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Abstract 
Computer vision applications are often confronted by the need to differentiate be- 

tween objects and their shadows. A number of shadow detection algorithms have been 

proposed in literature, based on physical, geometrical, and other heuristic techniques. 

While most of these existing approaches are dependent on the scene environments and 

object types, the ones that are not, are classified as superior to others conceptually 

and in terms of accuracy. Despite these efforts, the design of a generic, accurate, 

simple, and efficient shadow detection algorithm still remains an open problem. In 

this thesis, based on a physically-derived hypothesis for shadow identification, novel, 

multi-domain shadow detection algorithms are proposed and tested in the spatial and 

transform domains. 

A novel "Affine Shadow Test Hypothesis" has been proposed, derived, and vali- 

dated across multiple environments. Based on that, several new shadow detection al- 

gorithms have been proposed and modelled for short-duration video sequences, where 

a background frame is available as a reliable reference, and for long duration video 

sequences, where the use of a dedicated background frame is unreliable. Finally, ad- 

ditional algorithms have been proposed to detect shadows in still images, where the 

use of a separate background frame is not possible. In this approach, the author 

shows that the proposed algorithms are capable of detecting cast, and self shadows 

simultaneously. 

All proposed algorithms have been modelled, and tested to detect shadows in the 

spatial (pixel) and transform (frequency) domains and are compared against state- 

of-art approaches, using popular test and novel videos, covering a wide range of 

test conditions. It is shown that the proposed algorithms outperform most existing 

methods and effectively detect different types of shadows under various lighting and 

environmental conditions. 
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Chapter 1 

An Overview 

1.1 Introduction 

Computer vision can be considered as an immature and a diverse field of science. 

Although earlier work exists, it was not until the late 1970's that a more purposeful 

study of the field commenced. These studies originated from various other fields, and 

as a consequence, no standard formulation of the "computer vision problem", nor of 

the "computer vision solution" exists. However, there exists a profusion of methods 

for solving various definite computer vision tasks. These methods are often task 

specific and can hardly be generalised over a wide range of applications. Sub-domains 

of computer vision include object tracking, object recognition, scene reconstruction, 

event detection, learning, indexing, ego-motion, image restoration, et cetera [251. 

The research carried out in this thesis is intended to serve the object tracking and 

recognition sub-domains, by proposing a solution for one of the major problems in 

these fields, "The existence of cast shadows". 

In object tracking and recognition applications, cast shadows are considered as 

a major problem associated with segmenting and extracting moving objects, as cast 

shadows cause object merging, object loses, and alter object shape characteristics 

[611. 

1 



Chapter 1: An Overview 2 

The following section introduces and illustrates the context of shadows and cast 

shadows before further applications are discussed. 

1.1.1 What is a Shadow and a Cast Shadow 

A shadow is a region of darkness where light is blocked. A shadow occurs when 

an object totally or partially occludes direct light from the light source. Generally, a 

shadow is divided in two parts: a self shadow, and a cast shadow. A self shadow is 

the part of the shadow on the main object, that is not illuminated by light. A cast 

shadow is the part of a shadow on the background of the scene. A cast shadow is 

further sub-divided into umbra and penumbra regions [61], see Figure 1.1. 

Cast Shadow (Umbra) 

Figure 1.1: Self shadow, and cast shadow (umbra and penumbra). 

The umbra (Latin: "shadow") is the darkest part of a shadow. Within the umbra, 

the light source is completely blocked by the object casting the shadow [27]. The 

penumbra (Latin: "almost-shadow") is that part of the shadow where the light source 

is partially blocked. Penumbras occur only when the light source is not a point-source 
[281. 

Self Shadow 
Cast Shadow (Penumbra) 
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1.2 Applications 

3 

Shadow detection can be useful in many applications, including: video coding, 

image processing and computer graphics. The following are some examples of appli- 

cations where shadow detection is of high importance. 

Object Recognition 

The term recognition is used to refer to many different visual abilities, including 

identification, categorisation, and discrimination. Recognising an object means that 

the object has been successfully categorised as an instance of a particular object class 

[52]. Shadows are a major problem associated with object recognition, for the reason 

that shadows have the same motion as the objects casting them, and shadow points 

are detectable as foreground points since they typically differ significantly from the 

background. For these reasons, in object recognition, shadow identification is critical 

for both image sequences (video) and still images [61]. 

Object Tracking 

Automated video surveillance systems require some mechanism to track interesting 

objects in the field of view of the sensor. In object tracking, cast shadows might be 

classified as other objects due to the fact that objects and their shadows have similar 

visual characteristics. Shadows may result in object merging, and shape alteration, 

which may cause significant confusion to the tracking system [61]. 

1.3 Motivations for the Research 

Computer vision applications are challenged by the need for a generic, simple and 

accurate model that is capable of detecting shadows' umbra and penumbra in indoor 

and outdoor scene environments with domain independence. 

Motivated by these facts, several spatial and transform domain shadow detection 

algorithms are proposed in this thesis. These algorithms are supported by a novel 

physically-derived shadow test hypothesis, i. e. "The Affine Shadow Test Hypothesis", 
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that is capable of detecting several types of shadows in different environments. 

1.4 Research Objectives and Contributions of the 

Thesis 

The general research aim is to "Design and implement a novel, generic, simple, 

and accurate model for cast shadow detection". 

1.4.1 Objectives 

Specific research objectives are as follows: 

" to investigate the available illumination and reflection model hypotheses and 

propose modifications, where applicable, 

" to investigate the relationship between shadow and non-shadow points and to 

extract a relationship (the Affine relationship), 

" to investigate the best possible methods for calculating the affine parameters in 

various spatial and transform domains, 

" to design and implement shadow detection algorithms for video sequences, 

" to design and implement shadow detection algorithms for video sequences with 

a non-dedicated background image, and 

" to design and implement shadow detection algorithms for still images that are 

capable of detecting self and cast shadows. 

1.4.2 Contributions of the research 

In this research, the following original contributions have been made. The result- 

ing conference and journal papers are included in the list of citations. 
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1. Introducing a novel illumination and reflection model hypothesis 

In this thesis, the author proposes a novel illumination and shadow model, which 

models the ambient light more accurately than existing models, by assuming 

less ambient light is received at a point on a surface when a shadow is cast. 

2. Introducing a novel shadow test hypothesis- affine relationship be- 

tween shadow and non-shadow regions 

This proposed hypothesis represents the core of this thesis. The hypothe- 

sis presents a novel method for detecting moving cast shadows using a novel 

physically-derived shadow test condition as follows: let q be a point on the 

surface of an object in an illuminated three-dimensional scene, and nq be a 

neighbourhood of q in the surface. Using a simple geometric representation of 

light rays and a simple reflection model, it is possible to show that the light en- 

ergy received at points rE nq in the absence of an object casting a shadow over 

nq is affinely related, to a high degree of approximation, to the energy received 

when a shadow is cast over nq by an object. The same affine parameters are 

applicable to the entire neighbourhood nq. 

The above shadow hypothesis is used as the core of all the following contribu- 
tions. 

3. Developing shadow detection algorithms for video sequences in the 

spatial and transform domains 

The algorithms presented in this work, use background and object frame pairs, 
for the detection of moving shadows in the object frames. The proposed shadow 
detection algorithms are modelled in the following domains: the pixel domain, 

the Fourier transform domain (Discrete Cosine Transform (DCT)), and the 

Discrete Wavelet Transform (DWT) domain. 

4. Developing a shadow detection algorithm for video sequences with a 
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non-dedicated background image 

In the proposed algorithms, the use of a fixed background frame as a reference 

is not required if any of the previous frames in the video sequence contain the 

corresponding non-shadow area, and therefore can be used as a reference frame. 

An automated approach is proposed and used to determine which previous 

frame is the best to be used as a reference. 

5. Developing shadow edge detection algorithms for still images 

In this part 1-D interval-based shadow edge detection algorithms for still images 

are proposed in the spatial and transform domains. The proposed algorithms in 

the pixel and transform domains use the Canny edge detector to locate edges in 

the scene as a pre-processing step. Based on the resulting edge detected image, 

a shadow boundary detection algorithm compares regions at each edge point 

in order to decide whether or not that edge point forms a part of the shadow 

boundary. 

1.5 Organization of the Thesis 

Remainder of the thesis is organised into seven chapters: 

Chapter 2: This chapter starts with providing an overview of the existing hy- 

potheses, and research work carried out in the field of shadow detection. Further, 

it includes a comprehensive survey on existing cast shadow modelling and detection 

techniques. 

Chapter 3: This chapter represents the core of the thesis. It introduces the pro- 

posed novel shadow hypothesis, the shadow condition-affine relationship, and illus- 

trates the derivation of the affine hypothesis. 

Chapter 4: This chapter theoretically compares the existing illumination and 

shadow models with the new proposed model. It also details the differences between 
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the existing and proposed hypotheses. 

Chapter 5: This chapter introduces the cast shadow modelling and detection 

algorithms in the spatial (pixel) and transform (Fourier and wavelet) domains. It 

discusses the mechanism of applying the proposed affine shadow test hypothesis to 

each of the domains. 

Chapter 6: This chapter describes the applications of the proposed algorithms in 

video processing, with an extensive performance evaluation and comparison against 

other benchmark algorithms. The chapter also discusses a method of applying the 

proposed algorithms to video applications without the use of a dedicated background 

image. 

Chapter 7: This chapter presents an application of the affine shadow test hy- 

pothesis for still images to detect self and cast shadow boundaries. A new approach 

is proposed based on the use of shadow and non-shadow areas within an image to 

predict shadow edges. 

Chapter 8: This chapter concludes this thesis, with an insight into the future 

directions of research. 



Chapter 2 

Literature Review 

2.1 Overview 

Several shadow detection approaches have been proposed in the literature. This 

chapter provides a comprehensive overview of some selected hypotheses and algo- 

rithms used in the literature for moving cast shadow detection. However, due to 

large volume of existing literature, the provision of a complete survey on general 

shadow detection algorithms is out of the scope of this thesis. For a complete survey, 

readers are advised to refer to Pratil et al. [61] and their follow-up work. 
Moving cast shadow detection algorithms can be classified in different ways. For 

the purpose of this research, these algorithms are categorised into a four-layer taxon- 

omy 2 (see Figure 2.1). The first layer of classification considers whether the method 

is independent/dependent on object types. The second layer considers whether the 

method is environment independent/dependent. The third layer considers whether 

the decision process introduces and exploits uncertainty. The third layer is subdivided 

into deterministic and statistical approaches, the former uses an on/off decision pro- 
1Prati et al. summarises the general shadow detection algorithms in the literature, and provides 

an extensive evaluation for the proposed methods. 
2In the literature, shadow detection algorithms have been classified into a two-layer taxonomy 

(see (611), this taxonomy forms the bottom layers of the new taxonomy proposed in this thesis. 

8 
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cess, and the later uses statistical measurements, and introduces uncertainty to reduce 

noise sensitivity. The deterministic class can be further subdivided based on whether 

the on/off decision can be supported by model based knowledge or not (this taxonomy 

is summarised in Appendix A -Table A. 1) [61]. 

Another classification has been proposed in this thesis based on the shadow detec- 

tion algorithm's domain. This classification, considers whether the method is applied 

in the spatial (pixel), or in the transform (frequency) domain, and whether it is based 

on the Hue-Saturation-Value (HSV), the Red-Green-Blue (RGB), or YUV colour 

spaces (this taxonomy is presented in Appendix A -Table A. 2). 

This chapter is organised as follows: section 2.2 introduces the existing cast 

shadow modelling hypothesis. Section 2.3 discusses the moving cast shadow detec- 

tion approaches proposed in literature. This section is further sub-divided based 

on the proposed taxonomy into: section 2.3.1,2.3.2, and 2.3.3. Finally, section 2.4 

summarises this chapter. 

2.2 Introduction 

This section gives an introduction to the illumination, shadow, and reflection 

models that form the basis for many shadow detection methods proposed in the 

literature. It also summarises the basic assumptions of many existing methods. 

When digital cameras capture shadows in a scene, it is the light reflected from the 

surface that records that part of the scene. Therefore, the luminance (brightness) of 

a point q, at the 2D image position (x, y)3 and time instant t, can be described by 

the following reflection4 model [73]: 

V)e(x, Y) = Ct(x, Y)pt(x, y) 
3When considering the following model, (x, y) corresponds to the 2D projection of the environ- 

ment. Thus q, which is (x, y, z) projects to (x, y). 
4Assuming the illumination spectrum is constant for each wavelength (white illumination) and 

matte surfaces 
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1Shadows 
Detection 

Algorithms 

Object Dependent Object Independent 

Environment 71 Environment Environment Environment 

I Dependent Independent Dependent L Independent 

Statistical Deterministic Sstatistical Deterministic 
Lmnsuc 

ModN Non-model Model Non-model Model Non-model ModN Non model 
Besse Based Basal Based Based Based Retied Based 

Figure 2.1: Proposed taxonomy for shadow detection algorithms. 

where p1(x, y) is the reflectance of the object surface, i. e. reflection coefficient, and 

(t(x, y) is the irradiance (illumination), i. e. the amount of luminance energy (light 

power) received by zlit(x, y), and (t(x, y) is a function of the direction L2, y of the light 

source with respect to the object surface normal Nx, y, and the intensity of the direct 

light (cp) and the ambient light (CA) received at point q. The illumination ( of a 

point (x, y) when in or out of a shadow has been modelled as, [73] : 

cp Nx, y " Lx, y + CA no object (no shadow) 
(01" 0_),., 

ycp Nx, y " Lx, y + CA penumbra 

C, I umbra 

The above model describes illumination, both before and after a shadow is cast, 

and therefore it is called the illuminatio' and shadow model. The term 0< 

'The usage of the term illumination model should not be confused with the traditional computer 
graphics term, where it is concerned with light source modelling. 



Chapter 2: Literature Review 11 

Ax, y <1 describes the transition inside the penumbra, and depends on the light source 

and scene geometry (the model is based on Lambert's cosine law) [73). 

In addition to the above model, the following general assumptions are made by 

many of the existing shadow detection methods [73): 

Assumption 1: light source intensity cp is high. Consider a pixel at position (x, y) 

that shows a part of the background. Assume that the pixel is outside a cast shadow 

at time instant tl and inside a cast shadow at time instant t2. It follows that, if 

cp is high at time t1, then the difference ('t (x, y) _ (t, (x, y) - Ct, (x, y) will be high. 

Note that, the reflectance of a static background does not change with time, thus 

Pt, (x, y) = Pt, (x, y) holds. 

Assumption 2: Camera and background are static'. If both assumptions 1 and 2 

hold, the results in the difference equation will be high in the presence of cast shadows 

covering a static background. This implies (as assumed in many other approaches) 

that shadow points can be obtained by thresholding the frame difference image. 

Assumption 3: Background is plane, and light source position is at a distance from 

the background. 

Assumption 4: The distance between the moving object and the background is not 

negligible compared to the distance between the light source and the object. 

2.3 Moving Cast Shadow Detection Approaches 

2.3.1 Object independent and environment dependent ap- 

proaches 

The work of Stauder T et al. [73) is based on the reflection model introduced in 

section 2.2. Given a video sequence, the authors exploit the local appearance change 
6Static camera requires a frame taken before the object enters the scene, and another frame taken 

after the object enters the same scene. Static background requires a scene illumination that does 

not change overtime, otherwise dynamic background generation algorithms would be required. 
"The work forms the basis of many other algorithms proposed in literature. 
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due to shadows by computing the ratio ýt(x, y) between the appearance of the pixel 
in the actual frame (frame with shadow), and the appearance in a reference frame 

(frame with no shadow) as: 

Zt(x, y) _ 
ca (x, y) 

ýc, ix, J) 

Using the reflection model ot(x, y) = (t(x, y)pt(x, y) and assuming constant re- 

flectance through time tj and t2, i. e. pt, (x, y) = pt, (x, y) = pt(x, y), it follows that: 

t(x, ý) = 
Ctý(x, _) < 

Therefore, by using the illumination and shadow model (t (x, y) (see section 2.2), 

the ratio t(x, y) can be written as: 

/ 
St(x, Y) 

CA 
<11. G. 

cp Nx, 
v - I'x, 

y + CA 

Umbra(object) 
Illumination (background) 

Moreover, following assumption 3 -section 2.2, Stauder et al. assumed N.,,, is 

spatially constant in a neighbourhood of the point. Thus, the pixel is marked as 

`possible shadow'. The authors use various heuristic techniques in order to exploit 

all the four assumptions (such as edge detection and gradient calculation). Results 

show an excellent detection and removal of indoor shadows. However, the limitations 

come from the fact that the approach is not applicable for outdoor shadows (outdoor 

shadows are harder to detect), and the fact that it requires the background to be of 

a uniform colour. 

Xu et al. [81,821 assumed in their work that the work proposed by Stauder et al. 
[73] can generate many false negative edges, which denotes the moving edges consid- 

ered as static edges. They proposed an alternative method of moving cast shadow 

detection and removal, in normal indoor scenes where the hypothesis and the gen- 

eral assumptions in section 2.2 hold. Their shadow detection and removal algorithm 

includes: the generation of initial Change Detection Masks (CDM), shadow region 

detection by multi-frame integration, edge matching and region growing, and finally 
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shadow region removal and post-processing for eliminating noise and tuning object 

boundaries. The results were compared with the related gradient filter approach pro- 

posed by Chien et al. [16]. Results have proved the high efficiency of the algorithm for 

shadow detection. However, the method is intended for insignificant indoor shadows, 

and is only applicable for indoor environments. 

Chien et al [16] proposed a moving object segmentation algorithm for real-time 

applications. A background registration technique is used to construct a background 

image from the accumulated frame difference information. The moving object region 

is separated from the background region by comparing the current frame with the 

constructed background image. Finally, a post-processing step is applied on the 

resulting object mask to remove noise regions and to smooth the object boundary. 

A morphological gradient operations are used to filter out the shadow area while 

preserving the object shape. However, the use of morphological gradient operations 

can reduce the effects of insignificant indoor shadows only, and not the effects of 

outdoor shadows, or significant indoor shadows. 
By ignoring the shadow penumbra, and only assuming illuminated and shadow 

points, Toth et al. [75] applied a simplified version of the illumination and shadow 

model described in section 2.2 as follows: 

cp Ny, v " Lx, y + CA no object 

CA umbra 

Toth et al. applied the ratio between the shadow region in frame It, and its 

corresponding region in the background frame I6, where it is illuminated as follows: 

k(x, y) = 
It(x' y) 

= 
CA <1i. e. 

shadow 
Ib(X, y) cp Nx, y " Ly, y + CA Illuminate(background) 

Since background reflectance does not change with time, the authors assumed that 

k(x, y) represents the ideal case without any noise. They also assumed that images 

are corrupted with Gaussian white noise. Accordingly, their background images were 

modelled as follows: 
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I6 = Ib + E(x, y) where e(x, y) - N(0, v2) 

with a2 being the camera noise, which is either known or can be estimated, and 

therefore, for a shadow point in the foreground image, it can be assumed that: 

It (x, y) = k(x, y)"Ib(x, y) + E(x, ýl) 

The authors then apply thresholds to classify a point as a non-shadow pixel or as 

a shadow point. 
Siala et al. [721, applied the illumination and shadow model, described in section 

2.2. The authors proposed that the distortion between a background image Ibg and a 

current image It, where t denotes time, of a video-surveillance sequence expressed in 

the RGB colour space, can be approximated for shadow regions by : Rah = dRRbg, 

G, h = dcGb9, Bah = dBBb9, where Reh, G3h, B, h and Rb9, Gbg, Bb9 are respectively the 

RGB colour values of shadow pixel in It and non-shadow pixel in Icy, and the colour 

ratios dR =R<1, dc _<1, dB =B<1. To detect shadows, the authors 

apply a learning stage, where a representative image containing the three classes: 

foreground, moving shadow, and background, is arbitrarily selected. The moving 

shadow regions are manually segmented. Colour ratios dR, dG, dB are computed for 

pixels issued from a bootstrap sample. Although the use of learning methods is 

computationally exhaustive, it is supposed to give more accurate results. However, 

the results show a large number of misclassifications. 

Elgammal et al [24) defines a local assumption on the ratio between shadow and 

non-shadow point luminance. The approach uses colour information to suppress non- 

shadow points from being detected, by separating colour information from lightness 

information. Given three colour variables, R, G, and B, the chromaticity coordinates 

r, g, and b can be calculated as: r= R+GR +B 9- R+G+a, 
b= R+c+B " 

The work 

assumes that the use of chromaticity coordinates in shadow detection has the advan- 

tage of being more insensitive to small changes in illumination due to shadows. The 



Chapter 2: Literature Review 15 

lightness at each pixel is measured using: s=R+G+B. The method starts by 

assuming assumption 3 -section 2.2, and its basic idea is as follows: let the expected 

value for a pixel be < r, g, s> assume that this pixel is covered by a shadow in frame 

t and let< rt, gt, st > be the observed value for this pixel at this frame. Then, using: 

a<ä<1i. e. it is expected that the observed value st, will be darker than the 

normal value s up to a certain limit. The work also assumes that a similar effect is 

expected for highlighted background, where the observed value is brighter than the 

expected value, up to a certain limit. 

Horprasert et al. [39] proposed a similar approach to Elgmmal et al. [24]. Their 

work also assumes that shadows have similar chromaticity and lower brightness in 

comparison to the same pixel brightness in the background image. The algorithm is 

also based on the proposed computational colour model, which separates the bright- 

ness from the chromaticity component. Reported results show a good detection of 

shadows in indoor environments, and shadows in outdoor environments in overcast 

situations, where cast shadows are weak. It is observed that as the shadow gets 

stronger, pixels tend to be increasingly identified as foreground pixels. 

The work of KaewTrakulPong and Bowden [46] uses a computational model simi- 

lar to that of Horprasert et al. [39]. If the difference in both chromatic and brightness 

components is within some thresholds, the pixel is considered as a shadow. 

Friedman and Russell [30] proposed an unsupervised learning technique for shadow 

detection. The system classifies each pixel using a probabilistic model of how the pixel 

looks when it is part of different classes (background illuminated, background covered 

by a cast shadow, or part of foreground object). Assuming the appearance of the pixel 

in shadow is independent of the object that is casting it, then the shadow model for the 

pixel is assumed to be relatively constant. Furthermore, the probabilistic classification 

of the current pixel value is used to update the models, so that object pixels do not 

become mixed in with the background model when moving slowly. However, the 

results reported show a significant number of misclassified pixels. 
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Amamoto and Fujii 8 [2] described a method for tracking moving vehicles on a road. 

In the proposed method, the varying region in the monitoring image is derived from 

the background difference, and is further classified into moving objects, stationary 

objects, shadows and highlights. Their work is one of the very few attempts that have 

been made to detect shadows in the frequency domain. The work uses the Discrete 

Cosine Transform (DCT) to detect shadows of vehicles on roads. The authors suggest 

that the shadow of an object varies the pixel values uniformly in comparison with the 

background. In addition, within the DCT domain, the authors assume that shadows 

of moving objects may be identified by their dc values, while moving objects maybe 

identified by their ac values. Although it is a very simple method, highly applicable 
for real-time applications, and can be used in the compressed domain, its limitations 

come from the domain constrained assumptions, that if generalised will collapse. 

Within the transform domain, Etemadnia and Alsharif [29] proposed an approach, 

which assumes that the illumination component of an image is generally characterised 

by slow spatial variation, while the reflection component tends to vary abruptly, par- 

ticularly at the junctions of dissimilar objects. These characteristics lead to associate 

the low frequency components of the Fourier transform of an image with illumination, 

and the high frequencies with reflection. A Low-Pass-Filter (LPF) and a High-Pass- 

Filter (HPF) are defined to detect the shadows. Although the method is applicable 

in the compressed domains, the associated results are obtained in very simple indoor 

environments, with insignificant shadow. 

Jacques et al. [421 in their work, proposed that in shadow regions, it is expected 
that a certain fraction of incoming light is blocked. The authors assume that the 

observed intensity of shadow pixels is directly proportional to incident light; conse- 

quently, shadow pixels are scaled versions (darker) of corresponding pixels in the back- 

ground model. The Normalised Cross-Correlation (NCC) is used to detect shadow 

pixel candidates. The NCC is used as an initial step for shadow detection, followed 

BThe work is considered as the first work to apply shadow detection in the transform domain. 
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by a refinement process using local statistics of pixel ratios. Let B be the background 

frame, and I be the current frame of the video sequence. The method proposes that 

for each pixel (x, y) belonging to the foreground, it considers a (2N + 1) x (2N + 1) 

template Txy such that Ty(n, m) =I (x + n, y+ m), for -N <n<N, -N <m<N, 

i. e. Txy corresponds to a neighbourhood of pixel (x, y). The NCC between Txv and 

image B(x, y) is given by: 

NCC(x, y) = 
ER(x, y) 

E9() y)FJTmv 

where ER, EB, and ET are defined as: 
NN 

ER(x, Y) =EE B(x + n, y+ m)Txv(n, m) 
n=-N mm-N 

NN 
EB(x, y) =E B(x + n, y+ m)2 

N n=-N m=-N 

NN 
ETsy =E1 TT, (n, m)2 

n=-N m=-N 

A pixel at position (x, y) is pre-classified as shadow if: 

NCC(x, y) =L and ETsy < EB(x, y) 

where L, ar is a fixed threshold. The proposed refinement stage holds if the ratio 

I (x, y)/B(x, y) in a neighbourhood around each shadow pixel candidate is approxi- 

mately constant, by computing the standard deviation of I (x, y)/B(x, y) within the 

neighbourhood. Although the results show a good classification of shadow regions in 

indoor environments, it is shown in the results that there is a large number of misclas- 

sified pixels in weak shadow areas, where the authors apply a morphological operator 

to remove the misclassifications. The authors acknowledge that in outdoor environ- 

ments, i. e. with strong shadows, the algorithm fails and shadows will be misclassified 

as foreground objects. 

Javed and Shah [44) assumed that pixels in the shadow regions are darker than 

those in the reference background, and that shadows retain some texture and colour 
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information of the underlying surface under general viewing conditions. In their work, 

all foreground regions in the image that are darker than the corresponding regions in 

the reference image are extracted. The algorithm then performs colour segmentation 

on the extracted regions. The algorithm uses the K-means approximation to perform 

colour segmentation. Each pixel value in a potential shadow region is checked against 

existing K Gaussian distributions until a match is found. Reported results show a 

good classification of indoor shadows. 

Rosin and Ellis [671 developed an algorithm that works on grey level images taken 

by a stationary camera. Authors perform background subtraction, and segment fore- 

ground regions blobs. The intensity ratio between the current and the reference 
image is calculated for each pixel within the detected blobs. The authors also specu- 
late on the photometric properties of the regions with shadows in the image division. 

The authors argue that the photometric gain with respect to the background image 

is roughly constant over the entire shadow region, except at the edges. A region- 

growing algorithm is used to build likely shadow regions. After that, shadow regions 

are selected on the basis that they should contain relatively homogeneous intensity 

ratio values. Reported results show good detection of indoor shadows. However, the 

total number of misclassified pixels is relatively high. 

Fung et al. [31) proposed a shadow detection method, assuming that the lumi- 

nance of the cast shadow is lower than that of the background, and the chrominance of 

the cast shadow is identical or slightly shifted when compared with that of the back- 

ground, the difference in gradient density between the cast shadow and background 

is lower than the difference in gradient density between the object and background, 

and the cast shadow is at the boundary region of the moving foreground mask (i. e. 

the cast shadow can be formed in any direction of the object, but not inside the 

object). In order to extract the moving object without the cast shadow from the 

stationary background, their proposed methodology consists of the following stages: 

moving foreground extraction, shadow confidence score calculation and moving cast 
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shadow detection. In the first stage, the moving foreground mask is identified by 

subtracting the background image from the input image. In the second stage, the 

shadow confidence score is calculated by realising various characteristics of cast shad- 

ows in terms of luminance, chrominance, and gradient density from various mapping 

functions defined according to the cast shadow's characteristics stated above. Finally, 

based on the shadow confidence score calculated and the significant edge detected in 

the input image, the object and cast shadow are separated accordingly. Results show 

a relatively high number of misclassifications in the foreground. The method also 

comprises a large number of thresholds. 

Nicolas 157] presented a scalable block-based video compression scheme for video- 

surveillance applications. In the approach, each block is classified according to its 

content, i. e. background, foreground, and cast shadow. Using assumption 3 in section 

2.2, the author assumed that the shadow ratio between a shaded point in the image 

It and the same illuminated point in the reference frame Ire f can be expressed as: 

Rt(Q) = Ia 
ja (4) 

rej(9) +K 

where K is a constant and It (q) is the intensity of the ambient light at point q and 

time t. Iaf (q) is the intensity of the ambient light at a point q in the reference 

frame. The method is not considered as a complete physical model for shadows and 

illumination, since the direct light received at a point q is totally ignored. Even with 

a distant light source, direct light is still received at a point q unless blocked by an 

object in the scene. Moreover, no results are reported. 

2.3.2 Object independent and environment independent ap- 

proaches 

Mikic et al. [54] and Trivedi et al. [76] introduce an algorithm 9 for moving cast 

shadow detection in traffic scenes. The method uses three sources of information to 
'The proposed algorithm is the same in [54) and [76). However, the applications are different. 
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distinguish between moving cast shadows and their corresponding objects: 

" local information: based on the appearance of the individual pixels, a point 

covered by a shadow gets darker, its blue component increases and the red 

component decreases compared to the appearance when illuminated. 

" Spatial information: objects and shadows inhabit compact regions in the image. 

" Temporal information: object and shadow positions can be predicted from pre- 

vious frames. 

The mean and variance of all three-colour components for each background pixel is 

calculated. Given the statistics for a background pixel (Gaussian distributions are 

assumed for background and shadow pixels and a uniform distribution is assumed 
for foreground). The decisions are made for each pixel. The segmentation starts by 

comparing the feature vector for each pixel (a three-dimensional vector of R, G and B 

colour components) to the mean at that location in the background model. If not sig- 

nificantly different, the pixel is classified into the background class. Otherwise, prior 

probabilities are assigned to that location. Colour features, and the neighbourhood 

information are used to produce smoother classifications. Temporal information is 

used by modifying class prior probabilities, based on predictions from the previous 

frame. These two methods show excellent results and performance even in complex 

environments. However, they require information about the position of the sun with 

respect to the camera. 
Cucchiara et al 10. [19,21) exploit a similar concept to the work of Elgammal et 

al. [241 and Horprasert et al. [391. The work aims to present a technique for shadow 

detection and suppression used in a system for moving visual object detection and 

tracking. The major novelty of the shadow detection technique is that the analysis 

is carried out in the Hue-Saturation-Value (HSV) colour space, to improve the accu- 

racy in detecting shadows (the HSV colour space corresponds closely to the human 

'0The authors applied the same shadow detection approach in four different applications. 
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perception of colour). The system tries to estimate how the occlusion due to shadow 

changes the values of H, S and V. 

HSV defines a colour space in terms of three constituent components [26]: 

" Hue, the colour type (such as red, blue, or yellow): ranges from 0- 360 (but 

normalised to 0- 100% in some applications) 

" Saturation, the vibrancy of the colour: ranges from 0- 100%. Also sometimes 

called the purity by analogy to the colourimetric quantities excitation purity and 

colourimetric purity. The lower the saturation of a colour, the more greyness is 

present and the more faded the colour will appear. 

" Value, the brightness of the colour: Ranges from 0- 100% 

Given a colour defined by RGB where R, G, and B are between 0.0 and 1.0, 

with 0.0 being the least amount and 1.0 being the greatest amount of that colour, an 

equivalent (H, S, V) colour can be determined as follows [26): 

Let Max equal the maximum of the (R, G, B) values, and Min equal the minimum 

of those values. The formula can then be written as: 

G-B 60 X Max-Min +0 

H 
G-B 60 x Max-Min ý' 360 
B-R 

j6Ox 

+120 Max-Min 
R-G 60 x Max-Min + 240 

if Max = Rand G>B 

if Max=Rand G<B 

if Max =G 

ifMax=B 

Max - Min 
Max 

V= Max 

According to [19,211, for each pixel belonging to the objects resulting from the 

segmentation step, the proposed method checks if it is a shadow according to the fol- 

lowing considerations. First, if a shadow is cast on a background, the hue component 

changes, but within a certain limit. In addition, the saturation component is also 
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considered, which was proven experimentally to change within a certain limit. The 

difference in saturation must be an absolute difference, while the difference in hue is 

an angular difference. A shadow mask SP' is defined for each point p resulting from 

motion segmentation based on the following shadow model: 

1 ifa <I Bt (P) .v< 
ßA 1 It(p). S - Bt(p)"S 1: 5 Ts 

SPt (p) = ADH < TH; aE [0,1], ßE [0,1] 

0 otherwise 

Where DH = min(I It(p). H - Bt(p). H 1,360- 1 It(p). H - Bt(p). H 1). 

The H, S, and V denotes the hue, saturation, and value components, respectively, 

of vectors in the HSV space. It(p). V is the intensity value for the component V of 

the HSV pixel in the current frame at time t. Bt(p). V is the intensity value for the 

component V of the HSV pixel in the reference frame at time t (reference frame 

contains the scene with no shadows, i. e. no object is present). 

The first condition works on the luminance (the V component), while the second 

and third conditions account for both the saturation (S) and the hue (H) components. 

On component Sa threshold on the saturation difference between the current and 

the reference frame is performed I It(p). S - Bt(p). S 1< TS. 
The lower bound a is used to define a maximum value for the darkening effect 

of shadows on the background and is approximately proportional to the light source 

intensity. It takes into account how strong the light source is, i. e. accounts for Cp, 

CA, and the angle defined in the ratio - according to Stauder et al. [731: 

ek(X, y) = 
CA 

Cp Nx�v - Lx, 
v + CA 

Thus, the stronger and higher the sun, the lower the value of a must be cho- 

sen. The upper bound ß prevents the system from identifying the points where the 

background was darkened too little as shadow points. Approximated values for these 

parameters are based on empirical dependence on scene luminance parameters such as 

the average image luminance and gradient that can be measured directly. The choice 
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of the parameters rH and TS is calculated with the assumption that the chrominance 

of shadow and non-shadow points does not vary too much. Previously, they proposed 

a different version of their model as follows [18,20]: 

1 ifa<B 
p. 

v< 

SP'(P) _ 
A(It(p). S - Bt(p)"S) < Ts 
AI I`(p). H - Bt(p). H IG TH 

0 otherwise 

with the following assumptions: on component Sa threshold on the difference is 

performed, and shadows are assumed to lower saturation of points and, according 

to the authors' experimental tests, the difference in saturation between image and 

reference is usually negative for shadow points. On the component Ha threshold on 

the absolute difference gives better results. The parameters rS and rH are determined 

empirically with the assumption that the chrominance of shadow and non-shadow 

points does not vary too much. 
Shastry and Ramakrishnan [71] applied the above model in their work, while 

Baisheng and Yunqi [5] used a slightly modified version of the above model to detect 

shadows. In their work, the shadow mask SP' is defined for each point p as follows: 

1 if(I'(p). V - Bt(p). V) <0 

Al <B` .ý <R 
SP`(p) = A(1`(p). S - Bt(p). S) < -rs <0 

AI It(p). H - Bt(p). H 1< TrH 

0 otherwise 

Where 1<R53 is experimentally found. 

Duque et al [23] used a modified version of the shadow model to detect shadows 

and highlights. In their work, the shadow mask SPt and the highlight mask LPt are 

defined for each point p as follows: 
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1 ifa<_e(n)v< 

SPt(P) 
AI It(p). S - Bt(P)"S I <_ Ts 

AI It(p). H - Bt(p)"H 1< , rH 

0 otherwise 

I° V1 11 i Q<_B . V-« 

LPt(p) AI It(p). S - Bt(p)"S 1: 5 Ts 
=A It (p). H - B`(p)"H 1: 5 TH 

t0 otherwise 

These approaches [18,20,19,5,21,23,71] are capable of detecting weak penumbra 

shadows on flat surfaces. However, they require all illumination sources to be white, 

and assume that both shadow and non-shadow points have similar chrominance. In 

addition, the results shown in these methods, show that dark shadows will tend to 

be classified as foreground objects. 

Nadimi and Bhanu [56,551 presented a method to detect moving cast shadows in 

outdoor environments. The method is based on a spatio-temporal test and accounts 

for both the sun and the sky illuminations. The method is a multistage approach 

where each stage of the algorithm removes moving object pixels, which cannot be 

shadow pixels. The method is independent of object types, models, background types 

and colours, and scene geometry. It is also capable of detecting umbra in outdoor 

scenes. Various experimental results are shown, however, the main draw-back is that 

the approach assumes the spectral power distribution of each illumination source to 

be equal. 

Scanlan et al. [70] proposed a very simple method towards shadow detection and 

removal, in which a block-by-block mean of the image is computed and stored in an 

array, and the median is calculated accordingly. Thus, pixels belonging to the blocks 



Chapter 2: Literature Review 25 

whose mean is less than the median value are considered as shadows and scaled to 

the median value using an iterative process. 

2.3.3 Object dependent and environment dependent approaches 

Jiang and Ward il [45] in their deterministic non-model based approach, proposed 

a shadow identification and classification algorithm for grey scale images. Their work, 

extracts both self-shadows and cast shadows from a static image. Using three level 

processes: the low level process extracts dark regions by thresholding the input image; 

the middle level process detects features in dark regions, such as the vertices and the 

gradient of the outline of the dark regions, and uses them to further classify the 

region as self-shadow or cast shadow; the high level process integrates these features 

and confirms the consistency along the light directions estimated from the lower 

levels. The method is based on the analysis of shadow intensity and geometry in 

an environment with simple objects and a single light source. Only simple scenes, 

without occlusions between objects and shadows, are considered. The classification 

into cast and self shadows is based on the assumption that the intensity values of 

pixels in a self shadow region are larger than those in the corresponding cast shadow 

region. This represents a limitation of the method since it leads to misclassification 

if objects are significantly darker than the background or if a cast shadow receives 

light reflected from another object, which is the case in general. 

Hsieh et al. [40] proposed a deterministic model based approach, that represents 

an algorithm for eliminating shadows of multiple pedestrians using Gaussian shadow 

modelling. First, a set of moving regions is segmented from the static background 

using a background subtraction technique. For moving cast shadow detection, a 
histogram-based method is proposed for isolating each pedestrian from the extracted 

moving region. Based on the results, a coarse-to-fine shadow modelling process is then 

applied for eliminating the shadow from the detected pedestrian. At the coarse stage, 
11The work detects self and cast shadows in still images. 
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a moment-based method is first used for obtaining the rough shadow boundaries. 

Then, the rough approximation of the shadow region can be further refined through 

Gaussian shadow modelling. The chosen shadow model is parameterised with several 
features including: the orientation, mean intensity, and centre position of a shadow 

region. The novelty of the method, comes from the fact that it uses vertical and 

horizontal image projection of binary silhouettes, and finds the points where feet and 

shadow intersect. However, the algorithm needs knowledge about the light source, 

works only for human objects, and requires the shadow to be on the ground. 

Onoguchi [581 proposed a deterministic model based approach, similar to Hsieh et 

al's work [40]. In his work, the author presented a method for eliminating pedestrian 

shadows. The proposed method removes the shadow areas using height information, 

since most of the shadow areas accompanying moving objects are assumed to be 

on the road plane. Two cameras are set at locations so that their shared visual 

fields include the surveillance area. The image obtained from one of the cameras is 

inverted and projected to the road plane and the projected image on the road plane is 

transformed to the view from the other camera. Shadows existing on the road plane 

occupy the same areas in the transformed image and in the image acquired from 

the other camera, whereas objects areas with different heights from the road plane 

occupy different areas in these images. Therefore, shadow areas can be removed by 

subtracting these images. Again the algorithm requires shadows to be on a flat road 

plane. Further, objects and shadows must be visible to both cameras, and the method 

requires manual registration and objects' height. 

Yoneyama et al. [83] proposed another deterministic model based approach, to 

eliminate moving cast shadows based on a simplified 2D vehicle/shadow model of 

six types projected to a 2D image plane. The parameters of vehicle and shadow 

models are estimated from input video without the light source and camera calibration 
information. Distinguishing the cast shadow region from the vehicle itself is done via 

the determination of parameters of the joint model. 
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Bevilacqua [7] proposed an algorithm to detect moving shadows in the context 

of an outdoor traffic scene, for visual surveillance purposes. The algorithm exploits 

some foreground photometric properties concerning shadows. The proposed method 

is based on multi-gradient operations applied on the division image (the division 

image between the current frame and the background of the scene) which aim to find 

the most likely shadow regions. Further, a binary edge matching is performed on each 

of the blob's boundaries to discard those regions inside the blob which are either too 

far from the boundary or too small. Reported results show that regions detected as 

shadows affect the objects' integrity and shadows with no clear boundaries fail to be 

recognised. 

2.4 Summary 

Distinguishing objects from their shadows is a challenging task for computer vi- 

sion applications. Though, many shadow detection and removal algorithms have been 

proposed in the literature, the best of these methods are the ones that neither account 

for the object types nor the scene environment. Whilst these methods are intended 

to be independent, it is clear that they are not totally independent from the environ- 

ment, as most of them have minor assumptions about scene geometry, or the spectral 

distribution of light sources. 

In this chapter a comprehensive overview of selected hypotheses and algorithms for 

moving cast shadow detection and removal has been provided. Moving cast shadow 
detection algorithms have been classified into a four-layer taxonomy. The first layer 

of classification considers whether the approach is independent/dependent of object 

types. The second layer considers whether the approach is environment indepen- 

dent/dependent. The third layer considers whether the decision process introduces 

and exploits uncertainty, and is further subdivided into deterministic and statistical 

approaches. The deterministic class is further subdivided based on whether or not 
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the on/off decision can be supported by model based knowledge. 

Another classification has been created based on the domain of the shadow de- 

tection algorithms. This classification considers whether the methods are applied in 

the spatial (pixel) domain, or are applied in the transform (frequency) domain, and 

whether they are based on the Hue-Saturation-Value (HSV), the Red-Green-Blue 

(RGB), or YUV colour spaces. 

The design of a simple, accurate, and efficient shadow detection algorithm still re- 

mains an open problem. The methods proposed in the literature have either used the 

illumination and shadow hypothesis- presented in section 2.2, or the shadow model 

presented in section 2.3.2. Other methods have used colour constancy, histogram, 

knowledge-based, heuristic, geometric, or projection models. The next chapter intro- 

duces a novel cast shadow detection approach, based on a physically-derived model 

that addresses short comings of the existing methods. 



Chapter 3 

Shadow Hypothesis 

3.1 Overview 

As discussed in chapter 1, the occlusion of a light source by an object in a scene 

creates a shadow. The part of the object that is not illuminated is called the self- 

shadow, while the part projected on the scene by the object is called the cast-shadow, 

which can be further classified into umbra and penumbra (see Figure 3.1). If the 

object is moving, the cast shadow is more appropriately referred to as a moving cast 

shadow, otherwise it is referred to as a still shadow. 
This chapter introduces a new physical-based cast shadow detection model [8,9) 

and a physical-based illumination and reflection model. Section 3.2 proposes a novel 

affine shadow test hypothesis, which is derived in section 3.3. Section 3.4 verifies 

the proposed affine condition using a reflection model. Section 3.5 introduces the 

principles of applying the affine shadow condition in RGB colour space. Finally, 

section 3.6 summarises this chapter. 

29 
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penumbra 

umbra 

Figure 3.1: Cast shadow umbra and penumbra [27] 

3.2 The Affine Shadow Hypothesis 

This section represents the core of this thesis; it, introduces a novel method for 

detecting moving cast shadows using a physically-derived shadow test condition. If 

qE llt3 is a point on the surface of an object in an illuminated three-dimensional 

scene, and n9 is a neighbourhood of q on the surface. Using a simple geometric 

representation of light rays, and a simple reflection model, it is possible to show that 

the light energy received at points rE nq in the absence of an object casting a shadow 

over nq is affinely related, to a high degree of approximation, to the energy received 

when a shadow is cast over nq by an object. The same affine parameters are applicable 

to the entire neighbourhood nq [8,9]. It is of course clear that when a shadow is cast 

over a neighbourhood, less light is received as compared to the fully illuminated state. 

Therefore, this condition should also be included in the shadow model. 

It, follows that reflected energies behave similarly and hence the luminance function 

L: nq --+ IR when no shadow is cast over nq is affinely related to the luminance 

function L* : nq - IR when a shadow is cast; i. e. for nq to be in shadow we have 

L*(r) czý AL(r)+p and L*(r) < L(r), for some constants ) and p, for all rE nq. These 
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neighbourhood relationships are fundamental to the remainder of the thesis, and 

constitute the basis of the shadow detection algorithms described and subsequently 

evaluated. It should be noted that the affine condition L*(r) AL(r) +µ together 

with the condition L*(r) > L(r) can characterise a region of highlight. 

Imaging devices generate 2D representations of 3D scenes. Hence a two-dimensional 

version of the affine relationship for shadows will hold for images. The fact that the 

affine neighbourhood relationship holds for images suggests a block-wise approach to 

the detection of moving shadows in video sequences. It is assumed that the reference 

frame, i. e. the scene before the cast shadow covers the corresponding area is avail- 

able. This being the case, the existence of an affine relationship can be checked for 

corresponding block pairs across the frames. 

Potential affine parameters for a block pair are not required to be determined a 

priori, they may be computed from the data in the block pair to which they relate. The 

affine relationship for shadows is local, i. e. it applies in a neighbourhood. Hence, when 

processing advances to the next block pair new affine parameters are computed. The 

physical modelling predicts a scaling relationship under some illumination conditions 

corresponding to the affine case with µ=0. 
To summarise, the hypothesis proposes that `locally' i. e. in a neighbourhood, 

the relationship between the darkness levels is affine and the affine relation varies 

from point to point. There are parallels here with many other physical phenomena 

that may be highly non-linear when considered globally (or over a long time period). 

Nevertheless, those physical phenomena are linear or affine, to a high degree of ap- 

proximation, when considered in a sufficiently small spatial neighbourhood (or over 

a sufficiently small time interval). 
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3.3 The Derivation of the Affine Shadow Hypoth- 

esis 

This section represents the derivation from which the affine shadow hypothesis 

was derived. The derivation using single and multiple light sources shows the validity 

of the proposed hypothesis for both of the illumination and reflection models. 

3.3.1 Shadows cast by a single point source 

In a very simple environment' comprising a `floor' F and a light source p, as shown 

in Figure 3.2, point q receives a direct ray of intensity i from p. If an object is placed 

on F then the source p casts a shadow of the object onto F, as shown in Figure 3.3. 

The incident ray onto q is now blocked by the object and, as the only reflected light 

(i. e. ignoring secondary reflections) is off the part of the object facing p, the shadow 

is completely black. 

Consider a more complex environment comprising a `floor' F, a `wall' W and a 

single point white-light source at p- as shown in Figure 3.4. A light ray of intensity 

i from p strikes the point q. Other light rays from p strike the wall W, reflect, and 

are incident on q. If an object is added - as shown in Figure 3.5 and the following 

simplifying assumptions are made: 

1. the reduction of flux with distance is ignored i. e. total energy radiated through 

all closed surfaces containing the source is equal - this is strictly only true in a 

vacuum, 

2. all reflecting surfaces are diffusers, 

'This follows what is done in computer graphics and is not strictly physical. However, it is 
possible to model light sources using continuous spectral distributions; reflected light from these 
sources enters the imaging device and is filtered to R, G, B form at pixel locations for capture in 
digital form - the same conclusions, regarding the identification of shadow regions in the images, 
may then be drawn. 
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P 

zt 

Figure 3.2: Illuminated `floor' F, point q receives a direct ray from p. 

3. light sources are modelled as mixtures, (iR, iG, iD), of R, G, B primaries, rather 

than as having continuous spectral distributions, 

4. reflections from surfaces are modelled using reflection coefficients µH, µc and 

ABi 

5. secondary reflections can be ignored - i. e. each point of F is a diffuse source for 

W; the reflections from which illuminate F as `secondary' reflections. 

A reflected ray frone each point of W is also incident on the point q- `primary' 

reflections. If W is a diffuser, it reflects light equally in all directions. The strength, 

i µ(w)Nt� " L, , of the ray reflected to q from a position w= (x,,, yv, ) on W depends 

on w. 

Modelling the light source at p by (iR, iC, i8), the light arriving at q in the absence 

of an object, denoted (ibg, 
q R, ibg, q, G, ibg, q, Q), may be written as: 
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P 

Figure 3.3: Same environment as figure 3.2 with object in presence, point q receives 
no light from p, therefore is completely dark. 

(ibg, 
9, R, Zbg, 9, G, ibg, 9, B) _ (ZR, 2G, ZB)N9 - L9 

+ 
fWIZR 

I-hR(W)9iG MG(W)+ZB /B(w))Nw " L. dw 

_ (iR[NQ"Lq+ fw 
/R(W)Nw"Lwdw, > 

, 
2G [Nq Lq + Iw 

NG(2U)Nw " Lw dw] 

W 
iB [Nq Lq +f µB(w)Nw " Lw dw] ); 

i. e. 

ibg, q, C = is [NQ 
" Lq + Jw 

µc(w)N,, " L. dw] for CE {R, G, B} 

With the object present we have: 

Zo, a, c = zc 
[Jw\s 

µc(w)N. " Lw dw] 
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P 

zt 

Figure 3.4: A simple `background' environment illuminated by a single point light 
source. 

where S is the intersection of the shadow with W. 

We therefore have: 

fw\s µc(w)N,, " Lu, dw 
zo, 4, c - N4 - Lq + fw µc(w)N,, " L.. dwZb9, Q, c 

_ 
nC 

, v, ý ib9 Nq , Lq + Ac 

_ Yc(4) ibg, q, C 

where 

S2c = 
IW\S 

uc(w)N. " L. dw, 

Ac =f pc(w)N. " Lv, dw, 
W 
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P 

Figure 3.5: Light received at q with object present. 

are constants, and 

is dependent on q. 

'Yc(4)= 
fiC 

N . Lq+Ac 

It should be noted that the relationship 

Zo, 4,0 = 7C(q) Zb9,4, C 

is a point-wise relationship - i. e. it is applied at q and the `scaling' function is 

dependent on q. 
The approach of shadow detection taken in this research attempts to classify 

`regions', i. e. contiguous groups of points (ultimately groups of pixels) as being in 

shadow, rather than classifying single pixels. The next section shows how to transform 

the point-wise relation into a relation that holds for a region, or neighbourhood. 
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3.3.2 The neighbourhood approximation 

In a suitably small neighbourhood, Uq, of q, it is safe to assume: 

" Nq " Lq -- Kq where K. is a constant. 

Hence in U. we have 

Zo, 9'. C 

f2C 

Kq + Ac 
Z69,9'. C 

= ac ib9,9*, C for all q* E Uq 

where Kg 00 is a constant on Uq; i. e. the relationship between the light incident 

at each point q* of the neighbourhood Uq in the presence/absence of an object is 

approximately one of constant scale. 

3.3.3 Shadows cast by two point sources 

If i(l) and i(2) denote the two point sources, then 

i(l) = (iRl), iC), iýB)), i(2) = (i(2), iG2), iýB)). 

The light, ib9,4 and io, q arriving at q with no object present and with the object 

present respectively, is written as: 

ibg, 
q = (ibg, 

q, R, Zbg, q, G, ibg, q, B) Zo, q - 
(io, 

q, R) Zo, q, G, io, q, B). 

It follows that - see Figure 3.6: 

ibg, q, C = i4l)Nq " Lql) + i((2 )NQ 
, L((2) 

+ iC) JW 
µc(w)N,,, " Lwl) dw + i(c) f µc(w)Nw " LwZ) dw 

[NqL1)+Jpc(w)NwLdw] 
= tiC) 

+ ich [Na 
- Ly2ý 

w+ 

µc(w)Nw L(2) dw 
w] 
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PM 

Figure 3.6: A simple `background' environment illuminated by two point light sources. 

For qEF and qE Intersection of two shadows cast on F (i. e. qE the umbra 

region) - see Figure 3.7. In this case q receives no direct light from either p(') or p(2) 
but it receives reflected light from W\ Sl (indirectly from p(l)) and reflected light 
from W\ S2 (indirectly from p(2) ). Hence, for q in the umbra region the light received 
at q is: 

io, e, c =ich 
[JW\S, 

µc(w)Nw L L' dw] + iC 
[! 

W\S2 
µc(w)N,,, " LV dwl . J 

Note here that Sl and S2 are the shadow areas on W cast by point sources p(') and 

p(2) respectively. Eliminating 4C2) from the expressions for ibg, q, c and io, Q, c gives: 

. (2) 
_ 

2b9,9, c -4 
{N9 

' Lql) + fw µc(w)Nw ' L(I)dwý 
N9' L(q2) +fwµc(W)Nw " L. ()dw 

from which it follows that: 

io, vc sch 
Lfw\s, 

I+C(w)Nw " LW1)dw J 
ibow, C -4P 

lI 
Nq Läl) + fW µc(w)Nw " Lül)dw, 

+ 
Na ' L(2) + fw l+c(w)Nw Lw2)dw 

J 

W\s2 
uc(W)Nw " LW)dw 
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P(2) 

Figure 3.7: Point q in umbra region receives reflected light from both sources. No 
direct light received at this point 

and rearranging 

IW\g3 lAc(w)Nw " Lwýýdw 
toýCC =p tbYýVýC 

Nq - L(2) + Jw µc(w)NW " Lw2) 

/' f+ iö) 

[N+ 

a 'Lä1) J F'C(w)Nw " L(w1)dw - 

[Na 
La + 

, IW µc(w)Nw Lvý2)t)dw, 

J uc(w)N. " Lwý)dw 
W \s1 Nq Lq + fW l+c(w)Nw Lw dw w 

Applying the neighbourhood condition, Nq " Lq -, constant in a neighbourhood Uq of 
q, gives an affine relationship 

Zo, 9', C = 02 2bg, 9', C + 02 

between io, 
q., c and ibg, 

q ,C 
in Uq. 

When q is in the penumbra region, it receives direct light from one source and 
reflected light from both sources. In the configuration shown in Figure 3.8, q receives 
direct light from p(') and reflected light from W\S1 (indirectly from p(l)) and reflected 
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light from W\ S2 (indirectly from p(21). Hence for 9 in the penumbra region, the light 

received at q in: 

L, (') +i (l) 
[I 

ppG(w)N. - Lytldw] f t(2) 
[fwkPC 

; ýy 
(w) i" L(Nu 

w\sl 
i. e. the direct light term from p(l) plus the 'penumbra' term. Eliminating i((4)4 

from gib, 4, r. ß and tp. q, r, gives: 

O"r(W)N. 4p 

qv 
) 41401 

N. , Lill' + fw wc('r)N« Lit 

J.; 
+ý+fwý""jNý 

" 
+ N, L; $ý + rriwlNw 

iIitw 
N9 I. 1 

wýrý N, + fw tr1N+. Lo 
ýwýr, 

00 

Figure 3.8: Point ß is penumbra moon r eivas direct tight from one point source, 
and reflected light from both sources. 

The neighbourhood condition, N, - L, w constant and No " Lq1) as constant. In a 
neighbourhood U, of 9 given an xtüne re1M on*hip 

'+. i' "! 0i 4#+1'3'+09 

between i,,,, r and 4O. C. 0 to U, for this can too. 
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Two equal point sources 

In this case we have 0) = i(') and hence 

Zb9, v, C = 2G. ) I" (L(' + Lq2)) +J µc(w)Nw " (Lwl) + Lw2)) dw, 

io, v, c = i(1) 1 Nq " LQ1 +f 
W\SI 

/ c(w)Nw " Lwl) dw + 
fW\sý 

µc(w)Nw " L(2) dw] 

i. e. the relationship 

2bg, q, C 
BNg"Lgl>+f 

Zo, q, C = 
Nq " (L, 

where 

gl µc(w)NN - Lwl> dw + fv 

+La2))+fwµc(w)Nw' ( 

B=0qE umbra, 

=1qE penumbra. 

, 2µc(w)Nw 
LW) dw 

+ Lw2)) dw 

holds between io, q, C and ibg, q, C. The neighbourhood condition reduces this to a (con- 

stant) scale relationship of the form 

io, q ,C= a4 ibg, q ,C 
for all q* E Uq. 

3.4 Reflection Modelling 

Up to this point, only the light incident on q has been modelled. In this section, the 

light reflected from a point q, whether or not it lays in shadow, will be investigated. It 

is shown here that, provided that a local homogeneity condition holds for the texture 

of the neighbourhood U. of q, the affine condition is preserved under reflection. 

Given the finite resolution of all imaging devices, it follows that neither a single 

point nor a entire neighbourhood U. will render to a single pixel. We assume that a 

subset VCU. `integrates' to determine a particular pixel value (see Figure 3.9). 

If the `mean' reflectance parameters for V are µv, R, µv, c and µv, a, then: 
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( 
Figure 3.9: A neighbourhood Uq, and two subsets V and V' assumed to determine 
pixel values in the captured image. 

(i) for Uq out of shadow, the reflected light from V is 

rbg, v, C = Zbg, q, C µv, C 

and 

(ii) for Uq in shadow the reflected light from V is 

ro, v, c = (ac zbg, 
q, c + 13c)µv, c 

= aC zb9,9, C 11v, C + OC µv, C 

= ac rbg, v, c + Qc µv, c 

In a different subset V*, that also integrates to a pixel, we obtain 

ac rb9, v", c + ßc µv. c" 

It follows that the affine condition, that has been demonstrated for light incident on 

Uq in/out-of shadow, is preserved, provided µv, (,, = µv", c across Uq. In other words 

local patches within neighbourhood Uq have similar mean reflectance coefficients. 

Such textures having this as a global property include tarred road surfaces, brick 
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surfaces, concrete surfaces, finely grained woods, and carpeted surfaces without strong 

geometric patterns. The condition applies locally to many other surfaces and is not 

likely to lead to significant lack of generalisation provided the neighbourhoods Uq are 

sufficiently small. 

3.5 RGB Space 

Red 

Green 

Figure 3.10: Shadows caii be identified ill culuur images by applying the afliiie test 
in each colour layer and taking the intersection area. 

With a monochrome source or with a colour source, simulated using R, G, B 

triples, the simple model predicts that in a sufficiently small neighbourhood an affine 

relationship exists between reflected light from a neighbourhood Uq of a point q when 
it is in/out-of shadow, i. e. we have: 

To, q", c = ac T69, q", c + 5c 

for all q* E Uq - and provided local patches of Uq having similar reflectance coeffi- 

cients. Note that in different colour layers the corresponding affine parameters will 
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be different (eg aR 96 ac). Hence shadows may be identified in colour images by 

applying the affine test in each colour layer. Consequently, the shadow area will be 

the intersection area between the three colours, see Figure 3.10. 

3.6 Summary 

This chapter presented the proposed shadow hypothesis and computations, using 
the geometric and physical models of light, that lead to a local affine hypothesis for 

the identification of shadows in digital images, which can be summarised as follows: 

When a shadow is cast over a neighbourhood, less light is received there - as 

compared to the fully illuminated state. Using the geometric representation of light 

rays and a simple reflection model, this chapter has shown that the light energy 

reflected/received at points rE nQ in the absence of an object casting a shadow over nq 
is affinely related, to a high degree of approximation, to the energy reflected/received 

when a shadow is cast over nq by an object. The same affine parameters being 

applicable to the entire neighbourhood nq. 
Thus, the luminance function L: nq -º IR, when no shadow is cast over nq, is 

affinely related to the luminance function L' : nq -º 1R when a shadow is cast; i. e. for 

nq to be in shadow we have L*(r) sze AL(r) +µ and L*(r) < L(r), for some constants 
A and p, for all rE nq. 

The scaling relationship is a special case of the affine relationship, when p=0. 
Therefore, in shadow detection applications, it is safe to consider only the affine 

relationship as it will represent the scaling relationship when u is estimated in a local 

neighbourhood to be 0. The affine relationship has been validated across wide range 

of environments including indoor and outdoor situations, with natural and artificial 
lighting. 

Chapter 4 compares the proposed illumination and shadow hypothesis with the 

existing ones. 



Chapter 4 

Illumination and Shadow Models - 
Theoretical Comparisons 

4.1 Overview 

The existing illumination and shadow model presented and discussed in section 

2.2, hereafter referred to as H1 [73], has formed the basis for many shadow detection 

algorithms in the literature. The shadow model discussed in section 2.3.2 [18,20,19,5, 

21,23,71], hereafter referred to as H2, has been used in many other applications. The 

proposed novel affine shadow hypothesis has been discussed in section 3.2 and derived 

in section 3.3. The neighbourhood affine hypothesis produced a new illumination and 

shadow model, hereafter referred to as H3. Therefore, this chapter is intended to 

provide comprehensive theoretical comparisons between the proposed and the existing 

illumination and shadow models. Section 4.2 compares the proposed and existing 

illumination and shadow models using single and multiple point sources. Section 

4.3 presents the proposed illumination and shadow model. Section 4.4 provides a 

verification of the affine hypothesis across the existing model. Finally, section 4.5 

summarises this chapter. 

45 
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4.2 Illumination and Shadow Modelling 

In hypothesis H1, the luminance energy (light power) received at a point q', on a 

surface at coordinate (x, y) has been modelled as [73]: 

cp Nx, y " Lx, y + CA no object 
((x, Y) _ \x, ycp Ny, y - Lý, y + CA penumbra 

CA umbra 

Where 0<A.,, y <1 describes the transition inside the penumbra, and depends on the 
light source and scene geometry. cp is the intensity of the light source p incident at 

q, and CA is the ambient light incident at q, i. e. reflected light from the environment, 
here simplified with a wall `W' and a primary reflection. In the H1 hypothesis the 

amount of ambient light CA received at q, is assumed to be equal in all the cases 

whether an object is either present or not. In addition, white illumination has been 

assumed, i. e. the RGB colour components are all assumed to have equal intensities. 

Given a simple geometrical environment, which can be safely generalised for real 

environments, if a `wall' W is a diffuser it reflects light equally in all directions. The 

strength, i µ(w)N,,, " Lu , of the ray reflected to q from a position w= (xw, yw) on 
W depends on w. Therefore, in this chapter, the ambient illumination is modelled 
differently, as we assume that different amounts of ambient light will be received at 

point q when it is in or out of shadow (see Figure 3.4 and Figure 3.5). 

4.2.1 Using a single point source 

Modelling the light source at p by Ni i0, iB), the light arriving at q in the absence 
of an object may be written as: 

(CR, (G, (B) _ Ni Zc, ZB)N9 - Lv + f(iR 
µR(w), zc lAc(w), za µa(+u))NW " L,, dw 

'in hypothesis Hl, (x, y) corresponds to the 2D projection of the environment, so q which is 
(x, y, z) projects to (x, y) when considering the H1 hypothesis only 
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_ (iR [Nq 
- Lq + fW 

AR(w)Nw " L,,, dw], 

Zc[Nq"Lq+ fw 
µc(w)N,, "Lwdw], 

zB [Nq 
" Lq +f µa (w)Nw " Lv, dw] ); 

V 

i. e. 

(c=is[Nq"Lq+ fW 
pc(w)Nw"Lwdw] for CE{R, G, B} 

Compared to hypothesis H1, where it assumes: 

««x, y) = cP N:, v - 
Lx, v + CA 

and by ignoring the white illumination assumption, the results are equivalent. How- 

ever, with object(s) added we argue that the amount of ambient light received at 

point q will be less compared to the case where no object is present. In Figure 3.5, 

the area on wall `W' covered by a shadow will not reflect light to point q. Therefore, 

point q will receive less ambient light compared to the same environment with no 

object present, as in Figure 3.4. Note that there is no direct light incident on q, thus 

we have: 

CC = is 
[fw\s 

µc(w)Nw " Lw dw] 

where S is the intersection of the shadow with W. In the case where an object is 

added, this will be a more precise and accurate method for modelling the ambient 

light compared to hypothesis H1 which assumes: 

((xry) = CA. 

Local appearance change due to shadows 

The local appearance change due to shadow at point q is computed using the ratio 

ý(q) between the appearance of the pixel in the current frame (object present) at time 

t2, and the appearance in a reference frame at time tl (no object present) as: 
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c ý9) _eý 
ý9) 

_1. 

Using the reflection model '(q) = (t(q)pt(q) and assuming constant reflectance 

through time tl and t2, i. e. pt2 (9) = pt, (Q) = pt (q), it follows that: 

Ct1(9) - 
Therefore, by using the irradiance C(q), if a static background point is covered by 

a shadow region, the ratio C(x, y) using the H1 hypothesis is written as: 

(x, y) = 
CA <1i. e. 

Umbra(object) 

cp Ny, y " Lx, y + cA Illuminate(no object) 

However, in the proposed model, H3, we have : 

Zc[fw\s I. LO(w)Nw - L. dw] 
ýý4ý = ic[Nq - Lq + fw µC(w)N, " Lw dw]. 

4.2.2 Two point sources 

In the configuration shown in Figure 3.6, let i(') and i(2) denote the two point 

sources, where it') _ (iýR), icG), iýB)), i(2) = (iýR), i(2), iý8)), and CER, G, B, it follows 

that: 

(c=i(l) 

+ i(C) [Nq 
' Lq2) + Jw 

µc(w)Nw " Lwý> dw} 

Umbra 

In Figure 3.7, q receives no direct light from either p(') or p(2) but it receives 

reflected light from W\ Sl (indirectly from p(')) and reflected light from W\ S2 

(indirectly from p(2)). Hence for q in the umbra region, the light received at q is: 
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(ý = i) 
[ fWýsl 

pc(w)N,,, " L( l) dw] + iC2ý fWýsý 
µc(w)N,, " Lw2) dw] . 

Note here, Sl and S2 are the shadow areas on W cast by point sources p(') and p(2) 

respectively. It follows that the local appearance change due to shadow C(q) can be 

written as: 

2(c) [fw\sl µc(w)Nv, " LM dw] + i() [fw\s, µc(w)N,,, " Lw2 dw] 
(1) (1) (1) (2) (2) (2) jL" (Nq 

- Lv + fw Nýc(w)Nw " Lw dwl + is {Nq 
- Lq( + fw iic(w)Nw " LW dw] . 

Penumbra 

If a static background point is in the penumbra region, the local appearance change 

of a point due to shadow in model H1 can be written as: 

ax, ycp Nx, y " Lx, y + CA <1i. e. 
Penumbra(object) 

(' y) 
cp N,,, y " Ly, y + CA Illuminate(no object) 

When q is in the penumbra region it receives direct light from one source and reflected 
light from both sources. In the configuration shown in Figure 3.8, if qE penumbra, 

it will receive direct light from p(') and reflected light from W\ Sl (indirectly from 

p(')) and from W\ S2 (indirectly from p(2)). 
Hence for q in the penumbra region, according to the H3 model, the light received 

at q is: 

ýc = i(c) Nq - Lq' + ic) [fw\S, 
tic(w)Nv, " Lwl)dw + i(c 

ý'W\S2 
µc(w)N, - L()dw 

Accordingly, the local appearance change of a point due to shadow can be written 

as : 

(9) = 
i )Nq 

' LQI) + iäl) [fw\sl µc(w)Nw " Lwl)dw] + iC fw\82 µc(w)Nw " Lýtiýdw 

NN " L(91) + fw Ntc(w)Nw " L2 dwl +j1 N4 L(q2) + Jw µc(w)Nw Lw2ý dw 
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4.3 The Proposed Illumination and Shadow Model 

In a single point source environment, a point q on a surface will either belong to 

the illuminated area or a shadow umbra. Note that shadow penumbra do not exist 

in this particular environment. Therefore, the new illumination and shadow model 
((p) can be written as: 

ic[fw p Ny, " Ly, dw] + icNq " L. no object 

ic[fw\s p N,,, " L,,, dw] umbra 

To generalise this model, in a two point sources environment, a point q on a surface 

may belong to the illuminated area, shadow umbra, or shadow penumbra. Therefore, 

the new illumination and shadow model (H3) can be written as: 

S(4) = 

i [Na 
- Lä' + fw i c(w)Nw " Q) dw] 

+iäß [Nq 
" L$2) + fw µc(w)Nw " Lw2) dw] no object 

4j)Ng"Lql) 

+ic [fw\s1 /2c(w)N,,, L(') dw] 

+ z(c) [fw\s, 12c(w)N,,, " Lw2) dw] penumbra 

zc)ufw\s, µc(w)N,,, " L, ß') dw} 

w) 
dw] umbra + z(c [fw\s, µc(w)NN - L(2 

Compared to the H1 illumination and shadow model, which assumes: 

cp N., y " L., y + CA no object 
C(ýý Y) _ Az, ycp N,, y - Lx, y + CA penumbra 

CA umbra 

it can be noticed that the direct and ambient light received at point q in case of no 
object present is modelled similarly in both the H1 and H3 models. However, in the 

case when an object is present, and the point q is in the umbra or penumbra region, 
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the ambient light received at point q in the H1 model does not change, compared to 

the H3 model where the ambient light received at point q is modelled as: 

w) 
dw). cc = ic)[ Jw\Sj 

iLc(w)Nv, " Lwl) dw] + i(c 1W\S2 
µc(w)N,,, " L(2 

4.4 The Affine Hypothesis - Verification 

As introduced in section 3.2 and section 3.3, it is possible to show that the energy 

of light received at a point q in the absence of an object casting a shadow over nq is 

affinely related to the energy of light received at q when a shadow is cast over nq by an 

object, with the same affine parameters being applicable to the entire neighbourhood 

nq. 

Using the H1 model it is also possible to derive an affine relationship between 

shadow and non-shadow points, provided that ay, y and Nx, y " Lx, y are constants in 

a sufficiently small neighbourhood. Writing ay, y as A and Nx, y " Lx, y as N"L and 

assuming: 

lna = cp N"L+ cA 

lä = ý1 cP N"L+ CA 

Is = CA 

The affine relationship can be derived from the H1 model as follows: 

Ins - CA = cp N"L 

INCA = AcpN"L 

lne - CA = (13 - CAI ) 

'' 8(1: -CA) 
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lns 
- CA + ß(l: - CA) 

= CA+Qle -0CA 

= 3le+CA-OCA 

= Q1: +CA(l-0) 

Where the derived relation 1,,, =ßl; + cA(1 -, 3) is an affine relationship provided 
that A and N"L are constant over the neighbourhood. 

The affine condition for individual points has been recently discussed in the work 

of Wang et. al [78]. In their work, the affine parameters A and µ are calculated for 

each point separately. However, in this thesis, the same affine parameters A and It 

are applicable to the entire neighbourhood. 

4.5 Summary 

In this chapter a new illumination and shadow model (H3) has been proposed, 

which models the ambient light more precisely than the existing models, by assuming 
less ambient light is received at a point q on a surface when the shadow is cast. The 

H3 model can be summarised as follows: 

((q) = 

i(c) [Na 
- LO) + fw µc(w)Nw " Lwl) dw] 

+ i() [NQ 
" LQ2) + fig, µc(w)Nw " Lw2) dw] no object 

(1) is NQ. Lgl) 

+i(l) c[fw\si lac(w)Nw " Lwl) dw] 

+ i(c)[fw\s2 Ac(w)NN " Lw2) dw) penumbra 

ZY)[fw\sl ac(w)Nw " LL, ' dw] 

w) dw] umbra + tic)[fw\s, µc(w)Nw " L(2 

As an alternative to illumination and shadow model, H1; 
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J 
cp N.,, y - Ly, y + CA no object 

((x, y) _ \,, ycp Ny, y " Lx, y + CA penumbra 

CA umbra 

It is also shown that using existing illumination and shadow model (H1), it is 

possible to derive an affine relationship between shadow and non-shadow points. 
Chapter 5 introduces the multi-domain shadow detection algorithms, and illus- 

trates the methods of applying the affine shadow test condition, and calculating the 

affine parameters for each domain. 



Chapter 5 

Spatial and Transform Domains 

Shadow Detection Algorithms 

5.1 Overview 

Shadows are a major problem associated with segmenting and extracting moving 

objects. Misclassifying shadow points as foreground leads to object integration and 

object shape distortion. The problems related to shadows occur because shadows and 

objects share two important features [61]: 

9 shadow points are detectable as foreground points, and 

" shadows have the same motion as the objects casting them. 

Prati et al. [61] noted that, while the main concepts utilised for shadow analysis in 

still and video images are similar, the purpose behind shadow extraction is somewhat 

different. They continue to argue that, in the case of still images, shadows are often 

analysed and exploited to infer geometric properties of the objects casting the shadow, 

as well as to enhance object localisation and measurements. In case of video sequences, 

shadow detection is performed to enhance the quality of segmentation results instead 

of deducing some imaging or object parameters. 

54 
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While most of the shadow detection algorithms proposed in the literature have 

looked into the shadow detection in the spatial domain, very few approaches have 

investigated the use of the algorithms in the frequency domain (see chapter 2). Fur- 

thermore, there is no generic model that is applicable to both domains simultaneously. 

Modelling a shadow detection algorithm in different domains is of significant impor- 

tance for image processing and video applications, for the reason that the algorithm 

will be applicable in either the unprocessed, raw (uncompressed) or the processed 
(compressed) video sequences. 

In this chapter, shadow detection algorithms are introduced in the spatial and 

frequency domains. Section 5.2 gives an introduction to the spatial domain, and 

presents the proposed pixel domain shadow detection algorithm. Section 5.3 intro- 

duces shadow detection algorithms in the Fourier and wavelet domains. Finally, 

section 5.4 summarises this chapter. 

5.2 Pixel domain 

Digital images are matrices of integer numbers whose value determines a particular 

shade of grey for grey level images, or a specific colour for colour images. A grey level 

image can be represented by a function of two variables, z=f (x, y), where z is a 

number corresponding to a grey level at a point (x, y) [10]. A grey level digital image 

can therefore be considered as a discrete function: 

ft, where fj=f (xi, y,, ) 

where, f; j is the value of the function at x= xi and y=y; that defines a two- 

dimensional array or matrix of numbers, i. e.: 
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fll 
d12 """ 

fln 

fu 
/21 f22 

""" 
f2n 

fnl fn2 
""" 

An 

If a real image is taken as a map of the intensity of light at a particular point, 

then it must be described by the following function [10]: 

0<ff for all i, j 

Blackledge [10] stated that the process of converting f (x, y) into fj is called digi- 

tisation (Analogue-to-Digital conversion), or spatial quantisation, where the analogue 

image is sampled providing a matrix of discrete values typically on a rectangular grid. 

Blackledge also states that there are two elements to digitisation: the spatial quanti- 

sation, and the luminance quantisation. The spatial quantisation can be taken to be 

an approximation to the original image, i. e. fj approximates f (x, y). If n2 samples 

are taken at regular intervals, then the approximation will improve as n increases. 

The clarity of an image depends on the total number of pixels that are used to repre- 

sent the image, Figure 5.1 illustrates the effect of sampling an image with less pixels 
[10]. As for the luminance quantisation, each pixel is assigned a discrete value, which 

is the level of greyness or luminance. The number of steps in the scale available for 

assignment is called the pixel depth (in bits). Very small depth results in inaccurate 

representations and loss of information. The number of shades of grey that can be 

present is related to the number of bits assigned to each pixel. When images are 

considered using just 1 bit, then binary images become applicable. Figure 5.2 shows 

the effect of changing the luminance quantisation of an image using 8,4,3 and 1 bits. 
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Figure 5.1: A digital image sampled using (frone top to bottom and left to right) 
128 x 128,64 x 64,32 x 32 and 16 x 16 pixels. 

5.2.1 Pixel domain shadow detection 

The shadow detection algorithm presented in the pixel domain uses background 

(reference) and foreground (object) frame pairs Fb9 and Fobj for the detection of 

shadows in the object frame F0bi. See Figure 5.3. 

The proposed algorithm processes the frames blockwise by comparing correspond- 

ing blocks, of size kxk, in Fobs and Fß, 9. We denote corresponding kxk block pairs 

in the pixel domain by (P, P*) where PE Fß, 9 and P* E F,, bj . 
The proposed algorithm in the pixel domain initially sets k to 161. If a block of 

this size fails to classify as a shadow block, it is subdivided into four, 8x8 blocks for 

re-testing. This process is repeated on blocks that initially fail to classify as shadows, 

down to a block size 3x3. Blocks that fail to classify as shadow at this lowest level 

'The choice of initial block size is relative to the original image size, the object size, and the 

shadow size. Therefore, the initial block size of 16 x 16 is reasonable according to the given video 
sequences-see chapter 6. The lowest level of sub-division is 3x3, and is found to give better results 
than 4x4, and 2x2, where it is expected to perform better in shadow edges regions (compared to 
4x4 and to be less sensitive to image noise compared to 2x2. 
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Figure 5.2: A 128 x 128 pixels image with luminance quantization using (frone top to 
bottom and left to right) 8,4,3 and 1 bits. 

of sub-division are classified as non-shadow blocks. 

The mean and standard deviation of each block will be used throughout the al- 

gorithm, and are defined as follows: let P denotes the average of the pixel values in 

the block P, and a(P) denote the standard deviation, i. e. 

=2 and Q(P) P,; )2 pij 
0<i, j<k-1 

(05i, 

j! 5k-I 

Similarly, 

` and QP` P'- Pz 
O<i, j<k-1 O<i, j<k-1 

The L2-metric is used throughout and denoted 11 ' 112, as for instance: 

2 

IIPI12 =p 0<i, j<k-1 

The proposed shadow detection algorithm in the pixel domain, is based on the 

shadow affine hypothesis described in section 3.2, where the shadow/non-shadow 
luminance values are related by the affine transformation: 
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ý. w. a.. i 

F bg Frame 

Figure 5.3: Frames Fb9 (background frame) and Fob; (object frame), are used for the 
detection of shadows in the object frame Fobs. 

L0 = \Le +µ 

The parameter A can be estimated from the variance of the pixel values in block 

pairs (P*, P) as: 

0'(P') 
a(P) 

Applying the luminance relation Lo = ALP +µ in the pixel domain, where P 

represents the average luminance value of a block, gives: 

P*=AP+µ 

Therefore, p can be computed as: 

µ=P'-aP 

Based on the affine hypothesis proposed in section 3.2 and derived in section 3.3, 

the expression for 6 can be written as: 

S 
11 P' - (AP+µJP)112 

N II PI 112 0, 

Fobs Frame 



Chapter 5: Spatial and Transform Domains Shadow Detection Algorithms 60 

where Jp is the kxk matrix defined by 

(Jp)i, j =1 for all 0<i, j<k 

Shadow condition: As discussed in section 3.2, the light energy received at 

points rE nq in the absence of an object casting a shadow over nq is affinely related, 

with a high degree of approximation, to the energy received when a shadow is cast 

over nq by an object. The same affine parameters being applicable to the entire 

neighbourhood nq. Here, the algorithm is applied over the neighbourhood of a block 

of size kxk. 

The shadow condition for the block pair (P, P') comprises two parts, namely that 

the luminance value of P* is lower than P: i. e. 

P 
<1 

and that the affine condition 

IIP*-(AP+pJP)II2 
,; 0. 

II P* 112 

holds for (P, P*). 

Note that for a4x4 block we have: 

1,1,1,1 

1,1,1,1 
Jp = 

1,1,1,1 

1,1,1,1 

The pixel domain shadow detection algorithm can be summarised as shown in Algo- 

rithm 1. 
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Algorithm 1 Pixel Domain Shadow Detection Algorithm 
1: kG 16 

2: Partition FA F* into disjoint blocks PA P* of size kxk 

3: Vpp. DO 

- 
0, P' 4: iý- 
o 

5: i =P* - AP 

6: if F< 1A P*_ '\p+ 3 
z .: s 0 then 

7: Block P* is a SHADOW BLOCK 

8: else 

9: k=8, partition PA P* into disjoint blocks P2 A P2* of size kxk 

10: dp2, p2" DO 

11: aP2 
12: µ= P2* - aP2 

13: if P22 <1A P*-A22 ,J20 then 

14: Block P2* is a SHADOW BLOCK 

15: else 

16: kC3, partition P2 A P2* into disjoint blocks P3 A P3* of size kxk 

17: VP31P3" DO 

18: = aP3 

19: P3*-AP3 

1937 <1A P3*- A33, JN0 then 20: if 

21: Block P3* is a SHADOW BLOCK 

22: else 

23: BLOCK P* DOES NOT CONTAIN SHADOW 

24: end if 

25: end if 

26: end if 
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5.3 The Transform Domains 

5.3.1 The Discrete Cosine Transform (DCT) 

The DCT is an orthogonal transform in 2D signal processing. It is known to be 

almost optimal in terms of its energy compaction capabilities and can be computed 

via a fast algorithm [63]. The DCT is used in most of the international image/video 

compression standards of Joint Photographic Experts Group (JPEG), and Motion 

Picture Experts Group (MPEG) [34]. Technically, DCT is a Fourier-related transform 

similar to the Discrete Fourier transform (DFT), but applies for real numbers only 
[62] 

. 
The DCT operates on P, a block of NxN samples (pixels), the output is b, a 

block of NxN coefficients, [64]. 

B N-1 N-1 
p cos 

(2i + 1)yir (2i + 1)xir 
xv = axav E 

tj 2N Cos 2N : =O j=O 

The inverse DCT transform (IDCT) can be written as: 

N-1 N-1 
Pij =E aya, B3� Cosý2ý 2N 

1)? lýcosý2i + 1)xýr 

x_o Y=O 
2 2N 

The DCT (and its inverse, the IDCT) can be described in terms of a transforma- 

tion matrix A. The Forward DCT (FDCT) of aNxN pixel block P can be expressed 

as [64]: 

B= APAT 

and the Inverse DCT can be expressed as follows: 

P=ATBA 

where, P is the matrix of samples, f3 is the matrix of the transform coefficients and 
A is the NxN DCT transformation matrix. The elements of A are defined as [64]: 
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Atj = a; cos 
(2i + 1)i7r 

2N 

where (i, j), 0<i<N-1 and 0<j<N-1 represent an element location in the 

NxNmatrix, a; = when i=0anda; = tt wheni>0 

According to Richardson [641, when N=4 the elements of the transform matrix A 

can be represented as: 
2 cos(O) 2 cos(O) 2 cos(O) 2 COO 

Z V 
COS ä) Al 

COS 8) 2 COS(, ) 2 COS 8l 

A= 
12 () COS 8 COS 8 Z Cos low 1 COS(14w) 

12 COS ä) V( 2 COS(98) 
V Z COS 15,79 COS(28! 

i. e. 

0.5000 0.5000 0.5000 0.5000 

0.6533 0.2706 -0.270 -0.653 A= 
0.5000 -0.500 -0.500 0.5000 

0.2706 -0.653 0.6533 -0.270 
For instance, given a block of pixels Pl of size 4x4, where: 

172 123 193 124 

181 140 139 135 
Pi = 

170 165 146 184 

147 197 189 128 

Applying the relation b= AP1AT results in: 

121.25 26.654 -12.750 27.1135 

-25.47 7.8765 28.9125 45.9905 B= 
3.25 0.3379 -52.750 31.5200 

16.235 -23.14.2721 -2.3765 
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The block matrix now consists of 16 DCT coefficients, a13 where i and j range 

from 0 to 3. The top-left coefficient, a00 (in image processing, this value is referred 

to as the dc value of the block) correlates to the lowest frequency of the original 

image block, which represents the average luminance value of the block. As we move 

away from a00 in a zigzag order, the DCT coefficients (in image processing, these 

values are referred to as the ac values of the block) correlate to increasingly higher 

frequencies of the image block, where ann corresponds to the highest frequency. The 

DCT coefficients represent the pattern of the texture inside the image block [64]. 

5.3.2 Fourier domain shadow detection 

The shadow detection algorithm presented in the DCT domain uses background 

and object frame pairs Fbg and F5 for the detection of shadows in the object frame 

Fob;. See Figure 5.3. 

The proposed algorithm processes the frames blockwise by comparing correspond- 

ing blocks of size kxk, in Fobs and F,. We denote corresponding kxk block pairs 

in the DCT domain by (B, B*), where BE DCT(Fb9) and B* E DCT(F,, b; ). 

Similar to the method used in 5.2.1, the proposed algorithm in the DCT domain 

initially sets k to 16. If a block of this size fails to classify as a shadow block, it is 

subdivided into four 8x8 blocks for re-testing. This process is repeated on blocks 

that initially fail to classify as shadows, down to a block size 3x3. Blocks that 

fail to classify as a shadow block at this lowest level of sub-division are classified as 

non-shadow. 

The proposed shadow detection algorithm in the DCT domain, is based on the 

shadow affine hypothesis described in section 3.2, where the shadow/non-shadow 

luminance values are related as: 

Lo = AL, +, u. 

Writing f instead of L the relationship may be represented as the transformation 
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f -º Af+ it. Writing [8,91: 

00 00 
f (x, y) = a00 +EE an meinaeimy 

n=-oo, n 0 m=-oo, moO 

Note that, it is possible to define the transformation of the dc and ac coefficients from 

the Fourier series. Where a00 (dc) is essentially the average value of the transforma- 

tion, an, m (ac) are the rest of the Fourier coefficients. The transformation f -a Af +µ, 

in the Fourier representation in 2D is: 

00 00 00 00 
a00 +EE an, meinzeimy y 000 +X(1: 

E 
an meinxeimy + 

n=-oo, n#0 m=-oo, m#0 n=-oo, n#0 m. -oo, m#0 

00 
(0ý0 

_ 7aoo + lý) + 
Lý 

ý. ý4n, mýeinstýmY. 

n=-oo, n#0 m=-oo, m#0 

Thus, the Fourier coefficients transform as: 

{aoo, {an, m}} -º {Aaoo + µ, {)ºan, 
m}} 

In particular, the dc coefficient is affinely transformed by (A,, u) and the ac coefficients 

are all scaled by A. 

The parameter A may be estimated from the averages (or sums) of the ac coeffi- 

cients of block pairs. We have: 

_ 
lac* 
lac 

Alternatively, to compute A, we have 

00 00 
f (x, y) = a00 + F, E an, mginae'my 

n=-oo, n#0 m=-oo, m#0 

hence 
co 00 

.f 
(00) = a00 +EE an, m 

n=-oo, n#0 m=-oo, moO 

and 
00 00 EE an, m = .f 

(0,0) - a00. 
n=-oo, n760 m=-oo, m760 
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The left-hand side is the sum of the ac values, f (0,0) is the function value at 

x=0, y=0 and is to be interpreted as the top left pixel value of a block; a00 is the 

dc value. This gives 

P'(0,0) - ao*o 
P(0,0) - aoo 

Using the shadow/non-shadow luminance relation L. = AL, +µ in the DCT 

domain, where a00 represents the average luminance value of a block, this gives: 

aoo = Aaoo + it 

Thus, µ can be computed as: 

µ=a; o -Aaoo i. e. µ=dc' -Adc 

Based on the affine hypothesis proposed in section 3.2 and derived in section 3.3, 

the expression for a can be written as: 
IIB* 

- 
(AB + /LJDCT)II2 

22 6_ IIB`112 0, 

where JDCT is the kxk matrix defined by 

(JDCT)i, 
J =1 for i=j=0 

=0 otherwise. 

Shadow condition: As discussed in section 3.2, the light energy received at 

points rE nq in the absence of an object casting a shadow over nq is affinely related, 

with a high degree of approximation, to the energy received when a shadow is cast 

over nq by an object. The same affine parameters being applicable to the entire 

neighbourhood nq. Here, the algorithm is applied over the neighbourhood of a block 

ofsize kxk. 
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Algorithm 2 DCT Domain Shadow Detection Algorithm 
1: kt-- 16 

2: Partition FA F* into disjoint blocks PA P* of size kxk 

3: dp, p" DO 

4: B= DCT(P) A B* = DCT(P*) 

5: iº _ m-aoo 

6: p= a0*0 - \aoo 

7: if 6: <1A B*- aB ;2' stý 0 then 

8: BLOCK P* is a SHADOW BLOCK 

9: else 

10: k=8, partition PA P* into disjoint blocks P2 A P2* of size kxk 

11: Vp2, p2* DO 

12: B2 = DCT(P2) A B2* = DCT (P2* ) 

13: .= 
P2 

14: p= a250 - \a200 

15: if b<1 B2*- AB2+ 2ll3 sw 0 then 

16: BLOCK P2* is a SHADOW BLOCK 

17: else 

18: kG3, partition P2 A P2* into disjoint blocks P3 A P3* of size kxk 
19: dP3, P3' DO 

20: B3 = DCT(P3) A B3* = DCT(P3*) 

21: p3ýooäý 

22: p= a3ö0 - . \a300 

23: if b<1 /ý B3* -(, \B3+ ;2 
-- 0 then 

24: BLOCK P3* is a SHADOW BLOCK 

25: else 

26: BLOCK P* DOES NOT CONTAIN SHADOW 

27: end if 

28: end if 

29: end if 
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The shadow condition for the block pair (B, B*) comprises two parts, namely that 

the luminance value of B* is lower: i. e. 

aoo 1 
dc* 

< i. e. 
aoo dc <1 

and that the affine condition 

IIB* - (AB + µJDCT)I12 -s O. JI B* 112 

holds for (B, B'). 

Note that for a4x4 block we have: 

1,0,0,0 

JDCT 
0,0,0,0 

= 
0,0,0,0 

0,0,0,0 

The DCT domain shadow detection algorithm can be summarised as shown in Algo- 

rithm 2: 

5.3.3 The Discrete Wavelet Transform (DWT) 

The Discrete Wavelet Transform (DWT) is named after Alfred Haar, a Hungarian 

mathematician. According to Richardson [64], the DWT is applied to a discrete signal 

containing N samples, the signal is decomposed into a low frequency band (L) and a 

high frequency band (H), using a low-pass filter and a high-pass filter, respectively. 

Each band is sub-sampled by a factor of two, i. e. each contains N/2 samples. For 

a 2D signal such as an intensity image. Firstly, each row of the image is filtered 

with a low-pass and a high-pass filter (Lx and H. ) and the output of each filter is 

sub-sampled by a factor of two to produce the intermediate images L and H. L is 

the low-pass filtered image and sub-sampled in the x-direction and H is the high-pass 

filtered and also sub-sampled in the x direction [64]. 
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Figure 5.4: Three-levels D\VT decomposition for an image. 

Secondly, each column of these new row-wise transformed images is filtered with 

low-pass and high-pass filters (L.. and H. ) and sub-sampled by a factor of two 

to produce four sub-images (LL, LH, HL and HH). These four sub-band images 

together comprise the same number of samples as the original. LL is the original 

image, low-pass filtered in horizontal and vertical directions and sub-sampled by a 

factor of 2. HL is high-pass filtered in the vertical direction and contains residual 

vertical frequencies. LH is high-pass filtered in the horizontal direction and contains 

residual horizontal frequencies and 1111 is high-pass filtered in both horizontal and 

vertical directions. The 2D wavelet decomposition can be applied again to the LL 

image, forming four new sub-band images. The resulting low-pass image (always the 

top-left sub-band image) is iteratively filtered to create a tree of sub-band images [64] 

(see Figure 5.4). 
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Figure 5.5: Three-level wavelet decomposition of a8x8 pixel block. 

5.3.4 Wavelet domain shadow detection 

The proposed DWT shadow detection algorithm uses background and object frame 

pairs Fb9 and Fobs for the detection of shadows in the object frame Fob3 (see Figure 5.3). 

The proposed algorithm processes the frames blockwise by comparing corresponding 

blocks, of size kxk, in F, b3 and Fbg. We denote corresponding kxk block pairs in 

the DWT domain by (D, D*), where DE DWT(Fb9) and D* E DWT(Fbj). 

The `Haar' wavelet is used in the proposed DWT shadow detection algorithm. 

The decomposition process repeats until k=2. Therefore, the total number of 

decomposition levels required depends on the block-size. If a 16 x 16 block is used, 

then 3 level block decomposition in required. If 8x8 is used then 2 level block 

decomposition is required. If 4x4 block size if used then 1 level decomposition is 

required (see figure 5.5). 

The proposed shadow detection algorithm in the DWT domain, is based on the 

affine shadow hypothesis described in section 3.2, where the shadow/non-shadow 
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luminance values are related as: 

L. = AL. + µ. 

Writing f instead of L, the relationship may be represented as the transformation 
f -º Af+µ. Writing [8,9]: 

f (x, y) = b00 'F 
Z bn, 

mhn(x)hm(y) 
n#0 m#0 

where boo is essentially the average value of the block, bn, m are the rest of the wavelet 

coefficients. h is the mother wavelet (here the Haar wavelet is used). 

The transformation f -+ Af+µ, in the wavelet representation is (note that the 

transformation is presented here in 2D): 

boo +E, bn, mhn(x)hm(y) -+ Aboo +A1, E bn, mhn(x)hm(y) + it n#0 m#0 n#0 m&0 

= 
(AW0 + A) +EE A(bn, 

m)hn(x)hm(y)" 
n#0 m#0 

and the wavelet coefficients transform as: 

{boo, 
lbn, m}} -º {Abpp + /2, {. \6n, 

m}} 

In particular the boo corresponds to the average of the LL coefficients (LL) , which 
is affinely transformed by (A, µ) and bn, m corresponds to the rest of the coefficients in 

LH, HL, HH which all are scaled by A. 

The parameter A can be estimated from the averages of the LH, HL, HH coeffi- 

cients of block pairs. We have: 

A_ 
LH*+HL*+J H* 

LH+HL+HH 
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Alternatively, to compute . \, we have: 

(x, y) = boo +EE bn, mhn(x)hm(y) 
n. 00 m#0 

hence 

f (0,0) = bop +ZZ bn, m 
n, -EO m&0 

and 
EE bn. m =f (0,0) 

- boo. 
n#0 m#0 

The left-hand side is the sum of the bn, m coefficients (LH, HL, HH). f (0,0) is 

the function value at x=0, y=0 and is to be interpreted as the top left pixel value 

of a block; boo is the average luminance value of the block. This gives: 

_ 
P* (0,0) - LL* 
P(0,0) - LL 

Using the shadow/non-shadow luminance relation Lo = AL. +p in the DWT 

domain, where LL represents the average luminance value of a block, this gives: 

LL"=x Lµ 

Thus, p can be computed as: 

A= LL"-ALL 

Based on the affine hypothesis proposed in section 3.2 and the derived in section 3.3, 

the expression for 6 can be written as: 

S_ 
IID* - (AD + PJDWT)112 

IID'lI2 ' 

where JDWT is the kxk matrix defined by 

(JDWT)i, 
j =1 for i=j=0 

=0 otherwise. 
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Shadow condition: As discussed in section 3.2, the light energy received at 

points rE nq in the absence of an object casting a shadow over nQ is affinely related, 

with a high degree of approximation, to the energy received when a shadow is cast 

over nq by an object. The same affine parameters being applicable to the entire 

neighbourhood nq. Here, the algorithm is applied over the neighbourhood of a block 

of size kxk. 

The shadow condition for the block pair (D, D*) again comprises two components, 

namely that the luminance value of D* is lower: i. e. 

bfL* °-° <1i. e. <1 boo LL 

and that the affine condition 

II D* - (AD + PJDWT)1I2 -0. 

holds for (D, D`). 

Note that for a4x4 block we have: 

1,0,0,0 

JDWT= 
0,0,0,0 

0,0,0,0 

0,0,0,0 

The DWT domain shadow detection algorithm can be summarised as shown in 

Algorithm 3. 

5.4 Summary 

This chapter discussed the proposed shadow detection algorithms in the spatial 
(pixel) and transform domains (Fourier and wavelet). They use background and 

object frame pairs F and F*, for the detection of moving shadows in the object frame 
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Algorithm 3 DWT Domain Shadow Detection Algorithm 
1: kG 16 
2: Partition FA F' into disjoint blocks PA P' of size kxk 

3: /p, p. DO 

4: D= DWT(P) A D' = DWT(P') {1s° decomposition level} 

5: D2 = DWT(D) A D2' = DWT(D') {2"d decomposition level} 

6: D3 = DWT(D2) A D3' = DWT(D2') {3, d decomposition level} 

T. A- LL++FL+ 
H+ 

8: µ=LL'-\LL 
9: if CL' 

<1A D3' - AD3+ Jo rf(? 
-- 0 then LL 3" 2 

10: BLOCK P' is a SHADOW BLOCK 

11: else 

12: kG8, partition PA P' into disjoint blocks P2 A P2' of size kxk 

13: VP2, P2" DO 

14: D= DWT(P2) A D' = DWT (P2') { 1'' decomposition level) 

15: D2 = DWT(D) A D2' = DWT(D') {2nd decomposition level} 

16: = 
GH' L' H 

L+ L+ H 
17: LL'-ALL 

18: if <1n 
D2'-(, \ D2+; owr)l] 0 then LL ; ts 

19: BLOCK P2' is a SHADOW BLOCK 

20: else 

21: kG4, partition P2 A P2' into disjoint blocks P3 A P3' of size kxk 

22: 'P3, P3" DO 

23: D= DWT(P3) A D' = DWT(P3') {18t decomposition level} 
24' 

L+ + L+ H 

25: µ -LL' - ALL 

JJgpwT)JJv 26: if rv <1A D*- . \D ; 
112 ,o0 then 11 

27: BLOCK P3' is a SHADOW BLOCK 

28: else 
29: BLOCK P' DOES NOT CONTAIN SHADOW 

30: end If 

31: end if 

32: end if 
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F". The algorithms work either in the pixel, DCT, or DWT domains and process the 

frames blockwise by comparing corresponding blocks, of size kxk, in F and P. 

As discussed in section 3.2 the light energy received at points rE nq in the 

absence of an object casting a shadow over nq is affinely related, to a high degree of 

approximation, to the energy received when a shadow is cast over nq by an object. 

The same affine parameters applicable to the entire neighbourhood nq. Here, the 

algorithm is applied over the neighbourhood of a block of size kxk. In all of the 

proposed algorithms, the shadow condition for the corresponding block pair comprises 

two components, namely, that the luminance value of the shadow block in the object 

frame is lower than the luminance value of the non-shadow block in the background 

frame, and that the proposed affine shadow condition holds for the selected block 

pair. 

The success of the approach depends crucially on the accurate determination of 

candidate affine parameters A and p, for each block pair in the pixel or the transform 

domains with which to test the neighbourhood affine condition. As video data is 

inherently noisy, this suggests estimating candidate values using statistical measures 

that have error and noise reducing properties. To this effect in the DCT domain the 

dc value and the sum of the ac values suggest effective measurements, while in the 

DWT domain, the LL value and the sum of LH, HL, HH values also suggest effective 

measurements. 

Chapter 6, provides the performance evaluation metrics, compares the results with 

the state of the art algorithms, and discusses other methods for choosing the most 

appropriate reference frame. 



Chapter 6 

Shadow Detection in Video 

Sequences 

6.1 Overview 

Richardson [64] describes a digital video as a representation of a natural visual 

scene, sampled spatially and temporally. A scene is sampled at a point in time using 

progressive sampling to produce a frame or using interlaced sampling to produce 

a field. Sampling is repeated at intervals (e. g. 1/25 or 1/30 second intervals) to 

produce a moving video signal. Each spatio-temporal sample (pixel) is represented 

as a number or set of numbers that describes the brightness (luminance) and colour 

of the sample. To obtain a 2D sampled image, a camera focuses a 2D projection of 

the video scene onto a sensor, such as an array of Charge Coupled Devices (CCD). 

In the case of colour image capture, each colour component is separately filtered and 

projected onto a CCD array [64]. 

A video is captured by taking rectangular pictures of the scene at periodic time 

intervals. Playing back the series of frames produces the appearance of motion. A 

higher temporal sampling rate (frame rate, measured by number of frames per second 

f /s) gives smoother motion in the video scene, but requires more samples to be 

76 
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captured and stored. Frame rates below 10 f Is are used for very low bit-rate video 

communications (because the amount of data is relatively small). Sampling at 25 or 

30 f Is is standard for television pictures; 50 or 60 f Is produces smooth motion at 

the expense of a very high data rate 134,64]. 

Amongst the wide variety of video applications, video object tracking and recog- 

nition are of high importance for security systems and video surveillance applica- 

tions, where shadow detection and removal stands at the core of successful tracking 

and recognition systems. In this chapter, section 6.2 gives an introduction to video 

surveillance, and object tracking applications. Section 6.3 introduces the experimen- 

tal results and the performance evaluation of the proposed algorithms, and compares 

the results against the state-of-art algorithms. Section 6.4 discusses other methods of 

choosing the most appropriate reference frame. Finally, section 6.5 summarises this 

chapter. 

6.2 Introduction 

Automated surveillance systems address real time observation of people and vehi- 

Iles within busy environments. However, object tracking and recognition is considered 

as the most important, yet error prone component of a surveillance system [1]. A large 

number of surveillance systems have been designed in recent years. The approach used 
by Stauffer and Crimson [37] uses an adaptive multi-modal background subtraction 

method that can deal with slow changes in illumination, and repeated motion es- 

timation from background clutter and long term scene changes. After background 

subtraction, the detected objects are tracked using a multiple hypothesis tracker. 

The PFinder tracking system [79] uses a background model to locate the objects, and 

tracks the full body of a person. The system assumes only a single person is present 

in the scene. The W4 system [38] uses dynamic appearance models to track people. 
Individual human figures and groups are distinguished using projection histograms, 
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and are tracked by their heads. Ricquebourg and Bouthemy [65] in their system, 

track people by exploiting spatio-temporal slices. The detection scheme involves the 

use of intensity and temporal differences between successive images. Al-Najdawi et al. 

[1] proposed a real-time object tracking system based on a limited, discontinuous fea- 

ture set. The proposed system uses a simplified version of the Kanade-Lucas-Tomasi 

(KLT) [741 algorithm to detect features of both continuous and discontinuous nature. 

Beside the problems caused by cast shadows, a number of problems including 

object occlusion and background changes arise in real environments. These problems 

need to be resolved. Occlusion occurs when an object of interest is not visible in the 

scene, since another object is blocking its view. Tracking objects under occlusion is 

complicated because it is difficult to determine the accurate position and velocity of 

an occluded object [44]. 

According to the Comaniciu et al. [17], motion predictors and estimators have 

been used in the literature to solve the problem of occlusion. The choice of these 

algorithms and the data association methodologies has direct impact on tracking sys- 

tems. The right choice is highly related to the tracking scenario. As for instance, the 

Particle Filtering introduced by Isard and Blake [41]. Al-Najdawi et al. [1], employed 

a Kalman filter [47] to seek optimal estimates in object tracking. Boykov and Hut- 

tenlocher [11] employed the Kalman filter to track vehicles in an adaptive framework. 

Rosales and Sclaroff [66] used the Extended Kalman Filter to estimate a 3D object 

trajectory from 2D image motion. Blake and MacCormick [53] introduced the prob- 

abilistic exclusion for tracking multiple objects. Wu and Huang [80] developed an 

algorithm to integrate multiple target clues. Li and Chellappa [51] proposed simulta- 

neous tracking and verification based on particle filters applied to vehicles and faces. 

Chen et al. [15] used the Hidden Markov Model formulation for tracking, combined 

with JPDAF data association. Rui and Chen [68] proposed to track the contour of a 
human face based on a particle filter. 

Most of the automated surveillance systems employ static background subtrac- 
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tion methods to extract objects from a scene in order to track them. However, 

background subtraction methods cannot deal with changes in lighting or large illu- 

mination variations, which have the impact of altering the colour characteristics of 

the background with time [44]. Using a static background is applicable for short 

duration video sequences, where scene illumination is relatively stable. As for long 

duration video sequences, a dynamic background model is required to continuously 

update the background frame. Most of the existing tracking applications apply the 

dynamic background generation technique proposed by Stauffer and Grimson [37] as 

a pre-processing step to the background subtraction stage. 

6.3 Shadow Detection in Video Sequences with Ded- 

icated Background Image 

As stated earlier, the shadow detection algorithms presented use background and 

object frame pairs F and F* for the detection of moving shadows in the object frame 

F*, as in Figure 6.1. The algorithms work either in the pixel, DCT, or DWT domains 

and process the frames blockwise by comparing corresponding blocks, of size kxk, 

in F and F*. In any given domain, if both of the corresponding shadow conditions 

presented in sections 5.2.1,5.3.2, and 5.3.4 hold, then the block is considered as a 

shadow block. Therefore, the process of shadow removal can be done by replacing 

the shadow detected block in F* with the corresponding background block in F. 

Figure 6.1 and Figure 6.5 represent a sample of the results obtained by using the 

pixel domain shadow detection and removal algorithm. Figure 6.2 and Figure 6.4 

respectively, represent samples of the results obtained by using the DCT and DWT 

domain shadow detection and removal algorithms. 

Additional results of the proposed algorithms in the pixel and transform domains 

are available in Appendix B, Figures: B. 1-B. 11. 

As discussed in chapter 5, the proposed algorithms in the pixel and Fourier do- 
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i 
Background Frame 

Figure 6.1: The benchmark "Hall" video sequence, represents an indoor video se- 
quence, with multiple combinations of light sources, spectrally equal and of equal 
intensities. This figure illustrates the use of the background and object frame to 
detect shadows. In the processed frame, shadows have been removed using the pixel 
domain shadow detection and removal algorithm. 

mains initially set the block size k to 16. If a block of this size fails to classify as 

shadow, it is subdivided into four, 8x8 blocks for re-testing. This process is repeated 

on blocks that fail to classify as shadow, down to block size 3x3. Blocks that fail 

to classify as shadow at this level of sub-division are classified as non-shadow blocks 

(see Figure 6.3). As for the DWT domain, the algorithm initially sets the block size 

k to 16 and a3 level decomposition is done. If a block of this size fails to classify 

as shadow, the original pixel block is then subdivided into four, 8x8 blocks for 

re-testing, and a2 level decomposition is done. This process repeats on blocks that 

fail to classify as shadow, down to a block size 4x4 where 1 level decomposition is 

done. Blocks that fail to classify as shadow at this level of sub-division are classified 

Processed Frame 
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Figure 6.2: "Side" video sequence, represents an indoor video sequence, with arbitrary 
combination of light sources, with different intensities. This figure illustrates the use 
of the DCT domain shadow detection and removal algorithm. Frames (A, B, C) 

represent the original frames in the sequence, frames (A', B', C') are the corresponding 
processed frames. 

as non-shadow blocks. 

Experiments have been performed in both high and low-resolution video sequences. 
The low-resolution camera captures less texture details and has higher noise levels, 

creating a significant challenge for any shadow detection algorithm. The algorithms 

have been tested with more than 1000 randomly selected frames, chosen from a set 

of 14 test video sequences. These sequences comprise more than 30,000 frames rep- 

resenting simple/complex, indoor/outdoor scenes with different numbers of objects, 

under different lighting and environmental conditions. Four of these video sequences 

are popular benchmark videos available in the public domain (see Figure 6.1, and 

Figure 6.6). Table 6.1 illustrates those videos with a classified description of their 

complexity. The benchmark sequences are used by existing shadow detection ap- 

proaches to compare and evaluate their results against other approaches. In addition 
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Figure 6.3: Example of using dillfcreiit. block sizes in t in sli: idowv let cut ion , ui(i r iilov, d 

algorithm. The algorithm starts with a 16 x 16 block size down to size 3x3 as required. 

to the benchmark videos, new video sequences were created, where scenes and cast 

shadows complexity are increased, in order to test and evaluate the performance of 

the proposed algorithms under different conditions. Table 6.2 lists the new video 

sequences and gives a classified description for each of them. In the new video se- 

quences, the camera settings (aperture, shutter, speed, sampling rate) are all set in 

the automatic mode. The physical conditions in the benchmark and the new video 

sequences include: 

9 Background surface: carpets, wooden floors, concrete textured walls, concrete 

neutral walls, asphalt roads. 

9 Distance to objects: 2-250 feet. 

" Lighting conditions in indoor environments: single point source and neutral 

walls, single point source and textured walls, multiple point sources spectrally 

equal but of different intensities, multiple point sources spectrally equal and of 

equal intensities, multiple point sources with arbitrary combination of lights. 
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AB C 

Figure 6.4: "Sara", represents an indoor video sequence, with multiple combination 
of light sources, spectrally equal and of equal intensities. This figure illustrates the 
use the DWT domain shadow detection and removal algorithm. Frames (A, B, C) 

represent the original frames in the sequence, frames (A', B', C') are the corresponding 
processed frames. 

" Lighting conditions in outdoor environment: sunlight, overcast, dusk and dawn 

with artificial lights, dusk and dawn without artificial lights, night with single 

light source, and night with multiple light sources. 

9 Surface orientation: vertical, horizontal, and sloping. 

The proposed algorithms have been implemented in Matlab, using the image pro- 

cessing tools box. As shown in Appendix A, Table A. 1-Table A. 2 provide a qualitative 

evaluation and classification for the proposed algorithms and a comparison against 

the existing approaches in terms of object and environment dependency, and the ap- 

plicability in the other domains. Choosing the best colour space for shadow detection 

algorithms is a critical task in designing a good shadow detection algorithm. Colour 

spaces are different bases for representing intensity and colour information in colour 

A' B' C' 
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Figure 6.5: "Holywell", represents an outdoor video sequence with strong sun light., 

and strong shadows cast on the road. The left hand side image represents the original 
image and the right hand side image is the corresponding processed one. This figure 
illustrates the use the pixel domain shadow detection and removal algorithm. 

Sequence Name Sequence Type Image size Shadow Strength Shadow Size Object Si.. Nolen Levels 

Hall indoor 320x240 low medium large very low 

Campus outdoor 352x288 low large medium low 

Laboratory indoor 320x240 low tnedlum medium tuodium 

Intelligent room indoor 320x240 very low small small medium 

Table 6.1: Benchmark video sequences, conclusion drawn from sources. 

images. Usually colour spaces have three components or channels for representing 

all possible colour and intensity information. As seen in the literature (see Chapter 

2), many different approaches are modelled using different colour spaces. Kumar et 

al. [49] presented a comprehensive comparative study of shadow detection algorithms 

that use different colour spaces. In their study, the colour spaces considered were: 

RGB, XYZ, YUV, HSV, and the normalised rgb. Quantitative and qualitative 

results are provided, evaluation of the correctness of the detection is based on true 

detection, false detection, and the total number of misclassifications. To summarise 

their results, it is shown that the YUV colour space is the best for optimal shadow de- 
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Figure 6.6: The benchmarks "labroratory", "campus", and "Intelligent room" video 
sequences. (a) frame number 223 of Laboratory video sequence, (a') is the correspond- 
ing processed frame in the pixel domain, (b) is frame number 125 of Campus video 
sequence, (b') is the corresponding processed frame in the DCT domain, (c) is frame 

number 94 of Intelligent room video sequence, (c') is the corresponding processed 
frame in the DWT domain. 

tection results. According to Kumar et al's. accuracy measurement results, the YUV 

colour space stands on the top of the list with the highest true detection rate, lowest 

number of misclassifications, and the lowest false detection rate. YUV is followed in 

descending order of accuracy by RGB, rgb, XYZ, and 1I SV 
. 

6.3.1 Performance evaluation metrics 

In order to systematically evaluate shadow detectors, it is useful to identify the 

following two important quality measures: good detection (low probability of uiisclas- 
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Sequence Name Sequence Type Image else Shadow Strength Shadow Sloe Object Size Nolee Levels 

Corridor indoor 320x940 medium large large high 

Sara indoor 320x440 medium large large low 

Asphalt outdoor 320x240 very low large large medium 

Side indoor 340x940 high large large medium 

Ghost indoor 330x440 high very large very large low 

Legs indoor 320x240 very high large large medium 

Holywell outdoor 330x740 high large large medium 

Farnham outdoor 340x440 medium medium medium low 

Door outdoor 320040 low small medium low 

Falkner outdoor 320x240 very high large large very high 

Eggington outdoor 340x240 very high large large very high 

Table 6.2: The new video sequences description. 

sifying a shadow point) and good discrimination (the probability of classifying non- 

shadow points as shadow should be low, i. e. low false alarm rate). Good detection 

corresponds to minimising the number of false negatives (FN), i. e. the shadow points 

classified as background/foreground. Good discrimination corresponds to minimising 

the number of false positives (FP), i. e. the foreground/background points detected 

as shadows [61]. 

Onoguchi in his work [58] proposed two metrics for moving object detection eval- 

uation: the Detection Rate (DR) and the False Alarm Rate (FAR). Assuming TP as 

the number of true positives (i. e. the shadow points correctly identified), these two 

metrics are defined as follows: 

DR = T, + FN and FAR = 

Prati et al. [611 in their work showed that Onguchi metrics are not selective 

enough for the evaluation of shadow detection methods, since the metrics do not take 

into account whether a point detected as shadow belongs to a foreground object or 
to the background. Therefore, if shadow detection is used to improve moving object 
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detection, only the first case is problematic, since false positives belonging to the 

background affect neither the object detection nor the object shape. To account for 

this, they have modified the above metrics, defining the shadow detection rate 77 and 

the shadow discrimination rate v as follows: 

77 _ 
TPS 

and v= 
TPF 

TPs+FNs TPF+FNF 

where S denotes shadow and F denotes foreground. TPF is the number of ground- 

truth points of the foreground objects minus the number of points detected as shad- 

ows, but belonging to foreground objects. 
Despite the above efforts, a reliable and objective way to evaluate the robustness 

of a shadow detection algorithm is still lacking in the literature. To compute the eval- 

uation metrics described above, the ground truth for each frame is necessary. The 

ground truth is obtained by segmenting the images with an accurate manual classi- 

fication of points in the foreground, background, and shadow regions. Based on the 

metrics of Prati et al., Table 6.3 provides a quantitative comparison between the pro- 

posed algorithms and the state of the art algorithms, based on the benchmark video 

sequences. Similarly, Table 6.4 provides a quantitative evaluation of the proposed 

algorithms based on the new video sequences. 

The performance measurements show that the proposed algorithms, when applied 
to the benchmark videos, outperform most of the state of the art approaches, with 

significant enhancements of good detection and discrimination rates. The proposed 

algorithms also perform well when applied to most of the new video sequences. How- 

ever, as shown in Table 6.4, the algorithms did not perform as expected when applied 

to the new video sequences "Falkner" and "Eggington". The v metric results show 
high numbers of misclassified foreground points. These two sequences are created us- 

ing low resolution cameras at night time with single and multiple street light sources. 

The noise levels in these two sequences are relatively high, and the cast shadows are 

relatively strong. It is clear that the proposed algorithms failed to classify shadows 
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Approach Campus Laboratory Intellige nt room 
rho A 77% A 71% A 

Horprasert etal. [39 80.58 % 69.37 % 84.03% 92.35 % 72.82% 88.90 0 
Mikic etal. [54] 72.43 % 74.08% 64.85 % 95.39 % 76.27 % 90.74 % 
Cucchiara et al. 18 82.87 % 86-65% 76.26% 89.87% 78.61 % 90-29% 
Stauder et al. 73 69.10% 162.96% 60.34% 81.57% 162.00% 193.89% 
Siala et al. [72] 77.21 % 94.85 o NA N/A N/A N/A 
Pixel Algorithm 89.13 % 85.52 % 93.42% 85.59 o 88.98 % 91.42 % 
DCT Algorithm 90.67 0 193.34% 90.22 0 92.83% 87.24% 95-85% 
DWT Algorithm 1 184.31 % 191.50% 87.84 0 84.42 0 82.6370 92.71 % 

Table 6.3: Quantitative evaluation of the proposed and the state-of-art algorithms, 
based on the benchmark video sequences. The results of the first four algorithms are 
obtained from Prati et al. work [61]. Siala et al [72] provided their own results as 
shown in the fifth algorithm. 

correctly in these two video sequences, with poor shadow detection and discrimina- 

tion results. However, in such environments, there is no known algorithm that can 

give better results. Shadow detection results can be enhanced in such environments 

provided that a higher resolution camera with wider aperture settings can be used to 

capture more texture details and less noise. 
Selected threshold values throughout the algorithms are - 0, and range within the 

following scale [0.1 
... 1.0]. Selecting threshold values is done experimentally, with an 

approximate assumption of the value based on the scene environment. Strong shadows 
in outdoor environments with strong sunlight, or scenes at night time tend to destroy 

texture information. Therefore the threshold value will approach the upper limit of 
the scale. Weak shadows in indoor environments and overcast situations do not affect 

the texture information as much as the strong shadows do. Therefore threshold values 

will approach the lower bound of the scale. An automatic approach to select threshold 

values is feasible, as a pre-processing stage of the shadow detection algorithms. The 

automatic approach should consider the scene environment, and lighting conditions 
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Video Sequence Pixel Domain DCT Domain DWT Domain 
77% vo 77o vo 77o v0 

Corridor 84.36% 82.65% 866-9844%o 90.43% 84.32% 82.78% 
Sara 92.12% 91.34% 93.99 0 90.84% 92.76% 

- 
91.46% 

Asphalt 192.51% 90.08 0 95.61 0 94.58% 6.19 0 96.197o 91.27% 
Side 89.82% 187.35% 90.27% 89.48% 191-24% 86.40 To 
Ghost 93.02% 84.25% 92.63% 

- 
92.70% 

- - - - 
92.04% 90.47% 

Legs 85.22% 87.46% 0.57 0 80-577o 8.61 0 7 T6 17o 82.88% 86.29% 
Holywell 85.52% 182.39% 84.41 0 88-75% 

- - - 
87-54% 90.30% 

- - Farnham 95.49% 94.24% 92.47% 96 27o 6.82 0 8 94.35% 3 3175 0 
Door 88.15% 92.77% 90.01% 89.34% 92.66% 94.21% 
Falkner 76.56% 58.61% 73.25% 67.18 0 78.82 0 52.53 o 
Eggington 71.24 0 39.35 0 68.98% 1 1 42.51 0 66.12% 48.74 0 

Table 6.4: Quantitative evaluation of the proposed algorithms, based on the new 
video sequences. 

in order to decide on the best possible threshold values. 

6.4 Shadow Detection in Video Sequences with a 

Non-Dedicated Background Image 

Although the use of dynamic background generation techniques enhance the back- 

ground subtraction process for long video sequences, they are still incapable of mod- 

elling fast changes in illumination. Chapter 5 introduced the proposed shadow de- 

tection algorithms in the spatial and frequency domains using a static background 

model. The algorithms use static background and object frame pairs, i. e. F and 

F*, for the detection of moving shadows in the object frame F*. These algorithms 

compare the shadow blocks in frame F* with the corresponding non-shadow blocks in 

the background frame, which is used as a reference. However, in the proposed algo- 

rithms, the use of a fixed background frame as a reference is not required if any of the 
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Figure 6.7: " Farnham" video sequence, (a) the background frame, (b) the current 
frame, (c) the binary image resulting from the background subtraction process, (d) 

the shadow detection frame, detected shadow blocks are presented as white blocks, (e) 

the shadow removed frame, detected shadow blocks are replaced with corresponding 
non-shadow blocks from frame a, (f) the binary image of the processed frame. 

previous frames in the video sequence contains the corresponding non-shadow area, 

and therefore can be used as a reference frame. For instance, the area covered by the 

shadow in frame (c) in Figure 6.4 has corresponding non-shadow areas in frame (a), 

and frame (b). Therefore, frame (a) or frame (b) can be used as a reference frame F, 

in order to detect shadows in frame (c). This technique would overcome the problems 

related to the use of static and dynamic background techniques. 

An automated approach' is more appropriate in determining which previous frame 

'This automatic method should account for: the frame rate, the total number of the objects in 
the scene, objects displacements, and velocities of the moving objects. 

wfýY+ 

S. 

a 



Chapter 6: Shadow Detection in Video Sequences 91 

is best used as a reference, i. e. given a sequence of frames {I1 
... 1, }, the algorithm 

decides to use I�, as a reference frame, where 1<m<n. 

The reminder of this section presents an exemplar for the proposed approach. This 

exemplar is designed for particular environments such as: pedestrians surveillance 

applications, with restrictions on the total number of humans, human sizes, velocities, 

and their distances from the camera. The end of this section discusses a method 

for generalising the exemplar in order to make it applicable for general objects and 

environments. Note that the core of the algorithm is based on the proposed shadow 

detection hypothesis discussed in section 3.2, and can be applied to any of the domains 

discussed in chapter 5. 

This exemplar algorithm consists of three stages as illustrated in Figure 6.8, and 

is discussed thoroughly during the rest of the chapter. 

Locate and Decide which 
Initialisation extract reference 

objects frame to use 

Binary Images 
) rAnthropometric 

Information 

i Estimation Motion 
(TSS) 

( 

Calculations 

Figure 6.8: An exemplar shadow detection algorithm diagram for non-dedicated back- 
ground algorithms. 
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6.4.1 Initialisation 

In this stage a decision on the number of frames k to be used to bootstrap the 

algorithm should be made. Then for each frame II where 1<i<k the appropriate 

shadow detection and removal algorithm discussed in sections 5.2.1,5.3.2, and 5.3.4 

should be applied. Consequently, for each frame Ii the second and third stages of the 

method should be applied. 

6.4.2 Locating and extracting objects 

Information provided by binary images is used in this step to locate and extract 
the objects from the scene. Note that, the scene up to this stage contains the objects 

only, with no background or shadow details, see Figure 6.10. Given the binary frame 

Bti, which contains pixels with values 1 (Black) representing the object and 0 (White) 

representing the rest of the frame, the algorithm starts searching for the first pixel 

with the value of 1 in the scene. 

Due to noise and background subtraction, it is possible that the binary image 

contains some isolated pixels of value 1. Therefore, the algorithm should look into 

the surrounding pixels, within a relatively small window size, and if the total number 

of black pixels in that window is less than a certain threshold then the pixel should 
be disregarded and considered as noise. Otherwise, the pixel is assumed to represent 

the top of the first object head in the scene. 

After the top of the head is located, and by assuming that the head is relatively 

of round shape, two vertical tangent lines of the circular shape are constructed (on 

the left and right of the head), and the distance between the two intersection points 

of the vertical tangents to the line through the point of top of head can be used 

to measure the diameter (measurements are represented in terms of pixels, where 

each pixel represents 1 unit). Note that the diameter in this particular application 

represents the head height or width. 
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Based on anthropometric 2 information, the head width approximately equals to 

half of the body width and the head length is approximately 1/7 of the total body 

height [69,591. Using the calculated measurements, each object is extracted from the 

scene into a separate layer, and the algorithm repeats the search for the next object 

in the scene until all objects are extracted from the scene into different layers. 

6.4.3 Calculating average object velocities 

Motion estimation examines the movement of objects in an image sequence, in 

order to obtain vectors representing the estimated motion [64]. In motion estimation 

techniques, each frame is divided into blocks, and then each block in the present frame 

is matched against candidate blocks within a search area, in the reference frame [34). 

The full search motion estimation algorithm gives optimal performance at the 

cost of very expensive computation, where it compares each block in the current 

frame with every single block in the reference frame within a window. To reduce 

the computational load, fast search algorithms have been developed such as : the 2D 

Logarithmic Search (TDL) [43], the Four-Step-Search (FSS) [60], the Cross Search 

Algorithm (CSA) [33], and the Spiral Search (SS) [84]. Amongst the fast search 

algorithms, the Three-Steps-Search (TSS) algorithm is the most popular algorithm. 
It is a block-based search technique, and uses a maximum of three steps. It has a 
fixed number of three search steps, and a maximum number of searching points of 
25. The TSS technique starts with a step size slightly larger or equal to half of the 

maximum range. At the end of the search the step size becomes 1 pixel [48]. 

In the proposed algorithm the TSS algorithm is used, the blocks to be matched 
in the reference frame are only the heads of the objects. The matching criteria is the 

Mean Square Error (MSE), where the block that gives the least MSE is considered 

as the matching block. Once the matching block is found, a motion vector tU is 
2Anthropometry means measurement of humans, it refers to the measurement of living human 

individuals for the purposes of understanding human physical variation [36) 
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calculated for that particular object, where l represents the object number. 

AßC 

A' B' C' 

Figure 6.9: "Corridor", represents an indoor video sequence, with multiple combina- 
tion of light sources, spectrally equal and of equal intensities. This figure illustrates 

the use the background non-dedicated approach based on the DCT domain shadow 
detection and removal algorithm. Frames (A, B, C) represent the original frames in 
the sequence; frames (A', B', C') are the corresponding processed frames. 

The resulting motion vector V is considered as the object displacement. The 

process repeats calculating the motion vectors for the rest of the objects in the scene 

and for all the frames in the initialisation stage. Once all the motion vectors are 

calculated, the average displacement OS of the objects is calculated and stored for 

this particular frame. Based on this information simple motion calculations are used 

to predict how many frames the algorithm has to look back in order to choose the 

reference frame. Figure 6.9 illustrates the results of the algorithm. 

6.4.4 Evaluation and discussion 

As stated earlier, although the use of this exemplar minimises the dependency on 

the background frame, it is designed for particular environments, with the following 
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Figure 6.10: Extracting objects into different layers, in this examples 'I objects are 

extracted into 4 new layers. 

restrictions: 

" Objects in the scene are humans and their sizes are relatively similar. 

9 Full human figures should be available in the scene. 

" Objects are moving relative to one another in similar directions and at similar 

speeds. 

" The number of objects in the scene is relatively low compared to the frame size, 

i. e. scenes should not be crowded. 

The above constraints make the algorithm applicable for particular environments 

such as paths and corridors. However, the core of the algorithm is based on the 

proposed shadow detection algorithms presented in sections 5.2.1,5.3.2, and 5.3.4. 

To generalise this exemplar and to overcome the restrictions associated with it, 

motion estimation can be done for the entire frame (over the entire block set). Thus, 
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the average motion vectors can be used to calculate the average displacements in the 

scene. The technique overcomes the drawback of having the algorithm designed for 

a particular object type. 

6.5 Summary 

Video object tracking and recognition is of prime importance for security systems 

and video surveillance applications, where shadow detection stands at the core of 

successful tracking and recognition systems. This chapter illustrated the process of 

shadow detection in the pixel, DCT and DWT domains and discussed the experimen- 

tal results associated with it. The performance evaluation shows that the proposed 

methods outperform most of the existing methods with significant contributions to 

detection accuracy. 

Benchmark test video sequences are used in the proposed approaches to compare 

and evaluate the results with the state of the art approaches. In addition to the 

benchmark videos, new test video sequences have been created, with scenes and cast 

shadows of increased complexity, in order to test and evaluate the performance of 

the proposed algorithms under different conditions. The different physical conditions 

incorporated in the benchmark and the new video sequences include: a variety of back- 

ground surfaces, wide range of object distances from the camera, and indoor/outdoor 

environments. 

The proposed algorithms are proven theoretically and experimentally to be in- 

dependent of object types and scene environments, and account for neither scene 

geometry nor lighting conditions. Unlike most of the other approaches, the proposed 

methods are capable of detecting shadow umbra and penumbra in indoor and out- 

door scene environments. The strengths of the proposed approaches are a result of 

the high accuracy of the proposed theories and models fundamental to the algorithms. 

The accuracy, simplicity, and adaptability to different domains, makes the proposed 
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algorithms competitive when compared with the state-of-art approaches. 

The use of the background frame as a reference is not required, if any of the pre- 

vious frames in the video sequence contains the corresponding non-shadow area, and 

therefore can be used as a reference frame. An automated approach is more appropri- 

ate to determine which previous frame is the best to be used as a reference. For this 

purpose, an exemplar algorithm for shadow detection of pedestrians is presented in 

this chapter, which can be adapted or generalised for other environments and object 

types. 

Chapter 7 discusses applying the proposed algorithms to still images where no 

other frames are available as a reference for the current image. 



Chapter 7 

Shadow Boundary Detection in 

Still Images 

7.1 Overview 

When considering shadow detection in still images, there is no additional image 

to be used as a reference frame (i. e. neither the background nor the reference frames 

are available). Therefore, many of the techniques proposed for shadow detection in 

video sequences cannot be directly applied to still images. However, some approaches 

that are merely designed for shadow detection and removal in still images have been 

proposed, based on the properties of colour spaces, such as the approaches proposed 

by Baba et al. [3,4]. These approaches investigated the identification of shadow areas 

based on the RGB colour space using colour clustering. The regions of the cluster- 

that need to be considered must be manually identified through human intervention. 

Therefore, this method fails to provide a truly autonomous approach to the problem 

of shadow detection. 

The approach presented by Charit and Loew [14] looked at the detection of shad- 

ows based on the light source vector illuminating the image. It is assumed that the 

illumination vector information is available, and the image is illuminated by white 

98 
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light. The same assumption was made by Gevers [32) when looking at adaptive im- 

age segmentation through the combination of both photometric invariant regions and 

edge information. 

The approach proposed by Levine and Battacharyya [50] looked at the detection 

and removal of shadows using a learning system that identifies shadows based on 

their boundary properties. The work is based on the initial findings of Barnard and 

Finlayson [6]. This approach uses AI-based properties to identify probable boundary 

regions. 

There have been a variety of different attempts to solve the problem of shadow 
detection in still images. However, the majority of these approaches are either based 

upon assumptions that limit their possible scope or have been designed for specific 

applications. There appears to be no single technique that has managed to create 

a generic algorithm, that is capable of detecting shadows from still images, and is 

usable in a broad range of applications. 

In this chapter, section 7.2 introduces the proposed shadow edge detection alga 

rithms. Section 7.2.1 illustrates the edge detection algorithms. Sections 7.2.2, and 
7.2.3 introduces the spatial and transform domains shadow edge detection algorithms. 
Section 7.2 provides a subjective evaluation for the proposed algorithms. Finally, sec- 

tion 7.3 summarises this chapter. 

7.2 Shadow Edge Detection Algorithms 

The cast shadow detection algorithms presented in sections 5.2.1,5.3.2, and 5.3.4, 

for the spatial and transform domains, use block-based approaches to compare shadow 

regions in the background frame F* with non-shadow regions in the foreground frame 

F. In still images, the unavailability of background and reference frames limits the 

use of the above comparison-based approach. However, regions at shadow boundaries 

can be used for the same comparison. Therefore, the novel approach proposed in this 
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chapter suggests using 1-D blocks of size 1xk pixels instead of kxk square blocks, 

hereafter called intervals, for the detection of shadow boundaries in still images. It is 

important to note here, that this method is capable of simultaneously detecting self 

and cast shadow edges. 

Instead of processing the entire frame in search of shadow regions, edge detectors 

can be used as a pre-processing step (see Figure 7.1). Based on the resulting edge 

detected image, the proposed shadow boundary detection algorithm compares regions 

at each edge point, in order to decide whether or not that edge point forms a shadow 

boundary. 

The proposed approach suggests the use of so-called vertical and horizontal inter- 

vats, to verify the shadow edge point, where each edge point is considered as a shadow 

edge if both the vertical and horizontal intervals satisfy the shadow test conditions, 

presented in sections 5.2.1,5.3.2, and 5.3.4 (see Figure 7.2). however, in using vertical 

and horizontal intervals the algorithm fails to classify the shadow edge point, if the 

shadow edge is oriented either in a vertical or horizontal direction with respect to the 

image axis. Therefore, the use of additional diagonal intervals will solve the problem, 

and is thus more appropriate in general for shadow edge detection, see Figure 7.3. 

Shadow 

Input Image Edge Boundary 
Detection Identification 

Algorithm 

Figure 7.1: Shadow boundary detection algorithm diagram 
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Figure 7.2: Vertical and Horizontal intervals used to detect edges, Pi, P2 belongs to 

one side of the edge, Pi 
, 
P2 belongs to the other side of the edge. 

7.2.1 Edge detection 

Edge detection is simply a method of segmenting an image into regions of dis- 

continuity. In other words, it allows the user to observe features of an image where 

there is a more or less abrupt change in grey level or texture, indicating the end of 

one region in the image and the beginning of another. Similar to other methods of 

image analysis, edge detection is sensitive to noise. For this reason, undetected edges 

can occur in places where the transition between regions is not abrupt enough or else 

edges can be detected in regions of an image where the texture is uniform [10]. Edge 

detection makes use of differential operators to detect changes in the gradients of the 

grey levels. A wide variety of edge detectors have been proposed in literature, such as: 

Roberts Cross Edge Detector [12], Sobel Edge Detector [351, Prewitt Edge Detector 

[22], Compass Edge Detector [77], and Canny Edge Detector [13]. The Canny edge 

detector is widely accepted to perform optimally under various image conditions, and 

thus is used in this proposed approach as the pre-processing stage. 
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a 

Figure 7.3: A combination of vertical, horizontal, and Diagonal intervals used in the 
1-D shadow boundary detction algorithms. 

Figure 7.4 visually compares selected edge detectors, which clearly illustrates the 

superiority of the Canny edge detection. Readers who are interested to read more 

about the Canny edge detector are referred to [131. 

7.2.2 Spatial domain shadow edge detection algorithm 

Initially, the proposed pixel domain shadow boundary detection algorithm uses the 

Canny edge detector to extract all possible edges from a given image. Subsequently, 

the algorithm processes the image by comparing corresponding intervals of size 1xk, 

at each edge point. We denote corresponding 1xk interval pairs in the pixel domain 

by (Pi, PI), (P2i P2 ), (P3, P3 ), (P4, P4) where P1, P2i P3, P4 are on one side of the 

edge and Pi 
, 
P2 

, 
P3 

, 
Pq are on the other side. 

The proposed algorithm initially sets the size k of diagonals, vertical and horizontal 

(V/H) intervals to 32 pixels, with 16 pixels on either side of the edge. If both diagonals 

and V/H intervals at this size, fail to classify the shadow edge point, then the size of 

the intervals, k, is set to half of its original size, i. e. 16 pixels, with 8 pixels on either 

side of the edge. This process repeats on intervals that fail to classify as shadow, 

down to an interval size of 4 pixels. Intervals that fail to classify as shadow edges at 

bc 
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Figure 7.4: Edge detection using different detectors 

this level of sub-division are classified as non-shadow edges. 

The pixel domain shadow detection algorithm presented here is a modified version 

of the block-based pixel domain algorithm presented in section 5.2.1, where the affine 

parameters A and it can be computed as: 

_ 
a(Pl) (P2ý 

_ 
lP3ý Q(P4 ) 

ý1 
Q(Pl) 

A2 oQ(P2) A' QQ(P3) A4 
a(P4) 

µI =P; - AIA , µz=P2 -a2A 

/13 =P3 -A3P3 1 I14 =P4 -A4P4 

Based on the affine hypothesis proposed in section 3.2 and derived in section 3.3, 

the expression for 8i, b2,63, and 64 can be written as: 

III'i - (A1P1 + µiLP)II2 6__ IIP2 - (A2P2 + µ2LP)112 
IIý'i 112 2 IIPý 112 
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b3 _ 
IIP3 

- 
NP3 + 1p3Lp)112 a4 = 

IIP4 
- (A4P4 + µ4LP) 112 

' IIP3112 IIPä 112 
where Lp is the 1xk matrix defined by 

(LP)s=1 for all 0 <j<k 

Shadow condition: As discussed in section 3.2, the light energy received at 

points rE nq in the absence of an object casting a shadow over nq is affinely related, 

with a high degree of approximation, to the energy received when a shadow is cast 

over nq by an object. The same affine parameters are applicable to the entire neigh- 

bourhood nq. Here, the algorithm is applied over the neighbourhood of an interval of 

size 1xk. 

As compared to the shadow condition discussed in section 5.2.1, similarly the 

shadow condition here for the interval pairs (P1, Pl ), (P2, PZ ), and (P3, P30), (P4, P4*) 

is: 

Pl <1n Pz < )A (II1'i - (A1P1 + µ1Lp)112 0) A (IIP2 - (\2P2 + µ2LP) 112 
ge, 0) Pi P2 IIPiD2 I1P2112 

holds for ((PI, Pi) and (P2i P2*)) 

V 

r 
p3 

<1A 
P4 

< 1ý n 
11P3 - (A3P3 'I' µ3LP) 112 

O) Aý 
11P4* 

" (A4P4 + %L4LP)II2 O) l P3 P4 11p3112 11P4112 

holds for ((P3i P3) and (P4, P4*)). 

Note that for a1x4 interval we have: 

Lp =11,1,1,1 
, 

The pixel domain shadow edge detection algorithm is summarised and presented 
in Algorithm 4 for ease of revision. Samples of the algorithm results are provided in 

Figure 7.5. It clearly illustrates the efficiency of the algorithm. 



Chapter 7: Shadow Boundary Detection in Still Images 105 

Algorithm 4 Linear Pixel Domain Shadow Detection Algorithm 
1: kG16 

2: P* = EdgeDetection(F*, Canny) 

3: dEdgePointa DO 

4: Find the intervals PI, Pi 
, 
P2, P2 

, 
P3, P4 

, 
P4, P4 each of size k 

5: A, = öýPl) 111 = Pi -. 1P1, %ý2 ' µ2 = P2 -i12P2, A3 A3 = P3 -i13P3, 

, 
A4= 

Qý) , µ4=P4 -A4P4 

Pj* <1A IIP-(, \Ii'1+2uILp)II2 0A<1 II P Ph µ2Lp)L _ 0) V( it <1A 6: if ( 
P- A3+µaLp)II2 

IIp 3'0P. <1 IIp 
IIaq+/ý4Lp)II4 ... 0) then 

II ( 
ý jj2 ... 

7: THIS IS A SHADOW EDGE POINT 

8: else 

9: k4 8 

10: Find the intervals P1, Pi , P2, P2 , P3, P4 , P41P4 each of size k 

11: )q = Q(P1) Al = Pi -Pipi, 1\2 P2 = P2 - \2P21 \3 =°, 13 = 
P3- A3P3, 

, 
A4 = 

°(p4) , p4 =' 4- A4P4 

12: if (<1A IIP`-(aiPi+112 µiLp)IIs 
-0A 

It 
<1A IIP*-(-2 , \'- ? Lp)112 

-- 0) V (. <1 112 

A IIP'-(ash+p3LP)II2 I0 
A<1A IIp'-(a4P4+ s4Lp)II2 

4 `s 
0) then p+ý 

13: THIS IS A SHADOW EDGE POINT 

14: else 

15: ka4 

16: Find the intervals P,, Pi , P2, P2 , P3, P4 , P4, P4 each of size k 

17: % ') 1= Pi - i11Pi, A2 =°, /A2 = PZ - ý2P2i A3 =°p ° 
A3 = P3 - A3P3� A4 = Q(pt) 

, p4 = P4 - X4P4 

18: if (<1A [IPI 
-(AI 2-0A<1A P+- A2F+ý 2Lp)I2 0) V /-, ' 

<1 
IIPrl`-(-\3 

11 P3* 

P3+ý 3Lp)II2 
0A,, <1A lip 4* -(A4P4+µeLp)IIs 0) then IIP4 112 

19: THIS IS A SHADOW EDGE POINT 

20: else 

21: THIS IS NOT A SHADOW EDGE POINT 

22: end if 

23: end if 

24: end if 
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7.2.3 Transform domain shadow edge detection algorithms 

The proposed transform domain approaches to the shadow boundary detection 

use the Canny edge detector to extract all edges from a given image in a manner 

identical to that discussed in section 7.2.2. Further the analysis is based on diagonals 

and V/H intervals of size 1xk as discussed in section 7.2.2. However, the processing 

of these intervals is done in either the DCT or DWT domains, i. e. the pixels are 

transformed to the above domain before further processing. We denote corresponding 

1xk interval pairs in the DCT domain by (B1, Bi), (B2, BZ), (B3, B3), (B4, Bä) 

where Bl E DCT (Pl ), Bi E DCT (Pl ), B2 E DCT(P2), B2 E DCT (Pf ), B3 E 

DCT(P3), B3 E DCT (P3 ), and B4 E DCT(P4), Bä E DCT (P4 ). In the DWT 

domain, the author denote corresponding 1xk interval pairs by (D1, Di), (D2, D2), 

(D3, D3), and (D4, D4) where Dl E DWT(P1), Di E DWT(PP ), D2 E DWT(P2) 

and DZ E DWT(PZ ), D3 E DWT(P3), D3 E DWT(P3 ), and D4 E DWT(P4), 

D4 E DWT(P4*). 

Initially, an interval size k= 32 is considered. If the edge point fails to satisfy 

the shadow conditions, the interval size is reduced to 16. This process is continued 

as described in section 7.2.2, up to a minimum interval size k=4. 

In the proposed DWT domain approach 1a modified version of the general block- 

based algorithm presented in section 5.3.4 can be used, where 1-D DWT decom- 

position for each interval replaces the 2-D block-based approach. Similarly, in the 

DCT domain, the proposed shadow edge detection algorithm is a modified version of 

the block-based DCT domain algorithm presented in section 5.3.2, where the affine 

parameters A and µ can be computed as: 

aci 
2 

ac2 ac Al= ý1= 
ý; ý, 3E ac4 A3= A4= 

E acl E ace E ac3 E ac4 
Alternatively: 

lAs the modifications required for the DCT and DWT block-based algorithms are relatively 
similar in both domains, only the DCT approach is discussed here. 
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ý1 = 
Pi (0,0) - aioo A2 = 

Pä (0, ý) - aäoo ý3 (0,0) - aäoo Pä (O, 0) - a400' P1(O, 0) 
- al�. P2(0,0) 

- a2oo 
3 P3ý0ý 0) 

- a3oo 
ý4 = 

P4(0,0) 
- a4oo 

µi = dci - Aldcl ' P2 = dc2 - A2dc2 

Ili = dC3 - A3dc3 
i A4 = dC4 - A4dC4 

Therefore, based on the affine hypothesis proposed in section 3.2 and derived in 
section 3.3, the expressions for öl, 92,63, as can be written as: 

JIB, - (A1B1 + µ1LD)112 a2 = 
II B2* - (A2B2 + µ2LD)112 

JJBi 11a FJBi JI2 

J3 _ 
IIB3 

- (A3B3 + A3LD)II2 
__ 

IIB4 
- (A4B4 + 

i44LD)II2 IIB3II2 ý4 II04 II2 
where LD is the 1xk matrix defined by 

(LD)P =1 for j=0 

=0 for 0<j<k 

Shadow condition: As discussed in section 3.2, the light energy received at 
points rE nQ in the absence of an object casting a shadow over nq is affinely related, 
with a high degree of approximation, to the energy received when a shadow is cast 
over nq by an object. The same affine parameters are applicable to the entire neigh- 
bourhood nq. Here, the algorithm is applied over the neighbourhood of an interval of 
size 1xk. 

As compared to the shadow condition discussed in section 5.3.2, similarly the 
shadow condition here for the interval pairs (B1, Bi ), (B2, Bý ), and (B3 

i B3 ), (B4, B4 ) 
is: 
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riigoritnm 5 Linear DUT Domain Shadow Detection Algorithm 
1: kG16 

2: P' = EdgeDetection(F', Canny) 

3: VEdgePointa DO 

4: Find the intervals PI, Pi 
, 
P2, PP 

, A3ip4 
, P4, P4- each of size k 

5: Bl = DCT(P1), Bi = DCT(Pr ), B2 = DCT(P2), B2* = DCT(Pf ), B3 = DCT(P3), B3 = DCT(P3 ), 
B4 = DCT(P4), B40 = DCT(P4 ) 

6: Al = 
EST 

acz lei = ai00 - \laloo, a4 
Jac 

142 = 4400 - \904o0s X3 = 
acs 

acs 
oc, 

P3 - °300 - \3a300 
Ea 

A4 = 
ac , µ4 = a4. 

o - , \4a4oo 

7: if (6 <1A 
IIB"-(A1 BI +PILD)112 

Ps 0A6<1A pB2"-02B7+14 LD)IIz bs 4014 
00 JIB* 112 

G 1 zoo j--ý 0) V(<1A 
IIB" (A3Bs+/A3LD)II2 

.0AV<1A 
IIB"-(AgB4+µ4LD)II9 00 410' 

ft 0) then 
8: THIS IS A SHADOW EDGE POINT 
9: else 

10: ka8 
11: Find the intervals Pi, Pr , P2, PP , p3, p4 , P4, P4* each of size k 
12: Bi = DCT(P1), Bi = DCT(PP ), B2 = DCT(Pa), Bz = DCT(PP ), B3 = DCT(f'j), B3 = DCT(P3 ), B4 = DCT(P4), B4 = DCT(P4 ) 
13: a1 = °C Eh 

ac 
pi = o0 00 ,2 

aca' 
, µ2 = a2oo - \2a2oo, h= 

aý, , 143 = a`goo - ha3oo, 
GC* 

=ýa 4 
ao14 

= aäoo - -\0400 °4oo 
a-a 

b, IIB-(. \iBz+µILv)IIý b- 14: if (<IA3z 
rs 0A<1A IIB*-(aaaý+µaL0)Ilz 

tt 0) V 
b- 

<1A IIB*-(AaBs+µ9LD)ff3 ba oo zz IIB*-('\4B4 
- 

)Us 0A 
S00 

j_ 
<1A --i- ;. I+ II p 0) than 

15: THIS IS A SHADOW EDGE POINT a 

16: else 
17: ka4 
18: Find the intervals PI, P1 , p2, p2 , p3, p4 , p4, pj each of size k 
19: Bi = DCT(Pj), Bi = DCT(Pi ), B2 = DCT(P2), B2* = DCT(PP ), B3 = DCT(P3), B3 = DCT(P$ ), B4 = DCT(P4), Bä = DCT(PP ) 
20: al = 

aýi 
µi = nloo - alnloo, ý2 

acs . 
µ2 = a; 00 - . 12a300, \s = a`' 

ach 6e3 i 
143 X300 - 34300 

A4 =' 
aca 

%1'4 = a4o0 - \4a400 

21: if <1A IIBý-(ý'ý ' iL)Ilz As 0At<IA IIB (A2B2+N3LV)II2 6* 
IIB'-(acres+vsLV)tla i` z00 -- ; t$ 0) V (b <IA 

ft 0A<1A 118A-9Jyj+vý . )pI3 0) then ý a00 I7 
22: THIS IS A SHADOW EDGE POINT 
23: else 
24: THIS IS NOT A SHADOW EDGE POINT 
25: end If 
26: end If 

27: end if 
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(Qý- <1A 
aý 

< 1)A(UB, - (A1BI + PiLD)112 0A 
JIB2 - (A2B2 + 1A2LD)II2 0) 

aio, a2oo JIB, * jI2 IIB2I12 
holds for (B1, Bi) and (B2, BZ). 

V 

(a <1A 
a-ý 

< 1)A(IIB3 - (A3B3 + /ý3LD)II2 
N0A 

II84 - 0484 + EL4LD)II2 
pzý 0) 

a3Do a4oo IIB312 IIB4II2 

holds for (B3, B3*) and (B4, B4*) - 
Note that for a1x4 block we have: 

LD=[1,0,0,0]. 

The DCT domain shadow edge detection algorithm is summarised and presented 

in Algorithm 5 for ease of revision, samples of the algorithm results are provided in 

Figure 7.6. It clearly illustrates the performance of the algorithm. 

7.2.4 Subjective evaluation 

Experiments are performed using the video frames (i. e. images) of the test video 

sequences used in chapter 6. The performance evaluation metrics used in section 
6.3.1 for shadow detection in video applications cannot be applied in this work for 

the reason that self and cast shadows together complicate the evaluation metrics. 

Further in this chapter, we only aim for shadow boundary detection instead of cast 

shadow detection. Therefore, subjective results are used to evaluate the effectiveness 

of the proposed algorithm. 

Figure 7.5 shows the results of the spatial domain shadow edge detection algo- 

rithm, the figure contains three test images (original frames) each with the Canny 

edge detection, the output of the algorithm is represented in the detected shadow 

edges section where potential shadow edges have been spotted in white. The last 
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Figure 7.5: Shadow edge detection in the spatial domain. Still images are extracted 
from the following video sequences: "Holywell", "Black", and "Sara", respectively. 
The presented shadow edge detection figures show that the algorithm succeeds to 
detect self and cast shadows in the images. 

section of the figure illustrates more clearly the shadow edge detected points. Note 

that self and cast shadow edges have been detected as shown in this figure. Figure 7.6 

shows the results of the transform (DCT) domain shadow edge detection algorithm, 

the representation of the figure is identical to Figure 7.5 with same images. Output 

results from both domain algorithms are almost identical with major shadow edges 

being detected in both domains. However, very minor differences can be reported 

without any significant conclusion regarding the differences. 

The minor differences are related the affine parameter estimation iii the spatial 

and transform domain, where the parameters are computed in a comparable but not 

fully identical methods. 
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Figure 7.6: Shadow edge detection in the transform domain. Still iinaiges are extracted 
from the following video sequences: "Holywell", "Black", and "Sara" respectively. 
The presented shadow edge detection figures show that the algorithm succeeds to 
detect self and cast shadows in the images. Results are relatively similar to the pixel 
domain shadow edge detection algorithm, with minor differences. 

7.3 Summary 

The absence of background and reference frames in still images limits the use of 

the block based shadow detection approach presented in chapter 5. However, regions 

at shadow boundaries can be used for the same comparison. Therefore, in this chapter 

interval-based shadow edge detection algorithms for still images have been proposed 

in the spatial and frequency domains. The algorithms in both domains use the Canny 

edge detector as a pre-processing stage to locate possible edges in the scene. Based 

on the resulting detected edges, a shadow boundary detection algorithm compares 
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regions at each edge points in order to decide whether or not that edge point forms 

a shadow boundary. The proposed algorithms use diagonal, vertical and horizontal 

intervals to verify the shadow edge point, where each edge point is considered as a 

shadow edge if either the diagonal, or the vertical and horizontal intervals satisfy the 

shadow test conditions. 

Experiments are performed on video frames (i. e. images) similar to the one used 

in chapter 6. The performance evaluation metrics used in section 6.3.1 for shadow 
detection in video applications cannot be applied in this part of the work for the 

reason that self and cast shadows together complicate the evaluation metrics. At the 

same time, this work aims at shadow boundary detection instead of shadow detection. 

However, a subjective evaluation is carried out to test and compare the results of the 

spatial and transform domains shadow boundary detection algorithms. As shown in 

the results, the algorithms succeeded to detect self and cast shadows in the scenes 

with minor differences in the results obtained from multiple domains. 



Chapter 8 

Conclusion and Future Work 

This chapter summarises the key results presented in the previous chapters, draws 

conclusions, and emphasises the significant contributions of this thesis. It also presents 

possible future directions of research in order to expand the functionalities and effi- 

ciency of the proposed algorithms. 

The research work reported in this thesis commenced with potential improvements 

to the current illumination and shadow model H1, which models the ambient light 

more precisely than the existing models, by assuming that a lesser amount of ambient 
light is received at a point q on a surface when the shadow is cast. In the H3 model, 

this thesis proposes: 

C(q) = 

ij [Nv"Lä) +fwNAc(w)NN "Lwi) dw] 

+ i) {Nq 
" Lq2ý + fw µc(w)Nw " L(2 

w) 
dw] no object 

(1) 
is Nq"L9 i 

+icl) [fw\s, /Lc(w)N,,, " Q) dw] 

+ is [fw\s2 µc(w)NN " Lw2) dw] penumbra 

zc [fw\s, µc(w)N,, " Lwl) dw] 

+ ic) [fw\s, µc(w)Nw " LwZ) dw] umbra 

113 



Chapter 8: Conclusion and Future Work 114 

As an alternative to illumination and shadow model, H1; 

cp Nx, y " Lx, y + CA no object 

C(q) _ . \.,, ycp N.,, a, " L.,,, + CA penumbra 

CA umbra 

The main contribution of the thesis is presented by the proposed shadow hypoth- 

esis and computations, using the geometric and physical models of light, that showed 

the way to a local affine hypothesis for the identification of shadows in digital images. 

The hypothesis can be summarised as follows: When a shadow is cast over a neigh- 

bourhood, a smaller amount of light is received there - as compared to the entirely 

illuminated state. Using the geometric depiction of light rays and a simple reflection 

model, it is possible to show that the light energy received at points rE nq in the 

non-appearance of an object casting a shadow over nq is affinely related, to a high 

degree of approximation, to the energy received when a shadow is cast over nq by an 

object. The same affine parameters being applicable to the entire neighbourhood nq. 

Consequently, the luminance function L: nq -º IR when no shadow is cast over 

nq is affinely related to the luminance function L* : nq -º IR when a shadow is cast; 

i. e. for nq to be in shadow we have L*(r) stý AL(r) +µ and L*(r) < L(r), for some 

constants A and µ, for all rE nq. 

There are analogies here with several other physical phenomena that may be highly 

non-linear when considered globally (or over a long time period). but nevertheless, are 

linear or affine, to a high degree of approximation, when considered in a sufficiently 

small spatial neighbourhood (or over a sufficiently small time interval). Therefore, in 

shadow detection applications it is safe to consider only the affine relationship, as it 

will represent the scaling relationship when p is estimated in a local neighbourhood 

to be 0. 

It follows that with a monochrome source or with a colour source, simulated using 

R, G, B triples, the simple model predicts that in a sufficiently small neighbourhood 

an affine relationship exists between reflected light from a neighbourhood U. of a 
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point q when it is in/out-of shadow, i. e. we have: 

ro, a", c = ac rbg, 9o, c + Sc 

for all q* E Uq - and provided local patches of U. have similar reflectance coefficients. 

In the different colour layers the corresponding affine parameters will be different. 

Hence shadows may be identified in colour images by applying the affine test in each 

colour layer. Consequently, the shadow area will be the intersection area between the 

three colours. 

The accomplishment of the approach depends vitally on the accurate determina- 

tion of candidate affine parameters \ and µ, with which to test the neighbourhood 

affine condition. As video data is inherently noisy, this suggests estimating candidate 

values using statistical measures that have error and noise reducing properties. To 

this effect in the DCT domain the dc value and the sum of the ac values suggest 

effective measurements, in the DWT the LL value and the sum of LH, HL, HH also 

suggest effective measurements. The affine parameters' computations in the spatial 

and transform domains are comparable but not fully identical, which leads to minor 

differences between results obtained from different domains. Further research can be 

done to compute identical affine parameters from different domains. 

As a result of the proposed shadow-affine hypothesis, shadow detection algorithms 

are developed in the spatial and frequency domains, (pixel, DCT, and DWT) which 

are specifically proposed for video applications where the background frame is avail- 

able. The shadow detection algorithms presented in this work use background and 

object frame pairs F and F* for the detection of moving shadows in the object frame 

F*. The algorithms work either in the pixel, DCT, or DWT domains and process the 

frames blockwise by comparing corresponding blocks, of size kxk, in F and F*. 

The proposed algorithm in any domain initially sets k to 16. If a block of this 

size fails to classify as a shadow block, it is subdivided into four, 8x8 blocks for re- 

testing. This process is repeated, on blocks that initially fail to classify as shadows, 
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down to a block size 3x3. Blocks that fail to classify as shadow at this lowest level 

of sub-division are classified as non-shadow. 
The following metrics are used to systematically evaluate the proposed shadow 

detectors: 

17 _ 
TP3 

and v= 
TPF 

TPa + FNa TPF + FNF 

The performance measurements show that the proposed algorithms when applied 
to the benchmark videos outperform most of state of the art approaches with signif- 
icant enhancements of the good detection and discrimination rate. 

As for videos with no available background image, an automated approach is more 

appropriate to be used to determine which previous frame is the best to be used as a 

reference. For this purpose, an exemplar is designed for particular environments such 

as: pedestrians surveillance applications, and a method is discussed for generalising 
the algorithm to be applied for general objects. However, the core of the algorithm 
is based on the proposed shadow detection hypothesis, and can be used in any of the 
discussed spatial or transform domains. 

Finally, interval-based shadow edge detection algorithms for still images are pro- 

posed in the spatial and frequency domains. The proposed algorithms in the pixel 
and transform domains use the Canny edge detector to locate edges in the scene as a 
pre-processing step. Based on the resulting edge detected image, a shadow boundary 

detection algorithm compares regions at each edge point in order to decide whether 

or not that edge point forms a shadow boundary point. 

In the proposed approach 1-D diagonal intervals are used to verify the shadow edge 

point, where each edge point is considered as a shadow edge if either the diagonal 

intervals, or the vertical and horizontal intervals satisfy the shadow test conditions. 
The algorithms initially set the interval size k of each interval to 32, which passes the 

edge point with equal length on both sides, i. e. 16 pixels before the edge point and 16 

pixels after the edge point. If both of the diagonal and V/H intervals of this size fail 
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to classify the edge point as a shadow edge point, the sizes of the diagonal intervals k 

is set to 16, with 8 pixels before and 8 pixels after the edge point for re-testing. This 

process is repeated on intervals that fail to classify as shadows, down to an interval 

size of 4. Intervals that fail to classify as shadow edges at this level of sub-division 

are classified as non-shadow edges. 

The proposed algorithms succeeded to detect self and cast shadow edges in still 
images. However, this approach aims at shadow boundary detection instead of shadow 

detection. Shadow removal in still images is also a possible future direction of research, 

where region growing can be used to eliminate detected shadow edges. 
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Appendix A 

Taxonomy of Moving Cast Shadow 

Detection Algorithms 

For the purpose of this research, moving cast shadow detection algorithms are cat- 

egorised into a four-layer taxonomy, as shown in Table A. 1. The first layer of classifi- 

cation considers whether the approach is independent/dependent of object types. The 

second layer considers whether the approach is environment independent/dependent. 

The third layer considers whether the decision process introduces and exploits un- 

certainty. The third layer is subdivided into deterministic and statistical approaches, 

the former uses an on/off decision process, and the later uses statistical measure- 

ments, and introduces uncertainty to reduce noise sensitivity. The deterministic class 

can be further subdivided based on whether the on/off decision can be supported by 

model-based knowledge or not. Another classification has been created based on the 

domain of the shadow detection algorithms, shown in Table A. 2. This classification 

considers whether the approach is applied in the spatial (pixel), or in the transform 

(frequency) domain, and whether it is based on the Hue-Saturation-Value (HSV), 

the Red-Green-Blue (RGB), or YUV colour spaces. 

126 



Appendix A: Taxonomy of Moving Cast Shadow Detection Algorithms 127 

Approach Object Type Environment Determin istic Statistical 
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Table A. 1: A Four-Layer taxonomy, Independent/ Dependent of object type, Inde- 

pendent/Dependent of the environment, Deterministic/Statistical. 



Appendix A: Taxonomy of Moving Cast Shadow Detection Algorithms 128 

Approach Pixel Domain Transform Domain Co lour space 
DCT DWT RGB HSV YUV 
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Table A. 2: Taxonomy based on the Domain -pixel (spatial) or transform (frequency) 

and colour spaces RGB, HSV, and YUV. 



Appendix B 

Additional Experimental Results 

Further experimental results related to the algorithms proposed in chapter 5 are 

presented in this Appendix. For clarity of presentation, each figure is divided into 

4 frames. The first and second frames are processed using the pixel domain shadow 

detection algorithm presented in section 5.2.1. The third frame is processed using the 

Fourier domain shadow detection algorithm presented in section 5.3.2. The fourth 

frame is processed using the wavelet domain shadow detection algorithm presented in 

section 5.3.4. To add more clarity to the presentation, the input video frame and the 

output video frames are both accompanied with their corresponding binary images. 

Experiments are performed in both high and low-resolution video sequences. The 

video sequences shown here, are the new video sequences created for the purpose of 

this research, they represent simple/complex, indoor/outdoor scenes with different 

numbers of objects under different lighting and environmental conditions. New video 

sequences are created with scene and cast shadow complexity is varied, in order to test 

and evaluate the performance of the proposed algorithms under different conditions. 

The camera settings (aperture, shutter, speed, sampling rate) are all set in automatic 

mode. 
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Figure B. 1: Indoor environment with single point source and neutral walls, `Ghost' 

video sequence, frames: 50,52,56,85. The frames shown in this figure are captured 
using a high resolution camera. The distance between the camera and the object 
is relatively small. In this sequence, the shadow is cast vertically on the wall and 
horizontally on a wooden floor. The cast shadow covers a wide area of the frame. 
Table 6.2 provides a classified description of the video scene complexity. Table 6.4 

provides quantitative results and a performance evaluation of the proposed algorithms 
for this particular video sequence. 
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"Legs" Video Sequence 
Input Video Output Video 
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Figure B. 2: Indoor environment with single point source and textured walls, `Legs' 

video sequence, frames: 9,11,13,15. The frames shown in this figure are captured 
using a high resolution camera. The distance between the camera and the object 
is relatively small. Table 6.2 provides a classified description of the video scene 
complexity. Table 6.4 provides quantitative results and a performance evaluation of 
the proposed algorithms for this particular video sequence. 
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"Black" Video Sequence 
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Figure B. 3: Indoor environment with multiple arbitrary combination of light sources, 
`Black' video sequence, Frames: 21-24. The frames shown in this figure are captured 
using a low resolution camera. Multiple shadows in this sequence are cast vertically 
onto the wall. In this particular scene, due to the use of static a background subtrac- 
tion technique and a change in illumination, it is clear in the output video that the 
brightness of the replaced blocks is slightly different from the brightness in the cur- 
rent frame. Table 6.2 provides a classified description of the video scene complexity. 
Table 6.4 provides quantitative results and a performance evaluation of the proposed 
algorithms for this particular video sequence. 
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"Side" Video Sequence 
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Figure B. 4: Indoor environment with multiple combination of light sources spectrally 
equal with different intensities, `Side' video sequence, frames: 63-66. The frames 

shown in this figure were captured using a low resolution camera. Multiple shadows 
in this sequence are cast vertically onto the wall. Table 6.2 provides a classified 
description of the video scene complexity. Table 6.4 provides quantitative results 
and a performance evaluation of the proposed algorithms for this particular video 
sequence. 
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Figure B. 5: Indoor environment with multiple combination of light sources spectrally 
equal with equal intensities, `Sara' video sequence, frames: 35-38. The frames shown 
in this figure were captured using a high resolution camera. In this sequence the 
distance between the objects and the camera varies from relatively high to relatively 
low. The shadows are cast vertically onto the walls and horizontally onto the carpet. 
Table 6.2 provides a classified description of the video scene complexity. Table 6.4 
provides quantitative results and a performance evaluation of the proposed algorithms 
for this particular video sequence. 
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"Hall" Video Sequence 
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Figure B. 6: Indoor environment with multiple combination of light sources spectrally 
equal with equal intensities. The well-known `Hall' video, frames: 31,35,42,132. In 
this sequence the distance between the objects and the camera varies frone relatively 
high to relatively low. The shadows are cast vertically onto the walls and horizon- 
tally onto the carpet. Table 6.2 provides a classified description of the video scene 
complexity. Table 6.4 provides quantitative results and a performance evaluation of 
the proposed algorithms for this particular video sequence. 
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"Asphalt" Video Sequence 
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Figure 13.7: Outdoor in overcast- condition, `Asphalt' video sequence, frames: 25-28. 
The frames shown in this figure were captured using a low resolution camera. in this 
sequence, shadows are cast horizontally onto the asphalt street. Table 6.2 provides a 
classified description of the video scene complexity. Table 6.4 provides quantitative 
results and a performance evaluation of the proposed algorithms for this particular 
video sequence. 
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I "Holywell" Video Sequence 
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Figure 13.8: Outdoor environment in sunlight, `Holywell' video sequence, frames: 122, 
125,128,131. The frames shown in this figure were captured using the low resolution 
camera. This sequence was captured in bright sunlight, casting strong shadows with 
well-defined edges onto the asphalt street. Table 6.2 provides a classified description of 
the video scene complexity. Table 6.4 provides quantitative results and a performance 
evaluation of the proposed algorithms for this particular video sequence. 
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"Farnham" Video Sequence 
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Figure B. 9: Outdoor at Dusk time without any artificial lights, `Farnhai l' video 
sequence, frames: 8-11. The frames shown in this figure were captured using the 
high resolution camera. Table 6.2 provides a classified description of the video scene 
complexity. Table 6.4 provides quantitative results and a performance evaluation of 
the proposed algorithms for this particular video sequence. 
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Figure B. 10: Outdoor at Dusk time with artificial lights, `Door' video sequence. 
frames: 54-57. The frames shown in this figure were captured using a high resolution 
camera. Table 6.2 provides a classified description of the video scene complexity. 
Table 6.4 provides quantitative results and a performance evaluation of the proposed 
algorithms for this particular video sequence. 
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"Falkner" Video Sequence 
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Figure B. 11: Outdoor video sequence at night with multiple street lights, `Falkner' 

video sequence, frames: 21,23,25,27. The frames shown in this figure were captured 
using a high resolution camera. In this sequence, shadows create a great challenge for 
the algorithm because of their darkness and lack of texture information. Table 6.2 
provides a classified description of the video scene complexity. Table 6.4 provides 
quantitative results and a performance evaluation of the proposed algorithms for this 
particular video sequence. 


