420 research outputs found

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Price-Based Optimal Resource Allocation in Multi-Hop Wireless Networks

    Get PDF
    Recent advances in wireless communications and digital electronics have enabled rapid development of a variety of wireless network technologies. The undeniable popularity of wireless network is due to its ubiquity and convenience, which is appreciated by the users. In this dissertation, we study the problem of resource allocation in multihop wireless networks (so called ad hoc networks). A wireless ad hoc network consists of a collection of wireless nodes without a fixed infrastructure. Two wireless nodes communicate with each other directly, if they are within the transmission range of each other. Otherwise, the communication is achieved through the relays of intermediate nodes. Compared with traditional wireline networks, the unique characteristics of wireless networks pose fundamental challenges to the design of effective resource allocation algorithms that are optimal with respect to resource utilization and fair across different network flows. Particularly, the following issues of wireless networks need fresh treatment: (1) Interference of wireless communication. Flows not only contend at the same node (contention in the time domain), but also compete for shared channel if they are within the interference ranges of each other (contention in the spatial domain). (2) Multiple resource usage. Sending data from one wireless node to another needs to consume multiple resources, most notably wireless bandwidth and battery energy. (3) Autonomous communication entities. The wireless nodes usually belong to different autonomous entities. They may lack the incentive to contribute to the network functionality in a cooperative way. (4) Rate diversity. Wireless nodes can adaptively change the transmission bit rate based on perceived channel conditions. This leads to a wireless network with rate diversity, where competing flows within the interference range transmit at different rates. None of the existing resource allocation algorithms in wireless ad hoc networks have realistically considered end-to-end flows spanning multiple hops. Moreover, strategies proposed for wireline networks are not applicable in the context of wireless ad hoc network, due to its unique characteristics. In this dissertation, we propose a new price-based resource allocation framework in wireless ad hoc networks to achieve optimal resource utilization and fairness among competing end-to-end flows. We build our pricing framework on the notion of maximal cliques in wireless ad hoc networks, as compared to individual links in traditional wide-area wireline networks. Based on such a price-based theoretical framework, we present a two-tier iterative algorithm. Distributed across wireless nodes, the algorithm converges to a global network optimum with respect to resource allocations. Further, we present a price pair mechanism to coordinate multiple resource allocations, and to provide incentives simultaneously such that cooperation is promoted and the desired global optimal network operating point is reached by convergence with a fully decentralized self-optimizing algorithm. Such desired network-wide global optimum is characterized with the concept of Nash bargaining solution, which not only provides the Pareto optimal point for the network, but is also consistent with the fairness axioms of game theory. Finally, we present a channel aware price generation scheme to decompose the bit rate adjustment and the flow rate allocation. The allocation result achieves channel time fairness where user fairness and channel utilization is balanced. The major achievements of this dissertation are outlined as follows. It models a system-wide optimal operation point of a wireless network, and outlines the solution space of resource allocation in a multihop wireless network; It presents a price-based distributed resource allocation algorithm to achieve this global optimal point; It presents a low overhead implementation of the price-based resource allocation algorithm; It presents an incentive mechanism that enables the resource allocation algorithm when users are selfish

    Cooperative retransmission protocols in fading channels : issues, solutions and applications

    Get PDF
    Future wireless systems are expected to extensively rely on cooperation between terminals, mimicking MIMO scenarios when terminal dimensions limit implementation of multiple antenna technology. On this line, cooperative retransmission protocols are considered as particularly promising technology due to their opportunistic and flexible exploitation of both spatial and time diversity. In this dissertation, some of the major issues that hinder the practical implementation of this technology are identified and pertaining solutions are proposed and analyzed. Potentials of cooperative and cooperative retransmission protocols for a practical implementation of dynamic spectrum access paradigm are also recognized and investigated. Detailed contributions follow. While conventionally regarded as energy efficient communications paradigms, both cooperative and retransmission concepts increase circuitry energy and may lead to energy overconsumption as in, e.g., sensor networks. In this context, advantages of cooperative retransmission protocols are reexamined in this dissertation and their limitation for short transmission ranges observed. An optimization effort is provided for extending an energy- efficient applicability of these protocols. Underlying assumption of altruistic relaying has always been a major stumbling block for implementation of cooperative technologies. In this dissertation, provision is made to alleviate this assumption and opportunistic mechanisms are designed that incentivize relaying via a spectrum leasing approach. Mechanisms are provided for both cooperative and cooperative retransmission protocols, obtaining a meaningful upsurge of spectral efficiency for all involved nodes (source-destination link and the relays). It is further recognized in this dissertation that the proposed relaying-incentivizing schemes have an additional and certainly not less important application, that is in dynamic spectrum access for property-rights cognitive-radio implementation. Provided solutions avoid commons-model cognitive-radio strict sensing requirements and regulatory and taxonomy issues of a property-rights model

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network

    Performance evaluation of cooperation strategies for m-health services and applications

    Get PDF
    Health telematics are becoming a major improvement for patients’ lives, especially for disabled, elderly, and chronically ill people. Information and communication technologies have rapidly grown along with the mobile Internet concept of anywhere and anytime connection. In this context, Mobile Health (m-Health) proposes healthcare services delivering, overcoming geographical, temporal and even organizational barriers. Pervasive and m-Health services aim to respond several emerging problems in health services, including the increasing number of chronic diseases related to lifestyle, high costs in existing national health services, the need to empower patients and families to self-care and manage their own healthcare, and the need to provide direct access to health services, regardless the time and place. Mobile Health (m- Health) systems include the use of mobile devices and applications that interact with patients and caretakers. However, mobile devices have several constraints (such as, processor, energy, and storage resource limitations), affecting the quality of service and user experience. Architectures based on mobile devices and wireless communications presents several challenged issues and constraints, such as, battery and storage capacity, broadcast constraints, interferences, disconnections, noises, limited bandwidths, and network delays. In this sense, cooperation-based approaches are presented as a solution to solve such limitations, focusing on increasing network connectivity, communication rates, and reliability. Cooperation is an important research topic that has been growing in recent years. With the advent of wireless networks, several recent studies present cooperation mechanisms and algorithms as a solution to improve wireless networks performance. In the absence of a stable network infrastructure, mobile nodes cooperate with each other performing all networking functionalities. For example, it can support intermediate nodes forwarding packets between two distant nodes. This Thesis proposes a novel cooperation strategy for m-Health services and applications. This reputation-based scheme uses a Web-service to handle all the nodes reputation and networking permissions. Its main goal is to provide Internet services to mobile devices without network connectivity through cooperation with neighbor devices. Therefore resolving the above mentioned network problems and resulting in a major improvement for m-Health network architectures performances. A performance evaluation of this proposal through a real network scenario demonstrating and validating this cooperative scheme using a real m-Health application is presented. A cryptography solution for m-Health applications under cooperative environments, called DE4MHA, is also proposed and evaluated using the same real network scenario and the same m-Health application. Finally, this work proposes, a generalized cooperative application framework, called MobiCoop, that extends the incentive-based cooperative scheme for m-Health applications for all mobile applications. Its performance evaluation is also presented through a real network scenario demonstrating and validating MobiCoop using different mobile applications

    Network Formation Games Among Relay Stations in Next Generation Wireless Networks

    Full text link
    The introduction of relay station (RS) nodes is a key feature in next generation wireless networks such as 3GPP's long term evolution advanced (LTE-Advanced), or the forthcoming IEEE 802.16j WiMAX standard. This paper presents, using game theory, a novel approach for the formation of the tree architecture that connects the RSs and their serving base station in the \emph{uplink} of the next generation wireless multi-hop systems. Unlike existing literature which mainly focused on performance analysis, we propose a distributed algorithm for studying the \emph{structure} and \emph{dynamics} of the network. We formulate a network formation game among the RSs whereby each RS aims to maximize a cross-layer utility function that takes into account the benefit from cooperative transmission, in terms of reduced bit error rate, and the costs in terms of the delay due to multi-hop transmission. For forming the tree structure, a distributed myopic algorithm is devised. Using the proposed algorithm, each RS can individually select the path that connects it to the BS through other RSs while optimizing its utility. We show the convergence of the algorithm into a Nash tree network, and we study how the RSs can adapt the network's topology to environmental changes such as mobility or the deployment of new mobile stations. Simulation results show that the proposed algorithm presents significant gains in terms of average utility per mobile station which is at least 17.1% better relatively to the case with no RSs and reaches up to 40.3% improvement compared to a nearest neighbor algorithm (for a network with 10 RSs). The results also show that the average number of hops does not exceed 3 even for a network with up to 25 RSs.Comment: IEEE Transactions on Communications, vol. 59, no. 9, pp. 2528-2542, September 201

    SECURITY, PRIVACY AND APPLICATIONS IN VEHICULAR AD HOC NETWORKS

    Get PDF
    With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs
    corecore