7 research outputs found

    VLSI design methodology

    Get PDF

    Idiomatic integrated circuit design

    Get PDF

    VLSI signal processing through bit-serial architectures and silicon compilation

    Get PDF

    STRICT: a language and tool set for the design of very large scale integrated circuits

    Get PDF
    PhD ThesisAn essential requirement for the design of large VLSI circuits is a design methodology which would allow the designer to overcome the complexity and correctness issues associated with the building of such circuits. We propose that many of the problems of the design of large circuits can be solved by using a formal design notation based upon the functional programming paradigm, that embodies design concepts that have been used extensively as the framework for software construction. The design notation should permit parallel, sequential, and recursive decompositions of a design into smaller components, and it should allow large circuits to be constructed from simpler circuits that can be embedded in a design in a modular fashion. Consistency checking should be provided as early as possible in a design. Such a methodology would structure the design of a circuit in much the same way that procedures, classes, and control structures may be used to structure large software systems. However, such a design notation must be supported by tools which automatically check the consistency of the design, if the methodology is to be practical. In principle, the methodology should impose constraints upon circuit design to reduce errors and provide' correctness by construction' . It should be possible to generate efficient and correct circuits, by providing a route to a large variety of design tools commonly found in design systems: simulators, automatic placement and routing tools, module generators, schematic capture tools, and formal verification and synthesis tools

    Serial-data computation in VLSI

    Get PDF

    Generating Programming Environments with Integrated Text and Graphics for VLSI Design Systems

    Get PDF
    The constant improvements in device integration, the development of new technologies and the emergence of new design techniques call for flexible, maintainable and robust software tools. The generic nature of compiler-compiler systems, with their semi-formal specifications, can help in the construction of those tools. This thesis describes the Wright editor generator which is used in the synthesis of language-based graphical editors (LBGEs). An LBGE is a programming environment where the programs being manipulated denote pictures. Editing actions can be specified through both textual and graphical interfaces. Editors generated by the Wright system are specified using the formalism of attribute grammars. The major example editor in this thesis, Stick-Wright, is a design entry system for the construction of VLSI circuits. Stick-Wright is a hierarchical symbolic layout editor which exploits a combination of text and graphics in an interactive environment to provide the circuit designer with a tool for experimenting with circuit topologies. A simpler system, Pict-Wright: a picture drawing system, is also used to illustrate the attribute grammar specification process. This thesis aims to demonstrate the efficacy of formal specification in the generation of software-tools. The generated system Stick-Wright shows that a text/graphic programming environment can form the basis of a powerful VLSI design tool, especially with regard to providing the designer with immediate graphical feedback. Further applications of the LBGE generator approach to system design are given for a range of VLSI design activities
    corecore