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Abstract 

Between 1965 and 1985, microelectronic devices have grown in complexity from 

a few dozen devices per chip to VLSI processors comprising half a million tran-

sistors. Within the next decade wafer scale integration and sub-micron feature 
sizes are expected to make it possible to put many millions of gates on a compos-

ite chip. A number of observers have pointed out that the complexity of devices 
using these developments in fabrication technology is beyond that which can 

be managed with todays design methods and tools. It is clear that substantial 
advances in Computer-Aided Design (CAD) techniques are needed. 

The most radical approach to managing the complexity of VLSI and ULSI 

is to aim for complete automation of the design process, to create a tool which 

produces mask geometry, performance estimates and test data from a high level. 

description of the required chip. Unfortunately, up to now CAD tools for pro-
ducing mask geometry have been limited to structural descriptions for design 

entry and specification, except in some specialised application areas. Systems 
that require a structural description do not address the problem of managing 

design complexity. This thesis describes methods for overcoming the problems 
associated with the increasing design complexity, by presenting a framework 
for taking a description at the behavioural level and synthesising topographical 

information from it. In particular, this thesis presents methods for mapping 

behavioural functions into structural functions and then computing a floorplan 
for the resulting connectivity graph. It describes methods for compiling the 
floorplan into the geometry of the mask set needed to manufacture the chips. 
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Chapter 1 

Introduction 

During the two decades since 1965, microelectronic devices have grown in com-

plexity from a few dozen transistors per chip to VLSI scale processors comprising 
half a million transistors. Sub-micron lithography on wafer scale devices is ex-

pected to allow the progress in fabrication technology to continue for another 

decade, so by the mid-1990s it may be possible to produce microelectronic de-
vices comprising several billion logic elements. 

The actual number of geometric elements on a chip limited by the fabrica-

tion technology of the day has been doubling every 18 months. An article by 

Waldschmidt lists five factors which contribute to this progress [Waldschmidt 
82]. Namely: 

Decreases in minimum feature sizes, from 25 microns in 1966 to around 
0.5 micron available on the most advanced fabrication lines in use today. 

Increases in chip area, from 10mm 2  in the 1960's to the 100mm 2  common 
today. Various research projects are now exploring the possibility of using 

the entire area of a 6 inch silicon wafer, a usable area of over 14,000mm 2 . 

Circuit cleverness which allows the same functionality to expressed in fewer 
circuit elements. A well known example is the reduction in the number of 
transistors in a memory cell, from 6 transistors in 1972 to 1 transistor in 
1977. Allen gives examples of where this has happened to other logical 

functions, including adders and exclusive OR gates [Allen 82]. 

Invention of new device technologies. 

Better layout techniques, such as the gate matrices for random logic and 
the waffle-iron layout for MOS power transistors. 

The spectacular nature of the growth in device complexity is evident from 

the two graphs on the next page. The reduction in feature sizes over time is 
charted in figure 1-1 alongside the aggregate rise in complexity in figure 1-2. 
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Gordon Moore, David McGreivy and Iann Barron have pointed out that the 

rapid progress in fabrication technology is outstripping the ability of engineers 

to manage design complexity [Moore 751, [Moore 79], [McGreivy 82], [Barron 
831. These observations, if correct, would imply that a large proportion of the 

billions of dollars spent each year on improving fabrication technololgy will be 

wasted unless there is a fundamental change in the way chips are designed. To 

understand the reasons behind these forecasts, it is necessary to consider the 
link between chip complexity and the effort, or time, needed to design a chip. 

Complexity and design effort 

The relationship between complexity and design effort for programming tasks 
has been the topic of numerous studies. Most studies conclude that design effort 
increases as a power of the code size. That is: 

Design effort = Cn*Ponent 
 

The constant of proportionality, C, is the effort needed to write one line of 
code. The factor n is the total number of lines needed. 

There are numerous factors controlling the size of C, including how regular 
the code is, the experience of the programmer and the difficulty implicit to the 
application being coded. Over the extremes, C may vary by a factor of a few 
hundred to one. 

In the context of this thesis, we shall be concerned with large problems, where 
ii is in the hundreds of thousands or millions. Under these circumstances the 
exponent of n. becomes the dominating component in the effort equation. 

In his classic study "The Mythical Man-Month" ( sf. [Brooks 75]) Brooks 
cites Nanus [Nanus 641 and Weinwurm [Weinwurm 651 in support of his own 
experience that the value of the exponent is 1.5. That is: 

Design effort = Cn' 5  

Controlling Complexity 

The majority of modern programming languages provide facilities for control-

ling size of n, the code complexity. For example, hierarchical languages allow a 

large program to be written as a tree of modules and scope is used to restrict 
the number of free variables. 
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Unfortunately, of the methods for controlling complexity available to a pro-

grammer only a few can be applied to VLSI design. Whereas a program is 

usually executed sequentially, a microcircuit operates on data in parallel. A mi-
crocircuit does not have the clean interface of a program procedure to collect 
together data, instead it is monolithic with the special problems that implies in 

producing test patterns. Moreover, the problems associated with circuit timing, 
analogue voltage levels, fan out, current density and thermal gradients add extra 
dimensions to the task of implementing an algorithm in silicon. 

Implications of Rising Complexity in VLSI 

For the reasons that have just been outlined, it would be optimistic to view 
the design of a VLSI chip as a programming exercise. But for the moment, it is 
useful to do so. By applying the programmer's complexity-effort equation it is 
possible to get a best-case idea of how long it would take to develop a new chip. 

Chips with regular structure will have a low value for C. A memory chip is 
highly regular in its layout and it is true that a memory chip can be designed 
with perhaps one hundredth the effort needed to design an irregular structure 
like a microprocessor. 

What about the value of n? Whatever the implementation technology, n is 
the number of operations the designer performs, whether he be a programmer 
or a VLSI engineer. For a programming task, n is the number of statements or 
lines of code in a module. In the context of a VLSI chip designed using the tools 
currently available, n is the number of transistors or logic gates on a chip divided 
by some regularity factor. The regularity factor, the reciprocal of C, is the 
number of symbol instances in a design divided by the number of symbols. The 

regularity factor is usually less than 10 even in the most regular of architectures 

such as RISC machines [Patterson 81]. Furthermore, the regularity factor grows 
only very slowly as ii increases. Therefore, to a first order approximation, the 
regularity factor can be ignored and i treated as a linear function of the number 
of transistors in a design. 

We have already noted that the number of transistors that can be put on a 
chip is growing exponentially in calendar time. Whenever the complexity dou-

bles, a designer must handle twice as many logic elements. Hence the amount of 

effort required to produce a chip at the limit of fabrication technology is growing 
in time as an exponential function raised to a power. It is hardly necessary to 

examine figures 1-3 and 1-4 to realise that this result has serious implications. 
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For example, a half million transistor VLSI processor recently took one hun-

dred man years of effort to design [Burkhart 831, [Canepa 83]. From this, we 

might expect the design of a three million transistor chip to consume roughly 
1600 man years of effort. If progress were to continue at the present rate, then a 

chip making full use of the fabrication capability early in the next century would 

demand so many man years of effort to design that if the project period was of 

fixed duration, say ten years, then it would have to enlist support from more 
designers than there are presently people in the world. Alternatively, if the size 

of the design team was limited to ten designers, it would be necessary to start 

designing the chip long before the universe was created - between 4 and 5 billion 

years ago by current reckoning. 

Recall that we have been treating VLSI design as a programming exercise, 
even though we noted that VLSI design is far harder. Therefore, the reality is 
worse than is suggested by the aforegoing argument. 

The problems of design complexity become manifest in the form of extended 

development lead times, layout errors, microcode bugs, and timing failures. Of 

the commercial chips comprising 50K or more transistors, almost all display 
several of these problems. 

The evidence suggests that we should look with suspicion at the specifications 
of some large chips being developed at the moment, we must look for bugs, we 
must expect failures. Furthermore, unless the complexity hurdle is overcome 

then it seems unlikely there be many chips with over a million transistors unless 

either the chip can be implemented as an extremely regular structure, or the 
primitives operations used in chip design become far more powerful. Only a 

tiny proportion of chip designs can be arranged as a regular structure, so the 
emphasis must be on producing more powerful CAD tools. 

The issues 

We have reasoned that in order to design a bug-free VLSI chip, the func-

tional power of the design primitives must be greatly increased. The design 

process must become more abstract. It is asserted that for this to be possible, a 

mechanised method must be applied to generate low level information. 

A radical interpretation of these requirements is to aim for the complete 
automation of the design process by creating a tool capable of interacting with 

engineers on their own level to capture a specification and of translating it into 
mask geometry: The ultimate VLSI CAD tool. 
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Other motivations 

There are many incentives for producing this ultimate tool. The more im-
portant ones are catalogued below. 

A big reduction in design effort would permit an engineer to explore dif-

ferent architectures. A study by Obrebska indicates that the difference 
between control micro-architectures in terms of silicon area and tempo-
ral performance, grows exponentially with linear increases in complexity 

[Obrebska 81] [Obrebska 82]. So if a tool exists which allows a chip to 

be designed and re-arranged very quickly then producing a chip in each of 

several architectural styles for the purposes of comparison could yield large 
gains in performance. Designers would be able to proceed by experiment 
rather than by intuition and guesswork. 

A reduction in the lead time for a new design would allow a company to 

launch a product ahead of a competitor. History gives witness that, in 

microelectronics at least, the first company to launch a product into a new 
market tends to maintain the dominant position as the market matures. 

Products could be upgraded more quickly. 

Lower design costs would allow a greater degree of integration, leading 
eventually to custom VLSI usurping PCB technology as the primary im-

plementation medium for electronic systems. 

We have stated some reasons for wanting to produce this ultimate CAD tool. 
The question is how do we go about it? 

CAD tools 

The majority of design tools in use today have been developed during the 
last decade. Driven by demand, tools have evolved very quickly. 

It is instructive to look at how the development of the contemporary com-
puter aided VLSI design environment has happened. 

Step One: Physical layout 

The earliest silicon chips were designed by cutting shapes out of mylar film 
and then pasting the shapes onto celluloid. The earliest CAD tools emulated 
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this manual process. Tools dealt with physical mask layers without making any 

attempt to capture information about the significance of the geometry being laid 
out. 

Most physical layout systems allow macros to be defined. Macros enable 
heavily used symbols to be parameterised. In practice, this was usually limited 
to defining transistors and contacts. 

Step Two: Symbolic layout 

During the latter half of the 1970's, mask macros were replaced by symbols. 

For example, one symbol might be used to represent a transistor and another 
a buried contact. By 1980, symbolic layout systems were available in many 
shapes and sizes, including the embedded programming languages known as 
LAPs [Locanthi 781, specialised VLSI design languages such as ALl [Lipton 831 
and SCALE [Marshall 841 and systems-for manipulating the style of topological 
layout known as STICKS [Williams 781. However, the basic operation in all 
these symbolic layout tools is still very low level: transistors, contacts and wires. 

Engineers are very good at laying out small numbers of transistors in a leaf cell, 
but it is the interconnection of lots of leaf cells that leads to the complexity 
problem. 

Step Three: Gatearrays 

One level of abstraction higher than the symbolic transistor, is the logic gate. 

CAD tools have been developed for translating designs expressed as a network 
of logic gates into a regular layout style known as a gatearray. 

A gatearray consists of rows of gate primitives interdigitated by wiring chan-
nels. The majority of gatearray systems work by personalising the metal layers 

used for routing these channels though some, such as the Chipsmith [Gray 82] 

system, produce geometry for all the mask layers needed to manufacture the 

chip and so can rearrange the rows in the gatearray to ensure that the wiring 
channels are wide enough for the connections they have to carry. 

Gatearray tools were the first to offer any built-in design verification software. 
Almost all gatearray layout tools on the market at the moment have associated 
with them a switch level simulator and some, such as the UK5000 system [SERC 
84], can generate their own test patterns. 

There are several problems with using gatearrays to implement chips on a 

VLSI scale. Firstly, a designer must describe a whole chip as a network of 
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primitive logic gates. This can hardly be said to tackle the complexity problem: 

gates are too low level. Secondly, gatearrays usually occupy about four times the 

silicon area of an equivalent custom layout. This leads to poor yields. Thirdly, 

gatearray layout tools use large amounts of computing time for the placement 

and routing procedures, which limits the size of design they can handle. 

Step Four: Silicon Assemblers 

The three categories of tool considered so far do not automate the custom 

design process: layout editors merely provide a convenient means for representing 
mask shapes, and gatearrays are only semi-custom. 

The first CAD tools to automate the custom design process did not appear 
until around 1980. It was not until then that auto-place and auto-route tech-
niques had progressed sufficiently enough to make a reality the silicon assembler, 
(known in some quarters as chip assemblers). Assemblers take a set of function 
blocks along with their logical interconnect, then place the blocks and route 

the power and signal nets. Type information associated with the ports on the 
periphery of each module ensure conformity with electrical and layout design 
rules. 

The earliest attempt at producing a silicon assembler is described by Sato 
Sato 79], but this was followed by some work on semi-automatic silicon assem-

bler, reported in 1980 by Mudge [Mudge 80], 

The most noteworthy silicon assemblers reported so far include those of Syed 
and Gamal [Syed 82], Szepieniec [Szepieniec 821, Hassett [Hassett 821 and Rivest 
[Rivest 821, but others are being reported all the time [Kuzmicz 831. The past 
year in particular has seen a spate of announcements in the industry's trade 

magazines heralding new silicon assemblers. By now there must be at least 
twenty or thirty in existence. 

Let there be no doubt: Silicon assemblers can produce very efficient layouts. 
But the input to a silicon assembler is at a structural level and a lot of work is 

involved in specifying each of the function blocks. The blocks must be configured 

to allow them to be connected to their neighbours easily, implying the need to 
have fore-knowledge of the final placement. The placement algorithms tend to be 

complex, hence several iterations are usually needed to configure the blocks. In 
short, silicon assemblers are too rigid: They cannot manipulate and reorganise 

the function blocks and must be seen therefore as a bridge between gatearray 

and full custom layout rather than as a synthesis tool competing with custom 
design. 
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Step Four (sideways): Module Generators 

Programs for translating state tables or equations into Programmed Logic 

Arrays (PLAs) have been around for over 15 years. Recently, the power of 

PLA generators has been increased by incorporating automatic folding and par-

titioning, as well as allowing flexible port assignment. These developments are 
described by Hamilton [Hamilton 831 and Cole [Cole 84]. 

At the same time as the more versatile PLA generators started to become 

available, programs were developed for producing other complex blocks from 
functional descriptions, including Weinberger array generators [Weinberger 671, 

[Machar 83], datapath generators [Shrobe 821, [Schoellkopf 821, [Schoellkopf 831, 
[Siskind 82], [Camposano 841, microcomputer generators [Buric83], the so-called 

"topologisers" for synthesising topographics information from constrained circuit 
descriptions [Matheson 831, counter generators [Hughes 811 and so on. 

In this thesis, these programs are referred to collectively as module genera-
tors, for that is what they do, although other people have called them "silicon 

assemblers", or more wishfully still, "silicon compilers". The term module gen-
erator will be used to refer to programs that can generate mask geometry for a 

functional module from a functional or behavioural specification but which lack 

the capability to produce artwork for an entire chip complete with pads and 
control logic. 

Step 5: Silicon Compilers 

In 1979, Johannsen postulated a design environment in which a designer can 

sit down, take some building blocks and experiment with many different designs 
before deciding on a specific architecture or implementation, an environment—

where designs can be created, simulated and translated into mask layout with 
very little effort [Johannsen 791. 

Johannsen calls a tool with the attributes he describes a silicon compiler. 
Unfortunately this term has seen much abuse. So many keen salesmen misuse 
it that a silicon compiler is rapidly becoming identified in the popular eye with 

parameterised cell generators and silicon assembly. In this thesis, Johannsen's 
original definition will be adhered to and the corruption ignored. 

Various silicon compilers have been developed. One of the most powerful is 
known as F.I.R.S.T. (East  implementations for Real-time signal Transforms), 
by Bergmann, Denyer and Renshaw [Bergmann 831. The F.I.R.S.T. compiler 

can produce commercial digital filters, correlators and other signal processors 
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from a description of the control and signal flow, but it is limited to bit-serial 
systems laid out according to a predetermined floorplan. 

Most of the other silicon compilers developed since F.I.R.S.T. have similar 
restrictions on the type of design they can handle efficiently. 

The Obstacles 

No-one has so far produced a general purpose silicon compiler, one without 
any limitations on what can be implemented. Various obstacles have got in the 

way. The most awkward and pervasive of these are identified in [Deas 831. 

This thesis presents a framework for writing silicon compilers. Obviously, for 
such a framework to be viable it must solve all of the problems that have been 
identified previously and coordinate the various solutions into a workable whole. 

The remainder of this introductory chapter describes how this thesis is organ-
ised to reach that objective. By way of a plan of what is to come, the following 
sections will introduce each problem area in turn and state what contribution 
this thesis makes to their solution. 

Design Capture 

There has been a great deal of debate reported in the literature about the 

ideal form for capturing design specifications from an engineer. Groups with 

a computer science background assert that engineers wish to define a chip in 
a computer programming language such as C or Ada, whereas groups with an 

engineering background assert that a behavioural specification of the data and 

control flow as exemplified by an architectural diagram is more appropriate and 
useful. 

This issue will be tackled later on, but which ever camp one happens to be 
in, the problem of designing a language to capture the specification from the 
designer remains. 

This thesis presents a language for capturing specifications compatible with 
the design entry systems in common use. 

Function Assignment 

Assume the silicon compiler has got a specification in the form of a graph of 
interconnected functions, known as a dataflow graph. The first step in turning 
the dataflow graph into a chip is to decide how to implement each function. For 
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example, if one has a state machine, is it going to end up as a microcomputer, a 

PLA, a Weinberger array, a timing generator, a decision table or as a gatearray? 

This thesis addresses the function assignment problem and presents a method 
for assigning function operators to module generators held in a library. 

Library Design 

A silicon compiler must have access to a database for information on module 
generators. 

Some module generators are very flexible, for example some PLA generators 

can produce a folded PLA from a state table annotated with information on the 

desired position of input and output ports [Hughes 811. Other module genera-
tors are highly constrained, as in the case of a fixed leaf cell. The problem of 

describing module generators in a way which both captures their flexibility and 
records their constraints is a difficult one. 

This thesis tackles the library design problem and presents a language for 
specifying library parts. 

Floorplanning 

The process of defining the relative position and the shape of each node in 
the dataflow graph is known as floorplanning. Floorplanning must be efficient 
for a chip to be viable because it is the floorplanning decisions that determine 

the pin order, the wireability, the aspect ratio and the package area of a chip. 

Existing floorplanners operate efficiently on specific classes of designs but fail 
to deal adequately with the general case. 

This thesis addresses the floorlanning problem by presenting a novel method 

for VLSI floorplanning, using a connectivity metric to isolate clusters which are 

then assigned to one of a number of specialised floorplanners to be layed out. 

The complete floorplan is assembled from a hierarchy of floorplanned fragments. 

Routing 

Whilst numerous algorithms for routing wires across a channel have been 
published, there is a dearth of good algorithms for the (much harder) problems 
of power routing and switch-box routing. 

In the power routing problem, all the ground and power needs of the function 
blocks on a chip must be met by producing a pair of non-overlapping tappered 
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routes on a single layer - the metal layer. Whilst there are several oblique 

references in the literature to ways these power routes can be produced, no 
published algorithm exists. 

The ability to route the power rails automatically is an essential part of a sili-

con compiler. So, as part of the project reported in this thesis, the power routing 

problem was tackled by Ron Morton in the research phase.of his MSc [Morton 

851. It would be inappropriate to describe Morton's methods here but one or two 

results do need to be mentioned in order to prove that automatic power routing 
algorithms can work within the database framework that is presented. 

A similar situation exists for the switch-box routing problem, where ports 
one all four sides of a wiring space must be routed in no more than two layers. 

Again as part of the project reported in this thesis, Tom Waring developed an 

algorithm for switch-box routing superior to any of the methods described in the 

literature [Waring 851. Waring did this work as part of an MSc research project 
and this thesis shall not preempt the Waring's own publication of his work, but 

because the existence of such an algorithm underlies the viability of a silicon 

compiler, one or two pertainent results will be mentioned along with a reference 
to where the details can be found. 

Silicon Assembly 

The output of a floorplanner can be laid out by a silicon assembler, but 
this requires support from the design database used by the compiler. This the-
sis addresses the problem of maintaining compatibility between compiler and 
assembler by using a homogeneous database for both activities. 

User Interaction 

Space on a silicon chip is an expensive resource. A linear increase in the size 
of a silicon die is accompanied by an exponential drop in the yield. For this 

reason, engineers are under pressure to make achip die as small as possible. 

No silicon compiler can produce a layout in the minimum area, just as no 

program compiler can produce machine code that uses memory optimally. But 
the trouble with silicon is that it is a two dimensional medium and as a result, it 
is easy to criticise a layout: Even someone who has never designed a chip can see 

"obvious" improvements in a layout that has 30% white space. At least with an 

optimising FORTRAN compiler a first ye.r undergraduate cannot look at the 
machine code and say this or that has been implemented badly. 
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Even a perfect silicon compiler might not use all the space on a silicon die. 
It might be more efficient to leave a space rather than contort wires into it or 

site active circuitry over it. White space, unlike space covered with logic, makes 
scarcely any difference to the yield. But with a practical compiler, the areas of 

white space are larger than they could be. Unfortunately, when an engineer spots 
some white space on a chip he associates the space with inefficient compilation, 

which is not necessarily true. No matter how small the area of space, the sight of 
it seems to trigger an irresistable urge to alter things. There are two approaches 
to handling this problem: 

Deny the user any interaction. This is quite difficult because the final mask 
geometry can be hacked using a text editor. If one succeeds in preventing 

hacks, users may become so frustrated that the compiler would fall into 
desuetude. 

Provide a beautiful scheme for interacting with the compiler at the different 

levels of design abstraction. A user could call an interactive floorplan 

editor from within the compiler if he is unhappy with the floorplan, a 

more determined user might want to alter the way a logical interconnect 
is decomposed into sprees by the global router, and a user who is either 
incredibly brilliant or just pig-ignorant could even use a cell editor to alter 
a wiring channel or a leaf cell. 

This thesis presents a framework for doing things the second way. 

The verification loop 

There must be a verification loop to allow users of a silicon compiler to con-
firm that the mask geometry generated by the compiler does in fact implement 
what was meant by the specification. To do this, it is necessary to confirm that: 

The behaviour captured as a specification performs the function intended. 

The library modules are correct. This is an important area to verify be-
cause modules are updated frequently and no matter how thorough the 

test procedure, it is not possible to test a module in every conceivable 
situation. 

The compiler is correct. A silicon compiler is a gigantic program using 
highly sophisticated heuristics. Whilst it is unreasonable to expect such 
a tool ever to be completely debugged, it is also unreasonable to expect 
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users to keep on fabricating faulty chips every time a new bug becomes 

manifest. A fabrication cycle costs more than 10,000 pounds and takes ten 

weeks, so it is important to detected any bugs before  chips are fabricated. 

The verification problem can be tackled either formally or informally. 

Formal verification methods 

Formal verification involves proving the equivalence between a high level 

specification and a low level program under certain assertions. 

A study by Basili on the effects of software complexity on program develop-

ment concluded that the majority of errors in a program are caused by faulty 
specifications [Basili 84]. One implication of Basili's result is that formal veri-

fication methods, besides being extremely difficult to implement, would fail to 

detect the most serious errors. For this reason we shall not consider formal 
verification methods in the VLSI context. 

Informal verification methods 

Informal verification methods, namely simulation, can be used to verify be-
haviour. 

Whilst circuit level simulators such as SPICE [Nagel 751 can simulate circuits 
comprising at most a few hundred transistors, switch level simulators can simu-

late the behaviour of an entire chip in a reasonable amount of time. Switch level 
simulators are event triggered, so the simulation time grows at a rate which is 
at worst linear with the number of connections. Commercially available switch 
level simulation engines can process hundreds of millions of events per second. 

As chips become more complex, the simulation engines become more power-
ful, especially as switch level simulators can be structured to make full use of 

the resources offered by parallel machine architectures. For these reasons, it is 

reasonable to expect to simulate an entire chip at the switch level right up to 
the ultimate physical limits of fabrication technology. Therefore, switch level 

simulation is a good candidate for verifying a complete chip. 

The methods presented in this thesis tackle the verification problem by using 

a technique which allows a switch level description of the mask geometry for an 
entire chip to be extracted quickly from a design database. 
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What this thesis does 

In summary, this thesis fires a broadside at the problems involved in silicon 

compilation. It coordinates solutions to each of the main problems that have been 
identified into a framework upon which a complete compiler can be developed. 

With the exception of the optimisations mentioned in Chapter 9 and a few 

of the library features described in Chapter 6, everything you will read about 
has been implemented. 

Experiments 

To develop the ideas presented in this thesis, three silicon compilers have 

been written - or rather, there have been three complete re-writes of the same 

compiler. These compilers are knownas U2.1, U2.2 and U2.3. The U2.3 compiler 
is the most recent and all implementation specific comments made in this thesis 
refer to this version of the compiler. 

Frequent reference will be made to the U2 compilers, without apology. Al-

though this introduces a fair amount of implementation detail into a couple of 
the chapters, it is probably the least awkward way of "This is how I have tackled 

this problem". You may wish to tackle the problem a different way, but at least 
if one way of doing a job is presented you will have a head start in developing 
your better method. 

How this thesis is organised 

Chapters 2 and 3 deal with floorplanning. Chapter 2 presents some theoret-
ical concepts by way of a foundation for Chapter 3. 

Chapters 4 through to 8 deal with the languages for capturing design and 

library information and describe the database techniques that sew everything 
together. Chapter 4 state the requirements a design capture language and a 

library language must meet. Chapter 5 describes the UNIT language, used for 
design capture. Chapter 6 describes the LEGO language, used for capturing cell 
libraries. Chapter 7 gives an example of how a new cell family can be described in 

LEGO. Chapter 8 describes how a UNIT program is compiled into a sequence of 
lower level, more detailed, dialects of the UNIT language and how these support 
the database needs of a silicon compiler. 

Chapter 9 looks at how the framework developed in this thesis can be ex-
tended to a functional level by optimising dataflow graphs. 
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The conclusion in Chapter 10 summarises the main contributions made by 

this thesis and indicates areas for further research. 
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Chapter 2 

Degrees of Planarity 

For more than half a century, mathematicians have been devising predicates to 
test for whether a graph can be drawn on a plane without any of the edges 

crossing. A graph thus drawn is said to be embedded in the plane and graphs 
that are embeddable are said to be planar. 

However, the predicates provide no information on how easily the embedding 

is to find, nor do they indicate how near an aplanar graph is to being planar. 
Reasoning intuitively, it is easier to embed a graph consisting of a single vertex 

than it is to embed a maximally interconnected set of four vertices. Similarly, a. 
maximally interconnected graph with five vertices is nearer to being planar than 

a maximally interconnected graph with a million vertices. Whilst these things 
may be common-sense, there is no mathematical support for them. 

The ability to distinguish between graphs according to the degree of inter-
connectedness, or the degree of planarity, is fundamental to the floorplanning 

method described later on. So in this chapter a planarity metric is developed 

and a function is derived from it for finding how much each vertex in a graph 
contributes to the planarity of the whole. 

Notation 

The branch of mathematics that deals with the discrete properties of graphs is 
known as Extre mat Graph Theory. Extremal graph theory is yet in its infancy so 
whilst most of the terms and notation are generally accepted, there are differences 
between authors. 

To avoid ambiguity, our conventions are defined in the next section and a 

list of symbols is given in Appendix A. In general, this thesis conforms with the 
notation used by Bollobas [Bollobas 781., 

Ideas I introduce are given as Propositions and immediately proved. Other 
people's ideas are introduced as Theorems, along with a reference to the original 
paper in which they are proved. 
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Some theorems are so well known they are referred to without any introduc-

tion. In doing this, the assumption is made that the reader is familiar with graph 

theory up to the level taught for an honours degree in a numerate discipline. 

Definitions 

A graph C = (V, E) consists of two disjoint sets: the set of vertices V and 
the set of edges E. The symbols v 1 , v 2 , v 3 ,... are used to represent the vertices 
and the symbols e 1 , e 2 , e3 ,... to represent the edges. An edge connecting vertex 
v 2  to v5  can be denoted by e12  = (v1, v.). 

The order of a graph G is the number of vertices in its vertex set and is 
denoted by JGJ. An arbitrary graph of order n is denoted by G. 

If two vertices are connected by a common edge then they are said to be 
adjacent. The vertices associated with an edge e are said to be the end vertices 
of e. An edge is incident on its end vertices. 

A path in a graph G is an alternating sequence of distinct vertices and edges, 
starting and ending with a vertex. A trail is a similar sequence that starts and 
ends with an edge. A circuit is a path that starts and ends with the same vertex. 
A Hamiltonian circuit is a circuit containing all the vertices of C. The number 
of edges in a path is called the length of the path. 

We shall be concerned only with simple graphs. A simple graph G = (V, E) 
is one in which: 

G is adirectional. That is, for any edge (v i , v5) E E, (v i , v') 	(v,, v). 

For any pair of vertices vi E V and v, E V, there exists a path from vi  to 
v. An adirectional graph that fails to meet this restriction is said to be 
disjoint. 

There are no self-connected vertices. 

The number of edges incident on the vertex v i  is called the degree of the 
vertex and denoted by d(v 1 ). The minimum degree of any vertex in graph G is 
denoted by 6(G) and the maximum degree is denoted by i(G). When 5(G) = 

(G) = Cl, C is said to be a complete graph. It is common practice to denoted 
a complete graph of order n by the symbol K. The complete graphs K3  to K 5  
are illustrated in figure 2-1. 

A simple graph G= (V, E) is said to be bipartite if V can be partitioned into 
two subsets va and Vb  such that all edges in V are incident on one vertex in 
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K 3 	 K 4 	 K 5  

Figure 2-1: Some complete graphs 

va and one vertex in Vb.  If the number of vertices in V' is p and the number 
of vertices in Vb  is q, then C is denoted by GP ,q. A logical extension of bipartite 
graphs is to partition a graph into r subsets and a graph thus partitioned is said 
to be r-partite. 

A bipartite graph C = (V U  Vb, E) is said to be complete if for every two 
vertices v a  E Va  and Vb E Vb  there exists an edge (Va, Vb)  in E. A complete 
bipartite graph with k vertices in each vertex set is denoted by Kk,k  The 
complete bipartite graphs K 2 ' 2  to K 4 ' 4  are illustrated in figure 2-2. 

The widespread use of the K notation for complete graphs is in deference to 
Kuratowski, and in particular, the two graphs K 5  and K 3 ' 3  are known as the 
Kuratowski Graphs. 

A sub graph is obtained from a parent graph C = (V, E) by removing vertices 
from V and those edges incident on them from E. 

If a subgraph is replaced by a single vertex such that all edges originally 
incident on a vertex in the subgraph become incident on the substitute vertex, 
then the replaced subgraph is called a cluster and the process of making the 
replacement is called clustering. Note that clustering introduces hierarchy to a 
graph. The letter p is reserved to denoted the order of a cluster. 

A colour can be assigned to each vertex in a graph C = (V, E) to produce a 
colouring of C. A colouring of G such that no vertex in V has the same colour 
as an adjacent vertex is called a proper colouring of C. The minimum number of 
colours needed to produce a proper colouring of G is called the chromatic number 
of G and is denoted by (G). If the edges of G are assigned colours instead of 
the vertices such that no two edges incident on the same vertex bear the same 
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K 2 ' 2 	 K 3 ' 3 	 K 4 ' 4  

Figure 2-2: Some complete bipartite graphs 

colour, then that assignment is a proper edge colouring of G. The minimum 
number of colours needed to produce a proper edge colouring of G is called the 
edge chromatic number, denoted by '(G). Note that x'(G) is not related in any 
way whatsoever to (G). 

Operations on Graphs 

The following operations may be performed on a graph. 

• Union of two graphs 
The union of two graphs G = (V, E) and H = (V', E') is formed by the 
union of their vertex and edge sets, that is, C U H = (V U V', E U E'). 

• Intersection of two graphs 
The intersection of two graphs G= (V, E) and H = (V', E') is formed 
by the intersection of their vertex and edge sets, that is, C n H = 
(VnV',EnE'). 

• Identification of two vertices 
If the graph G = (V, E) contains the two vertices vi E V and v3  E V, 
then these may be identified by replacing v1  and v j  by a new vertex such 
that all edges originally incident on vi or vj  become incident on the new 
vertex and removing vi  and vj  from V. 
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• Contraction of an edge 
If the graph G = (V, E) contains the edge e = (v, v 5), e can be con-
tracted by identifying v1  and v. The contraction of an edge e removes it 
from E. 

• Contraction of a graph 
A graph C is contractible to H if C can be transformed into the graph 
H by a series of edge contractions on C. The contraction of G to. H is 
denoted by C > H. 

• Subcontraction of a graph 
A graph C is subcontractible to H if a subgraph of C can be contracted to 
H, denoted by C >- H. 

Whilst it is possible to perform other operations on a graph, those listed are 
sufficient for our needs. 

Degrees of Planarity 

The most basic requirement of a planarity metric is that it must distinguish 
between graphs that are planar and graphs that are not. 

In 1930, Kuratowski proved that a graph is planar if and only if it cannot 
be contracted to K 5  or K 3 ' 3 . This result is known as Kuratowski's Theorem. 
ilarary and Tutte have proved that the converse to Kuratowski's theorem is also 
true. 

Kuratowski's theorem is the only strong characterisation of planar graphs we 
have, so any planarity metric must critically depend upon the syzygy (K 5 , K 3 ' 3 ). 
Supposing there is a series of such pairs, then the densest possible series must 
be: 

K° , K?,? 

K', K?,? 

K 2 , K?,? 

Ks , K,? 

K4 , K?,? 

(K 5 , K 3 ' 3 ) 

K?,? 

K?,? 
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To produce a scale of planarity, it is necessary to find the bipartite partner 
for each complete graph in the series. 

We could simply match bipartite graphs against the attributes one might 

associate with each point on the emerging planarity scale. For example, if the 
origin of the scale is based on the contraction of a graph to K° , then the planarity 
would be zero for the null graph and only the null graph, the planarity would be 
1 for a single vertex graph, 2 for acyclic graphs, at least 3 when cycles exist, 4 
is the maximum for planar graphs, 5 for the simplest aplanar graphs and so on. 

Alas, life is not so simple. Bipartite graphs can be contracted to complete 

graphs. If the complete graph that can be contracted from the bipartite graph is 
larger than the complete graph the bipartite graph is partnered to in the series, 

then the series become chaotic. The only way to avoid this mess is to ensure 

that the bipartite graphs cannot be contracted to their complete partners. So 

the problem changes to one of finding the largest complete graph contractible 
from a bipartite graph. We shall set about solving this problem by comparing 

the number of vertices and the number of edges in each of the two graph types. 

By inspection, it is apparent that a complete bipartite graph Ktm'm has 2m 
vertices and m 2  edges. Each vertex v is of degree m, that is, d(v) = m V v. 

Also by inspection, it can be seen that a complete graph Kc  has k vertices, 

k-i 

(k - 1)---(k-2)--(k-3)+...--(k—[k--2]) +1 =Ei 

edges and that each vertex is of degree k - 1. 

Unfortunately, if we enumerate the number of edges and the number of ver-

tices for each type of graph, there is no obvious correlation. To illustrate this 
point, the numbers of vertices and edges for the complete graphs K' to K'8  are 
enumerated in the table overleaf. 
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Complete Graph Number of Edges Number of Vertices 
K' 0 1 
K 2  1 2 
K 3  3 3 
K 4  6 4 
K 5  10 5 
K6  15 6 
K 7  21 7 
K8  28 8 
K9  36 9 
K'°  45 10 
K" 55 11 
K' 2  66 12 
K'3  78 13 
K'4  91 14 
K' 5  105 15 
K'6  120 16 
K' 7  136 17 
K'8 	 1  153 18 

And for bipartite graphs: 

Bipartite Graph Number of Edges Number of Vertices 
K°'°  0 0 
K" 1  1 2 
K 2 ' 2  4 4 
K3'3 	 - 9 6 
K4 ' 4  16 8 
K 5 ' 5  25 10 
K6 ' 6  36 12 
K 7 ' 7  49 14 
K 8 ' 8  64 16 
K9 ' 9  81 18 
K' °"° 100 20 
K" 121 22 
K' 2"2  144 24 

There is no obvious pairing so we must resort to some 0-Grade algebra to 
find the smallest complete bipartite graph Ktm'm contractible to a given complete 
graph Kk. 	 - 
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Let us start by recapitulating what we already know about each type of 
graph. 

Graph type Num. edges Num. vertices Degree of each vertex 
Km,m 

Kk 

m 2  2m 
k 

m 

k — i 

The sum expression for the number of edges in a complete graph is awkward 
to deal with, so let us start by converting it into a simpler form. 

Commencing with: 
k—i 

i= 1+2+3+..+(k-1) 

Reversing the R.H.S. gives: 
k—i 

i= (k—i)+(k-2)+(k-3)+...+1 

Summing both of the above gives: 

2i= k+k+k+.•.+k 

Rewriting R.H.S. gives: 
k—i 

2>i= k(k-1) 

Dividing both sides by 2 and rewriting gives: 
k—i 	k2—k 

2 

A bipartite graph Km,m  has rn2  edges, but as we have just shown, a complete 
 k2 

- kgraph has only k 
2 

 2 k . This means that exactly m2 - - edges must be contracted. 

A contraction removes one vertex from V' U V". A bipartite graph has a+ b 
vertices, whereas KJC  has only k vertices, so exactly a + b - k vertices must be 
identified if > Kc. In the case of a complete bipartite graph Ktm'm, this 
means that only 2m - k contractions may occur. 

Thus we have two sets of equations: one for the number of vertices that must 

be removed, the other for the number of edges. These two equations are distinct 

- they cannot be equated with each other because the contraction of a single 
edge may cause any number of edges to be deleted. We need therefore some 
third equation to link everything together. 

The third equation is obtained by considering how to minimise the number 
of edge contractions. Clearly, for a bipartite graph that has been subject to an 



Chapter 2. Degrees of Planarity 26 

abitrary number of earlier edge contractions, further contractions cause the min-

imum number of edge deletions when it involves an interset edge. The incestuous 

contraction of edges within a vertex set will always cause G'I edges to be lost: 

G' is the graph obtained by performing an arbitary number of contractions in a 
bipartite graph. Therefore, if Km,m  can be contracted to Kk,  then it must be 
possible to do this by making m - 1 interset contractions. 

Our third equation says that rn—i edge contractions occur. Our first equation 
says that 2m - k contractions occur. So if we equate these together, we should 
get a relationship between m and k. 

2m—k= rn  — i 

Separating m and k gives: 

k= m+1 

It is possible to produce a similar expression based on the edge relation, but 

the vertex relation has been chosen instead because it avoids the complications 

introduced by having to set the sum factor factor equal to a the number 
of edge contractions, another arithmetic series for which the sum to rn is ma-rn 

The two quadratic sum terms in the edge relation act in the same way as the 
linear m - 1 term does in the vertex relation. 

The relationship between k and m is the key to finding the Ktm'm values in the 
planarity series: It means that a complete bipartite Kk_k_1  can be contracted 
to K   V k > 1. Therefore, for the series m = k - 1. 

Now that we know what bipartite graphs can be contracted to, we are able to 
match up the bipartite and complete graphs in the planarity series. It appears 

that there is simply a infinite series of bipartite-complete syzygies of the form 

{ K 
2.1c_2,K1c}.  But here there is a catch. 

If K" is paired up with K 3  an ambiguity would exist because K 1" = K2. 

Another problem at the start of the series is that we want to distinguish between 
acyclic graphs and cyclic graphs but K 3  is cyclic whereas K" 1  is acyclic. 

We can get over these problems by starting the bipartite series at K 3 ' 3 , Ku-
ratowski's partner to K5. 
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Hence, the series runs as follows: 

K° 
K' 
K2  
K3  
K4  

K3 ' 3 } 

K4 ' 4 } 

K5 ' 5 } 

K6 ' 6 } 

K7 ' 7 } 

{ K'°, K8 ' 8 } 

This series points to the natural definition of the degree of planarity as being 
the contraction of a graph to a maximal (Kk, Kk_2_2) pair. That is: 

Definition 1: The planarity of a graph G, denoted by co(G), 
shall be defined as: 

max { max (k: G r.Kk)  ,max (k: G > K 2 ' 2 ,k> 3) } 

Notice that contraction to bipartite graphs smaller than K33  is barred. 

Figure 2-3 enumerates the critical p(G) graphs for p(G)=1 to 6. It should be 
no suprise to see that the critical p(G) graphs are in fact (Kk, K22) pairs. 

Properties of (G) 

The definition of (G) has some interesting properties. These properties can 

be divided up into two groups: properties that are evident from the construction 

of co(G) and properties that are more complex and so need to be proved. Among 
the complex properties is a relationship between (G) and x(G). 

Trivial Properties 

It can be seen from the way co(G) is defined that (G) <5 if and only if G 
is planar. Note also that p(G) = IGI if C is a complete graph. 
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Planarity Critical graphs 

1 K' 

2 K 2  

3 

_K 3 / 

4 
K 4  

5 and 
K 3 '3  

6 
K 6  
and 
K 4 '4  

Figure 2-3: Least connected graphs for degrees of planarity 1 to 6. 

Chromatic Properties 

To investigate the chromatic properties of co(G) the following theorems are 
needed. 

Theorem: 1 (By Heawood [Heawood 90]) 
If a graph G can be drawn on an orientable surface of genus y > 0 then, 

(G) :!~ H(1)= L (7+/1+48.)] 
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Theorem: 2 Extension of Heawood's theorem by Dirac [Dirac 52], [Dirac 57] 
Suppose a graph G is drawn on an orientable surface of genus '> 0 and x(G) = 
k, then C >- KJC. 

With this equipment it is possible to prove the following proposition. 

Proposition 1: For all simple graphs G, V(G) ~: (G). 

Proof: The function go(G) must be obtained either by contracting C to K 2 ' 2  
or by contracting C to Kk.  Consider each case in turn. 

Case 1: C k 

Whenever V(G) depends on the contraction of C to a bipartite graph, then go(G) 
must be greater than the order of the biggest complete graph contractable from 
C. So if Case 2 of this proof is true, then Case 1 must also be true. 

Case 2: CkKk 

Using Dirac's extension to Heawood's theorem, if (G) = j then G is subcon-
tractible to K'. Therefore C must be contractible to K', or arranged another 
way, G > KX(G). But if (G) depends on the contraction of C to the largest 
complete subgraph in G, then co(G) -~! IK"I, and so co(G) ~: (G). 

Although the proof of co(G) ~: x(G) uses Heawood's and Dirac's theorems,, 
the proof would become trivially simple if a certain conjecture by Hadwinger is 
ever proven in the affirmative [Hadwinger 431, [Hadwinger 58]. 

Hadwinger's conjecture goes as follows: 

If x(G) = k then C t> K/C .  

This conjecture is essentially the inverse of Dirac's theorem. The conjecture 
is easily proven true for k = 1 3  2 3  3, and Dirac has proved it true for k = 4 
[Dirac 57b]. Pages 251-253 of [Bollobas 781 prove that if the 4 colour conjecture 
(4CC) can be proved in the affirmative, then Hadwinger's conjecture is true for 
k = 5. As Appel, Haken and Koch [Appel 76], [Appel 76b] have since proved 
the 4CC, now the 4 colouring theorem (4CT), then Hadwinger's conjecture is 
true for k = 5. However, as much as the truth in Hadwinger's conjecture is 
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intuitively obvious, it remains unproven beyond k = 5. Due to the absence of a 
formal proof, no direct use of it will be made but it is mentioned here because it 

is far simpler than Heawood's theorem, so the reader may prefer the conjecture 
for informal use. 

Implications of (G) ~: x(G) 

Note from the proof of co(G) ~! (G), that co(G) can only equal X(G) when 
co(G) depends upon C > Kk. In the case where co(G) depends on G > Kk_2,2 

then C may have an arbitrarily high degree of planarity whilst having an arbi-
trarily low chromatic number, provided x(G) > 1. For example, the complete 
bipartite graph 

22 C' = lim K' n—Ioo 

is 2 colourable, yet ç(C') - oo. To illustrate and reinforce this point, the graph 
C' is drawn in figure 2-4 for n = 16. 

Time Complexity of (C) 

To derive the upper bounds on the time needed to compute (C), consider 
the graph G under the following proposition: 

Proposition 2: The function co(G) is NP-Complete in time. 

Proof: The value of (C) must be obtained either by contracting C to Kk_2 , 2  

or by contracting G to Kk. 

Case 1: G 1> 	 2,11—  is NP-Complete 
Proved by Statman, (cited by Carey [Carey 79]). 

Case 2: C 1> Kk  is NP-Complete 

Karp has proved that partitioning a graph into cliques is NP-Complete 
- a clique 

is the biggest complete graph in C [Karp 721. So the case of C > K  is proven. 

As (G) can be computed by a series of two NP-Complete operations, it must be 

either in P or NP-Complete. Trivially, it cannot be in P because declining either 
one of the two contractions that need to be computed would result in a method 

for computing a known NP-Complete function in polynomial time. Therefore, 
co(G) must be NP-Complete.  El 
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Figure 2-4: K 8 ' 8  is highly aplanar, (K 8 ' 8 ) = 6, yet 2 colourable. 

Local Planarity 

It is often useful to know how each vertex in a graph G effects the planarity 

of G. For example, a graph G in which co(G) = 2 except for the addition of a 
subgraph K 7  might be clustered by replacing all the vertices that form K 7  by 
a single vertex, thereby allowing G to be embedded. For this clustering to be 
possible, it is necessary to isolate those vertices in the aplanar subgraph K 7 . 

To find the local planarity of a vertex v1  E V in a graph C = (V, E), a sub-
graph must be built from v1  and its neighbours in such a way that the subgraph 
tells us how important vi  is to the global interconnect of C. 

The concept of local planarity must involve the neighbours intimately, so a 

more exact definition of the word "neighbour" is needed than is afforded by its 



Chapter 2. Degrees of Planarity 32 

popular usage. In fact, "neighbour" carries with it so many implicit meanings 
that we should use the idea of a connection set instead. The connection set of a 
vertex is defined as follows: 

Definition 2: For a graph G = (V, E), the mth degree con-
nection set of the vertex v• E V, denoted by CS(v1,m), is that 
subset of V that can be reached by a non-looping path of length 
m precisely. This path is allowed to backtrack only to the start 
vertex and then only as the last step in the path. 

By definition CS(v,O) = {v i  I and {v 1 } fl CS(v,1) = 0, where 0 is the empty 
set. The degree m must be ordinal. The operators of set algebra apply to CS 
sets. 

Proposition 3: The function CS(v 1 , m) is NP-Complete in 
time. 

Proof: (Due to Brebner [Brebner 84]) 	
0 

Consider a graph C = (V, E). Trivially, the worst-case problem of computing 
CS(v, in), where v, E V, is when m = Cl, which is identical to the problem 
of finding a Hamiltonian circuit in G. The latter problem has been proven NP-
Complete by Karp [Karp 72]. Therefore, if the function CS(v, IGI) is both the 
worst case and is functionally isomorphic to a known NP-Complete function, 
then CS(v,m) must be NP-Complete for arbitrary values of m. D 

Things are not quite as grim as might be inferred from the above proof. In-
deed, if the size of m is known in advance, the members of CS(v 1 , m) can be 
found in polynomial time. This fact is not obvious, so its formal proposal and 
proof is given below. 

Proposition 4: When in is fixed and known, then the function 
CS(v, in) can be computed in polynomial time. 
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Proof: By observation, CS (v i , 0) = {v 1 }, and CS(v 2 , 1) is simply the vertices ad-
jacent to v1 . Nixon gives an O(1G1 2 ) algorithm for computing CS (v i , 2) [Nixon 
84]. Therefore, by virtue of the existence of polynomial methods for finding 
CS(v 1 , m) for rn = 0,1,2, CS(v 1 , m) must be in P for the contraint on m pro-
posed: The case where m = IGI must be excluded, otherwise this proposition 
would revert to the NP-Complete state considered earlier. 0 

Subtractive methods for finding the local planarity 

One approach to computing the local planarity might be to remove each ver-
tex in turn from the vertex set V and recalculate the planarity of the remaining 
graph. If the planarity of the remaining graph is less than that of the original 

then it might be said that the vertex subtracted must be causing the original 
graph to be whatever planarity it happens to be. 

However, the change in the planarity of a graph upon subtracting a vertex 
is quite different from the change caused by adding a vertex. In fact, unless a 

vertex forms a critical link between two subgraphs each of planarity lower than 
the original, then the subtraction of a vertex does not effect the planarity of the 
subgraphs at all. 

To illustrate, consider the graph G formed by connecting an extra vertex v 
to one of the vertices in K 5 . The planarity of K 5  is 5. The addition of V1  to K 5  
is the same in planarity terms as the addition of v1  to a single vertex graph. A 
single vertex graph has a planarity of 1 before adding v 1  and 2 afterwards, so the 
local planarity of v 1  attached to the point graph must be 2. Therefore, the local 
planarity of v, in C must also be 2. However, if the local planarity of v 1  were to 
be calculated by some recursive subtraction process then the local planarity of 
vi  could be five! Clearly, the subtractive method is unusable. 

Additive methods for finding local planarity 

Earlier it was said that: 

"To find the local planarity of a vertex v 1  E V in a graph C = (V, E), a 
subgraph must be built from v, and its neighbours in such a way that 
the subgraph tells us how important v 1  is to the global interconnect 
of C." 

This statement a subgraph should be created on the vertices {v, CS(v 1 , 1)} 
by adding edges to CS(v,, 1) to simulate the background planarity of the original 
graph. Clearly, edges must be added to CS(v 1 , 1) but not to v1. 
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One way of adding edges to a graph, to simulate the background connectivity 

is to add an edge if the transitive closure between two vertices is less than some 
number. But the blind addition of edges to CS(v 1 , 1) according to whether there 
is a transitive closure between any two vertices in CS (v i , 1) is no better than 
the blind subtraction method that has been dismissed already. In fact, blind 
addition is even worse because potentially it could mean trying to compute the 

value of the local planarity of a vertex from a complete subgraph of an order 
greater than the global planarity of the unadulterated graph, go(G). 

External predicates 

It is not necessary to exhaust all possible connectivity schemes to find a 
suitable method for computing the local planarity. The two methods that have 

been considered, namely blind addition and blind subtraction, add or subtract 

edges from a graph according to some external predicate. Clearly, using an 

external and quite unrelated predicate to compute the planarity function is a 
minefield: Chromatic and planarity theorems are notoriously difficult to prove 
and so even if we were to find a predicate that gave the correct results on a series 

of benchmarks, we would probably still be unable to prove that the method works 
for all graphs. 

Up to now we have considered methods for computing the local planarity of 
a vertex by adding or subtracting edges according to some arbitrary predicate. 

These methods have had to be dismissed because the predicates they use do not 
behave in the same way as the global planarity function co(G). So why not use 
the global planarity function itself to find the local planarity? 

Contraction methods for finding local planarity 

One such introactive method for finding the local planarity that can be guar-

anteed to be a true measure of how individual vertices contribute to the global 
planarity of a graph involves contracting a graph onto a subgraph S consisting 
of a vertex v i  and those vertices adjacent to v, namely {V i  U CS(v 1 , 1)}, in such 
a way as to maximise ço(S). Only by contracting G onto {v 1  U CS(v, 1)} can we 
be sure that the planarity of the resulting subgraph accurately represents the 
contribution of v 1  to co(G). 

Using the method of contracting G, we may define local planarity of a vertex 
formally as follows: 
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Definition 3: The local planarity of a vertex vi E V in the 
graph C = (V, E), denoted by ç(vj ), is defined as the maximum 
value of p(G) that can be produced by iteratively contracting 
edges incident on a vertex in the set 

{ 
Vj  U CS(v 1 , 1) }. 

Properties of cd(v) 

To illustrate how ç'(vj) behaves, consider some examples. 

For the first example, consider a graph G" comprising a square array of 
vertices such that A (G") = 4,8(G") = 2 and o(G") = 3. An array is highly 
regular, so we would expect each vertex to contribute the same amount to the 

global planarity co(G"). If for each vertex we contract C" onto the subgraph 
formed by V = { v1 U CS(v, 1)} and measure the planarity, we find that it is 
equal to 3 for every such subgraph in C". Hence all the vertices in C" have a 
local planarity of 3. 

Figure 2-5 demonstrates how @'(v) behaves by giving the ço' values of several 
other graphs for each vertex alongside the co(G) and x(G) values for comparison. 
It can be seen from the examples that '(v) allows the components of a graph 
with similar planarity to be identified. 

Time complexity of ço'(v) 

To derive the upper bounds on the time needed to compute (p' (vi), consider 
a vertex vi E V in the graph C = (V, E) under the following proposition: 

Proposition 5: The function p(v i ) is NP-Complete in time. 

Proof: The function '(v1 ) is defined as the biggest value of co(G') that can 
be obtained by contracting G onto a subgraph G'. Thus to prove that '(v) is 
NP-Complete, it is necessary to prove four things: 

1. That the upper time bound of the function çc'(C) is no worse than NP-
Complete. 
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That co'(G) is not in P, the set of polynomial time functions. 

That the vertices of C' can be found in polynomial time. 

That the contraction of a graph to a maximal subgraph, for which there 
exists a polynomial satisfyability predicate, is NP-Complete. 

Consider these problems one at a time. 

Part 1: 

The upper time bound on the function co(G) has been shown to be NP-Complete 
already. QED 

Part 2: 

From the definition of go'(G), its computation necessarily involves computing 
go(G) - an NP-Complete function. QED 

Part 3: 
The vertices of C' are simply the union of v, which is given, and those vertices 
adjacent to v1, which can be found in linear time. Therefore, if the upper bound 
time complexity of the function p' (G) is worse than linear, then the problem of 
finding C' is not the reason for it. QED 

Part 4: 
We mentioned earlier that finding the largest bipartite subgraph by. contraction 

from some parent graph is NP-Complete (Proved by Statman). It is easy to write 
a polynomial time predicate to test whether a particular graph is bipartite. Yet 

the bipartite contraction problem is NP-Complete, even though the test for a 
bipartite graph is has a polynomial time bound. So all maximal contractions 

must be NP-Complete, unless the function being maximised is itself worse than 
NP-Complete. QED 

Once parts 1 through 3 have been proved true, the proof of the initial propo-
sition is a direct corollary of part 4. 

As a practical note, finding the value of co'(v) when v 1  is a vertex in the graph 
can take an amount of time proportional to C 2 , where C is a constant. 

Polynomial Approximations to '(v) 

A computer program for calculating the value of co(G) could require an 

amount of time that tends towards the exponential of the size of the problem. 
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Vd 

(G)= 3 
cd(v)= 3Vi, 

(G) = 3 

Vb 	 va  

vc 	 Vd 

 

(G)= 4 
cQ'(v) = 4 for v E {v3 , Vb, O Vd} 

(p' (Ve) = 2 

(G) = 4 
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vg  

 

ç(G)= 6 
X(G) =6 

' t:v)= 4VvE{v1 ,v9 } 

ço'(v) = 5 V v E K 5  subgraph 
ço'(v) = 6 V v E K 6  subgraph 

Figure 2-5: cd(v 2 ),ço(G) and x(G) values for several graphs 

The time complexity of co ' (v1 ) is even worse. To compute co'(vj ) for every vertex 
in a graph C, would take an amount of time that tends to 

Cl * 22*IGI 

So if the computer program can assess a possible contraction in 10_6 seconds, a 

speed beyond that available from the fastest machines in existence today, then to 
compute P ,  (v) for each vertex in a graph with 100 vertices might take 100*2 2 * 100 

seconds: A very long time. 

In the context of VLSI, we may need to calculate the local planarity of graphs 
with tens of thousands of vertices. Obviously, a a way of overcoming the time 
complexity problems must be found before going any further. 
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Direct approximations to co'(v 1 ) 

By a direct approximation, I mean a procedure for solving the problem that 
has been defined. Later on we shall look at indirect methods that instead of 
solving the problem that is defined, make an approximation by mapping it into 
a different problem that can be solved more easily. 

Many algorithms have been published for finding approximate solutions to 
NP-Complete problems using direct methods. Some of these achieve results very 
close to the optimal solution. Probably, the best examples of this are the graph 

colouring heuristics: eight different colouring algorithms compared by Brelaz 
were all within a few percent of (G) [Brelaz 791. 

Researchers who have experimented with direct approximations of x(G) have 
found that their errors tend to be largest when colouring sparse graphs [Wood 
691. We have proved that a close relationship exists between the global planarity 

function co(G) and the graph colouing function x(G), so we should expect that 
a direct heuristic for computing the local planarity function ço' would also be 
least accurate on sparse graphs. 

Unfortunately, VLSI connectivity graphs are often very sparse. So using 
direct methods to find ç' could invoke serious problems. The evidence is clear: 
Using direct heuristic techniques is likely to result in a produce an unreliable 
planarity function. 

Indirect approximations to co'(v) 

Rather than attempt to produce a direct approximation to ', we could try to 
find a polynomial time function that although quite different from '(v), would 
behave similarly enough to for the job in hand, namely, VLSI floorplanning. 

The local planarity function ço' returns information on how tightly intercon-
nected is the subgraph around aparticular vertex. Our needs can be restated 

as wanting to know about how strongly the connectivity set is connected within 

itself, or in other words, how many vertices in the connectivity set are mutually 
connected. 

An infinite number of functions that return information on the mutual con-
nectivity of a subgraph can be constructed. Out of the functions that have been 
tried, the one that seems to work best is defined as follows. 
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CS(V a ,1) = {vb,vd} 
CS(vb,2) = {Va,Vc,Vd} 

CS(vd,2) = {Va,Vb,Vc} 

CS(vd,1) = {Va ,Vc } 

MC(v a ,1) = 2 
MC(v 0 ,2) = 3 
MC(Vb,2) = 3 

Vb 	 V0  

Figure 2-6: Example graph and MC values 

Definition 4: The mth degree Mutual Connectivity of a vertex 
Vi, denoted by MC (vi, rn), is the maximum number of vertices 
in the set CS(v, 1) U {v 1 } U {CS(v 3 , 1) U {v}} , where v1 E 
CS (v i , m). The degree m must be ordinal. 

To illustrate how the MC function works, figure 2-6 gives the CS sets and 
MC values for an example graph. 

The MC function has a number of interesting properties. MC (v i , 0) = d(v1 ), 
MC (vi , 1) is a similarity index and MC (vi, 2) is an approximate measure of the 
local planarity. 

An algorithm for computing CS(v 1 , m) is given in [Nixon 84]. 

Once CS(v 1 , m) and CS(v 1 , 1) have been found, MC(v 1 , m) can be computed 
using simple set operations. 

Time Complexity of the MC function 

It has already been shown that CS(v 2 ,rn) is NP-Complete. As MC(v,m) is 
no more than the union of several CS sets, it too must be NP-Complete. But 
if MC(v 1 , m) is NP-Complete, why use the MC function instead of the local 
planarity function '? 

It was proved earlier that CS(v 1 , in) can be computed in polynomial time 
if in is fixed and m < II This means that if for small values of m the time 
complexity is of the MC function is a low order polynomial function of n - the 
number of vertices. 
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Figure 2-7: Example of a graph where MC(v,2) 0 p(v) for all v. 

Later on we will be concerned with MC(v, 2), for which the time complexity 
is of the form O(p.l), where I is the number of vertices adjacent to v. For a 
practical VLSI design, 1 is usually a small number between 2 and 20, though for 
the theoretical worst case of a complete graph, I is equal to p - 1. This result for 
the worst case behaviour of MC (vi, 2) agrees with polynomial complexity result 
of Nixon [Nixon 841. 

In short, whilst the MC function is NP-Complete in the general case, it is 
possible to compute MC(z)i,2) in virtually linear time and in 0(p2 ) time in 
the worst case. The MC(v 1 , 2) values are sufficient for our purposes, so the 
underlying NP time complexity of MC (v 1 , m) causes no trouble. 

Error distribution of the MC function 

For the MC function, whenever MC(v,, 2) co'(v) the MC function must be 
considered to be in error. Errors must occur: Unless the MC function possesses 
some special magic, it cannot work both in polynomial time and be isomorphic 
with cc". 

Given that there will be some graphs with vertices for which MC(v 1 ,2) 
ço'(v1 ), it is important to find out what proportion of simple graphs contain 
these error vertices, the magnitude of the errors and, hopefully, characterise the 
graphs in which the errors occur. Only when all these things have been done, 

assuming the MC function has been designed properly, can it be used in place 
of cc", provided the system that uses the MC function is carefully designed so as 
to be insensitive to the error vertices. 

The value of MC(v 1 , 2) must be computed by searching for vertices reachable 
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by a path of length 2 precisely, starting with each of the vertices adjacent to v. 
This is the same as looking for paths of length 3 from v, or circuits of length less 
than 5. Therefore, the MC function may give a completely inaccurate measure 
of the planarity for graphs in which either there are either no circuits or in which 
the shortest circuit is of length 5 or more. Let us call this set of graphs, error 
graphs. 

Figure 2-7 gives an example of an error graph. It was built by adding vertices 
to K 4 . 

An Improved Heuristic 

The set of MC error graphs is unbounded, hence infinite, and the set in-

cludes all very sparse graphs. As VLSI connectivity graphs tend to be sparse, 
this means that the basic MC function is virtually useless for VLSI. However, an 

important observation is that the MC function is always correct for very dense 
graphs, including complete graphs and graphs that are almost complete. If the 

MC function is used. to test for the maximum degree of planarity of a contracted 

subgraph then the function returns values close to the true local planarity. So, 
if a graph could be condensed into some maximally connected form before ap-
plying the MC function, then we would get a far better heuristic. Therefore, the 
problem now becomes one of finding the maximal planar contraction, that is: 

max (MC (v 1 ,2) : C t> (CS(v1 ) U {v},E')) 

There are a great many heuristics for contracting a graph subject to a cost 
function: In this case the cost function is MC(v 1 ,2). One such algorithm is 
given in figure 2-8. We shall refer to the estimates of local planarity produced 
by this particular algorithm as the Planarity Estimate (PE) of a vertex. From 
this point on, the FE will be used whenever a practical method for measuring the 

local planarity is needed. The PE function can be consider a improved version 
of the MC function. 

Summary 

In this Chapter we have: 

1. Introduced the concept of degrees of planarity. 

2. Developed the function co(G) for measuring the degree of planarity of a 
graph. 
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Proved a relationship between the planarity function (G) and the vertex 
colouring function (G). 

Developed the local planarity function '(v) for measuring the contribu-
tion a vertex makes to the planarity of its parent graph. 

Developed a practical method for computing the local planarity function 
co'(v1 ). 

In the next Chapter, these mathematical tools are applied to the problem of 

forming clusters in graph in such a way that each cluster can be floorplanned 
easily. 
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integerfunction planarity estimate (vertex: v; graph: C) 
{ Returns the local planarity of v - a vertex in the graph G } 

listfunction condense(list of vertices: vlist) 
var list of vertices: list of contenders 

vertex: vi 
list of contenders := empty list 
vi := vlist 
while vi empty list cycle 

append CS(vi, 1) to list of contenders 
vi := next vertex in list 

repeat 
vi := list of contenders 
while vi empty list cycle 

if vi is in vlist then 
remove vi from list of contenders 

fi 
vi := next vertex in list 

repeat 
vi := vlist 
while vi empty list cycle 

contract all vertices in list of contenders adjacent to vi onto vi 
vi := next vertex in list 

repeat 
end 

var list of vertices: list of start vertices 

{ contract G to a dense subgraph } 
list of start vertices := CS(v, 1) 
append v onto list of start vertices 

while there exists a vertex in the list of start vertices 
that is connected to a vertex not in the list cycle 
sort the vertices in the list of start vertices 

by ascending degree 
condense(start vertices) 

repeat 

{ now that G is contracted, find MC value } 
result := MC(v,2) 

end { of planarity estimate function } 

Figure 2-8: Heuristic for estimating the local planarity of a vertex 
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Chapter 3 

Idiomatic Floorplanning 

This chapter presents a method of determining the relative position and aspect 
ratio of functional blocks in a microcircuit in such a way that the total area 

and communication costs are minimised. This area planning process is known 

as floorplanning, after the age old problem of determining the shape and posi-

tion of rooms within a building so that the rooms are sufficient for the utility 
they accommodate whilst at the same time minimising the corridor space, the 
communication costs. 

The quality of a floorplan 

The quality of a floorplan is the single most important factor Affecting the 
technical viability of a design. If the floorplan uses silicon inefficiently, the yield 
will be low. If the aspect ratio deviates too far from 1:1 then the chips cannot 
be sawn from the wafer and mounted reliably. If a new chip is intended to be a 
functional replacement for another, then it may be important that a particular 
pad position is adopted. The quality of a floorplan is a composite goodness factor 
formed by the amalgamation of all these others. If the individual quality factors 
are identified, then one floorplan can be considered to be better than another 
and so it becomes possible to judge the comparative attributes of floorplans. 

It is common practice to make qualitative judgements of a floorplan according 
to the following criteria: 

1. Wire Length 

A layout comprises function blocks and wires. The area taken by the 
function blocks is fixed by the application, but it is the way the floorplan-

ncr lays out these function blocks that controls how much area is taken up 

by wiring. As well as increasing the chip area, excess wiring degrades the 

temporal performance. Thus, the total wire length and the ratio of wiring 
area to function area are probably the most important criteria by which 

the quality of a floorplan can be measured. 
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Total Area 
It should go without saying that there must be as little as possible white 
space between function blocks. 

Aspect Ratio 
The aspect ratio of a chip should be close to 1:1. The floorplan becomes 
worthless if the aspect ratio increases much beyond 2:1. 

Pad Order 
A cost might be associated with moving pads away from their predeter-

mined position, perhaps to maintain plug compatability with some earlier 

chip. Also, for chips with many pads it is important to place pads evenly 
around the periphery of the chip to keep the bonding wires as short as 

possible. Long bonding wires reduce the reliability of a chip because when 
the chip is stressed, perhaps by vibration, the bonding wires move and 

may touch each other or, under high levels of stress, the wires may break 
through metal fatigue or the bond could fail. 

Specialised Costs 
The costs listed above apply to all chips, but a layout technician may 

trade off costs of a more individual nature, to capture things like, "the 
amount of metal used for wires must be maximised", or even more spe-
cialised, "function block ABC must be as close as possible to PQR and 

PQR must be close to both XYZ and pad 2 and all of that lot must be 
as far away from signals A, B and C as possible because ABC, PQR and 

XYZ carry some low level analogue lines that might couple with the digital 
signals A, B and C which sink a lot of current". 

A good floorplan is one which finds a reasonable trade off between these cost 
functions. 

Mead and Conway observe that for chips of an LSI or VLSI scale, the wiring 
costs dominate [Mead 80]. So the methods presented in this thesis concentrate 
on solving the wireability part of the problems. 

Background 

There are three methods for automatic floorplanning currently in vogue: 

Box packaging 

• Target Architectures 
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• Graphical Methods 

The box packaging technique exemplified by Preas [Preas 78] and Szepieniec 
[Szepieniec 80],  tries to pack the box outlines of function blocks into the smallest 
space. The resulting placement is then perturbed and shuffled to take into 
account the connectivity between the blocks. These box packaging methods 

tend to produce low quality floorplans because they are directed primarily by 
the outlines of the function blocks rather than by their connectivity. 

The target architecture approach is used in the first generation silicon com-

pilers, such as Bristle Blocks [Johannsen 791 and FIRST [Bergmann 831. The 
method employs a predetermined architectural style to lay out all designs. Con-

sequently, these floorplanners can be optimised by incorporating expert knowl-

edge that may not be applicable to other floorplanning situations, but this re-
stricts their application by making them highly specialised. 

The graphical methods come in many different forms, the best known being 

planar graph dualisation, as typified by Heller [Heller 791, [Heller 821, [Heller 
82b]. Graphical methods can be considered to be the opposite of the box packing 

methods in that whereas the box methods are directed first by the box outlines 

and second by the connectivity, the graphical methods try first to minimise 
the interconnect length then look at the outlines afterwards. Consequently, the 
planar dualisation methods produce floorplans of the highest quality, but as their 
name suggests, they are limited to planar connectivity graphs. This restriction 
has serious implications in VLSI because many architectural idioms can produce 

aplanar connectivity graphs. For example, cell transparency is an extremely 
important layout technique that is used widely to lay out aplanar graphs such 
as datapaths and cell arrays. The planar restriction of the graphical methods is 

compounded by their exponential time complexity, which greatly limits the size 
of designs which can be handled [Brebner 83], [Buchanan 831, [Nixon 85]. 

The method presented here, that of idiomatic floorplanning, is based on two 
precepts: 

There exist a finite number of architectural patterns, or idioms, which can 

be laid out by specialised floorplanners that have been optimised on an 
individual basis. 

That these architectural idioms are recognisably distinct. 

The first of these precepts is based on the observation that whilst the perfor-

mance of the floorplanners described previously is inadequate for the purposes 
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of floorplanning the great mass of general purpose chips, they are effective at 

laying out specific design families. The second precept implies that it is possi-

ble to decompose a general graph into clusters that correspond to the classes 
of designs that can be laid out. Given a set of specialised floorplanners, the 
problem becomes one of assigning clusters to floorplanners and then assembling 

the complete floorplan from a hierarchical set of floorplanned fragments. 

These precepts do have a sound theoretical basis. Leiserson has proved that 

if there exists a good separator theorem for a class of graphs, then this is a 

sufficient condition for there to be a good VLSI layout of that class [Leiserson 

82]. Unfortunately, Leiserson also proved that a perfect separator theorem is NP-

Complete. It is because of this result that a lot of time was spent considering 

how to build a good heuristic for the planarity function developed in the last 
chapter: we intend to use the local planarity function co'(v1 ) as a graph separator 
function. 

An outline of the method 

The idiomatic approach to floorplanning can be divided into three phases: 

Clustering 

Classification 

Placement 

The three phases are interdependent. The problems of clustering are inter-
woven with those of classification and the classification system must reflect the 
capabilities of the specialised floorplanners that perform the placement. 

The clustering phase is a preprocessing stage intended to simplify the job of 

classification by introducing additional levels of hierarchy to an already struc-
tured design. 

Classification is the process of identifying which class a particular cluster 
belongs to. It is assumed that disjoint clusters are separated during clustering. 

Placement is the mechanical process of laying out the clusters. This stage is 
made up of a number of individual "expert" floorplanners, each dealing with a 
particular class. 
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Basic Concepts 

Given a general graph, the first problem is to extract clusters which match 

the capabilities of the available specialist floorplanners. To do this, it is necessary 

to understand why a designer chooses to use architectural idiom 1 to lay out a 
problem instead of idiom 2 or idiom 3. 

Take an example. Imagine that only five architectural idioms are known: 

Arrays 

H-trees 

Transparent cells that produce datapath-like layouts 

Wiring channels for supercell-like layouts 

Planar remnants 

Choose examples of graphs that are suited to laying out in each of the idioms 
listed. What makes the graphs different? What makes the, graphs less suitable 
for being laid out using one of the other idioms? 

At first there may seem to be no similarity between the graphs at all. Even 
something as simple as an array may not look anything remotely like an array 

when it is drawn. Figure 3-1 shows a graph alongside its layout produced by 

an idiomatic floorplanner. Once la&cL out the graph is obviously an array, but 
before layout, it could be anything. 

One experiences difficulty in recognising the array before it was floorplanned 
because the information normally associated with an array, namely regular con-
nections, had been deliberately scrambled. Once the regularity information has 
been hidden, all that is left is the connectivity information. 

This array example also highlights the fact that people perceive problems in 

a quite different way to machines. Unless the regularity information is made 

explicit, all an automated floorplanner has to go on is the connectivity. The 

scambled array demonstrated that whilst connectivity information is a necessary 
prequisite to floorplanning, it is scarcely sufficient: extra information is needed. 

It is necessary to identify what this extra information is, and either find a way 
of presenting it explicitly to a floorlanner, or find a method of synthesising it 
automatically from the connectivity. 

S 
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Before Floorplanning 

After Floorplanning 

Figure 3-1: An array: before and after floorplanning 
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If the most important single attribute of a good floorplan is the way connec-

tivity is handled, then a good place to start might be to characterise the various 

specialised floorplanners according to how well they handle different degrees of 

interconnectedness. The planarity metric developed in the previous chapter pro-

vides the tool with which to do this. One such classification is tabulated below. 

Floor Idiom Planarity Regularity 

Arrays 
Low order 3 or 4 Very High 

High order 5 or more Very High 
H-trees 2 or 3 High 
Datapath-like layout 4 or more High 
Supercell-like layout 5 or more Very Low 
Planar dualisation 4 or less Low 

Figure 3-2: Characterising floorplan idioms 

Notice that the floorplanning idioms can be uniquely identified by the pla-

narity and the regularity values. The regularity is a measure of the distribution 

of the local planarity values and the orders of the vertices in the connectivity 
graph. 

The use of local planarity to model layout idioms is best understood by 
considering the case where the degree of planarity is equal to the chromatic 

number. The well known principle in cartography called the 4CT states that it 

is possible to colour a map using no more than 4 colours so that no neighbouring 
countries have the same colour. If one allows aplanar maps then more colours 

are needed, this is Heawood's Theorem mentioned in the last chapter. Given 

a colouring, it is possible to measure the rate of change of the colouring across 

the graph as well as the absolute number of colours that are used. The number 
of colours around a vertex is a measure of the local planarity and the rate of 

change of the local planarity becomes a measure of the regularity of a graph. 

One possible classification system for graphs that have been clustered into 
groups of like planarity and regularity is given in figure 3-3. 

The full classification system will be described later on, but notice from the 

figure that it is a two phase process. The outermost filter separates regular 
graphs from irregular graphs and planar graphs from aplanar. The innermost 
filter uses a few implementation specific rules to determine exactly which floor-
planner should be chosen. 
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proc classify(cluster c) 
if c is regular then 

if c is planar then 
if all vertices in c are of degree 2 and 

H-tree test is positive then 
floorplan fragment as H-tree 

elseif array test is positive 
floorplan fragment as array of order z(e) 

else 
there is an idiom missing 
give fragment to irregular planar floorplanner 

fl 
else { c is aplanar } 

if array test is positive then 
floorplan fragment as array of order z(e) 

elseif transparent cell test is positive 
floorplan fragment as datapath-like layout 

else 
there is an idiom missing 
give fragment to irregular aplanar floorplanner 

fi 
fi 

else { c is irregular } 
if c is aplanar then 

if channel test is positive bf then 
floorplan fragment using wiring channels 

- else { c is aplanar remnant } 
floorplan fragment as datapath-like layout 

fl 
else { c is planar } 

if c is in a special case then 
apply specialised tests 

else { c is planar remnant } 
floorplan using planar dual floorplanner 

fl 

fi 
end { of procedure } 

Figure 3-3: A miniature classification system 

CO 
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Method 

• An outline of the idiomatic floorplanning method has been given. The re-
maining sections of this chapter build on this foundation by presenting a detailed 

description of each of the three stages involved: clustering, classification and 
placement. 

Clustering 

As mentioned earlier, clustering is a pre-processing stage intended to improve 
classification. Clustering introduces additional structure to a hierarchical design 
so that the classification system can give a simple class label to each cluster. 

In a very well structured design, clustering is redundant. In a worst-case fiat 

design, clustering attempts to build a design hierarchy that reflects the needs of 
the classification system. 

The clustering system requires three stages to be applied in turn. The stages 
are: 

Fragmentation clustering 

Planarity Clustering 

Functional Clustering 

Fragmentation clustering is simply a way of handling very large unstructured 
designs. Clusters with more than a given number of vertices, say 1000 vertices, 

are broken into fragments based on their connectivity. These fragmentation 
methods are limited in a practical sense because of the complexity of the de-  

- 

sign process they are trying to imitate, that of design segmentation. Only the 

most unstructured designs are fragmentation clustered, for structured designs 
fragmentation clustering is redundant. 

Planarity clustering is based on the PE function and is designed to mirror 
the classification system: it produces clusters that can be recognised easily. This 
involves two parts. The first part clusters according to the planarity, the second 

according to the regularity. The end product is a tree of clusters labelled with 

information about whether or not they are regular and-or planar. A planarity 
directed clustering algorithm is given in figure 3-4. An algorithm for doing the 
regularity clustering is much the same but looks at the order of a vertex in 
addition to the PE(v, 2) values. 
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proc planarity cluster( 

integer: n { order of the graph, IGI }; 
integer array: v(1. .n) { array of vertices } ) 

var integer: planarity, i 

planarity := 0 
for I := 1 to n cycle 

v(I) := PE(i,2) 
planarity := max(planarity, v( )) 

repeat 
if planarIty> 2 then 
for i := planarity downto 2 cycle 

if there exists a vertex i with PE(I ,2) := i then 
create surrogate vertex 
move i under surrogate 
bring under surrogate all vertices in 

CS(I ,1) with PE(I ,2) := I 
if new cluster contains only one vertex then 

bring under surrogate all vertices in 
CS(i,2) with PE(i,2) := I 

fi 
if new cluster still contains only one vertex then 

- 	bring under surrogate all vertices in 
CS(I,1) with PE(I,2) > 4 

fi 

if new cluster still contains only one vertex then 
bring under surrogate all vertices in 

CS(i,2) with PE(i,2) > 4 
fi 

if new cluster is disjoint then 

bring common members of CS(i,1) under surrogate 
fi 
close surrogate 

fi 
repeat 

end { of clustering procedure } 

Figure 3-4: An algorithm for planarity clustering 
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Functional clustering is a method of introducing implementation-dependent 
features into the clustering process. Functional clustering relies on an ad. hoc. 
collection of rules to accommodate any further clustering action necessary to 
produce clusters that particular specialised floorplanners can lay out. 

Classification 

During the development of an idiomatic floorplanner, it became apparent 

that there is a distinction in classification between what can be recognised as a 

distinct type of graph and what can be lak& out by the implemented "expert" 

floorplanners. This led to the idea of a two level classification system. The 
first level, closely allied to clustering, recognises certain general types of graph. 
These general types are referred to as planarity classes. The second level, that 
of implementation classes, tests for a more selective range of graph types that 
closely match those that can be laid out by the specialised floorplanners that 
have been implemented. 

The structure of the two level classification system is shown in-figure-3-5. 

Placement 

One of the basic precepts on which idiomatic floorplanning is based, is the 
need for specialist floorplanners. It is at the placement stage of the floorplanning 

process that these "expert" floorplanners are called into use. 

Of the three processes involved in idiomatic floorplanning, placement is the 
most mechanistic and poses the fewest theoretical problems. One of the at-

tractions of the idiomatic approach is that the individual floorplanners can be 
optimised to lay out their particular class well. However one problem which 

does arise is the need for some of the floorplanners to cope with clusters which 
have not been optimally classified, that is clusters which would best be laid out 
using an idiom that has not been implemented. This problem requires some of 
the expert floorplanners to be robust enough to cope with such clusters. 

It was envisaged from the outset that a graph dualisation process such as 

that of Heller's [Heller 821 would be used as a catch-all for planar graphs. The 

aplanar graphs use a datapath generator to catch aplanar remnants. 

a 
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Figure 3-5: Structure of two level classification system 
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Implementation classes of floorplan 

This section describes some implementation classes and shows how they relate 
to the planarity classes considered already. 

The implementation classes identified so far include: 

Hyper-regular graphs 

These are implemented as VLSI arrays. Hyper-regular graphs are in two 

planarity classes: that of regular planar, or regular aplanar. The implemen-

tation class test consists of recursively removing the strongest connected 
vertices in a cluster and then applying PE rules to verify that the remain-

ing graph belongs to a class of rings, either as a simple ring or a complex 
ring. 

A ring is a graph C which contains a hamiltonian circuit, but in which 
there are no circuits of length between 3 and I G. The value 3 is the degree 
of planarity of the vertices in the corners of the array. 

By way of a practical aside, the class of arrays has proved the hardest to 
classify. It is easy to identify a 1024 by 1024 matrix of cells as an array, 
but what about a similar matrix with 6% of the cells missing? What if 
21% of the cells are missing, is the sparse matrix still an array? What if 
all 21% of the missing cells all come from the center of the array? 

Trees 

These are planar graphs that can be implemented efficiently as VLSI H, 

Trees. The implementation test for trees comes after that for arrays so it 
only has to verify that the cluster is acyclic with A (G) = 3. 

Regular Monocyclic Planar Graphs 

These are implemented as VLSI rings. A simple ring is a cluster in which 
= 8(G) = 2. 

Regular Biplanar Graphs 

It is possible to enumerate all biplanar graph types (that is, graphs for 
which co(G) = 2). When this enumeration is carried out, it becomes ap-
parent that a biplanar graph can be contracted either to a single star or 
a row. A star is a graph in which 1(G) = - 1,8(G) = 2 and there 
are [Cl - 1 vertices of order 2. A row is a graph in which (G) = 2 and 
6(G) = 1. 
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All graphs is this group can be laid out easily on a grid, using a folded 

linear grid in the case of rows and a compacted matrix in the case of single 
stars. 

Irregular, Hot Aplanar Graphs 
These are implemented using wiring channels. The "hot" term refers to 

the distribution of local planarity values, which is very broad, with many 

vertices with low values though with a fair scattering of high value vertices. 
The vertices with high values of local planarity are hot-spots of highly in-
terconnected sub-clusters. 

In practice, identification of this class using connectivity based tests must 
be reinforced by functional tests. 

One possible connectivity test is to count the number of single stars indi-

rectly connected to another star, that is, where a vertex of degree (G) is 
a star centre and contains in its CS (v i , 2) at least one other star centre. 

The functional tests are system dependent and so will not be described. 

Aplanar Remnants 
These are implemented as transparent cells using a datapath layout. This 
acts as a catch all, so it need not be positively tested for: all aplanar graphs 
that are not anything else are aplanar remnants. 

Planar Remnants 
Planar Remnants are implemented using a planar dualisation method. Pla-

nar remnants act as the catch all for planar clusters and so again, they need 
not be positively tested for. 

Figure 3-6 contains some examples of classification and layout for the classes 
of Aplanar Remnants, and Irregular, Hot Aplanar graphs. 
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Datapath 
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Figure 3-6: Examples of two implementation classes 
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- Summary 

Existing floorplanning algorithms can produce highly efficient layouts for re-

stricted families of design types, but they fail to produce adequate layouts for 
the generalised floorplanning problem. The approach to generalised floorplan-

fling that is presented here uses a simple function based on the connectedness 

of vertices within a cluster to develop rules for assigning the cluster into classes. 

The cluster can then be floorplanned using a floorplanner optimised for that 
class. The strength of this new approach lies in its ability to apply many dif-

ferent floorplanning techniques, each one being applied onry to those situations 
where it is well suited. 

The importance of using the PE function is stressed. Without the function, 

the idiomatic approach would involve many thousands of rules and the result-
ing system would behave unpredictably. The PE function makes the idiomatic 

approach viable and the classification that is used makes the system effective. 
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Hardware Description Languages 

Existing Hardware Description Languages (HDLs) do not satisfy adequately the 

demands made upon them by silicon compilers. In fact, it seems to be these 
inadequacies that cause most of the problems identified in the introduction to 
this thesis. To solve the problems, it is necessary to develop a suitable HDL. 
To do this, we must first identify what demands a silicon compiler makes on a 
HDL and then decide how to address those requirements in the design of a new 
language. 

A model of HDLs 

Dealing with the problem of what to describe, the job would be much easier if 
there was some formal model with which the various features and characteristics 
of a language could be discussed in a precise context. 

Numerous attempts at producing such a model have been made. All of the 
three models we shall go on to consider make a distinction between domains 
of description, such as a behavioural domain or a geometric domain, and the 
levels of abstraction. This distinction is a useful one because it separates the 
specification of what is being described from the functionally orthogonal concept 
of how a language handles degrees of detail. 

The earliest attempt at modelling HDLs relevant to this discussion is un-
doubtedly Gajski and Kuhn's Y chart [Gajski 83]. The Y Chart has three arms, 

the first arm represents functional information, the second structural information 

and the third geometrical (physical) information. When the arms are arranged 
axially, increases in the amount of detail in a design, the levels of abstraction, 
are considered to run along each arm towards the discontinuity where the arms 
meet. 

Napp and Parker refine Gajski's work by adding a fourth domain, causing 

the three others to be reorganised, and adding a hierarchical aspect to allow the 

stepwise refinement of a design through various intermediate descriptive domains 

to be expressed, all the way from some high level starting point to a manufactured 

Mc 



Chapter 4. Hardware Description Languages 61 

object [Napp 84]. The four domains in the resulting tree structure are labelled 
the data flow behaviour subspace, the structural subspace, the physical subspace 
and the timing and control subspace. 

Walker and Thomas set out to combine the best features of both Gajski's and 
Napp's models into their own Directed Acyclic Graph (DAG) view of hardware 

descriptions [Walker 85]. Walker and Thomas label their three domains the 
behavioural, the structural and the physical. 

Behavioural D 
performance spec 

er 

Architectural 

iti> 

Functional Block 
I 

Logic 	ALU 

Circuit 	gates, flir 

.tion 	transstors, w 

cell d au, g oi 

tructural Domain 
'CPUs, memories 

modules 

registers 

partitions 

Physical Domain 

Figure 4-1: An axial view of Walker's subspaces 

The Walker and Thomas model is the most useful for our purposes. Each 

domain in their DAG may be decomposed into a more detailed composite domain 

without implying any isomorphic decomposition anywhere else. This ability 
to represent independent decomposition provides a framework for hierarchical 

synthesis and allows the model to be extended to incorporate other domains 
of a specification, such as the functional, the temporal, the topological, the 
topographical or the geometrical domains. 

Another feature of the Walker and Thomas model is that the spaces between 
each domain are identified with particular levels of design abstraction. This can 



Chapter 4. Hardware Description Languages 62 

Behavioural Structural Physical 
Domain Domain Domain 
performance CPUs physical 

Architectural level specs memories partitions 
- switches 

controllers 
buses 

algorithms hardware clusters 
Algorithmic level (datastructure blocks 

manipulations) datastructures 
operations ALUs clusters 

Functional block level register transfers blocks 
state sequencing datastructures 
boolean equations gates cell estimates 

Logic block level flip-flops 
• PLAs  
differential transistors cell estimates 

Circuit level equations capacitors cell details 
resistors 

Figure 4-2: A tabular view of Walker's subspaces 

be seen most easily from a Y graph representation of the Walker DAG, shown in 
figure 4-1. The DAG can also be translated into a table, as shown in figure 4-2. 

The Walker model: Independence between domains of de-
scription and levels of abstraction 

In designing their model, Walker and Thomas make a key observation: Levels 
of abstraction have nothing whatsoever to do with the domains of description. 
It means that the domain a specification happens to be in has little bearing on 

its succinctr For example, it is possible to describe a system at the physical 
level in some language more succinctly and more clearly than at the functional 

level in some other language. Also, it is possible to describe a system at the 
same level of detail in each of several different domains. Walker and Thomas 

illustrates this point by describing a specification at the Function Block level of 
abstraction in each of the three primary domains, as follows: 



Chapter 4. Hardware Description Languages 63 

Behavioural Domain 
The behavioural domain specifies what a circuit does (the function) and 

the manner in which it does it (how fast, in what order etc.). 

The behaviour of a system at the Functional Block Level of abstraction 
might be represented as a set of registers and abstract function blocks, 
along with a timed datafiow graph. 

Structural Domain 
The structural domain specifies the logical organisation of a system. 

The structure of a system at the Function Block Level might still use 
abstract function blocks, but all control would be explicit and if one sys-
tem was controlled by PLAs and another by microcoded ROM, then their 
structural specifications would differ. 

Physical Domain 

The physical domain specifies how a structure is to be implemented. 

If two systems are described at the Functional Block level of abstraction, 
their physical descriptions would differ if one was implemented in ECL and 

the other in TTL, or even if they are both in TTL, their descriptions would 
differ if they are partitioned onto circuit cards differently. 

The semantics recovery tarpit 

The work of Walker and Thomas goes against much of the research on silicon 
compilation done before 1985, when their model was first published. Until then, 
several groups had been trying to compile silicon structures from computer pro-

grams written in systems programming languages. Other groups had proposed 
HDLs that could describe only the structural and physical aspects of a specifi-

cation. The fact that neither of these approaches are likely to produce a useful 
silicon compiler is apparent from the Walker model. 

For example, Kahr's SILT compiler [Kahrs 851 compiles 'C' programs into 
silicon structures [Kernighan 781. With the Walker model one can see clearly 
that in order for C programs to be compiled into efficient silicon structures, it 
is necessary to synthesise information at a higher level of abstraction than a 

program. We know that this type of level recovery is very difficult: Witness that 
it is very hard to translate language A to language B by producing object code 
from A and then recovering the semantics to produce B. 
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The proponents of low level HDLs, it seems, avoided the problems of seman-
tics recovery but were not equipped to tackle the problems of automated design 
synthesis. 

Implications for automated synthesis 

The Walker model for representing design information, if accurate, implies 
that: 

HDLs for silicon compilers must allow a specification to be described at 

a very high level of abstraction and keep describing the specification as it 

is translated from one level of abstraction to another, with arbitrarily fine 
granularity, until the specification ends up wholly in the physical domain 
with sufficient detail to spawn manufacturing information. 

At any one level of abstraction, a specification may exist in several domains 
simultaneously. 

Formulating Specifications 

We set out on the quest of developing: 

a tool that interacts with engineers on their own level to capture 
a specification that is translated into mask geometry automatically: 
The ultimate VLSI CAD tool." 

This begs the question: At what level do engineers interact with each other? 
What is an engineer's "own level"? 

This question was tackled in [Deas 831, and the arguments presented there 

are reproduced below. The original argument conveys the ideas on HDLs in a 
succinct and readable form, so there is no need to recast them. The main argu-
ment is quoted below: 

Beginning of quote (with minor changes): 

"The ideal interface to a silicon compiler is at the highest level, that is, 

at the same level as a client would use to specify a system to an engineer. 
Observations and experience of how this is done in industry indicates that the 
following dialogue is typical: 
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Social introduction 

Client: 	 "We're working on a system which I reckon might be better 

off as a chip. Can I explain what it does and perhaps you 
could give me your comments? 

Engineer: 	"O.K. Here's some chalk ... First, could you tell me a little 

about what your system does as a whole so I can get a feel for 
what is going on. 

Client: 	 "O.K. We want to send out ultrasound pulses into fixture 
welds on steel pipes, interpret the echoes and draw a picture 
of the weld on a monitor. 

I'll draw you a sort of block diagram of what we've got. 

We have four transducers which ... and we end up with 
we calculate the values of X, Y and Z using this equation 
matrix transformations ... and we end up with ... a picture. 

Engineer: 	"O.K. I think I understand what's going on. Let's talk about 
the bit you want to implement as a chip. Can you draw me a 
block diagram of the 

Client: 	 "Let's see. If we start with the middle bit 

Engineer: 	"Hang on, let's keep it simple. First of all, what lines do you 
have coming in? ... and what does that bit do? 

The engineer solicites a conceptual block diagram of the proposed chip, providing 
feedback to the client about performance issues as he progresses. The engineer's 

experience is used by the client to evaluate different ideas and experiment with 
what is possible, trading off performance in one part of the chip against that in 
others and balancing extra features against cost etc. 
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Finally: 

Client 	 "Oh yes, I almost forgot - we only need 10 chips at the moment 
but we must have them by the New Year. Let's see, this is 
October 29th, so that leaves a good three months ... is that 
O.K.? 

End of direct quote 

A number of features in this protocol can be identified. 

The protocol begins with an abstract description of the whole system in 
the context of its working environment. 

The protocol involves producing a block diagram containing several levels 
of abstraction. Notice that an esoteric requirement will be specified in a 
great deal of detail, other requirements will be more vague. For example, 

one block might have to run exceptionally fast. Then the speed will be 
specified (a performance requirement). Other blocks are state machines, 

and to specify the performance of a state machine might require a transfer 
equation or a state table. Certainly, the contents of ROMS - it might be 

the set of ASCII codes, or a microcoded instruction set - would have to 

be specified. In the Walker model of HDLs, these things, the performance 

information and the state table, are at two opposite ends of the abstraction 
spectrum. 

In producing the block diagram, both client and engineer find it useful to 
start with the input-output lines and walk through the innards in a series 
of hierarchical passes. 

Client uses feedback from the engineer to assess the implications of the 

various design constraints and to evaluate alternative architectures. 

Behaviour, not structure 

The ibid. argument for a block based approach to specifying VLSI parts is 
rather lengthy; we have just selected some of the salient points. But it is clear 

that engineers do not formulate their needs using some highly theoretical model. 
They deal with block diagrams where the blocks perform functions recognised 
by client and engineer. 
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Whatever comes out of the discussion between our engineer and his client 

is certainly a behavioural description and in the context of Walker's DAG, the 
description is at the functional block level of abstraction. 

It is important to recognise that the client does not give the VLSI engineer 
any structural information. But outwardly, a structural description might be 

identical in its syntax to a behavioural description. To avoid any confusion 
between the two, the differences in semantics will be highlighted by an example. 

Say a block in the client's model is a multiplier. A VLSI engineer might find 
that the multiplier only multiplies numbers one up or one down from the previous 

number it multiplied. So the engineer decides to implement the multiplier as a 

counter and an adder, to make the chip smaller. Furthermore, the engineer might 
decide to split the counter and adder in two, site each part on opposite sides of a 

chip and run the carry signals across the chip. Perhaps, it is more efficient to do 
this than to carry the input to this composite pseudo-multiplier across a chip. 

The engineer has the freedom to make this sort of decision by virtue that the 
information given to him by the client is purely behavioural. It is not structural. 
If it been structural, then the engineer would have been obliged to implement 

the multiplier as a general purpose multiplier, no matter how inefficient that 
may have been. 

Requirements of a design capture language 

Using the Walker model, it is possible to identify a number of requirements 
the HDLs used by a silicon compiler must meet in addition to those mentioned 
earlier. 

It must capture behavioural information from the user. 

Whilst the user may throw out information at many levels of abstraction, 
the bulk of it is at the functional block level. The language should be 
designed therefore to interact with the user primarily at this level, but be 
sufficiently flexible to allow relevant information at any level to be stored. 

During the compilation the amount of detail in the specification will in-

crease enormously. The language must store this information in an easily 
accessible form. 

Thinking ahead to the way in which a silicon compiler might be used causes 

further demands to be made-on a HDL. For example, it was mentioned in the 
introductory chapter that a silicon compiler must: 
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• Support interaction. We decided that a user must be allowed to change ab-
solutely anything. This means allowing people to interrupt an automated 

process, modifying things in a controlled way and then continue. 

• Represent partial designs. Even if one can design a chip in a minute, the 

hackers will take longer and even hackers need tea-breaks. 

• Eventually, describe physical layout. To do this, the HDL must be able to 

represent every detail anyone could conceivably have a use for: from what 

a block is to the type, position, orientation and connectivity of a buried 
contact. This information must be stored in such a way that geometri-
cal and topological information can be extracted quickly and easily. The 

topographical requirement comes from our need to support switch level 
simulators. 

. The HDL must be extensible. We certainly will not cover all the require-

ments for a HDL, so we must design the HDL in such a way that extensions 
can be added painlessly. 

- 	So far we have identified roughly what it is that must be captured by a HDL. 

We have also identified a suitable model to represent the various transforms that 
have to be applied to map the initial specification into the domains it needs to be 

in for an implementation of that specification to be manufactured. We can now 
start thinking about what form that language will take. Rather than replicate 
work, if a suitable HDL exists then we should use it and not set about creating 
another. But does a suitable HDL exist? 

Existing design capture languages 

Of the very many HDLs described in the literature, very few can describe 
design information in all three descriptive domains: Most support structural 
information only, or physical information, or more limited still, just geometri-
cal information. There are two outstanding exceptions to this generalisation: 
TIDAL and EDIF (Electronic Design Interchange Format) [EDIF 841. Only 
these two seem to address the whole spectrum of design description. 

TIDAL was the first language that could describe every aspect of a design, 

from conception to how the chip is mounted in a carrier. It is superseded by 
EDIF. 

EDIF is the work of the EDIF Steering Committee, a body representing the 

coordinated efforts of seven large companies active in the commercial CAD/CAE 
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business: DAISY Systems Corp., Mentor Graphics Corp., Motorola Inc., Na-

tional Semiconductor Corp., Tektronix Inc. and Texas Instruments Inc. EDIF 

is rapidly becoming an industry standard format for design information. It intro-

duces the possibility of Open Systems, allowing products from different vendors 

to be integrated into one, and as a medium for communicating design information 

from one company to another. But EDIF is not intended as a design language: 
It is a format for the transmission of design information. The introduction to 
the EDIF specification, states that: 

"Essentially, EDIF describes a single, large data structure. It is 
neither a programming language nor a data-base system per Se." 

Although EDIF was not designed with silicon compilers in mind, it could be 

used for that purpose. But EDIF is not a pleasant language to work in: It was 

designed to the churned out from some pre-existing database rather than to be 
written by hand. 

Whilst the EDIF syntax is quite simple - it looks like LISP - the language 
is very large indeed, and growing rapidly as the many EDIF Technical Com-

mittees extend it. The extensions are made by adding keywords to the EDIF 

specification. Already there are many keywords that a user might include in a 
specification but might be meaningless to a silicon compiler. For example, to 
support gatearray layout systems EDIF allows wire delays to be specified, but 
whilst this can be done, the specification will probably be ignored by a silicon 

compiler. If a user can describe many different aspects of a system that are 
ignored by a silicon compiler then the compiler is failing to implement the full 
specification. The view is taken that a user should not be left in any doubt as 
to what has been specified and what has not. This view rules out using EDIF. 

These comments are not criticisms of EDIF; they simply reiterate the state-
ment made by the EDIF committee: EDIF is a format. It is not a programming 

language, nor is it a design language. EDIF was designed for transmitting CAD 

information between CAD systems. For that purpose, it is well designed. For 
the purposes of providing an interface to a silicon compiler, it is ill-suited. 

If EDIF does not fit our requirements then a new language supporting auto-
mated design tools must be designed. 

Technology Capture 

There are three different things a compiler's HDL must capture: 
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The specification of a design and the transformations applied to it. 

The library of information used by the compiler to carry out those trans-
formations. 

A set of design rules for a particular process technology. 

Up to now we have only considered the first of these three. 

The information associated with the each information category is almost 
completely co-orthogonal, so it is sensible to use three different languages, one 
for each category. 

The language that handles the first category of design information, called 
UNIT, is described in the next chapter, Chapter 5. Chapter 6 describes a lan-

guage called LEGO for representing the library information, called LEGO. But 

the third category gets just the scarcest of mentions in Chapter 8: It is discussed 
in the literature and Phil James attempts to deal with it in his MSc thesis [James 

851. Technology and process information is far removed from the subject of this 
thesis and the problems of designing tech files are by no means unique to silicon 
compilers so we shall avoid dealing with them here. 

Summary 

The framework for silicon compilation presented in this thesis uses two lan-
guages. One language, called UNIT, is used for capturing the design specification 
and the other language, called LEGO describes the target technology, it indexes 
a set of design rules and describes a group of module generators and leaf cells 
that conform to those rules. 

In this Chapter the characteristics each of is languages must exhibit has been 
estabilished and a rationale governing the design of them was expounded. The 

next Chapter presents a detailed description of the UNIT language, and the 
chapter after that presents LEGO. UNIT must support interaction, allow that 
interaction to be recorded, dumped and recaptured. To do this, the original 

UNIT program supplied by a user is translated into lower level dialects. Chapter 
8 is devoted to describing each dialect and illustrating how these support the 
different components of a silicon compiler. 



Chapter 5 

The UNIT Language 

UNIT is not one language, but seven consistent languages covering different levels 

of design abstraction, from behaviour to topography. This chapter introduces 

the highest level of the language group, used to capture chip specifications. The 
lower level sister languages will be described in later on. 

This chapter begins with a short discussion on design styles and uses a hier-
archical design example to illustrate the structure of a UNIT program. This is 
followed by the lexical details and the syntax of the language. 

Design Capture 

The UNIT language can be used in conjunction with engineering worksta-
tions in common use, for example the DAISYTM Workstation, by entering an 
architectural schematic on a workstation and then compiling the design capture 

file into UNIT. On the DAISY, the UNIT program would be extracted from the 

:DIF and TREE.DLNK files. The DAISY information can then be back-annotated 
by the compiler spawning an IMAGE.SOM file. 

The alternative to using an engineering workstation for design entry is to 
compose the UNIT program using a text editor, which is probably faster but 
demands that a user learn a new language (UNIT). 

Program Structure 

The UNIT language describes design hierarchies at the behavioural block 
level. The behavioural block level of abstraction is that used in an architectural 
block diagram: the architecture is defined but the manner in which each of the 
blocks are implemented is not. 

In a design hierarchy, each successive level of the hierarchy contains more 

detail than its parent. The hierarchy starts at a very abstract level and, if the 
chip were to be designed by hand rather than by a compiler, then the lowest levels 

would describe mask geometry, but in UNIT, the leaf level consists of functional 
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blocks such as adders, state tables and transfer equations. The compiler can 
produce mask geometry for these functions automatically. 

We shall proceed by using a real-life example to demonstrate the features of 
the UNIT language. 

There are some drawbacks to using a real example. Choosing an existing chip 
will certainly prevent the example from becoming too contrived, but it means 

that a lot of irrelevant detail is introduced very early on. In a completely new 

design, details do not arrive all at once, but rather, they are added as the design 
develops. 

Say, for the purposes of an example, that a functional equivalent to the 

Motorola 68000 microprocessor is needed. The purpose of this chapter is to 
describe the UNIT, it is not to describe someone's microprocessor. To avoid 

getting bogged down in a turgid account of how the M68000 works, it will be 

necessary to grossly simplify the microarchitecture. For the real story on the 
68000, Marchal's analysis of the machine is recommended [Marchal 841. 

The input and output signals on the 68000 are organised into the functional 
groups shown in figure 5-1. 

In UNIT we are concerned with only the functional aspects of the chip, so 
the input and output signals seen on the pinout would be translated into the 
following UNIT block. 

Chip M68000CPU( Invertinglnput Dtack(l), Bgack(l), 

IPL(0:2), Berr(l), 

VPA(l), BR (1) 
Phil 	CLK(l); 

Invertingoutput VMA(1), AS(l), UDS(l), 

LDS(l). BG(1) 

Output Addr(1:23), FC(0:2), 

RW(l), E(l); 
Bidir Data(0:15); 

InvertingBidir Halt(l), Reset(l)) 

{Lots of things inside heré} 

EndChip M68000CPU 

The header should not include power pads and it need not include the clock. 
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A UNIT program is a series of nested blocks, with the outermost representing 

the entire chip. A block is declared by a header consisting of the reserved word 
Module, the name of the block and a list of ports. The outermost block is treated 
specially, and so is distinguished from normal modules by being declared with 
the reserved word Chip. 

For symmetry, whenever there is a statement that opens an environment, 
such as a Chip or a Module header, then there is a matching terminator. In the 
M68000CPU example, the statement EndChip M68000CPU terminates the Chip 
statement. 

Refinement 

By making one step of refinement to the top level UNIT program, we arrive 
at the program given in figure 5-3. This program corresponds with the diagram' 
shown in figure 5-2. Many of the details have been omitted in order to emphasise 
program structure and to skip over the syntax. The precise syntax will be dealt 
with later.  on. Try to correlate the functional objects in the architectural diagram 
with the constructs in the UNIT program. 

Program Components 

Figure 5-3 illustrates all of the five parts that make up a UNIT block, namely: 

A header, 

Symbolic constants, 

Nested modules, 

Instances, 

Connectivity. 

Look at the program in figure 5-3, in particular at the instance declarations. 
Notice that some of the instances refer to nested modules, whilst others (e.g. Pa-
rameteri sat ionLogic), refer to function synthesisers contained in a technology 
dependent library. 

Preliminaries 

The statements used in the 68000 example are described in detail later on, 
after we have covered the lexical preliminaries. 
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Lib(nmos2) 

Chip M68000CPU( Invertinglnput Dtack(1), Bgack(1), 

IPL(0:2), Berr(1), 

{Rest of header) 

InvertingBidir Halt(1), Reset(1)) 

{Symbolic Constants) 

Constant word( 110:31 11 ). bit("O:O") 

{Nested Modules) 

Module ControlLogic( {Port List) ) 

EndModule ControlLogic 

Module MicrolnstrMemory( {Port List) ) 

EndModule Mic rolnstrMemory 

Module DataPath( {Port List) ) 

EndModule DataPath 

Instance ControlLogic 

Instance MicrolnstrMemory 

Instance Logic 

Instance Datapath 

Ctrl 

MlnstrMem 

ParameterisationLogic C 
Statetable({A HUGE State table))) 

maths 

{Connectivity) 

M68000CPU_FC(0:2) => Ctrl_FC 

M68000CPU_Reset(1) => Ctrl-Reset 

{Datapath connections) 

MlnstrMem_CtrlPts (0: 196) => Datapath_ctrlpts 

ParameterisationLogic_Inhib(0 :3) => Datapath_XBuslnhibit 

Datapath_addressbus (1 :23) => M68000CPU_addressbus 

{many more connectivity declarations) 

EndChip M68000CPU 

EndFile. 

Figure 5-3: UNIT Program For Single Chip CPU Level B 
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Bidir 	Chip 	Class 

Constant Dir 	EndChip 

EndFile End11odule Fax 

Gnd Input Instance 

Lib Location Module 

Output Ports Posn 

Phil Phi2 Range 

Size Vdd Wordlength 

Figure 5-4: UNIT Reserved Words 

Lexical Conventions 

The UNIT language uses six classes of lexical token: reserved words, special 
symbols, identifiers, integer literals, string literals and white space formed from 

spaces, tabs, newlines and comments. White space is ignored, except where it 
occurs within a string literal or as serving to delimit other tokens. 

Source files are deemed to be in the ASCII character set. 

UNIT is not case sensitive: UPPER CASE and lower case letters may be 
used interchangeably to improve legibility. Nonprinting characters are illegal. 

Reserved Words 

A list of reserved words is given in figure 5-4. Throughout this document, 
reserved words are printed in plain font with the first letter in UPPER CASE 
to distinguish them from running text. 

Special Symbols 

Special symbols serve to delimit other tokens, as punctuation and to intro-
duce context to the grammar. 

All printing symbols that are not letters, digits or white space are treated 

as special symbols. Not all special symbols are legal, for example, the grammar 
does not include the up-arrow "". 
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Identifiers 

Identifiers can be any string of letters and digits up to 31 characters long, 

the first character being a letter. None of the reserved words may be used as 
identifiers. 

Comments 

Comments are a type of white space made up of printable characters enclosed 

within curly braces. Comments can be of any length, including zero, and run 
over any number of lines. 

String Literals 

String literals are a series of printable characters enclosed within double 

quotes """. To include a double quote in the string, put two double quotes 
next to each other: e. g. The string """ is 1 character long. The empty or 
null string is written """". Strings can be of any length and run over any number 
of lines. 

Integer Literals 

Aainteger literal is a number in the range 0 to 231 - 1. Integers are assumed 
to be in decimal unless prefixed by a radix (either 2, 8, 10 or 16). For example: 

2_1111 	8_17 	10_15 	15 	16_F 

Negative (-ye) integers are never sensible in the UNIT language, for this 
reason, it is not possible to declare them. 

Compiler Options 

Compiler options are used to control error messages, source listings and main-
tenance diagnostics etc. 

Aside from any implementation manuals (that may or may not exist!), infor-
mation on what options are available on any particular compiler can be obtained 

in abbreviated form when calling U2, by replacing the command line parameters 
by two question marks. 

Compiler options are usually selected when calling the compiler, but they 

can be changed at any point in a UNIT program. An Option statement looks 
like: 
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V.AnOptionName (NewOptionValuè) 

°hDiagnostics (On) 
%Fmax (1) 

'I.Listing (Of f) 

°hReport(Chip fabricated in July 1984, ref EU4567) 
%Site 0 
%Warnings (Of f) 

The percent sign % is a special symbol because it is a printing character that is 
not a letter, a digit or white space. The percent introduces a context dependent 

option identifier known to the compiler. The option identifier does not clash 
with other identifiers. 

Note that some options take things that look like strings in their argument. 
They are not. Strings must be enclosed in double quotes, whereas options can 
take anything in their argument and will interpret double quotes literally. For 
example, the option 

°hReport("How about " this then") 

will type ""How about " this then"" on the screen. 

Whilst the number of options may vary from machine to machine and com-

piler to compiler, all UNIT parsers are deemed to provide the following six: 

Diagnostics 	takes values (ON-OFF). When diagnostics are ON, mainte- 

nance diagnostics are printed on the user's terminal and in 
the listing file. The default is OFF. 

Fmax 	takes an integer value that sets the maximum clock speed for 

all ports. For example, if Fmax is set to 5 (MHz), and a 
port named LOAD is declared, then the compiler will ensure 
that the LOAD port will function correctly when toggled at 

5MHz, that is, everything LOAD is connected to will operate 

at 5Mhz. The default Fmax is set by the library file. For 
NMOS2, the default is 1MHz. 

Listing 	takes values (ON-OFF). When listing is OFF, no messages are 
sent to the listing file. The default is ON. 

Report 	takes a string up to 64 characters in length. The string is 
sent to your terminal and to the listing file immediately it is 
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parsed. The default message is the null string. The effect 
of a report statement with a null string is to interrupt the 
compilation, send a blank line to the terminal and wait for a 
continue signal from the user. 

Site 	 prints various site details on the user's terminal and in the 

listing file. The site details include, at least, the version num-

ber of the compiler that is being used, the site name, the date 

and the name of the person responsible for maintenance at 
that site. For example: 

U2.3(.0) at EUCSD 

UNIT Source Compiled on 01/04/85 I 

Maintenance: Alex Deas Ext 9999 
- 

Warnings 	takes values (ON-OFF). When warnings are OFF, no warnings 

are given, (but messages about full errors will still be posted). 
The default is ON. 

Scope rules 

The grammar implies Algol scope rules for declared constants, but adopts 
strict block limited scoping for everything else. That is, instances may only 
connect with or reference those items declared at the same. level of hierarchy 
within a parent module. 

Dressing 

A UNIT program is a tree of modules, except for two statements: Lib and 
Endfile. Consider each statement in turn. 

Lib Statement 

The Lib statement appears at the very start of a UNIT program; it looks 
like: 

Lib(nnos2) 
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This indexes a technology dependent library file (here it is called nios2), 

containing a LEGO program. A LEGO program says what is possible in a 
particular fabrication technology: what the design rules are and what function 
synthesisers are available. The LEGO language is described in the next chapter. 

Lib must be the first statement in a UNIT program. 

EndF lie Statement 

The statement EndFile. is placed at the end of a UNIT program, to tell 
the compiler that it has reached the end of the file. It must be followed by a 
fullstop. 

Blocks 

The single chip CPU example given earlier illustrates all of the five parts that 

make up a block: a header, constants, nested modules, instances and connectiv-
ity. The constants, nested modules and the instances - are optional. Headers and 
connectivity are not: a block is invalid without them. Note that if a program 

part is used it must be given in the order listed. Consider each of the five parts 
in detail. 

Header 

Modules open with a header formed by the reserved word Module, followed 
by the name of the module and a list of input and output ports. An example of 
a header with its matching terminator is given below. 

Module asubmodule( {Port List) ) 

{body of asubmodule) 

EndModule asubmodule 

It has been mentioned already that the opening Chip is merely a variant of 
Module allowed to use real pads rather than just the simple port types Input, 
Output etc. 

Ports 

The port list is an integral part of the header, it looks like: 

( Input operanda(0:11), operandb(0:11), Output y(O:O) ) 
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The components of the list are described below. 

Direction 	All ports have a direction, either Input, Output or Bidir, un- 
less the port is on the outer-most module of a design. The 

Chip module is treated specially in that it can have any direc-

tion known to the "Pad" family in the constraint library. All 
libraries should contain the following pads: Input, Output, 
Bidir, Invertinglnput, InvertingOutput, InvertingBi-

dir, Analogueln, AnalogueOut, HighDriveOut, Phil and 
-. Phi2. The more esoteric pads have multiple fields that change 

the name of the port by adding various suffixes. For exam-
ple, Bidir has an ENable wire, an INput wire and an OUT-
put wire, so a port declared as Bidir porta(O:3) would be 
transformed into PortA .En, PortA. In and PortA.Out. Con-
nections to and from multiwire pads must use the suffixed port 
name. 

Port Name 	The port name is an identifier. The full name of a port is 
given by the name of the module, the port name, a pad suffix 

if there is one and either a range or a width, in the form: 

<part name> - <port name> [. <pad suffix>] 
( <port range> ) 

Range 	The range determines what values the signal carried by the 
port is allowed to take. For example, the range (4:8) implies 
that the signal carried by a particular port can take any value 
from 2 4 to 28  inclusive. The range can be replaced by the port 
width if the lower bound of the range is zero. For instance, 

the range (0:12) can be replaced by the width (13), because 

13 bits are required to represent a signal over the range 2 0  to 
2 12 .  

An Example Header 

The following example illustrates what a header might look like for a hypo-
thetical 8 bit multiplier:. 

Module inultiplier(Input Operanda(0:7), Operandb(0:7), 
Output Product (0: 15)) 
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{lots of things inside) 

EndModule multiplier 

Or, alternatively: 

Module mu].tiplier(Input Operanda(8), Operand(8), 
Output Product (16)) 

{lots of things inside} 

EndModule multiplier 

The two programs given above are identical, except that the first example 
specifies the range of a port, whereas. the second example specifies the width. 

Symbolic Constants 

To simplify the design of general purpose modules, the UNIT language pro-

vides facilities for declaring symbolic constants. The following constants are 
especially useful: 

Constant bit ("0:0"). 

byte ("0 : 7" ) 

word("O: 15") 

The following constants are predeclared: 

Constant Yes ("1"), No (
11 0 11

) 

Constants may be nested to any depth, although care must be taken to ensure 
that they do not recurse. Recursion may not be trapped by the parser, and the 
only indication that it has happened may be a few seconds silence followed by 
a heap overflow message. On the prototype U2.1 compiler this otherwise fatal 
event could be corrected by the selecting the screen editor (the cursor will be 

one token after the first place where the offending constant identifier is used), 
and making the correction. 

Instances 

After the header, constants and any nested modules, come the instance dec-
larations. The word instance here refers to a behavioural instance, (as opposed 
to a geometric instance). The compiler may translate two instances of the same 
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module into two entirely different pieces of geometry, so long as each instance 
has the same functionality. 

An instance declaration looks like: 

Instance function instancename 

The function must be either a nested module or a function synthesiser known 

to the constraint library. Function synthesisers are specified by a generic name 
such as adder, logic or counter. Some function synthesisers require parameters 
to fully determine the functionality of an instance. Logic blocks, for example, 
require a state table and as another example, a delay operator might require a 

delay length. These function specific parameters are supplied between paren-

theses after the instance name. The names of the parameters are given in the 
documentation that comes with a constraint library. The parameters themselves 
are divided into string parameters and integer parameters, enabling the compiler 
to flag an error if a parameter is missing or if too many are given. 

The example given below illustrates the "logic" function with two parameters, 
one of which is a state table, the other is a flag. 

Instance logic apla(statetable( 

IN 	ireset,slowcl,s2,s1,s0 

o 	x 1 0 00 0 1 0 0 
o 	x 0 0 x 0 0 0 0 

0 	x 0 x 10 1 0 0 0 
0 	0 0 x x 0 0 1 0 
0 	1 0 x x 0 0 0 1 
0 	x 0 1 00 0 1 0 0 

OUT s0,s1,s2,firea,fireb), 

SMF1ag(Dynaniic)) 

Multiple instances of a function can be declared using a list of instance names. 
For example: 

Instance counter counterl, counter2, couriter3 

A function synthesiser named Undefined allows blocks to be declared by 
their area, that is, as a block whose area is known (roughly) but whose precise 

functionality is not. This provision allows UNIT programs to be written top-
down. 
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Configuration 	 Declaration 

Point to Point 

	

MA out in - 
	

MA-out => MB-in 

Bifurcated Input 

MA-out => MB_in 
=> MC-in 
=> MD-in 

Bifurcated Output 

out(O : 7) 
MA  

FM
in(O:15__MC 

B  I 

o: 7) 

MA_out(0:7) => MC-in 
MB_out(0:7) => MC_in(8:15) 

MA-pi => MB_pl => MC-P1 => MD_pl 
MB-PI => MC-P1 => MD_pl => MA-pi 
MC-P1 => MD-P1 => MA-PI => MB-P1 
MD_pl => MA-pi => MB_pl => MC-pi 
MA-P2 => MB-P2 => MC-p2 => MD-p2 
MB-P2 => MC-P2 => MD-p2 => MA-p2 
MC-P2 => MD-P2 => MA-p2 => MB-p2 
MD-P2 => MA-P2 => MB-p2 => MC-p2 

Figure 5-5: Connectivity Declarations 

0 



Chapter 5. The UNIT Language 85 

Connectivity 

The final part of a UNIT block declares the connections between instances. 

A connection between two ports is declared by giving the full name of the 

source port followed by the flow symbol (">"), followed by the full name of the 

sink port. Wires and buses that drive multiple sinks use the flow operator to 

indicate where the bus bifurcates. That means that all the sinks driven by an 
output port must be declared by a single compound flow statement. Examples 
are given in figure 5-5. 

The default connections can be used to simplify net descriptions. If the port 

range is omitted, it is assumed that you want the same range as was used for the 
last connection and if there is no last connection, then only bit 0 is connected. 

In UNIT, only signal connections are specified: power is routed by the compiler. 
Also, you need not declare buffers nor should you ground (or pull up) unused 
inputs etc. The compiler does these things automatically. 

Implicit Nets 

In UNIT, only signal ports and their connections are specified. A UNIT 
program should not declare: 

. Power nets. The compiler adds power ports to instances automatically. 

• System clock nets. All chips are given one clock pad and this is routed to 

all clock ports that have not been connected explicitly. The clock ports 

are identified by their names Phil and Phi2. Function modules that use a 
two phase clock have a phase splitter placed beside them automatically. 

• Nets strapped to Gnd or Vdd. The compiler does it automatically. If the 

compiler objects to strapping a line, then something is wrong, either with 
the design or in the way it is described. 

A Simple program 

So far, no complete example of a UNIT program has been given; examples 
of individual statements have been given, but even the CPU chip example was 

not a complete program because the nested modules had no connectivity. Let 
us rectify this situation now. 

Consider a very simple UNIT program: 
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Lib(nos2. lib) 

Chip tinychip(Input a(0:15). Output b(0:15)) 
tinychip_a(0:15) => tinychip_b 

EndChip tinychip 

Endfile. 

This ditty specifies a chip with 16 input pads driving 16 output pads. The 
Lib statement tells the compiler to get informatiofi on the target technology 
from a file named niiios2. lib. The remainder of the program comprises a block 
(called tinychip), a declaration of two ports named a and b, and a 16 bit wide 
connection from port a to port b. The compiler adds a Vdd and a Gnd pad 
automatically to power the output pads: power pads are not declared. 
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Chapter 6 

The LEGO Language 

This chapter describes the LEGO language. A LEGO program, indexed from the 

UNIT language by the Lib statement, tells the silicon compiler what is possible 
in a particular fabrication process by giving the compiler a set of design rules 

and a collection of functional primitives which the compiler can call upon to 
generate modules. 

This chapter starts by describing the structure of a LEGO program and then 
uses this to introduce the lexical details and the syntax of the language. 

Influence 

There are many similarities between the LEGO and UNIT languages and so 

some repetition of the previous chapter is inevitable. It was decided that rather 
than make omissions, to print duplicate sections for the sake of completeness. 

Program Structure 

A LEGO program comprises two parts: 

A Technology statement that indexes a geometric design rule file. 

A Series of Family declarations, each of which contain two parts: 

Descriptions of leaf cells common to a group of module generators 

Descriptions of module generators, called Species 

Figure 6-1 contains a skeleton of a LEGO program. Notice from this fig-
ure that the Technology statement is the first statement in a LEGO program 
and is followed by a series of family declarations. The families group together 

functionally similar module generators with a common set of leaf cells. 
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Constant stdword(f16t) {A symbolic constant) 

Technology( {filename} ) 

Family counters( 

Cell slice( 

EndCell slice 

Cell base( 

EndCell base 

Species std( 

EndSpecies std 

Species updown( 

EndSpecies updown 

Species fastcarry( 

EndSpecies fastcarry 

Endfamily counters 

Family adders( 

Cell slice( 

EndCell slice 

Cell, lookahead( 

EndCell lookahead 

Species full( 

EndSpecies full 

Endfamily adders 

Family logic( 

Cell pla( 

EndCell pla 

Cell wbarray( 

EndCell wbarray 

Species wbarray( 

EndSpecies wbarray 

Endfamily logic 

EndFile. 

Figure 6-1: Skeleton of a LEGO Program 	 -: 
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Preliminaries 

The statements in the skeleton program examples will be described in detail, 
but to do this, we must first dispense with the lexical details. 

Lexical Conventions 

The LECO language uses six classes of lexical token: reserved words, special 

symbols, identifiers, integer literals, string literals and white space formed from 
spaces, tabs, newlines and comments. White space is ignored, except where it 
occurs within a string literal or as serving to delimit other tokens. 

Source files are deemed to be in the ASCII character set. 

LEGO is not case sensitive: UPPER CASE and lower case letters may be 
used interchangeably to improve legibility. Nonprinting characters are illegal. 

Reserved Words 

A list of reserved words is given in figure 6-2. Throughout this document, 
reserved words are printed in plain font with the first letter in UPPER CASE 
to distinguish them from running text. 

Special Symbols 

Special symbols serve to delimit other tokens, as punctuation and to intro-
duce context to the grammar. 

All printing symbols that are not letters, digits or white space are treated 
as special symbols. Not all special symbols are legal, for example, the grammar 
does not include an up-arrow 

Identifiers 

Identifiers can be any string of letters and digits up to 31 characters long, 

the first character being a letter. None of the reserved words may be used as 
identifiers. 

Comments 

Comments are a type of white space made up of printable characters enclosed 

within curly braces. Comments can be of any length, including zero, and run 
over any number of lines. 

a 
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Assign 
Bidir 

Cell 

Date 

Endcell 

Endspecies 

External 

Flag 

Geometry 

Input 

Interrogate 

my 
Lshift 

Mod 

Neg 

Or 

Phil 

Report 

Size 

Strap 

Technology 

Validated 

Add 
Bit 

Compose 

Demand 

Endf ami ly 

Exp 

Family 

Fmax 

Highdriveout 
Integer 

Inv 

Location 

Mandatory 

Mult 

Nor 

Output 

Phi2 
Rshift 

Source 

String 

TransferEqn 
Vdd 

And 

Both 

Constant 

Div 

Endf i 1 e 

Exor 

Fetch 

Gnd 

History 

Internal 

mx 
Log 

Max 

Nand 

Optional 

Parameters 
Power 

Sub 

Species 

Swop 

Type 

Wordlength 

Figure 6-2: LEGO Reserved Words 

String Literals 

String literals are a series of printable characters enclosed within double 

quotes ". To include a double quote in the string, put two double quotes 
next to each other: e.g. the string """"" is 1 character long. The empty or null 
string is written "". Strings can be of any length and run over any number of 
lines. 

Integer Literals 

An integer literal is a number in the range 0 to 231 - 1. Integers are assumed 

to be in decimal unless prefixed by a radix (either 2, 8, 10 or 16). For example: 

21111 	8_17 	1015 	15 	16_F 



Chapter 6. The LEGO Language 91 

Negative (-ye) integers should never be needed, for this reason they cannot 

be declared explicitly but they can be formed using an arithmetic expression. 
Negative integers must be in the range 0 to _231:  All arithmetic expressions 
must return results in the range _231  to 231 - 1. 

Expressions 

Any integer literal can be replaced by a reverse polish expression. Expressions 
can use literals, symbolic constants or integer functions as operands and anything 
in figure 6-3 can be used as a operator. 

By way of an example, the following expressions all return the result 16: 

16 	(16) 	(2_100,EXP) 	(2.,3,*,4,5,*,+,10-). 

Conditionals 

LEGO makes no distinction between conditional and arithmetic expressions: 
all arithmetic expressions can be used as conditionals and all conditionals are 

arithmetic expressions. A condition is taken to be FALSE if the result from 
evaluating an expression is zero, otherwise the condition is TRUE. 

Some of the arithmetic operators in figure 6-3 are label as Conditional opera-
tors. Whilst they can be used in any arithmetic expression to yield a binary (1 or 

0) result, they are provided to simplify the construction of genuine conditionals. 
Genuine conditionals are used in only one statement (Compose). The Compose 
statement is introduced later on in this chapter. 
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Monadic Operators (Operand A) 

INV Pop A, Push 2's complement negation of A 
NEG Pop A, Push• l's complement negation of A 
LOG Pop A, Push bottom log 2A 
EXP Pop A, Push 2A 

FETCH I  Pop A, fetch value of A, Push value 

Diadic Operators (Operands A and B) 
AND Pop B, Pop A, Push bitwise logical AND of A and B 
OR Pop B, Pop A, Push bitwise logical OR of A and B 

NOR Pop B, Pop A, Push bitwise logical NOR A and B 
NAND Pop B, Pop A, Push bitwise logical NAND of A and B 
EXOR Pop B, Pop A, Push bitwise logical exiusive or of A and B 
ADD Pop B, Pop A, Push A + B 
SUB Pop B, Pop A, Push A - B 
DIV Pop B, Pop A, Push bottom A Div B 

MULT Pop B, Pop A, Push A * B 
LSHIFT Pop B, Pop A, Push A shifted left B times 

MOD Pop B, Pop A, Push A Mod B 
MAX Pop B, Pop A, Push minimum of A and B, 

Push maximum of A and B 
RSHIFT Pop B, Pop A, Push A shifted right B times 

SWOP Swops two topmost elements of stack 
ASSIGN Pop A, Pop B, Assign A to name B 

Conditional Operators (Operands A and B) 
Push 1 if A = B, else push 0 

> Push 1 if A> B, else push 0 
< Push 1 if A < B, else push 0 

> Push 1 if A > B, else push 0 
<= Push 1 if A < B, else push 0 

I Push 1 if either A OR B is not 0 
& Push 1 if both A AND B is not 0, else push 0 
- Push 1 if A = 0, else push 1 

Function Operators 
Wordlength Push wordlength of part 

<parameter name> Push value of a integer parameter 
a,b,c ... z Push loop counter value 

Figure 6-3: Arithmetic Operators 
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Compiler Options 

Compiler options are used to control error messages, source listings and main-
tenance diagnostics etc. Information on what options are available on any partic-
ular compiler can be obtained in abbreviated form when calling U2, by replacing 
the command line .parameters by two question marks. 

Compiler options are usually selected when calling the compiler, but they 
can be changed at any point in a LEGO program. An Option statement looks 
like: 

%AnOptionNae ( NewOptionValue) 
%Diagnostics (On) 

%Listing(Off) 

%Report(The NMOS1 library has not been tested.) 

%Report(You are advised to use NMOS2 instead.) 
%Site C) 
'/.Warnings (Off) 

Note that some options take things that look like strings in their argument. 
They are not. Strings must be enclosed in double quotes, whereas options can 
take anything in their argument and will interpret double quotes literally. For 
example, the option 

%Report("How about " this then") 

will type ""How about " this then"" on the screen. 

Whilst the number of options may vary from machine to machine and com-

piler to compiler, all LEGO parsers are deemed to provide the following five: 

Diagnostics 	takes values (ON-OFF). When diagnostics are ON, mainte- 

nance diagnostics are printed on the user's terminal and in 
the listing file. The default is OFF. 

Listing 	takes values (ON-OFF). When listing is OFF, no messages are 
sent to the listing file. The default is ON. 

Report 	takes a string up to 64 characters in length. The string is sent 

to the user's terminal and to the listing file immediately it 

is parsed. The default message is the null string. The effect 
of a report statement with a null string is to interript the 
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compilation, send a blank line to the terminal and wait for a 
continue signal from the user. 

Site 	 prints various site details on the user's terminal and in the 
listing file. The site details include, at least, the version num-

ber of the compiler that is being used, the date, the site name 

and the name of the person responsible for maintenance at 
that site. For example: 

U2.3(.0) at EUCSD 

LEGO Source Compiled on 01/04/85 

Maintenance: Alex Deas Ext 9999 
------- 

Warnings 	takes values (ON-OFF). When warnings are OFF, no warn.ings 
are given, (but messages about full errors will still be posted). 
The default is ON. 

Scope rules 

The LEGO grammar applies Algol scope rules everywhere. 

Syntax 

We have looked at the structure of a LEGO program and at the lexical 
conventions. Let us now turn our attention to the statements that make up the 
syntax of the language. 

Symbolic Constants 

Symbolic constants can be used to clarify the meaning of otherwise awkward 

coding and to simplify the design of general purpose modules. Symbolic con-
stants must be declared at the very start of a LEGO program (that is, before any 

other statements), and they may be nested to any depth, although care must be 
taken to ensure that they do not recurse. 

Symbolic constants look like: 

Constant identifier("string substitution") 

Constant metal(114M") 
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Constant maxsize( 11 28"), 

divisor("wordlength, 16 ,div") 

The following constants are predeclared: 

Constant Yes("l") , No (
11 0 11

) 

Technology Statement 

The Technology statement indexes a file containing geometric design rules, 
using the form: 

Technology(afilename) 

The design rules should be in a form dumped by DRG (Design Rule Gen-

erator), a self-contained utility for interactively formulating and editting infor-

mation about fabrication processes. It is appropriate to give a few words of 
explanation here about what DRG does (and what it sometimes gets wrong). 

Design Rule Generator 

The rules produced by DRG fall into four groups: 

Source rules (rules about where the rules came from), including who en-
tered the rules, the date they were entered and from whom they were 
obtained. 

Global Rules which state things like the maximum power consumption per 

unit area, the maximum operating voltage, the yield fall-off for increasing 
area and the number of masks. 

Mask Rules which state for each mask layer, what the layer does, what 
it is called (its name), what colour to draw it, the minimum linewidth, 
minimum separations, the sheet resistance and the interlayer capacitance. 

Log Rules that tell the compiler about interactions between mask layers 
the correspondence between physical mask layers and virtual log layers. 
The log rules tell the compiler how to produce active devices (transistors), 
contacts etc., and what design rules to obey. 
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Design rules are often incomplete, either the silicon foundry is reluctant to 
issue a full set of design rules, or perhaps the design rules have been obtained 

by staring at chips under an electron-microscope. A silicon compiler obviously 

needs a complete set of design rules, so when confronted with an incomplete 

rule set, DRG guesses whatever is missing. DRG should know what values for 
a rule are reasonable and is guess conservatively. Where this rule guessing has 
been done, the silicon compiler will post the warning, "Technology file includes 
unoffical design rules". Whilst this warning need not cause direct concern, it 

could portend trouble in that there may be no foundry to fabricate your chips. 

Information on where the rules came from and which ones have been guessed 
can be obtained by running DRG on the technology file. 

Families 

Immediately after the Technology statement is a list of the functional prim-
itives available to the compiler. The functional primitives create modules such 
as adders, counters and logic arrays upon demand. 

In LEGO, modules that perform the same generic function are grouped into 
families, the members of which are known as species. Most families include a 
collection of leaf cells, available to all species in that family. The complete family 

declaration gives the compiler information on how big a proposed module will 

be, what it does (its behaviour), where the ports can go and even which species 
to use. 

A skeleton of a family of counters is shown below: 

Family counter( 

Cell dirslice( 

EndCell dirslice 

Cell loadslice( 

EndCell loadslice 

Cell countslice( 

EndCell countslice 

Cell stdbase( 

EndCell stdbase 

Species std( 

EndSpecies std 

Species updown( 

EndSpecies updown 
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Species loadable( 
EndSpecies loadable 

Species allsinging( 

EndSpecies ailsinging 
Endfamily counters 

The counter family has within it a collection of leaf cells that are available 

to its four species. The species are: a standard up counting reseIable counter, a 
loadable counter, an up-down counter and a loadable 
up-down counter. 

Note that there are three parts to a family: 

A header (and matching terminator), 

Cell statements that describe leaf cells, 

Species statements that describe how the leaf cells are composed. 

Consider each part in turn. 

Family Headers 

Families are declared with a header formed by the reserved word Family and 
the name of that family. For consistency, the Family construct is terminated by 
the EndFamily statement. 

The skeleton program in figure 6-1 contains three examples of family headers. 

Cells 

After the family header comes a list of cells. There is one Cell statement for 
each leaf cell used by the species which make up the family. The Cell statement 

states how big a cell is, where the ports go and how the geometry is created. 

For the time being, we shall consider just cells with fixed geometry as might be 
produced with the aid of a layout editor. This type of cell looks like: 

Cell slicea( {Port Information) ) 

History( ... ) 

Power( {Power Consumption in Microwatts}. 
) 

TransferEqn( {SimulatorName), {FileName} ) 

Size( {x size}{y size) ) 
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Geometry( {FileName} ) 
EndCell slicea 

The Cell statement has two parts: 

A Header consisting of the reserved word Cell, the name of the cell and a 
port list. 

A body that says where the cell came from (who layed it out), how much 

power the cell dissipates, what it does (its behaviour), how big the cell is 
and which file contains the geometry. 

Cell Ports 

The ports on the periphery of a leaf cell are listed in the cell header. An 
example is shown below. 

Cell slicea( 

botgnd(Type(External,Gnd) ,Location(0 S 60 M)), 

topvdd(Type (External ,Vdd) ,Location(0 N 60 M)). 

a(Type(External,Input) ,Bit(i) .Strap(L). 

Demand(Wordlength) ,Location(25 W 4 M + 25 W 4 P))1 

b(Type(External,Input) ,Bit(i) .Strap(L). 

Demand(Wordlength). Location(35 W 4 M + 35 W 4 P)). 

cin(Type(Both,Input) ,Bit(i) ,Demand(0), 

Location(3 S 2 D)), 

cout(Type(Internal,Output), Location(3 N 2 D)), 

sum(Type(External.Output) .Bit(i). 

Demand(1). Location(30 E 3 M))) 
{Cell Body} 

EndCell slicea 

Ports in the port list are separated from each other by commas. Each port 
comprises a name and a set of personality statements. The personality state-
ments specify where on the cell boundary the port is, how wide it is, what layers 
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it is on, what type the port is (Input, Output, Gnd etc.), what to do if it is left 
unconnected in a specification and what bit position it occupies when the cell 

is composed in a module. There are five personality statements: Bit, Demand, 
Location, Strap and Type. All ports must have a Location and a Type state-
ment, but Bit. Demand and Strap statements are optional because they are not 
relevant to all port types, including output ports, power ports and internal ports. 

Duplicate personality statements are illegal. 

The semantic content of the personality statements is not immediately ap-

parent from their names' so a detailed description of each of the five statements 
is shown below. 

Type 	 The Type statement has two fields. The first is one of the re-  
- 

served words Internal, External or Both to denote whether 
the port can be used for internal connections only, external 
connections only, or for both. The second field states what 
the port is for, either Input, Output. Bidir, Gnd, High-
DriveOut, Phil, Phi2 or Vdd. All ports must be declared, 
including the power ports (Gnd and Vdd). 

Location 	Port locations are expressed as an abscissa along a given edge 

(measured south to north and west to east), of a certain width 

on a particular layer. For example, a port 30 lambda units 
along the west edge of a cell that is in 4 lambda wide polysil-
icon is declared by: 

Location(30 W 4 P) 

The delimiting spaces between fields can be omitted. If this 
is done, the statement given above would look like: 

Location (30W4P) 

Ports that appear in more than one position are declared by a 
sequence of port positions separated by plus signs ("+"). For 
example, if the port at 30W4P was on both polysilicon and 

metal layers and the port ran through the cell to appear on 
both lateral edges, then it would be declared by: 

Location(30 W 4 P + 30 W 4 M + 

30 E 4 P + 30 E 4 M) 
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In the example shown above, the net is assumed to be con- 
nected within the cell. If it were not and the compiler is 
expected to complete the net by connecting the two ports to- . 

gether, then it might be declared as: 

Location(30 W 4  P + 30 W 4 M, 

30 E 4 P + 30 E 4 M) 

This auto-connect facility is useful when declaring power and 
ground lines on a sliced module. 

The layer letters are given in the design rule file indexed by 
the Technology statement. In this report it is assumed that 
the rule file assigns the letter D to the diffusion layer, P to 
polysilicon and M to metal. Other files may use further letters, 
such as Q  for second layer polysilicon or T for second layer 

metal. There should be some documentation somewhere that 
says what is available - if there isn't, run DRG on the tech' 
file. 

Strap 	 The Strap statement tells the compiler how to disable input 
ports that are left floating, by connecting the port to either 
Vdd or Gnd. 

If a port can be strapped high (connected to Vdd) when it is 
left unused, then it must be declared as: 

Strap (H) 

LEGO understands high states (H), low states (L), unknown 
states (X) for when both highs and lows are significant and (a) 
states for when the compiler must route it to all other ports 

with the same name on the chip (used for clock wiring) and 
(T) for when it must be synthesised from something else (such 
as Phi2 from a Phil clock). In general, (a) and (T) straps 
are applied to Phil and Phi2 ports respectively. The compiler 
uses a simple set of rules to synthesise (T) straps. 

An example of a (x) strap is where a port cannot be strapped 
to Gnd (L) or Vdd (H), because the leaf cell needs that input 
to function sensibly, then it is declared as: 

Strap (X) 
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The Strap statement is valid only for ports of type Input, 
Phil and Phi2. 

Demand 	The Demand statement tells the compiler what to do with any 

port that is left floating: has the user forgotten to connect the 
port up, or is the port insignificant and so if it is an input it can 

be strapped to Vdd Or Gnd, or left floating if it is of any other 
type. In addition to helping detect simple semantic errors 

in specifications, the Demand statement helps the compiler to 
pick species from a family when a member of that family is 
used in a design. 

Consider when a cell is composed. The individual ports on its 
periphery are bound into groups that form words. The Demand 
statement tells the compiler how many of the individual ports 

must be connected for the composite cell to work properly. If a 
word consists of ii ports, where n is known as the wordlength, 
and at least one port from the word must be connected then 
the ports are declared as: 

Demand(l) 

If all the ports forming the word must be connected, then the 
ports are declared as: 

Demand (Wordlength) 

If the ports are so insignificant that they can be safely 

strapped high or low by the compiler, a least significant carry 
input say, then the ports are declared as: 

Demand(0) 

The Demand statement is not valid for Gnd, Phil, Phi2 or Vdd 
ports. 

Bit 	 In general, modules are formed using many leaf cells. For 
example, a common way of making an adder is to stack n 
slices vertically on top of each other, where again n is known 
as the wordlength. It is necessary to state which slice is what 

bit of the adder: is the most significant bit at the top, at the 

bottom, in the middle, or somewhere else? The Bit statement 
is used to convey this information. 
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When there is only one port with a particular name on the 
periphery of a module, it is labelled Bit (0). The clock input 
of a counter is a good example of this type of port: no counter 
should have more than one clock input. 

Usage of the Bit statement is intimately related to the way 

in which a cell is composed. The composition algebra used 

in LEGO makes available the loop variables that are used to 
replicate a leaf cell. 

The Composition statement in LEGO behaves like a series of 
nested for loops. The innermost loop uses the loop counter 
variable a, the next innermost uses b etc. There is a limit of 
26 on the depth in which these for statements can be nested, 
for obvious reasons. In addition to their primary use in com-

posing cells, these loop variables can be used in arithmetic 
expressions. For instance, in the bit-slice adder example given 
earlier the operanda ports might be indexed 0 to ri - 1. This 
could be done by saying: 

Bit (a). 

If the most significant bit was composed first, then the expres-
sion might look like: 

Bit(Wordlength.a, -). 

One consequence of allowing the bit position to be dependent 

on the cell composition is that leaf cells used in different con-
figurations must be defined several times, each definition using 
a different name. 

Note that ports of type Gnd, Phil, Phi2 or Vdd do not take 
Bit statements. 

Cell Body 

There are six statements in the cell body: History, Report, TransferEqn, 
Power, Size and Geometry. Only the Report statement is optional. Consider 
each statement in turn. 
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History Statement 

It is important to maintain information on where cells come from, who de-

signed them and when the cell was first used. Traditionally, this information has 

been incorporated in comment statements, with the result that documentation 

is ad. hoc. and generally inadequate. The History statement by itself cannot 

guarantee adequate documentation, but it can ensure that there is someone to 

turn to when a cell does not work. 

Each leaf cell has one History statement, which must come straight after 

the cell header. A History statement looks like: 

History(Date (01/04/85) ,Source (EUCSD : AD), 

Version(26) ,Validated (Yes)) 

Each of the personality statements Date. Source, Version and Validated, 
are explained in detail below. 

Date 	 should be in the format used in the example. The LEGO 
parser will check that a date is given and that the date is not 
in the future. 

Source 	a string up to 31 characters long, stating who designed the 
leaf cell. The LEGO parser will check that the string is not 
null. 

Version 	an integer. 

Validated 	must be either YES or NO. A Cell should not be marked 
Validated(YES) unless it has been simulated. A warning is 

posted if an unvalidated cell is indexed by a UNIT program. 

Report Statement 

Report statements can be used to give the user a message at the time when 
a particular cell is used, for example: 

Report(Cell "slicea" has not been tested) 

Messages can be any string up to 64 characters long. Messages longer than this 

must be broken up; there is no limit on the number of Report statements allowed 

in each cell. 
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Note that Report statements are quite different from %Report options: Re-
port statements send a message to the user's terminal when a cell is instanced 

whereas the %Report option sends the user a message when the option is parsed 
(when the LEGO is read into a library). 

TransferEqn Statement 

A Silicon compiler can generate input for simulators at a functional level, 
a switch level or at a circuit level. The latter two levels are generated from 

the topographical database but to produce functional level information requires 
support from the Constraint Library. 

There are two stages in generating the functional level simulator files, the first 

produces macros which describe the behaviour of each of the cells, the second 
produces the interconnect net. Both macros and net generation are dependent on 

the simulator: most simulators have their own individual specification language. 

Obviously, for each simulator there must be a net generator and, within the 
cell definition, a macro. These macros are specified using the TransferEqn 
statement, by stating which simulator the macro is for and the name of a file 

where the macro can be found, in the form: 

TransferEqn(Simulator, Filename) 

Any number of TransferEqn statements may be given, one for each simulator 
known to the compiler. The compiler will allow null strings to be used in both 
fields of the statement. 

Power Statement 

The Power statement tells the compiler how many microwatts a cell dissipates 
(peak, assuming max Vdd). If a cell dissipates less than one microwatt, it should 
be declared as: 

Power (0) 

By way of safeguard, the technology file specifies an upper bound power con-
sumption as a function of a cell's area, in addition to a chip limit. The limit is 
quite high: 10 Watts for the prototype library called NMOS2, but the limit is 

easy to alter and could be anything. 
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Size Statement 

Size information is expressed as an x,y pair in lambda space'. If the slicea 
example given earlier were 120 lambda units wide by 34 units high, then the cell 

definition would look like: 

Cell slicea( {Port Information) ) 
History( ... ) 

Transf erEqn(" AUTO",".") 

Power( (Power Consumption in Millwatts) ) 

Size(120,34) 

Geometry( {filename) ) 

EndCell slicea 

Geometry Statement 

The Geometry statement indexes a file which contains the raw transistors, 
contacts and wires of a topological symbol produced by a layout editor. TED 
[Rees 83], STICKS [Dennison 84] and SCALE [Marshall 841 are the layout editors 

available locally, but any editor could be used so long as LEGO recognises the 
geometry format. 

LEGO does not describe what the geometry is, only what it looks like from 
the outside, its ports and its size. For example, if the file oddadderslice . top 
contains the geometry of a cell called oddslice, then the cell definition would 
look like: 

Cell oddslice( {Port Information) ) 

{Rest of Cell Body} 

Geotnetry(Oddadderslice .top) 

EndCell oddslice 

Dynamic Cells 

Up to now, we have considered how fixed leaf cells are described using Cell 
statements. To recapitulate, a cell looks like: 	 - 

'One lambda unit is half the smallest linewidth available using the fabrication process 
described by the technology file. The lambda metric is one of convenience, more 
exacting applications will demand the use of a smaller unit of measure. 
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Cell cellname( {Port Information) ) 

History (Date (01/04/85) ,Validated(No), 

Source (EUCSD:AD) ,Version(2)) 
TransferEqn(Simulator . filename) 

Power( {Power in Microwatts} ) 

Size( {an x,y pair) ) 

Geometry( {a filename) ) 

EndCell cellname 

We have discussed how size and port information is declared for a fixed leaf 

cell, but what about leaf cells produced by cell synthesisers? How could size 

estimates be generated for each of the following: 

. RAM Generators? 

• ROM Generators? 

• Datapath Synthesisers? 

.. Folded PLA Synthesisers? 

• Decision Table Synthesisers? 

. Stick Cell Fleshers? 

It is difficult to predict the size of a part produced by a cell synthesiser 

without access to a general-purpose programming language. The constructs and 

datastructures provided by a programming language are essential for convert-

ing equations, state tables and other complicated parameters, into personality 
matrices. Without the personality matrix it is impossible to predict accurately 
anything bearing on the topography of the end-cell. For these reasons, the 
reserved word Interrogate can be used to introduce a reference to an IMP 
[Robertson 80] routine for generating this information each time a generator is 
used. The Interrogate statement can be used anywhere that a literal expres-
sion is expected which would be evaluated at run time (when the part is used, 

as opposed to when the LEGO is parsed). For example, a PLA synthesiser is 
declared as follows: 

Cell PLAexample (Interrogate (PortRoutineNaxne)) 

History (Date (01/04/85) ,Validated(No), 

Source (EUCSD:AD) ,Version(2)) 
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TransferEqn(DSim, Interrogate(SimRoutinename)) 

Power(Interrogate (PowerRoutineName)) 

Size (Interrogate (SizeRoutineName)) 
Geometry (Interrogate (MainRoutineName)) 

EndCell PLAexample 

The ability to call a routine in a general-purpose programming language 
would be of little value unless access is provided to the environment in which a 

synthesised module is used. Clearly, it should not be necessary to hunt through 

a compiler's internal datastructures to find environmental parameters, so in the 

prototype silicon compiler U2, a procedural interface is provided instead. The 
procedural interface allows cell synthesisers to explore the environment in which 

a cell is used. It provides a clean mechanism for looking at the personalising pa-

rameters (usually a state table, set of boolean equations or a transfer equation), 
finding out what the neighbouring modules are Sand how these are configured. 

The 132 Silicon Compiler is implemented in a language that does not support 

mapping between strings and routines. This means that when an Interrogate 
statement is used, the SRMAP.imp module must be updated and recompiled. 
The recompiled module is linked to the rest of the compiler dynamically. Details, 
both of the procedural interface for perusing environments and of the updating, 
are given in the documentation at the head of the SRMAP.imp code module. 

The LEGO language provides powerful composition constructs so the need 

to add new generators by indexing IMP routines should occur only rarely. 

Cell Examples 

Several examples of cell declarations have already been given. To reinforce 
these, two more are shown below. 

Cell passcell( 

passline(Type(Internal,Bidir) ,Demand(Wordlength) ,Bit(i), 

Location(6 S P 2 + 6 N P 2)), 
gate (Type (Both,Input) ,Strap(X) ,Demand(Wordlength) ,Bit(i), 

Location(8 W 2 D + 8 E 2 D))) 

History(Date (01/04/85) ,Version(1), 

Validated(No) .Source(EUCSD :AD)) 
TransferEqn("AUTO",".") 

Power(1) 

Size (21,21) 
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Geometry(somewhere .top) 

EndCell passcell 

Cell sliceb( 

gndports(Type (External. Gnd), 

Location(30 E 4 M, 

130 E 4 M + 130 W 4 M, 

230 E 4 M + 230 W 4 M)), 

vddports(Type (External, Vdd). 

Location( 0 E 4 M, 

100 E 4 M + 100 W 4 M. 

200 E 4 M + 200 W 4 M)). 

datain(Type(External,Input) ,Strap(X) ,Demand(1) ,Bit(i), 

Location(68 W 4 M + 68 E 4 M)), 

load(Type(Both.Input) ,Bit(i) ,Strap(L) .Deinand(0), 

Location(35 S 2 P)), 

load(Type(Internal,Output) ,Bit(i) ,Strap(L) ,Demand(0), 

Location(35 N2 P)), 

qout (Type (External ,Output) ,Bit (i), 

Demand(1),Location(30 W 3 M))) 

History(Date (01/04/85) ,Version(1), 

Validated(Yes) ,Source (EUCSD : AD)) 

TransferEqn(". I'll) 

Power (24) 

Size (56,234) 

Geometry(somewheree].se .top) 

EndCell sliceb 

Species 

Thus far, we have discussed the header that introduces a generic family of 

module generators and how the leaf cells which are used by that family are 

declared. Now we turn our attention to describing the individual module gener-

ators: the things that compose cells to form a module. 

Module generators are declared by Species statements. There is one Species 

statement for each module generator. The species comes after the cell declara-

tions in the body of a LEGO family. The Species statement states how the ports 

along the boundary of a module should be packaged (the ports themselves are 
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declared by the leaf cell declaration); what parameters are needed to personalise 

the module and how the module is composed from leaf cells. 

A Species statement looks like: 

Species fulladder( {Port Unification Information) ) 

Parameters( {Parameter Specification List) ) 

Compose( {A Composition Phrase) ) 

EndSpecies fulladder 

The Species statement has two parts: 

A Header consisting of the reserved word Species, the name of the species 
and a port list. The port list says how to unify the species ports with the 
cell ports that lie on the bounding edges of the module. 

A body consisting of two statements, the first says what parameters should 
be given when selecting the module from a UNIT program, the second says 
how to compose leaf cells. 

The port list will be described first, followed by a description of the two body 
statements: Parameters and Compose. 

Species Ports 

Ports are listed in the species header, using the comma as a separator. Each 
port has a name, a Celiport statement and an Fmax statement, so a species 
port list looks like: 

Species fulladder( 
InA(CellPort(Adderslice_OperandA). 

Fmax(9)). 

InB(CellPort(Adderslice_OperandB), 

Fmax(9)), 

Cin(CellPort (Adderslice_Carryin). 

Fmax(9)), 

Cout (CeilPort (Adderslice_Carryout), 

Fmax(9)), 

Out (CeilPort (Adderslice_Out), 

Fmax(9))) 
{Species Body) 

EndSpecies adder 
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CeliPort Statement 

The CeliPort personality statement unifies a species port name with a cell 

port name. The cell port name is specified by a cell name followed by the name 

a cell port, using an underscore "..." to separate the two. 

The Bit statement that forms part of the cell port declaration, defines the 

bitwise significance of every port on the leaf cells which make up a module. This 
information is used to reconstruct the bit range of the module. In effect, the 
species ports have a range declared implicitly by the Bit statements in the leaf 
cell declarations. 

Fmax Statement 

The Fmax statement declares an upper operating frequency for a port in MHz. 

The value of Fmax is computed dynamically so an arithmetic expression or an 
Interrogate statement can be used. For example, the adder species declared 

on the previous page must have had full look-a-head because for ripple carry 
adders, the maximum operating frequency is a function of the wordlength. A 

ripple carry adder with a 50nS delay per slice (hence, a 20Mhz operating limit), 
might be declared as: 

Species ripplefulladder C 

mA (CeilPort (Adderslice_OperandA), 

Fmax(20.Wordlength,/)), 

InB(CellPort(Adderslice_OperandB), 
Fmax(20,Word1ength,/)), 

Cin(CellPort(Adderslice_Carryin), 

Fmax(20 ,Wordlength , I)). 
Cout(CellPort (Adderslice_Carryout), 

Finax(20 ,Wordlength .1)), 
Out (CeliPort (Adderslice_Out), 

Fniax(20 ,Wordlength .1))) 
{Species Body) 

EndSpecies rippleadder 

Species Body 

The species body consists of two statements, Parameters, Compose. The 
Parameters statement is optional, Compose is not. 
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Parameters Statement 

The Parameters statement specifies what parameters are needed by a species 

when it is instanced in a UNIT program. For instance, our ubiquitous PLA 

synthesiser examples requires a state table. This table parameter might be 

declared as: 

Species pla( {Port Unification Information) ) 

Parameters (table (String, Mandatory)) 
Compose( (Composition Phrase) ) 

EndSpecies pla 

A Parameter declaration consists of the reserved word Parameters followed 

by a list of parameter names enclosed within parentheses. Each parameter name 
has two flags associated with it. The first flag, called the pattern flag, gives 
a pattern against which parameter values are matched. The second flag, the 

action flag, tells the compiler what action to take .if the parameter value is 

missing when the species is called in a UNIT program. Consider each flag in 
more detail. 

Pattern Flag must be either Integer or String. Integer parameters are 
ordinal but string parameters can be anything at all. 

Action Flag 	must be either Mandatory or Optional. This flag tells the 
compiler what to do if an instance is called either with no 

parameter list, or with a parameter list that omits the param-

eter being declared. If action Mandatory is indicated then the 
UNIT program is either in error, or it must refer to another 

species whose parameters it does match. If action is Optional, 
then the species can create a module without it, that is, the 

parameter value is partially redundant. 

Three more examples of parameter declarations are shown below. 

Parameters (RegisterEqns (String .Mandatory)) 

Parameters (boolequations (String .Mandatory), 

drive (Integer ,Optional)) 

Parameters (address(Integer,Optional)) 
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Composition 

The Compose statement is responsible for selecting leaf cells and composing 
them to form an oblong space completely covered with cells without any overlaps. 

A Compose statement looks like: 

Compose( {composition phrase} ) 

The composition phrase takes the form: 

<cell> <side> <iterations> 

The LAP equivalent to a composition phrase is shown in figure 6-4. 

The LAP code uses the integer variable I for the loop counter. In a LEGO 
compiler, the variables a, b, c through to z are used to denote the loop counter 
for the innermost loop progressing outwards. The values of these loop variables 

are available to the LEGO programmer in the form of function operators, thereby 
allowing the loop variables to be tested and the results of the test to be used to 
select cells as a function of their bitwise location. Consider an example: 

Compose(((cell N 4) N 5) N 6) 

In a LAP language, this Compose statement would be written as follows: 

proc nest(integer: iterationa, 
iterationb, 
ite rat lonc; 

N,S,E,W: direction; 
symbol: cell) 

var integer: a, b, c 
for c := 0,1,iterationc-1 cycle 

for b := 0,1,iterationb-1 cycle 
for a := 0,1,iterationa-1 cycle 

repeat 
repeat 

repeat 
end { of nest } 
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proc compose (integer: iterations; 
N,S,E,W: direction; 
symbol: cell) 

var integer: last edge,i 
symbol (cell— name) 

{ In LEGO, the origin of a cell is } 
{ in the bottom left hand corner. } 
last edge := 0 
for I := 0,1,iterations-1 cycle 

if direction = N then 
instance (cell,O,last edge) 
last edge := last edge + height(cell) 

elseif direction = S 
instance (cell,O,last edge) 
last edge := last edge - height(cell) 

elseif direction = E 
instance (cell,last edge,0) 
last edge := last edge + width(cell) 

elseif direction = W 
instance( cell,last edge ,0) 
last edge := last edge - width(cell) 

fi 
repeat 

endsymbol 
end { of procedure } 

Figure 6-4: LAP version of a simple composition phrase 

The following composition statement generates a vertical column of 8 slice 
cells. 

Compose(slice N 8) 

Evaluation of the composition phrase results in a composite leaf cell to allow 
composition phrases to be nested. For example, an (8 x 8) array of systolic 
cells would be: 

Compose((systolic E 8) N 8) 
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Figure 6-5: Examples of Rotation and Reflection 

Transformations 

Cells can be rotated anticlockwise or reflected in an axis. To rotate a cell, 
the symbol @0, @1, @2 or @3 is placed after the cell name to signify rotation by 

zero, one, two or three quadrants respectively. To maintain compatibility with 
earlier versions of LEGO RO, Ri, R2 and R3 are kept as synonyms for @0, @1, 02 
and @3. 

Reflection is indicated by the reserved words INX and INY, for reflection of 
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a cell in the x and y axes respectively. Reflection is performed after rotation 
where the two operations are combined. 

Compose statements for the most frequently used cell transformations are 

given in figure 6-5. 

Conditional Composition 

Two examples of a Compose statement have been given already: the first built 
a linear vector of slice cells, the second a square matrix of systolic cells. In 
reality, few applications use the same cell to tesselate a large area. Often, one 
cell is used for odd numbered slices and another cell for even numbered slices. 

In LEGO, this is done by testing the loop variables by a conditional expression 
and using the result of the test to select a cell. 

Consider a counter made of odd and even slices. This counter could be 
composed by: 

Compose(([a,Odd]oddslice. evenslice) N Wordlength) 

The [a , Odd] part of the statement is a conditional expression. The ex-

pression is evaluated by pushing a (the loop counter for iterating from 0 to 

wordlength-1), onto an evaluation stack and applying the conditional operator 
Odd to test if a is an odd number. If the result is true then the cell oddslice 

is picked. If false, the next cell in the list is taken and the condition evaluated. 
Note that in the composition example, the cell evenslice is always chosen when 
the oddslice test fails. In a procedural language, this cell test would look like 
the following program: 

proc select cell(symbol: oddslice,evenslice; 
integer: wordlength) 

var integer: a 

for a := O,1,wordlength-1 cycle 

if odd(a)=true then pick(oddslice) 
else pick(evenslice) 
fi 

repeat 
end { of procedure } 
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More Examples 

Figure 6-6 gives examples of Compose statements for four other common cell 

configurations. 

Composition Rules 

There are several rules with which all leaf cells and compositions of leaf cells 
must comply. These are: 

If a module uses power ports, then each power net must appear on at least 
two different sides of an assembled module. This is to ensure that the 

power net is always routable. 

Externally connected ports should be separated by at least twice the min-
imum grid for metal to diffusion contacts, otherwise the routing channels 
may be inefficient. The compiler produces the most compact channels 
when the ports lay on a grid twice the minimum contact-to-contact grid, 

with the grid aligned with the sides of the cell. For the prototype NMOS2 
library, twice the minimum grid is 14 lambda. A warning is posted if this 

requirement is not met. This rule and the rule given below, do not apply 

to power ports Vdd and Gnd, nor do they apply to Internal ports. 

Cells may not have more external ports per side than is possible if they 
were placed two contact-to-contact grid units apart, starting and finishing 
one grid unit away from the corners. 

Composition Checks 

In LEGO, the result of a composition phrase is a module made up of leaf 
cell(s). The cell assembler responsible for compiling the modules checks that: 

1. There are no gaps or missing cells within a bounding box formed by the 
outermost leaf cells: all of the module area must be covered. If an empty 

space is intended, then it must be declared as a cell without any geometry 

and the warnings switched off to stop messages about the bounding boxes 

declared not matching geometry. 

2. No two leaf cells overlap. If it is intended that the leaf cells do overlap, then 

the bounding box in the LEGO description of each cell must be adjusted. 
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Vertical Stack of eight slices 

Compose (slice N Wordlength) for Wordlength = 8 

slice 

slice 

slice 

slice 

slice 

slice 

slice 

slice 

Cell matrix 

Compose ((systolic slice E Wordlength) N Wordlength) for Wordlength = 4 

systolic systolic systolic systolic 
slice slice slice slice 

systolic systolic systolic systolic 
slice slice slice slice 

systolic systolic systolic systolic 
slice slice slice slice 

systolic systolic systolic systolic 
slice slice slice slice 

Figure 6-6: Composition Examples 
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Matrix with 'diagcells' across the rising diagonal 

Compose((([a,b,=]diagcel]..normcell) E Wordlength) N Word].ength) 
for Wordlength = 4 

norm norm norm norm norm norm norm diag 
cell cell cell cell cell cell cell cell 

norm norm norm norm norm norm diag norm 
cell cell cell cell cell cell cell  cell 

norm norm norm norm norm diag norm norm 
cell cell cell cell cell cell  cell cell 

norm norm norm norm diag norm norm norm 
cell cell cell cell cell  cell cell cell 

norm norm norm diag norm norm norm norm 
cell cell cell cell  cell cell cell cell 

norm norm diag norm norm norm norm norm 
cell cell cell  cell cell cell cell cell 

norm diag norm norm norm norm norm norm 
cell cell  cell cell cell cell cell cell 

diag norm norm norm norm norm norm norm 
cell cell cell cell cell cell cell cell 

Matrix with 'diagcells' across both diagonals 

Compose((([a,b,=]diagce11,[b,Word1ength,1-,a,-.=]djagcefl,normce11) 
E Wordlength) N Wordlength) for Wordlength = 4 

diag norm norm norm norm norm norm diag 
cell cell cell cell cell cell cell cell 

norm diag norm norm norm norm diag norm 
cell cell  cell cell cell cell cell  cell 

norm norm diag norm norm diag norm norm 
cell cell cell  cell cell cell  cell cell 

norm norm norm diag diag norm norm norm 
cell cell cell cell cell cell cell cell 

norm norm norm diag diag norm norm norm 
cell cell cell cell cell cell cell cell 

norm norm diag norm norm diag norm norm 
cell cell cell  cell cell cell  cell cell 

norm diag norm norm norm norm diag norm 
cell cell  cell cell cell cell cell  cell 

diag norm norm norm norm norm norm diag 
cell cell cell cell cell cell cell cell 

Figure 6-6, continued 
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3. A connection is declared implicitly whenever two or more ports touch. 

Each connection is checked for type. This check detects: 

floating ports, i.e. input ports that do not connect with the edges of 
the bounding box and are not driven internally. 

ports shorted to Gnd or Vdd. 

short circuits between two or more output ports. 

ports aligned by less than the minimum linewidth for the lowest con-
ductivity mask layer common to both ports. 

ports aligned but on different and unconnected layers. 

ports touching another port of incompatible type. 

Many VLSI design languages compose cells by establishing a set of port con-

straints. For example, given three leaf cells a, b and c, it is possible to compose 
these by declaring the connections between ports and allowing the module as-

sembler to deduce that a is to the left of b and that both a and b is to the left 

of c. These linear constraints declare port connections explicitly and positional 

information implicitly. The Small-SCALE language [Marshall 841 and the BLOB 

datastructure [Cownie 831 are examples of systems which do this. The opposite 
approach is taken in the LEGO language: Cell locations are declared explicitly 
and the port relations are implicit. 

Implicit port association is used because it enables more errors to be detected 
than is possible when port connections are declared explicitly. 

Cell Flexibility 

The geometry produced by the compiler may not look even remotely like the 
arrangement declared by the Compose statement because the compiler is free to - 

manipulate the composition to meet aspect ratio constraints. The compiler does 

this by first composing the cells as directed by the composition algebra and then 

extracts a net list. The compiler can then reorganise the layout by replacing 
abutted connections by box routing. 

In general, the compiler will keep as close as possible to the layout specifed by 
the layout algebra, simply because abutted connections are cheaper than river 
routing. 

Major recomposition is only undertaken when the assembled module is too 

big to fit on the chip or if the aspect ratio differs from the ratio wanted by the 

compiler by a factor greater than three. The theoretical basis for the magic 
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number three is that Leiserson has proved that for any layout, there exists an 

topologically equivalent layout with a 1:1 aspect ratio that is at most three 

times bigger than the original [Leiserson 82]. Therefore, the cost of completely 
rearranging a module to produce a better aspect ratio will cost, at most, three 

times the area of the original layout. 

Minor recomposition to create space for feedthroughs may happen frequently. 
Feedthroughs are discussed in the Chapter 8. 

Dynamic Species Definition 

The Interrogate statement introduced earlier allows cells and species to be 

defined when they are used rather than when the LEGO is parsed. The Interro-

gate statement, in effect, provides dynamic definition facilities. Their use within 
a cell declaration has been described. In a Species declaration, the interrogation 
mechanism can be used to generate the material enclosed within the parentheses 

of the species header and in the Parameters and Compose statements. 

There are various unpleasant side-effects if this facility is used thoughtlessly, 

most of which the compiler can detect easily. When the side-effect is detected, 
the experimental compiler U2.3 posts a (usually fatal) error message in the form: 

*** Lib Prob: A terse error flag 

- a less terse mesg stating the problem 

Species Selection 

Consider how the compiler interpretes some of the LEGO constructs, in par-
ticular, how the compiler selects species from a family. 

In the UNIT language, parts are selected from the constraint library by In-
stance statements. These statements specify the family in which a behavioural 
element belongs, but do not necessarily specify which member of that family is 

to be used. For example, a counter called acount would be created by the UNIT 
statement: 

Instance counter account 

There might be many members of the counters family: up-counters, up-
down counters, loadable counters and variants of these in asynchronous and 
synchronous form. How does the compiler know which one to use? 
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It is possible to select species from a family by applying five filters in succes-
sion. Species must be allocated to families with these filters in mind. 

At the start of the tests, all species which make up the members of the family 
are viewed as contenders. Each filter is applied in turn until there is only one 
contender left. 

Two of the filters use exclusion matrices to discriminate between overlapping 
constraints. An exclusion matrix is a method for finding the best fit between a 
constraint vector and a matrix of freedoms. The constraints are generated from 
the UNIT specification, the freedoms are compiled from LEGO. 

An exclusion matrix is a second order tensor for mapping port and parametric 

attributes into species names. Each instance of a species (created by an Instance 

statement in the UNIT language), has a set of attributes which are matched 
against those contained in the family attribute tensor. The species selection 
algorithm picks that species whose attribute vector is the minimal fit with the 
vector derived from the UNIT instance. An example of how these are built is 
given in the next chapter. 

To iterate: the problem is one of selecting one species from a set of contenders. 

The compiler does this using five filters. The filters are: 

Ports 	 The instance has a unique set of ports. The ports filter finds 
the tightest fit between the ports used by the instance and 
those offered by each contender. For example, a counter with 

a load input and a data input is obviously loadable, and the 
converse is also true. The exclusion matrices provide discrim-

ination between contenders even where their port demands 
overlap. 

Fmax 	The maximum operating frequency demanded from each port 

is known. The Fmax filter removes contenders that are unable 
to meet the port speed requirements. 

Parameters 	The instance has a unique set of parameters. The parameter 

filter finds the tightest fit between the parameters given by 

the instance and those demanded by each contender. The 

exclusion matrices provide discrimination between contenders 
even where their parameter sets overlap. 

Environment Where there are both synchronous and asynchronous con-

tenders, the compiler discriminates between them by searching 
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the environment around the instance. Synchronous modules 

are identified by their type Phil and Phi2 ports. If a parallel 

output of the instance connects to an asynchronous module 

then that instance must be synchronous. This filter works 

from the input pads, so modules connected to an input pad 

are always synchronous. 

Size 	 Contenders are ranked according to the area they occupy. The 
smallest contender is chosen. 

Reserved Words Revisited 

LEGO addresses a complex problem, that of describing design constraints 
to an automated VLSI CAD tool. The LEGO language is designed so that 
constraints can be described in precisely one way. The consequence of the former 

fact plus the latter rationale is that LEGO is a large language: it contains 

many reserved words. You may have counted them. To simplify matters, each 
word is used for one purpose and no other, thereby imposing a hierarchy to the 

statements that make up a LEGO program, to the extent that the structure of 
a LEGO program might even be surmised from a knowledge of that hierarchy. 
This functional hierarchy is shown in figure 6-7 

Summary 

The LEGO language has been described. To support and reinforce this, the 

next chapter works through an example of how a new module family is described 
in LEGO. 
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Port Information 

Technology 
I 	 I 

Demand 
I 	 I 
I 	 I 

Strap 
I 	 I 
I 	 I 
I 	 I 
I 	 I 

Bit 
I 	 I 
I 	 I 

Constant -. 

I 	 I 

Location Vdd, Gnd, I 	 I 

Input, Output, 
Type etc 

TEternal ,  
Internal 

Cell History Date 

Report 	 I Source 

TransferEqn Version 

Power Verified 

Size 

Geometry 

EndCe 11 

Family - 

Port Information 

Cell Port I 	I 

I 	i 	 I 

Species 
I 	I 	 I 
I 	I 	 I 

Fmax 
I  I 	I 

Mandatory, 

I 	I 
Optional 

Parameters HIIIII Integer . String 

Endfamily Compose 

End±ile EndSpecies 

Words available to arithmetic expressions are omitted from this diagram. 

Figure 6-7: Statement Hierarchy of LEGO 



Chapter 7 

A LEGO example 

Even after a silicon compiler has been in use for a long time, it is expected that 
its users will still find that the cell libraries lack parts. Perhaps a counter is 

wanted that can be loaded and reset. Using this counter example, this chapter 

demonstrates how leaf cells and collections of leaf cells are defined for inclusion 

in a Constraint Library. The discussion starts at the very beginning of the design 
process with a definition of the new counter family. 

Definition 

In its most basic form, a counter is a memory which increments the memory 

contents on receiving a clock signal. The contents of the memory are continuously 
available in parallel on the output. 

, Counters come in two main varieties: ripple counters, also known as asyn-

chronous counters, and synchronous counters. In an asynchronous counter, the 
output changes ripple through each stage of the counter. In a synchronous 

counter, the output changes in synchronism with a change on the clock input. 

The difference between the two types is in the manner in which the carry is 

propogated: synchronous counters are faster than ripple counters because the 
carry chain propogates through less logic, in the extreme case, this produces full 
carry look-a-head. 

-Let us say we want a ripple counter built using series connected flip flips. 

A Counter Family 

An up counting, loadable, resetable counter is required immediately, but the 

other counters in the family have to be considered at this conception stage in 

order to keep the family port conventions consistent. It is thought that a family 

consisting of a simple counter, a loadable counter, an up-down counter and a 
loadable up-down counter should satisfy everyone. 

124 



Chapter 7. A LEGO example 125 

Port Conventions 

We have an idea of what each member of the counter family must do. The 
next step is to build a port exclusion matrix. An exclusion matrix indicates how 
many of each port is needed for each of the species in a generic family. The 
exclusion matrix is used by the compiler to identify a particular member of the 

family from the ports. The family of counters do not take any parameters when 
instances of the family are created, so it must be possible for U2 to determine 

exactly which species to use from a knowledge of what ports are used on a 

particular instance. The exclusion matrix for ports contains 0 when no ports 
are needed, 1 when one port is needed, 2 when two are needed etc., up to n 
when the number of ports used should match the wordlength of the counter. If 
a port must be connected, for example the clock input of a counter, then it is 
marked with a star. U2 forms its own exclusion matrix using these starred ports 

only, from the LEGO description of each species'. The exclusion matrix for the 
counter family is tabulated below. 

PORTS 
SPECIES clk qout reset load 	datain updown borrow 
std 1* n 1* 0 	0 0 0 
loadable 1* n 1 1* 	n* 0 0 
updown 1* n 1* 0 	0 1* 1 
general 1* n 1 1* 	n * 1* 1 

Figure 7-1: Exclusion Matrix for Counter Family 

If the new family needs parameters when instanced, a separate exclusion 
matrix for parameters would have to be constructed. However, if species could be 
selected by ports alone, then the requirement that no two rows of the parameter 
exclusion matrix be identical would not be enforced. 

Now that the general organisation of the counter family is decided, we can 
concentrate on the problem of defining the loadable counter. 

Loadable Counter 

The loadable counter will be a ripple carry counter composed of a series of 
flip-flips implemented in single layer poly, single layer metal NMOS. A block 
diagram of the counter is given in figure 7-2. 

'Using Strap and Demand personality statements 
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Datain n 

Datain n - 1 

Datain 3 

Datain 2 

Datain 1 

Datain 0 

Q out 

Q out n - 1 

Q out 3 

Q out 2 

Q out 1 

Q out 0 

RESET CLK LOAD 

Figure 7-2: Block diagram of a ripple carry counter 

Circuit Design 

Enough of the loadable counter is defined for a start to be made on the circuit 
design. The actual circuit is not relevant to this discussion, so we shall simply 
assume that a counter circuit has been developed and laid out already. 

Validation 

It is important to validate every leaf cell by exhaustively simulating the cell 
for all possible inputs. It has been known for a cell as simple as the counter slice 

to contain five or six logical faults; so if cells are not validated, the resulting 
chips are unlikely to work. 

Well designed leaf cells should be small in size and have few internal states, so 

simulating all binary inputs under all possible states is not a difficult problem. 

a 
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It would be sensible to test also for the more obvious metastable conditions 

caused by synchrony between input lines, but in this case exhaustive testing is 
not feasible; discernment needs to be used in selecting test cases. 

To validate the leaf cells, we build a 2 bit counter by connecting together 
two slices and a control part using a layout editor. In the Edinburgh CAD envi-
ronment, SPICE and SDL files are extracted from the layout using the program 
EXTRACT. Simulation patterns are contrived and then run. 

Port Positions 

The next step is to encode the cell in LEGO. This involves finding the port 
positions. 

Modern CAD systems label ports explicitly and so the port information can 

be obtained directly from the geometry file. However, at Edinburgh the layout 
system in most widespread use does not carry port information but the extraction 

tools produce a list of all geometry that abuts against the cell periphery. For 

readers not familiar with the Edinburgh tool set, an extractor comment for a 
two bit counter is shown below (abridged). 

** EDGE INFORMATION ******************************** 

* 	NODE * EDGE * LAYER * WHERE 	* 
* 	1 * EAST * METAL * 149 153 	* 
* 	1 * WEST * METAL * 149 153 	* 
* 

... * 
* * 
* 	1 * WEST * METAL * j. 4 	* 
* 	208 * EAST * METAL * 136 139 	* 
* 	207 * EAST * METAL * 68 71 	* 
* 	208 * WEST * METAL * 136 139 	* 
* 	207 * WEST * METAL * 68 71 	* 
* 	130 * SOUTH * POLY * 38 40 	* 
* 	188 * SOUTH * POLY * 127 129 	* 
* ... * 
* * 
* 	111 * SOUTH * POLY * 3 5 	* 
* 	100 * WEST * POLY * 146 148 	* 
* 	98 * WEST * POLY * 78 80 	* 
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Regardless of how the port information is obtained, the end product should 

be a picture of a cell with the port types and positions highlighted. We call 
this picture the cell bounding box diagram. The bounding box diagram for the 
two types of cell making up the counter corresponding with the unabridged 
EXTRACT listing are shown in figures 7-3 and 7-4. To avoid cluttering the 

diagrams with distracting details, only a few of the port labels are shown. In a 
real example, all the ports must be labeled. 

CLK 	LOAD 	RESET 

	

output - poly output - poly 	output - poly VDD - metal 

eq 	 e LOAD 
CLK RESET 	 input - poly 

input - poly input - poly 

Figure 7-3: Bounding box of buffer (Scaled) 

LOAD 
VDD. 

QOUT 
output - poly 

DATAIN 
input - metal 

GND - metal 

VDD - metal 

DATAIN 
input - metal 

GND - metal 
LdLr. 	 LUAU 	ttJJu1' 

	

output - poly output - poly output - 	VDD - metal 

Figure 7-4: Bounding boxes of J-K slice (scaled) 

LEGO Program 

The LEGO program that follows was written directly from the bounding box 
diagrams. 

Family counters 

Cell loadablegljce( 

botgnd (Type(Ex,Gnd), 

Location(1 W 4 M + 1 E 4 M)). 

topgnd(Type(External,Vdd), 
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Location(62 W 4 M + 62 E 4 M)), 

datain(Type(External,Input) ,Bit(i) .Strap(X). 

Demand (Wordlength). 

Location(49 W 2 p + 49 W 2 P)), 

out (Type(External,Output) .Bit(i) .Demand(1). 

Location(59 E 2 P)). 

clkin(Type (Internal .Input). 

Location(13 S 2 P)). 

resetin(Type (Internal .Input), 

Location(46 S 2 P. 70 S 2 P)). 
loadin(Type (Interna]. .Input). 

Location(97 S 2 P. 70 S 2 P)). 

cikout (Type (Internal. Output). 

Location(13 N 2 P)). 
resetout(Type(Internal .Output), 

Location(46 N 2 P. 70 N 2 P)). 

loadout (Type (Internal . Output). 

Location(97 N 2 P. 70 N 2 P))) 

History (Date (01/04/85) .Validated(Yes). 

Source(EUCSD:AD) ,Version(2)) 
TransferEqn(" .") 

Power ( 3000) 

Size(143,68) 
Geometry(counter. sli) 

EndCel]. loadablebase 

Cell loadablebase ( 
botvdd(Type(External , Gnd), 

Location(1 W 4M + 1 E 4 M)). 
reset(Type(External,Input) .Bit(0) .Strap(X). 

Demand(1).Location(8 S 2 P)), 
clk(Type(External,Input) .Bit(0) .Strap(X). 

Demand(1).Location(3 S 2 P)). 
load(Type (External .Input) .Bit(0) ,Strap(X). 

Demand(1).Locatjon(127 5 2 P)), 
cikout (Type(Internal . Output). 

Location(13 N 2 P)) 
resetout (Type (Internal, Output). 
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• Location(46 N 2 P. 70 N 2 P)), 

loadout (Type(Internal . Output). 

Location(97 N 2 P. 70 N 2 P))) 

History (Date (01./04/85) ,Validated(Yes), 

Source(EUCSD:AD) ,Version(2)) 

TransferEqn(" , 'II' ) 

Power (1200) 

Size(143, 19) 

Geoinetry(counter .bas) 

EndCell loadablebase 

Species loadable( 

Out(CellPort(loadableslice....out), 

Fax(20,10,9,E,* ,Wordlength./)), 

Datain(CellPort (loadableslice_datain). 

Fmax(20.10,9,E,*,Word1ength./)) 

Load(CellPort (loadablebase_load), 

Fmax(20,10,9,E)). 

Clk(CellPort(loadablebase_clk). 

Fmax(20.10.9.E,* .Wordlength./)). 

Reset(CellPort(loadablebase_reset). 
Fmax(20.10,9,E,*))) 

Compose((([1.i,=](loadablebase)1 N). 

[2.i.](loadableslice)Wordlength)1 N) 

EndSpecies loadable 

EndFamily counters 

EndFile. 

It is as easy as that! Most of the work in describing a new cell is in the 

definition and simulation stages. Once a cell is layed out, it takes only a few 

minutes to write the LEGO cell description and just a few minutes more to 

compose it as a species. The program must still be checked to make sure the 

modules produced by the compiler do actually count, either by simulating them 

or by fabricating some test chips. 
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Chapter 8 

The UNIT Language and Silicon Compilation 

A silicon compiler must translate a behavioural specification into a topographical 

description of how that behaviour can be implemented in silicon. Using the 

framework described in this thesis, this means translating a UNIT program at 
one level of abstraction, into another program at a lower level. 

The language used to represent a specification to the compiler, UNIT, was 
described in Chapter 5. This chapter introduces the remaining six members of 
the language group. 

Parsing 

A compilation begins with the UNIT program describing a design being 

parsed. The act of parsing encapsulates the source text in a knowledge base. 
A knowledge base is a database that incorporates semantic rules governing the 
data it holds, so the compiler could, for example, regenerate the original program 
from the knowledge base. 

Knowledge Bases 

Two knowledge bases are needed: one for storing UNIT programs, the other 
for storing design constraints. These two knowledge bases are known as the Goal 
Base and the Constraint Library respectively. 

Initially, the Goal Base contains a specification of the desired chip in the 
form of an architectural description. During compilation, the compiler adds to 
the Goal Base in discrete stages until the Goal Base contains enough informa-

tion to generate topography. At each stage the Goal Base may be edit-ed to 

modify decisions made by the compiler, or it can be dumped in one of the UNIT 
languages. 

Unlike the Goal Base, the Constraint Library changes very little during the 
compilation. Its job is to store the technology dependent information specified 
by the LEGO file indexed from the UNIT program. The Constraint Library 
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supplies the compiler with rules: rules for picking the best synthesiser for any 
given situation, rules about where ports can go, rules that say how much stretch 

is allowed, rules that tell the compiler what to do with floating inputs, and so 
on. The Constraint Library is intimately tied to the target technology, hence 

different target technologies use different libraries. Any one copy of a compiler 

might have a library for an NMOS process, several libraries for various CMOS 

processes and perhaps a couple of libraries in another technology. When two 

or more NMOS processes are available, a separate Constraint Library exists for 

each. 

This chapter is concerned with the Goal Base: what it contains and how it 
is modified during the course of a compilation. 

Telescopic Languages 

The dynamic nature of the Goal Base means that it describes not one, but a 

range of languages. In fact, there are seven UNIT languages, each describing a 
different level of design abstraction. The languages are enumerated below. 

ROOT UNIT. This language is described in Chapter 5. A specification 
written in ROOT UNIT is known as the Root Program. 

VALID UNIT 

DEFINED UNIT 

STRUCTURED UNIT 

FLOOR UNIT 

SLICED UNIT 

PADDED UNIT. The PADDED UNIT program represents a topography. 
A specification that has been translated into PADDED UNIT is called the 
Goal Program. 

The languages are- all mutually consistent. That is, one UNIT program may 

mix different levels of language and the compiler will determine automatically 
which level is being used. In effect, the language definitions are nested inside 

one another. An analogy exists between these nested languages and the sections 

of a telescope, hence the seven languages that comprise UNIT are collectively 
termed the UNIT Telescopic Language. 
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This concept of a telescopic language is a powerful one: It allows designs to 

be compiled over a number of sessions rather than in one sitting, and it provides 
a mechanism by which a user can modify decisions made by a silicon compiler 
to introduce constraints the compiler does not know about, such as temporal 

behaviour, limits on power consumption or a pad ordering. 

Compilation 

The job of a silicon compiler is to translate a language low on the scale of 
languages (with a low number in the enumeration), into a program in a language 

high on the scale. A program in the language on highest rung of the scale, 
represented by PADDED UNIT, can be fed into a library of utilities to spawn 
geometry (CIF) or input files for timing verifiers and simulators. 

Generally, there is one language for each compilation step. The exception is 
SLICED UNIT which covers five compilation steps. The correspondence between 
compilation steps and languages is illustrated in figure 8-1. The compilation 
steps are logically separated into two phases: compiling the original behaviour 

into a structure and then compiling the structure into the topography. The first 

phase is the true silicon compilation, the second phase is simply silicon assembly. 
Consider. the two phases in turn. 

Phase One 

The first phase of a compilation translates the behavioural specification given 
by the user into a structural description of a specific implementation of that 

behaviour. A behavioural description differs from a structural description in 
that it deals with generic function families and incomplete connectivity nets, 
whereas a structural description deals with specific instances of low-level cells 
and has all connectivity defined explicitly. 

There are four main stages involved in translating the behavioural description 
into a structural description, namely: 

Design Validation 

Cell Definition 

Design Analysis 

Floorplanning 
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ROOT UNIT 	DAISY 

\X/ 
 __') ( PARSER 

Phase One 
r ------ •1 

Validator 	I 
I 	 I 

VALID UNIT 

Cell Def'n 

DEFINED UNIT 

Analyser 

STRUCTURED UNIT 

Floorplanner 

.1 

Phase Two FLOOR UNIT 
r ---  ---- 

I 	'Placer 	I 
I 	 I 

SLICED UNIT 

Slicer 	I 

Power Router 

Global Router 

Skirter 	I 
I 	 I 

Signal Router 	i 

SLICED UNIT 

Pad Placer 

'— PADDED UNIT 

SPAWN 

Simulator Timing Verifier 
CIF 

Figure 8-1: Hierarchy of UNIT Languages 
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The remainder of this chapter looks in detail at each of these design trans-
formations and describes their support in UNIT. 

Design Validation 

While the specification is being parsed, a series of semantic checks can be 

carried out in an effort to catch design errors. A list of the checks U2 applies is 

given below, divided into two sections: Connectivity and Semantics. 

1. Connectivity 
When the parser recognises the end of a block, the following checks on 
connectivity are performed: 

The net of interconnected instances must be a complete graph. A 

Warning is posted if the check fails. 

The minimum cut through a graph of interconnected instances, treat-
ing a port group as an arc of unit weight, must be greater than one. 
A Warning is posted if the check fails. 

All ports into a block must be used within that block, that is, input 

ports must not be left floating. An error is posted if the check fails. 

All ports into a block lower in the design hierarchy must be used. An 
error is posted if the check fails. 

Nets must be driven by at least one source. A Warning is posted if 
the check fails. 

Nets must drive at least one sink. An error is posted if the check fails. 

All instances must have at least one input port and one output port 
connected. A Warning is posted if the check fails. 

No net may shortcircuit two or more output ports. An error is posted 
if the check fails. 

2. Semantics 
The following structural checks are carried out: 

There must be no uninterrupted feedback loops: if a user really wants 

an oscillator, it must be designed as a leaf cell. An error is posted if 
the check fails. 

The number of parameters needed by the Constraint Library for each 

instance must be given. An error is posted if the check fails. 
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All ports must be known, either to the Constraint Library to the Goal 
Base as part of a block declaration. An error is posted if the check 

fails. 

If an instance uses a port for control purposes, it must be connected. 

An error is posted if the check fails. 

The set of ports used in the specification of an module in the Con-
straint Library must match precisely one species of module synthe-

siser. An error is posted if the check fails. 

Warnings can be switched off by the Warnings option. Errors cannot be 
switched off and the compiler will refuse to go onto the next compilation stage 
if any errors have been detected. 

The VALID UNIT Language 

Every compilation step in the first phase of the compilation has a correspond-
ing UNIT language. VALID UNIT is the language used to represent a design 

after it has been scanned by the Design Validator. 

The Validator takes a program written in ROOT UNIT and through a series 

of transactions on the Goal Base, translates it into VALID UNIT. The transac-

tions perform the checking by way of a side effect. 

VALID UNIT is identical to ROOT UNIT, except for the defaults: VALID 
UNIT does not have any. For example, ports defined by width in the Root Pro-
gram are turned into a range definition in VALID UNIT. Instance statements 
in the Root Program that have a list of instances are expanded out into a series 

of statements, each declaring a single instance in VALID UNIT. To illustrate, if 
a Root program looked like: 

Module niultiplier(Input Operanda(8). Operandb(8). 

Output Product(16)) 

{Nested blocks) 

Instance adder addl,add2 

(Further Instance Declarations) 

{Connectivity} 

EndModule multiplier 
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After validation it would look like: 

Module ultiplier(Input Operanda(0:7), Operandb(0:7). 
Output Product (0:15)) 

{Nested blocks} 

Instance adder addl() 

Instance adder add2() 

{Further Instance Declarations} 

{Connectivity} 

EndModule multiplier 

Cell Definition 

A program written in VALID UNIT contains very little structural informa-
tion, if any at all. The first step in producing this information is to determine 
which module synthesiser is going to produce topography for each function block. 

The cell definition step selects a species of module synthesiser from the family 

of synthesisers specified in the Root Program. That is, the cell definition step 
chooses which synthesiser will produce each leaf module in the design hierarchy. 

The specification contains a reference to a generic group or family of module 

synthesiser. This is enumerated to specify a precise synthesiser in the family 
of synthesisers. A precise synthesiser is known by generic name plus a species 
name. For example, an instance declaration might look like: 

Instance familyname instancename 

After cell definition, it would become: 

Instance familyname . spec iesname instancename 

Once the species name has been determined, the wordlength of each of the 

instances and the ports on the bounding edges of that instance, can be added to 
the instance declarations. The Module headers in DEFINED UNIT are coerced 

into the same notation, thereby keep the language consistent as well as preparing 

the way for the compilation stages that follow. 

By way of an example of a program in DEFINED UNIT, the program given 
in the foregoing section would be transformed into: 
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Module multiplier (Ports ( 
Operanda(Range(0:7),Dir(Input),Fmax(1)), 

Operandb(Range(0:7),Dir(Input),Fmax(1)), 

Product(Range(0:15) ,Dir(Output) ,Finax(1)) 

)) 

{Nested Blocks) 

Instance adder.full addl() [Wordlength(8), 

	

Ports (a(Range (0 : 7) 
	

Dir(Input). Fmax(1)), 

	

b (Range (0 : 7) 
	

Dir(Input), Fmax(1)), 
cin(Range(0:0), Dir(Input), Fmax(1)), 

sum(Range(0:7). Dir(Output). Fmax(1))) 

] 

Instance adder.full add2() [Wordlength(8), 

Ports( {port info like that above) ) 

] 

{Further Instance Declarat ions) 

{Connectivity} 

EndModule multiplier 

Notice that an instance port list includes all input ports for an instance, but 
only those output ports which are connected. To illustrate: the full adder addi 
has a carry output but it is not in the port list because it is not used whereas the 

carryin (cm) port is included whether it is used or not. This is done to allow 
the second phase of the compiler to disable unused inputs by connecting them 
to power and ground. - 

Design Analysis 

The Design Analysis step restructures the design hierarchy so that each mod-
ule block contains one cluster of strongly interconnected instances. The resulting 

hierarchy is then classified into one of six classes. 

In terms of Goal Base transactions, the Design Analyser compiles DEFINED 
UNIT into STRUCTURED UNIT. Invariably,, a program in STRUCTURED 

UNIT will have more levels of hierarchy than the original. Also, the header of 

a STRUCTURED UNIT program will include the class of the block. By way of 
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an example, the DEFINED UNIT program given in the previous section would 

be transformed into the following STRUCTURED UNIT program: 

Module multiplier(Class(2) ,Ports( 

Operanda(Range(O :7) ,Dir(Input) , Fmax(1)), 

Operandb(Range(0:7),Dir(Input),Fmax(1)), 

Product(Range(0:15),Dir(Output),Fmax(1)))) 

{Nested blocks, perhaps structured differently) 

{Instance Declarations as per DEFINED UNIT) 

{Connectivity) 

EndModule multiplier 

Floorplanning 

The floorplanner computes the aspect ratio and a virtual grid position for 

every block in the design hierarchy and then fixes the location of ports that 

exist along the edge of each instance. This information is incorporated into 
the Root Program by enumerating instances and adding module declarations. 
Instances have the personality statements Posn and Size added to them, module 
declarations only have a Size. A module block with these statements is deemed 
to be in the FLOOR UNIT language. 

The floorplanner determines where ports will be by composing and perturbing 

the bounding boxes of the cells that constitute an instance. The port locations 
are added to instances and module blocks using Location statements. 

A post-processor to the floorplanner connects floating inputs to either Gnd 
or Vdd by adding connectivity statements to each module. 

The example given in the previous section might be translated into the fol-
lowing program in FLOOR UNIT: 

Module multiplier(Class(2), Size(647,3520), 

Ports ( 
Operanda(Range(0:7) ,Dir(Input),Fmax(1), 

Location( 

0(12w4M + 12W2P),1(20W4M + 20W2P), 

2(40W4M + 40W2P).3(60W4M + 60W2P), 

a 
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4 (80W4M + 80W2P) . 5(100W4M + 100W2P), 

6(120W4M + 120W2P),7(140W4M + 140W2P)) 

), 

Operandb(Range(0:7),Dir(Input) ,Fmax(1), 

Location( 

0(160W4M + 160W2P) , 1(180W4M + 180W2P). 
2(200W4M + 200W2P),3(220W4M + 220W2P). 

4(240W4M + 240W2P) ,5(260W4M + 260W2P). 

6(280W4M + 280W2P),7(300W4M + 300W2P)) 

), 

Product(Range(0:15),Dir(Output),Fmax(1), 

Location( 
O( 	8E4M + 8P2P). 	1( 18E4M + 18E2P). 
2( 38E4M + 38E2P). 3( 58E4M + 58E2P), 
4( 78E4M + 78E2P), 5( 98E4M + 98E2P), 
6(118E4M + 120E2P). 7(138E4M + 138E2P). 
8(158E4M + 160E2P). 9(178E4M + 178E2P). 

10(198E4M + 198E2P).11(218E4M + 218E2P), 
12(238E4M + 238E2P),14(260E4M + 260E2P), 
14(278E4M + 278E2P),15(300E4M + 300E2P)) 
), 

Gnd(Dir(Gnd). 

Location(0(0S647M + OW4M + OE4M)) 

), 

Vdd(Dir(Vdd). 

Location(0(0N647M 	318W4M + 318E4M)) 
))) 

{Nested Blocks} 

Instance adder.fulI addl() CWordlength(8), 

Size(114,29), Posn(29180,0)0), 

	

Ports(a(Range(0:7), 	Dir(Input), 

Location({Location list like that above})), 

	

b(Range(0:7), 	Dir(Input), 
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Location({Another location list})), 

cin(Range(O:O), Dir(Input), 

Location({Another location list})), 
sum(Range(0:7). Dir(Output), 

Location({Another location list}))) 

I 

Instance adder.full add2() [Wordlength(8). 

Size(114,29). Posn(29180,0,0), 

Ports( {port info like that above} ) 	 - 

{Further Instance Declarations} 

{Connectivity) 

End1iIodu1e multiplier 

The three new personality statements Location, Size and Posn are de-
scribed in detail below. 

Location Statement 

The Location statement introduces a list of port locations indexed by their 
bit significance, e.g. bit 3 of a range would be written as: 

3(...) 	 - 

Port locations are expressed in the same way as in the LEGO language, namely, 

as an abscissa along a given edge, of a certain width on a particular layer. For 
example, a port that represents bit 7 of a range, sited 32 lambda units along the 

west edge of a cell (measured south to north and west to east) in 6 lambda wide 
diffusion would be declared as follows: 

7(32 W 6 D) 

In the location statement, the delimiting spaces between fields of a port 
position can be omitted. If this was done, the above example would look like: 

7(32W6D) 
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Ports that appear in more than one position are declared by a sequence of 

port positions separated by plus signs "+". For example, if the port at 32W6D 

was on both diffusion and metal layers and the port ran through the cell to 
appear on both lateral edges, then it should be declared as: 

7(32W6P + 32W6M + 32E6P + 32E6M) 

In the example given above, the net is assumed to be connected within the 

cell. If it is not internally connected and the compiler must complete the net by 

connecting the two ports together, then it is declared as: 

7(32W6P + 32W6M, 32E6P + 32E6M) 

This auto-connect facility is used frequently for connecting up power nets on 

bit slice modules. 

The layer letters are given in the design rule file indexed from the LEGO 

library file. In this report it is assumed that the rule file assigns the letter D to 

the diffusion layer, P to polysilicoñ and M to metal. Other files may use further 
letters, such as q for second layer polysilicon or T for second layer metal. 

Posn Statement 

The Posn statement records the x coordinate, y coordinate, rotation in anti-

clockwise quadrants and the mirroring of an instance. Mirroring is in the form: 

o for no mirror 
1 for mirror in x axis 

2 for mirror in y axis 
3 for mirror in x and y axis 

The convention of using the X and Y coordinates to refer to the bottom 
left hand corner of a cell is used, so a cell whose bottom left hand corner was 
at lambda coordinate 0,20 after being rotated anticlockwise 1 quadrant (90 de-
grees), would be declared as: 

Posn(0,20,1 .0) 

Similarly, a cell mirrored in the x axis after being rotated 2 quadrants (180 
degrees) and then mirrored in the X axis would be declared as: 

Posn(0.20,2, 1) 
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Size Statement 

The Size statement gives the X,Y size of an instance. For example, an 

instance 20 lambda wide by 100 lambda high would be declared as: 

Size (20, 100) 

Floorplan Editor 

Floorplanning is one of the hardest tasks there are to automate. Optimal 

floorplanning is NP-Hard, with many of the subtasks NP-Complete. The first 

part of this thesis was dedicated to addressing the floorplanning problem, but 

even the methods presented there are not perfect. Simply stated, no method, 
manual or automatic, can produce perfect floorplans. 

A human designer will often see 'obvious' ways of improving a floorplan, so 

how does he go about implementing those improvements? Clearly, it is possible 

to modify a floorplan by dumping the Goal Base and editting the FLOOR UNIT 
with a text editor, but this approach is fraught with hazards. The prefered 
method is to use an interactive graphical floorplan editor. 

As a safeguard against careless use of the floorplan editor, the compiler will 
not allow a design to proceed to the next stage of compilation unless the floorplan 
is both complete and planar. This means that all blocks must be placed without 
any overlaps. 

Code Swelling 

The multiplier example used so far is getting too large for comfort. From 
now on, bulky sections of code will be replaced by comments. 

This phenomenon of code swelling out during the compilation should be 
considered for a moment. 

A line in ROOT UNIT corresponds with thousands of lines in PADDED 
UNIT'. Obviously, if a Root Program is 300 lines long, the equivalent in 
PADDED UNIT is too long to peruse with a text editor. To get over this 

'This is because PADDED UNIT describes behaviour, structure and topography. Most 
of the swelling is caused by the topography. 
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problem, the silicon compiler must provide graphical structure editors, prefer-

ably from a menu. The editors must include at least a cluster editor, a floorplan 

editor and a wire editor. These tools act directly on the Goal Base to perform 
all the functions that could be accomplished using a text editor, but in a far 

safer and more controlled fashion. Thus, a user should never need to examine 

low level UNIT. A knowledge of what each language describes is useful only in 
selecting the correct editor. 

Phase Two 

The second compilation phase must map the structural description into a 
topological implementation, an operation identified earlier as silicon assembly. 

All of the four stages involved in the first phase of a compilation take a 

graph, perform some computation and return dimensionless results. Using the 

framework presented in this thesis, the input graphs are taken directly from the 
UNIT parse tree and the result of each stage of computation is used to enumerate 
the parse tree. 

Unfortunately the use of the parse tree to hold intermediate results and 
for holding the specification graph is greatly restricted in silicon assembly. The 
silicon assembler needs to operate on large volumes of topographical information 

without sorting through enormous quantities of data - 500,000 or more geometric 

objects in current designs [Ousterhout 821. To support topographical operations 
on these big data sets, special datastructures are required. 

The design of a datastructure must be guided by the operations that are 

expected to be applied to the data contained within it. If a datastructure de-

scribes topographical information, then it must store information on the size of 
an object and information on what it is connected to. The operations that might 
be applied to this combination of geometrical and topological data include: 

Point finding: find all the objects encompassing a given X-Y point within 
their periphery. 

• Neighbour finding: find all the objects that touch one side of a given 
object. 

• Topological sort: recursively find all the objects to the left of or below 
a given object. 

• Bloat: move objects to allow an object to be enlarged. 
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• Compact: press objects together so -that the boundary of the region oc-
cupied by objects is minimised. 

• Channel finding: divide the space between two objects into an oblong 
area that can be routed easily. 

Existing datastructures 

Very few datastructures support all of the operations listed. 

For example, if everything is stored in a single linked list then to find the 
objects covering a point it is necessary to search through the entire list no matter 
how the list is ordered. 

A popular method for reducing the amount of searching needed is to assign 
the linked lists to Bins by mapping intervals in the X and Y axes onto a two 
dimensional array. Each array element is a linked list connecting all objects that 

intersect the same X-Y interval. Whilst Bins reduce the amount of searching 
needed to find a point, they do not embody the concept of nearness: To find 
the neighbours of an object it is necessary to search outwards in a spiral fashion 
moving away from the point of interest. 

Using explicit neighbour pointers speeds up localised operations such as find-

ing points, quickly and, naturally, of finding neighbours. However, if one object is 

moved along an axis, then it is necessary to search through the entire datastruc-

ture to ensure that all the pointers in the orthogonal axis point at the correct 
object. 

Sedgewick describes a method for storing geometrical information in trees, 

where successive levels of the tree are used to index alternate axes [Sedgewick 

831. All branches from the root of the tree index an X interval. All second level 
branches index Y Intervals. Third level branches index X intervals, and so on. 
The problem with this and all other tree structures is that two objects adjacent 

to each other will be stored in different branches of the tree. In the worst-case, 

adjacent objects can be in two branches that split at the very root of the tree, 
making the path between them as long as can be. 

So this was the situation at in October 1983, when the experimental work 

behind this thesis was started. People were using the four datastructures men-
tioned but none of these were up to the job at hand. Neighbour pointers seemed 

to be the nearest to what was needed in that it supported more of operations we 

expected to apply to the VLSI database than lists, bins or trees. Nevertheless, 
the shortcomings of neighbour pointers was a cause for serious concern. 
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Bloating cells is a very common transaction on a silicon compiler's database, 
and if every bloat triggers an exhaustive search through the database then the 

compiler would grind to a halt on large designs. Also, the difficulty of defining 
wiring spaces using the neighbour pointer scheme presents enormous difficulties 

when it comes to writing a global router. These problems were so serious that 

some variations on the neighbour pointer theme were explored. 

It was obvious from the start that to avoid ambiguities in the structure, 

all pointers had to come from the corners of objects rather from their centres. 
This meant that every object in the database had four pointers, two from the 
north west corner and two from the south east corner, pointing at the nearest 
neighbours in the X and Y directions. 

Just after this scheme was implemented, Ousterhout published details of 
his corner-stitching datastructure, used in the MAGIC system [Ousterhout 841, 
[Ousterhout 84b]. It was apparent immediately that Ousterhout's new structure 
did support all the operations listed earlier. In fact, the only disadvantage of 
using corner-stitching is that it consumes about eight times more space than a 
linked-list'. 

Corner-Stitching 

Using corner-stitching, the design space is organised into planes. Each inde-

pendent collection of masks are given their own plane. In Ousterhout's original 

scheme there were two planes, one for objects that interact with metal, the m-
plane, and another for objects that interact with polysilicon or diffusion, the pd 
plane. Of course, contacts interact with both planes so whenever a contact is 
created on one plane its counterpart must be created on the other. 

Ousterhout calls the objects on the planes tiles and a logical collection of 
tiles, such as a contact, a log. A log might be only one tile. 

Tiles are linked to their neighbours by pointers at their corners, hence the 
name corner-stitching. What makes corner-stitching different from the simple 
neighbour pointers is that corner-stitching declares all space explicitly and all 
of a plane is covered with tiles. The design rules say that some tile types can 

merge with their neighbours, and space tiles are one such tile type. The merging 

2 A 40K transistor chip would take roughly 40MB of space in a corner-stitched datas-
tructure if it was "flattened". That is, if the chip had the natural design hierarchy 
removed. 
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is done is so as to maximise the height of the tile'. This merging process means 

that as a design is created, it maintains the V-Sliced appearance shown in figure 
8-2. 

One weak aspect of Ousterhout's original corner-stitching scheme is that 
background design-rule checking (DRC) is done by looking for patterns at the 

corners of each tile. This method is slow, complicated and inhibits the adaptation 

of the design tool for different fabrication processes. For the silicon assembler 

extra planes were maintained for DRC. Whenever a tile is created on the m-
plane or pd-plane, tiles are also created on one or more of the DRC planes. Tiles 

on the DRC plane can be bloats or shrinks of the original pd or rn-plane tile 

and the DRC plane tiles are also typed like all other logs: The type information 

dictates whether one log merges or replaces another. Generally a tile can only 
displace logs with a lower displacement priority. Using this DRC scheme, when 

for instance an attempt is made to create a contact too close to another contact 

then the DRC tiles would interfere and the appropriate error message issued. 

In addition to the pd-plane, the rn-plane and the DRC planes, the silicon 
assembler also has a symbol plane. The symbol plane is used to capture the 
information on the bounding boxes of cells without analysing all the low level 
geometry. Tiles on the symbol plane can have child planes, allowing the datas-
tructure to describe design information hierarchically. 

What if there are two layers of metal, or multiple polycide layers? No prob-
lem. Every independent layer has its own plane, so if there are two layers of 

metal then there are two metal planes. In fact, the corner-stitching scheme im-
plemented for the silicon compiler has a design rule server attached to it, allowing 
the number of planes, the log types, the DRC information, the drawing and CIF 
information, the connectivity, resistivity, interlayer capacitance and every other 

aspect of the design system that might possibly be affected by a change in the 
design rules to be set up dynamically. In this way the silicon assembler, and 
thus the silicon compiler, is not restricted to a particular process technology, 

nor is it restricted to using the conservative lambda rules systems to achieve 

portability. By setting up all design rules dynamically, one user of the compiler 
could be using, say, a bipolar technology whilst at the same time another user 

of the same compiler might be using the latest submicron CMOS process. 

3 0usterhout's implementation maximises the width of tiles rather than the height, so his 
planes are naturally H-Sliced instead of V-Sliced. The difference is of no consequence. 
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Silicon Assembly 

The Silicon Assembler has eight stages: 

 Placement 

 Perturb and Slicing 

 Power Routing 

 Global Routing 

 Skirting 

 Signal Routing 

 Pad Placement 

 Spawn 

Placement 

The Placement routine converts the virtual grid coordinates computed by 
the floorplanner into coordinates in lambda space. 

Many algorithms for placing rectangular objects are described in the litera-
ture, for example [Khokhani 851, [Rivest 821, [Cheng 831, [Khokhani 81], [Kozawa 
831, [Lauther 79] and [Preas 781. However, the algorithm used in U2 is much 
simpler than any of these because in the context of the framework being dis-

cussed here, a floorplanner has already determined the relative location of each 
block. All that needs to be done is to plow blocks to make space for power and 
signal wiring. One such plowing algorithm is given by Ousterhout [Ousterhout 
841, but a much simpler algorithm is possible, based on summing the X and 

Y displacements of neighbouring blocks. The improved method is described by 
Chung in [Chung 851. 

Perturb and Slice 

The Perturber modifies the placement to allow room for power routing and 

wiring channels. The perturbed placement is then sliced horizontally using the 
algorithm developed by Kinnear [Kinnear 85] to produce the outlines of individ-
ual channels. The slicing process is illustrated in figure 8-2. 
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The wiring modules created by the slicer are added to the list of modules 
blocks as siblings and then instanced. These wiring modules have no connectiv-
ity for the moment, so they are treated differently from other modules, (other 
module blocks are illegal if they have no connectivity). To distinguish these 

wiring modules from other modules and to prevent any name clashes, the wiring 

modules take the name of their parent block, suffixed by an ampersand "&" and 

a channel number. The ampersand is a feature of the SLICED UNIT language. 

Power Routing 

Power nets must be routed differently from signal nets because: 

. Both Vdd and Gnd nets must be routed on a single layer of metal, without 
any crossovers 

• The widths of the conductors must be tapered as a function of the current 
density 

• Each net connects to every function block at least once 

Power nets are routed using the method developed by Morton and described 

in his Masters Thesis [Morton 851. Briefly, Morton's method involves producing 

two spatially separable graphs whose edges hug the boundaries of the function 
blocks. Morton's work extends the method first described by Hassett [Hassett 
82] and independently, but in less detail, by Lie [Lie 82]. 

A power route is described in SLICED UNIT as parameterised instances in-

side the wiring modules. These parameterised instances are viewed as topological 

entities that connect by abutment. For example, for the wiring module marked 
"&6" in figure 8-3, the following statements would be generated: 

Module name&6(Size(32,64), 
Ports ( 

Gnd(Dir(Gnd). 

Location(O(4S14M + 24W14M)) 

). 
Vdd(Dir(Vdd), 

Location(0(20N8M + 3E8M)) 

))) 

Instance topography.wirem gndl() C 
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Size(14,61), Posn(4,0,0,0), 

Ports (Dir(Gnd), 

Location(O(OS14M + ON14M + 24W14M))) 

Instance topography.wirem gnd2() ( 

Size(4.14). Posn(0,24,0,0), 

Ports (Dir(Gnd), 

Location(O(24W14M + 24E14M))) 

] 

Instance topography.wirem vddi.() [ 

Size(861). Posn(20,3,0,0), 

Ports (Dir(Vdd). 

Location(O(OS8M + ON8M + 3E8M))) 

] 

Instance topography.wirem vdd2() 
[ 

Size(4,8). Posn(283,0,0), 

Ports (Dir(Vdd). 

Location(O(OS8M + ON8M))) 

] 

Endlodu1e name&6 

Global Routing 

The communications between blocks are decomposed into a series of wires 

allocated to specific wiring channels. The wires are allocated to the channels by 

adding ports to their headers and connectivity to their bodies. 

Figure 8-4 illustrates how some instances can allow wires to pass through 
them as feedthroughs. The feedthroughs are inserted in the UNIT language by 

adding ports to instances and updating the connectivity. The new ports have 

names such as name&f tO, name&ftl etc. 
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Figure 8-3: Power Routing Example 
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Skirting 

The skirter adds river routing to the boundaries of each cell to align all ports 
on a grid so that as much river routing as possible lies underneath the power 

routing. The skirts are added as topological instances to the appropriate wiring 
modules. 

Grid alignment is necessary even though the routers can operate in a grid-
free mode, because a channel constrained by two cells each with ports very 

close together could cause the router to collapse. Grid routing prevents this 

happening. The grid unit is set by the minimum distance between two contacts, 
currently 7 lambda for the prototype nmos2 library. Ports 'may be one grid 
unit apart when there are no other ports on the directly opposite section of the 
channel, otherwise they should be 2 units apart. 

An important advantage of grid-aligned routers over the grid-free routers 

is that a skirter removes cyclic constraints by offsetting ports on the east or 

north edges of a channel by one grid unit. The river routing is usually narrower 
than the power lines that run over the top, so rather than reducing total area 
efficiency by eating up useful channel space, skirting actually increases efficiency 
by removing cyclic constraints. 

Signal Routing 

Global wiring has been decomposed into wires allocated to wiring channels 
by the Global Router. The Global Router sees a wiring channel as an oblong 
box with ports on the edges. The Signal Router converts the wiring box into a 
topological entity by adding further topological instances to the wiring modules. 

This means that very exacting demands are placed upon the signal router. 

Wires may enter a routing region from any side and they may be connected to 
any number of other wires in an arbitrary manner. The framework for a silicon 

assembler described here makes the demand that any such switchbox of wires be 

routed in the minimum possible space. This wiring capability did not exist at 
the start of the experimental work associated with this thesis so new methods 
had to be developed. 

A group of three was formed to investigate the problems of wire rout-

ing. A channel router based on Deutsch's algorithm was implemented [Deutsch 

76], Thomlinson implemented Burstein's routing algorithm [Thomlinson 85], 
[Burstein 82], [Burstein 83], [Burstein 83b], [Burstein 83c], [Burstein 83d], 

[Burstein 841, and Waring produced a switchbox router of his own [Waring 85]. 
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The only changes made to Deutsch's algorithm involved removing the GOT Os 

and to make it work on sorted data. Sorting the data - an 0(T.log(T)) operation, 

where T is the number of terminals - means that the actual routing achieves the 
lower time complexity bound in time for routing any channel using a heuristic 

method (almost 0(T)). 

All algorithms were implemented on the same machine and using the same 

programming language. To prevent the net order effecting the results it was 

decided to sort all nets into ascending abscissae order. 

The modified Deutsch's algorithm proved to be the fastest. Burstein's algo-

rithm was by far the slowest and produced the poorest quality routing. Waring's 
router achieved the initial objective by routing all benchmarks in the smallest 

possible space, that is, in the theoretical lower bound of space. 

Burstein's algorithm achieved fame by producing what appeared to be the 
most compact and efficient routing for any published algorithm, and also by 

defining a hard switchbox routing benchmark, a benchmark that Burstein was 
unable to route. Burstein's algorithm has been published in many different 
publications. 

Burstein's benchmark was first routed Malgorzata Marek-Sadowska using a 

rule based system specially coded to route this benchmark [Marek 851. The only 
general purpose part of Marek's method, that of unique path propogation, is also 
used in Waring's method (developed quite independently), but Waring also uses 

other heuristics to route both Burstein's benchmark and the larger Deutsch's 

benchmark. 

The four algorithms are compared with each other in the following table. 

Deutsch's Benchmark Burstein's Benchmark 
Tracks Time Completed Time 

Deutsch's router 22 1.6 Secs Not suitable - 

Burstein's Router 
By Thomlinson 

19 
26 

24 IBM Secs 
20 Mins on 68000 

Fails 
Fails 

- 

- 

Marek's Router Fails - In +1 column 5.2 VAX Secs 
Waring's Router 19 

20 
30 Mins 
3 Mins 

In min space 5 Secs 

Notes: 

1. All timings were performed on a 10MHz 68000, except for Marek's which 
is the published figure using a VAX 11/780 and Burstein's 19 track result 
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which uses an IBM 370/3033. With the sorted input data, Thomlinson 

was not able to reproduce, nor even come near, the results published in 

Burstein's papers. 

Thomlinson's implementation of Burstein's algorithm used two dimen-
sional arrays and real numbers. The IMP compiler code for array accesses 

is up to 6 times slower than it should be, possibly due to a compiler bug, 
and real numbers are also inefficient - there was no floating point unit on 

the machines used for these experiments. However, even dividing Thom-

linson's timing figures by 10, Burstein's algorithm is at least two orders 

of magnitude slower than the others. Also, Thomlinson was unable to get 

Burstein's router to reproduce the published results - Deutsch's bench-

mark needed 26 tracks!. Burstein admits to ordering the input data very 
carefully to produce his 19 track result. For these benchmarks all methods 

were given the same sorted data. 

The discrepancy between Deutsch's published best (21 tracks) and the 

figure here (22 tracks) is probably due to Deutsch rearranging his input 
data to produce the best route - Deutsch mentions methods for doing this 
automatically in his paper. 

It was stated earlier that the ability to route any possible switchbox in the 

minimum space was a prerequisite to the silicon assembly framework described 

here. To prove that this ability now exists, Burstein's largest switchbox bench-

mark is shown routed by Waring's algorithm in figure 8-5. Other benchmarks 
and a full description of the algorithm can be found in Waring's Master's thesis 
ibid. 
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Figure 8-5: Burstein's switchbox benchmark routed by Waring 
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Routing Failure 

Power routers, global routers and signal routers are not guaranteed to succeed 

first time. The channels may not wide enough on the first pass or perhaps the 

power routing demands too much of the channel space. If this happens, the 

routers can call the placement routine which will increase the channel widths to 
whatever level is needed and rerun the entire second phase of the compilation. 

Note that the placer can only increase channel width, to circumvent the classic 

channel convergence problem. 

Cell Creation 

For each reference to a module synthesiser, the Cell Creator adds a new 

module to the block in which the generated part was found and fills the new 

block with topography. Topography is declared in the same way that wires and 
contacts are by the routers, namely, by using species in the topography family. 

At the end of the compilation there are no parts which call module syn-
thesisers, everything is a module block. At the leaf level all modules contain 

topography. 

From LEGO to UNIT 

It is worth spending a moment discussing how the ILAP geometry provided 

by the LEGO library is converted into UNIT topography. The UNIT topography 

has ports and other fancy things that may not be in the LEGO. Where does it 

all come from? 

The geometry indexed in the LEGO is used to produce corner-stitched log 
planes. U2 uses the slices inherent in the log planes to generate topological 

objects with ports on their edges where they abut with other logs. The ports 

are generated only when abutting logs share a low resistance mask layer. 

Pad Placement 

The Pad Placer finds the best tradeoff between bondability constraints and 

minimum area constraints, using channel routing to produce pad patterns spec-

ified by-the user. The pad generator, in fact, just places pads as near as possible 
to the ports on the root block, hence changes to pad postion are effected by 

altering the floorplan for the root block. 
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The pad placer creates a module called pad&O in the outermost module block. 

The compiler inserts into pad&O the topography for the pads and for the wiring 

channels that connect ports on the outermost block to the pad positions. 

Spawn 

The compilation is complete. The high level behavioural description has been 

compiled into topography. Utilities now become available to allow geometry 

(CIF), and at some future date, files for timing verifiers and simulators to be 

spawned from the Goal Base. These utilities are accessed from U2's menus. 

Upon finishing, the compiler will dump a table giving information on the 

expected yield, power consumption, the percentage of routing, the pad order, 
statistics about the number of warnings and errors etc. The compiler will also 

dump the Goal Base. 

Language Produced by Change to previous language 

ROOT UNIT User or DAISY - 

VALID UNIT Validator Expansion of shorthand. 

DEFINED UNIT Cell Def'n Insertion of species names. 
New port declaration format. 

STRUCTURED UNIT Analyser Classes added to modules. 
Design hierarchy restructured. 

FLOOR UNIT Floorplanner Size, Posn and Location of 
instances and ports determined. 

SLICED UNIT Silicon Floating connections grounded. 
Assembly Topography modules added. 
Subsystem All lib references 

replaced by topography modules. 
Gnd and Vdd connections added. 

Feedthroughs added. 
Connectivity decomposed. 

PADDED UNIT Spawner Pad Placement and pad block added. 

Figure 8-6: Dialects of UNIT 

Summary 

The framework for a silicon compiler has been described in terms of a series of 

compatible languages to capture the intermediate stages of the translation from 

a 



Chapter 8. The UNIT Language and Silicon Compilation 160 

a behaviour to a topography. Once physical information had been generated by 

the floorplanner, the framework developed around a data.structuring technique 

called corner-stitching. The corner-stitched structure incorporates the infor-

mation needed to spawn mask geometry or a switch-level net-list very quickly, 

without the need for sophisticated extraction methods. 

The use of the UNIT languages enables the compiler to be interrupted by 

a user, the information the user contributes to be captured at any stage of the 
design process and then allow the compiler to continue automatically. As figure 

8-6 shows, each step of a compilation alters the Goal Base and different languages 

are needed to represent these changes. 
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Chapter 9 

Very high level optimisations 

The higher the level at which optimisation is performed then the greater the 
potential benefits. 

At a low level of abstraction, it may be possible to reduce the area taken 

by a wiring channel, reduce the number of vias, maximise the amount of metal 

used etc. A 1t of effort is involved in making this sort of optimisation and the 
benefits are poor. Take for example the problem of minimising the channel area. 
Even a very simple channel router will usually get within 4% of the theoretical 

minimum area and typically within 1%. A sophisticated channel router might 
attain the minimum area but at the cost of taking 100 times more computer 
time, 20 times more coding effort and three times more memory than the simple 

router. Even if wiring takes 50% of a chip's area, then the 0.5% reduction in the 

total area achieved by using a sophisticated router will have been bought at a 

high price. 

At a slightly higher level, a crude floorplanner which lays everything out in 
rows may consume four times the silicon real-estate of a 'perfect' floorplanner. 
The perfect floorplanner does not exist and even highly sophisticated floorplan-

fling techniques such as those described in this thesis need typically 10% more 

space than is really necessary. An idiomatic floorplanner takes over 100 times 
more computer time, and needs 50 times the coding effort of the crude row by 
row method. But then it does produce a 400% reduction in area. 

At an extremely high level it is possible to optimise architectural information 
by minimising the number of function units, that is, by trading off the number of 

times a function unit is instanced against temporal performance criteria. Going 
back to the MC68000 microprocessor example, the performance criteria could 
be expressed as "a computer executing a given instruction set enumerated with 

the maximum number of clock cycles taken by each instruction". No-one would 
be impressed by an engineer who given this specification, delivers a 200MIP 

supercomputer. Likewise for a silicon compiler. The specification given to the 

engineer can be expressed as a maximally parallel datafiow graph in the UNIT 

language; but if the silicon compiler was to translate the graph directly into 
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silicon then it would need an acre-scale fabrication technology with submicron 

linewidths to manufacture the result. Yet for just a small cost in programming 
effort, the datafiow graph could have been optimised, reducing the chip area by 
many orders of magnitude. 

For the three levels of abstraction touched upon, the possible benefits of 

optimisation have been 0.5% for the wiring channels, 400% for the floorplanner 

and perhaps 10000% for the architectural optimiser. 

This does not mean a CAD tool builder can afford to be complacent when 

it comes to low level optimisation. No indeed. Throughout this thesis a great 

deal of attention has been given to how even the lowest level aspects of a design 
can be optimised and produced efficiently. As part of the experimental work de-  

- 

scribed by this thesis, new methods of channel router were developed, methods 

far superior to those presented previously. Methods for producing perfect power 

routers have been developed, methods for using the normally wasted space un-
derneath the power rails have been described. New floorplanning methods have 

been developed. No, there has been no complacency about making low level 
optimisations but it would be a shame to waste this effort by being sloppy or 
careless in the way very high level information is handled. The importance of 

making the very best use of the opportunities available to optimise very high 

level information has prompted this chapter to be written, to deal with meth-

ods of performing functional level optimisation and the problems of synthesising 
behavioural infdrmation. 

Very high level specifications 

At a very high level a CPU might be specified by a macro-instruction set. 
Of course, at an even higher level, one might start with a suite of programs 
that must be executed in a given time. There are some dangers in taking a 
specification to this ultimately high level. For instance, the machine that results 
may not be general purpose as intended because the suite of programs do not use 

particular instructions. Kean [Kean 85] mentions a number of similar problems 
relating to the MIMOLA system which does attempt to do this ultra-high level 

compilation task [Marwedel 841. 

Assuming the suite of programs have been analysed by hand and an instruc-

tion set has been defined, the macro-instructions can be encoded in the UNIT 
language as a collection of dataflow graphs. In this form, the machine is max-

imally parallel: Every instruction has its own pipeline of functional operators 
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and the control logic enables an entire pipeline as soon as an instruction is recog-

nised. Of course, nobody could build a machine left in this form: It would be 
too big and expensive. In fact, it would be even bigger than the supercomputer 

mentioned earlier. Some optimisation of the dataflow graphs is needed to pro-

duce the datapath section of a CPU. Once the datapath has been defined, it can 

be analysed to recover microcode and timing information. 

Defining the datapath 

An instruction set described in UNIT is a set of disjoint datafiow graphs. 

Each instruction is fired by a horizontal control sequence. 

The first step in compiling the dataflow graphs into a chip is to merge the 

many disjoint graphs into one, or a few, much larger instruction graphs. The 

best way of describing this process is probably through an example. 

Consider the SUBI (Subtract Immediate), LINK (link and allocate) and the 
ADDI (Add immediate) instructions of the Motorola 68000 [Motorola 82]. The 

dataflow and timing information for each of these instructions is tabulated below. 

Mnemonic Generation 
SUBI Destination = 1mm data - (Destination) 
LINK An——(SP);SP---* An; SP+d--SP 
ADDI Destination = 1mm data + (Destination) 

Every instruction can work with a predefined set of data address modes. An 
extract from the table given in the Motorola 68000 user manual is reproduced 
overleaf to show that the address modes multiply the number of disjoint dataflow 
graphs representing the instruction set, and that many of these graph extensions 

use the same hardware functions as the instruction graph itself. This means that 
the first step in merging the disjoint graphs together is likely to be reduce the 

number of function operators most if it separates the addressing mechanism from 

the instructions themselves and then merges the instructions together whenever 
there are identical operators in two disjoint graphs. By applying this merge 

process until there are either no more disjoint graphs or until there are no more 
operators common to more than one graph, a large datafiow graph representing 

all the instructions of a CPU would be produced. 
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Mode Generation 
Register Direct Addressing 
Data register direct EA - Dn 
Address register direct EA = An 
Absolute Data Addressing 
Absolute short EA = (next word) 
Absolute long EA = (next two words) 
Program Counter Relative Addressing 
Relative with offset EA = (PC) + d 16  
Relative with index and offset EA = (PC) + (X) + d16  

For the 68000 example, the merging process might identify the addition and 

subtraction operators in the generation sequences for the AD DI, LINK and SUBI 

instructions to produce a datafiow graph with just a single add and subtract 

operator instead of the three existing before. This type of interinstruction merge 
does not slow the CPU down at all but the second type of merge, the merging 
of intrainstruction operators certainly does. 

Intrainstruction mergers 

Intrainstruction mergers, that is, merging operators within a single instruc-

tion and then cycling the data through the combined operator in separate clock 
cycles, is a direct area-time tradeoff. The more merges then the more clock cy-
cles are needed but the smaller the chip. Different merges cause different effects 
on the timing and different operators require differing amounts of silicon area. 

Clearly, the intrainstruction merges should identify those operators which 

take up the most area but whose merging has the smallest effect of the temporal 

performance. So an optimiser must assess the value of at least two goodness 

factors before accepts a merge, the area that would be released by making the 
merge and the number of clock cycles needed to perform the merged instruction. 
If the number of cycles exceeds the predefined upper limit for that instruction, 

then the optimiser must reject the merge no matter how much area it saves. 

This means that the largest operators, such as multipliers, must be merged first 
and the smaller operators merged later. 

The area advantage of a merge is trivially easy to assess, but what about the 
number of clock cycles? 

One way of assessing the implications of a merge on the number of clock 

cycles is to find a proper vertex colouring of the the datafiow graph C by as-
signing the two operators to be merged the same colour. The number of colours 
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needed, (G),  is the number of clock cycles, or the number of buses depending 
on what architectural assumptions are being made. This correspondance is true 

by virtue that the bus allocation problem, that is, the problem of making sure 
that no two operators attempt to use the same bus in the same clock cycle, can 

be reformulated as the vertex colouring problem where no two communicating 

vertices share the same colour. Other methods for allocating clock cycles to 

operators are described in [Nagle 801, [Park 841 and [Park 851. 

For the colouring method to be valid, the following assumptions and restric-

tions must be made: 

It is forbidden to merge adjacent operators, otherwise a a contradiction 

would occur in the vertex colouring. 

The total number of control points around an operator must occupy less 

area than the operator itself. Unless this assumption is made, the optimiser 
could never merge to operators because the area taken by the control points 
introduced by the merge would exceed the area saved by eliminating one 
instance of the operator itself. For a practical optimiser, it is useful to 
assume that control points take up zero space. 

A bus can carry only one signal per clock cycle. 

Buses have intrinsic storage for one cycle, otherwise the optimiser would 
have to introduce extra registers. 

Buses occupy a small but finite area. Without this assumption, the system 
would plaster a datafiow graph with buses. 

Recovering microcode and clock information 

It must be possible to recover the microcode information from the merged 
datafiow graph. This means a running log must be maintained from which the 

lineage of each merged operator can be determined. A simple way of doing this 

is to label the instructions and number the clock cycles. Everytime a merge is 
made, the instruction labels and clock numbers allocated to each of the merged 

operators are appended to a string attached to the new operator. For example, 

if the letters A, B, C, D and E are used to label five operators within a single 

graph which are subsequently merged into one operator, then the string might 
look like: 

"A 1 B 2 C I  3C5E1D4" 
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This says that the operator is enabled during Phil of instruction A, Phi2 

of instruction B, Phil of instruction C, and so on to Phi 4 of instruction D. 

To find the number of clock cycles taken by an instruction, it is necessary to 
examine all the log strings and find the highest clock number associated with 

the instruction label. Microcode information can be recovered by replacing the 

instruction labels by operator control point labels. For example, the log string 

"Al 32 C  B 3 C 5 B 53 D 4" 

demands that the operator control points be switched on during Phi 2, Phi 3 

and Phi 5 to execute instruction B. 

How useful is very high level optimisation? 

From the discussion so far, it is obvious that high level optimisations must 

be developed with a particular field of application in mind. The framework 
presented in this thesis allows behavioural optimisation, but it maintains the 
temporal function of a system. Functional level optimisation however, can alter 

the function being performed. 

It is difficult to see how ultra-high level optimisation could ever be completely 

automated: there must always be some feedback to the designer for him to decide 
whether the change in function is acceptable or not. This does not mean that 

functional level compilers will not exist, nor that they will be useful. But it does 

mean that the compilers must be highly specialised and interact closely with the 
designer. In this way, the optimisers would be designer's assistants interfacing 
to some preexisting tool set rather than stand-alone chip generators. 

It is for these reasons that the framework presented in this thesis carries 
out no optimisation above the behavioural lvel. At the outset, it was decided 

that the value of a general purpose silicon compiler was greater than that of a 

specialised tool which achieves only a slightly higher level of design abstraction. 

Summary 

The framework presented in this thesis could act as the back end of a more 

specialised front end. The library facilities allow complex modules to be recog-
nised, generated, decomposed and then reconstituted. For example, an adder 

might be specified. The compiler might decide to use a fulladder with full look-

ahead across two sections of the adder. The floorplanner is given the hierarchy 
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of cells needed to build the adder so the floorplanner might decide that split-

ting the adder in two, putting each part on the opposite sides of a chip and 

running the carry lines across the chip might be the best way of resolving the 
constraints imposed upon it. In this way, the framework presented here does 

include very sophisticated optimisations and does take a truly behavioural level 

of input. Functional level optimisation has been deliberately excluded 'from the 

framework, but the subject of functional optimisation in one area in which the 
compiler may find service has been discussed. 
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Chapter 10 

Conclusion 

We set out on a quest to overcome the hurdles obstructing our view of some 

ultimate CAD tool, a silicon compiler. A homogeneous set of techniques for 

compiling a specification of the behaviour of a system into the topography needed 
to implement it has been described. 

A new floorplanning method was developed. Unfortunately, the expert na-

ture of the system means that it is not possible to prove the system through 
benchmarks: if there is ever a floorplanner that can do better than the idiomatic 
floorplanner in a particular domain then that floorplanner can be added to the 

library of floorplanners used by the idiomatic method. This has meant that a 
sound theoretical basis for the method has had to be developed. The theory 
is not reliant on the sole conjecture that floorplanning idioms can be classified 

according to how they handle wires, but it includes support for functional clas-

sification when the function or other non-systematic aspect of a design has to be 

considered to produce a high quality floorplan. 

Once the obstacles of floorplanning were overcome, the problems of library 
assignment and silicon assembly remained. A significant contribution is made 

by this thesis in these areas. The use of design-rule servers and the multi-
plane corner-stitching system are important contributions, paving the way for 

technology independent design tools. 

With this framework in place, others working on the U2 silicon compiler 
project have been able to produce automated power routers, outstanding switch-
box routers, new bloating algorithms and so on. These achievements by other 
members of the silicon compiler project demonstrate the value of this framework. 

An important reason for developing this framework is that once a framework 

is established it becomes very much easier to interface autonomous programs 

with one-another. For example, the power router, global router, switchbox router 
and the bloater all form part of a single convergence loop. By allowing the 

framework to take the load off the separate subsystems, these tools may be 

integrated into a working whole much more easily than if they all had their own 

datastructures and their own systems for controlling feedback. 
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Areas for further research 

Needless to say, there are several areas related to the work described here 
which require further research to fully investigate. 

The problems of synthesising chips has been tackled, but the problems of how 

to test the chips has been totally ignored. Designing test patterns to achieve a 

high fault coverage is only a part of the problem: unless the chip has been 

designed with the problems of testing in mind it could turn out be untestable, 

and therefore useless. 

In the context of silicon compilation, it might be possible to use the same 

divide and conquer approach to synthesising test structures as is described in 

this thesis for doing automated floorplanning. Ideally, every type of module 

would be served by a one of a collection of test strategies. Each strategy would 
have its own test structures, such as scan paths or signature analysis, and each 
module in a design could be augmented by the hardware needed to support the 

test function. 

Another area that needs further work is that of synthesising multi-chip sys-
tems. The framework for silicon compilation described in this thesis is limited 
in a practical sense to the synthesis of single chips. If progress is to be made 

on allowing laymen to specify chips, there must be a mechanism for breaking 
very large designs into logical subunits and then proceed to make some physical 
division between the set of chips needed to implement the desired function. 

Finally, the work described in this thesis remains experimental. A great deal 

of work remains to be done to build a reliable full-size silicon compiler. This 
engineering phase is now well underway but without the framework provided by 
this thesis, the engineering would have been almost impossible. 
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Appendix A 

List of Symbols 

CS(v,m) The mth degree connection set of the vertex v 

ea , j  An edge from vertex vi  to vertex v5  

C A simple graph 

GI The order of the graph G 

G An arbitrary simple graph of order n 

H(-7) Heawoods function 

Ka,b A complete bi-partite graph with a vertices in one set and b 
in the other 

K n A complete graph of order k 

MC (V, m) The mth degree mutual connectivity of the vertex v 

The genus of a plane 

(G) The planarity of the graph C - see Chapter 2 

c0' (Vi) The local planarity of the vertex v - see Chapter 2 

(G) The chromatic number of the graph G. 

The edge chromatic number of the graph G. 

0 The empty set 

U Union of two sets 

fl Intersection of two sets 

C > H Contraction of graph C to the subgraph H 

G >- H Subcontraction of graph C to the subgraph H 
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