2,606 research outputs found

    EVALUATION OF A COMPUTER VISION TRAFFIC SURVEILLANCE SYSTEM

    Get PDF
    This thesis presents an evaluation of the accuracy of a novel computer vision traffic sensor - developed by the Clemson University Electrical and Civil Engineering Departments - capable of collecting a variety of traffic parameters. More specific, the thesis examines how the camera height and distance from the travel way affects the accuracy. The details of the quantitative and qualitative evaluations used to validate the system are provided. The parameters chosen to evaluate were volume, vehicle classification, and speed. Experimental results of cameras mounted at heights of 20 and 30 feet and a lateral distance of 10 and 20 feet show accuracy as high as 98 percent for volume and 99 percent for vehicle classification. Results also showed discrepancies in speeds as low as 0.031 miles per hour. Some issues which affected the accuracy were shadows, occlusions, and double counting caused by coding detection errors

    Novel statistical modeling methods for traffic video analysis

    Get PDF
    Video analysis is an active and rapidly expanding research area in computer vision and artificial intelligence due to its broad applications in modern society. Many methods have been proposed to analyze the videos, but many challenging factors remain untackled. In this dissertation, four statistical modeling methods are proposed to address some challenging traffic video analysis problems under adverse illumination and weather conditions. First, a new foreground detection method is presented to detect the foreground objects in videos. A novel Global Foreground Modeling (GFM) method, which estimates a global probability density function for the foreground and applies the Bayes decision rule for model selection, is proposed to model the foreground globally. A Local Background Modeling (LBM) method is applied by choosing the most significant Gaussian density in the Gaussian mixture model to model the background locally for each pixel. In addition, to mitigate the correlation effects of the Red, Green, and Blue (RGB) color space on the independence assumption among the color component images, some other color spaces are investigated for feature extraction. To further enhance the discriminatory power of the input feature vector, the horizontal and vertical Haar wavelet features and the temporal information are integrated into the color features to define a new 12-dimensional feature vector space. Finally, the Bayes classifier is applied for the classification of the foreground and the background pixels. Second, a novel moving cast shadow detection method is presented to detect and remove the cast shadows from the foreground. Specifically, a set of new chromatic criteria is presented to detect the candidate shadow pixels in the Hue, Saturation, and Value (HSV) color space. A new shadow region detection method is then proposed to cluster the candidate shadow pixels into shadow regions. A statistical shadow model, which uses a single Gaussian distribution to model the shadow class, is presented to classify shadow pixels. Additionally, an aggregated shadow detection strategy is presented to integrate the shadow detection results and remove the shadows from the foreground. Third, a novel statistical modeling method is presented to solve the automated road recognition problem for the Region of Interest (RoI) detection in traffic video analysis. A temporal feature guided statistical modeling method is proposed for road modeling. Additionally, a model pruning strategy is applied to estimate the road model. Then, a new road region detection method is presented to detect the road regions in the video. The method applies discriminant functions to classify each pixel in the estimated background image into a road class or a non-road class, respectively. The proposed method provides an intra-cognitive communication mode between the RoI selection and video analysis systems. Fourth, a novel anomalous driving detection method in videos, which can detect unsafe anomalous driving behaviors is introduced. A new Multiple Object Tracking (MOT) method is proposed to extract the velocities and trajectories of moving foreground objects in video. The new MOT method is a motion-based tracking method, which integrates the temporal and spatial features. Then, a novel Gaussian Local Velocity (GLV) modeling method is presented to model the normal moving behavior in traffic videos. The GLV model is built for every location in the video frame, and updated online. Finally, a discriminant function is proposed to detect anomalous driving behaviors. To assess the feasibility of the proposed statistical modeling methods, several popular public video datasets, as well as the real traffic videos from the New Jersey Department of Transportation (NJDOT) are applied. The experimental results show the effectiveness and feasibility of the proposed methods

    A Comprehensive Review of Vehicle Detection Techniques Under Varying Moving Cast Shadow Conditions Using Computer Vision and Deep Learning

    Get PDF
    Design of a vision-based traffic analytic system for urban traffic video scenes has a great potential in context of Intelligent Transportation System (ITS). It offers useful traffic-related insights at much lower costs compared to their conventional sensor based counterparts. However, it remains a challenging problem till today due to the complexity factors such as camera hardware constraints, camera movement, object occlusion, object speed, object resolution, traffic flow density, and lighting conditions etc. ITS has many applications including and not just limited to queue estimation, speed detection and different anomalies detection etc. All of these applications are primarily dependent on sensing vehicle presence to form some basis for analysis. Moving cast shadows of vehicles is one of the major problems that affects the vehicle detection as it can cause detection and tracking inaccuracies. Therefore, it is exceedingly important to distinguish dynamic objects from their moving cast shadows for accurate vehicle detection and recognition. This paper provides an in-depth comparative analysis of different traffic paradigm-focused conventional and state-of-the-art shadow detection and removal algorithms. Till date, there has been only one survey which highlights the shadow removal methodologies particularly for traffic paradigm. In this paper, a total of 70 research papers containing results of urban traffic scenes have been shortlisted from the last three decades to give a comprehensive overview of the work done in this area. The study reveals that the preferable way to make a comparative evaluation is to use the existing Highway I, II, and III datasets which are frequently used for qualitative or quantitative analysis of shadow detection or removal algorithms. Furthermore, the paper not only provides cues to solve moving cast shadow problems, but also suggests that even after the advent of Convolutional Neural Networks (CNN)-based vehicle detection methods, the problems caused by moving cast shadows persists. Therefore, this paper proposes a hybrid approach which uses a combination of conventional and state-of-the-art techniques as a pre-processing step for shadow detection and removal before using CNN for vehicles detection. The results indicate a significant improvement in vehicle detection accuracies after using the proposed approach

    Feature-based image patch classification for moving shadow detection

    Get PDF
    Moving object detection is a first step towards many computer vision applications, such as human interaction and tracking, video surveillance, and traffic monitoring systems. Accurate estimation of the target object’s size and shape is often required before higher-level tasks (e.g., object tracking or recog nition) can be performed. However, these properties can be derived only when the foreground object is detected precisely. Background subtraction is a common technique to extract foreground objects from image sequences. The purpose of background subtraction is to detect changes in pixel values within a given frame. The main problem with background subtraction and other related object detection techniques is that cast shadows tend to be misclassified as either parts of the foreground objects (if objects and their cast shadows are bonded together) or independent foreground objects (if objects and shadows are separated). The reason for this phenomenon is the presence of similar characteristics between the target object and its cast shadow, i.e., shadows have similar motion, attitude, and intensity changes as the moving objects that cast them. Detecting shadows of moving objects is challenging because of problem atic situations related to shadows, for example, chromatic shadows, shadow color blending, foreground-background camouflage, nontextured surfaces and dark surfaces. Various methods for shadow detection have been proposed in the liter ature to address these problems. Many of these methods use general-purpose image feature descriptors to detect shadows. These feature descriptors may be effective in distinguishing shadow points from the foreground object in a specific problematic situation; however, such methods often fail to distinguish shadow points from the foreground object in other situations. In addition, many of these moving shadow detection methods require prior knowledge of the scene condi tions and/or impose strong assumptions, which make them excessively restrictive in practice. The aim of this research is to develop an efficient method capable of addressing possible environmental problems associated with shadow detection while simultaneously improving the overall accuracy and detection stability. In this research study, possible problematic situations for dynamic shad ows are addressed and discussed in detail. On the basis of the analysis, a ro bust method, including change detection and shadow detection, is proposed to address these environmental problems. A new set of two local feature descrip tors, namely, binary patterns of local color constancy (BPLCC) and light-based gradient orientation (LGO), is introduced to address the identified problematic situations by incorporating intensity, color, texture, and gradient information. The feature vectors are concatenated in a column-by-column manner to con struct one dictionary for the objects and another dictionary for the shadows. A new sparse representation framework is then applied to find the nearest neighbor of the test image segment by computing a weighted linear combination of the reference dictionary. Image segment classification is then performed based on the similarity between the test image and the sparse representations of the two classes. The performance of the proposed framework on common shadow detec tion datasets is evaluated, and the method shows improved performance com pared with state-of-the-art methods in terms of the shadow detection rate, dis crimination rate, accuracy, and stability. By achieving these significant improve ments, the proposed method demonstrates its ability to handle various problems associated with image processing and accomplishes the aim of this thesis

    Moving Shadow Detection in Video Using Cepstrum

    Get PDF
    Cataloged from PDF version of article.Moving shadows constitute problems in various applications such as image segmentation and object tracking. The main cause of these problems is the misclassification of the shadow pixels as target pixels. Therefore, the use of an accurate and reliable shadow detection method is essential to realize intelligent video processing applications. In this paper, a cepstrum-based method for moving shadow detection is presented. The proposed method is tested on outdoor and indoor video sequences using well-known benchmark test sets. To show the improvements over previous approaches, quantitative metrics are introduced and comparisons based on these metrics are made

    Advanced traffic video analytics for robust traffic accident detection

    Get PDF
    Automatic traffic accident detection is an important task in traffic video analysis due to its key applications in developing intelligent transportation systems. Reducing the time delay between the occurrence of an accident and the dispatch of the first responders to the scene may help lower the mortality rate and save lives. Since 1980, many approaches have been presented for the automatic detection of incidents in traffic videos. In this dissertation, some challenging problems for accident detection in traffic videos are discussed and a new framework is presented in order to automatically detect single-vehicle and intersection traffic accidents in real-time. First, a new foreground detection method is applied in order to detect the moving vehicles and subtract the ever-changing background in the traffic video frames captured by static or non-stationary cameras. For the traffic videos captured during day-time, the cast shadows degrade the performance of the foreground detection and road segmentation. A novel cast shadow detection method is therefore presented to detect and remove the shadows cast by moving vehicles and also the shadows cast by static objects on the road. Second, a new method is presented to detect the region of interest (ROI), which applies the location of the moving vehicles and the initial road samples and extracts the discriminating features to segment the road region. After detecting the ROI, the moving direction of the traffic is estimated based on the rationale that the crashed vehicles often make rapid change of direction. Lastly, single-vehicle traffic accidents and trajectory conflicts are detected using the first-order logic decision-making system. The experimental results using publicly available videos and a dataset provided by the New Jersey Department of Transportation (NJDOT) demonstrate the feasibility of the proposed methods. Additionally, the main challenges and future directions are discussed regarding (i) improving the performance of the foreground segmentation, (ii) reducing the computational complexity, and (iii) detecting other types of traffic accidents

    Cast shadow modelling and detection

    Get PDF
    Computer vision applications are often confronted by the need to differentiate between objects and their shadows. A number of shadow detection algorithms have been proposed in literature, based on physical, geometrical, and other heuristic techniques. While most of these existing approaches are dependent on the scene environments and object types, the ones that are not, are classified as superior to others conceptually and in terms of accuracy. Despite these efforts, the design of a generic, accurate, simple, and efficient shadow detection algorithm still remains an open problem. In this thesis, based on a physically-derived hypothesis for shadow identification, novel, multi-domain shadow detection algorithms are proposed and tested in the spatial and transform domains. A novel "Affine Shadow Test Hypothesis" has been proposed, derived, and validated across multiple environments. Based on that, several new shadow detection algorithms have been proposed and modelled for short-duration video sequences, where a background frame is available as a reliable reference, and for long duration video sequences, where the use of a dedicated background frame is unreliable. Finally, additional algorithms have been proposed to detect shadows in still images, where the use of a separate background frame is not possible. In this approach, the author shows that the proposed algorithms are capable of detecting cast, and self shadows simultaneously. All proposed algorithms have been modelled, and tested to detect shadows in the spatial (pixel) and transform (frequency) domains and are compared against state-of-art approaches, using popular test and novel videos, covering a wide range of test conditions. It is shown that the proposed algorithms outperform most existing methods and effectively detect different types of shadows under various lighting and environmental conditions

    Moving cast shadows detection methods for video surveillance applications

    Get PDF
    Moving cast shadows are a major concern in today’s performance from broad range of many vision-based surveillance applications because they highly difficult the object classification task. Several shadow detection methods have been reported in the literature during the last years. They are mainly divided into two domains. One usually works with static images, whereas the second one uses image sequences, namely video content. In spite of the fact that both cases can be analogously analyzed, there is a difference in the application field. The first case, shadow detection methods can be exploited in order to obtain additional geometric and semantic cues about shape and position of its casting object (’shape from shadows’) as well as the localization of the light source. While in the second one, the main purpose is usually change detection, scene matching or surveillance (usually in a background subtraction context). Shadows can in fact modify in a negative way the shape and color of the target object and therefore affect the performance of scene analysis and interpretation in many applications. This chapter wills mainly reviews shadow detection methods as well as their taxonomies related with the second case, thus aiming at those shadows which are associated with moving objects (moving shadows).Peer Reviewe
    corecore