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ABSTRACT

This thesis presents an evaluation of the accuracy of a novel computer vision 

traffic sensor - developed by the Clemson University Electrical and Civil Engineering 

Departments - capable of collecting a variety of traffic parameters.  More specific, the 

thesis examines how the camera height and distance from the travel way affects the 

accuracy.  The details of the quantitative and qualitative evaluations used to validate the 

system are provided.  The parameters chosen to evaluate were volume, vehicle 

classification, and speed.  Experimental results of cameras mounted at heights of 20 and 

30 feet and a lateral distance of 10 and 20 feet show accuracy as high as 98 percent for 

volume and 99 percent for vehicle classification.  Results also showed discrepancies in 

speeds as low as 0.031 miles per hour.  Some problems which affected the accuracy were 

shadows, occlusions, and double counting caused by spillover.
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CHAPTER ONE

INTRODUCTION

Previous research has found that, although many vehicle detection systems that 

use computer or machine vision have a high level of accuracy collecting volume and 

speed data, the majority of these systems must be placed at heights of 35 feet or higher 

and be located directly over the travel way and/or in close proximity.  This is not ideal 

due to the higher installation and maintenance costs, as well as safety issues associated 

with placing poles near the travel way. In the past, there has been limited testing of video 

detection systems.  Systems are being approved and used in the field without being 

thoroughly tested (Grenard, Bullock, Tarko, 2001).

There has been much research done in the area of vehicle detection since the early 

1970s.  There are currently a few systems available on the market that can calculate 

traffic volumes and vehicle speeds.  Some of the more well-known systems are 

Autoscope (Econolite Corporation, 2007) and PEEK VideoTrak (PEEK Traffic 

Corporation, 2007).

Both Autoscope and VideoTrak use virtual detection in calculating volumes and 

speeds.  With the Autoscope system, lines are drawn on the image and are used as 

sensors.  A sensor is placed for each lane in the video sequence (See Figure 1.1).
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Figure 1.1: Example of virtual roadway sensors.

Video based systems that use virtual detection are prone to errors due to spillover and 

vehicle occlusions (Michalopoulos, 1991; Oh and Leonard, 2003).  Figure 1.2 illustrates 

an example of spillover as a truck moves across Autoscope virtual detectors that were 

placed on the lanes.  The truck activates all three detectors.  The camera used in Figure 

1.2 is mounted at 26 feet above the road.
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Figure 1.2: Example of spillover.

The VideoTrak system is primarily used for traffic control and surveillance at 

intersections and on highways.  The cameras for this system are typically mounted on 

poles or on a traffic signal mast arm.  VideoTrak’s detection algorithm operates along the 

same lines as the Autoscope system except that the system uses multiple detection zones

(See Figure 1.3).  

Figure 1-3: Normal detection zone set-up for VideoTrak.
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If a vehicle crosses from one detection zone to the other, the vehicle may be counted in 

both zones.  Again, this is another source of false positive detection.  The effectiveness of 

the system decreases as the outside temperature rises above 74°C.  In addition to 

temperature, humidity of higher than 95% will cause the camera lens to condensate

(PEEK Traffic Corporation, 2007).  One can see how this can pose problems for camera 

based sensor systems in regions where there is high humidity.

Other problems with machine vision systems identified in the literature include 

decreased performance in adverse weather conditions and an inability to accurately 

collect traffic parameters at night in the absence of artificial light (Michalopoulos, 1991; 

Oh and Leonard, 2003).

Researchers in Clemson’s Departments of Electrical Engineering and Civil 

Engineering have developed a novel computer vision traffic sensor capable of collecting 

a variety of traffic parameters. The Clemson system differs from commercial based 

systems.  Whenever a vehicle enters the detection zone, a label is placed on that vehicle 

and remains on the vehicle until it exits the detection zone.  This prevents a vehicle from 

being counted multiple times.  A vehicle is tagged as soon as the vehicle comes into 

view; thus, the effects of occlusions are minimized−even when cameras are placed at 

lower heights.

An earlier version of the Clemson system tracked only a portion of a vehicle that 

remains stable throughout the sequence.  These were identified as “vehicle base-fronts” 

or VBFs.  The benefit of tracking VBFs is that there is little depth ambiguity as a vehicle 

moves through the sequence.  Computations are simplified because it is not necessary to 
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accurately determine the height of vehicles.  The drawback of VBFs is that this method 

only works well in clear and sunny weather conditions or if the vehicles in the video 

sequences had headlights on.  The algorithm had to be adjusted in order to be able to 

track vehicles regardless of weather conditions and the amount of ample lighting.  This 

way the system may be operational year-round in any type of weather condition and at 

any time of day.  The current system uses an algorithm which recognizes vehicle features 

and patterns.

In this thesis, the Clemson system is evaluated both quantitatively and 

qualitatively.  The research objectives focus on determining how camera height and 

camera distance from the travel lanes affects the level of accuracy of this next generation 

computer machine vision processor in detecting traffic volumes, vehicle speeds, and 

vehicle classifications.  The effects of the camera angle on accuracy were also studied.  

The objectives of this thesis are:

 Assess the effects of the camera height and distance from the roadway 

quantitatively using the following measures of effectiveness:

o Difference in individual vehicle speeds

o Difference in mean speeds

o Difference in 85th percentile speeds

o Difference in variances

o Number of false negative and positive detections

o Percentage of vehicle classified correctly
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 Assess the effect of the camera height and distance from the roadway 

qualitatively including determining the cause of false detections.

This thesis is organized into 5 chapters.  The review of literature is discussed in 

Chapter 2. Chapter 3 outlines the methodology used for this research and provides 

specific details on how the objectives will be achieved. Chapter 4 discusses the results of 

the analysis and Chapter 5 provides conclusions and recommendations.
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CHAPTER TWO

LITERATURE REVIEW

Vehicle detection and tracking is becoming more of a necessity in traffic 

engineering.  It is a useful tool for volume and speed data collection.  Research in this 

area began around the world in the mid-1970s.  Some of the countries leading this 

research were Japan, France, Australia, England, Belgium, and the United States 

(Michalopoulos, 1991).  One of the first applications of using video detection, in the 

United States, was employed to detect left-turning vehicles.  An optical image device 

system, including a Color-Capture Device (CCD) video camera, was used. There was 

only 80 percent accuracy for detecting the left-turning vehicles whose signal lights were 

on (Yean-Jye, Hsu, and Tan, 1988).  Given that this system was the first of its kind, these 

were fair results.

With traffic congestion problems continuing to grow in urban areas, the need for 

more advanced intelligent transportation systems became obvious.  Development of the 

first wide-area multi-spot video imaging detection system, in the United States, was 

developed at the University of Minnesota in 1984; they named the system Autoscope.  

There were a few issues with previous detection systems that the Autoscope team tried to 

eliminate with their system.  One of the issues pertained to false vehicle detection due to 

shadows, changes in light and reflections.  The new system partially fixed this problem 

by using vehicle signature detection.  Another issue with the older systems dealt with a 

lack of accuracy operation in conditions with congestion or stopped vehicles.  The 

research team included a background refresh algorithm in order for vehicles to remain 
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stopped for longer periods of time without blending into the background, which would 

give inaccurate results (Michalopoulos, 1991).

In the wake of new approaches to real-time moving vehicle detection, there were 

more doors being opened for vehicle detection research.  The development of Autoscope 

led to other methods of detecting and tracking moving vehicles.  Vehicle detection 

systems were being improved to be able to operate in various weather conditions, 

including sunny, partly cloudy and cloudy.  Another approach that came about was using 

velocity to delineate between moving vehicles and stopped vehicles or objects in the road 

(Charkari and Mori, 1993).

All research done prior to the early 1990s centered around vehicle detection on 

urban arterials.  A new approach was being proposed for a video-based freeway traffic 

monitoring system.  Transportation engineers were starting to use vehicle detection 

techniques to monitor freeways and detect possible congestion along the road.  They were 

able to do this by using real-time estimated speeds of the vehicles traveling in different 

lanes of the freeway (Gloyer, 1995).  With more innovations in video vehicle detections 

and tracking, the costs of these systems were beginning to increase.  This need for traffic 

detection devices that had lower installation, operation, and maintenance costs led to the 

development of machine vision wide-area detection systems (WADS).  Autoscope’s 

WADS is an example of the system that led the pack.  Although volume and time 

occupancy were the only parameters being detected, results indicated that the Autoscope 

system would be the most cost effective option at the time for wide-area video detection 

(Michalopoulos, Anderson, and Jacobson, 1996).



9

Up until this point, detection and tracking systems centered on a single vehicle.  

Researchers began looking at how to develop a real-time vision system that could 

recognize and track multiple vehicles on highways and local roads.  This required an 

algorithm that could distinguish moving vehicles within the study area of the frame based 

on tracking motion parameters that are distinctive for vehicles, such as the recognition of 

headlights (Betke, Haritaoglu, and Davis, 1997).  This research led to the concept of 

using motion information distinct to various vehicle classes to detect and track vehicles 

(Rajagopalan and Chellappa, 2000).  Another development that continued from multi-

vehicle detection research dealt with a real-time vehicle detection system which could 

analyze color videos. The system used a combination of color, edge, and motion 

information to recognize and track the road boundaries, lane markings and other vehicles 

on the road.  Cars were recognized by matching templates that were cropped from the 

input data and by detecting highway scene features and evaluating how they relate to 

each other.  This detection system was one of the first trials for video recording in various 

weather conditions including difficult visibility situations (Betke, Haritaoglu, and Davis, 

2000).

In the early part of the 21st century, other companies began to develop other 

vehicle detection and tracking systems-one of which was the PEEK VideoTrak 900.  This 

system uses virtual detection zones with limited tracking capabilities.  A research team 

installed 12 PEEK VideoTrak 900s in Atlanta on Interstate Highway I-75.  The cameras 

were mounted at a height of 50 feet about the roadway.  They tested the detection of 

vehicle speed and volume count accuracy of the system.  The results of the tests showed 
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that the system provided stable speeds, approximately 10 percent deviation, but gave 

inaccurate volume counts.  There was as much as 20 percent difference in volume counts 

between various trials.  These were the daytime results, but the accuracy of the system 

decreased as the amount of sunlight diminished (Oh and Leonard, 2003).

Prior to 2005, research for video vehicle detection focused on intersections, urban 

streets, and highways.  Transit monitoring and traffic interaction were beginning to get 

attention.  The interaction between transit and passenger vehicles may have an enormous 

impact on the performance of a roadway.  Another innovation with this research dealt 

with eliminating fixed-point detection.  In contrast to earlier machine vision technologies 

used for traffic management, this new approach would use an active vision system, in 

which you can control the camera parameters, such as orientation, focus and zoom.  

Researcher in this new approach mounted cameras on buses, in order to allow them to get 

feedback and analyze real-time traffic conditions (Rabie, Abdulhai, and Shalaby, 2005).  

This study led to research into the interaction of vehicles with the surrounding 

environment using traffic videos to interpret real-time driver behavior.  The forms of 

interaction studied consist of interaction with other vehicles, between vehicles and 

stationary objects, and between pedestrians and vehicles (Kumar, et al., 2005).

Another study being conducted around the same time dealt with using video 

vehicle detection systems as an alternative to loop detectors at actuated intersections on 

urban streets.  Cameras were posted at various heights on a strain pole.  The videos and 

data collected from the loop detectors were reviewed for discrepancies.  In conclusion, 

researchers found the loop detectors gave better accuracy than the cameras regardless of 
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the height.  The cameras produced more false detections and missed detections.  Research 

could be continued to see if the type of camera has any effect on results (Rhodes, 2005).  

Due to the inaccuracies in detection and tracking using traffic videos at intersections, 

research teams began looking at the use of filters to delineate between moving vehicles 

and the surrounding environment (Qiu and Yao, 2006; Sun, Bebis, and Miller, 2005).

In recent years, studies have been conducted to measure the effects of heavy 

traffic flow conditions on the level of response to traffic incidents and how fast changes 

in these traffic variables can signal the occurrence of an incident.  It’s been found that 

many video-based detector systems do not possess the required algorithm and therefore 

are not able to sustain a desired level of effectiveness in detecting incidents (Mak and 

Fan, 2006; Kamijo, et. al, 2005).

Over the years researchers in computer vision have proposed various solutions to

the issues surrounding automated tracking.  A few of the approaches are based on active 

contour tracking, feature tracking, 3D-model based tracking, and pattern-based tracking.  

First there is active contour approach, which is based on tracking active contours, which 

are also known as “snakes”, representing the boundary of an object.  Vehicle tracking is 

achieved with the use of two Kalman filters (Koller et al., 1994; Qiu and Yao, 2006); one 

for determining the relationship between motion parameters, and the other for 

determining the shape of the contours (Koller et al., 1994).  Filters are used to delineate 

between moving vehicles and the surrounding environment.  The Kalman Filtering 

process has the capability of combining both position and velocity data to obtain better 

tracking results (Qiu and Yao, 2006).
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The second approach is feature tracking, in which feature points on an object are 

tracked instead of the entire object.  In situations where there is some degree of 

occlusions, this would be the most useful method.  The task of tracking multiple objects 

then becomes the task of grouping the tracked features based on one or more similarity 

criteria.  A study done at the University of California, in Berkley, proposed a feature-

based tracking approach for traffic monitoring applications.  With this approach, feature 

points which are tracked successfully throughout the specified detection zone are 

considered in the process of grouping. In order to acquire accurate groupings, the 

features on the vehicles need to be tracked over the entire detection zone which is often 

not possible due to occlusions (Beymer, 1997). There have been studies done dealing 

with tracking vehicles, at intersections, in order to deal with the issue of tracking 

occluded features in the detection area.  Research is still being done in this area (Saunier 

and Sayed, 2006).

The next method used for tracking vehicles utilizes three-dimensional models, 

which have been studied by several research groups (Dandilis, Koller, and Nagel, 1993; 

Haag and Nigel, 1999; Ferryman, Maybank, Worral, 1998; Hinz, Reitberger, and 

Schlosser, 2003).  One study tracked a single vehicle through a detection region with 

partial occlusions.   The vehicle was successfully tracked, but these results are not 

necessarily relevant to congested traffic conditions (Ferryman Maybank, Worral, 1998).  

Another approach uses aerial views of the scenes which practically eliminates with 

occlusions, and then, matches the three-dimensional version of different vehicle 

classifications to edges detected in the image (Hinz, Reitberger, and Schlosser, 2003).
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The final method is color/pattern-based tracking.  One study conducted associated 

vehicle detections with one another by the use of colors to depict various driver behavior 

characteristics and probability of arrival for each type (Barber et al., 1997).  In addition to 

tracking vehicles from a stationary camera, research has been conducted using pattern-

recognition methods, in which a camera is placed inside a vehicle looking straight ahead.  

Vehicle detection is then treated as a pattern classification problem using support vector 

machines. This is a useful feature because the system can capture information from 

multiple scales and form a compact representation (Bebis, Miller, Sun, 2002).

Recently, more research is addressing the need for methods and procedures for 

evaluating video detection systems.  Two methods for evaluating video detection versus 

inductive loop detectors which have been researched are the discrepancy method, which

comparing the individual occupancy times of inductive loop detectors and video detectors 

for the same traffic flow; and the likelihood method, which involves determining the 

probability that a certain type of discrepancy between the inductive loop detectors and 

video detectors will occur (Grenard, Bullock, Tarko, 2001).  Issues arose with the 

accuracy of the system at night and whenever a vehicle pulled beyond the stop bar.  

During the nighttime hours, the detection zone length needed to be doubled in order to 

improve the accuracy of the system.  To account for the vehicles that crosses the stop bar, 

the detection zone needed to be stretched out a few feet beyond the stop bar in order to 

reduce the number of lost detections (Grenard, Bullock, Tarko, 2001).

Another study looked at the performance of video detectors, at intersections,

based on camera location and lighting conditions.  Researchers tested three different 
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operating systems.  For all trials, four cameras were set up on each approach of a four-

way signalized intersection; the first camera located at 40 feet above the roadway looking 

straight down the travel way, the second camera located at 40 feet above the roadway and

offset by 12 feet, the third camera located under the first camera at a height of 25 feet, 

and the last camera located directly above the detection zone.  Results showed that the 

first three cameras performed similarly when it came to the time it took to detect vehicle 

at the intersection during daytime.  That detection time increased as daylight decreased.  

The fourth camera performed the best results for daytime and nighttime trials.  This 

camera position is mounted directly over the detection zone and is therefore less 

susceptible to early activation from headlight reflection. The results were uniform for all 

approaches.  Results also showed that there was no significant difference in the 

performance between the three systems (Rhodes, Jennings, Bullock, 2005; Rhodes, 

Smaglik, Bullock, 2005).

Currently there are not any commercial systems with robust tracking capabilities 

available.  This research presents an evaluation a system based on a novel technique of 

detecting and tracking of vehicles through pattern recognition.  By managing perspective 

effects and vehicle occlusions, the system should overcome some of the limitations of 

commercially available machine vision-based traffic monitoring systems that are used in 

many intelligent transportation systems applications.  One area that has yet to be touched 

on is the use of computer vision processing being used with tilt/pan cameras.  The 

Clemson system is capable of automatically calilbrating and recalibrating as the camera is 

tilted and panned.  This is not possible with systems based on virtual detection because 
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the detections zones would have to be redefined every time the camera is tilted or 

rotated.  
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CHAPTER THREE

METHODOLOGY

Providing some background information on how the Clemson system operates 

will help the reader understand the development of the methodology.  The system 

originally detected and tracked the front side of a vehicle’s base, also referred to as a 

vehicle base front and eventually moved to recognition of vehicle features.  Many times, 

two or more vehicles will appear as a single blob in the foreground mask as a result of 

partial occlusions and a non-ideal perspective view of the scene.  In these types of 

circumstances, detecting vehicle base fronts aids in sorting out and tracking individual 

vehicles.  When an image frame lacks sufficient evidence to track a vehicle base front by 

matching alone, feature points associated with a vehicle base front are used to predict and 

update its location in consecutive frames.  Tracking feature points associated with a 

vehicle base front improves the accuracy of tracking (Birchfield, et. al, 2006).  The 

concept of vehicle base-fronts is illustrated in Figure 3.1.  The only problem with vehicle 

based fronts is the process only works when the weather is clear and sunny or the 

vehicles being tracked have their headlights on.  This is why using pattern recognition is 

essential so that the system can perform in various lighting and weather conditions.
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                 (a)                                                      (b)

             (c)                                                     (d)

Figure 3.1: Vehicle base-fronts (a) Input frame. (b) Foreground mask. (c) Detection of 
base-fronts. (d) Detected vehicles in input frame.

There are some assumptions which must be made in order to use the system:  the

road surface is flat, the roll angle of the camera is zero, and the primary focal point is the 

image center.  With these assumptions, four parameters are needed to measure the 

distances on the road within the image:  Focal length, tilt angle, pan angle, and height of 

the camera measured from the road surface (Kanhere, Birchfield, and Sarasua, 2007).

The first step in the process is calibration of the system in order to account for 

scale changes due to perspective effects and effectively detect vehicle base fronts and 

features.  Simply, the user must first indicate four points along the roadway; and then, 
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specify the width, length, and number of lanes in the detection zone formed by these 

points, which is illustrated in Figure 3.2 (Birchfield, et. al, 2006).

(a) (b)

Figure 3.2: Calibration setup (a) Calibration tool (b) Top-view of detection zone 
(Birchfield, et. al, 2006)

The next step in the process is background separation.  Background subtraction is 

the technique for pulling out the foreground objects from a scene. The process of 

background subtraction involves maintaining a background model of the scene. At run 

time, the estimated background image is subtracted from the input frame in order to 

produce foreground blobs. A review of different methods for doing background 

separation modeling can be found in (See Figure 3.3) (Cheung and Kamath, 2004).

Moving shadows are a major problem for successful detection and tracking of 

vehicles in most tracking algorithms.  There are many techniques for detecting moving 
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shadows in both color and grayscale images.  A summary of different techniques for 

detecting moving shadows in grayscale and color images is presented in (Prati, et. al, 

2003; P. Rosin and T. Ellis, 1995).  Vehicles from the previous image frame are tracked 

by searching between nearby detections in the current image frame.  In case a match is 

not found, the vehicle is flagged as missing and its location is updated.  If a vehicle is 

missing for several consecutive frames, it is discarded for the lack of sufficient evidence 

(Kanhere, Birchfield, and Sarasua, 2007).

(a)     (b)

                                (c)                                                                       (d)

Figure 3.3: Background separation (a) Input frame.  Pixels in hatched region are 
monitored for shadows.  (b) Computed background image.  (c) Foreground mask without 
shadow detection.  (d) Foreground mask with shadows detected and removed.
(Birchfield, et. al, 2006)
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One of the most important portions of the process is detection training.  This is 

done by running various video sequences through the program.  The system needs to be 

trained in order to learn vehicle patterns and features.  Once this is done, the system can 

do pattern recognition.  The system is capable of pattern recognition after two training 

sequences; however, the more sequences used for training purposes, the higher the 

accuracy of the algorithm output.

As mentioned in previous studies (Birchfield, et. al, 2006 and Kanhere, 

Birchfield, Sarasua, 2007), the evaluation of the new system was based on the 

comparison of manual versus algorithm counts and speeds as well as on consistency of 

the algorithm.  First, the author wanted to determine how the camera’s height and 

distance from the travel lane affected the accuracy of the algorithm.  The distances from 

the edge of the travel lane used for this study were 10 and 20 feet.  For every distance, 

video sequences were recorded at camera heights of 20 and 30 feet and for an 

approximate length of 15 minutes.  Figure 3.4 illustrates a typical camera setup for 

recording videos.  The camera is located at a height of approximately 30 feet.
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Figure 3.4: Typical camera setup for recording videos.

Originally, additional sequences were recorded at heights of 15 and 25 feet.  After initial 

analysis, it was determined that there was not sufficient difference in viewpoints between 

the heights of 15 and 20 feet, as well as between 20 and 25 feet.  Based on engineering 

judgment, using 20 feet would allow for better comparison.  For this study, we recorded 

and analyzed traffic along Interstate 85 corridor between Clemson, SC and Elberton, GA.  

The exact locations were milepost 10.5 and milepost 178.

Both locations had similar geometry, i.e. number of lanes, grade, etc, and traffic.  

It was essential, for safety, to pick locations with a median and significant shoulder 

width.  All video sequences recorded at milepost 10.5 were at a distance of 10 feet from 
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the travel lanes; all video sequences recorded at milepost 178 were at a distance of 20 feet 

from the travel lanes.

Video sequences were recorded using two analog traffic cameras during evening 

rush hour, i.e. 3:30 to 7:00 p.m., in various weather conditions, such as cloudy, partly 

cloudy, and clear/sunny.  For the first two recordings, the two cameras were pointed at 

two different locations in order to evaluate the effect of the tilt and pan angles on 

detection.  With each sequence, the camera viewpoint was centered on a fixed object

along the roadway, such as a tree or a roadway marking (See Figure 3.5).  

Regardless of the object used as a focal point, it must remain constant for 

sequences which shared the same distance from the travel lanes.  The use of a common 

focal point allowed for an accurate comparison of angle affects on accuracy and 

consistency.  Figure 3.6 illustrates the locations of the focal points used for this research.

Figure 3.5: Example of roadway marking used as focal point.
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Figure 3.6: Focal points used during data collection.

For vehicle speed collection, doing a one-to-one comparison on the recorded 

speed data and algorithm speeds would provide a more robust statistical comparison.  The 

best way to do this in the field was to place cones at various distances from the camera.  

These distances had to be adjusted in the field based on their visibility.  An example of 

the cone locations for one of the sequences is illustrated in Figure 3.7.  The purpose of 

the cones on both sides of the road was so that virtual lines could be drawn on the 

program screen, which is illustrated in Figure 3.8.  In some sequences, there was a cone 

out of the screen, therefore the cone’s location had to be estimated.
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Figure 3.7: Location sketch for data collection.



25

Figure 3.8: Virtual lines used for estimating speed.

The system computes the speed of a vehicle using the distance traveled, the 

corresponding number of frames, and the frame rate.  To determine the speed of each 

vehicle manually, the same method could be applied.  This would be more accurate than 

using a stop watch in real time and would provide the most fair assessment of the effect 

of camera height and distance from the travel way has on the algorithm’s ability to 

calculate accurate speeds.

Originally, video sequences were recorded at a rate of 15 frames per second.  This 

setting was too slow for the algorithm to process the videos.  Therefore, the recording 

speed was increased to 30 frames per second and this setting was used for the remainder 

of the study.
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CHAPTER FOUR

ANALYSIS RESULTS

The first five minutes of each of the video sequences were used for analysis.  

Traffic operated at a level of service of A or B for every sequence.  For volume and 

vehicle classification comparisons, the video sequences were watched and the volume 

data and vehicle classification were recorded.  These manual values were then compared 

with those calculated by the algorithm.  We define a car as a vehicle with two axles, and a 

truck as a vehicle with more than two axles.  Passenger vehicles towing trailers were not 

classified as trucks.  Only freight vehicles, 18-wheelers, and emergency vehicles of 

significant length, etc. were classified as such.

Volume Analysis Results

The analysis shows that the volume count accuracy of the system ranges from 

approximately 94 to 98 percent, while the accuracy of the system to classify the vehicles 

correctly ranged from 97 to 99 percent.  A summary is provided in Table 4.1.  Be advised 

that the accuracy of the vehicle classification is based on the vehicles which were actually 

detected and counted by the system.  Occlusions were an issue for every height and 

distance, causing missed detections.  Double counting was an issue for all but one of the 

sequences and shadows were an issue for only one of the sequences.  Table 4.2 

summarizes the total number of false negatives due to occlusions and shadows as well as 

the number of false positives due to double counting.  
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Table 4.1: Summary of accuracy of volume and vehicle classification

Video 
Sequence

Volume 
Accuracy 

(%)

Vehicle 
Classification 

(%)

D10 H20 (1) 94.29 97.14
D10 H20 (2) 95.28 98.11
D10 H30 (1) 98.08 99.04
D10 H30 (2) 94.39 99.07
D20 H20 (1) 96.52 98.26
D20 H30 (1) 96.58 97.44

NOTE:  D = distance from travel way 
(ft), H = camera height (ft), (#) = focal 

point

Table 4.2: Summary of false positives and negatives

False 
Positives
Double 
Count Shadow Occlusion

D10 H20 (1) 8 0 3 107
D10 H20 (2) 9 0 4 110
D10 H30 (1) 1 0 4 103
D10 H30 (2) 3 0 6 104
D20 H20 (1) 4 0 4 115
D20 H30 (1) 0 2 2 113

False Negatives Total 
Number of 
Vehicles 
Detected

NOTE:  D = distance from travel way (ft), H = camera 
height (ft), (#) = focal point

An example of a missed detection due to a partial occlusion is illustrated in Figure 4.1.  

There was a mix of partial and complete occlusions in each of the sequences.  An 

example of a vehicle in the shadow of another is illustrated in Figure 4.2.  The truck 

traveling in the lane closest to the camera was never detected by the system.
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Figure 4.1: Example of a missed detection due to partial occlusion.

Figure 4.2: Example of a missed detection due to shadows.

Since the system uses background separation, vehicles in the shadows of another vehicle 

would be subtracted along with the shadow itself.  It is not possible, though, to conclude 

whether the height and distance from the travel way plays a role since the sun was not in 

the exact same location for each sequence.
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There were issues with some vehicles being double counted.  This could be based 

on coding errors due to the fact that the system located a large number of feature points 

and just assumed that a single vehicle was multiple vehicles.  Passenger vehicles towing 

or another vehicle were be seen as two separate entities by the system if there was a large 

headway between the vehicle and what was being towed.

The system classified vehicles by measuring the total length of the vehicle when it 

passed through the detection zone.  At this stage in the study, the system can only classify 

vehicle as passenger cars and trucks.  Therefore, vehicles towing trailers or another 

vehicle, without a significant gap between the two, were classified as trucks since their 

length is similar of that of a freight truck.

Speed Analysis Results

For speed comparisons, the manual and algorithm speeds were calculated using 

the distance traveled, the corresponding frames, and the frame rate.  This would allow for 

an accurate comparison between the results.  The formula used to calculate speed is

Analysis shows that camera height has no significant effect on the accuracy of the 

speeds determined by the program.  However, the camera distance from the travel way 

drastically effects to calculated speed.  This shows that there is a threshold for the pan 

Speed (mph) = 0.6818*D*[30fps / (End frame – Start frame)]

where D = distance traveled

Start frame = frame vehicle enters detection zone

End frame = frame vehicle exits detection zone
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angles, but the threshold seems to only have a negative effect on the accuracy of vehicles 

speeds, and not the volumes.

T-test for comparison of Means

According to the two-tailed t-test of the mean outlined in (Ott and Longnecker, 

2000), there is a significant difference between the manually calculated speeds and the 

speeds determined by the system for the sequences recorded 10 feet from the travel way 

and a height of 30 feet, based on 95 percent confidents.  Table 4.3 summarizes the results 

comparison of means.

Table 4.3: Summary of results for comparison of means

Sequence
Difference 
in Means

Significant
Difference?

D10H20(1) 1.280 No
D10H20(2) 0.768 No
D10H30(1) 16.524 Yes
D10H30(2) 16.027 Yes
D20H20(1) 0.547 No

D20H30(1) 0.031 No

NOTE:  D = distance from travel way (ft), H 
= camera height (ft), (#) = focal point

F-test for comparison of Variances

Using the F-test for comparison of variances outlined in (Ott and Longnecker, 

2000), the only sequence with a significant different between the manually calculated 

speed variance and the algorithm variance was the second sequence recorded at a 

distance 10 feet from the travel way and 30 feet above the roadway.  It seems that the tilt 

angle affects the overall results as the camera height gets higher.  Tables detailing the 
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hypotheses used may be found in Appendix A.  Table 4.4 summarizes the results for the 

comparison of variances.

Table 4.4: Summary of results for comparison of variances

Sequence

Difference 
in 

Variances
Significant 
Difference?

D10H20(1) 6.270 No
D10H20(2) 16.268 No
D10H30(1) 14.238 No
D10H30(2) 26.457 Yes
D20H20(1) 11.885 No

D20H30(1) 0.451 No

NOTE:  D = distance from travel way (ft), H 
= camera height (ft), (#) = focal point

Chi-squared Tests

Based on the chi-squared test for normalcy outlined in (Roess, et. al., 2001), the 

algorithm speed data appears to be normally distributed for every sequence.  Details for 

each of the chi-squared test are located in Appendix B.  The manually calculated speeds 

were also checked for normalcy.  The manually calculated speeds were normally 

distributed for every sequence except for the sequence recorded at a height of 30 feet, 

distance of 10 feet and centered on focal point 1.  Details for each of the chi-squared test 

are located in Appendix C.  Table 4.5 summarizes the results from the normalcy chi-

squared tests for the algorithm speeds and manual speeds.
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Table 4.5: Summary of Chi-squared Normalcy Test

Normally Distributed?

Sequence Algorithm Manual
D10H20(1) Yes Yes
D10H20(2) Yes Yes
D10H30(1) Yes No
D10H30(2) Yes Yes
D20H20(1) Yes Yes

D20H30(1) Yes Yes

NOTE:  D = distance from travel way 
(ft), H = camera height (ft), (#) = focal 

point

The distribution of the algorithm and manual speeds were also compared to see if 

there was any significant difference between them.  The manual speeds were the control 

group; therefore, the algorithm speeds were used for the observed frequency and the 

manually calculated speeds were used for the theoretical frequency.  Table 4.6

summarizes the results from each test.  All chi-squared tests were based on 99.5 percent 

confidence.  Results show a significant difference for the sequences recorded 10 feet 

from the travel way and a height of 30 feet.  Calculations for each sequence may be found 

in Appendix D.

Table 4.6: Summary of Chi-squared Comparison Test

Sequence
Significant Difference 

between Speeds?
D10H20(1) No
D10H20(2) No
D10H30(1) Yes
D10H30(2) Yes
D20H20(1) No

D20H30(1) No

NOTE:  D = distance from travel way (ft), 
H = camera height (ft), (#) = focal point
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85th Percentile Speed

A useful piece of information is the 85th percentile speed.  This is the speed used 

to determine the design speed for analyzing a roadway.  Table 4.7 summarizes the 85th

percentile speeds calculated manually and by the algorithm for each of the sequences.

Table 4.7: Summary of 85th percentile speed comparison

Manual Algorithm
D10 H20 (1) 76.70 75.00
D10 H20 (2) 80.74 77.00
D10 H30 (1) 75.76 92.95
D10 H30 (2) 70.53 89.00
D20 H20 (1) 74.83 73.00
D20 H30 (1) 73.05 73.00

NOTE:  D = distance from travel 
way (ft), H = camera height (ft), (#) 

= focal point

As mentioned earlier, there is a significant discrepancy between the algorithm and 

manual speed for the sequences recorded 10 feet from the travel way and a height of 30 

feet.  There is not a significant difference for the other sequences.
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CHAPTER FIVE

CONCLUSIONS

The research objectives were to assess the effects of the camera height and 

distance from the roadway on the accuracy of the algorithm.  The author evaluated the 

system quantitatively on detection accuracy and qualitatively such as determining the 

cause of false detections.  Results showed that the camera height and distance from the 

roadway had different effects on the accuracy of the collected volume, speed, and vehicle 

classification.

The camera height does have an effect on detection accuracy of the machine 

vision processor when the camera is placed close to the roadway.  The difference in 

detection accuracy increased approximately three percent when the camera was raised 

from 20 to 30 feet.  However, when the camera is located farther from the roadway, the 

height does not affect the accuracy.  For the sequences recorded at 20 feet from the 

roadway, the difference in detection accuracy for the two heights was less than one 

percent.  For the vehicles detected by the system, the accuracy of classification, for every 

sequence, was 97 percent or higher.

Previous studies have shown other virtual detection systems produce up to a 20 

percent difference in estimating volume.  Occlusions could not be blamed for the 

significant error since studies were conducted using traffic volumes consisting of five

percent trucks or less.  It has been concluded that the number of lanes has an effect on the 

amount of volume error.  Shadows have proven to be an issue if it covers a significant 

portion of the detection zone.  Studies show that this can cause the volume accuracy to 
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fall below 90 percent.  The new system produced a volume accuracy of 94 percent or 

higher for every video sequence.  The traffic used to analysis the system included 

between 24 and 38 percent trucks.

Other virtual detection systems have issues with depth ambiguity, which has 

shown to cause a difference in detected vehicle speed of as much as 13 miles per hour.  

For the sequences recorded 10 feet from the travel way and a height of 30 feet, the system 

detected speeds, on average, 16 miles per hour higher than the actual speed.  For all other 

sequences, the difference between the algorithm and manually calculated speeds was, at 

most, 2 miles per hour.

The system did have some problems occlusions, shadows, and double counting.  

Occlusions were more of an issue when the camera was located at lower heights.  

Shadows were an issue for one of the sequences.  In this sequence, a vehicle shadow 

would cover the other lane causing a vehicle located in that shadow to be subtracted with 

the background.  It cannot be concluded whether the amount of travel lane being covered 

by the shadow affects the accuracy since there was only one sequence that had shadows.  

Double counting may be contributed to coding errors and spillover.  Sometimes the 

system would locate a large number of feature points and would assume that one vehicle 

was two or more.
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CHAPTER SIX

RECOMMENDATIONS

There is still much research that can be done as a follow-up to this study.  The 

first priority is to determine why there was such a significant difference in speeds for two 

of the sequences.  The error was a systematic error for both sequences.  The scenario 

which had detection errors was the ideal scenario; therefore, not many test sequences 

were used to calibrate this scenario.  There were random errors with all of the sequences 

but those it would only be a difference in three or four miles per hour.  Also, if this 

research is repeated, all sequences need to be recorded at the same time of day.  This is 

the only way to get an accurate assessment of how lighting conditions impact the results.

The Federal Highway Administration recognizes 13 different vehicle classes.  For 

simplistic purposes, this study only classified vehicles as either a passenger car or truck.  

More research can be done to include more specific vehicle classes.  Not necessarily all 

13 vehicle classes, but at least motorcycles, passenger cars, buses, and trucks.

Research needs to be done to include varying weather conditions, such as rain, 

foggy, and snow.  Various intensities of rain, i.e. light and heavy rain, should be 

examined at to determine how much an impact the weather has on the vehicle detection 

accuracy of the system.  The ability to test the system in snowy weather conditions is 

limited since the region in which this study was conducted does not get regular snowfall.  

Also, tests need to be done on roadways with three or more lanes, in each direction, to 

determine how the number of lanes affects the system’s output.  The purpose of more 
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lanes would be to determine whether the addition of lanes would decrease the system’s 

accuracy.

In addition to various weather conditions, research should look at heavier traffic 

volumes.  As traffic volumes increase, speeds decrease and vehicle will be traveling 

closer together; this will create more occlusions.  This way the system can be better 

assessed in determining how camera height and distance from the travel way affects 

volume accuracy.
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Appendix A

Comparison of Means and Variances

Sequence D10H20(1) D10H20(2) D10H30(1) D10H30(2) D20H20(1) D20H30(1)
α 0.05 0.05 0.05 0.05 0.05 0.05

μ1* 70.532632 71.705208 69.078409 63.673 67.313592 66.058182

μ2** 69.252632 70.9375 85.602273 79.7 66.76699 66.027273

n1* 95 96 88 100 103 110

n2** 95 96 88 100 103 110

s2
1* 45.078179 59.211657 35.199414 34.623607 45.673539 45.707593

s2
2** 38.807839 42.943421 49.437696 61.080808 33.788311 45.25613
c 0.5045785 0.502691 0.4465872 0.4441073 0.5020383 0.500117
df 187.98424 189.9945 172.03676 195.55634 203.99661 217.99999
t' 1.362 0.744 -16.849 -16.383 0.622 0.034

tα/2 1.980 1.980 1.980 1.980 1.980 1.980

Reject Ho? No No Yes Yes No No

Notes:
* manual

**algorithm

Ho:  μ1 - μ2 = 0

Ha:  μ1 - μ2 ≠ 0

Figure A-1: Comparison of means for manually calculated and algorithm speeds.
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Sequence D10H20(1) D10H20(2) D10H30(1) D10H30(2) D20H20(1) D20H30(1)
α 0.05 0.05 0.05 0.05 0.05 0.05

σ2
1* 45.0781792 59.2116568 35.1994135 34.6236071 45.6735389 45.707593

σ2
2** 38.8078387 42.9434211 49.4376959 61.0808081 33.7883114 45.2561301

n1* 95 96 88 100 103 110

n2** 95 96 88 100 103 110

Fobs 1.162 1.379 1.405 1.764 1.352 1.010
F 1.419 1.419 1.419 1.403 1.403 1.373

Reject Ho? No No No Yes No No

Notes:
* manual

**algorithm

Ho:  σ
2

1 = σ
2

2

Ha:  σ
2

1 ≠ σ2
2

Figure A-2: Comparison of variances for manually calculated and algorithm speeds.
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Appendix B

Chi-Squared Analysis of Algorithm Speeds

Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ
Combined 
Groups (n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 90 1 ∞ 1.0000 0.0004 0.0384
90 88 1 3.33 0.9996 0.0009 0.0864
88 86 0 3.01 0.9987 0.0023 0.2208
86 84 1 2.69 0.9964 0.0053 0.5088
84 82 1 2.37 0.9911 0.0113 1.0848
82 80 2 2.05 0.9798 0.0216 2.0736
80 78 3 1.73 0.9582 0.0390 3.7440
78 76 4 1.40 0.9192 0.0593 5.6928 13 13.4496 0.0150
76 74 7 1.08 0.8599 0.0835 8.0160 7 8.0160 0.1288
74 72 10 0.76 0.7764 0.1064 10.2144 10 10.2144 0.0045
72 70 14 0.44 0.6700 0.1222 11.7312 14 11.7312 0.4388
70 68 14 0.12 0.5478 0.1271 12.2016 14 12.2016 0.2651
68 66 14 -0.20 0.4207 0.1192 11.4432 14 11.4432 0.5713
66 64 8 -0.52 0.3015 0.1010 9.6960 8 9.6960 0.2967
64 62 6 -0.84 0.2005 0.0775 7.4400 6 7.4400 0.2787
62 60 5 -1.16 0.1230 0.0549 5.2704 5 5.2704 0.0139
60 58 3 -1.49 0.0681 0.0330 3.1680 5 6.5376 0.3616
58 56 2 -1.81 0.0351 0.0351 3.3696

Total 1.0000 96 96 96 2.3743

0.9 2.833
0.95 2.167

0.9344364

No Sig. Diff.99.5% confident

Speed Group

df = 10 - 3 = 7

p = prob (X2 >= 2.3743)

Figure B-1: Chi-squared results for sequence D = 10’, H = 20’ (video 1).
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Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ
Combined 
Groups (n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 90 4 ∞ 1.0000 0.0018 0.1764
90 88 0 2.91 0.9982 0.0029 0.2842
88 86 1 2.60 0.9953 0.0060 0.5880
86 84 0 2.30 0.9893 0.0126 1.2348
84 82 1 1.99 0.9767 0.0222 2.1756
82 80 4 1.69 0.9545 0.0383 3.7534 10 8.2124 0.3891
80 78 5 1.38 0.9162 0.0563 5.5174 5 5.5174 0.0485
78 76 8 1.08 0.8599 0.0805 7.8890 8 7.8890 0.0016
76 74 6 0.77 0.7794 0.0986 9.6628 6 9.6628 1.3884
74 72 11 0.47 0.6808 0.1172 11.4856 11 11.4856 0.0205
72 70 12 0.16 0.5636 0.1193 11.6914 12 11.6914 0.0081
70 68 17 -0.14 0.4443 0.1179 11.5542 17 11.5542 2.5667
68 66 16 -0.45 0.3264 0.0998 9.7804 16 9.7804 3.9552
66 64 6 -0.75 0.2266 0.0820 8.0360 5 8.0360 1.1470
64 62 5 -1.06 0.1446 0.0577 5.6546 8 14.1708 2.6871
62 60 2 -1.36 0.0869 0.0394 3.8612
60 58 1 -1.67 0.0475 0.0475 4.6550

Total 1.0000 98 98 98 12.2124

0.05 14.07
0.1 12.02

0.095308

No Sig. Diff.99.5% confident

Speed Group

df = 10 - 3 = 7

p = prob (X2 >= 12.2124)

Figure B-2: Chi-squared results for sequence D = 10’, H = 20’ (video 2).
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Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ
Combined 
Groups (n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 98 5 ∞ 1.0000 0.0392 3.4496
98 96 2 1.76 0.9608 0.0302 2.6576 7 6.1072 0.1305
96 94 5 1.48 0.9306 0.0476 4.1888 5 4.1888 0.1571
94 92 5 1.19 0.8830 0.0644 5.6672 5 5.6672 0.0785
92 90 11 0.91 0.8186 0.0829 7.2952 11 7.2952 1.8814
90 88 9 0.63 0.7357 0.1026 9.0288 9 9.0288 0.0001
88 86 7 0.34 0.6331 0.1092 9.6096 7 9.6096 0.7087
86 84 10 0.06 0.5239 0.1149 10.1112 10 10.1112 0.0012
84 82 8 -0.23 0.4090 0.1040 9.1520 8 9.1520 0.1450
82 80 7 -0.51 0.3050 0.0931 8.1928 7 8.1928 0.1737
80 78 6 -0.80 0.2119 0.0718 6.3184 6 6.3184 0.0160
78 76 7 -1.08 0.1401 0.0548 4.8224 7 4.8224 0.9833
76 74 3 -1.37 0.0853 0.0358 3.1504 6 7.5064 0.3023
74 72 0 -1.65 0.0495 0.0227 1.9976
72 70 2 -1.93 0.0268 0.0136 1.1968
70 68 1 -2.22 0.0132 0.0132 1.1616

Total 1.0000 88 88 88 4.5779

0.75 5.899
0.9 4.168

0.8644775

No Sig. Diff.99.5% confident

Speed Group

df = 12 - 3 = 9

p = prob (X2 >= 4.5779)

Figure B-3: Chi-squared results for sequence D = 10’, H = 30’ (video 1).
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Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ
Combined 
Groups (n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 96 1 ∞ 1.0000 0.0183 1.8300
96 94 3 2.09 0.9817 0.0153 1.5300
94 92 6 1.83 0.9664 0.0246 2.4600 10 5.8200 3.0021
92 90 4 1.57 0.9418 0.0352 3.5200
90 88 3 1.32 0.9066 0.0512 5.1200 7 8.6400 0.3113
88 86 6 1.06 0.8554 0.0644 6.4400 6 6.4400 0.0301
86 84 7 0.81 0.7910 0.0822 8.2200 7 8.2200 0.1811
84 82 9 0.55 0.7088 0.0947 9.4700 9 9.4700 0.0233
82 80 11 0.29 0.6141 0.0981 9.8100 11 9.8100 0.1444
80 78 7 0.04 0.5160 0.1031 10.3100 7 10.3100 1.0627
78 76 10 -0.22 0.4129 0.0937 9.3700 10 9.3700 0.0424
76 74 9 -0.47 0.3192 0.0865 8.6500 9 8.6500 0.0142
74 72 7 -0.73 0.2327 0.0716 7.1600 7 7.1600 0.0036
72 70 9 -0.99 0.1611 0.0536 5.3600 9 5.3600 2.4719
70 68 4 -1.24 0.1075 0.0407 4.0700 8 10.7500 0.7035
68 66 1 -1.50 0.0668 0.0267 2.6700
66 64 2 -1.75 0.0401 0.0179 1.7900
64 62 1 -2.01 0.0222 0.0222 2.2200

Total 0.9599 100 100 100 7.9904

0.25 10.22
0.5 7.344

0.4438082

No Sig. Diff.99.5% confident

Speed Group

df = 11 - 3 = 8

p = prob (X2 >= 7.9904)

Figure B-4: Chi-squared results for sequence D = 10’, H = 30’ (video 2).
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Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ
Combined 
Groups (n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 80 1 ∞ 1.0000 0.0113 1.1639
80 78 1 2.28 0.9887 0.0155 1.5965
78 76 5 1.93 0.9732 0.0291 2.9973 7 5.7577 0.2680
76 74 6 1.59 0.9441 0.0516 5.3148 6 5.3148 0.0883
74 72 12 1.24 0.8925 0.0766 7.8898 12 7.8898 2.1412
72 70 11 0.90 0.8159 0.1036 10.6708 11 10.6708 0.0102
70 68 14 0.56 0.7123 0.1291 13.2973 14 13.2973 0.0371
68 66 9 0.21 0.5832 0.1349 13.8947 9 13.8947 1.7243
66 64 10 -0.13 0.4483 0.1327 13.6681 10 13.6681 0.9844
64 62 10 -0.48 0.3156 0.1095 11.2785 10 11.2785 0.1449
62 60 14 -0.82 0.2061 0.0831 8.5593 14 8.5593 3.4584
60 58 5 -1.16 0.1230 0.0575 5.9225 5 5.9225 0.1437
58 56 4 -1.51 0.0655 0.0333 3.4299 5 6.7465 0.4521
56 54 1 -1.85 0.0322 0.0322 3.3166

Total 1.0000 103 103 103 9.4527

0.25 10.22
0.5 7.344

0.3167018

No Sig. Diff.99.5% confident

Speed Group

df = 11 - 3 = 8

p = prob (X2 >= 9.4527)

Figure B-5: Chi-squared results for sequence D = 20’, H = 20’.
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Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ
Combined 
Groups (n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 80 2 ∞ 1.0000 0.0188 2.0680
80 78 3 2.08 0.9812 0.0187 2.0570
78 76 9 1.78 0.9625 0.0319 3.5090
76 74 1 1.48 0.9306 0.0476 5.2360 15 12.8700 0.3525
74 72 8 1.19 0.8830 0.0697 7.6670 8 7.6670 0.0145
72 70 12 0.89 0.8133 0.0909 9.9990 12 9.9990 0.4004
70 68 11 0.59 0.7224 0.1083 11.9130 11 11.9130 0.0700
68 66 12 0.29 0.6141 0.1141 12.5510 12 12.5510 0.0242
66 64 12 0.00 0.5000 0.1179 12.9690 12 12.9690 0.0724
64 62 11 -0.30 0.3821 0.1078 11.8580 11 11.8580 0.0621
62 60 8 -0.60 0.2743 0.0902 9.9220 8 9.9220 0.3723
60 58 9 -0.90 0.1841 0.0671 7.3810 9 7.3810 0.3551
58 56 7 -1.19 0.1170 0.0489 5.3790 7 5.3790 0.4885
56 54 2 -1.49 0.0681 0.0314 3.4540 5 7.4910 0.8283
54 52 2 -1.79 0.0367 0.0184 2.0240
52 50 1 -2.09 0.0183 0.0183 2.0130

Total 1.0000 110 110 110 3.0403

0.9 3.199
0.95 2.733

0.9170239

No Sig. Diff.99.5% confident

Speed Group

df = 11 - 3 = 8

p = prob (X2 >= 7.2523)

Figure B-6: Chi-squared results for sequence D = 20’, H = 30’.
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Appendix C

Chi-Squared Analysis of Manual Speeds

Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) 

zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ

Combined 
Groups 

(n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 90 1 ∞ 1.0000 0.0019 0.1900
90 88 0 2.90 0.9981 0.0028 0.2800
88 86 0 2.60 0.9953 0.0060 0.6000
86 84 2 2.30 0.9893 0.0115 1.1500
84 82 1 2.01 0.9778 0.0214 2.1400
82 80 3 1.71 0.9564 0.0357 3.5700
80 78 6 1.41 0.9207 0.0542 5.4200
78 76 3 1.11 0.8665 0.0755 7.5500 16 20.9000 1.1488
76 74 10 0.81 0.7910 0.0925 9.2500 10 9.2500 0.0608
74 72 9 0.52 0.6985 0.1114 11.1400 9 11.1400 0.4111
72 70 12 0.22 0.5871 0.1190 11.9000 12 11.9000 0.0008
70 68 20 -0.08 0.4681 0.1161 11.6100 20 11.6100 6.0631
68 66 8 -0.38 0.3520 0.1037 10.3700 8 10.3700 0.5416
66 64 8 -0.68 0.2483 0.0823 8.2300 8 8.2300 0.0064
64 62 4 -0.97 0.1660 0.0640 6.4000 17 16.6000 0.0096
62 60 8 -1.27 0.1020 0.0438 4.3800
60 58 3 -1.57 0.0582 0.0275 2.7500
58 56 2 -1.87 0.0307 0.0307 3.0700

Total 1.0000 100 100 100 8.2423

0.1 9.236
0.25 6.626

0.1571079

No Sig. Diff.99.5% confident

Speed Group

df = 8 - 3 = 5

p = prob (X2 >= 8.2423)

Figure C-1: Chi-squared results for sequence D = 10’, H = 20’ (video 1).
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Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) 

zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ

Combined 
Groups 

(n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 90 1 ∞ 1.0000 0.0087 0.9570
90 88 0 2.38 0.9913 0.0083 0.9130
88 86 4 2.12 0.9830 0.0144 1.5840
86 84 2 1.86 0.9686 0.0234 2.5740
84 82 2 1.60 0.9452 0.0353 3.8830
82 80 6 1.34 0.9099 0.0500 5.5000 15 15.4110 0.0110
80 78 3 1.08 0.8599 0.0660 7.2600 5 7.2600 0.7035
78 76 7 0.82 0.7939 0.0816 8.9760 8 8.9760 0.1061
76 74 6 0.56 0.7123 0.0944 10.3840 6 10.3840 1.8509
74 72 7 0.30 0.6179 0.1019 11.2090 11 11.2090 0.0039
72 70 9 0.04 0.5160 0.1031 11.3410 12 11.3410 0.0383
70 68 18 -0.22 0.4129 0.0973 10.7030 17 10.7030 3.7048
68 66 9 -0.48 0.3156 0.0860 9.4600 16 9.4600 4.5213
66 64 9 -0.74 0.2296 0.0709 7.7990 5 7.7990 1.0045
64 62 8 -1.00 0.1587 0.0549 6.0390 8 6.0390 0.6368
62 60 5 -1.26 0.1038 0.0395 4.3450 7 15.5430 4.6955
60 58 1 -1.52 0.0643 0.0643 7.0730
58 56 1 -1.78 0.0375 0.0375 4.1250

Total 1.0000 110 110 114 17.2766

0.025 17.63
0.05 15.51

0.0291672

No Sig. Diff.99.5% confident

Speed Group

df = 11 - 3 = 8

p = prob (X2 >= 17.2766)

Figure C-2: Chi-squared results for sequence D = 10’, H = 20’ (video 2).
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Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) 

zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ

Combined 
Groups 

(n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 85 3 ∞ 1.0000 0.0037 0.3774
85 83 0 2.68 0.9963 0.0057 0.5814
83 81 8 2.35 0.9906 0.0128 1.3056
81 79 0 2.01 0.9778 0.0253 2.5806
79 77 11 1.67 0.9525 0.0426 4.3452 22 9.1902 17.8550
77 75 10 1.34 0.9099 0.0686 6.9972 10 6.9972 1.2886
75 73 13 1.00 0.8413 0.0959 9.7818 13 9.7818 1.0588
73 71 0 0.66 0.7454 0.1199 12.2298
71 69 14 0.32 0.6255 0.1295 13.2090 14 25.4388 5.1436
69 67 10 -0.01 0.4960 0.1328 13.5456 10 13.5456 0.9281
67 65 12 -0.35 0.3632 0.1181 12.0462 12 12.0462 0.0002
65 63 4 -0.69 0.2451 0.0912 9.3024 12 16.1364 1.0603
63 61 8 -1.02 0.1539 0.0670 6.8340
61 59 5 -1.36 0.0869 0.0423 4.3146 9 8.8638 0.0021
59 57 2 -1.70 0.0446 0.0239 2.4378
57 55 2 -2.04 0.0207 0.0207 2.1114

Total 1.0000 102 102 102 27.3366

0.001 20.52
0.005 16.75

-0.006233

Sig. Diff.99.5% confident

Speed Group

df = 8 - 3 = 5

p = prob (X2 >= 27.3366)

Figure C-3: Chi-squared results for sequence D = 10’, H = 30’ (video 1).
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Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) 

zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ

Combined 
Groups 

(n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 76 0 ∞ 1.0000 0.0183 1.8849
76 74 3 2.09 0.9817 0.0209 2.1527
74 72 9 1.76 0.9608 0.0386 3.9758 12 8.0134 1.9833
72 70 9 1.42 0.9222 0.0623 6.4169 9 6.4169 1.0398
70 68 9 1.08 0.8599 0.0895 9.2185 9 9.2185 0.0052
68 66 11 0.74 0.7704 0.1150 11.8450 11 11.8450 0.0603
66 64 0 0.40 0.6554 0.1315 13.5445
64 62 30 0.06 0.5239 0.1342 13.8226 30 27.3671 0.2533
62 60 7 -0.28 0.3897 0.1221 12.5763 7 12.5763 2.4725
60 58 8 -0.62 0.2676 0.0991 10.2073 8 10.2073 0.4773
58 56 7 -0.96 0.1685 0.0717 7.3851 7 7.3851 0.0201
56 54 5 -1.30 0.0968 0.0463 4.7689 5 4.7689 0.0112
54 52 4 -1.64 0.0505 0.0266 2.7398 5 5.2015 0.0078
52 50 0 -1.98 0.0239 0.0137 1.4111
50 48 1 -2.32 0.0102 0.0102 1.0506

Total 1.0000 103 103 103 6.3308

0.5 6.346
0.75 4.255

0.5018165

No Sig. Diff.99.5% confident

Speed Group

df = 10 - 3 = 7

p = prob (X2 >= 6.3308)

Figure C-4: Chi-squared results for sequence D = 10’, H = 30’ (video 2).
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Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) 

zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ

Combined 
Groups 

(n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 80 7 ∞ 1.0000 0.0301 3.3712
80 78 4 1.88 0.9699 0.0270 3.0240
78 76 3 1.58 0.9429 0.0414 4.6368 14 11.0320 0.7985
76 74 8 1.29 0.9015 0.0626 7.0112 8 7.0112 0.1395
74 72 6 0.99 0.8389 0.0840 9.4080 6 9.4080 1.2345
72 70 7 0.69 0.7549 0.0995 11.1440 7 11.1440 1.5410
70 68 15 0.40 0.6554 0.1156 12.9472 15 12.9472 0.3255
68 66 15 0.10 0.5398 0.1151 12.8912 15 12.8912 0.3450
66 64 4 -0.19 0.4247 0.1126 12.6112
64 62 12 -0.49 0.3121 0.0973 10.8976 16 23.5088 2.3983
62 60 19 -0.79 0.2148 0.0747 8.3664
60 58 2 -1.08 0.1401 0.0563 6.3056 21 14.6720 2.7293
58 56 4 -1.38 0.0838 0.0363 4.0656 10 9.3856 0.0402
56 54 6 -1.67 0.0475 0.0475 5.3200

Total 1.0000 112 112 112 9.5517

0.1 10.64
0.25 7.841

0.1583217

No Sig. Diff.99.5% confident

Speed Group

df = 9 - 3 = 6

p = prob (X2 >= 9.5517)

Figure C-5: Chi-squared results for sequence D = 20’, H = 20’ (video 1).
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Upper 
Limit 
(mph)

Lower 
Limit 
(mph)

Observed 
Frequency 

(n)

Upper 
Limit (Std. 
Normal) 

zd

Probability 
Z ≤ Zd

Prob. Of 
Occurrence 

in Group

Theoretical 
Frequency 

ƒ

Combined 
Groups 

(n)

Combined 
Frequency 

ƒ Χ2 Group

∞ 80 1 ∞ 1.0000 0.0188 2.1056
80 78 6 2.06 0.9812 0.0187 2.0944
78 76 0 1.77 0.9625 0.0319 3.5728 7 7.7728 0.0768
76 74 8 1.47 0.9306 0.0476 5.3312 8 5.3312 1.3360
74 72 6 1.17 0.8830 0.0697 7.8064 6 7.8064 0.4180
72 70 15 0.88 0.8133 0.0909 10.1808 15 10.1808 2.2812
70 68 11 0.58 0.7224 0.1083 12.1296 11 12.1296 0.1052
68 66 13 0.29 0.6141 0.1141 12.7792 13 12.7792 0.0038
66 64 0 -0.01 0.5000 0.1179 13.2048
64 62 23 -0.30 0.3821 0.1078 12.0736 23 25.2784 0.2054
62 60 10 -0.60 0.2743 0.0902 10.1024 10 10.1024 0.0010
60 58 6 -0.90 0.1841 0.0671 7.5152 6 7.5152 0.3055
58 56 6 -1.19 0.1170 0.0489 5.4768 6 5.4768 0.0500
56 54 3 -1.49 0.0681 0.0314 3.5168 7 7.6272 0.0516
54 52 3 -1.78 0.0367 0.0184 2.0608
52 50 1 -2.08 0.0183 0.0183 2.0496

Total 1.0000 112 112 112 4.8345

0.75 5.071
0.9 3.199

0.7689489

No Sig. Diff.99.5% confident

Speed Group

df = 11 - 3 = 8

p = prob (X2 >=4.8345)

Figure C-6: Chi-squared results for sequence D = 20’, H = 30’ (video 1).
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Appendix D

Chi-Squared Comparison of Manual and Algorithm Speeds

Speeds 
(mph)

Observed 
Frequency 

n

Theoretical 
Frequency 

F χ2
df = 7

58-60 5 4 0.2500
61-63 11 9 0.4444
64-66 13 17 0.9412 0.25 9.037
67-69 23 20 0.4500 0.5 6.346
70-72 18 11 4.4545
73-75 13 18 1.3889
76-78 6 8 0.5000 0.26002831
79-∞ 6 8 0.5000

Not Sig. Diff.

Total 95 95 8.9291

P(X2>=8.9261)

99.5 % Confidence

Figure D-1: Comparison for sequence D = 10’, H = 20’ (video 1).

Speeds 
(mph)

Observed 
Frequency 

n

Theoretical 
Frequency 

F χ2
df = 7

61-63 8 10 0.4000
64-66 16 22 1.6364
67-69 23 18 1.3889 0.01 18.48
70-72 19 9 11.1111 0.025 16.01
73-75 10 13 0.6923
76-78 10 9 0.1111
79-81 6 6 0.0000 0.01388796
82-∞ 5 10 2.5000

Not Sig. Diff.

Total 97 97 17.8398

99.5 % Confidence

P(X2>=17.8398)

Figure D-2: Comparison for sequence D = 10’, H = 20’ (video 2).
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Speeds 
(mph)

Observed 
Frequency 

n

Theoretical 
Frequency 

F χ2
df = 13

58-60 0 9 9.0000
61-63 0 8 8.0000
64-66 0 16 16.0000 0.001 34.53
67-69 0 10 10.0000 0.005 29.82
70-72 0 14 14.0000
73-75 6 23 12.5652
76-78 11 8 1.1250 -0.02970931
79-81 9 0 0.0000
82-84 10 0 0.0000 Sig. Diff.
85-87 15 0 0.0000
88-90 14 0 0.0000
91-93 11 0 0.0000
94-96 6 0 0.0000
97-99 6 0 0.0000

Total 88 88 70.6902

99.5 % Confidence

P(X2>=70.6902)

Figure D-3: Comparison for sequence D = 10’, H = 30’ (video 1).

Speeds 
(mph)

Observed 
Frequency 

n

Theoretical 
Frequency 

F χ2
df = 12

52-54 0 5 5.0000
55-57 0 12 12.0000
58-60 0 15 15.0000 0.001 32.91
61-63 0 13 13.0000 0.005 28.3
64-66 0 27 27.0000
67-69 8 9 0.1111
70-72 12 8 2.0000 -0.03072646
73-75 13 11 0.3636
76-78 14 0 0.0000 Sig. Diff.
79-81 14 0 0.0000
82-84 12 0 0.0000
85-87 10 0 0.0000
88-∞ 17 0 0.0000

Total 100 100 69.4747

99.5 % Confidence

P(X2>=69.4747)

Figure D-4: Comparison for sequence D = 10’, H = 30’ (video 2).
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Speeds 
(mph)

Observed 
Frequency 

n

Theoretical 
Frequency 

F χ2
df = 7

55-57 5 5 0.0000
58-60 12 14 0.2857
61-63 17 14 0.6429
64-66 17 11 3.2727 0.25 9.037
67-69 16 18 0.2222 0.5 6.346
70-72 18 15 0.6000
73-75 11 14 0.6429 0.36959203
76-∞ 7 12 2.0833

Not Sig. Diff.

Total 103 103 7.7497

99.5 % Confidence

P(X2>=7.7497)

Figure D-5: Comparison for sequence D = 20’, H = 20’ (video 1).

Speeds 
(mph)

Observed 
Frequency 

n

Theoretical 
Frequency 

F χ2
df = 6

55-57 12 12 0.0000
58-60 14 16 0.2500
61-63 14 10 1.6000 0.25 7.841
64-66 19 25 1.4400 0.5 5.348
67-69 16 11 2.2727
70-72 17 15 0.2667
73-∞ 18 21 0.4286 0.40874796

Not Sig. Diff.
Total 110 110 6.2580

99.5 % Confidence

P(X2>=6.2580)

Figure D-6: Comparison for sequence D = 20’, H = 30’ (video 1).
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