] made the first attempt of 

the objectification of aerodynamic measures and codification. 

Knowledge of variations in these parameters based on 

pronounced phonemic segments provides information about 

the movements of the articulator’s vocal tract organs [99] 

[100] [91]. 

 

b. Time-frequency acoustic measurements 

In this section, the present acoustic assessment is given. 

They are the most used measurements for detecting voice 

disorder in the context of PD. Acoustical measurements are 

correlated with many dysfunctions of the voice; for example: 

hoarseness is correlated with stability of the laryngeal 

vibrator; breath with harmonic to noise ratio; asthenia with 

intensity; and, voice forcing with a higher F0. The instability 

of vibration of the glottis is the main cause of dysphonia. 

Therefore, the measurement of these fluctuations is essential 

for assessing dysphonia. These measurements are performed 

on the frequency or on the amplitude of the laryngeal signal 

from the melody and the intensity of the voice. The indicators 

of instability can be defined according to the duration of these 

fluctuations. 

 

i. Jitter measurements 

Short-term fluctuations (duration of the order of one glottal 

cycle) especially characterise morphological damage the vocal 

cords. These fluctuations are jitter, for the fundamental 

frequency (F0), and shimmer, for the amplitude (intensity). 

There are different representations of jitter. Jitter (absolute) 

represents the cycle-to-cycle variation of F0. It is computed as 

the average absolute difference between consecutive periods 

[101] [102]. Jitter (relative) is defined as the average absolute 

difference between consecutive periods, divided by the 

average period of the signal [101] [102]. Jitter (RAP) 

represents the Relative Average Perturbation, computed as the  

average  absolute  difference  between  a  period  and  the  

average  of  it  and  its  two  neighbours,  divided by the 

average period of the signal [101] [102]. Finally, Jitter 

(PPQ5) represents the five-point Period Perturbation  

Quotient,  defined  as  the average absolute  difference  

between a period and the average of it and its four closest  

neighbours, divided by the average period of the signal [101] 

[102]. The measurement of jitter poses many problems 

because there is no unique mathematical definition of jitter 

[31], and its value depends on the measurement technique of 

the fundamental frequency [53]. In the same sample, the value 

of jitter varies when using different measurement software. 

 

ii. Shimmer measurements 

Shimmer measurements have also almost the same problems 

as jitter measurements. There are also several definitions of 

shimmer. Shimmer (dB) represents the variability of the peak-

to-peak amplitude in decibels, computed as the average 

absolute  base 10  logarithm  of  the  difference  between  the  

amplitudes of consecutive periods, multiplied by 20  [101] 

[102]. Shimmer (relative) is expressed as  the  average  

absolute  difference between the amplitudes of consecutive 

periods,  divided  by  the  average  amplitude of the signal,  

expressed  as  a  percentage [101] [102]. Lastly shimmer 

(APQ11) represents the 11-point Amplitude Perturbation 

Quotient, defined as the average absolute difference between 

the amplitude of a period, and the average of the amplitudes of 

it, and its ten closest neighbours, divided by the average 

amplitude of the signal [101].  

 

iii. Harmonicity  

The instability of the glottal signal appears as noise, which 

is superimposed on it. Therefore, it can be assessed using the 

ratio of the harmonic energy in the spectrum of the signal and 

the noise energy. There are several methods to measure the 

aperiodic part of the speech signal. There are two main 

techniques, although their results are not only based on the 

stability of the glottal signal.  Harmonic Noise Ratio (HNR) is 

the relative energy of the harmonic / noise energy expressed in 

(dB). This method was first proposed by Yumoto et al. [103]. 

The other technique is Normalised Noise (NNE) proposed by 

Kasuya et al. [104]. HNR and NNE measurement do not 

always give an accurate assessment of the noise of the 

blowing voice if there is not a stable vibration frequency. To 

overcome this problem, Qi et al. [105] proposed a 

measurement method of the HNR. which minimises the effects 

of vibrational instability (jitter) [53]. 

 

iv. Phonetogram  

The main idea of Phonetogram is to represent in a Cartesian 

plane the dynamic range of the human voice, in terms of both 

fundamental frequency (x-axis) and intensity or loudness (y-

axis) [53]. This representation is very useful to identify the 

boundaries of vocal function. The length of this graph presents 

the dynamic frequency (Hz), and the thickness of the graph 

presents dynamic intensity (dB) [53].  

Figure 4 (top) shows the Phonetogram of a normal person 

aged 58 years. As can be seen, the tonal dynamics of this 
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person ranged from 82 to 523 Hz, almost three octaves (576 

Hz), and the dynamic range of the intensity is 40 dB. This 

example has good tonal dynamics but it lacks some dynamic 

intensity. The centre of gravity is on the point (220 Hz, 56 dB) 

[53]. 

Figure 4 (bottom) shows the Phonetogram of a PD patient.  

 

The tonal dynamics of this patient ranged from 110 Hz to 

294 Hz, which is much less than two octaves, and the dynamic 

range of the intensity is almost 20 dB [53]. The centre of 

gravity is on the point (196 Hz, 57 dB) [53]. 

 

v. Maximal Phonation Time (MPT) 

The main idea of using the MPT technique is to have 

information about the capacity of vocal organs as well as the 

performance of vocal source [53]. It consists of measuring the 

time of the phonation of the sustained vowel / a / [53]. 

 

vi. Intensity 

Voice disorders and the reduction of subglottic pressure is 

an obvious factor of the reduction of the intensity. The 

variation of the intensity values in function of the time are 

computed by the root-mean-square value of the acoustic 

speech signal for every window of 10 milliseconds and 

presented in the form of an intensity curve [32]. The average 

value of the intensity is about 70 dB at 30 cm from the mouth 

in a normal conversation, 85 dB in raised voice and 105 dB in 

shouting voice [32]. Concerning the estimation of the intensity 

of the voice, Praat software remains a reliable and powerful 

tool, which shows in every moment the value of the intensity, 

maximum and minimum, average value and its allure. 

 

c. Cepstral domain measurements 

The application of the Mel frequency cepstral coefficient 

for the assessment of speech disorder in PD was first proposed 

by Fraile et al. [106]. It has been demonstrated that using the 

MFCC technique reduces noisy information; as a result, 

dimensionality is also reduced and the task of pattern 

classifications becomes easier [107] [108].  

In related works Kapoor et al. [109] and Benba et al. [85] used 

MFCC along with vector quantification to discriminate PD 

patients from healthy people. 

 MFCC has been traditionally used in speech recognition 

systems. It uses high dimensional features extracted from 

frequency domain. The use of this technique for voice analysis 

systems was first supported by experiential proofs rather than 

theoretical analysis [30]. The choice of the MFCC is 

supported by two additional empirical reasons. The first one is 

that the computation of the MFCC does not require pitch 

detection, which has been demonstrated that it is fairly robust 

to several kinds of voice distortion [30] [110]. The second 

reason is that the analysis in the cepstral domain for this 

application is justified by the presence of noise information in 

the cepstrum [30] [111] and also that MFCC technique 

compresses this information on the first cepstral coefficient, 

consequently dimensionality is reduced and the task of pattern 

classifiers become easier [107] [108] [112]. There is another 

technique which has been also used in speaker identification, 

called Perceptual Linear Prediction (PLP) and was first 

proposed by Hermansky (1990) [113]. This technique is 

similar to the conventional Linear Prediction (LP) except that 

it models the psychophysical properties of human hearing to 

estimate the auditory spectrum [113]. This was done by using 

three main concepts (critical-band resolution curves, the 

equal-loudness curve, and the intensity-loudness power-law) 

[113]. The advantage of PLP over conventional LP is that it 

keeps only the relevant information of the speech in order to 

improve speech recognition accuracy [113].  

 

V. CRITIQUES AND LIMITATIONS 

 

Voice disorders may be due to a physical problem, such as 

vocal nodules or polyps, which are almost like a callous on the 

vocal cord; paralysis of the vocal cords because of strokes or 

after some surgeries; or, contact ulcers on the vocal cords. 

These disorders may also be caused by misuse of the vocal 

instrument, such as using the voice at too high or low a pitch; 

using the voice too softly or too loudly; or, with insufficient 

breath support, often because of postural problems. Some 

dysphonia manifests as a cross between misuse and something 

physiological. [59].  

Dysphonia in the context of neurological disorders may be 

caused, according to Teston [53], by multiple factors such as 

hypotonia (low muscle tone which may involve reduction in 

muscle strength), which causes reduced level of voice and F0 

[114]; hypertonia (anomalous increase of muscle tone of 

symptomatic muscles), which causes breaks and difficulties in 

the speech signal [115]; tremor, which causes a trembling 

voice [116] and instability of the F0 during sustained 

phonations [117]; Spasmodic dysphonia (laryngeal dystonia), 

which causes abrupt changes in the pitch, breaks, 

unintelligibility and trembling voice; or, laryngeal paralysis, 

where the vocal cord remains more or less open position after 

a bad neuromotor control [53]; as a result, the voice become 

monotonous, blown and husky with significant air leak which 

cause breathlessness at the end of a sentence and 

discontinuities in voice [53]. 

The other source of dysphonia is anatomical changes in the 

glottis. This is due to the appearance of nodules, polyps or 

 
 

Figure 4: Phonetogram of a normal person top and a PD patient bottom, 
Modified from Teston [53] 
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cysts (benign lesions of the vocal cords), which are usually 

caused by permanent or brutal vocal forcing. As a result, the 

voice becomes deeper, hoarse, and breathy [53].  

These anatomical changes may be also caused by laryngitis 

(inflammations of all the vocal cords) and amplified by vocal 

forcing. As a result, the voice becomes deeper, with 

difficulties in high-pitches, slightly hoarse and stamped; it 

may even disappear completely (voice off) [53]. 

Finally, major anatomical changes of the glottis are caused 

by surgical trauma following a removal of a cordal cancer. As 

a result, the voice is severely degraded, deeper, low in 

intensity, but intelligible in a noise-free location. The stamp is 

very harsh, grainy, and blown in connection with the glottal 

leakage [53]. 

 

VI. CONCLUSION 

 

This review contains a presentation of the state of the art 

concerning the assessments of speech disorders in the context 

of PD in order to distinguish PD patients from healthy people 

and to detect the severity of the disease. It also contains a 

presentation of the aspect of speech production, a discussion 

of the most used measurements to detect dysphonia in time, 

frequency and cepstral domains. A discussion of the 

limitations of these assessments is also included. Finally, it is 

concluded that there is no efficient diagnosis at the moment 

because all studies in literature distinguished only PD from 

healthy people, considering that there are big differences 

between them. However, the challenge is to be able to 

distinguish PD from other neurological and vocal disorders. 
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Québec Amérique, 2009. 
[55] Hastie, Trevor, et al. "The elements of statistical learning: data mining, 

inference and prediction." The Mathematical Intelligencer 27.2 (2005): 

83-85. 
[56] Guyon, Isabelle, and André Elisseeff. "An introduction to variable and 

feature selection." The Journal of Machine Learning Research 3 (2003): 

1157-1182. 
[57] Learning Repository, U.C.I.: http://archive.ics.uci.edu/ml/, June 2008 

[58] Shahbaba, Babak, and Radford Neal. "Nonlinear models using Dirichlet 

process mixtures." The Journal of Machine Learning Research 10 
(2009): 1829-1850. 

[59] Das, Resul. "A comparison of multiple classification methods for 

diagnosis of Parkinson disease." Expert Systems with Applications 37.2 
(2010): 1568-1572. 

[60] Klein, John P., and Mei‐Jie Zhang. Survival analysis, software. John 
Wiley & Sons, Ltd, 2005. 

[61] Singh, Neha, Viness Pillay, and Yahya E. Choonara. "Advances in the 
treatment of Parkinson's disease." Progress in neurobiology 81.1 (2007): 

29-44. 

[62] Guo, Pei-Fang, Prabir Bhattacharya, and Nawwaf Kharma. "Advances in 
detecting Parkinson’s disease." Medical Biometrics. Springer Berlin 

Heidelberg, 2010. 306-314. 

[63] Sakar, C. Okan, and Olcay Kursun. "Telediagnosis of Parkinson’s 
disease using measurements of dysphonia." Journal of medical 

systems 34.4 (2010): 591-599. 

[64] Ozcift, Akin, and Arif Gulten. "Classifier ensemble construction with 
rotation forest to improve medical diagnosis performance of machine 

learning algorithms." Computer methods and programs in 

biomedicine 104.3 (2011): 443-451. 
[65] Åström, Freddie, and Rasit Koker. "A parallel neural network approach 

to prediction of Parkinson’s Disease." Expert systems with 

applications 38.10 (2011): 12470-12474. 
[66] Spadoto, André A., et al. "Improving Parkinson's disease identification 

through evolutionary-based feature selection." Engineering in Medicine 

and Biology Society, EMBC, 2011 Annual International Conference of 
the IEEE. IEEE, 2011. 

[67] Li, Der-Chiang, Chiao-Wen Liu, and Susan C. Hu. "A fuzzy-based data 

transformation for feature extraction to increase classification 
performance with small medical data sets." Artificial Intelligence in 

Medicine 52.1 (2011): 45-52. 

[68] Tenório, Josceli Maria, et al. "Artificial intelligence techniques applied 
to the development of a decision–support system for diagnosing celiac 

disease."International journal of medical informatics 80.11 (2011): 793-

802. 
[69] Torii, Manabu, et al. "An exploratory study of a text classification 

framework for Internet-based surveillance of emerging 

epidemics." International journal of medical informatics 80.1 (2011): 
56-66. 

[70] Krishnapuram, Balaji, et al. "Sparse multinomial logistic regression: 

Fast algorithms and generalization bounds." Pattern Analysis and 
Machine Intelligence, IEEE Transactions on 27.6 (2005): 957-968. 

[71] Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. "Additive 

logistic regression: a statistical view of boosting (with discussion and a 
rejoinder by the authors)." The annals of statistics 28.2 (2000): 337-407. 

[72] Gutiérrez, Pedro Antonio, César Hervás-Martínez, and Francisco J. 

Martínez-Estudillo. "Logistic regression by means of evolutionary radial 
basis function neural networks." Neural Networks, IEEE Transactions 

on 22.2 (2011): 246-263. 

[73] Mandal, I. "Software reliability assessment using artificial neural 
network."Proceedings of the International Conference and Workshop on 

Emerging Trends in Technology. ACM, 2010. 

[74] Rodriguez, Juan José, Ludmila I. Kuncheva, and Carlos J. Alonso. 
"Rotation forest: A new classifier ensemble method." Pattern Analysis 

and Machine Intelligence, IEEE Transactions on 28.10 (2006): 1619-

1630. 
[75] Mandal, Indrajit, and N. Sairam. "Accurate prediction of coronary artery 

disease using reliable diagnosis system." Journal of medical 
systems 36.5 (2012): 3353-3373. 

[76] Beaudoin, Christopher E., and Traci Hong. "Health information seeking, 

diet and physical activity: an empirical assessment by medium and 
critical demographics." International journal of medical 

informatics 80.8 (2011): 586-595. 

[77] Sandberg, Kristian. "The haar wavelet transform." Applied Math 
Website-Welcome to the Department of Applied Mathematics (2000). 

[78] Tu, Chiu-Chuan, and Chia-Feng Juang. "Recurrent type-2 fuzzy neural 

network using Haar wavelet energy and entropy features for speech 
detection in noisy environments." Expert Systems with 

Applications 39.3 (2012): 2479-2488. 

[79] Ozcift, Akin. "SVM feature selection based rotation forest ensemble 
classifiers to improve computer-aided diagnosis of Parkinson 

disease." Journal of medical systems 36.4 (2012): 2141-2147. 

[80] Eberhart, Russ C., and James Kennedy. "A new optimizer using particle 
swarm theory." Proceedings of the sixth international symposium on 

micro machine and human science. Vol. 1. 1995. 

[81] Chen, Hui-Ling, et al. "An adaptive fuzzy k-nearest neighbor method 
based on parallel particle swarm optimization for bankruptcy 

prediction." Advances in Knowledge Discovery and Data Mining. 

Springer Berlin Heidelberg, 2011. 249-264. 



Journal of Telecommunication, Electronic and Computer Engineering 

112 ISSN: 2180-1843   e-ISSN: 2289-8131   Vol. 8 No. 9   September – December 2016  

[82] Chen, Hui-Ling, et al. "A novel bankruptcy prediction model based on 

an adaptive fuzzy< i> k</i>-nearest neighbor method." Knowledge-
Based Systems24.8 (2011): 1348-1359. 

[83] Keller, James M., Michael R. Gray, and James A. Givens. "A fuzzy k-

nearest neighbor algorithm." Systems, Man and Cybernetics, IEEE 
Transactions on 4 (1985): 580-585. 

[84] Hariharan, Muthusamy, Kemal Polat, and Ravindran Sindhu. "A new 

hybrid intelligent system for accurate detection of Parkinson's 
disease." Computer methods and programs in biomedicine 113.3 (2014): 

904-913. 

[85] Benba, Achraf, Abdelilah Jilbab, and Ahmed Hammouch. "Voice 
analysis for detecting persons with Parkinson’s disease using MFCC and 

VQ." The 2014 International Conference on Circuits, Systems and 

Signal Processing. Saint Petersburg, Russia, September 23-25, 2014. 
[86] Benba, Achraf, Abdelilah Jilbab, and Ahmed Hammouch. "Voice 

analysis for detecting persons with Parkinson’s disease using PLP and 

VQ." Journal of Theoretical and Applied Information Technology 70.3 
(2014). 

[87] Benba, Achraf, Abdelilah Jilbab, and Ahmed Hammouch. "Voiceprint 

analysis using Perceptual Linear Prediction and Support Vector 
Machines for detecting persons with Parkinson’s disease."  the 3rd 

International Conference on Health Science and Biomedical Systems, 

Florence, Italy, November 22-24, 2014 
[88] Achraf Benba, Abdelilah Jilbab and Ahmed Hammouch. “Hybridization 

of best acoustic cues for detecting persons with Parkinson’s disease,” 

The 2nd World conference on complex system, Agadir, Morocco, 2014. 
[89] Skodda, Sabine, Heiko Rinsche, and Uwe Schlegel. "Progression of 

dysprosody in Parkinson's disease over time—a longitudinal 
study." Movement Disorders 24.5 (2009): 716-722. 

[90] Goetz, Christopher G., et al. "Testing objective measures of motor 

impairment in early Parkinson's disease: Feasibility study of an at‐home 
testing device." Movement Disorders 24.4 (2009): 551-556. 

[91] Teston, Bernard. "L'évaluation objective des dysfonctionnements de la 
voix et de la parole; 1ère partie: les dysarthries." Travaux 

Interdisciplinaires du Laboratoire Parole et Langage d'Aix-en-Provence 

(TIPA) 19 (2000): 115-154. 
[92] Hammarberg, Britta, et al. "Perceptual and acoustic correlates of 

abnormal voice qualities." Acta oto-laryngologica 90.1-6 (1980): 441-

451. 
[93] Hirano, M. "Psycho-acoustic evaluation of voice: GRBAS scale for 

evaluating the hoarse voice. Clinican Examination of Voice."  New 

York, Springer-Verlab (1981). 
[94] Dejonckere, P. H., et al. "Perceptual evaluation of dysphonia: reliability 

and relevance." Folia Phoniatrica et Logopaedica 45.2 (1993): 76-83. 

[95] Fahn, S. E. R. L., Elton, R. L., Marsden, C. D., Calne, D. B., & Golstein, 
M. (1987). Recent development in Parkinson's disease. Floram Park, NJ 

Macmilian Health Care Information. 

[96] Weismer, Gary. "Acoustic descriptions of dysarthric speech: Perceptual 
correlates and physiological inferences." Seminars in speech and 

language. Vol. 5. No. 04. © 1984 by Thieme Medical Publishers, Inc., 

1984. 
[97] Ramaker, Claudia, et al. "Systematic evaluation of rating scales for 

impairment and disability in Parkinson's disease." Movement 
Disorders 17.5 (2002): 867-876. 

[98] Rousselot, Pierre Jean. Principes de phonétique expérimentale. Vol. 1. 

H. Welter, 1901. 
[99] Warren, D. W. "Regulation of speech aerodynamics." Principles of 

experimental phonetics (1996): 46-92. 

[100] Warren, Donald W. "Aerodynamics of speech 

production." Contemporary issues in experimental phonetics 30 (1976): 
105-137. 

[101] Farrús, Mireia, Javier Hernando, and Pascual Ejarque. "Jitter and 

shimmer measurements for speaker recognition." INTERSPEECH. 2007. 
[102] Shirvan, R. Arefi, and E. Tahami. "Voice analysis for detecting 

Parkinson's disease using genetic algorithm and KNN classification 

method." Biomedical Engineering (ICBME), 2011 18th Iranian 
Conference of. IEEE, 2011. 

[103] Yumoto, Eiji, Wilbur J. Gould, and Thomas Baer. "Harmonics‐to‐noise 
ratio as an index of the degree of hoarseness." The journal of the 

Acoustical Society of America 71.6 (1982): 1544-1550. 
[104] Kasuya, Hideki, et al. "Normalized noise energy as an acoustic measure 

to evaluate pathologic voice." The Journal of the Acoustical Society of 

America 80.5 (1986): 1329-1334. 
[105] Qi, Yingyong, et al. "Minimizing the effect of period determination on 

the computation of amplitude perturbation in voice." The Journal of the 

Acoustical Society of America 97.4 (1995): 2525-2532. 
[106] Fraile, Rubén, et al. "MFCC-based Remote Pathology Detection on 

Speech Transmitted Through the Telephone Channel-Impact of Linear 

Distortions: Band Limitation, Frequency Response and 
Noise." BIOSIGNALS. 2009. 

[107] Murphy, Peter J., and Olatunji O. Akande. "Quantification of glottal and 

voiced speech harmonics-to-noise ratios using cepstral-based 
estimation." ISCA Tutorial and Research Workshop (ITRW) on Non-

Linear Speech Processing. 2005. 

[108] Hasan, Md Rashidul, et al. "Speaker identification using mel frequency 
cepstral coefficients." 3rd International Conference on Electrical & 

Computer Engineering ICECE. Vol. 2004. 2004. 

[109] Kapoor, Tripti, and R. K. Sharma. "Parkinson’s disease Diagnosis using 
Mel-frequency Cepstral Coefficients and Vector 

Quantization." International Journal of Computer Applications 14.3 

(2011): 43-46. 
[110] Pouchoulin, Gilles, et al. "Frequency study for the characterization of 

the dysphonic voices." Proceedings of INTERSPEECH 2007 (2007): 

1198-1201. 
[111] Fraile, R., et al. "Use of mel-frequency cepstral coefficients for 

automatic pathology detection on sustained vowel phonations: 

mathematical and statistical justification." Proc. 4th international 
symposium on image/video communications over fixed and mobile 

networks, Bilbao, Brazil. 2008. 

[112] Dibazar, Alireza A., S. Narayanan, and Theodore W. Berger. "Feature 
analysis for automatic detection of pathological speech." Engineering in 

Medicine and Biology, 2002. 24th Annual Conference and the Annual 

Fall Meeting of the Biomedical Engineering Society EMBS/BMES 
Conference, 2002. Proceedings of the Second Joint. Vol. 1. IEEE, 2002. 

[113] Hermansky, Hynek. "Perceptual linear predictive (PLP) analysis of 

speech." the Journal of the Acoustical Society of America 87.4 (1990): 
1738-1752. 

[114] Baker, Kristin K., et al. "Thyroarytenoid muscle activity associated with 

hypophonia in Parkinson disease and aging." Neurology 51.6 (1998): 
1592-1598. 

[115] Stelzig, Y., et al. "[Laryngeal manifestations in patients with Parkinson 
disease]." Laryngo-rhino-otologie 78.10 (1999): 544-551. 

[116] Perez, Kathe S., et al. "The Parkinson larynx: tremor and 

videostroboscopic findings." Journal of Voice 10.4 (1996): 354-361. 
[117] Gentil, Michkle. "Acoustic characteristics of speech in Friedreich’s 

disease."Folia Phoniatrica et Logopaedica 42.3 (1990): 125-134. 

 
 


