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Abstract

Recent advances in wireless communications and digital electronics have enabled rapid develop-

ment of a variety of wireless network technologies. The undeniable popularity of wireless network

is due to its ubiquity and convenience, which is appreciated by the users.

In this dissertation, we study the problem of resource allocation in multihop wireless networks

(so called ad hoc networks). A wireless ad hoc network consists of a collection of wireless nodes

without a fixed infrastructure. Two wireless nodes communicate with each other directly, if they

are within the transmission range of each other. Otherwise, the communication is achieved through

the relays of intermediate nodes. Compared with traditional wireline networks, the unique char-

acteristics of wireless networks pose fundamental challenges to the design of effective resource

allocation algorithms that are optimal with respect to resource utilization and fair across different

network flows. Particularly, the following issues of wireless networks need fresh treatment: (1)

Interference of wireless communication. Flows not only contend at the same node (contention in

the time domain), but also compete for shared channel if they are within the interference ranges

of each other (contention in the spatial domain). (2) Multiple resource usage. Sending data from

one wireless node to another needs to consume multiple resources, most notably wireless band-

width and battery energy. (3) Autonomous communication entities. The wireless nodes usually

belong to different autonomous entities. They may lack the incentive to contribute to the network

functionality in a cooperative way. (4) Rate diversity. Wireless nodes can adaptively change the

transmission bit rate based on perceived channel conditions. This leads to a wireless network with

rate diversity, where competing flows within the interference range transmit at different rates.

None of the existing resource allocation algorithms in wireless ad hoc networks have realis-
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tically considered end-to-end flows spanning multiple hops. Moreover, strategies proposed for

wireline networks are not applicable in the context of wireless ad hoc network, due to its unique

characteristics.

In this dissertation, we propose a new price-based resource allocation framework in wireless

ad hoc networks to achieve optimal resource utilization and fairness among competing end-to-

end flows. We build our pricing framework on the notion of maximal cliques in wireless ad hoc

networks, as compared to individual links in traditional wide-area wireline networks. Based on

such a price-based theoretical framework, we present a two-tier iterative algorithm. Distributed

across wireless nodes, the algorithm converges to a global network optimum with respect to re-

source allocations. Further, we present a price pair mechanism to coordinate multiple resource

allocations, and to provide incentives simultaneously such that cooperation is promoted and the

desired global optimal network operating point is reached by convergence with a fully decentral-

ized self-optimizing algorithm. Such desired network-wide global optimum is characterized with

the concept of Nash bargaining solution, which not only provides the Pareto optimal point for

the network, but is also consistent with the fairness axioms of game theory. Finally, we present

a channel aware price generation scheme to decompose the bit rate adjustment and the flow rate

allocation. The allocation result achieves channel time fairness where user fairness and channel

utilization is balanced.

The major achievements of this dissertation are outlined as follows.

1. It models a system-wide optimal operation point of a wireless network, and outlines the

solution space of resource allocation in a multihop wireless network;

2. It presents a price-based distributed resource allocation algorithm to achieve this global

optimal point;

3. It presents a low overhead implementation of the price-based resource allocation algorithm;

4. It presents an incentive mechanism that enables the resource allocation algorithm when

users are selfish.
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Chapter 1

Introduction

1.1 Background

Recent advances in wireless communications and digital electronics have enabled rapid develop-

ment of a variety of wireless network technologies, such as wireless LAN, home network, multi-

hop ad hoc network, and sensor network. In all these networks, a set of computing devices are

interconnected over wireless medium to form a distributed environment. Some networks are inter-

connected to the Internet via base stations, while others stand alone. The undeniable popularity of

wireless network is due to its ubiquity and convenience, which is appreciated by the users. Such a

popularity has attracted both academic and industrial efforts to the domain of wireless networking

research.

In this dissertation, we mainly consider multihop wireless networks (so called ad hoc net-

works). A wireless ad hoc network consists of a collection of wireless nodes without a fixed

infrastructure. Two wireless nodes communicate with each other directly, if they are within the

transmission range of each other; Otherwise, the communication is achieved through the relays

of intermediate nodes. Ad hoc networks could be rapidly deployed without the support of fixed

infrastructure. Thus they can be used in the situations where temporary network connectivity is

needed.
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1.2 Problem Description and Research Goal

In this dissertation, we study the problem of resource allocation in wireless networks. Com-

pared with traditional wireline networks, the unique characteristics of wireless networks pose new

challenges to this problem, and prevent verbatim applications of the existing resource allocation

approaches. Particularly, the following issues of wireless networks need fresh treatment.

• Interference of wireless communication. Compared with wireline networks where flows

only contend at the router that performs flow scheduling (contention in the time domain),

the unique characteristics of wireless networks show that, flows also compete for shared

channel if they are within the interference ranges of each other (contention in the spatial

domain). This presents the problem of designing the topology-aware resource allocation

algorithm for contending multi-hop flows.

• Complex resource usage. Sending data from one wireless node to another needs to consume

multiple resources, most notably wireless bandwidth and battery energy. Wireless band-

width is shared among neighboring nodes, while battery energy is private to the node itself.

Thus end-to-end multihop flows need coordinated resource allocation between bandwidth

and energy. In the wireline networks, this kind of complex resource usage does not occur.

• Autonomous communication entities. The wireless nodes usually belong to different au-

tonomous entities. They may lack the incentive to contribute to the network functionality in

a cooperative way. Here cooperation has two-fold implications. First, each wireless node

does not excessively and greedily inject traffic to the shared wireless channel. Second, in-

termediate nodes are willing to relay traffic for upstream nodes towards the destination at

the cost of their own private resources. This presents the problem of designing appropriate

incentive mechanisms to not only encourage cooperative behavior of selfish nodes, but also

curb unfair and excessive resource usage.
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• Constrained resource condition. The resource conditions in wireless networks tend to be

more stringent than their wireline peers. For example, the energy supply in the portable

device is limited, and the wireless channel bandwidth is scarce. Such constrained resource

condition poses great challenges in designing the light-weighted resource allocation solu-

tion.

• Rate Diversity. In wireless networks, the signal strength and noise level of wireless channels

vary widely, especially in indoor environments, leading to diverse channel bit error rates

(BER). To reduce the BER, the sender can transmit at a lower data rate by using a more

resilient modulation scheme. Many vendors of client adaptors and access points implement

automatic bit rate control scheme in which the sender adaptively changes the bit rate based

on perceived channel conditions. This leads to a wireless network with rate diversity, where

competing flows within the interference range transmit at different rates.

• Dynamic environment. Mobile users of wireless networks create a dynamic networking

environment, where network topologies and resource usage patterns are changing with time.

Such environments require the resource allocation mechanism to adapt quickly to network

and resource dynamics.

In recognition of the above challenges, the goal of our research is to answer the following

questions,

1. how to model a system-wide optimal operation point of a wireless network, given the re-

source demand of its users;

2. how to achieve this global optimal point via distributed algorithms;

3. how to implement these distributed algorithms efficiently via low overhead protocols;

4. how to enable these resource allocation mechanisms when users are selfish.
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1.3 Our Approach

Towards these goals, we employ a price-based approach to the resource allocation problem. In

this approach, price serves as the key to the design of efficient distributed algorithms. The unique

characteristics of the wireless ad hoc network are incorporated into a novel pricing model which is

tailed to its resource model.

Specifically, we start with a generalized price-based resource allocation framework, which is

established based on an abstract network resource model. In this abstract model, the network

resource is characterized by a set of resource elements with independent capacities. Under this

model, we formulate the resource allocation problem in a general setting as an optimization prob-

lem via a utility-based approach. In this formulation, the concept of utility is used to reflect the

resource demands of different users. At the system optimum, the aggregated utility of all users

is maximized. Under this problem formulation, we illustrate the mathematical foundation of the

price-based approach and show how this approach can provide a distributed solution to the opti-

mization problem.

Then we instantiate the generalized resource allocation framework to the case of bandwidth

allocation in the setting of multihop wireless networks. The key challenge comes from the shared-

medium multi-hop nature of such networks, namely location-dependent contention and spatial

reuse. Based on solid theoretical analysis, we show that a resource element in a multihop wireless

network is a facet of the polytope defined by the independent set of the contention graph of this

network. The modeling of the system-wide optimal operation point of a wireless network then

follows directly from the generalized resource allocation framework.

To achieve this global optimal point, we present a price-based distributed resource allocation

algorithm. In this algorithm, price is dynamically adjusted based on the relationship between the

resource demand and its supply. And the users make self-optimization decisions on their sending

rates to maximize their own net benefits, which is the difference between their utilities and their

costs. We show that such a distributed algorithm converges to the unique global optimal network
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operation point.

The key challenge to implement the above resource allocation algorithms comes from the com-

putational complexity of identifying resource elements and the communication overhead from the

distributed algorithms. To address these challenges, we first present heuristics of these algorithms

which approximate the original algorithms at different levels and different degrees by exploring the

locality of the wireless network. Then we design low overhead communication protocols which

are integrated with the existing ad hoc routing protocols.

Further, we present a price-pair mechanism to coordinate the resource allocation between the

wireless bandwidth and the battery energy, and to provide incentives simultaneously, such that

cooperation is promoted and the levels of cooperation are adequate to achieve the desired global

optimal network operation point. This global optimum is characterized with the concept of Nash

Bargaining Solution (NBS), which not only provides the Pareto optimal point for the network, but

is also consistent with the fairness axioms of game theory.

We also study the problem of resource allocation in multi-rate wireless networks where trans-

mission bit rates are automatically adjusted by the wireless adaptors based on perceived channel

conditions. We show that our price-based resource allocation framework provides a natural solu-

tion to decompose the bit rate adjustment and the flow rate adaption. The allocation result achieves

channel time fairness where user fairness and channel utilization is balanced.

Finally, we present the software architecture and the system implementation of the price-based

resource allocation algorithms. The algorithms are implemented as two entities inside the network.

At the end hosts, the price-based rate adaptation is implemented at the application level. At the

relaying nodes, the price generation is implemented based on queue monitoring and MAC band-

width estimation. Our implementation does not require any change to the underlying MAC layer,

thus can be easily deployed on open source Linux systems.
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1.4 Contribution

The key contributions of the price-based resource allocation solutions for wireless networks pre-

sented in this dissertation are summarized as follows.

Theoretically, the generalized price-based framework provides an integrated model for re-

source allocation in both wireline and wireless networks. It also has the potential to accommodate

future networking technologies. Further, the novel pricing model, which reflects the unique re-

source characteristics of the wireless networks, successfully provides a distributed solution to the

resource allocation problem in such networks.

Practically, the design of price-based resource allocation algorithms is evaluated via extensive

simulation and test-bed experiment. The results validate that our solution is: (1) able to support

efficient and fair resource allocation; (2) light-weighted for the resource constrained wireless net-

works; and (3) adaptive to the dynamic mobile environments.

1.5 Thesis Outline

The rest of this dissertation is organized as follows: Chapter 2 introduces the generalized resource

allocation framework and presents the theoretical fundamentals of the price-based resource allo-

cation approach. Chapter 3 elaborates on our investigations of bandwidth allocation problem in

multihop wireless networks. It presents two sets of price-based algorithms and their implementa-

tions, and evaluates their performances. Chapter 4 studies the problem of resource coordination

between the wireless bandwidth and the battery energy, and presents an incentive mechanism for

multihop wireless networks via channel-relay price pair. Chapter 5 presents the software architec-

ture, system implementation, and testbed results of the price-based resource allocation algorithm.

Chapter 6 concludes this dissertation and points out our future research directions.
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Chapter 2

Generalized Price-based Resource
Allocation Framework

In this chapter, we present the generalized price-based theoretical framework for resource alloca-

tion in the setting of an abstract network model. We first formulate the resource allocation problem

as an optimization problem. We then show that a price-based approach can provide a decentralized

algorithm to solve this problem.

2.1 Resource Allocation: An Optimization Problem

2.1.1 An abstract network model

In our abstract network model, a network is represented as a set of resource elementsE. A resource

element e ∈ E can be a wireline link, a shared wireless channel, etc. Each element has a fixed and

finite capacity Ce. Note that the most important nature of a resource element is the independence

of its capacity. Specifically, how resource is allocated can not affect the capacity of a resource

element. In this sense, a wireline link is a resource element, while a wireless link is not, as its

bandwidth may vary depending on the traffic in its neighborhood.

Consider the network is shared by a set of end-to-end flows F . A flow f ∈ F has a rate of xf .

f must traverse a sequence of resource elements (end-to-end path) to reach its destination. LetRef

be the amount of resource e used by a unit flow of f , and ye be the amount of traffic generated by

all flows at resource element e. Obviously ye =
∑

f∈F Ref · xf .
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2.1.2 Objective: maximizing aggregated utility

We associate each end-to-end flow f ∈ F with a utility function Uf (xf ) : R+ → R+, which repre-

sents the degree of satisfaction of its associated end user. Here we make the following assumptions

about Uf (xf ):

– A1. On the interval [0,∞), the utility function Uf (·) is increasing, strictly concave and

continuously differentiable.

– A2. Uf is additive so that the aggregated utility of rate allocation x = (xf , f ∈ F ) is∑
f∈F Uf (xf ).

We investigate the problem of optimal resource allocation in the sense of maximizing the ag-

gregated utility function of all users, which is also referred to as the social welfare in the literature.

Formally, this objective is given as follows,

maximize
∑
f∈F

Uf (xf )

This optimization objective is of particular interest, because as we will demonstrate, such an

objective achieves Pareto optimality with respect to the resource utilization, and also realizes dif-

ferent fairness models — including proportional and max-min fairness — when appropriate utility

functions are specified.

2.1.3 Constraint: resource element and its capacity

Recall that each element e ∈ E in the network has a finite capacity Ce, and ye is the amount of

traffic generated by all flows at resource element e. The constraints from resource capacities are

given as follows,

∀e ∈ E, ye ≤ Ce
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As Ref is the amount of resource e used by a unit flow of f , and thus ye =
∑

f∈F Ref · xf , we

have

∀e ∈ E,
∑
f∈F

Ref · xf ≤ Ce

or in concise form,

R · x ≤ C

where R = (Ref )|E|×|F | is a matrix with elementRef at row e and column f , and x = (xf , f ∈ F ),

C = (Ce, e ∈ E) are vectors of flow rates and resource capacities respectively.

The definition of resource element and its capacity can be very diverse for different types of

networks. Sometimes it is very hard to define the resource constraint of a network, especially for a

multihop wireless network with the presence of spatial reuse. In what follows, we will illustrate the

concept of resource element in two simple network settings, and present their resource constraints.

Based on these intuitive examples, we will further define the resource model of multihop wireless

networks in Chapter 3, which establishes the foundation of theoretical study on resource allocation

in this type of networks.

a

dc

b

a

dc

b

flow 1

flow 2

flow 1

flow 2

(a) Wireline network (b) Wireless network without spatial reuse

Figure 2.1: Resource elements in different networks

Wireline networks

In wireline networks, flows only contend with each other if they share the same physical link. In

this case, the resource element e is a wireline link, its resource capacity Ce is the link capacity. In
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this case, R can be understood as the routing matrix defined as follows.

Ref =

⎧⎪⎨
⎪⎩

1 if fpasses through e

0 otherwise

In the example shown in Fig. 2.1 (a), the constraints on resource allocations of flows 1 and 2

can be expressed as

⎛
⎜⎜⎜⎜⎝

1 0

0 1

1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝ x1

x2

⎞
⎟⎠ ≤

⎛
⎜⎜⎜⎜⎝

Cac

Cbc

Ccd

⎞
⎟⎟⎟⎟⎠

Wireless networks without spatial reuse

In wireless networks where nodes are within the transmission range of each other as shown in

Fig. 2.1 (b), flows not only contend at the same wireless link, but also in a geographical vicinity:

only one node can transmit at any time instance in this vicinity. In this case, the flows in the

network share one wireless channel. Hence this is the only resource element, whose capacity is

Cchan – the wireless channel capacity. Then the constraints on resource allocations of flows 1 and

2 can be expressed as

(
2 2

) ⎛
⎜⎝ x1

x2

⎞
⎟⎠ ≤ Cchan

2.1.4 Putting things together

Summarizing above discussions, we formulate the resource allocation problem in a generalized

form as follows.

S : maximize
∑
f∈F

Uf (xf ) (2.1)

subject to R · x ≤ C (2.2)

10



x ≥ 0 (2.3)

The objective function in Eq. (2.1) of the optimization problem maximizes the aggregated util-

ity of all flows. The constraint of the optimization problem (Inequality (2.2)) is the resource con-

straint. We now demonstrate that, by optimizing towards such an objective, both optimal resource

utilization and fair resource allocations may be achieved among end-to-end flows.

Pareto optimality

With respect to optimal resource utilization, we show that the resource allocation is Pareto optimal

if the optimization problem S can be solved. Formally, the Pareto optimality is defined as follows.

Definition 2.1.1. (Pareto optimality) A rate allocation x = (xf , f ∈ F ) is Pareto optimal, if it

satisfies the following two conditions: (1) x is feasible, i.e., x ≥ 0 and R · x ≤ C; and (2) ∀x′

which satisfies x′ ≥ 0 and R · x′ ≤ C, if x′ ≥ x, then x′ = x. In the second condition, The

≥ relation is defined such that, two vectors x and x′ satisfy x′ ≥ x, if and only if for all f ∈ F ,

x′f ≥ xf .

Proposition 2.1.1. A rate allocation x is Pareto optimal, if it solves the problem S, with increasing

and strictly concave utility functions Uf (xf ), for f ∈ F .

Proof. Let x be a solution to the problem S. If x is not Pareto optimal, then there exists another

vector x′ 	= x, which satisfies R ·x′ ≤ C and x′ > x. As Uf (·) is increasing and strictly concave,

we have that
∑

f∈F Uf (x
′
f ) >

∑
f∈F Uf (xf ). This leads to a contradiction, as x is the solution to

S and hence maximizes
∑

f∈F Uf (xf ).

Fairness

By choosing appropriate utility functions, the optimal resource allocation can implement different

fairness models among the flows. We illustrate this fact using two commonly adopted fairness

models: weighted proportional fairness and max-min fairness.
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Definition 2.1.2. (weighted proportional fairness) A vector of rates x = (xf , f ∈ F ) is weighted

proportionally fair with the vector of weights wf , if it satisfies the following two conditions: (1)

x is feasible, i.e., x ≥ 0 and R · x ≤ C; and (2) for any other feasible vector x′ = (x′f , f ∈ F ),

the aggregate of proportional changes is zero or negative:

∑
f∈F

wf

x′f − xf

xf

≤ 0.

Proposition 2.1.2. A rate allocation x is weighted proportional fair with the weight vector wf , if

and only if it solves the problem S, with Uf (xf ) = wf log xf for f ∈ F .

Proof. As shown in [19], by the optimality condition (2.1), this proposition can be derived accord-

ing to the following relation:

∑
f∈F

∂Uf

∂x′f
(xf )(x

′
f − xf ) =

∑
f∈F

wf

x′f − xf

xf

< 0

where the strict inequality follows from the strict concavity of Uf .

Definition 2.1.3. (max-min fairness) A vector of rates x = (xf , f ∈ F ) is max-min fair, if it

satisfies the following two conditions: (1) x is feasible, i.e., x ≥ 0 and R ·x ≤ C; and (2) for any

f ∈ F , increasing xf can not be achieved without decreasing the fair share xf ′ of another flow

f ′ ∈ F that satisfies xf ≥ xf ′ .

Proposition 2.1.3. A rate allocation x is max-min fair if and only if it solves the problem S, with

Uf (xf ) = −(− log xf )
ζ , ζ → ∞ for f ∈ F .

Again, these results straightforwardly follow their counterparts in wireline networks [19].

2.2 Decentralized Solution: A Price-based Approach

We proceed to study how to derive a decentralized solution to the problem S so that the optimal

resource allocation can be achieved.
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By assumption A1, the objective function of S in Eq. (2.1) is differentiable and strictly con-

cave. In addition, the feasible region of the optimization problem in Inequality (2.2) is convex and

compact. By non-linear optimization theory, there exists a unique maximizing value of argument

x for the above optimization problem. Let us consider the Lagrangian form of the optimization

problem S:

L(x; μ) =
∑
f∈F

Uf (xf ) + μT (C − Rx) (2.4)

=
∑
f∈F

(Uf (xf ) − xf

∑
e∈E

μeRef ) +
∑
e∈E

μeCe

where μ = (μe, e ∈ E) is a vector of Lagrange multipliers. Given global knowledge of utility

functions, S is mathematically tractable. However, in practice, such knowledge is unlikely to be

available. In addition, it may be infeasible to compute and allocate resources in a centralized

fashion. Here we seek a decentralized solution. The key to decentralization is pricing.

In the Lagrangian form specified in Eq. (2.4), the Lagrange multipliers μe may be regarded as

the implied cost, or the shadow price, of a unit flow using resource e. Such a price μe reflects the

traffic load ye at this resource element e. Flow f ∈ F will then be charged with a flow price λf

which is the sum of the costs at all resource elements it uses, the cost at each resource element

being the product of its price and the amount of resource used by a unit flow of f , namely,

λf =
∑
e∈E

Refμe

Through this price signal, flow f can make a self-optimized decision to adjust its sending rate

xf . The aggregated sending rate ye =
∑

f∈F Ref · xf of all flows through resource element e

in turn affects its price μe. To summarize, Fig. 2.2 illustrates the price-based resource allocation

framework. Here we deem each component in the diagram as abstract entities capable of com-

puting and communicating. The functioning of the framework involves no central authority, but

purely depends on local decision of each component and exchange of control signals among them.
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In each cycle, a resource element e calculates its load ye, the total amount of flows passing through

it, then derives its penalty μe and sends it to all these flows. Meanwhile, a flow f , on receiving

signals from all resource elements it traverses, derives its flow price λf , then adjusts flow rate xf .

Such a cycle repeats itself, and finally converges to the equilibrium point.

flow 
f

resource 
element e

Load 
aggregation

price 
Aggregation

rate
xf

load
ye

penalty
μe

price
λf

f
Ff

ef xR∑
∈

e
Ee

efR μ∑
∈

Figure 2.2: Price-based Resource Allocation Framework

The presented framework is a generalized form of the framework proposed by Kelly et al. in

[20, 19] for wireline networks. As we will show in Chapter 3 and 4, such a generalization is critical

for us to study the resource allocation problem in multihop wireless networks. In Chapter 3, we

apply it to the bandwidth allocation of multihop wireless networks. In Chapter 4, it is applied to

the resource coordination between battery energy and wireless bandwidth.

2.3 Notations

We list all notations introduced in Chapter 2 as follows.
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Notation Definition
f ∈ F End-to-end flow in the network
e ∈ E Resource element of the network
x = (xf , f ∈ F ) Rate vector of flow f ∈ F
C = (Ce, e ∈ E) Capacity vector of resource element e ∈ E
R = (Ref )|E|×|F | Resource constraint matrix
Uf (xf ) (f ∈ F ) Utility function of flow f ∈ F
y = (ye, e ∈ E) Aggregated traffic load at resource element e ∈ E
μ = (μe, e ∈ E) Price of resource element e ∈ E
λf (f ∈ F ) Price of flow f ∈ F

Table 2.1: Notations in Chapter 2
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Chapter 3

Bandwidth Allocation in Multihop Wireless
Networks

3.1 Overview

In a multihop wireless network, each node in the network forwards packets for its peer nodes,

and each end-to-end flow traverses multiple wireless links from a source to a destination. Com-

pared with wireline networks where flows only contend at the router that performs flow scheduling

(contention in the time domain), the unique characteristics of multihop wireless networks show

that, flows also compete for shared channel if they are within the interference ranges of each other

(contention in the spatial domain). This presents the problem of designing a topology-aware band-

width allocation algorithm that is both optimal with respect to bandwidth utilization and fair across

contending multi-hop flows.

In this chapter we seek to answer the following question: how much bandwidth should we

allocate to each of the end-to-end flows, so that scarce bandwidth in a wireless network may be

optimally and fairly utilized? To answer this question, we apply the price-based resource allocation

framework to the setting of bandwidth allocation in multihop wireless networks. We first instan-

tiate the abstract network model of the generalized framework to the case of multihop wireless

network in Section 3.2. Based on solid analysis, we show that a resource element in a multihop

wireless network is a facet of the polytope defined by the independent set of the contention graph

of this network. It can further be approximated by a maximal clique in this contention graph.

Following the generalized resource allocation framework, we formulate the system-wide opti-

mal operation point of a multihop wireless network with a utility-based approach. Based on this

formulation, achieving the global network optimum becomes an optimization problem.

16



We then proceed to employ the price-based approach to solve this problem so that the global

optimum can be achieved. In Section 3.3, we present a two-tier distributed algorithm to compute

the bandwidth allocation for each of the end-to-end flows. The first tier of the algorithm consti-

tutes an iterative algorithm that determines per-clique shadow prices and end-to-end flow resource

allocations. We show that this algorithm converges to the unique equilibrium where the aggre-

gated utility is maximized. The second tier of the algorithm constructs the maximal cliques in a

distributed manner. To facilitate its deployment in practical network environments, the algorithm

is further improved to accommodate asynchronous communications.

Finally we present the implementation of our algorithms and their performance study in Sec-

tion 3.4, discuss related work in Section 3.5 and summarize this chapter in Section 3.6.

3.2 Resource Model of Multihop Wireless Networks

3.2.1 Network model

Consider a multihop wireless network that consists of a set of nodes N . Each node i ∈ N has

a transmission range dtx and an interference range dint. Packet transmission in such a network

is subject to location-dependent contention. There exist two models for packet transmission in

wireless networks in the literature [13], generally referred to as the protocol model and the physical

model. In the case of a single wireless channel, these two models are presented as follows.

1. The Protocol Model: In the protocol model, the transmission from node i to j, (i, j ∈ N )

is successful if (1) the distance between these two nodes dij satisfies dij < dtx; (2) any

node k ∈ N , which is within the interference range of the receiving node j, dkj ≤ dint is

not transmitting. This model can be further refined towards the case of IEEE 802.11-style

MAC protocols, where the sending node i is also required to be free of interference as it

needs to receive the link layer acknowledgement from the receiving node j. Specifically,

any node k ∈ N , which is within the interference range of the nodes i or j (i.e., dkj ≤ dint
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or dki ≤ dint), is not transmitting.

2. The Physical Model: This model is directly related to the physical layer characteristics. The

transmission from node i to j is successful if the signal-to-noise ratio at the node j, SNRij ,

is not smaller than a minimum threshold: SNRij ≥ SNRthresh.

In this dissertation, we focus our attention on solving problems of resource allocation based

on the protocol model, with a particular interest in IEEE 802.11-style MAC protocols due to their

popular deployment in realistic wireless systems. The problems of resource allocation under the

physical model is beyond the scope of this dissertation, and left as a future research direction.

Further, unless notified otherwise, we assume that the transmission range dtx is the same as the

interference range dint.

Under the protocol model, a wireless ad hoc network can be regarded as a bidirectional graph

G = (N,L). L ⊆ 2N denotes the set of wireless links, which are formed by nodes that are within

the transmission range of each other. A wireless link l ∈ L is represented by its end nodes i and j,

i.e., l = {i, j}.

In such a network, there exists a set of end-to-end flows, denoted as F . Each flow f ∈ F

goes through multiple hops in the network, passing a set of wireless links L(f). A single-hop

data transmission in the flow f along a particular wireless link is referred to as a subflow of f .

Obviously, there may exist multiple subflows along the same wireless link. We use the notation

S(S ⊆ L) to represent a set of wireless links in G, such that each of the wireless links in S carries

at least one subflow, i.e., the wireless link is not idle.

Based on the protocol model, flows in a wireless ad hoc network contend for shared resources

in a location-dependent manner: two subflows contend with each other if either the source or

destination of one subflow is within the interference range (dint) of the source or destination of the

other.

Formally, we consider a contention graph Gc = (Nc, Lc). The vertices of the contention graph

vi ∈ Nc correspond to the wireless links (i.e., Nc = S). There exists an edge between two vertices
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if the subflows along these two wireless links contend with each other according to the above

protocol model.

(0,0,0)

1 2 3 4

{1,2} {5,6}

5 6

{3,4}

(1,0,0)

(0,0,1)

(0,1,0)

{1,2}

{3,4}

{5,6} (1,0,1)

(a) Network topology

(b) Contention graph

(c) Independence polytope

Figure 3.1: Resource model of multihop wireless network

To illustrate these concepts, we show an example in Fig. 3.2.1. Fig. 3.2.1(a) gives the network

topology and the traffic used in the example. In this example, the transmission {1, 2} and {3, 4}
contend with each other, also do {3, 4} and {5, 6}. But {1, 2} and {5, 6} can transmit simultane-

ously. The contention graph of this wireless network is shown in Fig. 3.2.1(b).

3.2.2 Identifying resource element

Now let us consider an independent set I ⊆ Nc of the graph Gc. I can be represented using a

|Nc|-dimension independence vector ιI = (ιk, nk ∈ Nc), defined as follows.

ιj =

⎧⎪⎨
⎪⎩

1 if nk ∈ I

0 otherwise

ιI can be regarded as a point in a Nc-dimensional independence space. In this space, each dimen-

sion corresponds to a vertex nk ∈ Nc.

19



In the above example, besides the independent sets consisting of each vertex itself (i.e., {{1, 2}},

{{3, 4}}, {{5, 6}} ), {{1, 2}, {5, 6}} is also an independent set. Let vertices {1, 2}, {3, 4}, {5, 6}
correspond to the three dimensions of the independence space. Then independence vectors (1, 0, 0),

(0, 1, 0), (0, 0, 1) and (1, 0, 1) correspond to the above independent sets. Fig. 3.2.1(c) show these

independence vectors along with a special independence vector – the origin point (0, 0, 0).

Fig. 3.2.1(c) also shows that a polytope is formed as the convex hull of all points correspond-

ing to each independence vector, or in other words, convex combination of all independence vec-

tors. We call such a polytope the independent set polytope, denoted as PG. Let us consider a

|Vc|-dimension vector � = (�k, nk ∈ Nc), where �k is the fraction of time during which link s

corresponding to nk is active. Then � is schedulable if there exists a MAC scheduling algorithm

that can assign the faction of time indicted by �k to each wireless link nk in a conflict free manner.

The result of [15] shows that

Lemma 3.2.1. Vector � = (�k, nk ∈ Nc) is schedulable if and only if it lies within the independent

set polytope PG.

Reflected in Fig. 3.2.1(c), all points within the polytope PG is schedulable. To model the

resource element from this concept, we consider the facets of the polytope PG
1. Note that we can

get these facets by running any polynomial-time convex hull algorithm[12] on all vertices of the

polytope (i.e., all independence vectors). We collect all facets into a set Θ. The plane that a facet

θm ∈ Θ belongs to can be presented in the following linear form.

|Nc|∑
k=1

amk�k − bm = 0

where amk and bm are coefficients of the plane function. Let a = (amk)|Θ|×|Nc|, then the polytope

PG can be represented in the following vector form.

a · � ≤ b

1The facets that lie along the coordination plane are excluded.
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where b = (bm,θm ∈ Θ). If we scale the independent set polytope PG by the capacity of the

wireless channel Cchan, we have that

a · � · Cchan ≤ b · Cchan

Let wireless link rate allocation be y = (ys, s ∈ S), where ys is the rate along wireless link

s ∈ S. y is feasible, if there exists a MAC scheduling algorithm that can assign rate ys to each

wireless link s in a conflict free manner. Note that ys = �k · Cchan, where nk = s. Thus, by

Lemma 3.2.1, we have the following result.

Lemma 3.2.2. Vector y = (ys, s ∈ S) is feasible if and only if it satisfies the following:

a · y ≤ Cchan · b (3.1)

Let A = (Alf )|L|×|F | be the routing matrix defined as follows,

Alf =

⎧⎪⎨
⎪⎩

1 if flow f passes through wireless link l

0 otherwise

Further we define R = a · A and C = Cchan · b.

Theorem 3.2.1. Rate allocation vector x = (xf , f ∈ F ) is feasible, (i.e., there exists a MAC

scheduling and an allocation algorithm that assign rate xf to flow f ∈ F ), if and only if it satisfies

the following:

R · x ≤ C (3.2)

Proof. It is easy to see that A · x = y. The result straightly follows by Inequality (3.1) in

Lemma 3.2.2 and the definition of R and C.

Eq. 3.2 in Theorem 3.2.1 clearly defines the solution space of the resource allocation problem

in the multihop wireless networks under the assumption of ideal MAC scheduling. By comparison
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of the definitions of R in the abstract network model and the multihop wireless network model, we

observe that each facet θm ∈ Θ scaled by Cchan can be regarded as a resource element with an

independent capacity Cchan · bm.

As an interesting finding, we also notice that the wireline network model is a special case of this

formulation. Take the network shown in Fig. 3.2(a) as an example, since all links are independent

from each other, any subset of the link set L is an independent set. The resulting independent set

polytope (with each dimension normalized by the capacity of its corresponding link) is shown in

Fig. 3.2(b). An important property of this polytope is that it is a cube. That means for each of its

facets, the plane it belongs to only intersects with one axis. Since each axis represents a wireline

link, back to Inequality (3.2), this implies that (1) Θ = I , the identity matrix, thus R = A, and

(2) bm = 1 for any θm ∈ Θ.

L1 L2 L3

(1,0,0)

(0,0,1)

(0,1,0)

(1,0,1)

(a) Network topology

(b) Independence polytope

(1,1,0)

(1,1,1)(0,1,1)

(0,0,0)
L1

L2

L3

Figure 3.2: Solution space of wireline network.

3.2.3 Approximating resource element

To this end, we have clearly identified the resource elements of a multihop wireless network.

However, applying this model to the resource allocation framework can still be difficult, as the

problem of finding all independent sets is NP-hard. Besides, this model assumes ideal MAC

scheduling. It is difficult to be improved for practical implementations in realistic wireless network
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settings, (e.g., with non-ideal MAC algorithm such as IEEE 802.11), because the facets of the

independent set polytope of the contention graph lack the intuition to be mapped into any instance

in the physical wireless network, not to mention to be implemented via distributed algorithms.

In light of this difficulty, we explore the approximation of resource elements by studying the

upper bound of the resource constraint in a multihop wireless network. Here we present a maximal

clique based approximation. Such an approximation gives a good intuitive explanation on the

structure of the resource element in the physical network. Thus it can also facilitate the distributed

implementation of resource allocation algorithms.

In a graph, a complete subgraph is referred to as a clique. A maximal clique is defined as a

clique that is not contained in any other cliques2. In a contention graph, the vertices in a max-

imal clique represent a maximal set of mutually contending wireless links, along which at most

one subflow may transmit at any given time. Intuitively, each maximal clique in a contention

graph represents a maximal distinct contention region, since at most one subflow in the clique can

transmit at any time, and adding any other flows into this clique will introduce the possibility of

simultaneous transmissions. We denote the set of all maximal cliques in Gc as Q.

Recall that a rate allocation y = (ys, s ∈ S) is feasible, if there exists a collision-free MAC

transmission schedule that allocates ys to s. Based on the above discussions, we have the following

results.

Proposition 3.2.1. Rate allocation y = (ys, s ∈ S) is feasible, then the following condition is

satisfied.

∀q ∈ QG,
∑

s∈V (q)

ys ≤ Cchan (3.3)

where V (q) ⊆ S is the set of the vertices of the clique q.

Eq. (3.3) gives an upper bound on the rate allocations to the wireless links. Such a bound may

2Note that the maximal clique has a different definition from the maximum clique of a graph, which is the maximal
clique with the largest number of vertices. Finding the maximum clique of a graph is a NP-complete problem, while
enumerating all the maximal cliques of a graph can be solved in polynomial time [1].
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not be tight. Here we discuss two scenarios. First, there may exist no schedules that assign rates

to the wireless links to achieve this bound. Such scenario happens when the contention graph has

odd holes or odd anti-holes [15]. Second, for some contention graphs, even if there exists a ideal

centralized scheduling algorithm that can achieve this bound, the distributed scheduling algorithms

that employ carrier sensing multiple access (e.g., IEEE 802.11) can not achieve this bound. Thus

we introduce Cq, the achievable channel capacity at a clique q. More formally, if
∑

s∈V (q) ys ≤ Cq

then y = (ys, s ∈ S) is feasible. To this end, we observe that a maximal clique q can be regarded

as an approximation of a resource element with capacity Cq.

We now proceed to consider the resource constraint of a multihop wireless network using the

maximal clique as the approximation of the resource element. We define a clique-flow matrix

R = {Rqf}, where Rqf = |V (q) ∩ L(f)| represents the number of subflows that flow f has in

the clique q. If we treat a maximal clique as a resource element, then the clique-flow matrix R

represents the “resource usage pattern” of each flow. Let the vector C = (Cq, q ∈ Q) be the vector

of achievable channel capacities in each of the cliques. Constraints with respect to rate allocations

to end-to-end flows in wireless ad hoc networks are presented in the following proposition.

Proposition 3.2.2. In a wireless ad hoc network G = (N,L) with a set of flows F , there exists a

feasible rate allocation x = (xf , f ∈ F ), if and only if Rx ≤ C.
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Figure 3.3: Approximate resource model of multihop wireless network

We present an example to illustrate the above concepts and notations. Fig. 3.3(a) shows the

topology of the network, as well as its ongoing flows. The corresponding contention graph is
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shown in Fig. 3.3(b). In this example, there are 4 end-to-end flows f1 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}},

f2 = {{7, 6}, {6, 3}}, f3 = {{6, 3}, {3, 2}, {2, 1}} and f4 = {{5, 4}}. As such, in Fig. 3.3(b)

there are three maximal cliques in the contention graph: q1 = {{1, 2}, {3, 2}, {3, 4}, {3, 6}}, q2 =

{{3, 2}, {3, 4}, {4, 5}, {3, 6}} and q3 = {{3, 2}, {3, 4}, {3, 6}, {6, 7}}.

We use yij to denote the aggregated rate of all subflows along wireless link {i, j}. For example,

y12 = x1+x3, y36 = x2+x3. In each clique, the aggregated rate may not exceed the corresponding

channel capacity. That is

y12 + y32 + y34 + y36 ≤ C1 (3.4)

y32 + y34 + y45 + y36 ≤ C2 (3.5)

y32 + y34 + y36 + y67 ≤ C3 (3.6)

When it comes to end-to-end flow rate allocation, the resource constraint imposed by shared

wireless channels is as follows.

⎛
⎜⎜⎜⎜⎝

3 1 3 0

3 1 2 1

2 2 2 0

⎞
⎟⎟⎟⎟⎠ x ≤ C.

In summary, the unique characteristics of location-dependent contention in multihop wireless

networks imply a fundamentally different resource model compared to the case of wireline net-

works. In wireline networks, a resource element is a wireline link. Its capacity represents the

constraint on flows contending for its bandwidth, which is independent from other links. However,

in the case of wireless ad hoc networks, the capacity of a wireless link is interrelated with other

wireless links in its vicinity. Such a fundamental difference calls for a new treatment with the

pricing models in multihop wireless networks and hence a new resource allocation mechanism.
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3.3 Distributed Algorithm

Treating resource elements of a multihop wireless network as maximal cliques in its contention

graph, we now proceed to study the distributed algorithm for resource allocation. The algorithm

needs to answer two questions: (1) how the price is calculated for each resource element; (2) how

rate is adjusted for each flow responding to its price. Here we present an algorithm based on the

dual method from optimization theory.

3.3.1 Dual problem

Recall that each end-to-end flow f ∈ F has a utility function Uf (xf ) : R+ → R+, which repre-

sents the degree of satisfaction of its corresponding end user. In addition to the assumption A1 and

A2 in Section 2.1, we further make the following assumptions about Uf so that the dual method

can be employed.

– A3. On the interval If = [mf ,Mf ], the utility function Uf is twice continuously differen-

tiable.

– A4. The curvature of Uf is bounded away from zero on If : −U ′′
f (xf ) ≥ 1/κf > 0.

Following the problem formulation in the generalized resource allocation framework, we in-

vestigate the problem of optimal bandwidth allocation in the sense of maximizing the aggregated

utility of all flows,i.e., the following non-linear optimization problem (also called primal problem)

P:

P : maximize
∑
f∈F

Uf (xf ) (3.7)

subject to Rx ≤ C (3.8)

over xf ∈ If (3.9)
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Now we proceed to study how the solution to the problem P may be derived. Recall that by the

assumption A1, the objective function of P in Eq. (3.7) is differentiable and strictly concave. In

addition, the feasible region of the optimization problem in Inequality (3.8) and (3.9) is convex and

compact. By non-linear optimization theory, there exists a maximizing value of argument x for

the above optimization problem. Let us consider the Lagrangian form of the optimization problem

P:

L(x; μ) =
∑
f∈F

Uf (xf ) + μT (C − Rx)

=
∑
f∈F

(Uf (xf ) − xf

∑
q∈Q

μqRqf ) +
∑
q∈Q

μqCq (3.10)

where μ = (μq, q ∈ Q) is a vector of Lagrange multipliers.

Given the global knowledge of utility functions Uf of all flows, problem P is mathematically

tractable using the Lagrangian method. However, in practice, such knowledge is unlikely to be

available, while it may also not be feasible to compute and allocate resources in a centralized

fashion. In this context, we prefer a decentralized solution where knowledge of utility functions

of all flows is not needed. The key to decentralization is to investigate its dual problem, and to

decompose the problem via pricing. Let us first consider the dual problem D of the primal problem

P as follows.

D : min
µ≥0

D(μ) (3.11)

where

D(μ) = max
xf∈If

L(x; μ) (3.12)

= max
xf∈If

∑
f∈F

(Uf (xf ) − xf

∑
q∈Q

μqRqf ) +
∑
q∈Q

μqCq

=
∑
f∈F

max
xf∈If

(Uf (xf ) − xf

∑
q:E(f)∩V (q) �=∅

μqRqf ) +
∑
q∈Q

μqCq
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Let us also define

λf =
∑

q:E(f)∩V (q) �=∅
μqRqf (3.13)

The objective function D(μ) then becomes

D(μ) =
∑
f∈F

max
xf∈If

(Uf (xf ) − λfxf ) +
∑
q∈Q

μqCq (3.14)

From the price-based resource allocation framework, the Lagrange multipliers μq may be in-

terpreted as the implied cost of a unit flow accessing using the maximal clique q. More straight-

forwardly, μq is the shadow price of the clique q. λf , on the other hand, may be interpreted as the

shadow price of the flow f . From Eq. (3.13), we may observe that flow f needs to pay for all the

maximal cliques that it traverses. For each clique, the price to pay is the product of the number of

wireless links that f traverses in this clique and the shadow price of the clique. Alternatively, since

λf =
∑

q:E(f)∩V (q) �=∅
μqRqf =

∑
s:s∈E(f)

∑
q:s∈V (q)

μq (3.15)

the shadow price of a flow is also the aggregated price of all its subflows. For each subflow, its

price is the aggregated price of all the maximal cliques that it belongs to.

These observations identify a novel pricing model for multihop wireless networks. Here we

illustrate this pricing model and compare it with the model for wireline networks with an example.

In the example, the wireline network shown in Fig. 3.4(a) has a chain topology consisting of four

links, associated with prices μ1, μ2, μ3, μ4. In this case, the price of the flow f is λf =
∑4

l=1 μl.

In comparison, though the multihop wireless network in Fig. 3.4(b) has the same topology, its

maximal cliques q1 = {{1, 2}, {2, 3}, {3, 4}} and q2 = {{2, 3}, {3, 4}, {4, 5}} are, in effect, its

resource elements. Let the shadow prices of these two cliques be μ1 and μ2. The price of flow f

that traverses these two cliques is given by λf = 3μ1 + 3μ2, which is the sum of the product of

the number of subflows of f in each clique and the shadow price of this clique. Alternatively, the

price can also be written as λf = μ1 + (μ1 + μ2) + (μ1 + μ2) + μ2, which is the sum of the prices

of its subflows. The price of each subflow is the aggregated price of all the maximal cliques that it
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belongs to.

1 2 3 4 5
f

μ1 μ2

1 2 3 4 5
f

μ1 μ2 μ3 μ4

(b) Wireless ad hoc network(a) Wireline network

Figure 3.4: Price-based framework: a comparison.

3.3.2 First tier algorithm: per-clique price calculation

Now we proceed to present the distributed two-tier resource allocation algorithm. In the first tier,

we design an iterative algorithm that determines per-clique prices and flow rate allocations. In the

second tier, we present a decentralized algorithm to construct maximal cliques. Finally, we discuss

the implementation choices to integrate these two tiers.

Treating maximal cliques as units of resource allocation, we first present an iterative algo-

rithm that solves the problem P. The iterative algorithm we propose applies the gradient projection

method to the dual problem D. Recall that the objective function D(μ) of the dual problem D is

D(μ) =
∑
f∈F

max
xf∈If

(Uf (xf ) − λfxf ) +
∑
q∈Q

μqCq (3.16)

Let

φf (xf ) = Uf (xf ) − λfxf (3.17)

As λf is the shadow price of the flow f , φf (xf ) may be considered as the net benefit of the

flow f , which is the difference between its utility and its cost. By assumption A1 and A3, φf (xf )

is strictly concave and twice continuously differentiable. Therefore, a unique maximizer of φf (xf )

exists when

dφf (xf )

dxf

= U
′
f (xf ) − λf = 0 (3.18)

We define such a maximizer as follows:
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xf (λf ) = arg max
xf∈If

{φf (xf )} (3.19)

Obviously:

xf (λf ) = [U ′−1
f (λf )]

Mf
mf (3.20)

xf (λf ) is generally referred to as the demand function, which reflects the optimal rate for flow f ,

where its net benefit is maximized with a flow price of λf .

We solve the dual problem D using the gradient projection method [2]. In this method, μ is

adjusted in the opposite direction to the gradient ∇D(μ):

μq(t+ 1) = [μq(t) − γ
∂D(μ(t))

∂μq

]+ (3.21)

where γ is the step size. D(μ) is continuously differentiable since Uf is strictly concave [2]. Thus,

based on Eq. (3.16), the q-dimension of the gradient is given as follows.

∂D(μ)

∂μq

= Cq −
∑

f :L(f)∩N(q) �=∅
xf (λf )Rqf (3.22)

Eq. (3.22) gives the difference between the resource capacityCq and its load demand
∑

f :L(f)∩N(q) �=∅ xf (λf )Rqf ,

which are the rates of all flows that pass this clique multiplied by the number of subflows they have

in this clique. Substituting Eq. (3.22) into (3.21), we have

μq(t+ 1) = [μq(t) − γ(Cq −
∑

f :L(f)∩N(q) �=∅
xf (λf (t))Rqf )]

+ (3.23)

Eq. (3.23) reflects the law of supply and demand. If the demand for bandwidth at clique q exceeds

its supply Cq, the resource constraint is violated. Thus, the clique price μq is increased. Otherwise,

μq is reduced.

We summarize the first-tier iterative algorithm in Table 3.1, where clique q and flow f are

considered as abstract entities capable of computing and communicating. In the second tier of the

algorithm, details of such entities will be presented.
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Clique Price Update (by clique q): At times t = 1, 2, . . .
1 Receive rates xf (t) from all flows f where L(f) ∩N(q) 	= ∅
2 Update price

μq(t+ 1) = [μq(t) − γ(Cq −
∑

f :L(f)∩N(q) �=∅ xf (t)Rqf )]
+

3 Send μq(t+ 1) to all flows f where L(f) ∩N(q) 	= ∅

Rate Update (by flow f ): At times t = 1, 2, . . .
4 Receive channel prices μq(t) from all cliques q where L(f) ∩N(q) 	= ∅
5 Calculate

λf (t) =
∑

q:L(f)∩N(q) �=∅ μq(t)Rqf

6 Adjust rate
xf (t+ 1) = xf (λf (t))

7 Send xf (t+ 1) to all cliques q where L(f) ∩N(q) 	= ∅.

Table 3.1: First tier: per-clique resource allocation algorithm

We are now in a position to show the properties of this iterative algorithm. Let us define

Y (f) =
∑

q∈QRqf , which leads to the definition of Ȳ = maxf∈F Y (f) as, intuitively speaking,

the “length” of the “longest” path. We further defineZ(q) =
∑

f∈F Rqf , leading to the definition of

Z̄ = maxq∈Q Z(q) as the number of subflows at the most “congested” clique. Let κ̄ = maxf∈F κf ,

where κf is the bound on the curvature of Uf (·) (see assumption A4).

Theorem 3.3.1. Assume that 0 < γ < 2/κ̄Ȳ Z̄, starting from any initial rates x(0)(xf ∈ If ) and

prices μ(0) ≥ 0, every limit point (x∗,μ∗) of the sequence (x(t),μ(t)) generated by the algorithm

in Table 3.1 is primal-dual optimal.

Proof. First, under assumption A1 the dual objective function D(μ) is convex, lower bounded,

and continuously differentiable. For any price vector μ define ψf (μ) as

ψf (μ) =

⎧⎪⎨
⎪⎩

1
−U ′′

f ((xf (µ)))
if U ′

f (Mf ) ≤ λf ≤ U ′
f (mf )

0 otherwise
(3.24)

where λf is defined as in Eq. (3.13), and xf (μ) = xf (λf ) = xf (
∑

q:E(f)∩V (q) �=∅ μqRqf ) is defined

as in Eq. (3.19). By assumption A4, we have 0 ≤ ψf (μ) ≤ κf . Now we define H(μ) =

diag(ψf(μ), f ∈ F ) be a |F |×|F | diagonal matrix with diagonal elements ψf (μ). From Eq. (3.18)

and Eq. (3.22) we further have that the Hessian of D exists and is given by
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∇2D(μ) = RH(μ)RT (3.25)

Now we show that ∇D is Lipschitz with

||∇D(ν) −∇D(μ)||2 ≤ κ̄Ȳ Z̄||ν − μ||2 (3.26)

for all ν,μ ≥ 0. Given any ν,μ ≥ 0, we have for some ω

∇D(ν) −∇D(μ) ≤ ∇2D(ω)(ν − μ) = RH(ω)RT (ν − μ) (3.27)

Hence,

||∇D(ν) −∇D(μ)||2 ≤ ||RH(ω)RT ||2 · ||ν − μ||2 (3.28)

As RH(ω)RT is symmetric, Ȳ = maxf∈F

∑
q∈ QRqf , and Z̄ = maxq∈Q

∑
f∈F Rqf , we have

that

||RH(ω)RT ||2 ≤ ||RH(ω)RT ||∞
= max

q

∑
q′

[RH(ω)RT ]qq′

= max
q

∑
q′

∑
f

ψf (ω)RqfRq′f

≤ κ̄Ȳ Z̄ (3.29)

Thus, the dual objective function D is lower bounded and ∇D is Lipschitz. Then, limit point

μ∗ of the sequence {μ(t)} generated by the gradient projection algorithm for the dual problem is

dual optimal.

Provided 0 < γ < 2/κ̄Ȳ Z̄, let {μ(t)} be a subsequence converging to μ∗. Note that U ′
f (xf ) is

defined on a compact set [mf ,Mf ], it is continuous and one-to-one. Thus, its inverse is continuous

and xf (μ) is continuous. Therefore, the subsequence {x(t) = x(μ(t))} converges to the primal

optimal rate x∗ = x(μ∗). This establishes the result of Theorem 3.3.1.
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Though there exists a unique maximizer x∗ to the problem P, there may be multiple dual

optimal prices, since only the flow price is constrained at optimum according to U ′
f (x

∗
f ) = λ∗f .

Theorem 3.3.1 does not guarantee convergence to a unique pair (x∗,μ∗), though any convergent

subsequence leads to the optimal rate allocation x∗.

3.3.3 Second tier algorithm: decentralized clique construction

The first tier of the algorithm treats maximal cliques as entities that are able to perform the com-

munication and computation tasks. Obviously, these tasks need to be performed by the network

nodes that constitute the maximal clique. As a starting point, a decentralized algorithm to con-

struct maximal cliques is required. Since the existing maximal clique construction algorithms are

centralized in nature [1], they can not be directly applied here. Nevertheless, the unique graphical

properties of the contention graph may have the potential to facilitate efficient clique construc-

tion. Hereafter, we present a decentralized maximal clique construction algorithm that explores

the characteristics of contention graphs. In this algorithm, the network topology is decomposed

into overlapping subgraphs, and maximal cliques are constructed based only on local topological

information within each of the subgraphs. Since only wireless links that are geographically close

to each other will form an edge in the contention graph, the communication and computational

overhead is significantly reduced.

We first show the implication of topological characteristics of contention graphs when it comes

to constructing maximal cliques. Let us denote the maximal clique that contains wireless link

s ∈ S as q(s) (i.e., s ∈ N(q)), and the set of all maximal cliques that contain the wireless link s as

Q(s) = {q(s)}. We now give the subgraph of G on which Q(s) can be constructed. To facilitate

discussions, we introduce the following terms.

Definition 3.3.1. (neighbor sets). The wireless link neighbor set LN(l) of a wireless link l ∈ L

is defined as LN(l) = {l′|l ∩ l′ 	= ∅, l′ ∈ L}. Similarly, the wireless link k-neighbor set LN
k(l)

of l is defined by induction: (1) LN
1(l) = LN(l); and (2) LN

k(l) = LN(LN
k−1(l)) for k > 1. For
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s ∈ S ⊆ L, we further define SN
k(s) = LN

k(s) ∩ S.

Theorem 3.3.2. Let graph Gc[Nc(s)] be an induced subgraph of Gc with Nc(s) = SN
2(s) ⊆

Nc. Then Gc[Nc(s)] contains sufficient and necessary topological information to construct Q(s).

Let graph G(s) be G(s) = (N(s), L(s)) with L(s) = SN
3(s) and N(s) = {i|∃s such that i ∈

s and s ∈ SN
2(s)}. G(s) is a subgraph G, and G(s) contains sufficient and necessary topological

information to construct Gc[Nc(s)].

Proof. By the definitions of the wireless link contention graph and clique, it is obvious that

∪q∈Q(s)N(q) = SN
2(s). This shows that Gc[Nc(s)] contains sufficient and necessary topologi-

cal information to construct Q(s). Also, for any pair of s′′, s′ ∈ SN
2(s), we need to know whether

they contend with each other to determine whether they are connected in Gc[Nc(s)]. Apparently,

LN
3(s) contains all the topological information to construct Gc[Nc(s)].

For wireless link s ∈ S, one of its vertices will be selected as its delegation node, denoted as

n(s). The delegation node n(s) constructs all maximal cliques q ∈ Q(s) by applying the Bierstone

algorithm [1] on graph Gc[Nc(s)].
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Figure 3.5: Example of decentralized clique construction

We consider an example shown in Fig. 3.5. The set of wireless links SN
2({1, 2}) ={{8, 3},

{3, 1}, {1, 2}, {2, 5}, {5, 14}, {6, 11}, {6, 12}} represents all the vertices that appear inGc[Nc({1, 2})].
To construct all the maximal cliques Q({1, 2}), the algorithm also needs to determine which wire-

less links in SN
2({1, 2}) contend with each other. For example, in Fig. 3.5, whether subflow

{5, 14} contends with {6, 12} needs to be known to determine whether they are within the same

34



clique. This implies that the knowledge of the wireless link {12, 14} needs to be known by the

algorithm for correct clique construction. Thus LN
3({1, 2}) = SN

2({1, 2}) ∪ {12, 14} needs to

be known. When dint > dtx, the network topology graph does not have sufficient information to

infer all the interference among wireless links. In this case, the clique construction algorithm only

provides an approximation solution. For practical deployment, it will work with the measurement-

based bandwidth estimation technique presented in Sec. 3.4, which takes into account the interfer-

ence among wireless communications.

3.3.4 Two-tier algorithm: integration choices

In the first tier of the algorithm, maximal clique q is considered as an entity that is able to perform

the following tasks:

1. obtain the aggregated rate
∑

f :L(f)∩N(q) �=∅ xfRqf within it;

2. compute the clique-based shadow price μq;

3. communicate the price μq to the flows that traverse through.

After presenting the decentralized clique construction algorithm, we now proceed to discuss

how these tasks are distributed to the network nodes that constitute the maximal clique. There are

two implementation choices.

In implementation I, one delegation node in clique q serves as a master that performs the task

of price calculation, denoted as n(q). At time t, each delegation node n(s) collects the rate of

flow f which passes it (i.e., s ∈ L(f)), computes rate ys at wireless link s according to ys(t) =∑
f :s∈L(f) xf (t) and sends it to the master nodes n(q) of all cliques q which s belongs to (i.e.,

s ∈ V (q)). The master node n(q) then computes the new price μq(t+ 1) of clique q according to

μq(t+ 1) = [μq(t) − γ(Cq −
∑

s:s∈N(q)

ys(t))]
+ (3.30)
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and distributes it to the other delegation nodes n(s) within clique q (i.e., s ∈ N(q)). After obtaining

the updated clique price μq(t+1), n(s) computes a per hop price λs(t+1) according to λs(t+1) =∑
q:s∈N(q) μq(t+1) for each flow f that satisfies s ∈ L(f), then sends λs(t+1) to the source of f .

For flow f , its source node performs the task of rate update. When the source node receives

the per hop prices λs(t), it computes the flow price λf (t) according to λf (t) =
∑

s:s∈L(f) λs(t)

and adjusts the rate xf according to xf (t + 1) = xf (λf (t)). It then notifies n(s) (s ∈ L(f)) of

xf (t+ 1).

In implementation II, every delegation node in a clique performs price calculation. In particu-

lar, it differs from implementation I in the following aspects. At time t each delegation node n(s)

broadcasts the rate information ys to the other delegation nodes n(s′) that satisfy s′ ∈ SN
2(s). As

such, each delegation node n(s) can compute the price of clique q (s ∈ N(q)) independently. Let

us denote the price of clique q at node n(s) as μq(n(s))
3. μq(n(s)) is calculated as follows:

μq(n(s))(t+ 1) = [μq(n(s))(t) − γ(Cq −
∑

s:s∈N(q)

ys(t))]
+ (3.31)

Node n(s) then directly computes and communicates λs(t + 1) to the source of f which satisfies

s ∈ L(f).

3.3.5 Towards asynchrony

Our two-tier algorithm assumes that updates at the sources and the relaying nodes are synchro-

nized to occur at times t = 1, 2, . . .. In realistic wireless ad hoc network environments, however,

such synchronization is difficult to achieve. In this section, we improve the algorithm to an asyn-

chronous setting, where sending rates and clique prices are updated at different times at different

nodes.

First, we briefly introduce the asynchronous model that will be used for our algorithm in the

context of implementation I. Let T = {0, 1, 2, ...} be the set of time instances at which either rates

3In this synchronous setting, given that the initial prices at different delegation nodes of a clique are the same, i.e.,
μq(n(s))(0) = μq(0), it is trivially true that μq(n(s))(t) = μq(t). Yet in the asynchronous settings that will be discussed
in Sec. 3.3.5, μq(n(s))(t) may be different for different nodes n(s).

36



or prices are updated. In particular, we define

1. Tq ⊆ T — the set of time instances at which master node n(q) updates μq;

2. T λ
s ⊆ T — the set of time instances at which delegation node n(s) updates λs;

3. Tf ⊆ T — the set of time instances at which the source of flow f updates xf ;

4. T y
s ⊆ T — the set of time instances at which delegation node n(s) updates ys.

The asynchronous model further makes the following assumption.

– A5. (Partial Asynchronism) There exists a positive integer B such that:

1. For every flow f , clique q and wireless link s, the time between consecutive updates is

bounded by B for both price and rate updates.

2. One-way communication delay between any two nodes is at most B time units.

This partial asynchronism model is first discussed in [3] and is then adopted by Low et al. in

the context of wireline networks [26]. Now we improve our two-tier resource allocation algorithm

and analyze its convergence under this asynchronous model.

In the asynchronous environment, node n(q), which updates the price μq(t) at time t ∈ Tq,

may not have the knowledge of rate information ys(t). Instead, it only knows a sequence of recent

rate updates ys((τ
q
s )1), ys((τ

q
s )2), . . ., that satisfy4:

t−B ≤ (τ q
s )1 ≤ (τ q

s )2 ≤ ... ≤ t (3.32)

Thus, node n(q) estimates the rate ŷq
s(t) by using a weighted average of recent values as follows:

ŷq
s(t) =

t∑
t′=t−B

αq
s(t

′, t)ys(t
′) with

t∑
t′=t−B

αq
s(t

′, t) = 1 (3.33)

Further, node n(q) computes the price of clique q according to the following, which is essentially

Eq. (3.23) with the load
∑

f :L(f)∩N(q) �=∅ xf (λf (t))Rqf replaced by its estimation ŷq
s(t).

4Note that such τ q
s exists under assumption A5.
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μq(t+ 1) = [μq(t) − γ(Cq −
∑

s:s∈N(q)

ŷq
s(t))]

+ , ∀t ∈ Tq (3.34)

At all times t /∈ Tq, μq is unchanged, i.e., μq(t+ 1) = μq(t).

Similarly, to compute the per hop price λs(t) at time t ∈ T λ
s , node n(s) estimates the clique

price μ̂s
q(t) according to

μ̂s
q(t) =

t∑
t′=t−B

αs
q(t

′, t)μq(t
′) with

t∑
t′=t−B

αs
q(t

′, t) = 1 (3.35)

and calculates per hop price according to

λs(t+ 1) =
∑

q:s∈N(q)

μ̂s
q(t) , ∀t ∈ T λ

s (3.36)

At time t /∈ T λ
s , λs is unchanged, i.e., λs(t+ 1) = λs(t).

At time t ∈ Tf , the source of f estimates its flow price according to

λ̂f (t) =
∑

s:s∈L(f)

λ̂f
s (t) (3.37)

where

λ̂f
s (t) =

t∑
t′=t−B

αf
s (t′, t)λs(t

′) with
t∑

t′=t−B

αf
s (t′, t) = 1 (3.38)

and computes its rate according to

xf (t+ 1) = xf (λ̂f (t)) , ∀t ∈ Tf (3.39)

At time t /∈ Tf , xf is unchanged, i.e., xf (t+ 1) = xf (t).

At time t ∈ T y
s , node n(s) calculates ys as follows.

ys(t+ 1) =
∑

f :s∈L(f)

x̂s
f (t) (3.40)

where
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x̂s
f (t) =

t∑
t′=t−B

αs
f (t

′, t)xf (t
′) with

t∑
t′=t−B

αs
f (t

′, t) = 1 (3.41)

At time t /∈ T y
s , ys(t+ 1) = ys(t).

In this algorithm, the elements of T can be viewed as the indices of the sequence of physical

times at which updates to either prices or rates occur. The sets Tf , Tq, T f
s , T q

s as well as the physical

times they represent need not be known to any other nodes, since their knowledge is not required in

the price and rate computation. Thus, there is no requirement for synchronizing the local clocks at

different nodes. We are able to show that, under assumption A5 our resource allocation algorithm

converges to global optimality even in asynchronous environments. Our main result is formally

presented in the following theorem.

Theorem 3.3.3. Assume that the step size γ is sufficiently small, then starting from any initial

rate x(0)(xf ∈ If ) and prices μ(0) ≥ 0, every limit point (x∗,μ∗) of the sequence (x(t),μ(t))

generated by the asynchronous price-based resource allocation algorithm is primal-dual optimal.

The proof of of Theorem 3.3.3 follows similar approach as in [3] (Section 7.5) and [26]. The

key to the proof is to show that the price adjustment remains in the descent direction. The proof

of our case is more complicated, because our two-tier algorithm has two-tier asynchrony: inter-

clique asynchrony, where clique price and flow rate updates are asynchronous, and intra-clique

asynchrony, where different delegation nodes have different estimations of a clique price.

Define vector π(t) as π(t) = μ(t + 1) − μ(t). We first show that the error in rate calculation

of flow f is bounded by the successive price change π.

Lemma 3.3.1. 1. For all t

|U ′−1
f (λ̂f (t)) − U

′−1
f (λf (t))| ≤ κf

t−1∑
t′′=t−2B

∑
q∈Q

|πq(t
′′)|Rqf (3.42)

2. For all t
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|U ′−1
f (λf (t)) − U

′−1
f (λf (τ))| ≤ κf

t−1∑
t′=τ

∑
q∈Q

|πq(t
′)|Rqf (3.43)

Proof. First let us define μq(t) = (μq(t
′′), t′′ ∈ [t − 2B, t])5 as a sequence of clique q’s price at

time instances t− 2B, t− 2B + 1, ..., t. Further we denote vector μ(t) as μ(t) = (μq(t), q ∈ Q).

Now let us define xf (ε; μ(t)) as

xf (ε; μ(t)) = U
′−1
f (

∑
s:s∈E(f)

∑
q:s∈V (q)

t∑
t′′=t−2B

εqt′′μq(t
′′)) (3.44)

By assumption A4, we have that

0 ≤ |∂xf (ε; μ(t))

∂εqt′′
| ≤ κfμq(t

′′)Rqf (3.45)

where it exists.

Let us define 1(t) = (1qt′′(t), q ∈ Q, t′′ ∈ [t− 2B, t]) as

1qt′′(t) =

⎧⎪⎨
⎪⎩

1, if V (q) ∩ E(f) 	= ∅, t′′ = t

0, otherwise

and ε(t) = (εqt′′(t), q ∈ Q, t′′ ∈ [t− 2B, t]) as

εqt′′(t) =

⎧⎪⎨
⎪⎩

αs
q(t

′′, t) · ∑min{t′′+B,t}
t′=t′′ αf

s (t′, t) , if s ∈ V (q) and s ∈ E(f)

0, otherwise

Note that

t∑
t′=t−B

αf
s (t

′) ·
t′∑

t′′=t′−B

αs
q(t

′′)μq(t
′′) =

∑
t′′=t−2B

αs
q(t

′′) · μq(t
′′)

min{t′′+B,t}∑
t′=t′′

αf
s (t′) (3.46)

5As a convention, we use t′ to represent the time instance between [t−B, t]; t′′ to represent time instance between
[t − 2B, t]; and t′′′ to represent time instance between [t − 4B, t].
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and
t∑

t′=t−B

αf
s (t′)

t′∑
t′′=t′−B

αs
q(t

′′) = 1 (3.47)

Thus U
′−1
f (λ̂f (t)) = xf (ε(t); μ(t)) and U

′−1
f (λf (t)) = xf (1(t); μ(t)), where xf (·,μ(t)) is

defined in (3.44). By the mean value theorem, we have for some ε̃,

|U ′−1
f (λ̂f (t)) − U

′−1
f (λf (t))|

=
∣∣∣ ∑

q∈Q,t′′∈[t−2B,t])

∂xf (ε̃; μ(t))

∂εqt′′
(1qt′′(t) − εqt′′(t))

∣∣∣
≤ κf

∣∣∣ ∑
q∈Q,t′′∈[t−2B,t])

Rqfμqt′′(t)(1qt′′(t) − εqt′′(t))
∣∣∣

≤ κf

∑
q∈Q

Rqf max
t−2B≤t′′≤t

|μq(t) − μq(t
′′)|

≤ κf

t−1∑
t′′=t−2B

∑
q∈Q

Rqf |πq(t
′′)|

Further, by the mean value theorem we have that

|U ′−1
f (λf (t)) − U

′−1
f (λf (τ))|

≤ κf

∑
q∈Q

Rqf |μq(t) − μq(τ)|

≤ κf

∑
q∈Q

Rqf

t−1∑
t′=τ

|πq(t
′)|

which completes the proof of Lemma 3.3.1.

The gradient estimation used in our asynchronous algorithm is calculated as

ξq(t) = Cq −
∑

s:s∈V (q)

ŷq
s(t) (3.48)

where ŷq
s(t) is as in Eq. (3.33). We further denote vector ξ(t) as ξ(t) = (ξq(t), q ∈ Q). Next we

give the bound of error in gradient estimation in terms of the successive price change π(t).

Lemma 3.3.2. There exists a constant K1 > 0 such that
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‖∇D(μ(t)) − ξ(t)‖ ≤ K1

t−1∑
t′′′=t−4B

‖π(t′′′)‖ (3.49)

Proof. First

[∇D(μ(t) − ξ(t)]q

=
∑

s:s∈V (q)

( t∑
t′=t−B

αq
s(t

′, t)
∑

f :s∈E(f)

t′∑
t′′=t′−B

αs
f (t

′′, t′)xf (t
′′) −

∑
f :s∈E(f)

xf (t)
)

where xf (t) is the rate of flow f if its source knows the exact flow price λf (t). Hence by [3]

(Proposition A.2), for some constant K ′
1 > 0 we have

‖∇D(μ(t)) − ξ(t)‖

≤ K ′
1 max

q∈Q

∑
s:s∈V (q)

∣∣∣ t∑
t′=t−B

αq
s(t

′, t)
∑

f :s∈E(f)

t′∑
t′′=t′−B

αs
f (t

′′, t′)xf (t
′′) −

∑
f :s∈E(f)

xf (t)
∣∣∣

≤ K ′
1 max

q∈Q

∑
s:s∈V (q)

∑
f :s∈E(f)

max
t−2B≤t′′≤t

∣∣∣xf (t
′′) − xf (t)

∣∣∣
≤ K ′

1 max
q∈Q

∑
f :E(f)∩V (q) �=∅

Rqf max
t−2B≤t′′≤t

∣∣∣U ′−1
f (λ̂f (t′′)) − U

′−1
f (λf (t))

∣∣∣

Applying Lemma C.1, we have

‖∇D(p(t)) − ξ(t)‖

≤ K ′
1 max

q∈Q

∑
f :E(f)∩V (q) �=∅

Rqf max
t−2B≤t′′≤t

|U ′−1
f (λf (t)) − U

′−1
f (λf (t

′′))| + |U ′−1
f (λf (t

′′)) − U
′−1
f (λ̂f (t

′′))|

≤ K ′
1 max

q∈Q

∑
f :E(f)∩V (q) �=∅

Rqf max
t−2B≤t′′≤t

κf

{ t−1∑
τ=t′′

∑
q′∈Q

|πq′(τ)|Rq′f +
t′′−1∑

τ=t′′−2B

∑
q′∈Q

|πq′(τ)|Rq′f

}

= K ′
1 max

q∈Q

∑
f :E(f)∩V (q) �=∅

Rqfκf max
t−2B≤t′′≤t

t−1∑
τ=t′′−2B

∑
q′∈Q

|πq′(τ)|Rq′f

≤ K ′
1κ̄Z̄Ȳ

t−1∑
τ=t−4B

‖π(τ)‖1
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Note that all norms are equivalent in finite dimensional vector space [3] (Proposition A.9). Let

K1 = K ′
1κ̄Z̄Ȳ , then we complete the proof of Lemma 3.3.2.

Now we show that ‖π(t)‖ converges to zero in the following lemma.

Lemma 3.3.3. Provided γ is sufficiently small we have ‖π(t)‖ → 0 as t→ ∞.

Proof. First, by Lemma 5.1 in [3] (Section 7.5), we have that for all t, ξT (t)π(t) ≤ −(1/γ)‖π(t)‖2.

By the descent lemma [3] (Proposition A.32) and Eq. (3.26), we have that there existsK2 such that

D(μ(t+ 1))

≤ D(μ(t)) + ‖∇D(μ(t)) − ξ‖ · ‖π(t)‖ −
(1

γ
−K2

)
‖π(t)‖2

Applying Lemma C.2, we have

D(μ(t+ 1))

≤ D(μ(t)) −
(1

γ
−K2

)
‖π(t)‖2 +K1

t−1∑
t′′′=t−4B

‖π(t)‖2 (3.50)

Summing (3.50) over all t, we have

D(μ(t+ 1))

≤ D(μ(0)) −
(1

γ
−K2 − (4B + 1)K1

)
·

t∑
τ=0

‖π(τ)‖2 (3.51)

Choose γ sufficiently small such that 1
γ
− K2 − (4B + 1)K1 > 0. Since D(μ(t)) is lower

bounded, letting t→ ∞, we must have
∑∞

t=0 ‖π(t)‖2 <∞, and hence

‖π(t)‖ → 0 as t→ ∞ (3.52)

Summarizing above results, we establish Theorem 3.3.3.

Proof of Theorem 3.3.3
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Proof. We first prove that the various errors due to asynchronism all converge to zero. First

|λ̂f (t) − λf (t)| = |
∑

s:s∈E(f)

t∑
t′=t−B

αf
s (t′, t)

∑
q:s∈V (q)

t′∑
t′′=t′−B

μq(t
′′) −

∑
s:s∈E(f)

∑
q:s∈V (q)

μq(t)|

≤ max
t′′∈[t−2B,t]

∑
q:q∈Q

Rqf |μq(t
′′) − μq(t)|

≤ Y (f)
t∑

t′′=t−2B

‖π(t′′)‖1

which by (3.52) converges to zero as t → ∞. Because xf (t) and xf (t) are projections of U
′−1
f

onto [mf ,Mf ] and projection is nonexpansive [2] (Proposition 2.1.3), we have

|xf (t) − xf (t)| ≤ |U ′−1
f (λ̂f (t)) − U

′−1
f (λf (t))|

≤ Y (f)κf

t−1∑
t′′=t−2B

‖π(t′′)‖1

Hence, by Eq. (3.52), |xf (t) − xf (t)| → 0 for all f .

We now show that every limit point of the sequence {μ(t)} generated by the asynchronous

algorithm minimizes the dual problem. Let μ∗ be a limit point of {μ(t)}. At least one exists, as it

is constrained to lie in a compact set, provided γ is sufficiently small. Moreover, since the interval

between consecutive updates is bounded (assumption A5), it follows that there exists a sequence of

elements of T along which μ converges. Let {tk} be a subsequence such that {μ(tk)} converges

to μ∗. By Lemma C.2, we have

lim
k

ξ(tk) = lim
k

∇D(μ(tk)) = ∇D(μ∗)

Hence

[μ∗ − γ∇D(μ∗)]+ − μ∗ = lim
k

[μ(tk) − γξ(tk)]
+ − μ(tk) = lim

k
π(tk) = 0

Then by the projection theorem [2] (Proposition 2.1.3) and [3] (Proposition 3.3 in Section 3.3),

we have that μ∗ minimizes D over μ ≥ 0. By duality x∗ = x(μ∗) is the unique primal optimal
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rate. We now show that it is a limit point of {x(t)} generated by asynchronous algorithm. Consider

a subsequence {x(tm)} of {x(tk)} such that {x(tm)} converges. Since ‖x(t) − x(t)‖ → 0, we

have

lim
m

x(tm) = lim
m

x(tm) = lim
m

x(μ(tm)) = x(μ∗)

This completes the proof.

The improvements on implementation II towards asynchrony are similar to implementation

I. The only difference is that the communication between delegation nodes and master node of

a clique is not required for its price update, as the clique prices are computed independently at

delegation nodes. We show via simulation that the asynchronous algorithm under implementation

II closely matches the global optimum at equilibrium, if the step size γ is sufficiently small, and

the initial prices μq(n(s))(0) at different delegation nodes n(s) are the same for a clique q.

To this end, we have presented the distributed algorithm for resource allocation based on the

dual method. We first presented the per-clique resource allocation algorithm, then integrated it

with the distributed clique construction algorithm. Finally, we improve it towards asynchronous

communication.

3.3.6 Improvement for multi-rate wireless network

In wireless networks, the signal strength and noise level of wireless channels vary widely, espe-

cially in indoor environments, leading to diverse channel bit error rates (BER). In IEEE 802.11, to

reduce the BER, the sender can transmit at a lower data rate by using a more resilient modulation

scheme. Four different bit rate levels: 11, 5.5, 2 and 1Mbps, are defined in IEEE 802.11 standard.

Many vendors of client adaptors and access points implement automatic bit rate control scheme in

which the sender adaptively changes the bit rate based on perceived channel conditions. This leads

to a wireless network with rate diversity, where competing flows within the interference range

transmit at different rates.
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This section presents the improvement of our price-based resource allocation algorithm for

such multi-rate wireless networks.

Problem formulation

Consider the bit rate of sub-flow s be Bs. Then ys

Bs
is the percentage of the channel time that

sub-flow s uses. Let ρq be the maximum percentage of channel time used in data transmission (so

called maximum channel utilization). Then for each clique q, the following condition needs to be

satisfied.

∀q;
∑

s∈N(q)

ys

Bs

≤ ρq (3.53)

Let B = (Bqs)|Q|×|S| be the bit rate matrix defined as follows:

Bqs =

⎧⎪⎨
⎪⎩

1
Bs

if s ∈ N(q)

0 otherwise

Further we define ρ = (ρq, q ∈ Q) as the maximum channel utilization vector. Then Eq. (3.53)

can be written in the following form.

B · y ≤ ρ (3.54)

And the channel resource constraint in a multi-rate wireless network is given as follows.

B · A · x ≤ ρ (3.55)

To summarize, the problem of optimal resource allocation in a multi-rate wireless network can

be formulated as the following non-linear optimization problem M.

M : maximize
∑
f∈F

Uf (xf ) (3.56)
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subject to BAx ≤ ρ (3.57)

over xf ∈ If (3.58)

Algorithm

We solve problem M using a price-based approach, and present the resource allocation algorithm

in Table 3.2.

Clique Price Update (by clique q): At times t = 1, 2, . . .
1 Receive rates xf (t) from all flows f where L(f) ∩N(q) 	= ∅
2 Update price

μq(t+ 1) = [μq(t) − γ(ρq −
∑

s:s∈N(q)

∑
f :s∈L(f) xf

Bs
)]+

3 Send μq(t+ 1) to all flows f where L(f) ∩N(q) 	= ∅

Rate Update (by flow f ): At times t = 1, 2, . . .
4 Receive channel prices μq(t) from all cliques q where L(f) ∩N(q) 	= ∅
5 Calculate

λf (t) =
∑

q:L(f)∩N(q) �=∅
∑

s:s∈N(q)
μq(t)

Bs

6 Adjust rate
xf (t+ 1) = xf (λf (t))

7 Send xf (t+ 1) to all cliques q where L(f) ∩N(q) 	= ∅.

Table 3.2: Resource allocation algorithm in multi-rate wireless network.

As shown in the table, the improved algorithm considers the rate diversity problem in multi-rate

wireless networks. In particular, the prices are adjusted based on the channel time usage, and its

difference from maximum channel utilization. And the flow prices take into account the channel

bit rate at each hop which the flow travels. And it is intuitive to show that the algorithm converges

to the unique global optimal solution of problem M.

3.4 Performance Evaluation

In this section, we present the deployment issues of our price-based resource allocation algorithm

over realistic wireless networking environments and evaluate the performance of our algorithm via

analysis and under various simulation environments.
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In particular, we study our algorithm under three environments. The first environment, referred

to as synsim for convenience, assumes bounded communication delay and synchronized message

updates. The second, referred to as asynsim for convenience, considers the asynchronous environ-

ments in wireless ad hoc networks. In both environments, we assume that the transmission range

is the same as interference range, which are both 250m. We further assume that the MAC layer

scheduling is ideal in a sense that it can achieve the wireless channel capacity 2Mbps, and the

routing algorithm uses shortest path. The third, referred to as realsim, considers the realistic wire-

less environments. Realsim adopts two-ray ground reflection model as radio propagation model

and uses IEEE 802.11DCF as the MAC protocol. The transmission range in realsim is smaller

than the interference range, which are 250m and 550m, respectively. The data transmission rate in

realsim is 1Mbps. To simulate our algorithm under realsim, we implement it based on the wireless

extensions in the ns-2 simulator. With respect to routing, the ns-2 module of AODV [31] is used in

realsim. In all simulation environments, utility function Uf (xf ) = ln(xf ) is used, which enforces

proportional fairness.

3.4.1 Deployment issues

The physical and MAC layer reality of wireless ad hoc networks presents several challenges to de-

ploy our price-based resource allocation algorithm. First, the achievable channel bandwidth varies

at different contention regions (cliques) depending on the MAC protocol. And it is usually much

smaller than the ideal channel capacity and can not be known a priori. Dynamically estimating the

achievable channel bandwidth at different contention regions is a critical problem to deploy our al-

gorithm in realistic wireless environments. Second, the two-tier decentralized clique construction

and price calculation algorithm requires communication among nodes, which may introduce addi-

tional overhead to the network. Designing an efficient communication protocol that still ensures

the proper algorithm convergence is also a challenging problem. This problem becomes even more

challenging when node mobility is taken into consideration.

To address these challenges, we present two deployment techniques: measurement-based band-
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width estimation and lightweight communication protocol. The extensive simulation study shows

that with these techniques, our price-based resource allocation algorithm can be efficiently de-

ployed on real wireless environments and provide an effective solution for resource allocation.

Measurement-based bandwidth estimation

The measurement-based bandwidth estimation is based on the approach presented in [38]. It mea-

sures the achievable bandwidth of each wireless link based on its historic data transmission results.

RTS CTS DATA ACK

packet ready
tr

packet departs
td

contentions period

Figure 3.6: Measurement-based bandwidth estimation.

As shown in Fig. 3.6, under IEEE 802.11 MAC protocol, when a packet from a particular

wireless link becomes the head-of-line packet (i.e., the first packet waiting to be transmitted), then

this packet is ready. And we denote this time instance as tr. When the link layer acknowledgement

is received, the packet departs. We denote this time instance as td. The transmission delay of this

packet is then given as td− tr, which includes a contention period. The contention period indicates

the channel bandwidth used by packet transmissions of other wireless links within the contention

region. The achievable bandwidth observed by this wireless link is then calculated as z
td−tr

, where z

is the size of the packet. To achieve more accurate measurement result, we use a window with size

w of packets to conduct the bandwidth estimation, i.e., the bandwidth is estimated as w·z∑w
i=1 tid−tir

.

Moreover, packets of different lengths z need to be normalized [38]. We choose not to discuss

these details due to the space constraint. The measurement-based bandwidth estimation takes into

account the effect of physical layer interference and the inefficiency of MAC protocols, as it is

based on the scheduling result of packet transmissions. We will show the detailed simulation

results on the convergence and evaluate the effect of measurement parameters in Sec. 3.4.2.
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Lightweight communication protocol

To calculate the price of each clique, only its load gradient (difference between achievable band-

width and load) needs to be known. Thus based on its achievable bandwidth and its load, each

wireless link calculates its local gradient. Instead of communicating both rate and bandwidth

information, only gradient information is sent along with connectivity information to construct

cliques and compute their prices.

To achieve low overhead communication, the information is sent via piggybacking. First, the

local gradient information of each wireless link is piggybacked onto the data packets of the flows

passing by to notify the nodes at their downstreams instantaneously. Second, working with AODV

routing protocol, connectivity and local gradient information is also piggybacked onto HELLO

packets and are sent at a certain time interval. Based on Theorem 3.3.2, end nodes of subflow

s cache the information within LS
3(s) and transmit information within LS

2(s) to their neighbor

nodes. The prices are also piggybacked onto data packets so that the destination of a flow can

notify its source via FEEDBACK packets.

Such protocol provides an asynchronous information update for price calculation and com-

munication. As we have shown in Theorem 3.3.3, the price-based algorithm converges to global

optimum in the asynchronous environments. Sec. 3.4.2 presents the simulation results on the con-

vergence and show the impact of HELLO intervals on convergence.

3.4.2 Convergence

We first study the convergence behavior of our price-based resource allocation algorithm under

different simulation environments and identify the factors that affect this procedure.

1 2 3 4 5
f1

f2 f3 f4 f5

(0,0) (250,0) (500,0) (750,0) (1000,0)

Figure 3.7: 4-hop chain topology
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topology (hops) 4 5 6 7 8 9 10
step size (γ) 1 0.8 0.75 0.62 0.6 0.6 0.5
number of iterations to converge 18 23 42 46 55 96 102

Table 3.3: Number of iterations towards convergence

Convergence speed

With appropriately tuned step sizes, we first evaluate how rapidly our algorithm converges to the

global optimum. We simulate the algorithm on chain topologies from 4 hops to 10 hops in synsim.

As an example, the 4-hop chain topology and its traffic pattern is shown in Fig. 3.7. In all the

experiments, the initial values of sending rates are 2 Mbps and the initial prices are 2. The results

are shown in Table 3.3 along with their corresponding step sizes, which are tuned to ensure the most

efficient convergence6. From these results, we observe that the best step sizes and the convergence

time apparently correspond to the scale of the network. In particular, the larger number of cliques

through which the longest flow passes (i.e., Ȳ ), the smaller step sizes and the more iterations are

required for convergence.

We have also carried out this experiment with different initial settings of prices and rates. We

observe that the algorithm always converges regardless of the initial settings. In particular, the

sending rates always converge to a unique optimum regardless of the initial rates, and the prices

may converge to different values — all of which are dual optimal — if different initial prices are

used. This is because that, at equilibrium, only the flow price λ∗f is constrained by U ′
f (x

∗
f ) = λ∗f ,

and different price vectors μ∗ may lead to the same value of λ∗f .

Convergence in asynchronous environments

With asynsim, we evaluate the convergence behavior of our algorithm in asynchronous environ-

ments. We first show the convergence behavior of implementation I. Recall that in asynchronous

models, recent updates are averaged to accommodate delayed and out-of-order messages. In the

6The termination criteria in synsim are |xf (t) − x∗
f | ≤ ε for all f ∈ F and |μq(t) − μ∗

q | ≤ ε for all q ∈ Q with
ε = 10−4.
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simulation, we adopt a moving average method to specify the weight parameters. In particular, let

0 ≤ (τ)1 ≤ (τ)2 ≤, ...,≤ (τ)m be the time instances of the received updates, then αq
s is specified

as

αq
s(t

′, t) = 1 if m = 1, t′ = (τ)1 (3.59)

αq
s(t

′, t) = (1 − α)m−j · α if m > 1, t′ = (τ)j, j = 1, 2, ...,m (3.60)

αf
s , αs

f , and αs
q are defined in the same way. α is a unified parameter that represents the weight

of the history in estimation. When α = 0, only the most recently received update is used for

estimation. We evaluate the impact of α and step size γ on the convergence. We conduct the ex-

periments on a 4-hop chain topology (Fig. 3.7) using different values of γ and α. The experimental

results are shown in Fig. 3.8 and Fig. 3.9, respectively. From the results, we have the following

observations. First, at equilibrium, with sufficient small step size (γ ≤ 0.05), independent of the

choices of α, rate allocation in asynchronous environments achieves the global optimum as in syn-

chronous settings. This validates the theoretical claim in Theorem 3. Second, the value of the step

size that ensures the convergence and optimal rate allocation is much smaller than the synchronous

case. For example, as shown in Fig. 3.8, the resource allocation does not converge to the optimum

when the step size γ = 0.5, while in synchronous settings, the algorithm converges to optimum

when γ = 1. Further, the value of α affects the convergence speed, with a larger α leading to

a longer convergence time. This means that in implementation I, α = 0 can ensure the fastest

convergence to the global optimum.
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(c)   γ = 0.5

Figure 3.8: Asynchronous experiments of implementation I with different step sizes γ (α = 0).
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(a)  α = 0.1
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(b)  α = 0.4
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(c)  α = 0.6

Figure 3.9: Asynchronous experiments of implementation I with different weights α (γ = 0.05).

We now repeat these experiments using implementation II, with step size γ = 0.05. The

results are shown in Fig. 3.10. From these results, we have the following observations. First, the

equilibrium rate allocation closely matches the optimal values. Second, the value of α affects the

convergence speed and how close the equilibrium rate allocation matches the optimum. The reason

behind this observation can be intuitively explained as follows. In implementation II, different

delegation nodes have different rate estimations for clique price calculation, depending on the

value of α. Although the clique price changes will converge to zero at each individual node,

the difference between clique prices at these nodes does not. Such difference may vary with the

value of α. Yet, no matter what value α is set to, the equilibrium rate allocation always closely

matches the optimum in the simulations. This is because nodes within a clique have relative small

communication delays, hence small rate estimation differences.
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Figure 3.10: Asynchronous experiments with implementation II.
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Impact of measurement window size on convergence

Now we study the convergence behavior of our algorithm with bandwidth estimation and evaluate

the impact of measurement parameters in realsim. We experiment with different measurement

window sizes w on the 4-hop chain topology (Fig. 3.7). The results are shown in Fig. 3.11. From

the results we have the following observation. The algorithm converges faster in the case of w = 5

than the case of w = 20, because a smaller measurement window gives faster feedback on the

channel condition. On the other hand, too small w results in imprecise measurement. This leads

to slight fluctuations at the equilibrium as shown in Fig. 3.11 in the case of w = 5. In what

follows, we use w = 20 as the default measurement window size, because it gives stable and

precise measurement results with acceptable convergence speed.
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Figure 3.11: Convergence with bandwidth estimation.

Impact of HELLO interval on convergence

We experiment with different lengths of HELLO intervals and evaluate its impact on convergence.

As shown in Fig. 3.12, large HELLO intervals (e.g. interval = 20 seconds) increase the convergence

time and may cause small fluctuations. The results also show that in a static environment, a HELLO

interval of less than 10 seconds can ensure convergence with satisfactory speed and can achieve

stability at equilibrium. Obviously, different lengths of HELLO intervals also affect the overhead.

Long HELLO intervals can significantly reduce the overhead. In the following simulations, we

use 1 second as the default length of the HELLO interval.
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Figure 3.12: Convergence under the piggyback-based lightweight communication protocol.

Convergence in random networks

Now we study the convergence behavior of our algorithm with respect to both transmission rate

and throughput in a randomly generated wireless network as shown in Fig. 3.13(a). This network

consists of 30 nodes deployed over a 600 × 600 m2 region. In the experiment, 5 flows are estab-

lished between 5 different pairs of nodes to start at different time instants. Fig. 3.13(b) and (c) plot

the instantaneous transmission rate and throughput of each flow respectively. From these results,

we have the following observations: (1) our algorithm converges with satisfactory speed even in

relatively large scale networks (e.g., 30 node over 600 × 600 region); (2) our algorithm converges

when traffic dynamically joins the network.

(a) random topology (b) transmission rate (c) throughput
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Figure 3.13: Convergence in random networks.
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3.4.3 Impact of realistic wireless interference

In the next set of experiments, we are interested in studying the impact of realistic wireless inter-

ference on our algorithm.

Special scenarios

First, using realsim, we perform our experiments in a set of special network topologies: the hidden

terminal scenario, the exposed terminal scenario, and the race condition scenario.

• Hidden terminal. Fig. 3.14 shows one example of the hidden terminal scenario, as well as

experimental results on the convergence of the transmission rate and the throughput of our

algorithm. From the results, we observe that the algorithm performs as expected: at equilib-

rium, two flows share the resource fairly. The result is obvious because the sending nodes

of both flows are able to obtain the information from each other, thus correctly construct-

ing the clique and calculating its price. In contrast, we also show the performance of our

algorithm over a different hidden terminal scenario as shown in Fig. 3.15. In this scenario,

the sending nodes of the two flows are unable to communicate, though their transmissions

still interfere with each other. Thus, each wireless link treats itself as the only link within

the clique, though the correct clique construction should consist of both wireless links. In

this case, the price of a clique relies on the gradient of one wireless link, which is in turn

calculated based on the bandwidth estimation at either node 2 or node 3. Node 2 can sense

the interference from node 3, when it sends FEEDBACK packets to node 1. Similarly, node

3 can sense the interference from node 2, when it sends the data packets. But due to their

asymmetric traffic loads, their bandwidth estimation results are different. As a result, the

rate allocation of these two flows is not fair at equilibrium.

• Exposed terminal. Due to the coordination of RTS/CTS at the MAC layer, the sending

nodes are able to communicate with each other to exchange necessary load and topology
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Figure 3.14: Convergence in the hidden terminal scenario I.
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Figure 3.15: Convergence in the hidden terminal scenario II.

information. Fig. 3.16 shows that the algorithm performs correctly in the exposed terminal

scenario.

f1 f2

(a) exposed terminal topology (b) transmission rate (c) throughput
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Figure 3.16: Convergence in the exposed terminal scenario.

• Race condition. The result under the race condition is shown in Fig. 3.17. We observe

that the performance of our algorithm under the race condition is different from the hidden

terminal scenario in its delayed convergence. This is because flow f1 is unable to capture the

wireless channel at the beginning due to the unawareness of the RTS/CTS signals from the

transmission of the other flow and the unfair backoff of IEEE 802.11. Once it gets the chance

to transmit, the load change will be detected by flow f2 via bandwidth estimation, which in
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turn leads to the price increase of this contention region and the rate decrease of flow f2. Via

the communication between their receiving nodes, these two flows share the same view of the

network condition and the price, thus converge to an equilibrium, where their transmission

rates are the same. Although they have approximately the same throughput at equilibrium,

slight difference and fluctuation can still be observed on their instantaneous throughput,

especially compared with the results in the hidden terminal scenario in Fig. 3.14. This is

caused by the imprecise measurement under the race condition: IEEE 802.11 has short-term

unfairness in its scheduling even when both flows send at the same rate, which is achievable.

This problem is rooted at the MAC protocol, and can not be resolved by our algorithm.

However, as we may observe from the results, the long term fairness can be guaranteed at

the equilibrium via our price-based algorithm.

f1 f2

(a) race condition topology (b) transmission rate (c) throughput
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Figure 3.17: Convergence in the race condition scenario.

Comparison studies

To further illustrate the meaning of contention region and the impact of interference, we compare

the equilibrium resource allocations of an ad hoc network with a wireline network of the same

topology and two ad hoc networks with different interference ranges.

First, the rate allocation and the equilibrium prices of the wireline network and the wireless

ad hoc network with a 4-hop chain topology are compared under synsim. The cliques of the ad

hoc network under synsim are the same as in Fig. 3.4. The results are listed in Table 3.4. From

these results we have the following observations. First, the rate allocated to each flow in the

ad hoc network is less than the rate allocated to the corresponding flow in wireline networks.
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x1 x2 x3 x4 x5 μ1 μ2 μ3 μ4

wireline network 0.4 1.6 1.6 1.6 1.6 0.625 0.625 0.625 0.625
ad hoc network 0.133 0.8 0.4 0.4 0.8 1.25 1.25 N/A N/A

Table 3.4: Rate allocations and equilibrium prices in different networks

The difference lies in their different definitions of contention regions. In the wireline network, a

wireline link represents a contention region, whose capacity is the link bandwidth. In the ad hoc

network, a wireless link is no longer a contention region. Instead, the set of wireless links, formally

represented by a clique, constitutes the contention region, and shares the channel capacity. Thus,

with the same capacity of the wireless channel and the wireline link, the throughput of the ad hoc

network is lower than that of the wireline network. Second, in the wireline network, the rates of

all single-hop flows are the same. In the ad hoc network, the rates of these flows are different. The

reason is that, in the wireline network, flows f2 through f5 enjoy the same amount of resources;

while in the ad hoc network, due to location-dependent contention, f3 suffers higher contention

than f2. This is also reflected through the prices that f2 and f3 need to pay. For f2, the price is

λ2 = μ1, which equals to 1.25 at equilibrium, while the price for f3 is λ3 = μ1 + μ2, which equals

to 2.5. Third, in both networks, the equilibrium rate allocations for flows with different lengths

are different. This is actually the result of proportional fairness. In particular, the longer the flow,

the less the rate allocated. This observation is natural from the perspective of maximizing the

aggregated utility. When the utility functions of all flows are the same, long flows consume more

resources for an unit of utility increase. Hence, the short flows are favored.

To further illustrate the impact of interference, we compare the resource allocation on two ad

hoc networks with different interference ranges. The results are shown in Fig. 3.18(b) and (c).

We observe that the resource allocations are different for two networks. The reason behind this

observation is that different interference ranges lead to different contention regions as shown in

Fig. 3.18(a). When the interference range is 550m, the network only consists of one contention

region. On the other hand, when interference range is 250m, there are two overlapping contention

regions in the network.
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Figure 3.18: Comparison of different interference ranges.

3.4.4 Overhead

Now we proceed to evaluate the overhead of our algorithm via simulation under different mobility

degrees. In the simulation, 30 mobile nodes are randomly deployed on a 600 × 600 m2 network.

They move according to the random waypoint mobility model with an average node speed of

20m/s. The pause time interval is varied in the experiment. For each simulation, the results are

averaged over 10 randomly generated mobile scenarios with the same pause time interval.

Fig. 3.19(a) plots the normalized overall packet overhead, which is the ratio between the num-

ber of non-data packets and the data packets delivered at each hop. The overall overhead includes

the FEEDBACK packets sent by the receiver of each flow, and the AODV routing packets, which

include HELLO packets that carry the price calculation information. We compare the overhead of

our algorithm with the overhead of the TCP protocol7 running over AODV. From the results, we

observe that our algorithm has lower packet overhead than TCP. This is mainly because our price-

based resource allocation algorithm generates fewer FEEDBACK packets than the ACK packets of

7TCP is also considered as a form of resource allocation for end-to-end flows in existing literature [20].
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(a) normalized overall packet overhead (b) normalized FEEDBACK packet overhead

(c) HELLO packet overhead in bits per second (d) overall overhead in bits per second
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Figure 3.19: Overhead.
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TCP. Fig. 3.19(b) plots the ratio between the number of FEEDBACK packets sent at the receivers

of the flows and the data packets that they receive. We observe that fewer FEEDBACK packets are

generated with lower mobility. This is because at the equilibrium where the price is unchanged, no

FEEDBACK packet needs to be sent. Moreover, because the lightweight communication protocol

uses packet piggybacking as its information delivery method, it does not introduce many additional

control packets (AODV packets) at the routing layer into the network.

We proceed to study the overhead of our algorithm in bits per second. From Fig. 3.19(d),

we observe that the overhead of our algorithm in bits per second is also comparable to TCP over

AODV, although our algorithm uses larger AODV HELLO packets.

3.4.5 k-hop heuristic

To further reduce the overhead, we introduce a set of k-hop heuristic algorithms. In these heuris-

tics, end nodes of subflow s cache the information within LS
k(s) (k ≤ 3) and transmit information

within LS
k′

(s) (k′ = k − 1) to their neighbor nodes. Based on such partial knowledge of the net-

work topology and load, cliques are constructed, and their prices are computed approximately. We

first provide an analytical study of the overhead in k-hop heuristic algorithms. Then we present

their simulation results.

As the amount of information depends on the number of neighbors of wireless nodes, we first

analyze the expected number of neighbors in a wireless ad hoc network. Let A be the size of the

region which is covered by the network being studied. And we assume that the node is uniformly

distributed over the region. Then the expected number of neighbors within k (k < 3) hops of a

wireless node is analyzed as follows.

Consider a wireless node i ∈ N with transmission range dtx. The probability that it has m

neighbors is given in the following probability density function8:

8Note that when the node is located at the border of the network, the number of its neighbors may be different. For
simplicity, we ignore such cases in this analysis.
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p1−hop(m) =
( |N | − 1

m

)
· (π · d2

tx

A
)m(1 − π · d2

tx

A
)|N |−1−m (3.61)

p2−hop(m) =
( |N | − 1

m

)
· (π · (2 · dtx)

2

A
)m(1 − π · (2 · dtx)

2

A
)|N |−1−m (3.62)

It is obvious that both satisfy binomial distribution. The expected number of 1-hop neighbors

of i is

E[1 − hop] =

|N |−1∑
m=1

m · p1−hop(m) = (|N | − 1) · π · d2
tx

A
(3.63)

and the expected number of 2-hop neighbors of i is

E[2 − hop] =

|N |−1∑
m=1

m · p2−hop(m) = (|N | − 1) · π · (2 · dtx)
2

A
(3.64)

If the interval of HELLO messages is Thello, and each entry of a wireless link uses bnb bits,

then the additional bit overhead of k-hop heuristic algorithms for clique construction and price

computation are

• 1-hop heuristic algorithm: bnb · Thello;

• 2-hop heuristic algorithm: (bnb · Thello)(1 + E[1 − hop]);

• 3-hop heuristic algorithm (original algorithm): (bnb · Thello)(1 +E[1 − hop] +E[2 − hop]);

Now we proceed to study the k-hop heuristic algorithm via simulation. Fig. 3.19(c) shows the

overhead in bits per second incurred by HELLO packets when heuristics with different information

propagation ranges are used. Fig. 3.19(d) compares the overall overhead in bits per second of the

original price-based resource allocation algorithm with its heuristics. From the results, we observe

that the 2-hop heuristic has similar overhead as TCP over AODV, while 1-hop heuristic has even

smaller overhead in bits per second than TCP.
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We further study the performance of these heuristics in terms of rate allocation. First we

study the aggregated utilities achieved by different heuristics and compare them with the original

algorithm and TCP. In the experiment, we consider wireless ad hoc networks at two scales. At

the smaller scale, the networks have 20 nodes deployed over a 500 × 500 m2. At the larger scale,

the networks have 30 nodes deployed over a 600 × 600 m2 region. For each network scale, 10

topologies are randomly generated. The original algorithm and its heuristics are simulated and

compared with TCP over the same topology. The results are shown in Fig. 3.20(a) and Fig. 3.20(b)

respectively, corresponding to each network scale.

From these results, we have the following observations. First, the price-based resource allo-

cation algorithm and its heuristics all outperform TCP in terms of aggregated utility. In networks

with a smaller scale, the performance of the heuristics closely matches the original algorithm. This

observation is because in networks with smaller scales, the hop counts between any two nodes are

small. Thus heuristics with smaller information propagation ranges are sufficient to communicate

the information for clique construction and price calculation. In some topologies, 1-hop heuristic

can provide even better performance than the original algorithm due to its lower overhead. In net-

works with larger scales, the 2-hop heuristic and the original algorithm give better performance

than the 1-hop heuristic owing to more precise clique construction. Moreover, 2-hop heuristic can

sometimes outperform the original algorithm due to its lower communication overhead.

Larger aggregated utility indicates more fair resource allocation and better resource utilization.

To further understand the results in terms of aggregated utility in Fig. 3.20, we plot in Fig. 3.21

the throughput of each flow from the simulation result of one randomly generated 600 × 600 m2

network. The result clearly reflects the fairness improvement achieved by our price-based resource

allocation algorithms in comparison with TCP.

3.4.6 Impact of mobility

In this section, we study the behavior of our algorithm over mobile ad hoc networks. In particular,

we seek to find the threshold of mobility where the convergence speed of the algorithm is not
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Figure 3.20: Comparison of price-based resource algorithms and TCP over randomly generated
networks.
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Figure 3.21: Throughput comparison over a randomly generated network with 30 node deployed
over a 600 × 600 m2 region.

fast enough to ensure a sufficient portion of time at equilibrium. We experiment on a specially

designed mobile scenario as shown in Fig. 3.22(a). In this mobile scenario, nodes 1 is moving

between location (150, 1000) and (150, 500) observing the random waypoint model, and node 2 is

moving between (150, 500) and (150, 0). During the simulation, these two nodes will serve as the

relaying nodes for flow f1 in an interwoven fashion. The convergence behavior and the throughput

under different node speeds and pause time intervals are plotted in Fig. 3.22. From the figure, we

can observe that the new convergence occurs after broken routes are re-established. The results

show that the algorithm converges and stays at equilibrium for a large portion of time when the

node moves at 10m/s without pause. When the node speed increases to 20m/s, the flow spends

approximately the same amount of time during the convergence and at the equilibrium. Further

increasing the node speed under this scenario may result in insufficient amount of equilibrium

time where resource is optimally allocated. Obviously, if the pause time interval is increased, the

algorithm can support higher node speeds. This is illustrated in the figure, when node speeds are
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50m/s with the pause time interval as 20 seconds.
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Figure 3.22: Impact of node mobility.

To study the impact of mobility on our algorithm over random networks, we organized the

simulated network scenarios into mobility patterns. Each mobility pattern, generated randomly,

specifies a sequence of movements. Within each mobility pattern, the mobility index specifies the

average node speed and pause time of each mobile scenario. For example, under one mobility

pattern, if with index 1 a node takes time t to move from location a to location b, then with index

2, this node will take 2× t to traverse this distance. Our experiment ranges from mobility index 1,

which corresponds to an average node speed of 100m/s and pause time interval of 10 seconds, to

mobility index 6, which corresponds to an average node speed of 16.67m/s and pause time interval

of 60 seconds. Fig. 3.23(a) plots the aggregated utility of our algorithm with varied mobility

indices under 4 different mobility patterns. To better understand the performance indicated by
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the aggregated utility, Fig. 3.23(b) plots the throughput of each flow under pattern 1 with varied

mobility indices. From these results, we observe that the difference from mobility index 4, which

corresponds to an average node speed of 25m/s and pause time interval of 40 seconds, to mobility

index 6 is quite small. Moreover, even in highly mobile environments such as the ones indicated

by mobility indices smaller than 3, the performance of our algorithm still degrades reasonably with

the increased mobility.

 20

 21

 22

 23

 24

 25

 1  2  3  4  5  6

ag
gr

eg
at

ed
 u

til
ity

mobility index

pattern 1
pattern 2
pattern 3
pattern 4

0

20

40

60

80

100

120

1 2 3 4 5 6

flow 1
flow 2
flow 3
flow 4
flow 5

mobility index

th
ro

ug
hp

ut

(a) aggregated utility under different patterns (b) throughput of each flow under pattern 1

Figure 3.23: Impact of node mobility.

3.5 Related Work

We evaluate and highlight our original contributions in light of previous related work.

The problem of optimal and fair resource allocation has been extensively studied in the context

of wireline networks. Among these works, pricing has been shown to be an effective approach

to achieve distributed solution for rate allocation (e.g., [20, 26, 21, 23, 22, 17, 18]). The role

of price in our work is similar to [26], which reflects the relation of the demand and the supply

of resources. Nevertheless, the fundamental differences in contention models between ad hoc

and wireline networks deserve a fresh treatment to this topic. As we have emphasized, these

resource allocation strategies employed in the wireline network may not be applied directly in the

context of ad hoc networks due to the unique characteristics of the shared wireless channel. One

of the highlights in this work is to propose a new pricing framework for wireless ad hoc networks

to address such problems. The essence of our proposal is to define shadow prices for maximal
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cliques, rather than wireline links.

A collection of papers have studied the use of pricing in the context of wireless networks (e.g.,

[14, 16, 9, 37, 36]). In these works, pricing has been used as a mechanism for optimal distributed

power control. In comparison, our work is towards different objectives and in different wireless

environments. For example, we study rate allocation in multi-hop wireless networks with time-

slotted MAC, while most of the work in this group study base-station-based single-hop wireless

networks with CDMA. In addition, Liao et al. [33] use price as an incentive for service class

allocation in wireless LAN. Their solution, however, is applicable in scenarios where centralized

management is readily available.

In previous work, fair packet scheduling mechanisms have been proposed [29, 40, 27] and

shown to perform effectively in providing fair shares among single-hop flows in wireless ad hoc

networks, and in balancing the trade-off between fairness and bandwidth utilization. However,

none of the previously proposed algorithms has considered end-to-end flows spanning multiple

hops, which reflect the reality in wireless ad hoc networks. While these mechanisms may be

sufficient for maintaining basic fairness properties among localized flows, they do not coordinate

intra-flow bandwidth allocations between upstream and downstream hops of an end-to-end flow,

and thus will not be able to achieve global optimum with respect to bandwidth utilization and fair-

ness. It can be shown that fair resource allocation among single-hop flows may not be optimal for

multi-hop flows, due to the unawareness of bottlenecks and lack of coordination among upstream

and downstream hops. Due to the complexities of such intra-flow coordinations, we are naturally

led to a price-based approach, where prices are computed as signals to reflect relations between

local bandwidth demands and supplies, and are used to coordinate the bandwidth allocations at

multiple hops. Finally we argue that our proposed solution for end-to-end flows is complementary

to any MAC-layer solutions, and can be implemented based on them.

In recent work, joint rate control and scheduling mechanisms have been proposed [?, ?, 34, 25,

24]. These schemes require the change of the MAC layer protocol to support fair and efficient rate

control. In contrast, our solution does not require the support of a particular MAC-layer scheduling
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algorithm. Although our pricing model is established based the assumption of an ideal MAC layer

scheduling algorithm, it can be extended to be applied with any MAC scheduling algorithm as long

as its achievable channel capacity can be estimated. In our system implementation, we illustrate

how our solution can be built over IEEE 802.11-based wireless networks.

3.6 Summary

In this chapter, we have presented a novel price-based resource allocation algorithm based on

an analytical pricing model that is specifically designed for the unique characteristics of multi-

hop wireless ad hoc networks. The original contribution incorporated in the pricing model is the

association of shadow prices with the maximal cliques in the contention graph model, rather than

with individual links as in wireline networks. Based on insights brought forth by such strategies,

the algorithms proposed are fully distributed, and arbitrate the contention among end-to-end multi-

hop flows with respect to fair resource allocation. The validity of our claims is supported by both

theoretical studies and extensive simulation results. To the best of our knowledge, there does not

exist any previous work that addresses the problem of enforcing fairness among multi-hop flows

in wireless ad hoc networks, especially when a price-based approach is utilized to design fully

distributed algorithms to achieve this goal.

3.7 Notations

We list all notations introduced in this chapter as follows.
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Notation Definition
i, j ∈ N node i and j in network node set N
l ∈ L wireless link l in wireless link set L
f ∈ F flow f in multi-hop end-to-end flow set F
s ∈ S ⊆ E wireless link s that carries traffic
E(f) set of wireless links that the flow f traverses
G = (V,E) network topology in the form of a graph
Gc = (Vc, Ec) subflow contention graph
q ∈ Q maximal clique q in the subflow contention graph
V (q) ⊆ S set of vertices in Gc that the clique q contains
x = (xf , f ∈ F ) vector of rate allocations for flows f ∈ F
C = (Cq, q ∈ Q) vector of achievable channel capacities for cliques q ∈ Q
R = {Rqf} flow-clique matrix
Uf (xf ), f ∈ F utility function for flow f
If = [mf ,Mf ] feasible range of xf

κf curvature bound of Uf (xf )
μ = (μq, q ∈ Q) vector of clique prices
λf , f ∈ F price of flow f
xf (λf ), f ∈ F demand function of flow f
q(s) maximal clique that contains wireless link s ∈ S
Q(s) = {q(s)} set of all maximal cliques that contain wireless link s ∈ S

LN
k(e) wireless link k-neighbor set of wireless link e ∈ E

ys aggregated flow rate at wireless link s
λs aggregated price at wireless link s
μq(v(s)) price of clique q at node v(s) in implementation II
T = {0, 1, 2, ...} set of time instances at which either rates or prices are up-

dated
Tq ⊆ T set of time instances at which master node v(q) updates μq

T λ
s ⊆ T set of time instances at which delegation node v(s) updates

λs

Tf ⊆ T set of time instances at which the source of flow f updates
xf

T y
s ⊆ T set of time instances at which delegation node v(s) updates

ys

μ̂s
q(t) estimation of μq at node v(s) at time t
λ̂f

s (t) estimation of λs at source of flow f at time t
x̂s

f estimation of xf at node v(s) at time t
ŷq

s(t) estimation of ys at node v(q) at time t
αs

q(t
′, t), αf

s (t
′, t), αs

f (t
′, t), αq

s(t
′, t) estimation weights

Table 3.5: Notations in Chapter 3
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Chapter 4

Multi-Resource Allocation and Incentives
Arbitration in Multihop Wireless Networks

Cooperation in wireless ad hoc networks has two-fold implications. First, each wireless node does

not excessively and greedily inject traffic to the shared wireless channel. Second, intermediate

nodes voluntarily relay traffic for upstream nodes towards the destination at the cost of its own pri-

vate resource. Such an assumption supports almost all existing research when it comes to protocol

design in ad hoc networks. We believe that without appropriate incentive mechanisms, the nodes

are inherently selfish (unwilling to contribute its private resource to relay traffic) and greedy (un-

fairly sharing the wireless channel). In this chapter, we present a price pair mechanism to arbitrate

resource allocation and to provide incentives simultaneously such that cooperation is promoted and

the desired global optimal network operating point is reached by convergence with a fully decen-

tralized self-optimizing algorithm. Such desired network-wide global optimum is characterized

with the concept of Nash bargaining solution, which not only provides the Pareto optimal point for

the network, but is also consistent with the fairness axioms of game theory. We simulate the price

pair mechanism and report encouraging results to support and validate our theoretical claims.

4.1 Overview

In wireless ad hoc networks, nodes are both greedy when it comes to sharing public resource

(wireless channel), and selfish when it comes to contributing private resource (such as battery

energy). In other words, the network may fail to function at all in realistic scenarios once neither

assumption holds.

The only way to solve these problems is to design appropriate incentive mechanisms to not
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only encourage cooperative behavior of selfish nodes, but also curb unfair and excessive resource

usage when sharing a common resource pool, such as a shared channel. Such designs of incentives

should optimize towards a clearly specified objective, which is a desired optimal operating point

of the wireless network. At such an optimal point, resources are shared fairly, and the levels

of cooperation are adequate for all necessary data communications and network functions. This

chapter exactly targets this critical issue in multi-hop wireless networks.

Our original contributions are two-fold. First, we clearly characterize the desired network-wide

optimal operating point using a game theoretic framework, based on the concept of Nash Bargain-

ing Solution (NBS). NBS naturally encapsulates two favorable properties: (1) Pareto efficiency

in terms of resource usage; and (2) a set of fairness axioms with respect to resource allocations.

Using this framework, the problem of finding the desired globally optimal operating point may

be formulated as a non-linear optimization problem. Second, we propose a decentralized algo-

rithm that uses a price pair mechanism to arbitrate incentives. With a pair of prices, localized

self-optimization by individual nodes naturally converges to globally optimal network operating

points. Within the price pair, the channel price regulates greedy usage of the shared wireless

channel, while the relay price encourages traffic relaying. Effectively, our price pair mechanism

transforms non-cooperative behavior in wireless ad hoc networks to a cooperative game, whose

optimal operating points demonstrate more advantageous properties than the usual Nash Equilib-

rium in typical non-cooperative environments.

The essence of our work is to integrate the mechanisms that use pricing as signals to (1) fairly

allocate resources; and (2) adequately incentivize cooperative behavior. Though there exists previ-

ous work towards either one of these objectives, we are not aware of existing work that integrates

both prices into a coherent framework. Such integration becomes more complicated if we consider

the unique channel contention characteristics in wireless ad hoc networks, where the traffic flows

contend in multiple contention cliques. Considerations of such unique complications in ad hoc

networks are beyond all of the existing work in the area of pricing or incentives.

The remainder of this chapter is organized as follows. Sec. 4.2 presents some preliminaries
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before formal treatment of this topic. Sec. 4.3 defines the desired network operating points using

the concept of Nash Bargaining Solution. We present the distributed algorithm in Sec. 4.5. We

show simulation results in Sec. 4.7, present related work in Sec. 4.8 and finally summarize the

chapter in Sec. 4.9.

4.2 Network Model and Resource Constraints

4.2.1 Characterizing wireless ad hoc networks

We consider a wireless ad hoc network which consists of a set of nodes N = {1, 2, ..., N}. In this

network, only nodes that are within the transmission range of each other can communicate directly

and form a wireless link. We model such a network as a bidirectional graph GN = (N ,L), where

L = {1, 2, ..., L} is the set of wireless links.

In such a network, a wireless node i ∈ N may establish an end-to-end flow, or simply flow,

fi with rate xi to another node. Flow fi is assumed to be elastic: it requires a minimum rate of

xm
i and a maximum rate of xM

i , i.e., xm
i ≤ xi ≤ xM

i . In general, fi flows through multiple hops

in the network, passing a set of wireless links. We use this set of wireless links to represent fi,

i.e., fi ⊂ L. We denote the set of relaying nodes for flow fi as R(fi), and the destination of fi as

D(fi). For simplicity of exposition, we further define H(fi) = R(fi) ∪ {D(fi), i} as the set of

nodes fi traverses, and K(fi) = H(fi) − {i}. A single-hop data transmission along a particular

wireless link is referred to as a subflow, and is a part of a flow. Several subflows from different

flows along the same wireless link form an aggregated subflow.

In such a network, nodes compete for two types of resources: shared wireless channel and

individual nodes’ relaying cost (such as energy). The availability of these resources constrains the

solution space of resource allocations. We proceed to analyze the characteristics of both types of

resources.

From previous discussion in Chapter 3, constraint with respect to rate allocations to end-to-end
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flows in wireless ad hoc networks is Rx ≤ C.

Relaying traffic for upstream nodes apparently incurs cost, since localized resources need to

be consumed, such as energy, CPU cycle, and memory space. Without loss of generality, we use

energy levels on each node as an example to characterize such costs of relays. Given a minimum

expected lifetime in the network, each node j has a budget on its energy consumption rate, denoted

as Ej . Here, we consider two types of energy consumption related to packet transmission: (1) er

as the energy consumed for receiving a unit flow; (2) es as the energy consumed for transmitting a

unit flow. Then the energy consumption at node j is xje
s +

∑
i:j∈R(fi)

xi(e
r +es)+

∑
i:j=D(fi)

xie
r.

As the energy consumption rate can not exceed the energy budget, we have the following relation:

xje
s +

∑
i:j∈R(fi)

xi(e
r + es) +

∑
i:j=D(fi)

xie
r ≤ Ei (4.1)

We now proceed to define a N ×N matrix B as follows.

Bji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

es if j = i

er + es if node j forwards packets for flow fi,

i.e., j ∈ R(fi)

er if node j is the destination of flow fi,

i.e., j = D(fi)

0 otherwise

(4.2)

B specifies the relaying relation among nodes in the ad hoc network. To summarize, the local

constraint on energy can be formalized as follows:

B · x ≤ E (4.3)

where E = (Ej, j ∈ N ) is the energy consumption budget vector.
Here we illustrate the above concepts using an example. The network topology and the flows

in the example are shown in Fig. 4.1(a). The corresponding subflow contention graph is shown

in Fig. 4.1(b). In this example, there are three maximal cliques in the contention graph: q1 =
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Figure 4.1: Example of wireless ad hoc network and its subflow contention graph

{{1, 2}, {3, 2}, {3, 4}, {3, 6}}, q2 = {{3, 2}, {3, 4}, {4, 5}, {3, 6}} and q3 = {{3, 2}, {3, 4}, {3, 6}, {6, 7}}.

Let us use yij to denote the aggregated rate of all subflows along node i and j. For example,

y12 = x1 + x2 + x7, y23 = x1 + x3 + x7, y36 = x6 + x7. In each clique, the aggregated rate can not

exceed the channel capacity, i.e.,

y12 + y32 + y34 + y36 ≤ C1 (4.4)

y32 + y34 + y45 + y36 ≤ C2 (4.5)

y32 + y34 + y36 + y67 ≤ C3 (4.6)

When it comes to end-to-end flow rate allocation, the resource constraint imposed by shared

wireless channel is as follows:

⎛
⎜⎜⎜⎜⎝

3 1 1 1 1 2 3

3 0 1 1 2 3 2

2 0 1 1 1 2 3

⎞
⎟⎟⎟⎟⎠ x ≤ C.

In this example, let the energy consumed for receiving er = 1, for transmitting es = 2. Then

the energy constraint is as follows:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0 1

3 2 1 0 0 0 3

3 0 2 1 1 3 3

3 0 0 2 3 3 0

1 0 0 0 2 1 0

0 0 0 0 0 2 3

0 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x ≤ E.

4.3 Problem Formulation

In this section, we characterize the desired network-wide optimal operating point using a game

theoretic framework, based on the concept of Nash Bargaining Solution (NBS). NBS naturally

encapsulates two favorable properties: (1) Pareto efficiency in terms of resource usage; and (2) a

set of fairness axioms with respect to resource allocations. Using this framework, the problem of

finding the desired globally optimal operating point may be formulated as a non-linear optimization

problem. We show how such a global optimization problem may be decomposed into localized

greedy optimization problems via a price pair.

4.3.1 Nash Bargaining Solution: a game theoretical formulation

We present the basic concepts and results of Nash bargaining solutions (NBS) from game theory

[30] and show how it can characterize and formulate the desired network operation point, towards

which our price pair mechanism should converge.

The basic setting of the problem is as follows: The set of nodes N in the wireless ad hoc

network GN constitutes a set of players in the game. They compete for the use of a fixed amount

of resources (wireless channel and costs of relays such as energy). The rate allocation x = (xi, i ∈
N ) is the utility vector of all players in the game. Let S ⊂ RN be the set of all feasible utility
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vectors. We assume that S is a non-empty convex closed and bounded set. Further, we denote the

initial agreement point of the game as x∗, which is the guaranteed utilities of players without any

cooperation in order to enter the game.

In such a problem setting, a bargaining problem is any (S,x∗) where {x ∈ S|x ≥ x∗} 	= ∅.

In other words, a bargaining problem is actually a set of rate allocations x that is acceptable to

all players. Let B = {(S,x∗)} denote the set of all bargaining problems. It then follows that

a bargaining solution is any function ϕ : B → RN , so that ∀(S,x∗) ∈ B, ϕ(S,x∗) ∈ S. A

bargaining solution actually specifies finding a rate allocation within all acceptable allocations. A

natural question about the bargaining solution is how such a function ϕ is to be defined. There are

two reasonable properties desired for a bargaining solution: (1) efficient use of resources; and (2)

fair allocation among all players. These two conditions are precisely encapsulated by the concept

of Nash Bargaining Solution defined as follows.

Definition 4.3.1 (Nash Bargaining Solution). A bargaining solution ϕ : B → RN is a Nash

Bargaining Solution (NBS), if x̄ = ϕ(S,x∗) satisfies the Nash Axioms A1-A6.

A1 (Individual rationality) x̄ ≥ x∗;

A2 (Feasibility) x̄ ∈ S;

A3 (Pareto optimality) If ∀x ∈ S,x ≥ x̄, then x = x̄;

A4 (Independence of irrelevant alternatives) If x̄ ∈ T ⊂ S and x̄ = ϕ(S,x∗), then x̄ =

ϕ(T,x∗);

A5 (Independence of linear transformation) Let T be obtained from S by the linear transforma-

tion φ(x) with

φ(x)i = aixi + bi, ai, bi > 0, i = 1, 2, ..., N. (4.7)

Then if ϕ(S,x∗) = x̄, then ϕ(T, φ(x∗)) = φ(x̄);

A6 (Symmetry) Suppose S is symmetric with respect to a subset J ⊆ {1, 2, ..., N} of indices,

then ϕ is symmetry, which means that if x ∈ S and for i, j ∈ J , x∗i = x∗j , then x̄i = x̄j .
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The above axioms encapsulate both the concept of Pareto optimality (A3) and the concept of

fairness (A4-A6). Pareto optimality means that there is no other point which gives strict superior

utility for all the players simultaneously. The definition of Pareto optimality reflects the condition

of efficient use of resources, where there are no “idle” resources in the network. Axioms A4-A6

represent the axioms of fairness. The independence of irrelevant alternatives axiom (A4) states

that, if a bargaining solution x̄ to a problem on an enlarged feasible set S can be found on a

restricted domain T , then it is also the bargaining solution to the problem on the restricted set.

The independence of linear transformation axiom (A5) states that the bargaining solution is scale

invariant, i.e., the bargaining solution is unchanged if the utility is changed using a positive linear

transformation. The symmetry axiom (A6) states that the bargaining point does not depend on the

specific labels, i.e., players with the same initial points and objectives will realize the same utility.

The existing work in game theory [30] and its application in wireline communication networks

[42] establish the following results for NBS.

Theorem 4.3.1. There exists a unique function ϕ defined on all bargaining problems (S,x∗) that

satisfies axioms A1-A6, i.e., a unique Nash Bargaining Solution (NBS) exists. Moreover, the unique

solution x̄ is a unique vector that solves the following maximization problems:

N1 : max
x

∏
i∈N

(x̄i − x∗i ); (4.8)

Equivalently,

N2 : max
x

∑
i∈N

ln(x̄i − x∗i ). (4.9)

Above concepts are illustrated in Fig. 4.2, where the utility space of a two-player game is

plotted. In the example, two players are competing for a unit resource. The initial agreement point

x∗ = (0, 0), and the NBS x̄ = (1/2, 1/2).
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Figure 4.2: Example of Nash bargaining solution

4.3.2 Network operating points: optimal and fair rate allocations

We assume that each player involved in the game can be guaranteed with its minimum rate vector

xm. Thus, the minimum rate vector xm can be regarded as an initial agreement point of the game

x∗. From the discussions in Sec. 4.3.1, it is clear that the NBS formulates the desired network

operation point, which is fair to all nodes while efficient from the network’s point of view. Thus,

the problem of finding the globally optimal resource allocation is transformed to solving the NBS

of its corresponding game, which is the solution of the following nonlinear optimization problem

by Theorem 4.3.1.

P : maximize
∑
i∈N

ln(xi − xm
i ) (4.10)

subject to A · x ≤ C (4.11)

B · x ≤ E (4.12)

over xm ≤ x ≤ xM (4.13)

The objective function in Eq. (4.10) of the optimization problem corresponds to the optimiza-

tion problem whose solution is NBS. The constraints of the optimization problem Eq. (4.11) and

Eq. (4.12) are the constraints from the shared wireless channel and costs of relays, respectively, as

discussed in Sec. 4.2.

Note that the objective function
∑

i∈N ln(xi − xm
i ) is strictly concave. In addition, the feasible
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region of the optimization problem is non-empty, convex, and compact. By non-linear optimization

theory, there exists a maximizing value of argument x for the above optimization problem. Let us

consider the Lagrangian form of the optimization problem P:

L(x,μα,μβ) (4.14)

=
∑
i∈N

ln(xi − xm
i ) + μα(C − Ax) + μβ(E − Bx)

where μα = (μα
q , q ∈ Q), μβ = (μβ

j , j ∈ N ) are two vectors of Lagrange multipliers. The first-

order Kuhn-Tucker conditions are necessary and sufficient for optimality of problem P. Thus, for

i ∈ N , the following conditions hold:

1

xi − xm
i

−
∑
q∈Q

μα
qAqi −

∑
j∈N

μβ
jBji = 0 (4.15)

μα(C − Ax) = 0; μα ≥ 0 (4.16)

μβ(E − Bx) = 0; μβ ≥ 0 (4.17)

xm ≤ x ≤ xM (4.18)

In the Lagrangian form shown in Eq. (4.14), the Lagrange multipliers μα
q can be regarded as

the implied cost of unit flow accessing the channel at the maximal clique q. In other words, μα
q is

the shadow price of clique q, called channel price. This price corresponds to the shared channel

resource constraint. The Lagrange multipliers μβ
j can be regarded as the implied relay cost of

unit flow at node j. In other words, μβ
j is the shadow price of relay at node j, called relay price.

This pair of prices (μα,μβ) will be used as incentives so that localized self-optimizing decision

can implement the global optimum. In particular, the price μα will signal a “charge” (contrary

to incentives) to the shared channel usage and regulate the greedy behavior, while the price μβ

will provide incentives to traffic relays at intermediate nodes and regulate the selfish behavior of
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wireless nodes.

Let us denote

λα
i =

∑
q∈Q

μα
qAqi (4.19)

λβ
i =

∑
j∈N

μβ
jBji (4.20)

Clearly,

λα
i =

∑
q:fi∩q �=∅

μα
qAqi (4.21)

=
∑
l:l∈fi

∑
q:l∈q

μα
q (4.22)

λβ
i =

∑
j∈H(fi)

μβ
jBji (4.23)

= μβ
i e

s +
∑

j∈R(fi)

μβ
j (es + er) + μβ

D(fi)
er (4.24)

Then λα
i and λβ

i are the prices for node i, which is the source of flow fi, for accessing shared

channels and relay services, respectively. For channel usage, node i needs to pay for all the max-

imal cliques that it traverses. For each clique, the price to pay is the product of the number of

wireless links that fi traverses in this clique and the shadow price of this clique as in Eq. (4.21).

Alternatively, the price of flow fi is the aggregated price of all its subflows. For each subflow,

its price is the aggregated price of the maximal cliques that it belongs to as in Eq. (4.22). Note

that such a pricing policy for end-to-end flows is fundamentally different from the pricing models

in wireline networks, where a flow’s price is the aggregation of the link prices which it traverses.

Such difference is rooted at the nature of the shared medium — the interference and spatial reuse

of wireless channel in an ad hoc network. For traffic relay services, node i needs to pay for the

relay costs of all relaying nodes of fi, including itself and the destination. Using flow f1 as an
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example, the channel price model is illustrated in Fig. 4.3(a) and the relay price model is illus-

trated in Fig. 4.3(b). The channel price for f1 is λα
1 = 3μα

1 + 3μα
2 + 2μα

3 ; and the relay price

λβ
1 = 2μβ

1 + 3μβ
2 + 3μβ

3 + 3μβ
4 + μβ

5 .

1 2 3 4 5

7

6

μ α
1

μ α
2

μ α
3

f1

(a) channel price (b) relay price

1 2 3 4 5

7

6

μ β
1 μ β

2 μ β
3 μ β

4 μ β
5

μ β
6

μ β
7

f1

Figure 4.3: An example of the price pair mechanism

To summarize, we have the following results with respect to the globally optimal network

operating point.

Theorem 4.3.2. There exists a unique solution to problem P (i.e., unique NBS), which is charac-

terized as follows: There exist two vectors μα = (μα
q , q ∈ Q), μβ = (μβ

j , j ∈ N ) such that

xi = [
1

λα
i + λβ

i

+ xm
i ]

xM
i

xm
i

, for i ∈ N (4.25)

μα(C − Ax) = 0; μα ≥ 0 (4.26)

μβ(E − Bx) = 0; μβ ≥ 0 (4.27)

where [z]ba = max{min{z, b}, a}.

4.3.3 Local strategies: self-optimizing decisions

With the understanding of the global optimal point, we now study how this point can be achieved

in a distributed manner by localized self-optimizing decisions at each individual node. The key to

this goal is to use the pair of prices (μα,μβ) as signals to coordinate the distributed decisions.
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First, we study the conditions that the prices need to satisfy in order to incentivize local node

decisions so that they could implement the global network optimum. Let us consider the following

problems:

Channel(A,C; μα):

maximize
∑
i∈N

λα
i xi (4.28)

subject to Ax ≤ C (4.29)

over xm ≤ x ≤ xM (4.30)

where λα
i is a function of μα, as defined in Eq. (4.19). Problem Channel(A,C; μα) maximizes

the total revenue of channel based on charging λα
i per unit of bandwidth to user i subject to the

channel capacity constraint.

Relay(B,E; μβ):

maximize
∑
i∈N

λβ
i xi (4.31)

subject to Bx ≤ E (4.32)

over xm ≤ x ≤ xM (4.33)

where λβ
i is a function of μβ , as defined in Eq. (4.20). Problem Relay(B,E; μβ) maximizes the

total relay revenue of all nodes subject to the relay cost constraint at each individual node.

Now let us consider a local self-optimizing decision at each node i which corresponds to the

following problem:

Nodei(λ
α
i , λ

β
i , μ

β
i ):

maximize ln(xi − xm
i ) − λα

i xi − λβ
i xi + μβ

i Ei (4.34)
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over xm
i ≤ xi ≤ xM

i (4.35)

The relationship between localized node decision and the global optimal network operating

point is then given as follows.

Theorem 4.3.3. There exist vectors μα, μβ and x such that

1. xi is the unique solution to Nodei(λ
α
i , λ

β
i , μ

β
i );

2. x solves Channel(A,C; μα) ;

3. x solves Relay(B,E; μβ);

Then x also solves problem P.

4.4 Proof of Theorem 4.3.3

Proof. As the objective function Eq. (4.34) of Nodei(λ
α
i , λ

β
i , μ

β
i ) is strict concave, the problem

Nodei(λ
α
i , λ

β
i , μ

β
i ) has a unique solution given by,

xi = [
1

λα
i + λβ

i

+ xm
i ]

xM
i

xm
i

(4.36)

As the Lagrangian form for the Channel(A,C; μα) problem is

L(x,μα,pα) (4.37)

=
∑
i∈N

λα
i xi + pα(C − Ax)

at the optimum of L(x,μα,pα) the following conditions hold:

(μα − pα)Ax = 0 (4.38)

pα(C − Ax) = 0 (4.39)
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Similarly, as the Lagrangian form for the Relay(B,E; μβ) problem is

L(x,μβ,pβ) (4.40)

=
∑
i∈N

λβ
i xi + pβ(E − Bx)

at the optimum of L(x,μβ,pβ) the following conditions hold:

(μβ − pβ)Bx = 0 (4.41)

pβ(E − Bx) = 0 (4.42)

The triple (μα,μβ,x) which satisfies conditions Eq. (4.26), and Eq. (4.27) identifies a tuple

(pα,x) that satisfies condition Eq. (4.38) and Eq. (4.39) with pα = μα, Thus it identifies a solution

for Channel(A,C; μα) problem. Similarly, the triple (μα,μβ,x) also identifies a tuple (pβ,x)

that satisfies condition Eq. (4.41) and Eq. (4.42) with pβ = μβ , Thus it identifies a solution for

Relay(A,C; μβ) problem. Moreover, note that Eq. (4.25) is the same as Eq. (4.36), which means

it is also a solution to Nodei(λ
α
i , λ

β
i , μ

β
i ).

Conversely, we can construct a triple (μα,μβ,x) with μα = pα and μβ = pβ . Thus if xi

solves Nodei(λ
α
i , λ

β
i , μ

β
i ) , Channel(A,C; μα) and Relay(B,E; μβ), then it satisfies Eq. (4.36),

Eq. (4.38), Eq. (4.38), Eq. (4.41), and Eq. (4.42), which lead to Eq. (4.25), Eq. (4.26), and

Eq. (4.27), thus identifying a solution to P.

Let us denote

Φ(xi) = ln(xi − xm
i ) − λα

i xi − λβ
i xi + μβ

i Ei (4.43)

Now we show that Φ(xi) reflects the “net benefit” of node i and problem Nodei(λ
α
i , λ

β
i , μ

β
i ) maxi-

mizes the node i’s net benefit. This claim is based on the following two observations. First, node i

does not pay its relay cost to itself from a local point of view, while the flow relay price λβ
i , which

is defined from a global point of view, contains the price of relay for itself. Thus from a local point
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of view, the cost of node i is:

λα
i xi +

∑
j∈K(fi)

Bji = (λα
i + λβ

i )xi − μβ
i e

sxi (4.44)

And the revenue of node i is:

∑
j:i∈K(fj)

μβ
i Bijxj = μβ

i

∑
j:i∈H(fj)

Bijxj − μβ
i e

sxi (4.45)

Second, from Theorem 4.3.3 we have

μβ
i = 0 , if

∑
j:i∈H(fj)

Bijxj < Ei (4.46)

μβ
i > 0 , if

∑
j:i∈H(fj)

Bijxj = Ei (4.47)

Thus it is clear that Φ(xi) reflects the “net benefit” of node i, which is the difference between

utility, revenue and cost.

4.5 Algorithm

Although the global problem P can be mathematically solvable in a centralized fashion, it is im-

practical for realistic operations in wireless ad hoc networks. In this section, we present a dis-

tributed iterative algorithm for price calculation and resource arbitration. We show that the itera-

tive algorithm converges to the global optimum, and maximizes the local net benefit at each node

simultaneously.

4.5.1 Dual problem

In order to achieve a distributed solution, we first look at the dual problem of P as follows.

D : min
µα,µβ≥0

D(μα,μβ) (4.48)
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where

D(μα,μβ)

= max
x

L(x,μα,μβ)

= max
x

∑
i∈N

(ln(xi − xm
i ) − (λα

i + λβ
i )xi + μβ

i Ei︸ ︷︷ ︸
Φ(xi)

)

+
∑
q∈Q

μα
qCq

Note that Φ(xi) is node i’s “net benefit”. By the separation nature of Lagrangian form, maxi-

mizing L(x,μα,μβ) can be decomposed into separately maximizing Φ(xi) for each node i ∈ N
(Sec. 3.4.2 in [3]). We now have

D(μα,μβ) =
∑
i∈N

max
xm

i ≤xi≤xM
i

{Φ(xi)} +
∑
q∈Q

μα
q cq (4.49)

As Φ(·) is strictly concave and twice continuously differentiable, a unique maximizer of Φ(xi)

exists when

dΦ(xi)

dxi

=
1

xi − xm
i

− (λα
i + λβ

i ) = 0

We define the maximizer as follows:

xi(λ
α
i , λ

β
i ) = arg max

xm
i ≤xi≤xM

i

{Φ(xi)} (4.50)

Note that xi(λ
α
i , λ

β
i ) is usually called demand function, which reflects the optimal rate for node

i with channel price as λα
i and relay price as λβ

i .

4.5.2 Distributed algorithm

We solve the dual problem D using the gradient projection method [3]. In this method, μα and μβ

are adjusted in the opposite direction to the gradient ∇D(μα,μβ):
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μα
q (t+ 1) = [μα

q (t) − γ
∂D(μα(t),μβ(t))

∂μα
q

]+ (4.51)

μβ
j (t+ 1) = [μβ

j (t) − γ
∂D(μβ(t),μβ(t))

∂μβ
j

]+ (4.52)

where γ is the stepsize. D(μα,μβ) is continuously differentiable since ln(·) is strictly concave [3].

Thus, it follows that

∂D(μα,μβ)

∂μα
q

= Cq −
∑

i:fi∩q �=∅
xi(λ

α
i , λ

β
i )Aqi (4.53)

∂D(μα,μβ)

∂μβ
j

= Ej −
∑

i:j∈H(fi)

xi(λ
α
i , λ

β
i )Bji (4.54)

Substituting Eq. (4.53) into (4.51) and (4.54) into (4.52), we have

μα
q (t+ 1) = (4.55)

[μα
q (t) + γ(

∑
i:fi∩q �=∅

xi(λ
α
i (t), λβ

i (t))Aqi − Cq)]
+

μβ
j (t+ 1) = (4.56)

[μβ
j (t) + γ(

∑
i:j∈H(fi)

xi(λ
α
i (t), λβ

i (t))Bji − Ej)]
+

Eq. (4.55) and Eq. (4.56) reflect the law of supply and demand. If the demand for bandwidth

at clique q exceeds its supply Cq, the channel constraint is violated. Thus, the channel price μα
q

is raised. Otherwise, μα
q is reduced. Similarly, in Eq. (4.56), if the demand for energy at node

j exceeds its budget Ej , the energy constraint is violated. Thus, the relay price μβ
j is raised.

Otherwise, μβ
j is reduced.

We summarize our algorithm in Table 4.1, where clique q and node i are deemed as entities

capable of computing and communicating.
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Clique Price Update (by clique q): At times t = 1, 2, . . .
1 Receive rates xi(t) from all flows fi where fi ∩ q 	= ∅
2 Update price
μα

q (t+ 1) = [μα
q (t) + γ(

∑
fi∩q �=∅ xi(t)Aqi − Cq)]

+

3 Send μα
q (t+ 1) to all flows fi where fi ∩ q 	= ∅

Relay Price Update (by node j): At times t = 1, 2, . . .
1 Receive rates xi(t) from all flows fi where j ∈ H(fi)
2 Update price
μβ

j (t+ 1) = [μβ
j (t) + γ(

∑
i:j∈H(fi)

xi(t)Bji − Ej)]
+

3 Send μβ
j (t+ 1) to all flows fi where j ∈ H(fi)

Rate Update (by node i): At times t = 1, 2, . . .
1 Receive channel prices μα

q (t) from q where fi ∩ q 	= ∅
2 Receive relay prices μβ

j (t) from j where j ∈ H(fi)
3 Calculate

λα
i =

∑
q:fi∩q �=∅ μ

α
qAqi

λβ
i =

∑
j:j∈H(fi)

μβ
jBji

5 Adjust rate
xi(t+ 1) = xi(λ

α
i , λ

β
i )

4 Send xi(t+ 1) to corresponding cliques.

Table 4.1: Distributed algorithm
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We now show the property of this distributed iterative algorithm. Let us define Y (i) =∑
q Aqi +

∑
j Bji, and Ȳ = maxi∈N Y (i). Further, we define U(q) =

∑
i∈N Aqi and Ū =

maxq∈Q U(q); V (j) =
∑

i∈N Bji and V̄ = maxj∈N V (j); Z̄ = max{Ū , V̄ }. Let κi = (xM
i −xm

i )2

and κ̄ = maxi∈N κi.

Theorem 4.5.1. (Global convergence and optimality). Suppose 0 < γ < 2/κ̄Ȳ Z̄. Starting from

any initial rates xm ≤ x(0) ≤ xM , and prices μα(0) ≥ 0 and μβ(0) ≥ 0, every accumulation

point (x∗,μα∗,μβ∗) of the sequence (x(t),μα(t),μβ(t)) generated by the algorithm in Table 4.1

is primal-dual optimal.

4.6 Proof of Theorem 4.5.1

Proof. First, the dual objective function D(μ) is convex, lower bounded, and continuously differ-

entiable.

For any price vector (μα,μβ) define ψi(μ
α,μβ) as

ψi(μ
α,μβ) =⎧⎪⎨

⎪⎩
(xi(λ

α
i , λ

β
i ) − xm

i )2 if 1
xM

i
≤ λα

i + λβ
i ≤ 1

xm
i

0 otherwise

where λα
i and λβ

i are defined as in (4.19), (4.20) and xi is defined as in (3.19).

Now we define H(μα,μβ) = diag(ψf(μ
α,μβ), i ∈ N ) be a |N | × |N | diagonal matrix with

diagonal elements ψi(μ
α,μβ). Note that 0 ≤ ψi(μ

α,μβ) ≤ κi.

Let ∂x
∂µα (μα,μβ) denote the |N | × |Q| Jacobian matrix whose (i, q) element is (∂xi(µ

α,µβ)
∂μα

q
),

where

∂xi(μ
α,μβ)

∂μα
q

= (4.57)
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⎧⎪⎨
⎪⎩

−Aqi(xi(λ
α
i , λ

β
i ) − xm

i )2 if 1
xM

i
≤ λα

i + λβ
i ≤ 1

xm
i

0 otherwise

Let ∂x
∂µβ (μα,μβ) denote the |N | × |N | Jacobian matrix whose (i, j) element is (∂xi(µ

α,µβ)

∂μβ
j

),

where

∂xi(μ
α,μβ)

∂μβ
j

= (4.58)

⎧⎪⎨
⎪⎩

−Bji(xi(λ
α
i , λ

β
i ) − xm

i )2 if 1
xM

i
≤ λα

i + λβ
i ≤ 1

xm
i

0 otherwise

From (4.53), (4.54) we have,

∇µαD(μα,μβ) = C − Ax(λα
i , λ

β
i ) (4.59)

∇µβD(μα,μβ) = E − Bx(λα
i , λ

β
i ) (4.60)

Using (4.57), we have

[
∂x

∂μα
(μα,μβ)] = −H(μα,μβ)AT (4.61)

[
∂x

∂μβ
(μα,μβ)] = −H(μα,μβ)BT (4.62)

Thus the Hessian of D is given as follows.

∇2
µαµαD(μα,μβ) = AH(μα,μβ)AT (4.63)

∇2
µβµβD(μα,μβ) = BH(μα,μβ)BT (4.64)

∇2
µαµβD(μα,μβ) = AH(μα,μβ)BT (4.65)
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∇2
µβµαD(μα,μβ) = BH(μα,μβ)AT (4.66)

Now we show that ∇D is Lipschitz with

||∇D(ν) −∇D(μ)||2 ≤ κ̄Ȳ Z̄||ν − μ||2 (4.67)

for all μ,ν ≥ 0.

First, given any μ,ν ≥ 0, using Taylor theorem we have

∇D(ν) −∇D(μ) = ∇2D(ω)(ν − μ) = (4.68)

for some ω = tμ + (1 − t)ν ≥ 0, t ∈ [0, 1].

Hence,

||∇D(ν) −∇D(μ)||2 ≤ ||∇2D(ω)||2 · ||ν − μ||2 (4.69)

Now we show that ||∇2D(ω)||2 ≤ κȲ Z̄.

First

||∇2D(ω)||22 ≤ ||∇2D(ω)||∞ · ||∇2D(ω)||1 (4.70)

Since ∇2D(ω) is symmetric, we have

||∇2D(ω)||∞ = ||∇2D(ω)||1 (4.71)

Hence,

||∇2D(ω)||2 ≤ ||∇2D(ω)||∞ = max
r

∑
r′

[∇2D(ω)]rr′ (4.72)

Actually,

[∇2D(ω)]rr′ =
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i ψi(ω)AriAr′i if r, r′ ∈ [0, Q− 1]∑
i ψi(ω)AriB(r′−Q)i if r ∈ [0, Q− 1],

r′ ∈ [Q,Q+N − 1]∑
i ψi(ω)B(r−Q)fAr′i if r ∈ [Q,Q+N − 1],

r′ ∈ [0, N − 1]∑
i ψi(ω)B(r−Q)fB(r′−Q)i if r, r′ ∈ [Q,Q+N − 1]

Now we have,

∑
r′

[∇2D(ω)]rr′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

⎡
⎢⎣ ψi(ω)Ari(

∑Q−1
r′=0Ar′i

+
∑N−1

r′=0 Br′i)

⎤
⎥⎦ if r ∈ [0, Q− 1]

∑
i

⎡
⎢⎣ ψi(ω)B(r−L)i(

∑Q−1
r′=0Ar′i

+
∑N−1

r′=0 Br′i)

⎤
⎥⎦ if r ∈

⎡
⎢⎣ Q,Q+

N − 1

⎤
⎥⎦

As Y (i) =
∑

q Aqi +
∑

j Bji, and Ȳ = maxi∈N Y (i), we have

∑
r′

[∇2D(ω)]rr′ ≤

⎧⎪⎨
⎪⎩

Ȳ
∑

i ψi(ω)Ari if r ∈ [0, Q− 1]

Ȳ
∑

i ψi(ω)B(r−L)i if r ∈ [Q,Q+N − 1]
(4.73)

Also because U(q) =
∑

i∈N Aqi and Ū = maxq∈Q U(q); V (j) =
∑

i∈N Bji and V̄ =

maxj∈N V (j); Z̄ = max{Ū , V̄ }; κ̄ = maxi∈N κi, we have

max
r

∑
r′

[∇2D(ω)]rr′ ≤ κ̄Ȳ Z̄. (4.74)

Since the dual objective functionD is lower bounded and ∇D is Lipschitz, then any accumula-

tion point (μα∗, μβ∗) of the sequence (μα(t), μβ(t)) generated by the gradient projection algorithm

for the dual problem is dual optimal. Provided that 0 < γ < 2/κ̄Ȳ Z̄, then let (μα(t), μβ(t)) be a
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subsequence converging to (μα∗, μβ∗). Note that x(μα, μβ) is continuous. Thus, the subsequence

{x(t)} converges to the primal optimal rate x∗.

Though there exists a unique maximizer x∗ to the problem P, there may be multiple dual

optimal prices, since only the flow price is constrained at optimality according to U ′
f (x

∗
f ) = λα

i
∗ +

λβ
i

∗
. Theorem 4.5.1 does not guarantee convergence to a unique vector (x∗,μα∗,μβ∗

), though any

convergent subsequence leads to the optimal rate allocation x∗.

4.6.1 Implementation issues

In the above iterative algorithm, a maximal clique is regarded as a network element that can carry

out certain network functions. In particular, it assumes that a maximal clique q can perform the

following tasks for price calculation and resource allocation: (1) obtain the aggregated bandwidth

demand within the clique q; (2) calculate the per-clique shadow price μα
q ; and (3) notify the price

μα
q to the flows that pass through it. However, a maximal clique is only a concept defined based on

subflow contention graph. To deploy the algorithm in an actual ad hoc network, the above tasks

of a maximal clique need to be carried out by the nodes that constitute the clique in a distributed

fashion.

The price pair based self-optimizing algorithm needs the support from a virtual credit system

to enforce the pricing signal. As this paper mainly focuses on how to calculate the incentive price,

the design of such a virtual credit system is beyond the scope of this paper. Interesting readers are

referred to [5] [6] for these issues.

4.7 Simulation Results

We illustrate our price pair mechanism and the distributed algorithm via simulation. The network

used in the simulation has 20 nodes deployed on a 600 × 600 square meter region as shown in

Fig. 4.4. Such a network has 10 cliques that represent maximal contending regions in the wireless
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channel as shown in Table 4.3. Each node sets up a connection with a randomly selected destina-

tion and delivers traffic via shortest path routing. The flows and their routes are shown in Table

4.2. We use uniform achievable channel capacities Cq = 1Mbps for all cliques q in the simulation.

The default initial energy level for all nodes is 432 Joules. The transmission energy consumption

is 2 × 10−7J/bit and the receiving energy consumption is 10−7J/bit. The network is expected to

last 2 hours with a energy budget of 0.06J/sec for each node. The minimum and maximum rate

requirement of flows are xm
i = 0Mbps and xM

i = 1Mbps for all flows fi.
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Figure 4.4: Random topology used in the simulation

4.7.1 Convergence

We first show the convergence behavior of our iterative algorithm. In the simulation, the initial

values are xi(0) = 0 Kbps, μα
q (0) = μβ

j (0) = 0.01 for all i, q, j. The step size that ensures the

convergence is set to γ = 10−6. As shown in Fig. 4.5, the algorithm converges to a global network

equilibrium within about 300 iterations. At the equilibrium point, the optimal resource allocation

and prices are listed in Table 4.4. We observe that node 1, 10, 11 and 17 are the bottleneck relaying

nodes and clique 1 is the bottleneck channel resource. They, therefore, have positive prices. We

have also experimented with different sets of initial values for the rates and prices, and the results
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Flow ID Route
0 0 → 8 → 15
1 1 → 10
2 2 → 8 → 0 → 6 → 19
3 3 → 4 → 1 → 11
4 4 → 1 → 11 → 0 → 6
5 5 → 1 → 11 → 0 → 17
6 6 → 0 → 11 → 12 → 14
7 7 → 1 → 10
8 8 → 13
9 9 → 10
10 10 → 14 → 12
11 11 → 1
12 12 → 11
13 13 → 18
14 14 → 12 → 11
15 15 → 11
16 16 → 6 → 0 → 11 → 1 → 4
17 17 → 19
18 18 → 0 → 6
19 19 → 6 → 0 → 11 → 1 → 4

Table 4.2: Flows and their routes

Clique ID Subflows in the clique
0 (0, 6), (0, 8), (0, 11), (0, 17), (0, 18), (6, 16), (6, 19)

(17, 19)
1 (0, 6), (0, 8), (0, 11), (0, 17), (0, 18), (1, 11), (2, 8)

(8, 13), (8, 15), (11, 12), (11, 15), (13, 18)
2 (0, 6), (0, 8), (0, 11), (0, 17), (0, 18), (6, 16), (6, 19)

(8, 13), (13, 18)
3 (0, 11), (1, 11), (2, 8), (8, 15), (11, 12), (11, 15)

(12, 14)
4 (0, 11), (1, 10), (1, 11), (11, 12), (11, 15), (12, 14)
5 (1, 10), (1, 11), (10, 14), (11, 12), (12, 14)
6 (1, 10), (1, 11), (9, 10), (10, 14), (12, 14)
7 (0, 11), (1, 4), (1, 5), (1, 7), (1, 10), (1, 11), (11, 12)

(11, 15)
8 (1, 4), (1, 5), (1, 7), (1, 10), (1, 11), (10, 14), (11, 12)
9 (1, 4), (1, 5), (1, 7), (1, 10), (1, 11), (3, 4), (9, 10)

(10, 14)

Table 4.3: Maximal Cliques
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have been coherent with our illustrated example.
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Figure 4.5: Convergence of the algorithm on the network shown in Fig. 4.1

4.7.2 Impact of resource capacity

We further illustrate the roles and interactions of the channel and relay prices, by repeating the

simulation with different values of energy budget E and channel capacity C. In the experiment,

the energy budgets of two bottleneck nodes 1 and 11 are changed to E1 = E11 = 0.1J/sec. The

convergence behavior and the equilibrium results are shown in Fig. 4.6 and Table 4.5 respectively.

We observe that the relay prices at node 1 and 11 have been decreasing, since more energy is

available at these two nodes, causing less competition with respect to energy. At the same time,

we also observe that the channel price has increased, since the decreasing relay cost increases the

rate demand and causes more competition for the channel.
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Figure 4.6: Convergence when more energy is available at node 11 and 1.
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Node/Flow ID Flow rate (Kbps) Relay price Clique ID Channel price
0 39.03 0 0 0.000000
1 162.03 0.005898 1 0.011267
2 26.02 0 2 0.000000
3 35.02 0 3 0.000000
4 19.89 0 4 0.000000
5 19.49 0 5 0.000000
6 24.04 0 6 0.000000
7 91.26 0 7 0.000000
8 78.07 0 8 0.000000
9 189.37 0 9 0.000000
10 150.01 0.004073
11 52.68 0.002871
12 72.99 0
13 78.07 0
14 66.28 0
15 72.99 0
16 19.89 0
17 490.25 0.001713
18 39.03 0
19 19.89 0

Table 4.4: Equilibrium rates and prices
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Node/Flow ID Flow rate (Kbps) Relay price Clique ID Channel price
0 35.24 0.000000 0 0.000000
1 117.45 0.001654 1 0.014187
2 23.49 0.000000 2 0.000000
3 52.21 0.000000 3 0.000000
4 21.04 0.000000 4 0.000000
5 20.30 0.000000 5 0.000000
6 23.49 0.000000 6 0.000000
7 98.34 0.000000 7 0.000000
8 70.48 0.000000 8 0.000000
9 192.10 0.000000 9 0.000000
10 96.05 0.005206
11 63.12 0.000000
12 70.48 0.000000
13 70.48 0.000000
14 70.48 0.000000
15 70.48 0.000000
16 21.04 0.000000
17 289.84 0.001725
18 35.24 0.000000
19 21.04 0.000000

Table 4.5: Equilibrium rates and prices when more energy is available at node 11 and 1.
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We now show two special cases where the role of one price in the price pair can implicitly be

assumed by the other. In the first case, Ei = 0.04J/sec for all i. The result is plotted in Fig. 4.7.

From the figure, we observe that the channel prices eventually converge to 0, with the increase

of relay prices. It shows that in this scenario, the energy constraints are the dominant factors in

the network. Thus, when the relay prices give adequate incentives to these energy constrained

nodes to relay appropriate amount of traffic, the wireless channel is naturally shared among all

nodes in a fair manner. In the second case, we show a scenario where the shared wireless channel

capacity is the dominant factor. In this experiment, the energy budget is set to be sufficiently

large: Ei = 0.2J/sec for all i. As shown in Fig. 4.8, we can observe that the channel prices play a

dominant role in arbitrating resource contention among different nodes.
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Figure 4.7: Energy is dominant factor
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4.7.3 Network performance with incentives

We now show the performance of the network as the price pair is used as incentives. In particular,

we compare the case where all nodes follow the incentive signals with the case where there exist

nodes that deviate from the signals. In the latter case, the node with ID 3 deviates from the price

pair signal by increasing its transmission rate by 60 Kbps. Table 4.6 shows the results of such a

comparison, including the following performance metrics:

• Throughput – the average transmission rate of a flow over the network operation time;

• Cost – the total cost (price × rate) over the network operation time, i.e., costi =
∑

t(λ
α
i (t)+

λβ
i (t)) × xi(t);

• Revenue – the total revenue of a node from relaying, i.e., revenuei =
∑

t μ
β
i (t)×∑

j xi(t)Bij;

• Remaining energy – the remaining energy at the end of network operation.

From the results, we have the following observations. First, from a single node point of view,

though node 3 has a higher throughput when deviating from the incentive signals, it is also charged

with a much higher cost, which leads to a decrease of net benefit (utility from throughput + revenue

- cost) by 20233.08. Second, from the point of view of the entire network, the total utility of the

network decreases from 78.27 to 77.31; the total remaining energy decreases from 3839.91J to

3701.55J. We can draw the conclusion that, a node that deviates from the price-pair incentive

signal does not only cause the entire network to operate at a suboptimal point, but also decreases

the net benefit of itself – which is unacceptable for a rational node.

To summarize our results of performance evaluations, when using price pairs as incentives, the

localized distributed algorithm at each node correctly converges to network operating points that

are optimal, for the benefits of both individual nodes and the entire network.
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Follow incentives Deviate incentives
ID Throughput Cost Revenue Remaining energy Throughput Cost Revenue Remaining energy
0 44.37 7197.57 209.89 15.27 43.68 7197.58 138.41 45.77
1 63.00 7197.49 25440.83 0.41 39.07 7197.92 47161.32 0.00
2 29.58 7197.30 1.49 389.40 29.12 7197.32 1.48 390.05
3 31.40 7197.33 1.81 386.77 81.35 27443.76 14.20 314.84
4 16.60 7197.52 5.75 316.34 13.35 7197.71 33.37 217.79
5 16.14 7197.55 1.12 408.75 13.06 7197.74 0.99 413.18
6 23.49 7197.21 12.81 218.69 23.75 7197.19 11.51 236.12
7 45.91 7197.29 2.70 365.87 27.37 7197.77 2.17 392.57
8 89.21 7197.66 37.43 143.78 87.66 7197.68 36.08 148.47
9 245.19 7196.72 16.07 78.91 266.37 7196.65 18.40 48.42
10 122.52 7196.42 17545.82 0.59 133.15 7196.34 16141.22 0.62
11 43.59 7197.66 12586.52 0.71 36.36 7197.80 11148.97 0.74
12 70.68 7197.37 45.18 38.77 71.38 7197.34 39.57 27.98
13 89.41 7197.71 21.75 239.01 87.85 7197.72 19.99 242.36
14 70.59 7196.80 14.16 48.77 71.30 7196.79 15.67 24.60
15 70.80 7197.61 8.86 298.08 71.49 7197.59 8.07 297.59
16 16.60 7197.38 0.95 408.09 13.35 7197.57 0.85 412.76
17 291.35 7196.76 7391.43 0.82 292.89 7196.75 7352.58 0.82
18 44.31 7197.50 7.64 303.80 43.66 7197.52 7.52 305.86
19 16.59 7197.38 7.37 177.02 13.35 7197.57 7.18 180.91

Table 4.6: Comparison of Network Performance

4.8 Related Work

The problem of optimal and fair resource allocation has been extensively studied in the context

of wireline networks. Among these works, pricing has been shown to be an effective approach to

achieve distributed solution for flow control [20] [26] and service differentiation [10]. Simultane-

ously, game theory is applied to model resource sharing among multiple users, e.g., [42][7].

The main difference that distinguishes our work from the existing works is rooted in the unique

characteristics of resource models of ad hoc network. First, the allocation mechanism needs to con-

sider two types of resources, namely, the shared channel and the private resource such as energy.

Second, due to the location dependent contention and spatial reuse of the shared channel resource,

the channel price is associated with a maximal clique in the subflow contention graph, rather than

a wireline link. This presents a different pricing policy for end-to-end flows.

Incentives in wireless networks have stimulated much research interests. (e.g., in the context of

ad hoc networks [5][39][41] and in wireless LAN [33]). In particular, the works in [5] [6] present
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virtual credit based mechanisms to stimulate cooperation in ad hoc networks, where virtual credits

(so called nuglets) are awarded for packet forwarding. Some approaches [4] [43] use a reputation

based mechanism where selfish or misbehaving nodes are identified, isolated or punished. Our

work distinguishes from the existing works in that, it does not only promote cooperation in packet

forwarding, more importantly, it studies at what level of cooperation the network operates at its

optimal point, and how to achieve such cooperation using pricing as incentives. Auction-based

approach [8] has also been employed for incentives in ad hoc networks. The essential idea of

this approach is that each relay node operates as a market, the users of the network put bids for

their packets and will be charged accordingly, when the packets are forwarded. As an important

approach of mechanism design, auction has been shown to have several important properties such

as truthful bidding, social welfare maximization in single market. However, directly applying this

approach to ad hoc network environments, where relaying nodes constitute multiple networked

markets, these properties no longer hold. For example, user pay-off and social welfare are no

longer maximized. And how much they deviate from the optimum is not clear. Our approach

instead can be shown to achieve both user self optimization and global social welfare optimum

(i.e., Nash Bargaining Solution).

Noncooperative game theory has been used to model the relaying behavior among nodes in

ad hoc networks in [39] [41]. By designing appropriate game strategies and analyzing the Nash

Equilibrium of the corresponding relaying game, these works show the existence of a network

operating point where node cooperation is promoted. In our work, Nash bargaining solution is

used to characterize the global network operating point, which usually demonstrates more advan-

tageous properties, such as Pareto optimality and fairness, than the usual Nash Equilibrium in a

noncooperative game.

There are also previous works that address the issue of resource allocation [32] and use a

price-based approach [11]. However, the ad hoc network models in these works do not consider

the shared nature of the wireless channel, and thus their solutions are not able to capture the unique

issues in wireless ad hoc networks. Moreover, the price-based distributed algorithm presented in
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[32] only converges to a network optimum when its utility function takes certain a special form,

and such a utility function does not satisfy the fairness axiom.

4.9 Summary

This chapter presents a price pair mechanism that both regulates greedy behaviors and incentivizes

selfish users in ad hoc networks. A pair of prices is the centerpiece of this mechanism: (1) the

channel price that reflects the unique characteristics of location dependent contention in ad hoc

networks, and regulates the usage of shared wireless channel; (2) the relay price that gives incen-

tives to reach the adequate level of cooperation with respect to traffic relay. By using such a price

pair as a signal, the decentralized self-optimizing decisions at each individual node converges to

the global network optimal operation point. Simulation results are also presented to validate our

theoretical claims. We believe that we have reached an important milestone that integrates pricing

and incentives strategies for channel access and traffic relays into the same coherent framework,

which is a problem that has not been addressed previously before this work, especially when the

objective is to converge to a desirable optimal operating point for the entire wireless ad hoc net-

work.

4.10 Notations

Table I shows a summary of important notations introduced in this chapter.
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Notation Definition
i, j ∈ N = {1, ..., N} Network nodes
fi, R(fi), D(fi) The flow from source node i, fi’s relaying nodes and desti-

nation
H(fi) R(fi) ∪ {D(fi), i}
K(fi) H(fi) − {i}
l ∈ L = {1, ..., L} Wireless links
q ∈ Q = {1, ..., Q} Maximal cliques
x = (xi, i ∈ N ) Rate allocation vector
xm,xM Minimum (or maximum) rate vector
C = (Cq, q ∈ Q) Clique capacity vector
E = (Ej, j ∈ N ) Energy budget vector
A = (Aqi)Q×N Channel constraint matrix
B = (Bji)N×N Energy constraint matrix

Table 4.7: Notations in Chapter 4
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Chapter 5

Software Architecture and System
Implementation

This chapter presents the software architecture and system implementation of our price-based re-

source allocation algorithm.

5.1 Software Architecture
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Figure 5.1: Overview of software architecture.

From Sec. 3.3, we know that the price-based resource allocation algorithm can be decomposed

into two parts, i.e., price generation and rate adaptation, which can be implemented at different

network entities and different levels of the network stack. As shown in Fig. 5.1, the price genera-

tion sub-algorithm needs to be implemented at all hosts that participate in the data delivery of the

network. While the rate adaptation sub-algorithm only needs to reside on the end hosts which are

the source or the destination of the data delivery. Thus price generation can be implemented at the

network level, while rate adaptation can be part of the transportation layer or at the application
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level. To realize the price-based resource allocation, these two parts of the algorithm communi-

cate via data delivery, feedback message, and internal control signals. As shown in Fig. 5.1, data

packets are sent from the sender, and are marked with prices at each relaying node. The prices

are aggregated along the path of data delivery. Once the data packets arrive at the receiver, the

aggregated price information are retrieved from data packets and are sent back to the sender via

feedback packets. Upon receiving the feedback packets, the sender adjusts its sending rate based

on the received price information via rate adaptation algorithm.

    markPrice

recvHello sendHello

  genPrice

monQueue

gradient
   table

price
table

     Routing
    

   Pricing

Queue

forward

        MAC 
     estBM

queue

scheduler

... ...

data packet feedback packet signals

Sending

recvFeedback sendData

Sender

    markPrice

recvHello sendHello

  genPrice

monQueue

gradient
   table

price
table

     Routing
    

   Pricing

Queue

forward

        MAC 
     estBM

queue

scheduler

Receiving

sendFeedback recvData

Figure 5.2: Details of software architecture.

Fig. 5.2 shows a detailed software architecture of the price-based resource allocation algorithm.

In this figure, rate adaptation is implemented at both sender and receiver via four modules, which

are responsible for sending(or receiving) data(or feedback) packets, respectively. price generation

is implemented as several components at different levels. At the MAC level, the bandwidth esti-

mator measures the local achievable bandwidth to each neighboring node. At the interface queue

level, the monitor observes the backlogged traffic to each neighboring node. Working with the

bandwidth estimator, the monitor generates the local gradient (difference between packet arrival

rate and departure rate) for each wireless link between the node itself and its neighbors. At the

routing level, HELLO messages communicate the local gradient information to its neighbors. The

local gradient information, together with the gradient information received from HELLO mes-

sages, is maintained in a gradient cache table. The changes at the gradient cache table trigger the

price update component, which reads the gradient information and calculates the clique prices.
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These clique prices are maintained at a price cache table. When the price marking component

receives data packets from the forwarding component, it calculates the per-hop price based on the

information provided by price cache table, and adds it to the aggregated price from the upstream

hops.

5.2 System Implementation

Based on the presented architecture, we implement the price-based resource allocation algorithm

over Linux system with kernel version 2.6.∗1, and wireless card driver orinoco cs. For better

portability and extensibility, our system implementation aims to minimize the changes to the ker-

nel. In particular, we implement the bandwidth estimator and the queue monitor as two kernel

modules, while implement the rate adaptation and routing module in the user space.

5.2.1 Data structure

Two important data structures that are used to implement the price-based algorithm are:

• gradient table. Each entry in gradient table represents the difference between the traffic load

and the achievable bandwidth of a wireless link. Each node maintains a gradient table which

contains the information for wireless links within its k-hop neighborhood, where k is the

parameter of the heuristic algorithm in Sec. 3.4.4.

typedef struct {

in_addr_t src;

in_addr_t dest;

float grad;

int hop; // hop counts from this wireless link to me

struct timeval grad_timestamp;

1In particular, version 2.6.5 and 2.6.9 are tested.
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struct timeval topo_timestamp;

} grad_entry_t;

• price table. Each entry in the price table maintains the information for clique construction

and clique-based price computation.

typedef struct {

unsigned int clique_ID;

grad_entry_t **grad_info; //gradient information

int num_grad;

double clique_price;

struct timeval clique_timestamp;

unsigned int is_master; //Am I a master node of this clique?

} price_entry_t;

Based on these two data structures, individual modules of the system are implemented as fol-

lows.

5.2.2 Router

Router is the most important module in the system. It is implemented in the user space. It consists

of three threads, recvHello, sendHello, and forward. sendHello is controlled by a timer and sends

HELLO messages periodically to the broadcast address in the subnet. The HELLO message con-

tains the gradient information of wireless links that involve k−1 hop neighbors. recvHello module

retrieves the gradient information from the HELLO message and updates the gradient table. gen-

Price is called when the gradient table is updated. forward module receives data and FEEDBACK

packets, and forwards them according to the routing table. It marks the price onto the data packet

based on its next hop. If the node is the final destination of the received packet, forward module

will send it up to the recvData or recvFeedback module via internal socket.
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5.2.3 Queue monitor

Queue monitor (queueMon) is implemented as a kernel module. It monitors the instantaneous

queue length and provides such information to the user space. To get the instantaneous queue

length, this module hooks two kernel queue management routines with our functions. In partic-

ular, it first retrieves the wireless device handler2, and its queue discipline member qdisc. Then

it replaces the function enqueue and dequeue of qdisc with two new functions that monitor the

queue length and its changes. To provide the information of queue length to the user space, this

module uses an inode device/file queuelen. Each entry in the queuelen device/file has a structure as

follows. The module also hooks up two new file handlers dread and dwrite, which operate over the

system memory instead of disk file. This approach provides low-overhead kernel and user space

communication.

struct queue_len_entry {

int qlen;

__u32 dest;

struct timeval tv;

};

5.2.4 Bandwidth estimator

When the queue length is short and close to zero, queueMon may not provide accurate local gra-

dient information. In this case, the price-based resource allocation system uses estBM [35], to

estimate the local achievable bandwidth of each wireless link. In particular, it monitors the histor-

ical data transmission and estimates the future achievable bandwidth with a moving window. The

basic idea of its operation is illustrated in Fig. 5.3.

Under the IEEE 802.11 MAC protocol, at time tr, when a packet from a particular wireless

link becomes the head-of-line packet (i.e., the first packet waiting to be transmitted), we claim

2The wireless adaptor device in the Linux system is usually configured to “eth1”.
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Figure 5.3: Measurement-based bandwidth estimation.

that the packet is ready. At time td, when the link layer acknowledgment is received, the packet

departs. The transmission delay of this packet is then given as td − tr, which includes a contention

period. The contention period indicates the channel bandwidth used by packet transmissions of

other wireless links within the contention region. The achievable bandwidth observed by this

wireless link is then calculated as z
td−tr

, where z is the size of the packet. To achieve more accurate

measurement results, we use a window of w packets to conduct the bandwidth estimation, i.e.,

the bandwidth is estimated as w·z∑w
i=1 tid−tir

. The measurement-based bandwidth estimation takes

into account the effect of physical layer interference and the inefficiency of MAC protocols, as

it is based on the scheduling results of packet transmissions. estBM is implemented as a part

of the wireless adaptor driver orinoco cs, which is also a kernel module at the device level. To

communicate the measurement results, similar approach is used as queueMon.

5.2.5 Data bit rate monitor

Information of data bit rate is used to calculate the price in multi-rate wireless networks. In order

to get the channel bit rate, we use the wireless tool package iwlib developed by HP Lab. In

particular, function iw sockets open returns a raw socket descriptor to the wireless driver at the

kernel. And function iw print bitrate is used to get the instantaneous channel bit rate used by the

current wireless adaptor.
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5.3 Experiment Results

We deploy our system over IBM laptops (T41, T42, G41), with IEEE 802.11b-based Orinoco

wireless adaptor. The wireless adaptors operate in ad-hoc demo mode using channel 6 in the

experiments. The default algorithm parameters are: moving average parameter α = 0.1, step size

γ = 0.0001, and HELLO message interval 1 second. The default channel bit rate is 11Mbps.

Scenario 1

In the first set of experiments, we study the basic behavior of our algorithm. The experiment result

in a single hop network is shown in Fig. 5.4 (b).
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Figure 5.4: Single scenario.

In the multihop wireless network as shown in Fig. 5.5 (a), one flow travels 3 hops in the

network. Its instantaneous sending rates and receiving rates are plotted in Fig. 5.5 (b).

From the figures, we have the following observations: (1) the instantaneous sending rate and

receiving rate converges within 10 seconds; (2) the sending rate and the receiving rate closely

matches at the equilibrium, which leads to very low loss rate;

Scenario 2

The network setup of the second experiment is shown in Fig. 5.6 (a). 4 wireless nodes in the

network are all within the transmission range of each other. In this experiment, two flows start to
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Figure 5.5: Multihop scenario.

transmit at different time instances. The experiment result is shown in Fig. 5.6 (b).
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Figure 5.6: Scenario 2.

This result shows that: (1) the instantaneous sending rate and receiving rate converges even

when traffic dynamically joins and departs the network. The time for convergence is within 10

seconds; (2) At equilibrium, the sending rates and throughput of both flows closely match, which

means both flows share the wireless channel fairly.

Race condition

Now we perform our experiments in a special network topology: the race condition scenario as

shown in Fig. 5.7 (a). In this scenario, node 1 and 4 are out of transmission range. They establish
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two flows to node 2 and 3 respectively at different time instances. The instantaneous sending and

receiving rates of these two flows are plotted in Fig. 5.7 (b).

(a) race condition network setup
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Figure 5.7: Race condition.

From the figure, we observe that the performance of our algorithm under the race condition

suffers delayed convergence. This is because flow f2 may capture the wireless channel at the

beginning due to the unawareness of the RTS/CTS signals from the transmission of the other flow

and the unfair backoff of IEEE 802.11. Once the gradient and price information is delivered by

HELLO messages between node 1 and 4, these two flows share the same view of the network

condition, thus converge to an equilibrium, where their transmission rates are the same. Although

they have approximately the same throughput at equilibrium, slight difference and fluctuation can

still be observed on their instantaneous throughput. This is caused by the unpredicted delay in

the delivery of HELLO messages due to the possible channel capture situation. However, as we

may observe from the results, the long term fairness can be guaranteed at the equilibrium via our

price-based algorithm.
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Multi-rate scenario

We proceed to evaluate the performance of our algorithm in multi-rate wireless networks. The first

experiment is conducted on a simple topology as in Fig. 5.4 (a). In the experiment, we manually

set the bit rate of the wireless node fixed at different levels (in the sequence of 2M, 1M, 11M, and

5.5Mbps). The instantaneous sending and receiving rates of this flow is shown in Fig. 5.8. From the

result, we see that our algorithm quickly adapts to the channel bit rate adjustment, and converges

to the new equilibrium rate allocations within 10 seconds. In the second experiment, we set the

channel bit rate of the wireless node to automatic adaptation mode. In this mode, the channel

bit rate will be automatically adjusted based on the channel condition. In the experiment, we

move the wireless node to create a dynamic channel condition, so that the bit rate will be adjusted

accordingly. The result is plotted in Fig. 5.9. From the figure, we have similar observation that our

algorithm quickly responds to the channel bit rate changes.
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Figure 5.8: Multi-rate scenario 1.

Now we experiment on the network as shown in Fig. 5.6 (a). In this experiment, the channel bit

rate of node 1 is fixed at 11Mbps, while the bit rate of node 3 is adjusted manually in the sequence

of 11M, 5.5M, and 2Mbps. The experiment result is shown in Fig. 5.10. From the result, we have

the following observations: (1) the sending and receiving rates of both flows converge within 10

second after the bit rate adjustment of node 3; (2) At equilibrium, when both node 1 and 3 have the

same channel bit rate, these two flows share the same throughput. When their bit rates are differ-
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Figure 5.9: Multi-rate scenario (mobile).

ent, the throughput of these two flows are different. Moreover, their throughput ratio follows the

ratio of the bit rates. This is a significant different result from the TCP performance in multi-rate

wireless networks. As shown in Fig. 5.11, the throughput of both TCP flows are affected by the bit

rate adjustment of node 3, even though the bit rate of flow 1 remains to be 11bps. This behavior

is also called “performance anomaly” [28]. And it would significantly decrease the aggregated

performance of the wireless network. Our experiment shows that our price-based resource allo-

cation algorithm addresses this problem, improves the channel resource utilization, and provides

proportional fair rate allocation to the contending flows in multi-rate wireless networks.
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Figure 5.10: Multi-rate scenario 2.
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5.4 Limitations of Price-based Resource Allocation in

Wireless Networks

With the lessons learnt from real system implementation and performance evaluation, we now

reach the stage to evaluate the limitations of our price-based resource allocation algorithm. In

what follows, we present these limitations from three aspects, namely theoretical model, algorithm

design, and system implementation.

• Model Limitation. Our clique-based pricing model is derived under the IEEE 802.11-style

protocol model [13]. This model hides the complexity of wireless communication at the

physical layer, and presents a simplified interface for algorithms and protocols at the higher

layers. Inevitably, many characteristics of wireless communication in reality are not pre-

cisely revealed. For example, the interference between wireless communications is modelled

as a binary state (0, 1) in protocol model using interference range (i.e., if either the source

or the destination of wireless communications are within interference range, they form an

edge in the contention graph). In reality, the interference effect can spread over a continuous

space between 0 and 1 based on the location of the communicating nodes. Also the IEEE

802.11 protocol model shows that the contention graph of a multi-hop wireless network is
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a bidirectional graph. In reality, the asymmetric traffic of data and acknowledgement frame

in IEEE 802.11 may lead to a directional contention graph. Such simplifications in network

modelling may result in inaccuracy in the resource constraint in our optimization problem.

Our online measurement-based capacity estimation in the system design partially addresses

this problem.

• Algorithm Limitation. The price-based resource allocation algorithm is an iterative algo-

rithm. It can only converge to the equilibrium point where resource is optimally allocated,

when the lifetime of the flow is long enough. For short-time flows, the algorithm may operate

at a sub-optimal state.

• Implementation Limitation. To implement the price-based resource allocation algorithm,

message communication among nodes is required to provide traffic load estimation and price

signal feedback. Such message deliveries introduce overhead to the wireless network. More-

over, the maximal clique is an approximation of the maximal contention region of wireless

communication. Its achievable capacity Cq depends on the number of active nodes within

the contention region and is estimated online using queue monitor and bandwidth estima-

tor. The imprecision and possible fluctuation in the measurement will affect the channel

utilization and the stability of our algorithm.

The evaluation of our system limitations helps us to understand the best application scenarios

for our price-based resource allocation system. In particular, our algorithm best fits static or semi-

static wireless networks such wireless mesh networks. Further, the algorithm performs the best

when the lifetime of the flow is more than 10sec.
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Chapter 6

Concluding Remarks and Future Directions

6.1 Concluding Remarks

We conclude the main contributions of this dissertation as follows.

• We presented a novel price-based resource allocation framework based on an analytical pric-

ing model that is specifically designed for the unique characteristics of multi-hop wireless ad

hoc networks. The original contribution incorporated in the pricing model is the association

of shadow prices with the maximal cliques in the contention graph model, rather than with

individual links as in wireline networks. Based on insights brought forth by such strategies,

the algorithms proposed are fully distributed, and arbitrate the contention among end-to-end

multi-hop flows with respect to fair resource allocation. The frequently used fairness mod-

els, such as weighted proportional or max-min fairness, may be straightforwardly supported

by assigning their corresponding utility functions in the pricing model. The validity of our

claims is supported by both theoretical studies and extensive experiment results.

• We presented a price pair mechanism that both regulates greedy behaviors and incentivizes

selfish users in ad hoc networks. A pair of prices is the centerpiece of this mechanism: (1)

the channel price that reflects the unique characteristics of location dependent contention in

ad hoc networks, and regulates the usage of shared wireless channel; (2) the relay price that

gives incentives to reach the adequate level of cooperation with respect to traffic relay. By

using such a price pair as a signal, the decentralized self-optimizing decisions at each indi-

vidual node converge to the global network optimal operation point. Simulation results are
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also presented to validate our theoretical claims. We believe that we have reached an impor-

tant milestone that integrates pricing and incentives strategies for channel access and traffic

relays into the same coherent framework, which is a problem that has not been addressed

previously before this work, especially when the objective is to converge to a desirable opti-

mal operating point for the entire wireless ad hoc network.

6.2 Future Directions

My future research plan will go along both theoretical and experimental fronts of research direc-

tions. Theoretically, I will continue to explore decentralized resource allocation algorithms for

wireless networks. In particular, I will explore the following problems and approaches.

• Integrated resource allocation mechanisms. The price-based resource allocation algorithm

presented in this dissertation provides a rate control mechanism for elastic traffic whose util-

ity function is increasing, and continuously differentiable. In the future, I would like to study

resource allocation algorithms that consider both elastic traffic and non-elastic traffic, such

as multimedia and real-time traffic simultaneously. The goal is to provide an integrated rate

control and admission control mechanism which achieves aggregated utility maximization.

• Revenue maximization resource allocation. This dissertation has focused on the optimal

resource allocation in a sense that the social welfare is maximized. In network settings

such as Wi-Fi hotspot, the service provider may be more interested in a resource allocation

mechanism where its revenue is maximized. I would like to study the revenue maximizing

pricing strategies under various resource allocation mechanisms (e.g., service differentiation,

admission control, and rate control) in the future.

Along the experimental front, I would like to further investigate the following issues.

• Channel-energy resource coordination. This dissertation has presented the system imple-

mentation for wireless channel resource allocation and the theoretical modeling of channel-
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energy price-pair coordination. In the future, I would like to engage in the research of system

design for coordinated channel-energy resource allocation using a price-pair approach. In

particular, I would like to explore the impact of multiple system parameters, such as CPU

frequency, network adaptor power level and sleeping cycle, on the price generation.

• Cross-layer design for coordinated resource adaptation. Mobile applications built over

wireless networks face severely constrained resources and highly dynamic environments.

They usually exhibit application-specific adaptability by tuning performance based on re-

source availability. On the other hand, similar adaptation can be performed at system de-

vices as well (e.g. wireless adaptor transmission range and schedule, and CPU frequency).

This requires mobile systems to be capable of capturing and supporting adaptation at mul-

tiple layers (application, middleware, and OS) in a flexible yet coordinated fashion, so that

if viewed globally, these adaptations lead to fair and efficient resource sharing in dynamic

mobile computing environments. This dissertation has indicated that to achieve such goals,

cross-layer efforts are required. Moving forward, I would like to explore the system model

and software architecture to support such efforts. In particular, I am interested in applying

control theory and optimization theory to enable stable distributed adaptation where resource

can be optimally utilized.
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