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ABSTRACT

An examination is made of the capture, storage and 

instantiation of well-known, generalised structures used 

in the design of MOS integrated circuits. These 

structures are called "idioms 11 .

The capture of an idiom for translating from a high 

level language specification to a complete digital signal 

processing system, called the FIRST silicon compiler, is 

examined.

A system is presented which allows and encourages the 

capture of a large number of idioms at the cell level zf 

1C design. This system is based on a purely textual 

language, VIRGIL, which captures circuits and idioms at 

the sticks level, in terms of a set of structural 

components laid out on a so-called virtual grid. The 

language supports parameterisation, selection and 

repetition as textual operations, and also allows idioms 

to be composed from a set of leaf cells which are joined 

by simple abutment.

An algorithm is presented for the conversion of 

virtual grid circuits into mask level representations, 

and in so doing the notion of a quasi-virtual grid is 

introduced.



A new style of CMOS design, called "generalised CMOS", 

is introduced, which allows the design of circuits which 

could be fabricated in a wide range of CMOS technologies. 

An idea for a method of converting existing mask level 

circuits into other technologies, called "sticks 

extraction", is presented.

A prototype implementation of a system to support the 

capture of idioms using the VIRGIL language, and their 

subsequent instantiation including conversion to mask 

geometry is discussed, and examples of idioms which have 

been captured by this system are presented.
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1: INTRODUCTION 

1,1; The Need for Research into CAD for VLSI

A revolution is now underway which is comparable in 

scale and importance to the industrial revolution. This 

new revolution is based on the emerging field of 

Information Technology. One of the cornerstones of 

Information Technology is the provision of cheap, readily 

accessible computing power. It is only through the 

extensive use of Very Large Scale Integrated (VLSI) 

circuits that this power can be realised. The design of 

integrated circuits is then an area of immense interest, 

and will remain so for the forseeable future.

VLSI circuits are among the most complex systems 

designed by man. Mead [Mead 81] compares the design of 

an integrated circuit using the technology available by 

the end of this decade with the task of designing an 

urban density road network the size of an entire 

continent. Even with current leading edge technologies, 

managing the mere complexity of a VLSI circuit is the 

most pressing problem facing design engineers. Research 

into methods of handling this complexity is one of the 

most important tasks facing the academic and industrial 

communities. The provision of sophisticated Computer 

Aided Design (CAD) systems does and will continue to play 

a major role in the management of VLSI designs.



1.2; CAD in VLSI Design Capture

There are several rather distinct steps which can be 

identified in the design of VLSI circuits. These steps 

cannot be treated in complete isolation, rather each step 

should be considered in relation to the others.

Firstly, there is the specification of the intended 

function of the system to be designed. Next is the 

translation of this specification into a description of a 

physical realisation of that system. Next is the 

verification that the intended realisation performs the 

specified function. Finally there is device fabrication. 

The area of interest in this thesis is the translation of 

some specification into a description of a physical 

realisation, here called the design capture phase.

An integrated circuit is fabricated using a set of 

masks to define the patterns which will appear on the 

different physical layers of the circuit. The masks are 

in turn fabricated from some machine readable description 

of the geometric patterns which comprise them. Within 

the research and academic communities, a standard 

language for describing such patterns, GIF 2.0 [Mead 80], 

has now been established. The design capture phase may 

then be considered as the production of a GIF description 

of an 1C from some initial specification.
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The production of a set of mask descriptions is not a 

straightforward task, but rather it is a complicated and 

error prone process of multiple translations, each into a 

finer level of detail. A typical set of such 

translations might be as follows.

(1) Translation of a general product specification, 

which may be a rather imprecise natural language 

description, into a formal behavioural specification, 

such as a set of input / output relations.

(2) Design of an algorithm to implement the 

behavioural specification.

(3) Choice of a hardware architecture to support the 

algorithm, and thence production of a system block 

diagram.

(4) Mapping of the block diagram into a 

two-dimensional floorplan of a chip.

(5) Production of logic diagrams to implement each 

hardware block.

(6) Translation of logic circuits into a topological 

arrangement of transistors and their interconnections.
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(7) Translation of this topological arrangement into 

final mask geometries.

Although such a description of the design process is 

perhaps oversimplified, it does serve to illustrate the 

number of different levels at which descriptions of a 

design exist, and the number of translations, each into a 

finer level of detail, which must be done to produce the 

final mask geometries. Such translations can be 

performed manually, or with the aid of CAD tools. Since 

the final design description exists as a machine readable 

GIF description, the designer's intent must at some stage 

be captured by a suitable CAD system. Once captured, the 

CAD system may then perform one or more of the above 

translations to yield the final mask level description.

Ideally, it might seem that this design capture should 

occur at as high a level as possible, so as to reduce rhe 

number of error-prone translations which must be 

performed manually. However, none of the translations 

are by any means straightforward. While it is probably 

true that CAD tools exist to perform all of the 

translations in some form or other, none of these tools 

are yet able to match the flexibility and ultimate area 

efficiency of good manual design. At present, the major 

advantages of automatic translations are that they are 

far quicker and less likely to contain design errors, so 

reducing both the length and number of design iterations
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necessary. They are therefore most used in low and 

medium volume applications, where design cost is the 

major portion of overall device cost.

The tradeoffs which exist between automated and manual 

design are sufficiently varied for different applications 

that CAD tools which capture designs at many different 

levels are still used. As long as CAD tools do not 

perform as well as manual designers, such tradeoffs will 

continue to exist. One motivation for this thesis is to 

examine aspects of manual design and incorporate these 

into automated design systems, to make the latter more 

compe ti tive.

Current CAD Tools for Design Capture

A great variety of CAD tools for design capture 

already exist, and it is useful to examine some of these 

tools to place the work of this thesis in its correct 

perspective.

The most basic method of converting VLSI designs into 

machine readable form is by digitizing hard copy 

representations of mask geometries. Such a process is 

very error-prone, and is not viable for designs of VLSI 

complexi ty.
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A more direct method of capturing designs at the mask 

level is by the use of a graphics workstation. Here the 

designer is able to create and manipulate shapes 

representing the actual mask geometries using some form 

of graphics editor. Such workstations allow the 

definition of individual cells, and also the composition 

of these cells to produce complete chips.

Design capture by graphics workstations is now quite a 

mature field, with many commercial manufacturers offering 

such systems for sale [Werner 83]. Design at the mask 

level gives the designer maximum flexibility to decide on 

the final circuit geometries. However, the designs 

produced at this level are not constrained to represent 

valid circuit constructs, and the detection and 

correction of errors in the mask definitions is a 

time-consuming task. Often such errors are not detected 

until prototype devices are fabricated.

Design directly at the mask level also suffers from 

another major disadvantage. The individual cells which 

make up a design are described absolutely in terms of 

their mask geometries. Such cells are considered to be 

"hard", in the sense that their structure is fixed. A 

change in one cell will often require changes to be made 

in many adjoining cells.
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A solution to this problem is to design cells to be 

"soft", i.e. to be able to adapt automatically to their 

surroundings. The simplest method of achieving this is 

to describe cells, and indeed the whole chip, not as a 

set of mask geometries, but rather as a computer program 

which produces those geometries. If cells are carefully 

described in terms of their relationships with 

neighbouring cells, then when a change is made to one 

cell, and the program run again to produce a new design, 

all dependent cells will also have changed to match. 

Design by program also allows inherently programmable 

structures, such as PLA's to be easily described.

This type of 1C design language can be produced by 

adding a set of routines to draw mask shapes onto an 

existing programming language. Such a language is called 

an embedded 1C design language. This approach allows the 

full data and control structures of the original language 

to be used. Useful features can be added incrementally 

to the library of available routines to continually 

enrich and improve the language. An excellent example of 

such an approach is the language ILAP [Hughes 83], 

developed at Edinburgh University, and embedded in the 

programming language IMP [Robertson 83].

The amount of parameterisation which can be introduced 

into a design description using an embedded language is 

virtually unlimited, even to the extent of producing a
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silicon compiler [Bergmann 83]. However, the design is 

still being specified in terms of the final mask 

patterns, and the responsibility still rests with the 

designer to ensure that these patterns represent valid 

circuits.

An alternative to embedded 1C design languages is the 

use of a special purpose design language. In this case 

special syntactic structures are used to specify mask 

features. Such descriptions tend to be clearer and mere 

concise than embedded language descriptions, however 

special purpose languages are usually not as rich in 

control and data structures. In addition, they require 

special compilers to be written for them. Examples of 

such languages are SILT [Davis 82], and SCALE [Marshall 

84].

Some special purpose languages attempt to constrain 

the designer in the mask descriptions which can be 

described, in an attempt to reduce the possibility of 

design errors. Such languages are also able to provide 

special syntactic structures to aid in the composition of 

designs. SCALE [Marshall 84] is an example of such a 

language.

Many of the problems of mask level design can be 

attributed to the fact that a circuit is not constructed 

from arbitrary mask shapes, but rather from a set of
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items with real circuit significance, notably 

transistors, wires, contacts and bonding pads. It is 

therefore sensible to allow a designer to design in terms 

of these structural components [Buchanan 80], rather than 

the mask shapes which comprise them. Also it is usually 

not the absolute position of such items which is 

important, but rather their topological arrangement with 

respect to each other. Design at the level of a 

topological arrangement of structural components is 

popularly referred to as "sticks" design [Williams 773, 

or alternatively as symbolic design.

Since sticks designs are concerned primarily with the 

relative placement of components, and not their absolute 

positions, sticks cells are inherently "soft" cells. 

Thus the speed and convenience of graphical entry can te 

used without the disadvantages of "hard" cell 

descriptions. An example of a primarily graphics based 

sticks system is MULGA [Weste 8lb]. Sticks descriptions 

can also be language based. ABCD [Rosenberg 82] is an 

example of a sticks language.

Since sticks descriptions do not specify the exact 

positions of structural items, the design is no longer 

tied to a single fabrication process, with its 

accompanying design rules. Rather, the conversion froa 

sticks to mask geometries can incorporate these design 

rules, and so allow a single description to be fabricated
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using several different technologies.

At levels of abstraction above sticks level, the 

designer is removed from many of the topological details 

of the final design. The design system itself determines 

these details. This can be done in two ways - either the 

system restricts the designs to a limited class of 

topological arrangements which are built into the system, 

or the system deduces a suitable arrangement from 

scratch, using sophisticated algorithms to do so. The 

fundamental principles by which such arbitrary 

arrangements should be determined are not well 

understood, and in general systems to produce arbitrary 

layouts do not perform particularly well.

Design at the logic level, in terms of boolean logic 

function primitives, is at present mostly restricted to 

standard cell systems. Here the designer is presented 

with a library of cells to perform various logic 

functions, which can then be connected together to 

produce complete chips. DUMBO [Wolf 83a], is an example 

of a system which can lay out arbitrary logic functions.

At the highest level are systems which take 

behavioural descriptions of complete systems, and produce 

complete chips which implement the specified behaviour. 

At present, all such systems - called silicon compilers - 

produce chips only within a limited architectural

18



framework. Often such systems are also restricted in the 

class of behavioural descriptions they can translate. 

Examples of such systems are Bristle Blocks [Johannsen 

79], FIRST [Bergmann 83], Model [Gray 82], MacPitts 

[Siskind 82] and UNIT [Deas 83].

1.4; The Notion of Design "Idioms"

It has been shown that design capture can occur at any 

one of a large number of levels of abstraction. However 

all design capture mechanisms share a common feature - 

capture is achieved by the use of a fixed set of design 

primitives. These primitives vary from complete 

functional units in the case of a silicon compiler down 

to simple geometric shapes in the case of mask level 

design. Nonetheless, the design process remains one of 

composing elements from a set of available primitives 

together to give a system which exhibits the required 

behaviour.

One of the principle arguments in this thesis is that 

the composition of primitives to give solutions to 

specific problems relies heavily on the use of known 

constructs. These known constructs are called idioms, 

and the aspect of design concerned with their use is 

called idiomatic design. Idioms are in some sense the 

embodiment of a designer's experience.
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Examples of idioms abound in 1C design. At the mask 

level, structural primitives such as transistors and 

contacts could be considered as idioms constructed by 

overlaying particular shapes on particular layers. These 

idioms are so important that almost all mask level design 

systems include them in their set of design primitives.

It has already been explained that 1C design involves 

translations into finer and finer levels of detail. 

Idioms can be seen as known ways of making these 

translations. The Gate Array can be considered an idiom 

which maps a structural description in terms of 

interconnected transistors, onto a regular form of mask 

geometry. The PLA is an example of an idiom which maps 

from a set of boolean equations into mask geometries.

Idioms are equally valid whether the translations they 

represent are done manually or by CAD tools. In both 

cases, the larger the repertoire of idioms, the better the 

final design is likely to be. The aim of this thesis is 

then not just to investigate means of capturing designs 

but rather to investigate means of capturing idioms, so 

that these are available for use in many different 

designs.
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1.5: The Scope of this Thesia

As described earlier, idioms exist at many different 

levels in the 1C design process. For the purposes of 

this thesis, two areas of particular interest have been 

chosen.

The first of these is the investigation of idioms for 

the automatic production of complete integrated circuits 

- in other words, silicon compilers.

The second area of particular interest is in that of 

so-called "cell design". At this level, the designer 

produces the mask level layouts to implement individual 

logic functions. The division of a complete system into 

such cells is the final step in a top-down decomposition 

of a specification, and the design of these cells 

represents the first stage in a bottom-up implementation 

of that specification.

The study of idiomatic design at both these levels 

draws much from the ideas and principles developed in 

related fields of VLSI research. In chapter 2, the 

current state of research in these related areas will be 

examined, and some of the ways in which idiomatic design 

furthers many of these ideas will be noted.
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Idioms at the two levels of particular interest in 

this thesis - cell idioms and silicon compiler idioms - 

differ not only in the level of the design hierarchy at 

which they exist, but also in the manner in which such 

idioms may be captured.

A silicon compiler represents the capture of a single, 

quite complex idiom. In chapter 3, a suite of software, 

written by the author, to capture a single idiom for the 

production of signal processing chips will be examined. 

It will be shown that by the production of an integrated 

software environment to specifically support this one 

idiom, a quick and economical method for designing one 

class of systems can be developed.

At the leaf cell level, it is possible not just to 

capture single idioms, but to design a system for the 

capture and instantiation of a large number of useful 

idioms by the production of an appropriate idiomatic 

design system. The design and investigation of such a 

system forms the basis for much of the remainder of this 

thesis. Such an investigation is valuable for several 

reasons.

Firstly, this area of design already makes heavy use 

of idioms based on designer experience. There is 

therefore a need for a system which can formalise the 

collection and retrieval of such idioms.
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Secondly, the structure of idioms at this level is 

relatively straightforward. The idioms are in some sense 

recipes for producing mask level circuits to implement 

particular functions. Methods of describing mask level 

descriptions are well understood. Indeed, the design of 

mask level descriptions of 1C cells is one of the most 

intensively investigated areas of 1C design. This has 

the twin advantages that the investigation of idiom 

capture at this level can benefit from principles used in 

more traditional design systems, and also that any new 

ideas investigated for use in idiomatic design are likely 

to have application in the wider field of custom cell 

design.

Because of this possibility of the wider applicability 

of idiom capture techniques, it has been decided that, 

where possible, new and novel methods of design 

description will be investigated. In this way the work 

of this thesis can contribute not only to the novel field 

of idiomatic design, but can also explore ideas with 

applicability to more traditional design styles.

The most fundamental decision to be made in the 

production of the idiomatic design system is the way in 

which idioms are to be described. It is argued that 

design capture at the "sticks" level (i.e. joint 

structural and topological level) has overwhelming 

advantages over other levels of design description, such
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as mask level. Furthermore, it will be shown that a 

so-called "virtual grid" [Weste 8la] provides an 

attractive and elegant method of sticks level circuit 

description. To these ends, a novel sticks level circuit 

description language has been devised, and this is 

described in detail in chapter 4.

Since the ultimate output from the idiomatic design 

system is mask level descriptions, a translator from 

sticks to mask level is needed. Such "sticks compactors" 

are presently a topic of keen research interest. A 

sticks compactor which combines some well established 

ideas about compaction with some novel and original ideas 

is presented in chapter 5.

A prototype implementation of an idiomatic design 

system has been developed, and this is described in 

chapter 6, along with a discussion of some of the 

software engineering issues raised in the production of 

such a suite of software.

Several specific examples of cell idioms which have 

been entered into the idiomatic design system are 

described in chapter 7. Some conclusions about the work 

of the thesis, plus some possible areas of further 

research are presented in chapter 8.



2: THE CURRENT STATE OF THE ART

The work of this thesis draws from many fields of VLSI 

design, most of which remain areas of active research 

interest. In this chapter, it is intended to review the 

current state of research in these areas, and where 

possible relate them to the work of this thesis.

2.1: Structured VLSI Design

VLSI circuits differ from other methods of digital 

system implementation in several important ways.

The most fundamental feature of VLSI circuits is their 

overwhelming complexity [Mead 81]. Circuits containing 

over 200,000 transistors are now being designed and 

fabricated, and the number of devices which can be 

accommodated in a single integrated circuit is expected 

to continue to increase exponentially for the foreseeable 

future [Noyce 77], The prospect of designing circuits of 

such complexity is even more daunting when it is 

remembered that even one single design error may render 

an entire circuit useless.

Another fundamental feature of VLSI circuits is that 

interconnections often have an equal or greater influence 

on circuit size and performance than do functional 

elements such as transistors [Sutherland 77]. There is



an inherent wiring "cost" associated with communication 

within an integrated circuit which must be taken account 

of during design. It is therefore important to plan the 

way individual sections of the circuit will be composed 

together early in the design process. This includes both 

the relative positions of the various parts of a circuit 

("floorplanning") and the way in which connections will 

be made between these parts.

About 1970, the need for a more methodical approach to 

writing computer software became apparent as computer 

programs became increasingly complex. This need resulted 

in the development of "structured programming" techniques 

[Wirth 7lb] [Dijkstra 72] [Knuth 74] [NATO 76] [Alagic 

78] [Yourdan 78], which subsequently lead to the 

development of languages designed to support these 

techniques, such as Pascal [Wirth 71a] [Jensen 74], 

Modula [Wirth 77a] and ADA [DoD 78] [ADA 79].

The rapidly increasing complexity of VLSI circuits has 

resulted in the development of a similar, structured 

approach to VLSI design. The publication, in 1980, of a 

book by Mead and Conway [Mead 80], which presented a 

simple, structured approach to VLSI design, was an 

important force in bringing about the widespread 

acceptance of this new methodology.
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2t2; VLSI Design Languages and Programming Languages

The structured design approach to VLSI is often 

thought of as a "computer science" approach, since it 

borrows heavily from many ideas inherent in structured 

programming. Just as structured programming lead to the 

development of new programming languages, so structured 

VLSI design has lead to a great deal of research into new 

VLSI design languages.

However, although new programming languages were 

quickly developed and widely accepted as a result of the 

development of structured programming, the development of 

VLSI design languages to support structured VLSI design 

are still mostly in the research stage, and no single 

language has yet to gain any wide acceptance outside the 

institutions where it was developed.

This can largely be attributed to some fundamental 

differences between the nature of computer programs and 

VLSI circuits. The most important of these is that in 

computers, memory is arranged as a one dimensional set of 

locations, all of which are more or less equally 

accessible. This corresponds well to the one dimensional 

nature of computer program text.
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On the other hand, an 1C is a two dimensional 

structure, where only physically adjacent points are 

accessible from any position in the circuit. The 

placement of the elements in an integrated circuit can 

have a major effect on circuit size and performance, 

since interconnecting elements must be physically joined 

by a wire which consumes space and has an inherent 

propagation delay.

The best way to represent the two dimensional aspects 

of a VLSI circuit in an essentially one dimensional 

textual language is by no means certain, and some of the 

diversity of VLSI design languages can be attributed to 

this uncertainty. It is argued that the development cf 

VLSI design languages is fundamentally a more difficult 

problem than the development of programming languages, 

and in the following sections some of the features which 

affect the design of such languages are discussed.

Design Languages and Verification

Since the fabrication of a silicon chip is a lengthy 

and expensive process, and since chips cannot, in 

general, be modified after fabrication, it is essential 

that every effort be made to ensure that a design is 

correct before fabrication begins. This is called 

verification, and the ease with which design verification 

can be done is dependent on the design language used.
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At the highest level, design languages for use with 

silicon compilers provide a functional description of a 

circuit. This functional specification can be simulated 

directly to determine the performance of the complete 

system at a functional level. Examples of such languages 

are the input language for FIRST, described in chapter 3, 

and also the language MODEL [Gray 82], which has its own 

special simulator called EXERT.

Design languages at the mask level have traditionally 

tended to describe only the physical geometry of 

circuits. In order to simulate a circuit it is necessary 

to know the structure of a circuit. This can be done by 

either extracting the electrical circuit from the circuit 

layout using computationally expensive CAD software, or 

alternatively, producing a separate structural 

description of the circuit by hand. The latter 

alternative is particularly unattractive since there can 

be undetected inconsistencies between the two circuit 

descriptions.

Buchanan [Buchanan 80] developed a language, ICSYS, 

which allows joint structural and physical descriptions 

of a circuit. A consistent design representation is thus 

ensured without the need for an expensive circuit 

extraction from the physical geometry. The idiom 

description language VIRGIL, which has been developed as 

part of this thesis and which is described in chapter 4,



includes both structural and physical information by 

describing circuits in terms of structural primitives 

which are implicitly interconnected according to their 

relative positions.

At present, the only method readily available to show 

that a circuit meets some behavioural specification is by 

simulation. Using a joint structural and physical design 

description can help to ensure that the simulation 

adequately reflects the performance of the physical 

circuit, however simulation can only ever show that a 

circuit performs correctly for those combinations of 

input values which have been exercised.

If both the circuit and the desired behaviour can be 

described using some formal calculus then it may be 

possible to formally prove that a circuit meets its 

specification. Milne [Milne 83a] has designed such a 

language, called CIRCAL, and Gordon [Gordon 81] has 

investigated similar ideas.

Furthermore, if a silicon compiler could be designed 

which accepted the behavioural specification of a circuit 

as its input language, then if the same formal proof 

methods were used to prove that the transformation 

(between specification and circuit) that is implemented 

by the silicon compiler is correct, then iLL circuits 

designed using the compiler could be guaranteed to meet
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their specification [Milne 83b]. Such a breakthrough 

would eliminate the need for circuit simulation.

This formal approach is similar to that of formally 

proving computer programs correct, and the difficulties 

which have been encountered in the widespread application 

of program proving techniques indicates that the 

widespread application of similar techniques to VLSI 

circuit design may still be a long way in the future.

2.4: VLSI Design Languages & the Control of Complexity

One principle of structured VLSI design is to 

introduce sufficient hierarchy into a design that the 

amount of information which must be handled at any one 

time is not too great. It is obviously easier to adopt: 

such a hierarchical design style if this methodology is 

specifically supported and encouraged by the design 

language being used.

Even simple geometric design languages such as GIF 2.0 

[Mead 80] are capable of describing a design 

hierarchically by the definition of symbols, which may in 

turn be composed from previously defined symbols. Such 

symbols are very much like procedure calls in a high 

level programming language, except that no 

parameterisation of symbols is allowed.



More sophisticated languages such as SCALE [Buchanan 

82] not only support a design hierarchy, but also allow 

the parameterisable definition of cells. Languages which 

can describe designs parameterisably can describe not 

only circuits but also idioms. The language VIRGIL is 

specifically for the description of idioms and as such 

has special support for both a hierarchical design style 

and parameterisa tion.

It is argued that textual design languages, such as 

VIRGIL, provide a powerful tool, not only for controlling 

design complexity, but also for providing additional 

design information which can help ensure the correct 

composition of designs.

Graphical design systems usually only support the 

simple repetition of fixed cells as an aid to building 

large regular structures. Textual languages, since they 

can easily accommodate selection, repetition and 

parameterisation, can describe far more general 

structures. .Designing structures sufficiently 

generally that they can be used many times in one or more 

designs can be a valuable aid in reducing design 

complexity, and thus design time and design cost.

Graphical systems may facilitate the rapid entry of 

the physical aspects of a circuit design, but it has 

already been mentioned that it is also desirable to
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capture structural design information, rather than to 

attempt to infer structural details from the physical 

design.

Specifically, one often wants to name certain items in 

a design, such as ports for connection to other parts of 

the circuit, so that during design composition only like 

named ports are connected together. One might also like 

to include other useful information, such as whether 

outputs from one part of the circuit are restored or 

non-restored logic levels, and similarly whether inputs 

are designed to accept restored or non-restored levels. 

Textual languages allow the simple and natural 

specification and manipulation of such structural design 

information as well as the physical design details.

2.5: Composition of VLSI Designs

An essential feature in controlling design complexity 

is the use of hierarchy [Rowson 80]. Like SCALE, VIRGIL 

separates the design hierarchy into cells which contain 

only structural primitives, called leaf cells, and cells 

which contain only instances of other cells, called 

composition cells. This distinction helps to highlight 

what, in the author's opinion, is a fundamental 

difference between the tasks of designing leaf cells and 

of composing them together to give a complete circuit.
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This composition of cells to give larger cells is a 

fundamental and frequently performed operation in a 

hierarchically designed system. Researchers with close 

contacts with industry already report that the 

composition phase of design now takes far longer than 

leaf cell design [Smith 83]. As circuits become more and 

more complex, so the proportion of time spent composing 

cells together will tend to become increasingly greater. 

The design process is again greatly eased if the design 

language being used specifically supports composition as 

a fundamental operation.

As mentioned earlier, there are two main factors which 

influence a composition operation - the relative position 

of cells and the interconnections between them. In some 

cases, it is possible that the definition of one of these 

also defines the other. In GIF, for example, composition 

is achieved by placing instances of cells at specified 

physical positions, relative to a common origin. If, in 

placing the cells, geometry from one cell touches or 

overlaps geometry from another cell then connection is 

made between the cells.

In the case of GIF, there is no guarantee that placing 

cells so that they touch or overlap produces correct 

connections between them. Rather, the resulting layout 

must be examined either manually or automatically to 

determine if connections have been made correctly. Often



incorrect connections can go undetected until circuits 

have been fabricated.

A better approach is to ensure that connections are 

only made as intended by the designer by explicitly 

checking connections as cells are being composed. To do 

this, the points where connections may be made to a cell 

must be identified. These are variously called "ports" 

or "pins". Such information is specifically included in 

languages, such as VIRGIL, which support joint structural 

and physical design descriptions.

Next, the interconnections between ports of various 

cells must be specified. One method of doing this is ty 

explicitly naming pairs of ports which are to be joined - 

this approach is used in SCALE, for example.

An alternative approach is to implicitly connect all 

pairs of ports along edges of cells which are placed next 

to each other (i.e. "abutted"). This is the approach 

used in VIRGIL. To avoid the problems of incorrect 

connections, pairs of ports are checked before connection 

to ensure that they match both in type (such as 

polysilicon, metal or diffusion) and in name. If ports 

do not match, then the composition of the cells 

containing them fails. The only concession made to this 

rule is that cells may be "stretched" so that matching 

ports align.
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Other languages support more complex operations to 

assist in correctly joining ports together. In the 

proposed language SILVER [Rees 83], such operations are 

referred to as coercions. Examples of coercions would be 

the automatic inclusion of contacts between ports on 

different layers, and also the automatic insertion of 

routing networks between cells where ports cannot be 

joined by simply abutting the cells.

Other researchers [Lengauer 84] have also developed 

systems which apply such coercions to automatically aid 

the completion of cell composition operations.

Such sophisticated coercions are not included in 

VIRGIL, since it is argued that as VIRGIL is being used 

primarily to describe well known idioms, the nature of 

interconnections are already known and can be described 

precisely in the circuit description.

The only composition operation in VIRGIL is the 

abutting of cells together to produce larger cells. 

Relative placement of cells is achieved by specifying the 

way the cells are to be abutted. This contrasts with 

some other languages, such as ABCD [Rosenberg 82] where 

placement is done by instancing cells at specified 

positions. Part of the work of this thesis is to 

evaluate a system where all composition is in terms of 

simple abutment.
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2.»6; Methods of Circuit Description

Circuit description methods can be categorised both by 

the manner in which circuits are described (graphically 

or textually), and by the level at which they are 

described (mask level, sticks level, gate level etc.).

Some discussion of the various types of circuit 

description methods has already been presented in chapter 

1. Tools for design at the mask level are now reasonably 

mature and well understood. However, design styles at 

higher levels of abstraction are still an area of active 

research interest.

The major area of interest in this thesis is the 

capture of idioms at the cell level. It is desired, not 

only to capture the functional aspects of these idioms, 

but also the topological aspects of their layout. For 

this reason, design styles which do not allow topology to 

be captured, such as gate level descriptions, are not 

considered further here.

At mask level, the designer is free to create an 

arbitrary collection of shapes on the various layers. 

The object of most recently developed design styles is to 

somehow constrain this freedom so that the designer is 

less likely to introduce design errors, and also that -r.e
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amount of information needed to specify a design is 

reduced.

An early excursion into this field was the development 

of coarse-grid layout systems [Gibson 76] [Clary 80]. 

Here the designer could choose from a selection of 

rectangular "tiles" containing fragments of geometry, and 

by arranging these in a rectangular array, a complete 

design could be built up. Tiles would typically be about 

the size of the worst case tolerances in a given 

technology - say two or three lambda, in Mead-Conway 

terms. A major advantage of such systems is that tiles 

can be represented by different ASCII characters, 

allowing graphical design on normal alphanumeric 

terminals. Coarse grid systems, however, do not really 

provide any structural information about a circuit - they 

merely ease the task of describing its physical geometry.

A similar, alphanumeric based approach is the Bell 

Laboratories "gate matrix" design style [Lopez 80]. This 

imposes a structured design style on the user, which also 

allows the mapping of the alphanumeric grid of the 

circuit description onto a reasonably dense, variable 

pitch physical grid. Layouts exhibiting "hand-packed" 

densities are claimed, but this is most probably due to 

the structured design style rather than the design systea 

which implements it.
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Languages such as SCALE [Buchanan 82] and ICSYS 

[Buchanan 80] allow the specification of joint structural 

and physical design descriptions at the mask level.

In a sticks based system, the designer is removed from 

the physical details about widths and separations, and 

designs in terms of structural primitives such as 

transistors, wires and contacts. Sticks based systems 

are thus not only design rule free but they also 

implicitly provide a joint structural and physical design 

des cription.

There are two methods by which sticks level design can 

be described. One method is by so called gridless design 

systems [Williams 78] [Dunlop 80] [Lengauer 84]. Here 

the designer specifies the relative positions of 

components, and their interconnections. This information 

constitutes a set of "constraints" which any mask level 

equivalent of the sticks description must meet. Within 

these constraints, components may be moved around so as 

to achieve a compact layout.

The other method is to arrange components using a 

so-called "virtual grid" [Weste 8la] [Rosenberg 82]. 

Structural components are laid out on a two dimensional 

grid, but unlike coarse grid systems, the grid lines have 

no implicit correspondence to physical positions. 

Rather, it is only the relative positions of components
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which are implied by their positions on the grid which ia 

strictly important. Thus, relative positions can be 

easily expressed without the need to reduce a circuit to 

a set of positional inequalities which must be both 

determinate and consistent, as is the case in most 

gridless sticks systems.

It is argued that the virtual grid provides a very 

neat and elegant method of representing sticks level 

designs which captures joint structural and physical 

design information. For this reason a virtual grid based 

sticks level design language has been chosen for the 

description of idioms.

Some other sticks based systems are either extensions 

of existing languages such as Pascal [Lengauer 84] or 

Lisp [Pettengill 83], or else they can be accessed via a 

procedural interface from such a language [Weste 8lb]. 

Thus, such languages are capable of describing idioms as 

well as circuits. The VIRGIL language is not an 

extension of any other language, rather it is a special 

purpose language for the description of idioms. It is 

felt that the use of a special purpose language allows 

idioms to be described more naturally and more concisely 

than is possible with embedded languages. The manner in 

which parameterisable features have been added to VIRGIL 

is novel, and allows very general selection and 

repetition operations to be performed.
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2 t7 ;—Sticks Compaction

Once a sticks description has been entered into a 

design system, it must at some stage be converted into 

mask geometries - a process called "sticks compaction*.

Ideally, one would like the final mask arrangement to 

be optimally compact, but the determination of such a 

layout has been shown to be NP-complete with respect to 

the number of components being arranged [Schlag 83]. In 

most cases this is computationally too expensive, and so 

sub-optimal compactors are usually used.

The simplest method of compaction is so called 

1-dimensional compaction, used in several design systems 

[Williams 78], [Dunlop 80]. In this method, components 

are placed as closely together as possible in the 

x-direction, and then as closely together as possible in 

the y-direction.

For gridless sticks systems, such compactors have been 

shown to exhibit complexity 0(N»»1.5), where N is the 

number of circuit components [Zmszner 83]. Weste [Weste 

8!b] describes a very simple algorithm which performs 

1-dimensional compaction on a virtual grid with 

complexity 0(N). An algorithm based on this approach has 

been implemented in this thesis.



The sticks compactor developed in this thesis combines 

this algorithm with some novel ideas about methods of 

specifying process-specific design rules. Some 

interesting results about the way in which 

interconnections between components at mask level can be 

realised are also presented. Perhaps the most important 

results produced during the work on compaction are those 

to do with the technology independence of CMOS circuits, 

which is discussed more fully in section 2.8.

Sticks compaction is an area of quite active research 

interest, and investigation of especially efficient or 

clever sticks compactors is outside the scope of this 

thesis. Some of these developments are nonetheless worthy 

of mention, since they could be applied to the VIRGIL 

system if it were to be developed beyond the research 

stage.

Improvements to the basic algorithm which has been 

used for virtual grid compaction can provide a constant 

factor speed up to the computation time needed for 

compaction [Boyer 83]. A similar approach can be 

employed to allow for hierarchical sticks compaction, 

which could give very considerable improvements in 

computation time, especially for very regular structures 

[Rosenberg 8U]. Both these improvements are primarily to 

do with the time required for computing the compaction, 

and not with improving the density of the final mask



level description.

Such density improvements are the goal of so-called 

2-dimensional compaction algorithms. Sometimes, in order 

to place components closer to each other in one 

dimension, it is necessary to move them apart in the 

other dimension. 1-dimensional compactors cannot detect 

this. An algorithm for detecting these situations and 

dealing with them has been presented by Wolf et al [Wolf 

83b]. Similar optimisations can be made manually in the 

VIRGIL system, by the designer identifying and modifying 

critical areas of the circuit.

The compactor developed for this thesis is described 

in detail in chapter 5.

2.8: Technology Independent Design

One of the principles upon which the work of Mead and 

Conway [Mead 80] is founded is the production of a simple 

set of conservative geometric design rules for NMOS 

technologies, based on a single scalable constant, 

lambda. Designs based on these rules can be scaled 

simply by changing the value of lambda. It is estimated 

that these rules are sufficient to allow design down to 

about 1 micron feature sizes. Sequin [Sequin 82] has 

proposed a similar set of lambda based rules for CMOS 
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By their very nature, sticks designs are design rule 

free, and so are even more applicable to producing 

designs which will remain valid as critical dimensions 

shrink. Sticks designs can also accommodate variations 

between design rules for processes which do not conform 

to lambda based rules.

Design styles which allow a circuit to be implemented 

in several different processes within a general class Df 

fabrication technology - say one layer metal, one layer 

polysilicon NMOS with buried contacts - are here called 

"process independent". Often such styles are called 

"technology independent", but here that term is reserved 

for design styles which can describe designs that are 

valid in several different general classes of fabricatic^ 

technologies. Specifically, in section 5.6 of this 

thesis, a design style called "generalised CMOS" is 

introduced which allows circuit descriptions which can ze 

implemented in four different classes of CMOS 

technologies, viz. n-well, p-well, twin-well and SOI 

(silicon-on-insulator).

At sticks level, the only significant difference 

between the four CMOS technologies mentioned above is -ne 

location of substrate wells (or in SOI, island dopings). 

There are several structures which are specific to 

certain technologies, such as island-island contacts in 

SOI, but these can be avoided.



To design technology independent CMOS circuits, it 

would be best if wells were not included at all in the 

design description, but rather included automatically if 

they are needed in a particular technology. An 

alternative is to include both p-wells and n-wells, and 

them remove one or other if they are not needed in the 

particular technology. The former seems a better 

solution, since the designer is freed from the need to 

describe wells at all.

The ways in which wells are handled in various sticks 

systems are not often described in detail or even 

mentioned. Zinszner et al [Zinszner 83] describe a 

sticks system which can specifically handle wells, but ir 

seems that one must must explicitly include the specific 

well structure of the class of CMOS circuit being 

implemented - i.e. the design descriptions are process 

independent, not technology independent.

In chapter 5.6 of this thesis, an algorithm for 

automatically generating the specific well structure 

needed for a particular technology is presented.

2.9: Cell Libraries

At present, almost all integrated circuits are still 

custom designed. In some cases, a library of useful 

cells is maintained, but these are almost invariably



stored as mask geometries.

Recently, a library of such cells has been published 

[Newkirk 83]. Many of the cells described are part of 

larger parameterisable structures. Although the cells 

themselves are described in a standard language (GIF), 

the way in which they are composed to form these larger 

structures is described somewhat informally in the 

documentation. This is undoubtedly due to the lack of 

any standard procedural description language.

With the exception of a few very important and regular 

structures, such as counters, PLA's, ROM's and RAM's, 

design systems tend not to have a large repertoire of well 

known idioms available for instantiation. Partly, this 

is because with conventional, embedded mask level design 

languages, the capture and debugging of such idioms is a 

reasonably time consuming task.

The system presented in this thesis specifically 

supports and facilitates the concise description of 

idioms, and so will hopefully encourage the capture of a 

large number of useful structures.

: Silicon Compilers

Apart from the work on the capture of cell idioms, 

some work has been done in this thesis on the capture of



an idiom at the silicon compiler level.

Unlike cell design, silicon compilation is only a very 

new field, and there is little published work in this 

area. Mostly, this presents the results of compilers 

which have been developed to meet specific needs of 

particular projects.

The first silicon compiler was "Bristle Blocks" 

[Johannsen 79], used to produce datapath chips.

MacPitts [Siskind 82] implements digital systems as a 

datapath plus controller, and includes specific support 

for concurrent datapath operations where possible.

Model [Gray 82] is a silicon compiler which allows 

arbitrary logic descriptions to be implemented as gate 

arrays.

The FIRST silicon compiler, described in chapter 3» is 

a compiler for bit-serial digital signal processing 

systems, and is a typical example of the first generation 

of silicon compilers.



3r THE F.I.R.S.T. SILICON COMPILER

In this chapter, a specific idiom for the production 

of complete VLSI systems from high level specifications 

is examined. More especially, the software to support 

this "silicon compiler 11 is discussed.

The FIRST silicon compiler idiom was devised by Dr. 

Peter Denyer, while the library of primitive functional 

cells was produced by David Renshaw. The author was 

responsible for writing the software to support the 

silicon compiler, i.e. the software which captures the 

idiom.

The work in this chapter was presented, in a slightly 

different form, at the 3rd Caltech Conference on VLSI in 

March, 1983 [Bergmann 83].

3.1; Background to the FIRST Silicon Compiler

The FIRST silicon compiler (Fast Implementation of 

Real-time Signal Transforms) has been developed as a 

cooperative project between the departments of Electrical 

Engineering and Computer Science at the University of 

Edinburgh, in order to allow the rapid investigation and 

implementation of VLSI digital signal processing systems.



The FIRST system is built around an underlying 

bit-serial signal representation as proposed by Lyon 

[Lyon 81], and systems are implemented as hard-wired 

networks of pipelined bit-serial operators. A typical 

flow diagram for a system suitable for implementation by 

the FIRST compiler is shown in figure 3-1.

1.2: An Innovative Architecture

The hardware implementation of a FIRST circuit 

consists of a network of interconnected bit-serial 

operators, laid out according to a relatively fixed 

floorplan. Each bit-serial operator is implemented as a 

separate function block, which is, in turn, assembled 

from a library of hand-designed leaf cells. A typical 

leaf cell might comprise, say, a single bit-slice of a 

given function, and the complete operator would then be 

arranged, both logically and physically, as a linear 

systolic array of these individual bit-slices. In this 

way, the logical size and exact function of each function 

block can be easily varied by selecting different numbers 

and types of leaf cells. For example, figure 3-2 shows 

two possible configurations for a bit serial multiplier - 

one which uses an 8-bit coefficient and rounds the least 

significant product bit, and the other which uses a 

12-bit coefficient and truncates. (Note: the multiplier 

design uses 2-bit systolic array elements).
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The function blocks on a chip are arranged in two rows 

along either side of a single, central communications 

channel. Interconnections between function blocks and 

connections to bonding pads are all made within this 

channel. A typical floorplan is shown in figure 3-3. 

Some silicon area is wasted by this approach, since 

function blocks may differ in height. Typically, this 

area is about 20* of the total chip area, which, since it 

is not active area, has only a linear effect on good 

die/wafer yield.

Bonding pads are arranged more or less evenly around 

the chip periphery. After some thought it was decided to 

allow the pad order to be user controlled, in order to 

improve PCB level wiring management.

3.3L Software SuDoort for an Integrated Design Environment

The software support for the FIRST system consists of 

a small suite of programs which are able to provide the 

designer with a complete, specialised design environment. 

The structure of this environment is shown in figure 3- 1*, 

and each of the major components is described below.

.1: Language Compiler

The only design input available to the FIRST user is 

the FIRST high level language. This language provides a
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tructural description of the circuit under

ideration, in that it describes the function blocks 

(i.e. bit-serial operators) which are present in a 

circuit, and their interconnections. In addition, 

because the structural design primitives have been chosen 

to correspond to functional design primitives, it also 

serves as a de facto functional description of a circuit. 

The language is able to capture the designer's intent in 

a form which closely matches the designer's logical 

conception of a system. This is a major advantage over 

designing with proprietary parts, where the designer must 

translate from his or her logical conception of a system 

into a quite different structural realisation, often in 

terms of ill-matched and inconvenient functional units.

The FIRST language identifies four distinct data types 

needed to build a circuit description:

(1) OPERATORS, corresponding to arithmetic and logical 

functions.

(2) CONSTANTS, which are integer expressions 

corresponding to the values of parameterisable operator 

attributes.

(3) SIGNALS, corresponding to network nodes which 

carry sampled-signal data.
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(4) CONTROLS, corresponding to network nodes which 

carry timing information such as 'START OF WORD 1 and 

'START OF FRAME'.

A circuit is a collection of parameterised operators, 

each with a set of input and output ports which are 

connected to control or signal nodes. Interconnections 

between different operator ports are made implicitly by 

connecting several ports to the same node. Each operator 

invocation, corresponding to a line of the FIRST language 

description, contains the following information:

- the operator name.

- the values of any parameterisable attributes.

- ordered lists of the names of the nodes to which 

input/output ports are connected.

These different data types are syntactically separated 

in an operator invocation, which is in essence a 

mathematical expression in prefix notation. The general 

form is:

NAME [params] (ctls in -> ctls out) sigs in -> sigs out

e.g.

ADD [DELAY+2,0 ,0] (LSBTIME) A,B,CARRYIN -> SUM,CARRY?:T
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The FIRST language also allows the definition of 

common, parameterisable sub-circuits as user-defined 

operators. These operators may then be invoked any 

number of times in exactly the same manner as primitive 

operators. Operator calls are grouped into CHIP 

definitions, corresponding to physical integrated 

circuits. These CHIP definitions may then be grouped 

into SUBSYSTEM definitions, and finally into a single 

SYSTEM definition. Thus the design language spans the 

whole hierarchy from structural primitives, to complete 

multi-chip signal processing systems.

The language compiler reduces this hierarchy into a 

list of primitive operator invocations, with node names 

replaced by unique node numbers. The resultant 

description is called the FIRST intermediate format, and 

it is this description which is used by later phases of 

the design software.

A high level language design interface allows 

considerable error checking to be performed, e.g. type 

checking, undefined names, incorrect number of operator 

port connections etc. The relatively constricted syntax 

of the language helps to avoid many of these errors in 

the first place.

The form of the language has been derived from the 

structural design language for the MODEL gate-array
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design system [Gray 82]. The language compiler was built 

using the lexical and syntax analysis phases of an 

existing teaching compiler, SKIMP [Rees 80], with a 

custom "code generation" section added. The result is a 

very simple single pass, recursive descent compiler. 

Since FIRST circuit descriptions are typically only about 

one page in length, the simplicity and ease with which 

the compiler can be altered have far outweighed any 

considerations about run-time efficiency.

3 .3 .2 : Simulation

Two different simulators have been produced in the 

development of the FIRST system. The earlier simulator 

was clock driven. On each clock cycle, every operator in 

the system would be simulated in turn, using the preser.- 

binary values on its input nodes along with any stored 

internal state to produce new values on its output nodes 

at the next clock cycle. Once all operators had been so 

invoked, the clock would advance by one cycle, and the 

process repeated. External inputs to the simulator were 

entered via an external data file. Similarly the values 

on any nodes could be output to another data file for 

subsequent inspection.

The operation of this simulator was a direct 

algorithmic interpretation of the physical circuit - 23 

much so in fact that the functional definitions of
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operators could often be written such that each logic 

equation in the functional description would have a 

direct hardware counterpart in the physical realisation. 

This proved useful in determining if a proposed hardware 

realisation of an operator did, in fact, implement the 

desired function, and also gave a great deal of 

confidence that the simulator provided an accurate model 

of operator behaviour.

However, because this simulator was using a 

sequential, word oriented machine (i.e. the computer) to 

directly simulate the operation of a highly concurrent, 

bit-oriented architecture, the computational effort 

required for a thorough simulation of a large system WE.S 

unacceptable.

For this reason, another simulator has been designed 

which simulates a system at a higher level of 

abstraction. This simulator is event driven, and 

simulates the operation of individual operators on a word 

by word basis. The values on nodes, which in reality 

consist of serial bit streams, are modelled as discrete 

words of data occuring at discrete time intervals. When 

a new word of data reaches a node, an event is said to 

have occurred. Events are described in terms of the node 

to which they refer, the new value of that node as a 

result of the event, and the time at which the event 

occurs.
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The scheduling of events is handled by keeping all 

pending events on an event queue. All events due to 

occur at a given time are removed from the queue, and the 

values of the associated nodes are updated to reflect 

their new values. All operators which have any of these 

nodes as their inputs are activated. The new values 

which have arrived at their inputs will generate new 

values at their outputs. These new values are modelled 

as further events scheduled to occur at some later time, 

as determined by the latency of the particular operator.

In general, new values should arrive at all inputs of 

a particular operator at the same time. If not, this 

usually implies that the designer has made an error in 

matching the latency of the various signal paths leading 

to this operator. When such mismatching occurs, the 

simulator issues a warning, and continues the simulation. 

The operation of the simulator in such cases will not 

truly echo that of the physical system, which is itself 

unlikely to be a valid circuit. Once all such timing 

"bugs" have been eliminated (and this simulator provides 

a powerful tool for such debugging) the designer can have 

a high degree of confidence in the simulation results.

Inputs and outputs to the system are again via 

external data files. These data files are essentially 

lists of events relevant to the system input or output 

nodes. Since the system is being modelled at a higher
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level than in the clock driven simulator, the computing 

effort required for a given simulation has been reduced 

by about an order of magnitude.

A program also exists within the FIRST suite to 

convert the simulator's output into a form suitable for 

use with an automatic test pattern generation system.

3.3.3: Physical Layout

The task of the FIRST layout program is to produce a 

physical realisation of the system implied by a FIRST 

language description. This process proceeds in distinct 

phases, according to a strict layout strategy.

For every invocation of a predefined operator in a 

FIRST language description of a system, a corresponding 

function block appears in the physical layout. Each
c

function block is assembled from the appropriate leaf 

cells as described above. Once constructed, operator 

blocks are placed along "waterfronts" at the top and 

bottom edges of a central wiring channel. The layout 

program uses the criteria of minimum chip area to decide 

on a suitable arrangement of the blocks. The size of 

operator bounding boxes typically covers quite a range of 

sizes. The overall size of the chip, however, depends on 

four main factors:-
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- the height of the tallest block on the top row

- the height of the tallest block on the bottom row

- the width of the wider of the two rows

- the size of the wiring channel

The first three factors depend only on which blocks 

are placed on the top row, and which are placed on the 

bottom, and the placement algorithm first decides on this 

subdivision. Without rigorously attempting to explain 

the algorithm, the basic idea is to place all the tall 

blocks on the top row, and the short blocks on the bottom 

row, where the division between tall and short is chosen 

so that the total area is minimized. Perturbations are 

then made to this arrangement to reduce the area further 

by making the rows more equal in width. The size of -r.e 

wiring channel is considered constant during these 

calcula tions.

Next, the arrangement of the blocks within each row is 

decided. The width of the wiring channel, and hence 

total chip area will differ with different arrangements. 

Rather than use an algorithmic method for determining a 

good arrangement, the blocks are placed left to right 

within each row in the same relative order that they were 

invoked in the FIRST language description of the systea. 

Since a designer may be expected to write this 

description such that the general flow of information is 

from one operator to the next down the page, such a



strategy should lead to closely coupled operators being 

placed close together on the chip. Wiring channel area 

is only a relatively small part of the overall chip area, 

and so it was not considered worth the effort, both in

terms of programming time, and run time, to calculate any 

more optimal arrangement.

All routing between operators is done in the single 

central wiring channel. Inputs and outputs of all 

operators are available along the channel waterfront. A 

very simple two layer router is used, with metal lines 

running horizontally, and diffusion lines running 

vertically. The input and output ports of operators =re 

restricted to points on a fixed grid, with the grids f:r 

the two sides being offset. This ensures that 

connections can be made between any two ports with a 

single horizontal wire and two vertical wires, i.e. 

without dog-legs. Figure 3-5 shows a section of a 

typical wiring channel.

Finally bonding pads are arranged around the chip, snd 

ancillaries such as power, ground and a global two-phase 

non-overlapping clock are added.

The layout program has been written using an embedded 

1C design language called ILAP [Hughes 83], based on LA? 

[Locanthi 78], but using IMP as a host language. IM? 

[Robertson 83] is a high level Algol-like programming
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Rgure 3-5: Wiring Channel Section
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language used extensively within the Edinburgh computing 

environment.

3 rH ;   An Example System

As an illustrative example of a FIRST circuit, 

consider a chip to implement a simple four-stage, 

cascadable FIR filter section. A flow diagram of such a 

section is shown in figure 3-6. For illustrative 

purposes, consider it divided into two "TWO STAGE" 

sections as shown in figures 3-7 and 3-8. From these 

flow diagrams, an implementation in terms of FIRST 

operators could be derived to give the circuits shown in 

figures 3-9 and 3-10. Note that the final delay element 

in TWO STAGE has been made parame terisable in order ts 

allow the final TWO STAGE section on the chip to have 2 

slightly shorter inter-stage delay which compensates for 

the delay in going off-chip to the next stage in a 

multi-chip system. Also note that a network of timing 

(CONTROL) signals has been added in order to give 'start 

of word 1 information to the various bit-serial operators. 

These signals are shown in figures 3-9 and 3-10 as broken 

lines .

The FIRST language description of a single section is 

shown in figure 3-11, while the resultant layout is shown 

in figure 3-12. If such a chip was fabricated using a 5 

micron NM&S process, it would be approximately 5mm x = 33,
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Delay
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Rgure 3-6: Flow Diagram
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Rgure 3-7: TWOSTAGE sub-circuit

TWOSTAGE TWOSTAGE XOUT

ADD

Rgure 3-8: Simplified Row Diagram
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FIRST COMPILER - Copyright Denyer,Renshaw,Bergmann 1982 
SOURCE FILE: FIR

! Global Constants 
CONSTANT wlth=10,

obits =10, 
d = cbits/2, 
truncate = 0

! Data word length
! Coefficient word length
! Multiplier latency
! Type of multiplier

! Define simple forms of ADD and MULTIPLY

OPERATOR Adder (c) a,b -> sum
Add[1,0,0,0] (c) a,b,gnd -> sum,no

END
OPERATOR Multiplier (c) a,b -> p
Multiply[truncate,obits,0,0] (c->nc) a,b

END
-> p,nc

! Two stages of an FIR filter, n=2nd stage delay

a, c1,c2 -> aout, bOPERATOR TwoStage[n] (xctl,pctl) 
SIGNAL d,p1,p2 
BitdelayCwlth] a -> d 
Bitdelay[n] d -> aout 
Multiplier (xctl) a,c1 -> p1 
Multiplier (xctl) d,c2 -> p2 
Adder (pctl) p1,p2 -> b

END

! Define the whole chip , including pad ordering 
CHIP FIR (xxctl -> yyctl) xx , d1 , d2 ,d3 , d4 -> xxout,yy

CONTROL pctl, actl, xctl, yctl
SIGNAL xmid,a2,a3,x,y,c1 ,c2,c3,c4,xout 

!!!!Specify order of bonding pads
PADORDER VDD,xx,xxout,yy,GND,

xxctl, yyctl , CLOCK, d1 ,d2,d3,d4 
! I! (Equate external bonding pads to internal nodes

Padin (xxctl->xctl) xx , d1 , d2 , d3 , d4 -> x, d , c2 , c3
Padout (yctl -> yyctl) xout,y -> xxout,yy 

IMISpecify operators to be included
TwoStage[wlth] (xctl, pctl) x,c1,c2 -> xmid,a2
TwoStage[ wlth-2] (xctl, pctl) xmid,c3,c4 -> xout,a3
Adder (actl) a2 , a3 -> y 
CbitdelayCd] (xctl -> pctl) 
Cbitdelay[1] (pctl -> actl) 
CbitdelayC 1] (actl -> yctl)

END
ENDOFPROGRAM

Figure 3-11: FIR Filter Listing



Rgure 3-12: FIR RIter Layout
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and have a clock speed of 8 MHz, corresponding to a 

sample rate for 10 bit samples of 800 kHz.

At present, test chips are being fabricated to test 

and debug the primitive operator cells, which have been 

designed using traditional custom design methods. FIRST 

has been used to design and simulate several different 

systems, but none of these have yet been fabricated, 

mostly due to delays in debugging primitive operator 

eelIs.

.5: Conclusions

The FIRST system is not simply an automatic layout 

system, rather it provides a complete design environment 

for bit-serial signal processing systems. It allows 

designers with no previous 1C design experience to 

exploit silicon as an implementation medium.

A simple, high level structural design language 

provides a consistent circuit description for both 

simulation and layout. Complete signal processing 

systems can be functionally simulated both quickly and 

accurately, encouraging designers to explore and compare 

a wide variety of possible circuit solutions without the 

need to produce hardware prototypes. When a design has 

been thoroughly simulated, the same structural 

description can be used to produce a hardware realisation
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which will exactly match the simulated performance. This 

physical layout process neither requires nor allows human 

intervention, precluding the possibility of 

designer-introduced layout errors.

By using an innovative architectural floorplan, this 

automatic and error-free silicon compilation can be 

achieved at the expense of a relatively small increase in 

overall silicon area, while at the same time reducing 

design time and cost by at least an order of magnitude in 

comparison with conventional custom 1C design.

All of the FIRST software has been specifically 

designed for the capture of this one idiom. The savings 

in design cost for suitable systems is more than enough 

to justify this effort. The advantages of capturing just 

this single idiom provide strong motivation for the 

development of a more general system for the capture of a 

whole range of idioms. The design and investigation of 

such a system forms the basis for the remainder of the 

work of this thesis.
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U: AN IDIOM DESCRIPTION LANGUAGE

4.1 The Virtual Grid

Integrated circuits are usually designed in terms of 

the mask layers from which they are fabricated. From 

combinations of these mask layers, the basic circuit 

primitives, such as transistors, wires and contacts, are 

constructed. A structural design system allows the 

designer to specify a circuit entirely in terms of these 

circuit primitives, rather than in terms of the mask 

layers used to build the primitives. A structural design 

system may also allow the designer to specify the 

relative topological arrangement of design primitives, in 

which case it is referred to as a "sticks" system 

[Williams 77]. Figure 4-1 shows inverters represented at 

both the mask level and sticks level.

Mask level descriptions can be described as sets of 

polygons existing on the various mask layers. The 

polygons can be defined in terms of the physical 

coordinates of their vertices. A sticks based 

representation, however, does not impose any physical 

coordinates on the elements within it. Rather it only 

imposes relative spatial orderings on components, and 

also specifies connections between components. An 

elegant method of describing these orderings and 

connections is the virtual grid, as reported by Weste
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(a) Mask Level

(b) Sticks Level

Rgure 4—1: Equivalent Representations of an Inverter
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[Weste 8la].

A virtual grid consists of a two-dimensional grid of 

coordinate points. Circuit primitives are then placed on 

this grid - transistors and contacts are placed at grid 

points, and wires are placed on the line segments joining 

grid points. Only wires parallel to coordinate axes are 

allowed in the type of virtual grid considered in this 

thesis. The relative ordering of components on a virtual 

grid is implied by the relative ordering of the virtual 

grid points on or between which these components lie.

The actual coordinates of grid points are not 

significant, it is only the relative topological 

orderings which they impose on circuit components which 

are important. For example, figures 4-2(a), 4-2(b) a r.d 

even 4-2(c) describe topologically similar circuits. In 

practical virtual grid systems use can be made of the 

extra twists and bends in the circuit in figure 4-2(c). 

Such bends can be used by the designer to convey advice 

such as: "When this circuit is converted to mask level 

descriptions, a better layout might be achieved by 

including these bends in these wires". The ability to 

include "hints" like these is a useful feature in a 

design sytem, since it allows the designer to aid the 

efficiency but not hinder the correctness of automated 

translation between different levels of representation.
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Rgure 4—2: Topologically Similar Circuits
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One of the most important features of a virtual grid 

representation is that it has a natural textual 

equivalent. The virtual grid coordinates allow the 

position of items in this type of sticks level 

description to be easily specified. The ability to 

describe circuits textually is considered to be an 

important aid in controlling the overwhelming complexity 

of VLSI circuits, as has already been mentioned in section 

2.4. Textual descriptions allow features such as 

selection, repetition and parameterisation to be added to 

a design description. In addition, textual based 

representations can use the same editing and filing 

facilities as are used for ordinary computer programs - 

in fact most of their advantages are related to their 

similarity to computer source ciode , and many ideas can -e 

borrowed from the lessons learned in structured 

programming.

A textual, virtual grid based system has then been 

chosen as a suitable base on which to build an idiomatic 

design system. As the description of this system is 

presented, more advantages of using such a system will 

become apparent.

Certain conventions have been adopted throughout this 

thesis for the graphical representation of both mask 

level and virtual grid circuits. The following colours 

are used to represent the various mask layers and
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corresponding virtual grid features:

Red

Blue

Green

Black

Dotted Red

- Polysilicon

- Metal

- Diffusion

- Contact

- Implant

Dotted Black - Buried Contact 

Dotted Green - Substrate Contact

Chained Red - N well

Chained Green - P well

Virtual grid devices are described graphically by 

symbols, which should be largely self explanatory. Ports 

are shown as diamond shapes of the appropriate colour. 

Different types of transistors are labelled with the 

following letters:

N - n channel

P - p channel

L - load device

D - depletion mode

Idioms and Instantiations

An idiom is not merely a useful circuit, but rather it 

is the manner in which a whole range of circuits can be 

generated. Each of the individual circuits which is
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embraced by an idiom is called an instantiation of that 

idiom.

It is important to be aware of the fundamental 

differences between idioms and their instantiations. An 

instantiation corresponds to a single circuit, which in 

this thesis will be described using a virtual grid. Such 

a circuit could be graphically displayed, or equally 

well, described textually. However, an idiom is a recipe 

for generating such circuits, and the parameterisable 

features of an idiom do not lend themselves to simple 

graphical representation. For this reason, a purely 

textual notation has been developed for the description 

of idioms.

This has been done by first developing a language, 

called VG, for the description of virtual grid circuits, 

and then adding additional features to produce another 

language, called VIRGIL, for the description of idioms.

U.^r VG - A Virtual Grid Circuit Description Language

In designing a language to capture circuits, it was 

recognised that even relatively simple circuits are often 

best described hierarchically. Typically, a circuit is 

decomposed into a number of simple cells, which are then 

individually designed and composed together to give the 

complete circuit. The simple cells are called leaf
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cells, because they are the leaf nodes in the tree 

representing the hierarchical decomposition of the 

circuit. Cells which are generated by the composition of 

smaller cells are called composition cells, and 

correspond to non-leaf nodes in the tree.

The reason for using such a hierachical approach is to 

reduce the complexity of the design task. People have a 

natural limit on the amount of data which can be 

simultaneously comprehended, and it is by keeping within 

this limit that design systems are best utilised by huaan 

designers. By representing a circuit hierarchically, the 

amount of information which must be handled at any one 

time is controlled. Such an approach has long been 

recognised in the design of computer software, and forns 

the basis of structured programming.

VG supports such a design hierarchy, by describing 

designs in terms of leaf cells and composition cells. 

Leaf cells describe a set of primitive structural 

components which are laid out on a virtual grid. 

Composition cells describe the way in which leaf cells 

are composed together to form complete circuits. There 

are no mixed cells which contain both structural 

primitives and instances of other cells. Such a 

restriction serves to highlight the differences between 

the cell design and cell composition phases of circuit 

design.
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HtStl Notes About the Language Description

The following is not meant to be a rigorous definition 

of the VG language. The language is meant to be, 

initially at least, a private research tool, rather than 

a generally available facility. What follows is more in 

the nature of a description of the features of the 

language, rather than a definition of it.

In general, the language shares many of the syntactic 

features of high level languages. Where necessary, the 

syntax of parts of the language will be described using 

the conventions proposed by Wirth [Wirth 77b]. 

Basically, these are as follows.

Productions are of the form:

phrase = definition 

Repetition, zero or more times, is denoted by braces

{..}.

Parts of a definition enclosed in square brackets [..]

are optional.

The f j ' character is used for selection.

Parentheses (. . ) are used merely for grouping.

Terminal symbols, i.e literals, are enclosed in double

quote s.
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4.3.2 Alohabet

The language is written using the ASCII charcter set. 

Lower case letters are considered equivalent to their 

upper case counterparts. Spaces may be inserted anywhere 

except within identifiers and numerals (see below). 

Comments may be placed anywhere except within identifiers 

and numerals, and may consist of any text, except '}'» 

enclosed within braces {..}.

.3.3 Identifiers

Identifiers consist of any combination of letters a-i 

digits, beginning with a letter. Identifiers may 

optionally include a single '.' which divides the 

identifier into a root (before the dot) and an extension 

(after the dot). Examples of legal identifiers are:

FRED

AReallyLongAndCom plica ted. One

-9p

but not:

4Minute.Warning 

Nimble Toadstool

{Contains illegal charcter '#'} 

(Starts with a digit) 

(Spaces not allowed}
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4.3.4 Reaerved Words

The following words have special significance within 

the language, and are not available for use as 

identifiers.

IF THEN

BOOLEAN

ELSE

ARRAY

LEAF COMPOSITION

DWIRE PWIRE NWIRE

PSUB NSUB PPORT

FOR

OF

REPEAT TRUE FALSE

INTEGER INX

CELL END

MWIRE DM

NPORT DPORT

INY

BURIED BUTTIK-3

PM

MPORT

NM

. "3 . 5 : Numerals and Expressions

Numerals consist of any combination of digits, and are 

interpreted as base ten non-negative integers. Negative 

integers are written as expressions.

Expressions may yield either boolean (true or false) 

values or integer values. They conform to the normal 

rules of arithmetic, including the use of parentheses to 

alter the order of evaluation. The following operators 

are available in decreasing order of precedence; 

operators on same line have equal precedence.
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Integer Operators: Take integer operands

Yield integer result 

Unary -

Relational Operators: Take boolean or integer operands

Yield boolean result 

>, <, >=, <=, =, # (not equal)

Boolean Operators: Take boolean operands

Yield boolean result 

NOT

AND 

OR

Integer operands may be either numerals or integer 

valued expressions. Boolean operands may be one of the 

predefined boolean constants TRUE and FALSE (where 

TRUE>FALSE) or boolean valued expressions.

It is a general feature of the language that 

expressions may be used whenever a value is required.
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4.3.6: Statements

A VG language description consists of a number of 

statements. Statements are written one to a line. 

Statements may be continued onto the next line by ending 

the current line with a hyphen '-', which is otherwise 

ignored.

4.4: VG Leaf Cells

Leaf cells are constructed from a set of structural 

components positioned on a virtual grid.

4.4.1 Leaf Cell Header and Terminator

In order to define a leaf cell, it is first necessary 

to define the virtual grid on which it is based. This is 

done by beginning each leaf cell with a header statement 

of the form:-

header = "LEAF" "CELL" identifier "=" bounds 

where

bounds = n (" llx ", " lly ", n urx n ," ury ")"

identifier is the name of the cell

llx, lly, urx, ury are all integer expressions whi^h 

give, in order, the X and Y coordinates of the lower left 

corner of the virtual grid and the X and Y coordinates of



the upper right corner.

The last statement in a leaf cell description is

terminator = "END" 

e.g., the statements

Leaf Cell TEST = (0,0,2,3)

End

would enclose the statements defining a leaf cell called 

TEST, with components laid out on the virtual grid shown 

in figure 4-3.

4.4.2: Leaf Cell Component Specification

Virtual grid circuits are specified in terms of their 

structural components, and so a suitable set of such 

components must be chosen. The components chosen will 

depend on the underlying fabrication technology which 

will be used. For the purposes of this thesis, it was 

decided to choose a set of primitives which would allow 

the description of NMOS and CMOS digital circuits. It 

was also decided to restrict the system to technologies 

with a single layer of metal and a single layer of 

polysilicon.
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Rgure 4-3: A Typical Virtual Grid
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The primitives which are available for use in VG 

descriptions are identified by individual names. The 

primitives may be divided into four classes, as detailed 

below.

Wires

Wires are used for interconnection between other 

components. Wires are placed between grid points, and 

they automatically connect components on those grid 

points. The exact manner of this connection is described 

later. Four types of wire are available:

MWIRE : a wire on the metal layer

PWIRE : a wire on the polysilicon layer

NWIRE : a wire on the n-type diffusion layer

DWIRE : a wire on the p-type diffusion layer

Contacts

Contacts allow wires of different types to be 

connected to each other, and allow metal wires to be 

connected to the silicon substrate. The following types 

of contact are available:

PM : PWIRE to MWIRE

DM : DWIRE to MWIRE

NM : NWIRE to MWIRE

BURIED: NWIRE to PWIRE

BUTTING: NWIRE to PWIRE and MWIRE
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PSUB : MWIRE to p-type substrate 

NSUB : MWIRE to n-type substrate

Translator^

The following types of transistor are available:

PTYPE : p-channel enhancement-mode transistor 

NTYPE : n-channel enhancement-mode transistor 

DEPLETION: n-channel depletion-mode transistor 

LOAD: n-channel depletion-mode transistor with common 

gate-source connection, used as NMOS "pullup"

Ports

Ports are virtual grid items which do not have a 

physical realisation. Ports are used to identify where 

external connections may be made to a cell. Only wires 

which are connected to ports may extend to the edge of a 

leaf cell. There are four types of ports, corresponding 

to the four types of wires:

MPORT: for MWIRE

PPORT: for PWIRE

NPORT: for NWIRE

DPORT: for DWIRE

Items are placed on the virtual grid by specifying the

X and Y coordinates of their position. Coordinate pairs

are written as integer expressions enclosed in
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parentheses and separated by a comma. In practice, the 

expressions are almost invariably simple integer values

Ports, contacts and transistors are specified by 

statements of the form:

statement = item_name n § n coordinate 

e. g.

NPORT 0 (0,1) 

PTYPE § (2,4)

The simplest form of wire specification is for wires 

which run parallel to the X or Y axis, and between 

adjacent grid points:

statement = wire_name "§" coordinate "->" coordinate 

e.g.

NWIRE e (0,1) -> (1,1)

The same form of statement is used for wires which 

extend in the same direction for more than one grid unit, 

e.g.

NWIRE § (0,1) -> (2,1) 

which is exactly equivalent to the two statements:

NWIRE § (0,1) -> (1,1)

NWIRE 6 (1,1) -> (2,1)

Wires may be specified with more complicated paths. 

Such wires are described by breaking the path into a
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series of sections parallel to one or other of the 

coordinate axes. This more general form of wire 

statement is: 

statement = wire_name n @" coordinate "->" coordinate

{ «->" coordinate" } 

where a statement of the form

wire § (X1,Y1) -> (X2,Y2) -> (X3,Y3) -> .. -> (Xn,Yn) 

is equivalent to

wire § (X1,Y1) -> (X2,Y2) 

wire @ (X2,Y2) -> (X3,Y3)

wire § (Xm,Ym) -> (Xn,Yn)

e.g. the path shown in figure 4-4 could be described 

by any of the following sets of statements:

NWIRE § (0,1) -> (2,1) -> (2,2) -> (4,2) 

or

NWIRE 0 (4,2) -> (2,2) -> (2,1) -> (0,1) 

or

NWIRE 6 (0,1) -> (1,1) -> (2,1) -> (2,2)

NWIRE § (4,2) -> (2,2)

Labels can be added to statements specifying component 

positions, and take the form:

statement = identifier ": n rest of statement

e.g.

input : nport 0 (0,1)
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WIRE

NWIRE ® (0,1) -> (2,1) -> (2,2) -> (4,2)

Rgure 4-4: A Virtual Grid Wire
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The label can subsequently be used to refer to the 

grid item with which it has been associated, and also to 

refer to the coordinates of that item. In the case of 

wires, the label refers to the first coordinate in the 

wire path. Labels can then be used instead of explicit 

coordinates in subsequent statements, e.g. 

Given the statements:

Contactl: nm 0 (3,2)

Contact2: nm § (3,4) 

then the statement:

Mwire @ contact! -> contact2 

could be used instead of:

Mwire £ (3,2) -> (3,4)

Forward references to labels are not allowed in the 

current implementation.

Coordinates can be specified relative to some other 

coordinate. Such relative coordinates are specified by

relative_coordinate = base n + n offset 

where both base and offset may be labels or explicit 

coordinate pairs.

A relative coordinate:

(basex,basey) + (offsetx,offsety) 

is equivalent to the coordinate

(basex+offsetx, basey+offsety)
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The circuit in figure 4-5 could thus be described by 

the following statements: 

point!: nm § (1,2) 

point2: nm @ pointl + (1,-1) 

mwire § point! -> point! + (1,0) -> point2

Such constructs enable related components to have 

their absolute position within the grid determined by the 

absolute position of some single base point (in the above 

case 'point!').

It is often necessary to have some control over the 

physical properties of various components, most notably 

the relative lengths and widths of transistor channels. 

In this language, values may be specified for various 

physical attributes by adding a list of parameter 

assignments to the name of a grid item. This has the 

form:

item = ltem_name [ "( n parameter_list n ) n ]

where

parameter_list = assignment { ", w assignment }

and

assignment = identifier "=" expression

e.g.

ntype(1=2,w=3)

Each assignment has the effect of giving the value of 

the expression to the attribute associated with the
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RELATED

0123

Rgure 4-5: A Group of Related Components
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identifier. If parameters are not specified, they 

implicitly take on default values. The available 

parameters are:

(a) For all types of transistor 

w : channel width 

1 : channel length

Channel sizes are all in multiples of the minimum 

size, default values for both parameters are 1, except in 

the case of load transistors where the default for 1 is 

4.

(b) For load transistors

Connections to load transistors cannot always be mie 

unambiguously, since the source and drain connections 

appear on the same layer, and are not interchangable. 1i 

is therefore sometimes necessary to specify the direction 

in which the source connection will be made. This is 

done by specifying a value for the parameter SOR. 

Possible values are 0,1,2,3 and these have the effect of 

placing the source connection facing east, north, west, 

south respectively. Component orientation is discussed 

more fully in section 4.7.
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(c) For MWIRE

It is sometimes necessary to make metal wires wider 

than the minimum possible width. This can be done by 

specifying a value for the parameter 'W. The value of 

the parameter is the width in integral multiples of the 

minimum width. The default value is 1.

Users might also wish to make wires on other layers 

wider than the minimum possible width. The prototype 

implementation of VIRGIL currently only supports the 

specification of widths for metal wires but such 

specification could easily be extended to other wires if 

nece ssary.

An Example Leaf Cell Description

Figure 4-6(a) shows a typical VG leaf cell 

description, in this case a shift register cell. Figure 

M-6(b) shows a graphical representation of the same cell

4^!i: VG Composition Cells

By a series of successive compositions, a collection 

of leaf cells can be arranged so as to produce a complete 

circuit. Composition cells define the nature of these 

composi tions.



Leaf Cell SHIFT = (0,0,4,4)
{A single stage of a shift register}

{Ground Lines} 
gnd.e: mport 0 (4,0) 
gnd.w: mport 0 (0,0) 
gnd.s: nport § (1,0) 
mwire § gnd.e -> gnd.w

{Power Lines} 
vdd.w: mport § (0,4) 
vdd.e: mport 0 (4,4) 
vdd.n: nport @ (1,4) 
mwire § vdd.e -> vdd.w

{Inverter}
nm § vdd.n
nm @ gnd.s
nwire @ vdd.n -> gnd.s
load § vdd.n + (0 ,- 1)
pulldown: ntype(w=2) @ gnd.s + (0,1)

{Input signal} 
in: pport @ (0,1) 
pwire @ in -> pulldown

{Clock Line} 
clock.n: pport @ (2,4) 
clock.s: pport @ (2,0) 
pwire @ clock.n -> clock.s

{Pass transistor and output signal}
pass: ntype § (2,2)
contact: buried @ (3»1)
out: pport § (4,1)
nwire e (1,2) -> pass -> (3,2) -> contact
pwire § contact -> out

END

Rgure 4-6(a): Textual Representation of Shift Cell
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SHIFT
4 .A, VDD.W r-i VDD.N ^ CLOCK.N VDD.E

PASS

IN Jk PULLDO\ CONTACT

6ND.W pi. GND.S 1 CLOCK.S

OUT

GND.E

1

Figure 4-6(b): Graphical Representation of Shift Cell
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4,5t1; Header and Terminator Statements

All the composition operations needed to produce a 

complete circuit are grouped together in a COMPOSITION 

CELL. Such a cell is delimited by a header of the form

header = "COMPOSITION" "CELL" identifier 

and by a terminator of the form:

terminator = "END"

4.5.2: Basic Composition Operators

The simplest form of cell composition is by abutment, 

i.e. by placing cells next to each other, so that 

matching connections line up. All composition of cells 

in VG is done by abutment. Such abutment may be done in 

the vertical or horizontal direction as shown in figures 

4-7 and 4-8.

When cells are joined by abutment, they combine to 

give a single larger cell. Abutment of more than two 

cells can be considered as a series of simple two-cell 

abutments. The composition constructs in the VG language 

supports composition by abutment through the use of two 

composition operators:

» : compose by horizontal abutment 

* * : compose by vertical abutment

99



V

1
1

1
! 2
1

1

3
1

NEWCELL « » CELL1 » CELL2 » CELL3

Rgure 4-7: Horizontal Abutment

NEWCELL = — CELL1 ~~ CELL2

Rgure 4-8: Vertical Abutment

100



The form of these composition statements is:

statement = identifier " = " cell__call { cell_call } 

where

cell_call = operator cell_name 

operator = "»" j «**«

Such a statement has the effect of creating a new 

cell, called an intermediate cell, with its name given by 

the identifier, which is composed of the cells, 

identified by cell_name, abutted left to right in the 

order given, for horizontal composition, or bottom to top 

for vertical composition.

Thus the statement:

Newcell = » cell! » cel!2 » cellS 

would give the composition shown in figure 4-7.

Similarly, a vertical composition statement :

Newcell = " celH " cel!2 

would give the composition shown in figure 4-8.

Multiple instances of a single cell can be composed 

together, e.g.

OneBitShift = » SHIFT » SHIFT

Previously constructed intermediate cells, as well as 

leaf cells, can be composed together to give new 

intermediate cells. Leaf cells and intermediate cells
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may be mixed in the same composition statement. Vertical 

and horizontal composition cannot be mixed within a 

single statement.

The definition of a complete circuit then consists of 

a number of LEAF CELL definitions and a single 

COMPOSITION CELL definition. The various levels of 

hierarchy in the composition of cells to produce a 

complete circuit are supported by the various 

intermediate cells defined within the composition cell. 

The last intermediate cell defined in the composition 

cell is taken to be the definition of the complete 

circuit.

The composition of cells shown in figure 4-9 would be 

defined by the following composition cell: 

Composition Cell Example 

cel!6 = » celll » celll 

cell? = ~" cell6 ~ cel!2 "" cel!2 

cellS = » cells » cell? 

cel!9 = ~~ cellS " cell4 

example = » cel!9 » cel!5 

End

Note that it is not possible to describe a composition 

of cells such as that in figure 4-10 as a set of vertical 

and horizontal compositions, however such compositions 

would rarely be encountered in practice.
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Figure 4—9: A Series of Successive Compositions
to Produce a Complete Circuit
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Rgure 4-10: A Composition of Cells
not Descnbable In VG
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^t^; Rotation and Reflection

It is often desirable to be able to rotate or reflect 

cells before composing them. This is supported by a more 

general form of composition statement:

statement = identifier "= n cell_call {cell_call} 

where

cell__call = operator cell_name [rotation] [reflection]

operator = »»» j """

rotation = "§" integer_expression

reflection = "INX" j "INY"

The amount of rotation, if any, is in integral 

multiples of 90 degrees anticlockwise. Thus '§ 3' wo-Id 

correspond to 270 degrees anticlockwise rotation. 

Reflection, which is always done after any rotation, nay 

either be about the X axis (INX) or about the Y axis 

(INY). Figure 4-11 shows some examples of rotation and 

relection of a single cell called CELLA.

A composition statement corresponding to the 

arrangement (of the same CELLA) shown in figure 4-12 

would be:
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cello cello

cello 03 cello INX

cello INY cello 03 INX

Rgure 4—11: Examples of Rotation and Reflection
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cellb = » cello

cellc = » cellb » cellb INY

square = ^^ cellc INX — cellc

Rgure 4-12: Composition of Rotated and Reflected Cells

107



Composition Cell Square 

cellb = » cella § 1 

cello = » cellb » cellb INY 

square = ~~ cello INX "~ cello

End

4.5.U: Port Hiding & Renaming

The most important task in composing cells together is 

to ensure that connections are made correctly between the 

cells. The points where connections may be made to leaf 

cells have already been explicitly defined by the 

definition of PORTS. It is by matching ports that 

correct connections between cells are made. For correct 

matching, the ports must match both in type and position. 

Since components have been laid out on a virtual grid, it 

is only the relative ordering of components, and thus 

only the relative ordering of ports to be matched which 

is significant. The virtual grids for the connecting 

cells can be stretched, by the inclusion of extra grid 

lines, to bring ports into alignment, as shown in figure 

4-13. Stretching can also be used to match the overall 

length of the abutting sides of the cells. This ensures 

that the union of the two rectangular cells is itself a 

rectangle.

1 08



B 

A

n
(a) Cells to be Composed
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(b) Ports Aligned and Cell Heights 

Matched by Adding Grid Lines

~

(c) Cells Joined 

Figure 4-13: Cell Stretching During Composition
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In addition to the constraint that connections must be 

between ports of the same type, it would be advantageous 

to have some additional constraints which help ensure 

that connections are made correctly. Such a constraint 

has been made in VG, and it is that matching ports must 

match in name as well as position and type. In order to 

allow some flexiblity port names are said to match if the 

roots of the port names match (remember, names can have 

the form root. extension). Unnamed ports match any port 

of the correct type.

It is sometimes desirable not to make a connection to 

a port, e.g. a cell might have multiple ports for 

connection to power, only one of which need actually be 

externally connected. The port matching process, 

however, seeks to match all ports on the abutting edges 

of cells. To avoid a port being considered for such 

matching, it can be hidden, using the port hiding 

construct [Cardelli 81].

It is also sometimes useful to connect together ports 

with different names. Thus the language allows ports to 

be renamed before composition so that they will 

subsequently correctly match when connected. Both port 

hiding and port renaming are achieved by adding a 

renaming list to the composition construct. The most 

general form of the composition statement is then:

statement = identifier " = " cell_call {cell__call}
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where

cell__call = operator cell_name {renaming}

[rotation] [reflection] 

renaming = »/" port_name [ lf = 11 new_por t_name ]

The effect of each renaming is to either change the 

name of the port called port_name to new_port_name if 

this is present, or to hide the port if no new_port_n=ae 

is specified. Figure 4-14 shows the effect on the ports 

of a cell by certain renamings.

When two cells are composed, the ports visible on the 

new cell are all those ports on the old cells except 

those on the abutting edges. Thus joining instances of 

the same cell may lead to an intermediate cell with 

several instances of the same port name. Therefore port 

renaming and port hiding might not be able to be appliei 

unambiguously to intermediate cells. These operations are 

therefore only allowed to be applied to instances of leaf 

cells. If port hiding or renaming is required with 

intermediate cells, then it must be done to the 

constituent leaf cells as they are being composed to give 

these intermediate cells.

The ideas of port hiding and renaming are similar to 

those used in more abstract circuit description languages 

such as "Sticks and Stones" [Cardelli 81] and CIRCAL 

[Milne 83a].
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outputw < >

vdd.top—e—

< >input.e

vdd.bottom

CELLA

input.w < > < >mput.e

vdd.bottom

CELLA /VDD.TOP /OUTPUT.W=INPUT.W

Figure 4—14: Port Hiding and Renaming
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4.6; VTRGIL - An Idiom Description Language

The similarities between textual circuit descriptions 

and programming languages have already been noted. It is 

by adding programming language constructs, such as 

selection, repetition and parameterisation, to the 

virtual grid description language VG that the idiom 

description language VIRGIL will be developed.

Before deciding on a method for adding such 

constructs, it is worth noting a fundamental difference 

between VG and programming languages. VG is not 

"executed" in the sense that a programming language is 

executed. There is no flow of control in a VG 

description, rather there is a static correspondence 

between the textual description and the virtual grid 

circuit it describes. An instantiation of an idiom 

corresponds to a particular virtual grid circuit, and so 

also corresponds to the textual description of that 

circuit. Instantiating an idiom can then be thought of 

as the production of a textual description of a circuit 

in a language such as VG.

Since the form of an idiom instantiation will be a 

textual description, selection, repetition and 

parameterisation are implemented as basically textual 

operations. The process of idiom instantiation is then
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similar to that of "macro expansion" in some programming 

languages, especially assembly languages.

4.6.1: Par^meterisation,

If an idiom is to give different circuits for 

different sets of input data then there must be some 

method of specifying the values of this input data. This 

is done by the use of parameters, which are identifiers 

which appear in a VIRGIL idiom description, and which may 

take a range of different values. Parameters may be 

applied to both leaf cell and composition cell 

definitions.

Parameters may be one of two basic data types - 

integer and boolean. Parameters for use in composition 

cells may also be arrays, of up to six dimensions, of 

these basic types. Array subscripts may be of either 

basic data type.

Parameters are declared in the cell header statements. 

At the time they are declared they may be assigned a 

default value. If a default value is supplied for an 

array it applies to all elements of that array. The form 

of the header statements is then:
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header = "LEAF" "CELL" cell_name [parameter_list]

" = » bounds 

and

header = "COMPOSITION" "CELL" cell_name [parameter_list] 

where

parameter_list = "(" parameter {"," parameter} w )"

parameter = identifier ":" type ["=" default_value]

type = simple |

array "(" dim {"," dim} ")" "OF" simple

simple = "INTEGER" j "BOOLEAN"

dim = expression ".." expression

default_value = expression 

e. g.

Leaf Cell Test (m:integer = 4, n:integer = 5) = (0,0,m,n' 

or

Composition Cell Ctest (j : integer = 4,

a:array(1..j) of integer)

Parameters can be used in subsequent parts of the same 

statement in which they are declared, or in any 

subsequent statement as part of an expression. Array 

elements are accessed by constructs of the form:

element = array_name "(" expression {"," expression} ")* 

e. g.
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Given the declarations above, statements of the form:

MWIRE § (0,0) -> (0,n) -> (m,n)

would be allowed. However, the main use of parameters is 

in the control of selection and repetition constructs, 

which are described later.

When a cell is instanced, such as a leaf cell being 

instanced in a composition cell statement, it is possible 

to supply values for its parameters. This is done using 

the same sort of construct as was used for supplying 

values for component parameters, viz.:

cell = cell__name [ B ( " assignment { ", " assignment} ")"] 

where

assignment = identifier n =" expression 

e. g.

Test(n=4,m=5)

Since it would be clumsy to assign values to an array 

in this manner, arrays are not allowed in leaf cell 

descriptions.

If a parameter which is defined within a cell is not 

given a value when that cell is instanced, then it takes 

the default value supplied. Since parameters are 

explicitly named when they are given values, parameters 

can be listed in any order.
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Assuming the above parameter definitions for the leaf 

cell TEST, possible composition cell statements might be

Cella = » test(m=3,n=2) » test(n=6,m=3)

Cellb = ~* test ** test(m=1)

Cello = » test(n=2*j-1,m=j) » test(n=a(1))

Values for parameters in composition cells determine 

the particular instantiation of an idiom, and are 

supplied by the design system user.

4.6.2: Selectio n

In the selection construct, portions of text are 

selected to be either included or not in the circuit 

definition, depending on the value of a boolean 

expression. The form of this construct is: 

if = »[» "IF" expression "THEN" textl ["ELSE" text2] "]"

If the expression evaluates to true, then textl is 

chosen, if the expression to false, then text2 is chosen 

if it is present. The chosen piece of text is 

substituted for the entire selection construct.

E.g., assuming the existence of a boolean parameter 

P1, the following statement:

[if p1 then mwire 0 (2,2) -> (2,3) - 

else pwire § (2,2) -> (2,3) ]
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would be replaced by, if P1 were true:

mwire @ (2,2) -> (2,3) 

and if pi were false by:

pwire g (2,2) -> (2,3)

The above selection could also be written: 

[if p1 then mwire else pwire] § (2,2) -> (2,3)

The text which is selected can be as long or short as 

desired, provided identifiers, reserved words or numerals 

are not split by the selection construct. The above text 

could NOT be written as:

[if p1 then M else P]wire g (2,2) -> (2,3)

Multiple lines of text are allowed, and line breaks in 

the text are significant. Thus: 

[if p1 then mwire

else pwire] @ (2,2) -> (2,3) 

would give, for p1 = true: 

mwire

3 (2,2) -> (2,3) 

which is incorrect.

U.S.3 Repetition

In the repetition construct, a given piece of text is 

repeated a given number of times. The repeated text is 

substituted for the entire repeat construct. The form
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is:

for = "[" "FOR" identifier "=" for_list "REPEAT" text •]" 

where

for_list = for_item {"," for__item} 

for_item = expression !

(expression ".. n expression)

The for_list defines a set of values which are 

assigned, in turn, to the identifier. This identifier is 

a local variable which is declared by its use in the FOR 

construct, and whose scope is limited to the FOR 

statement. A for__item may be an expression or a pair of 

expressions denoting a range of values. For such ranges, 

the identifier is assigned the value of each element in 

the range, starting with that given by the first 

expression, up to that given by the last. E.g.

[ for i = 1 ,3,1 ,2..5 ,3 • .0 repeat text ] 

would result in 'i 1 taking the following values:

1 ,3,1 ,2,3,4,5,3,2,1 ,0 

and text would be repeated 11 times.

The identifier associated with the repetition 

construct may appear as part of expressions within the 

text, and for each repetition it will be replaced by the 

appropriate value. Thus:

2 [for i = 3• .5 ,-2. .0,12 repeat + i]

would give the text

2+3+4+5+ -2+ -1+0+ 12
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As for selection, line breaks in text are significant

Selection and repetition constructs may be nested, 

provided nested repetition statements have different 

associated identifiers. This can lead to quite complex 

statements, e.g.:

ABC = [for i = 1..3 repeat - 

» cella -

[if i=1 then (firsts true)] - 

[if i = 3 then (last=true)] ] 

would give

ABC = » cella (first = true) -

» cella » cella (last=true)

4.6.4: Qualifiers

It is often desirable to build up rectangular arrays 

of cells by a pair of repetition statements, one of which 

builds up the rows, and another which composes the rows 

to give the whole array. The exact composition of 

individual rows might vary from row to row, so a separate 

intermediate cell would be needed for each. In such 

cases it would be nice to have an "array" of rows so each 

row could be called by the same name, but with a 

different "index". Such a notion is supported by the use 

of intermediate cell name qualifiers. Intermediate cell 

names can be subscripted by an integer expression, called 

a qualifier, using a construct of the form:
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qualif ied_name = name "__" expression 

e.g.

cella_i, cella_i+1 , cella__6

The composition shown in figure 4-15 could thus be 

constructed by the following statements, with N taking 

its default value of 4.

Composition Cell Block (N:integer=4) 

[for i = 1..n repeat

row_i = [for j = 1..n repeat -

» [if i=j then cellb else cellaj ] 

]

block = [for i = 1..n repeat ^^ row_i] 

End

4.7: Circuit Connections and their Validity

The previous sections have described how components 

may be arranged on a virtual grid to produce a circuit. 

However, arbitrary arrangements of circuit elements do 

not always yield valid circuit constructs. By examining 

the way interconnections are implicitly made between 

components, it is possible to identify many invalid 

circuit situations. By checking a circuit for such 

invalid situations, many possible errors can be 

identified early in the design cycle.
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Rgure 4-15: A Composition of 'cello 1
with 'cellb' on the Diagonal
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Items which are placed at grid points may be 

considered as multiport devices. Device ports are 

referred to as pins. Each pin exists on a certain layer, 

and on a certain side of the device. Each point within a 

virtual grid has up to four immediate neighbours, in the 

directions of the coordinate axes. Wires can exist 

between a given grid point and any of its nearest 

neighbours. Correct connections between wires and 

devices are made by insisting that wires which approach a 

grid point from a certain direction must connect to a pin 

on that particular side of a device at that grid point. 

e.g. a metal wire approaching from the right side of a 

grid point must connect to a metal pin on the right sice 

of some device which exists at that grid point.

To allow the above requirement to be met it is 

necessary to introduce the notion of null devices. There 

is one type of null device corresponding to each 

different type of wire. A null device of a certain ty;e 

has one pin of the corresponding type on each of its four 

sides. The null device connects together any wires 

connected to its pins. A null device of a particular 

type implicitly exists at a grid point if there is a wire 

of that type approaching the grid point, and no other 

devices at that grid point have any pins of that type. 

The usual physical realisation of a null device is a 

minimum size square of wire of the appropriate type.
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As an example, consider a metal wire running from 

point (1,1) to point (3,1). Also assume there are no 

grid items explicitly placed at point (2,1). Then, at 

point (2,1), a metal null device implicitly exists. Both 

the metal wires approaching point (2,1), viz. one from 

the left and one from the right, now connect to pins of 

the null device, and the requirement that all wires 

approaching the point be connected to pins of the correct 

type is satisfied.

Another useful notion, which helps development of a 

consistent analysis, is that a VIRGIL port implies that a 

wire of the same type as the port is approaching the grid 

point from outside the cell. Thus ports can be thought 

of as a special type of wire, rather than as grid items.

The available types of grid items are then categorised 

as:

Transistors: NTYPE, PTYPE, DEPLETION 

Load Devices: LOAD 

Substrate Contacts: PSUB, NSUB

Interwire Contacts: PM, NM, DM, BUTTING, BURIED 

Null Devices

A single grid item may be available in a number of 

different "arrangements". An arrangement is defined by 

the pins available on each of the four sides of the grid 

item. In the case of active devices, viz. transistors



and load devices, different pins connect to different 

parts of the device. These different parts are given 

different names, "gate", "source" and "drain". In a load 

device, there is no pin named "gate", since all pins 

named "source" are internally connected to the gate of 

the device as well as the source. Pins are identified by 

the type of wire that can connect to them, the part of 

the device they connect to, and the side of the device on 

which they are available. In the case of null devices 

and contacts, all pins are connected to effectively the 

same point, named "common".

Figure 4-16 shows diagrams of all the possible 

arrangements for each different device. Note that the 

drain and source connections of transistors (not load 

devices) are symmetrical, thus halving the number of 

functionally distinct arrangements of these devices. A 

rotation of one arrangement is considered a separate 

arrangement.

Given this set of arrangements it is possible to 

produce a relatively simple set of conditions to ensure 

validity of circuit constructs. Recall first the 

conditions under which a null device exists at a grid 

point. A null device of a particular type exists at a 

point if a wire of that type approaches the grid point, 

and no other device at that grid point has a pin of that 

type (on any side). Thus if a metal wire approached a
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DEVICE ARRANGEMENTS

M as metal; P = poly; 
D = ptype diffusion; N = ntype diffusion

(1) PM : X <- P 
DM : X <- D 
NM : X <- N

All pins connected to "common"

M X

MO

<> M 

<> X

X M

(2) BUTTING All pins connected to "common"

M P

MO

N M

M MO

M 
O

N

O M

P M

M

M

M

p<
M<

—— S7 —— 

> <

> < 
/\

> M 

> N

N< 
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V
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> < 
—— A ——

M

cont.../
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DEVICE ARRANGEMENTS (cont)

M = metal; P = poly; 
D = ptype diffusion; N = ntype diffusion

(3) BURIED All pins connected to "common 11

NO

P<>

<> P

<> N

N

P 
P

N

P<> <> P

N 

P

NO O N

N
(4) NTYPE : X <- N 

PTYPE : X <- D 
DEPLETION : X <- N 
"source" and "drain" may be interchanged

X.source

P,gate <> <> P.gate X.source <>

P.gate
—0—

<> X.drain

X,drain P.gate

cont.../
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DEVICE ARRANGEMENTS (cont)

M = metal; P = poly; 
D = ptype diffusion; N = ntype diffusion

(5) LOAD
Appropriate SOR parameter values shown

P.source N,source

N,drain < X <> N,source P,source<>0- 0 „—U oUK= l

P.source

P.source

N,draln

P,source

N,sourceOcnD_0<> N.drain P,sourceOe- D <> P,source
oUK— f. oUK—o

P.source

N,drain
—0—

N,source

(6) PSUB : X <- 
NSUB : X <-

Null Devices 
MWIRE : X < 
NWIRE : X <- 
DWIRE : X <- 
PWIRE : X <-

M Y 
M \

M X<
N
D

V

> <

— ̂  ——

> X

P X

Rgure 4—16: Device Arrangements
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grid point where a buried contact existed, then a metal 

null device would also exist at that point since a buried 

contact has no metal wire pins.

If some set of devices (perhaps some null) exist at a 

grid point, and there is a set of wires which approach 

that grid point from specified directions, then these 

sets of components specify a valid circuit construct only 

if all the following conditions are met.

(1) It must be possible to choose an arrangement fsr 

every device, such that every wire can connect to a pin 

of the correct type and on the correct side of a devi-e.

(2) For each device, there must be at least one wi-= 

connected to one member of each set of similarly name:: 

pins.

(3) There may never be more than two devices at any 

grid point. If there are two devices, then one device 

must be a metal wire null device.

(4) Every device, except substrate contacts, must have 

at least two wires connected to its pins. In the case of 

interwire contacts, at least two of these wires must be 

of different types. In the case of butting contacts at 

least one wire must be polysilicon and at least one must 

be diffusion. (Remember VIRGIL ports count as wires). A

1 29



single unconnected VIRGIL port is allowed as a special 

case.

Some examples of invalid circuit constructs and the 

manner in which the above conditions detect them are 

illustrated by the following examples, shown in figure 

4-17.

(1) No arrangement of BUTTING can be chosen such that 

all wires can be connected to pins of the correct type, 

so condition 1 is violated.

(2) There is no wire connected to any of the "gate" 

pins, so condition 2 is violated.

(3) Poly crosses diffusion without a transistor. No 

explicit devices exist, therefore there is a poly null 

device and an n-type diffusion null device, so condition 

3 is violated.

(4) No explicit devices exist at the grid point, 

therefore metal wire and polysilicon wire null devices 

exist. The metal wire null device has only one wire 

connecting to it, so condition 4 is violated.

The only interesting circuit construct which violates 

these simple conditions is a PM contact over a transistor 

gate. Such a construct is often disallowed in many MOS
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Rgure 4—17: Invalid Circuit Constructs
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design rules, and is unlikely to be allowed at all in 

small geometry technologies, so in many cases it is 

indeed an invalid circuit construct.

In a very few cases it is possible to find more than 

one possible arrangement of a device which satisfies the 

above conditions. In fact the only case where this 

happens is if two diffusion wires connect to the source 

and drain of a load device. In this case it is necessary 

to decide on which arrangement is chosen, since they are 

not functionally the same. This is done by specifying 

the direction of the source diffusion connection, using 

the SOR parameter described earlier. The four 

arrangements shown in figure 4-16 correspond to SOR 

values of 0,1,2,3 respectively. If unspecified, a SOR 

value of 0 or 3 is chosen (rather than 2 or 1 

respectively).

In all other cases, a valid set of wires uniquely 

determine a device arrangement. Mostly, device 

arrangement is merely to do with the orientation of

asymmetric devices. In the case of buried contacts, it 

also determines whether the contact is realised as a 

colinear or orthogonal buried contact.
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4.8: An Example Idiom

A simple example of an idiom which illustrates many of 

the points raised in the preceding sections is now 

presented. More complicated examples will be examined la 

chapter 7.

Figure 4-18 shows a mixed notation description of a 

generalised two-phase shift register, including 

connection grids for power, ground and clocks. Figure 

4-19 shows the subdivision of the generalised shift 

register into an array of VIRGIL leaf cells.

SHIFT is just the shift cell described in figure 4-f. 

SIDE, TOP and CORNER are wiring cells which make the 

necessary power, ground and clock connections. SIDE 

connects either power (on the right side of the array) -r 

ground (on the left) lines together. TOP similarly 

connects different phases of the clock together at the 

top and bottom edges of the shift register. CORNER 

completes the rectangular array of cells, and allows 

common clock lines to pass out under the power line on 

the right of the cell.

The cells TOP and CORNER have been made

parameterisable to allow connections to be either made or 

not made to certain clock lines. The VIRGIL descriptions
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Rgure 4-18: Shift Register Circuit
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Rgure 4-19: Shift Register Cells
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of the various cells, (see figure 4-6 for SHIFT), and 

graphical illustrations of instantiations of the cells 

are shown in figure 4-20.

The manner in which the cells are composed together to 

produce a complete shift register is given in the VIRGIL 

composition cell definition shown in figure 4-21. 

Although quite simple to write, this cell definition is 

at first glance quite difficult to understand, and it is 

instructive to explain it in detail.

The shift register definition can best be explained by 

looking at one particular instantiation of the cell, in 

this case the instantiation with wide=2 and long=4.

The cell definition makes extensive use of an 

arithmetic odd/even expression of the form (i-i/2*2=0) 

which yields TRUE if i is even and FALSE if i is odd. 

Such an expression is used to select every second element 

of some array for some special action, e.g. a common 

clock connection is made to every second phase of each 

row of the shift register. The textual form produced by 

this instantiation is shown in figure 4-22. The 

graphical representation of the complete shift register 

is shown in figure 4-23.

Note that certain ports, such as power ports on the 

left and ground ports on the right have been hidden so
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Leaf Cell Corner(via:boolean=false) = (0,0,1,1) 
gnd.s: mport § (0,0) 
gnd.n: mport § (0,1) 
mwire @ gnd.s -> gnd.n 
[if via then

clock.e: pport § (1,1) 
clock,w: pport § (0,1) 
pwire @ clock.e -> clock.w ] 

End

Leaf Cell Side = (0,0,1,2)
gnd.e: mport § (1,0)
gnd.s: mport @ (0,0)
gnd.n: mport @ (0,2)
mwire @ gnd.e -> gnd.s -> gnd.n
in.e: pport § (1,1)
in.w: pport @ (0,1)
pwire £ in.e -> in.w 

End

Leaf Cell Top (join:boolean=false) = (0,0,3,1)
clock.e: pport @ (3,1)
clock.w: pport @ (0,1)
clock.s: pport § (2,0)
nport § (1,0)
pwire $ clock.e -> clock.w
[if join then pwire 0 clock.s -> clock.s + (0,1) ] 

End

Rgure 4-20(a): VIRGIL Leaf Cell Descriptions
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Composition Cell SR (wide:integer=2, long: integer^)

Row = » Side -
[for 1=1..long repeat -
» Shift/out=in [if 1=1 then /vdd.w] -

[if i=long then /gnd.e] - 
] » Side/gnd.s=vdd/gnd.n=vdd/gnd.e=vdd § 2

TopRow = » corner [for 1=1..long repeat - 
» top (join = (1-1/2*2 = 1)) -

[if 1=1 then /clock.w] ] - 
» corner (via = true) /gnd.s = vdd/gnd.n=vdd iny

BotRow = » corner [for 1=1..long repeat - 
» top (join = (1-1/2*2 = 0)) -

[if 1=1 then /clock.w] inx ] - 
» corner (via=true)/gnd.s=vdd/gnd.n=vdd § 2

SR r ** BotRow [for 1=1..wide repeat -
~~ row [if 1-1/2*2 = 0 then INX] ] ** TopRow 

END

Rgure 4-21: Shift Register Composition Cell Definition
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COMPOSITION CELL SR

ROW =» SIDE -
» SHIFT / OUT=IN / VDD.W -
» SHIFT / OUT=IN -
» SHIFT / OUT=IN -
» SHIFT / OUT=IN / GND.E -
» SIDE / GND.S=VDD / GND.N=VDD / GND.E=VDD § 2

TOPROW =» CORNER -
» TOP (JOIN=(1-1/2*2=1))/ CLOCK.W -
» TOP (JOIN=(2-2/2*2=1)) -
» TOP (JOIN=(3-3/2*2=1)) -
» TOP (JOINr(4-4/2*2=1)) -
» CORNER (VIA=TRUE) / GND.S=VDD / GND.N=VDD INY

BOTROW =» CORNER -
» TOP (JOIN=( 1-1/2*2=0) )/ CLOCK.W INX -
» TOP (JOIN=(2-2/2*2=0)) INX -
» TOP (JOIN=(3-3/2*2=0) ) INX -
» TOP (JOIN=(4-4/2*2=0)) INX -
» CORNER (VIA=TROE) / GND.SrVDD / GND.N=VDD @ 2

SR =** BOTROW ~" ROW ~~ ROW INX " TOPROW 

END

Rgure 4-22: Textual Form of Composition Cell
Definition after Instantiation
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that no connections are made to them. A different method 

has been used to hide unconnected clock lines. Such 

lines are connected to ports in TopRow and BottomRow 

which are then internally unconnected to the common clock 

wire.

The shift cell has been designed with power and ground 

connections at the top and bottom of the cell. When 

cells are composed, if alternate rows of cells are 

mirrored, it is possible to share power and ground lines, 

and the diffusion-metal contacts on them, between 

adjacent rows. This can be achieved in VIRGIL by placing 

the features to be shared on the very top and bottom grid 

lines, since these grid lines will be merged with those 

on the adjacent cell during composition. This merging 

can be seen in the VDD line in figure 4-23.

Another feature worthy of note is that of automatic 

wire trimming. Wires which are connected to ports 

subsequently hidden in composition operations are left 

"dangling" in the middle of the newly created cell. Such 

wires are automatically removed, so that the complete 

idiom instantiation still meets the validity requirements 

given in section 4.7. Examples are the clock and power 

lines in figure 4-23-



: Summary

The VIRGIL language includes several features which 

distinguish it from other VLSI design languages, and 

which are worthy of further discussion.

Primarily, VIRGIL is a textual language for the 

description of idioms, but it can also describe circuits. 

This differs from most design systems which are primarily 

for the description of circuits, and often have a strong 

bias towards graphical entry of designs.

The syntax of VIRGIL has been designed to allow 

concise idiom descriptions, but not at the expense of 

being too cryptic. Examples are the use of syntactic 

"sugar" such as parentheses around coordinate pairs and 

arrows between coordinates in wire paths. While not 

strictly necessary, they help to make the design 

description more readable.

Selection and repetition have been implemented as 

textual operations, allowing selection and repetition 

down to the level of individual lexical entities. This 

allows for very concise idiom descriptions. For example, 

if a whole row of cells were identical except for some 

port hiding on the end cells, only the port hiding part 

of the cell call would need to be placed in a selection



construct. Examples of this can be seen in the shift 

register description in figure 4-21.

The notion of device arrangements has been introduced. 

These provide a simple but powerful tool for the 

detection of invalid circuit constructs. Such detection 

is greatly aided by the structural information implicit 

in the design description. Such information is 

especially well handled by a virtual grid description, 

since the information needed to verify correct circuit 

constructs can be obtained by looking, independently, at 

each grid point and the grid lines leading from it. The 

detection of invalid circuit constructs is a valuable ail 

in quickly debugging a circuit description.

Device arrangements also allow, in most cases, the 

automatic orientation of non-symmetric devices such as 

transistors, and butting and buried contacts, meaning 

that the designer need only specify their position on tt 

virtual grid and not their orientation.

Finally, because idioms are described at the sticks 

level, they are valid for a wide range of different 

fabrication processes. As will be shown in the next 

chapter, CMOS idioms especially can be designed to be 

valid in a wide range of different technologies.
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5r STICKS COMPACTION OF THE VIRTUAL GRID 

5.1: Background

Sticks compaction is the common name given to the 

translation between sticks level representations and mask 

level representations. Sticks are converted to mask 

descriptions by creating mask level equivalents of 

structural items in the sticks description, and arranging 

these items so that the relative topological orderings 

and interconnections implied by the sticks description 

are preserved, and also so that none of the minimum mask 

level spacing requirements (i.e. design rules) are 

violated. A brief discussion of the current state of ~he 

art in sticks compaction has already been presented in 

section 2.7-

Sticks compactors are now available which can 

efficiently produce acceptably dense mask level 

equivalents of sticks circuits. Given such compactors, 

it would seem far quicker and easier to design circuits 

at the sticks level rather than at the mask level, 

especially considering the other advantages of sticks 

design such as freedom from process-specific design 

rules. However, in practice, design at the sticks level 

has yet to gain any real degree of widespread industry 

acceptance as a production tool, rather than as merely a 

research topic. Some of the reasons for this lack of
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acceptance are worthy of brief investigation.

One reason for this is seen by the author to be that 

the largest contribution to reductions in circuit area 

are not made by clever compaction of a fixed topological 

arrangement. Rather, the greatest savings are made by 

changes in the topological arrangement of components once 

the circuit has been initially laid out and the parts of 

the circuit preventing further compaction have been 

identified.

Furthermore, a human designer, who has a good global 

overview of a circuit, can often see areas where slight 

changes in one area of a circuit can give a globally more 

compact circuit. However, it may be impossible to convey 

this information to the sticks compactor, and so in 

frustration the design returns to design directly at the 

mask level.

The compactor designed for the VIRGIL system is 

intended to allow the designer to interact in the 

compaction process by including "hints" to the compactor 

in the virtual grid representation of a circuit, such as 

was mentioned in section 4.1. Changes in topology can be 

rapidly made, and their effect on circuit area rapidly 

gauged by use of automated compaction. In such cases, 

the main requirement is for predictable and controllable 

compaction. The designer must be able to gauge the



effects which certain changes in the sticks 

representation will have on mask level circuit 

representation. Similar observations have been made by 

other researchers in the field of sticks design systems 

[Weste 81a].

The sticks compactor produced as part of the work for 

this thesis has been designed to be both predictable and 

controllable.

Obtaining the densest possible circuit realisation, 

and hence lowest fabrication cost per part is not always 

the primary consideration in circuit implementation. In 

designing circuits for low and medium volume 

applications, initial design cost is often the major 

portion of the overall cost of each device. Design at 

the sticks level can play a part in reducing this overall 

cost by allowing the rapid design of circuits which are 

both free of design rule infringements and which can be 

rapidly implemented in new technologies as these become 

available, even though this may result in less dense 

circuit layouts.

Just as most software is now written in high level 

languages, so it can be expected that VLSI circuits will 

increasingly be designed at levels of abstraction above 

the mask level. Using the same analogy, it can be 

expected that there will always be a place for design
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directly at the mask level, just as there is still a 

place for programming in machine specific assembly code

5.2 Mask Level Representation on a Quasi-Virtual grid

A virtual grid description of a circuit provides not 

only physical but also structural information about a 

circuit. It is also a "stretenable" design 

representation because as grid lines are spread further 

apart, perhaps by insertion of extra grid lines during 

composition, then it is only wires which are affected. 

These wires automatically become longer so as to maintain 

connections between the devices at their end points.

When converting to a mask level representation of a 

circuit, it would seem a pity to lose these attributes of 

a joint physical and structural design description, and 

of a stretchable design representation. For these 

reasons, a novel method of mask level circuit 

representation based on the idea of a virtual grid is 

introduced. This is referred to as the quasi-virtual 

grid.

Circuits, whether at the sticks or mask level, consist 

of a set of devices (transistors and contacts) and points 

of external connection (ports) interconnected by wires. 

At mask level, devices are constructed by overlaying 

several different mask layers in a specific way. The

1 U3



sets of overlaying mask shapes which comprise the various 

devices are called "templates". In some cases, all 

devices of a certain type (such as polysilicon to metal 

contacts) can be formed from the same template, while in 

other cases (such as buried contacts) there may be 

several different templates for the same type of device.

Devices in a circuit can then be described in terms of 

a template and a pair of coordinates representing the 

physical position of the template within the complete 

mask level circuit. Wires can be represented in terms of 

a type (layer and width) and a path followed by the 

centre line of the wire. This path can in turn be 

represented as the set of the coordinate pairs of the end 

points of the line segments comprising it.

Within a circuit, there will be a finite number of 

coordinate pairs needed to describe the positions of all 

the devices and the paths of all the wires in that 

circuit. These coordinate pairs can then be broken up 

into a set of X-coordinates {X1..Xn}, and a set of 

Y-coordinates {Y1..Ym}, such that Xi <= Xi+1 and Yi <= 

Yi+1. A set of lines, parallel to the Y-axis, can be 

defined by {x=Xi}. A similar set of lines, parallel to 

the X-axis are defined by {y=Yi}. All the coordinate 

pairs needed to specify the circuit appear at 

intersections of these lines, and so these lines are 

called the "lines of action" within the circuit. All
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significant points in the circuit can be mapped to a ne 

more canonical, integer coordinate plane by the simple 

mapping:

This new coordinate system is called the quasi-virtual 

grid. A circuit described on a quasi-virtual grid is the 

same as a circuit on a virtual grid - devices at grid 

points, wires between grid points - plus some additional 

information, viz. a set of device templates, and a set of 

physical coordinate values corresponding to the 

quasi-virtual integer coordinates.

Consider, for example, the shift register cell shew- 

in figure 5-1. This cell is designed using lambda basei 

Mead-Conway design rules, with a lambda of 3 microns. 

The device templates for this cell are shown in figure 

5-2 in graphical form. Device templates are included for 

the null devices which implicitly exist in virtual grid 

circuits (see section 4.7). Wire widths are all minizua 

allowable line widths. Figure 5-3 shows the lines of 

action in the shift register cell, and shows the physical 

coordinate to quasi-virtual coordinate mappings. Figure 

5-4 shows the quasi-virtual grid corresponding to the 

shift cell.
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Figure 5-1: A Shift Cell at Mask Level
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Figure 5-2: Device Templates in Shift Cell
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Figure 5-3: Lines of Action and Coordinate Mappings
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Figure 5-4: Quasi-Virtual Grid for Shift Cell
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The quasi-virtual grid of figure 5-4 together with the 

coordinate mappings of figure 5-3 and the device 

templates of figure 5-2 then comprise the entire 

quasi-virtual representation of the mask level 

description in figure 5-1.

5.^; Translation to a Quasi-Virtual Grid

The quasi-virtual grid provides a way of representing 

mask level circuits which is especially convenient for 

translating from virtual grid "sticks" circuits. Since 

the quasi-virtual grid consists of a virtual grid plus 

device templates and coordinate mappings, translation 

from sticks to mask level can be achieved by simply 

adding these latter two components to an existing virtual 

grid.

It should be immediately emphasised that this simple 

translation is by no means the only possible translation 

which can be made. A virtual grid may be translated into 

a mask level representation which is based on a different 

quasi-virtual grid. It should be remembered that a 

virtual grid itself imposes no restriction, other than 

relative topological ordering, on the components within 

it. On the other hand, the quasi-virtual grid imposes 

the much stronger restriction that items with the same X 

or Y quasi-virtual coordinate are positioned at the saae 

physical X or Y coordinate. This restriction is then
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also implicitly imposed on the original virtual grid if 

this simple translation is used.

This restriction is not necessarily a particularly 

harsh one, in fact this restriction gives the 

controllability and predictability of sticks to mask 

level translation which has previously been shown to re 

useful. This constraint is also the reason that virtual 

grid sticks compaction can be computed with time 

complexity 0(N), rather than 0(N*»1.5) as is the case fcr 

gridless compaction, or virtual grid compaction without 

this constraint. A sticks compactor based on this sizzle 

translation has been developed for this thesis.

The quasi-virtual grid is primarily used here as a 

target for the sticks compactor, rather than as a design 

representation produced directly by a designer. As s^:~. 

it is only necessary that the quasi-virtual grid is 

capable of representing those circuits which can be 

produced by the sticks compactor, and this leads to 

several simplifications.

Any geometric restrictions imposed on a virtual grii 

are also likely to be imposed on a quasi-virtual grid 

directly derived from it. Specifically, if only paraxial 

(i.e. parallel to one or other coordinate axis) wires are 

allowed on the virtual grid, then wires on the 

quasi-virtual grid will also all be paraxial.
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Device templates need not be composed of purely 

Manhattan geometry shapes, the only restriction imposed 

by the Manhattan nature of the virtual grid is that 

connections between wires and devices will be in one of 

the four Manhattan directions. In practice, Manhattan 

geometry templates are quite adequate, and the use of 

purely Manhattan shapes simplifies the representation of 

templates.

Another simplification, which is less obviously 

justified, is to do with so-called "bent" transistors. 

In NMOS circuits particularly, the use of ratioed logic 

often results in the use of transistors with channels 

which are quite long or quite wide. These devices can 

often be fitted more neatly into a circuit by twisting 

the path of the channel. An example is shown in figure 

5-5, where a load device with a length to width ratio of 

16:1 is shown both "straight" and "bent".

In this compactor, only "straight" transistors are 

used, for several reasons. Firstly, interconnections 

between wires and devices can be greatly simplified if 

device templates conforming to certain conditions (which 

are fully discussed in section 5.4) are used. These 

conditions are not met by bent transistors.

Secondly, bent transistors are not really an issue in 

CMOS circuits, where ratioless logic is used. A good
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Rgure 5-5: "Bent" and "Straight" Transistors
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deal of the original work done here on compaction is 

specifically to do with CMOS circuits, and CMOS circuits 

are increasingly overtaking NMOS as the most widely used 

technology. It was felt that it was not worth spending 

too much time on subjects not directly applicable in CMOS 

circuits.

Finally, the provision of "bent" transistors really 

requires the bends to be arranged so as to fit into the 

surrounding circuit layout, if these bends are to be most 

effective in reducing circuit area. The generation of 

such "context sensitive" device templates is a far harder 

problem than the simple approach adopted here of having a 

single type of device template (i.e. straight 

transistors) which are always used.

In summary then, the compactor developed for this 

thesis has been deliberately made as simple as possible. 

It is hoped to show that these simplifications allow 

compaction to proceed in a very simple and predictable 

manner.

5.4: Device Templates

Device templates are the mask level equivalents of 

device "arrangements" mentioned in section 4.7. If 

templates are restricted to Manhattan geometry figures, 

then templates can be specified as a set of paraxial
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rectangles, each on a specific mask layer, and placed 

relative to some device origin at the centre of the 

device. Some of these rectangles exist on notional mask 

layers, which although not corresponding to physical mask 

layers, are still useful to include. An example is a 

layer called "active 11 , which defines the transistor 

channel areas. It is simpler to specify these layers 

directly than to specify rules for how they can be 

derived in general. Some device arrangements (e.g. the 

four arrangements of BUTTING in figure 4-16) are simply 

rotations of a single arrangement, so in such cases only 

one template needs to be specified.

Some devices' shapes depend on parameters such as 

channel length and width. In these cases the templates 

are best specified parameterisably. Given the name of a 

device and an optional set of parameters, such a 

parameterisable definition returns the set of boxes on 

various mask layers which correspond to the exact 

template for the device.

Since wires are to go between devices to connect them 

together, it might seem that it is necessary to include 

in the templates the coordinates of the points on the 

devices to which wires may connect. Because of the 

simplifications mentioned in the previous section, it is 

possible to design templates in a manner so that this 

need is removed, viz. the templates are designed such
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that if a wire is to be connected to a device, then 

correct connection is made by connecting the end of the 

wire to the centre of the device. In other words, wires 

do not go merely between edges of devices, rather they go 

between the centres of devices. Wires can always be 

placed in this way such that they do not interfere with 

the device template.

As an example, consider an orthogonal buried contact 

as shown in figure 5-6 (a). Wires can extend from the 

centre of the device in all four directions (figure 5-6 

(b)-(e) ) quite legitimately.

This property leads to the very useful result that 

wires can be placed on a quasi-virtual grid such that 

their centre lines extend between grid lines, without 

regard to what devices are placed at grid points. Note 

that these wires no not extend past the end-points of 

their centre lines (as, for example, GIF wires do), as 

illustrated in figure 5-7. Null device templates provide 

the overlap between the ends of orthogonal wires segments 

which is provided by the extended ends of wires in GIF.

Figure 5-8 (a) shows a simple virtual grid, which can 

be divided into devices (5-8 (b)) and wires (5-8 (c)). 

These can be converted to mask representations 

independently (5-8 (d),(e)) and when combined (5-8 (f)) 

give the correct mask equivalent of the whole circuit.
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Figure 5-6: Wires Connecting to the Centre of a Device
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(a) Centre Line of Wire

(b) Quasi-Virtual Grid Wire

(c) CIF 2.0 Wire

Rgure 5—7: Wires in CIF and in Quasi—Virtual Grids
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Rgure 5—8: Independent Translation of Wires and Devices

164



Since null device templates are squares of the minimiza 

possible size on various layers, the null device 

templates are sufficient to define minimum wire widths.

In some cases, it might be desirable to connect to 

points of a device other than the centre, especially 

where connection can be made over a wide area, such as 

the poly gate of a long transistor. In such cases, a 

wire which runs out of the centre of the device, and then 

along to the preferred connection point usually gives 

similar results. Figure 5-9(a) shows the way such a 

construct is represented on a virtual grid, and figure 

5-9(b) shows the resulting mask level layout.

Device templates provide an elegant method of 

expressing all the design rules concerned with widthz =ni 

lengths of items in a mask level representation. A list 

of minimum separations between layers completes the 

information required to specify all the design rules 

concerned with widths and separations for a particular 

fabrication technology. Separations such as active area 

to implant make use of the notional mask layers (in this 

case "active") mentioned earlier.

It is argued that a list of templates plus a list of 

layer separations provides a more elegant and more 

natural method of capturing the design rules associated 

with a particular technology than the specification of =
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Rgure 5-9: Connection Desired to be Made
to Bottom of Transistor Gate
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large number of constants such as "poly gate over channel 

overlap" and "metal around contact hole overlap".

Some sets of design rules include rules which are not 

simple widths and separations. An example is "no 

coincident poly and metal edges". Such design rules are 

not conveniently handled by a set of templates plus a set 

of separations, and special code would need to be written 

for each special case. No such special cases are 

included in the simple compactor produced for this 

thesis. Note that device templates plus separations are 

sufficient to capture Mead-Conway design rules [Mead 80].

5.5 Coordinate Mappings

The next, and more difficult, phase of producing a 

quasi-virtual grid description is to find the mapping 

between quasi-virtual grid coordinates and physical 

coordinates. This amounts to finding the minimum 

physical spacing between grid lines such that no design 

rules are violated, and corresponds to what is normally 

called sticks compaction.

It is significant that wires have no direct effect on 

the grid spacing, and can be ignored during this phase of 

the translation. This is because the spacings between 

the devices which exist at the ends of wires are 

sufficient to ensure correct spacing between the wires
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themselves.

The spacing between vertical grid lines is determined 

first, and is achieved by assigning an X-coordinate to 

each grid line, in turn, from left to right. A grid line 

is first given the same X-coordinate as its predecessor. 

Each device on the vertical grid line is examined in 

turn. The minimum spacing between the device and any 

devices directly to its left (i.e. on the same horizontal 

line) is determined, and, if necessary, the X-coordinate 

of the current grid line is increased so that this 

spacing requirement is met. Notice that items on grid 

lines several grid lines away can affect the spacing, as 

shown in figure 5-10. In practice, all items closer than 

the maximum possible separation are checked.

Y-coordinates are assigned to horizontal grid lines, 

from bottom to top, in the same manner.

Finally, diagonal spacings are checked. Devices are 

sufficiently separated diagonally if they are 

sufficiently separated either horizontally or vertically. 

Figure 5-11 shows two possible arrangements of a circuit 

which would satisfy diagonal spacing requirements.

The basic operation required to calculate grid 

spacings is that of finding the separation between two 

devices, given their relative positions (left, right,
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SPACING

(a) Before Compaction

(b) After Compaction: Metal to Metal Spacing Dominates

Rgure 5-10: Influence of Items over Several Grid Lines
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(a) Circuit with Diagonal Spacing 
Requirement between Contacts

(b) Layout Providing Vertical Spacing

(c) Layout Providing Horizontal Spacing

Figure 5—11: Diagonal Spacing Requirement is Satisfied
by Sufficient Horizontal or Vertical Spacing
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above, below) and the layers on which they are connected. 

Figure 5-12 shows an example of two items whose 

separation depends on connectivity.

Note that in situations such as that in figure 5-12, 

it is necessary to know that, for example, metal and 

polysilicon are connected in a PM contact. This can be 

done by including in device templates a list of connected 

layers. In each device, all layers marked as "connected" 

are considered to be electrically connected.

Such connection information is sometimes rather 

artificial, e.g. in a PM contact, the "contact" mask is 

not marked as connected, so that correct contact window 

to contact window spacing is maintained between adjacent 

contact s.

The only other information needed to calculate device 

spacings is a list of minimum separations necessary 

between the various layers.

To find the separation between two devices, the 

connections between the different layers in each device 

must be calculated. If a wire of a certain type joins 

the two devices, then boxes on that layer in both devices 

are considered connected to the wire. If that layer is 

marked "connected" in the template of one device, then 

all other layers also marked "connected" are considered
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(a) Separation between Centres of 
Unconnected Contacts = 7 lambda

CONNECTED
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(b) Separation between Centres of 
Connected Contacts = 4 lambda

Rgure 5—12: Effect of Connectivity on Separation
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to be connected to the wire.

Boxes on each layer in one device template are 

compared with boxes on each layer of the other. If the 

two layers on which the boxes exist are connected, or if 

there is no minimum spacing requirement between them, 

then this pair of boxes is ignored. Otherwise, the 

minimum spacing requirement imposed by this pair of boxes 

is the sum of the minimum separation between the layers 

and the size of each box in a direction towards the 

other, as shown in figure 5-13.

The largest spacing imposed by any pair of boxes 

determines the minmum spacing (centre to centre) between 

the two devices. Notional layers such as "active" allow 

spacings such as active to implant to be calculated.

A set of coordinate mappings as produced by the 

compactor represents a minimum set of spacings between 

grid lines. By increasing any of these spacings, a mask 

level circuit can be stretched, perhaps to allow 

connection to some previously designed mask level 

circuit.

5.6: Translation of CMOS Circuits to Mask Level

The amount of design-rule independence offered by 

virtual grid design is far more important in the design

173



Calculation of Centre to Centre 
Separation between PM and NM 

(All Units in Lambda)

Metal To Metal
Spacing 

= 24-3+2 = 7

Poly to Diff
Spacing 

= 2+1+2 = 5

Contact to Contact
Spacing 

= 1+2+1 = 4

Maximum Layer to Layer Separation = 7, 
So Minimum PM to NM Separation = 7

Figure 5-13: Minimum Separation Calculation
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of CMOS circuits than in NMOS. At present there are at 

least four major classes of CMOS technologies, none of 

which is particularly more favoured than the others. 

These are N-well, P-well, twin-well and SOI 

(silicon-on-insulator). A new design style, called 

generalised CMOS, is now introduced which allows the 

design of circuits which are valid in all of these 

technologies.

Circuits (and hence idioms) which are designed in 

generalised CMOS are able to offer the circuit designer a 

wider choice of possible target technologies. 

Furthermore, the choice of technology can be left to far 

later in the design cycle. A single circuit might also 

be implemented in two different technologies for 

different applications - say twin-well for performance 

and SOI for radiation hardness.

The conversion of CMOS circuits from virtual grid to 

mask level representation involves an extra step not 

present in the conversion of NMOS circuits. This is the 

insertion of wells. Wells are used to change the 

substrate doping in certain areas of a circuit so that 

the two complementary types of transistor (NTYPE and 

PTYPE) can be fabricated on the same substrate.

Wells differ from other circuit features in that they 

are not associated with individual devices, but rather
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with whole groups of devices. Where possible, wells 

around adjacent devices should be amalgamated. In 

particular, every distinct well region must usually 

contain at least one substrate contact. Although SOI 

does not have wells like the other technologies do, it 

does have island doping masks, which are similar.

Ideally, each well should contain as many adjacent 

devices as possible, but it should be no larger than is 

necessary to contain these devices, or else it might 

cause unnecessarily large separations between devices 

inside the well and those outside.

Wells are of two types. A P-well is an area of p-ty?e 

diffusion, and can contain n-type (i.e. n-channel) 

transistors and n-type diffusion wires. An N-well is an 

area of n-type diffusion, and can contain p-type 

transistors and p-type diffusion wires. In single well 

processes, areas outside the well are as if they were in 

a well of the opposite type.

Design at the mask level forces a designer to select a 

specific CMOS technology. Even design at the sticks 

level often requires the specification of well areas, and 

so ties the design to a specific CMOS technology. 

Generalised CMOS circuits are just CMOS designs which 

contain no constructs specific to a single technology, 

such as wells. The sticks compactor developed for this
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thesis is able to automatically determine suitable well 

areas using a novel algorithm which is described below, 

and so is able to handle generalised CMOS circuits.

All virtual grid devices can be classified according 

to whether they can exist only in a P-well (class-p 

devices: NTYPE, NWIRE, NPORT, PSUB, NM); whether they can 

exist only in an N-well (class-n devices: PTYPE, DWIRE, 

DPORT, NSUB, DM); or whether they can exist in wells of 

either type (class-u devices: MWIRE, MPORT, PWIRE, PPC3T, 

PM) .

Each point on a virtual grid circuit can be similarly 

classified. If any class-n device exists at a point, 

then it is a class-n point, similarly for class-p. A 

point which has no class-p or class-n devices is a 

class-u point. Note that a class-p point or class-n 

point may contain class-u devices. Figure 5-14 shows a 

virtual grid circuit of a 4-input generalised CMOS nand 

gate. Figure 5-15 shows the classification of the grid 

points into class-n, class-p and class-u.

On the virtual grid, wells are constructed so as only 

to contain devices of the correct classes. P-wells may 

not contain class-n devices, and vice versa. Wells are 

described as sets of rectangles, perhaps overlapping, 

surrounding groups of grid points. Such rectangles are 

constructed so as to contain as many devices of the
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Figure 5-14: 4-input NAND Gate
in Generalised CMOS
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N = can exist only in N—well

P = can exist only in P-well

U = can exist in either well

4 U—U—U—N—U—N—U—N—U—U—U
I I I I I I I I I I I 3 U—N—N—N—N—N—N—N—N—N—U
I I I I I I I I I I I 2 U—U—U—U—U—U—U—U—U—U—U
I I I I I I I I I I I 1 U—P—P—P—P—P—P—P—P—P—U
I I I I I I I I I I I0 U—P—U—U—U—P—U—U—U—U—U 

01 23456789 10

Figure 5-15: Classification of Grid Points
in 4-input NAND Gate
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appropriate class as possible, but also so as to be only 

as large as is necessary to contain those devices, e.g. 

in figure 5-16, arrangement (c) would be preferred.

To generate rectangles of the desired type, the 

following algorithm is used, in this case for a P-well.

(1) Select a class-p grid point not yet included in a 

P-well. Put a rectangle just around that point.

(2) Increase the size of the rectangle by one grid 

square in each direction, (east, north, west, south) in 

turn, provided such an increase would not bring a class-n 

device into the rectangle. Continue increasing the 

rectangle, one grid square at a time, until it cannot be 

increased in any direction at all.

(3) Decrease the rectangle by one grid square in each 

direction in turn, provided such a decrease would not 

take a class-p device out of the rectangle. Continue 

decreasing until the rectangle cannot be decreased in any 

direction.

(4) Place a P-well "null device" at each class-u point 

in the rectangle, changing these to class-p points.
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Figure 5-16: 3 Possible Well Area Groupings
for CMOS NAND Gate 

(Arrangement (c) Preferred)
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The "null devices" mentioned in (4) above are used in 

the same way as null devices for wires, to define a 

minimum size area of well geometry. In a twin-well 

process, where both N-well and P-well rectangles are 

grown, placing null devices in wells also prevents the 

same class-u point being in both a P-well and an N-well 

rectangle.

Well rectangles are grown before grid line spacings 

are determined. After grid line spacings have been 

determined, well rectangles can be added to the mask 

level representation.

Well mask layers are included in device templates, 

even if there is no physical mask corresponding to thea, 

such as a P-well mask layer in an N-well process. In 

this case, this nominal layer represents "anti-well", or 

in other words, the distance which devices must be placed 

away from the edges of the other well layer. Since all 

class-p device templates contain a P-well mask layer, and 

all class-n devices contain an N-well layer, and all 

class-u devices contain neither, this provides a 

convenient method of determining the class of a device 

from its template. Including such well information in 

templates also ensures correct spacing between devices, 

without the need to consider the presence of the large 

well areas.
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Substrate contacts are explicitly specified by the 

user in circuit descriptions, and in processes where 

these are not needed, they can be omitted by the 

compactor. The automatic insertion of substrate contacts 

would remove some of the predictability of the compaction 

process.

Figure 5-17 shows examples of N-well, P-well, 

twin-well and SOI mask level circuits corresponding to 

the single generalised CMOS circuit of figure 5-14.

5.7: Sticks Exjt r a c t i o n

The usefulness of sticks circuits as a method of 

design representation has already been emphasised, and in 

particular, the relatively straight-forward manner in 

which virtual grid sticks circuits can be translated to 

mask level representations has been discussed. An 

equally valid translation, which is potentially just as 

useful but has not been an area of particular research 

interest, is the reverse translation from mask level to 

sticks, here called sticks extraction.

Sticks extraction reduces a mask level circuit to a 

topological arrangement of devices interconnected by 

wires. In other words, it removes design rule dependent 

features of the circuit such as widths and separations. 

If the sticks circuit is subsequently converted back to
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Figure 5-17: Generalised CMOS NAND Gate Implemented
in Four Different Technologies
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maak level, but with a different set of design rules, 

then the original circuit has effectively been 

automatically translated from one technology to another. 

The advantages of such translation are especially evident 

in CMOS circuits, where translation is possible not only 

between different sets of design rules, but also between 

different classes of CMOS technologies.

There is already a large investment which has been 

made in designing circuits at the mask level. If the 

lifetime of such circuits can be extended by allowing 

them to be automatically translated into newer 

technologies as these become available, then designers 

will be able to make better use of this investment. 1~ 

is worth noting that this approach does not offer a 

simple way to take advantage of new processes offering 

more layers of interconnect.

The problem of sticks extraction has not been examined 

in great detail, but an algorithm which would seem to 

work for simple Manhattan geometry circuits is presented 

as a first excursion into this area.

Sticks extraction amounts to identifying devices and 

the wires which interconnect them within a circuit. As 

such, it is quite similar to the process of circuit 

extraction, but it must also retain the topology of a 

circuit. Sticks extraction could also be thought of as
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converting from a traditional mask level representation 

to a quasi-virtual grid representation. As an example, 

consider the inverter of figure 5-18, which is 

implemented in a twin-well CMOS process.

Devices can be located by finding particular 

combinations of intersecting (i.e. overlapping) mask 

layers. In a twin-well CMOS process, the combinations 

identifying the various devices are as follows.

NTYPE: diffusion, poly, pwell

PTYPE: diffusion, poly, nwell

PM: poly, metal, contact

NM: diffusion, pwell, metal, contact

DM: diffusion, nwell, metal, contact

PSUB: substrate, pwell, metal, contact

NSUB: substrate, nwell, metal, contact

Ports can be identified by points where geometry 

reaches a user-defined cell boundary. Figure 5-19 shows 

the devices and ports in the CMOS inverter under 

consideration.

Once identified, these sets of overlapping layers, 

which form the "core" of devices (i.e. they do not form 

the entire device templates), can be removed from the 

mask level representation. This should leave a number of 

disjoint areas on the different mask layers corresponding
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Figure 5-18: Twin-well CMOS Inverter
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Figure 5-19: Devices Located By Overlapping Layers
Ports Located at Edges of Cell
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to wires in a sticks circuit. In the example process, 

these layers are as follows.

PWIRE: polysilicon

NWIRE: diffusion and pwell

DWIRE: diffusion and nwell

MWIRE: metal

Each separate area on each mask layer will be 

connected to a number of points where devices have been 

removed from the circuit. Each area can then be reduced 

to a number of connected line segments which both connect 

all such points, and also lie wholly within the 

particular mask layer area. These line segments 

correspond to wires in the sticks circuit. Figure 5-20 

shows a possible set of wires for the CMOS inverter.

Finally, in order to represent the sticks circuit as a 

virtual grid, it is necessary to identify a set of "lines 

of action 11 which are sufficient to allow all devices and 

wires to be placed on an integer coordinate plane. The 

lines of action for the inverter are shown in figure 

5-21, and the resulting virtual grid is shown in figure 

5-22. Figure 5-23 shows a SOI implementation of the same 

inverter circuit, illustrating how circuits can be 

translated automatically from one class of CMOS 

technology to another.
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(a) Wires on Metal Layer
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(b) Wires on Polysilicon Layer
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(c) Wires on Diffusion Layers

Figure 5-20: Finding Wires Joining Ports and Devices
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Figure 5-21: Lines of Action in CMOS Inverter
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Figure 5-22: Virtual Grid Representation
of CMOS Inverter
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Figure 5—23: Inverter Converted to SOI
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Since existing mask level circuits may use constructs 

which are specific to one technology (such as island to 

island contacts) or devices such as bent transistors, it 

may be necessary to do some manipulation on these 

circuits at the sticks level before recompaction. For 

example, an island to island contact could be converted 

to a ptype diffusion to metal contact joined by a metal 

wire to an ntype diffusion to metal contact.

No software has been produced to implement the sticks 

extraction algorithm presented here, rather the area of 

sticks extraction is presented as an interesting idea 

which has emerged during the course of the main work on 

the thesis.

5.8: Summary

A sticks compactor has been developed, which while 

being quite simple, has explored some interesting and 

novel ideas.

Firstly, the quasi-virtual grid has been introduced as 

a convenient method of describing mask level circuits, 

which retains structural information and is inherently 

stretchable.

It has been shown that predictable, controllable 

conversion from sticks level to mask level is achieved zj
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adding the concepts of device templates and coordinate 

mappings to a virtual grid to give a quasi-virtual grid 

circuit.

Device templates plus a list of layer to layer 

separations have been shown to be an elegant method of 

describing simple sets of design rules.

A new CMOS design style called generalised CMOS has 

been introduced, and a new algorithm for adding CMOS 

wells in a technology dependent manner has been 

introduced to support this design style.

Finally, the notion of sticks extraction has been 

introduced as an aid to the automated conversion of mask 

level circuits from one technology to another.
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6; A PROTOTYPE IMPLEMENTATION OF THE VIRGIL SYSTEM

6.1; System Overview

An experimental implementation of a system for the 

capture, storage and implementation of MOS idioms has 

been developed as part of this thesis. Figure 6-1 shows 

an overview of the structure of this prototype system.

All programs for the VIRGIL system have been written 

in the general purpose high level programming language 

IMP [Robertson 83], and have been implemented on a DEC 

VAX 11/780 running the VMS operating system.

It is intended to describe the function of each 

component of the software system in the following 

sections, and also to comment on some issues which have 

arisen during the production of this relatively large 

suite of programs.

6.2: A Cell Librarian

The VIRGIL system describes idioms in terms of 

composition cells and leaf cells. In order that 

composition cell definitions can access the appropriate 

leaf cell definitions, it is useful to hold all cell 

definitions in a single database. A simple database
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Figure 6-1: Overview of Software Environment
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manager has been written to handle such storage of cell 

definitions.

The basic operation which the database manager 

performs during idiom instantiation is, given a cell 

name, to return the definition of that cell. The 

database manager is therefore more accurately described 

as a librarian. An interactive interface to the 

librarian also allows cell definitions to be added, 

deleted and updated.

6.3; Text Analysis

Text analysis is the name given to the lexical 

analysis and syntax analysis phases of the VIRGIL 

language compiler. Since selection and repetition are 

textual operations, these are performed as part of 

lexical analysis. Any IF or FOR construct is fully 

expanded, and resulting lines of text are passed one by 

one to the syntax analyser.

The syntax analyser uses the recursive descent method 

of parsing [Davfe 81], and is driven from an external 

list of production rules.

Cell header statements must be analysed before lexical 

analysis of the body of cell definition commences, so 

that values of parameters, which may be used subseque r. "1 y
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in IF and FOR constructs, are known.

6.4: Internal Representation of a Virtual Griii

Virtual grid representations of instantiated cells are 

stored internally as a graph, with grid points 

represented as graph nodes, and the grid lines between 

grid points represented as bidirectional graph edges. 

Each graph representing a virtual grid has an 

accompanying header record which lists the cell name, the 

ports available for interconnection, and the values of 

any cell parameters.

Once a leaf cell or an intermediate cell has been 

composed, a copy of the internal representation of that 

cell is held in a set of instantiated cells. In this 

way, if a cell is used more than once in a complete idiom 

definition, this internal representation need only be 

generated once from the textual definition. Different 

values for cell parameters will result in different cell 

instantiations, hence the need to store parameter values 

in the cell header. The location of ports within a cell 

instantiation is stored in the header to assist in port 

hiding and renaming operations.

201



6.5: Analysing Leaf Cell Definitions

The header statement in a leaf cell definition 

includes the virtual grid coordinate bounds for that 

cell, and so after this statement has been analysed, it 

is possible to set up the graph used to hold the internal 

representation of the virtual grid.

Subsequent statements in the fully expanded leaf cell 

definition consist of the names of structural components 

and their positions. These components can be added to 

the graph-base representation independently of each 

other, and so each statement in the cell definition can 

be dealt with as it is produced by the text analyser.

Some errors can be dealt with during the analysis of 

individual statements, such as coordinates outside the 

stated bounds, and wire paths which are not orthogonal. 

Errors concerned with invalid circuit constructs are 

detected later, when the entire virtual grid circuit is 

checked in the grid verification phase. This grid 

verification consists of checking the circuit constructs 

at each grid point in accordance with the rules presented 

in section 4.7. Detection of such errors is a powerful 

aid in circuit debugging.
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6.6: Analysing Comoosition CelL Definitions

Each statement in the body of a composition cell 

definition defines the way in which previously 

instantiated cells are composed together to form a new 

intermediate cell. Within a statement, each composition 

can be considered as a separate operation, namely that of 

joining the specified cell instantiation to the partly 

completed intermediate cell to produce a more complete 

intermediate cell.

Each composition operation is performed by merging 

grid points and grid lines on the abutting edges of the 

cells being composed, ensuring that ports which are 

joined together match in both type and name. Cells can 

be stretched so that matching ports are brought into 

alignment, as was described in section 4.5. If a pair of 

unmatched ports is encountered, then the composition 

fails and instantiation of the idiom is halted.

In VIRGIL, composition is a simple but surprisingly 

powerful operation. The fact that cells are 

automatically stretched during composition to ensure 

correct connection of ports means that the designer is 

relieved from the need to "pitch match" adjoining cells, 

as is required in non-stretchable design styles. Most 

especially, changes to the pitch of one cell do not

203



require adjoining cells to also be redesigned

6.7; Outputting the Virtual Grid

Once a cell has been analysed, and an internal 

representation produced, this internal representation can 

be output in either graphical or textual form. Both 

forms are output by scanning the grid in order of 

increasing Y coordinate, and within the same Y, in or-er 

of increasing X coordinate. Devices at nodes and wires 

on edges are output as they are encountered.

Graphically, wires are output as coloured lines, and 

devices as symbolic shapes (icons). Use of a largely 

device independent graphics package [Hughes 81] allows 

graphical output on a number of hard copy and screen 

oriented graphics devices.

6.8: Conversion from Virtual Grid to GIF 2.0

Conversion from the internal representation of a 

virtual grid to a mask level representation in the 

language GIF 2.0 [Mead 80] is achieved by first producing 

a quasi-virtual grid of the type described in chapter 5.

As device templates are created, they are also output 

to a GIF file as GIF "symbols". Each device in the 

virtual grid, including null devices, is then converted
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to GIF by calls to these symbols at the appropriate 

physical positions, as determined by the quasi-virtual to 

physical coordinate mapping. Wires are constructed as 

rectangles of the appropriate width and stretching 

between physical grid line coordinates.

The overlap of wires and devices gives the complete 

mask level circuit.

6.Q: User Interface

To instantiate an idiom, the user must supply the nazie 

of the cell defining the idiom, the database in which 

this cell definition is to be found, the parameter values 

which specify the particular instantiation of the idi-~, 

and the form in which the instantiation is to be outrun.

The output format may be either mask level textual 

representation (GIF 2.0), virtual grid textual 

representation, or virtual grid graphical representation. 

The format or formats to be output are specified by the 

user as VAX/VMS command language qualifiers [VAX 78].

Other information regarding the particulars of the 

idiom are specified interactively in response to prompts 

issued by the idiom instantiation program. The following 

is typical of a terminal dialogue to produce an idiom 

instantiation. Text output by the program is underlined.
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text enclosed in braces is annotation and not part of the 

dialogue.

vgdo/plot/compact {output plotted and in cif}

DATABASE?: cells 

CELL?; shiftreg 

BITS?: 4 

WORDS?: 3 

1

{library name is "cells") 

{name of cell definition} 

{parameter values}

For some structures such as PLA's and ROM's, large 

arrays of parameters would be needed to specify the exact 

idiom instantiation, and it would be tiresome and error 

prone to enter these interactively. The system therefore 

allows such lists of parameters to be input from an 

external file, which in turn may have been generated by 

some other program (e.g. the PLA parameter generator 

described in chapter 7). A typical terminal dialogue is 

such a case might be:

A vgdo/compact 

DATABASE?: pla 

CELL?: pla 

INPUTS?: gdata.pla

{take further input from file "data.pla"}
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In the current implementation, lines of text as output 

from the text analyser, and also information regarding 

various stages of translation to mask level are displayed 

on the terminal so that the user can have some feedback 

as to the progress of the current program run.

6.10; Some Implementation Issues

Particular problems arise when programming "in the 

large", i.e. when composing and debugging large computer 

programs. Such problems have mostly to do with being 

able to control the complexity of such large programs, 

and these can best be solved by imposing some sort of 

hierarchy. The methods used to overcome these problems 

in this particular implementation of a large system are 

worthy of brief comment.

The VIRGIL system consists of a single executable 

program, which in turn is composed of a large number 

(about 20) of separately compiled modules, held in a 

so-called object library. Each module is written in the 

programming language IMP, which has only moderate support 

for separately compiled modules. This support consists 

of so called include files, which allow arbitrary text 

from another file to be included in the source code of a 

program, and also the facility to declare routines and 

variables which are externally visible from separately 

compiled modules other than the one in which they are

20?



declared.

In the VIRGIL system, each module includes one or more 

externally visible routines (and in a few cases 

externally visible variables), through which all 

"communication 11 to and from the module is made. All 

other internal structure of the module is hidden from 

other modules, giving an easily managable method of 

preventing interference between modules.

The source code for each module includes a global 

declaration file. This file consists of a list of global 

constant and data-type declarations, plus the 

specifications of all externally available routines in 

all modules. A copy of this file appears in appendix A. 

Use of this single global file for such declarations 

ensures that all modules maintain a consistent view of 

the system as a whole. Most especially, all modules use 

exactly the same data type and constant definitions, and 

also specifications for externally available routines can 

all be checked with the actual definitions of the 

routines.

Partitioning of the complete VIRGIL software (about 

10,000 lines of code), into a number of relatively simple 

modules (about 200 to 1000 lines of code each) allowed 

each module to be written, tested and added to the object 

library relatively independently of other modules.
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Newer programming languages, notably ADA [ADA 79], 

specifioally provide language features to support modular 

development of programs, and so a discussion of these 

issues might seem out of place in a thesis such as this. 

The motivation for including this discussion is to 

indicate that with care and discipline most of the 

advantages of modular programming are available with 

currently available languages, and furthermore that the 

author has found these techniques to be most useful, and 

recommends such a structured, modular approach to others 

undertaking a project of similar size.
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7r EXAMPLE IDIOMS

7.1; Shift Register

A simple example of an idiom - a generalised shift 

register - has already been presented in section 4.8. 

Figure 7-1 shows a mask level representation of the 2 

bits wide by 4 clock phases long shift register 

instantiation discussed in section 4.8. A mask level 

representation of a different instantiation of the same 

idiom, this time 9 bits wide by 3 clock phases long, is 

shown in figure 7-2.

7.2: Programmable Logic Array

7.2.1 Introduction

PLA's (Programmable Logic Arrays) are a widely known 

idiom for implementing irregular combinatorial functions 

using a regular structure. For those unfamiliar with 

PLA's, a good introduction appears in section 3.10 of 

Mead and Conway [Mead 80].

Since one aim of this thesis is to investigate the 

capture of known idioms, it was decided to attempt the 

capture, as exactly as possible, of an existing PLA 

idiom. Since the PLA is quite a complicated idiom in 

terms of the number of different leaf cells needed to
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».*

Rgure 7—2: 9X3 Shift Register Instantiation
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describe it, and also because of the high degree of 

parameter!sation, the study of this idiom provides good 

insight into the use of VIRGIL as a means of idiom 

capture.

"The VLSI Designer's Library" [Newkirk 83] is a 

publication which gives details of a large collection of 

leaf cell descriptions (at mask level), and also some 

information on how these can be composed together to fcra 

larger structures. As such it represents one of the few- 

attempts to make a collection of useful idioms publicly 

available.

Included in this collection is a set of cells for tr.e 

construction of various types of PLA's. It has been 

decided to implement a simple clocked input, clocked 

output PLA generator using the cells presented in this 

collection. The capture of this one idiom will be done 

at both mask level (i.e. a "traditional" PLA generator), 

and also using the VIRGIL system, so that the two methods 

can be directly compared.

7.2.2: CaDtujre at the Mask Level

"The VLSI Designer's Library" describes a collection 

of leaf cells for composing PLA's, giving a graphical 

representation of each cell, the GIF 2.0 representation 

of each cell, the sizes of the cells, and in a few cases
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some information about how certain cells abut to other 

cells. A picture of a completed PLA is the only 

information which details the way the individual cells 

are arranged to produce the complete circuit. The reader 

is left to deduce the exact nature of the composition, 

and to capture this composition using whatever design 

system is available. Again this highlights the lack of 

any widespread, standard language for the description of 

parameterisable designs.

The leaf cells presented in "The VLSI Designer's 

Library" are easily captured simply by copying the GIF 

descriptions of the various cells. Graphical 

representations of the various leaf cells, including some 

wiring cells not included in the book, are shown in 

appendix B.

The composition of these cells has been described 

using the embedded, mask level 1C design language ILAP 

[Hughes 83]. With a few exceptions, cells are composed 

by simple abutment. Although ILAP does not directly 

support the abutment of cells as a primitive operation, 

it can be implemented by a sequence of operations such 

as:-
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Move to position (X,Y)

Place Cell A

Move to position (X',Y.)» where X ! = X + width of A 

Place Cell B

Such composition merely places cells next to each 

other, and does nothing to ensure that correct 

interconnections between the two cells being abutted have 

been made.

The user of a PLA generator needs some method of 

specifying the various parameters which define a 

particular PLA instantiation. Within the Computer 

Science department at Edinburgh University the design 

tools include several programs for use in the design and 

specification of PLA's [Hughes 83]. To specify PLA 

parameterisation, i.e. the number of inputs, outputs and 

minterms, and also the programming of the AND and OR 

planes of the PLA, a form of table is used. This tabular 

form is also used for the specification of parameters for 

the PLA generator discussed here. A full description of 

this form appears in section 3.1 of "VLSI Design Tools" 

[Hughes 83], but the basics are that entries in the table 

for the AND plane may take the values:
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X = Minterm does not use input term

1 = Minterm uses input term

0 = Minterm uses complement of input term

and for the OR plane:

1 = Output uses minterm

0 = Output does not use minterm

Figure 7-3 gives an example of such a PLA parameter 

table (for the traffic light controller described in 

section 3.11 of Mead and Conway, after appropriate logic 

minimisation), and figure 7-4 shows the PLA corresponding 

to these parameters, as generated by the mask level PLA 

generator.

7.2.3: Capture Using VIR GIL

The mask level generation of PLA's is achieved by 

composing cells using a series of vertical and horizontal 

abutments. Since this type of composition by abutment is 

supported directly in VIRGIL, all that is necessary to 

capture the PLA idiom is to convert each mask level leaf 

cell to a VIRGIL leaf cell, and then describe the manner 

of their composition in a VIRGIL composition cell.

The programming of mask level PLA AND plane and OR 

plane cells is achieved by overlaying the leaf cell 

"PlaCel!" with another cell, such as "PlaProgLeft" (see 

appendix B). In the VIRGIL leaf cells, this
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Rgure 7-3: PLA Parameter Table
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Figure 7-4: PLA Generated at Mask Level
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programmability can be more directly expressed by making 

"PlaCell" a parameterisable leaf cell. Another feature 

of programming a PLA is that adjacent programming cells 

can share a single contact between the drain of the 

programming transistor and the minterm line. This is 

achieved in VIRGIL by placing these contacts on the edges 

of cells, so that if contacts appear on the abutting 

edges of two cells then they will be merged.

The textual descriptions of the VIRGIL PLA leaf cells, 

and of the PLA composition cell, plus graphical 

representations of some leaf cell instantiations, and an 

example of a complete idiom instantiation are all given 

in appendix C.

Since VIRGIL PLA parameters are expressed as a set of 

integers for the number of inputs, outputs and minterias, 

plus boolean arrays representing the programming of the 

AND and OR planes, a program has been written to convert 

from the table form of parameter specification described 

earlier to the list of integer and boolean values needed 

for the idiom instantiation program.

This program was used to process the PLA specification 

in figure 7-3. The resulting list of parameters were 

then presented to the idiom instantiation program, and 

after conversion to mask level, the circuit shown in 

figure 7-5 was produced. A minimum metal wire width of A
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Figure 7-5: PLA Generated by VIRGIL
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lambda was used during compaction to more closely model 

the mask level PLA generator, which uses 4 lambda wide 

metal throughout.

7.2.4; Comparison and Discussion

Perhaps the most striking differences between the mask 

level PLA and the VIRGIL PLA are due to the effect of 

automatic wire trimming. Wires are reduced in length (at 

the virtual grid level) to be only as long as is 

necessary. In the example of the PLA used, only 9 

minterms are used, but since minterm rows are added in 

pairs a blank minterm line appears along the top of the 

PLA. The wire trimming algorithm has detected that this 

wire is connected at only one end to another object, and 

so has removed it completely, including the unused pullup 

at the left hand side. Minterm lines across the OR plane 

and input lines up through the AND plane have also been 

shortened.

Overall, the sizes of the two PLA's are almost 

identical, 186 by 16? lambda for the VIRGIL PLA, 188 by 

170 lambda for the mask level PLA. A more sophisticated 

compaction algorithm could probably decrease the size of 

the VIRGIL PLA still further.

The relatively good compaction of the virtual grid 

representation of the VIRGIL PLA was achieved by takir.z
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advantage of the controllablity (ability to change final 

layout by changing virtual grid layout) and the 

predictability (knowing the effect that changes will be 

likely to have) of the sticks compactor. The cells were 

originally laid out on the virtual grid by capturing the 

precise topology of the corresponding mask level circuit. 

This was then compacted, and areas in which the circuit 

would obviously benefit from small changes were then 

adjusted. Only the design of the relatively complicated 

input and output buffer driver cells had to be iterated 

to achieve a good overall layout.

Unlike with the mask level PLA generator, the VIRGIL 

system can check the validity of all cell

interconnections as cells are being composed. The design 

rule free nature of sticks design ensures that no 

geometric design rule violations will appear in the final 

circuit, and also that this single PLA idiom description 

will be valid for a wide range of different NMOS butting 

contact processes, not just those which conform to Mead 

and Conway lambda based rules. The description of the 

way in which cells have been composed to give a complete 

idiom is neat and concise. Finally, all these advantages 

have been gained without any overall increase in circuit 

area.
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7.3: Parallel Multiplier

A Hardware Algorithm

In this example, a single idiom - a parallel 

multiplier - has been designed which performs a complete 

LSI function, so being suitable for hardware 

implementation without the need for any extra circuitry.

Multiplication of binary numbers can be achieved by a 

successive shift and add algorithm, much the same as is 

used in manual decimal number multiplication. Figure 7-6 

shows how two four bit numbers could be multiplied by a 

series of shifts and additions. The algorithm 

represented by figure 7-6 maps very neatly into hardware. 

Figure 7-7 shows external connections to a gated full 

adder circuit which performs the binary addition:

(S,A.B,C) -> (S',C') where S' = sum, C' = carry

Such cells can be arranged in an array as shown in 

figure 7-8 so as to perform binary multiplication of the 

unsigned binary integers A and B. Rearranging the array 

slightly gives the square array of figure 7-9. Diagonal 

connections nan be replaced by routing these connections 

through adjoining cells, giving the array shown in figure 

7-10. This array is particularly attractive for VLSI
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Rgure 7-6: Multiplication by Shift and Add
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C 1 = carry bit of ( A.B + S + C )

S1 = sum bit of ( A.B + S + C )

A,B connected through

B

C 1

V 
S'

B

Rgure 7-7: Gated Full Adder Cell
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Figure 7-8: Array of Cells to Perform Multiplication
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Rgure 7-10: Array with only Orthogonal Connections

228



implementation because every cell communicates only with 

its four nearest neighbours, and so no global wiring is 

needed. 'A 1 inputs come in from the top of the array, '3' 

inputs come in from the left side, and outputs come out 

from the right side and from the bottom of the array.

The basic cell from which the array is composed is 

shown in figure 7-11. The outputs Scarry, A and B are 

all connected directly to the corresponding inputs. The 

other outputs are given by:

S* = S * (A.B) * C (« = exclusive OR)

C 1 = S.(A.B) + S.C + (A.B).C

The adder inputs S and (A.B) can be receded to give 

signals P (propogate) and G (generate) to reduce ripple 

carry propogation time [Mead 80]. The resulting 

equations are then:

P = (A.B) * S

G = (A.B).S

S» = P « S

C» = P.C + G

7.3.2: A Multiplier Circuit

For simplicity, it was decided to implement the adder 

circuitry using only logic gates, rather than any more 

conceptually complex structures such as pass transistor 

chains. The resulting NMOS gates then correspond to the

229



C1 = carry bit of ( A.B + S + C )

S1 = sum bit of ( A.B + S + C )
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S 1
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Figure 7—11: Basic Multiplier Array Cell
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following equations:

Gbar = A.B.C

Pbar = ((A.B)+S).Gbar)

P = Pbar 

Cbar = "5"

= Gbar.(Pbar+Cbar) 

= (Cbar+P).(C+Pbar)

These gates have then been implemented in NMOS as a 

virtual grid circuit, described by a VIRGIL leaf cell 

definition.

When these cells are arranged to form a multiplier, 

the *S f inputs for the top row of cells, and the 'C f 

inputs for the right side cells are unused and can be 

tied to ground. For cells on the left side of the array, 

the C f output and the Scarry input need to be connected 

together. Rather than add these connections externally, 

the VIRGIL leaf cell definition can be made 

parameterisable to conditionally include them internally 

in the appropriate cells.

As in the shift register idiom described earlier, 

common power and ground lines can be added up the left 

and right sides of the complete array. In this case 

these lines are conditionally included in the single 

multiplier leaf cell definition.
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The manner in which an array of these cells is 

composed to give a complete multiplier is then very 

straightforward - individual cells are built up into 

rows, and these rows are composed to give the complete 

idiom.

The VIRGIL leaf cell and composition cell definitions 

for this multiplier are given in appendix D, along with a 

selection of graphical representations of leaf cell 

instantiations.

A Multiplier Ohio

A 4 by 4 bit multiplier has been instantiated and 

converted to mask level. With the aid of an automatic 

pad placement program included in the Edinburgh 

University Computer Science department VLSI design tools 

[Hughes 83], pads have been added to this multiplier 

circuit to give a complete multiplier chip. The layout 

for this chip is shown in figure 7-12.

The chip has been fabricated using a 6 micron NMOS 

process. Total circuit size is about 2 mm square. The 

fabricated devices have been tested, and some working 

parts have been obtained. With zero volts substrate 

bias, worst case multiplication time is about 400 ns.
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Rgure 7-12: Multiplier Chip
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7.3.4: Discuss1on

The total time for the complete design of this 

multiplier chip, including design of the original 

algorithm, specification of the VIRGIL idiom, 

instantiation of the idiom and addition of bonding pads 

was about 2 person-days.

Although the multiplier is a simple circuit, design at 

the virtual grid level was still considerably easier than 

it would have been at the mask level. Cell design was 

aided by the circuit validity checks incorporated in the 

VIRGIL system, and also the design rule free nature of 

virtual grid design. Composition was aided by both the 

concise manner in which it could be described in the 

VIRGIL language, and the automatic checking and matching 

of ports during cell abutment.

Circuit area for the multiplier could have been 

reduced by further iterations of the cell layout at the 

virtual grid level, and also by designing special cells 

for the top and left side cells, where grounded inputs 

mean some of the internal circuitry is not needed. 

However, the size of the multiplier chip is already 

limited by the area required for the pads, and this extra 

effort would not decrease overall chip size, and so this 

effort was not considered necessary.



8r CONCLUSIONS AND LIMITATIONS

8.1: Conclusions

The most fundamental issue facing 1C designers is 

still the overwhelming complexity of VLSI circuits. The 

ideas presented in this thesis are directly concerned 

with the control of this complexity. The design of 

circuits containing many thousands of devices is a 

daunting task. By having an easily accessible collection 

of useful circuit structures, the designer will be 

encouraged to use such structures as basic circuit 

building blocks, reducing the overall complexity of the 

design task. An experimental system for the capture, 

storage and instantiation of such circuit "idioms" has 

been presented and discussed in this thesis.

Unlike most other 1C design systems, the emphasis in 

the VIRGIL system is on the capture of generalised, 

parameterisable circuit structures rather than specific 

circuits. A purely textual description for the capture 

of circuit idioms has been developed as part of the 

VIRGIL system.

The novel implementation of selection and repetition 

as textual operations which are performed in an initial 

"macro expansion" phase of idiom instantiation gives a 

very simple yet very powerful and flexible method of
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describing the parameterisable features of an idiom.

The VIRGIL system provides a structural description of 

circuits and idioms at the sticks level using a so-called 

virtual grid. The inclusion of structural as well as 

physical design information allows a large number of 

checks to be made about the validity of various circuit 

constructs, reducing the possibility of undetected design 

errors. Design at the sticks level gives freedom from 

geometric design rules, which also reduces the 

possibility of design errors being introduced. The 

virtual grid has been shown to be an elegant method of 

sticks level circuit description (as has also been noted 

by other researchers), and furthermore has been shown to 

be an elegant method for the capture of idioms at the 

same level.

The VIRGIL system also includes special support for 

the hierarchical composition of circuits and idioms. All 

composition is done using simple horizontal and vertical 

abutment. The notions of port hiding and port renaming 

are used to support the enforced matching of ports on the 

abutting edges of cells which are being composed, further 

reducing the chances of design errors being introduced.

In summary, the VIRGIL language allows the rapid and 

accurate capture of design idioms at the cell level. 

Idiom descriptions are quickly debugged because of the
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design rule free nature of sticks level design, and 

because of the considerable number of circuit validity 

checks which are applied during idiom instantiation.

A style of CMOS design called "generalised CMOS" has 

been introduced which allows circuits and idioms to be 

described which are valid in a large number of different 

CMOS technologies. The notion of "sticks extraction" has 

been introduced which would allow the automatic 

conversion of existing mask level circuits into other 

circuits using related, but different, fabrication 

technologies.

A sticks compaction algorithm which is simple, 

controllable and predictable has been presented. This 

algorithm employs the novel notion of a quasi-virtual 

grid, and incorporates some novel ideas about the 

independent translation of wires and devices from sticks 

to mask level representations.

Examples of idioms which have been captured using the 

VIRGIL system have been presented in this thesis, 

including an example of a complete 1C which was 

subsequently fabricated, tested and found to function 

correctly. The advantages of VIRGIL as a method of idiom 

capture have been illustrated by investigating the 

capture of a single idiom (a PLA) using both VIRGIL and 

more traditional methods.
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While the main work of this thesis has been on the 

capture of idioms at the cell level, idioms exist at all 

levels of the design hierarchy. The FIRST silicon 

compiler has been presented as an example of a captured 

idiom at the highest level of the design hierarchy.

8.2: Limitations & Areas for Further Research

With the exception of the investigation of the FIRST 

silicon compiler, the work on the capture of idioms has 

concentrated on idioms at the cell level. The VIRGIL 

system would also provide a useful starting point in the 

development of a system for the capture of idioms at 

higher levels of the design hierarchy. Such idioms might 

be hierarchically composed from smaller idioms, although 

more complicated composition operations involving 

automatic routing would be likely to be required.

In the VIRGIL system, parameterisation is expressed in 

terms of physical attributes, rather than in terms of 

functional attributes. In the case of the PLA example, 

specially written programs were needed to convert from 

logic equations into VIRGIL physical parameters. A 

solution to this problem would require investigation into 

more general methods of capturing idiom parameters at a 

functional level.
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In a system where parameters were entered

functionally, an expert system approach might be feasible 

for finding and choosing between suitable idioms for 

implementing that function. With such a system, VIRGIL 

descriptions of idioms might form the knowledge base of 

known circuit constructs. Each idiom description would 

need to include additional information to allow the 

expert system to understand the function of that idiom, 

and to allow the expert system to choose between various 

idioms for a particular application. The VIRGIL system 

is only an initial step towards such a goal.

The validity checks which are applied during VIRGIL 

idiom instantiation provide a powerful means of detecting 

circuit errors. However, such checks are only able to 

assist in the checking of the correctness of individual 

idiom instantiations. It is not possible, with the 

VIRGIL system, to show that all possible instantiations 

of a given idiom would be valid circuits. Such a problem 

is considerably more difficult. This limitation is not 

considered a serious drawback since any erroneous 

instantiation will be discovered if it is invoked by a 

user.

A more significant limitation of the validity checks 

is that although they provide a good deal of confidence 

that all the circuit constructs used are valid, they do 

not provide any real assurance that the combination of
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these constructs performs the desired function. Such 

automatic circuit verification is, like proving programs 

correct, a difficult problem, and research in this area 

is still in its infancy. The problem of proving a 

generalised idiom correct, rather than just a circuit, 

would be an even more difficult problem.

Perhaps the most important limitation of the VIRGIL 

system is that it exists only as a stand-alone system. 

To be a really useful production tool, rather than just 

an experimental tool, it needs to part of a complete, 

integrated design system. Such a design system, based on 

the capture of designs at the virtual grid level, could 

provide an integrated design environment with facilities 

such as graphical entry of circuits, simulation of 

circuits, help with global placement and routing, and 

secure, consistent handling of parts of the 1C design 

description as they are entered and composed together.

Despite these limitations, the development of the 

VIRGIL system remains a valuable experimental exercise 

which successfully examines the usefulness of circuit 

design at the virtual grid level with subsequent 

conversion to mask level, and, more importantly, the 

capture of idioms at the virtual grid level by the use of 

a purely textual language.
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APPENDIX A: VIRGIL "INCLUDE" FILE

In the IMP programming language, the contents of a 

text file, called an "include" file, may be included, 

verbatim, within the source text of a program.

In the VIRGIL system, all separately compiled modules 

"include" the following file, which contains a list of 

global data type declarations, some global variables and 

constants, and specifications of globally accessible 

routines as described in section 6.10. As such, it gives 

some idea of the various components in the VIRGIL system, 

and it is for this reason that a copy has been included 

here.
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! VIRGIL specs included 
end .af list

INCLUDE FILE FOR VIRGIL PROGRAMS
Version 1.0.0 
Author : Neil Bergmann

{Global Constants}
const integer true=1, false=0
const integer llx = 1 , lly=2,urx=3,uryr4
const integer mink = 128, { lowest keyword token }

minp = 256, { lowest phrase token } 
maxp = 400 { highest phrase token }

const integer error signal=12

const integer 0, (Data type values} 
= 128 , 
= 256 , 
= 257, 
= 258,
1 , 
2,

__ _undefined =
reserved 
variable 
constant 
statement 
integer = 
boolean = 
rela tional = 3 , 
for variable = 4 , 
parameter = 5 , 
coord = 6, 
port = 7, 
contact = 8, 
device = 9, 
array = 10, 
nowell = 11, 
pwell = 12, 
nwell = 13

{ Values for operator types }
{ Priority is encoded into 2nd byte }
{ General form is TYPE ! PRIORITY LEVEL « P f TY OFFSET
{ Decreasing level of precedence }

pmask = 255 
1 « 16

po I umask,
po,
po,
po,
PO,
po,
PO,

const inte
congt; inte
const inte
uminus
divide
multiply
plus
minus
LE
LT

ge r PO = 8
ger umask
ge
~

=
-
^
=
=
=

r £
1
2
3
4
5
6
7

8 <
7 <
7 <
6 <
6 <
5 <
5 <
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GT
EQ
NE
GE
not
and
or
maxop

8
9

10
1 1
12
13
14
14

5
5
5
5
4
3
2

po,
po,
po,
po,
po
po,
po,

! umask,

{Virtual grid item values}

const integer pwire mask = 2_0001,
nwire mask = 2_0010, 
dwire mask = 2_0100, 
mwire mask = 2 1000

{Wires}

const integer buried mask = 2_0111, 
butting mask = 2_1111, 
burieda mask = buried mask,

{contacts)

buriedb mask = 2_10000 ! buried mask,
bor shift = 6,
bor mask = 2_111111,
pm mask = pwire mask !

mask !
mask

dm mask = 
nm mask = 
psub mask 
nsub mask

dwire
nwire
= 2_011000,
= 2 101000

mwire mask, 
mwire mask,

! mwire mask,

{dev ice s)const integer ptype = 1000,
ntype = 1001, 
depletion = 1002, 
load = 1003

{Record Format Specifications}
{Symbol Table Entry}
record format HASHF( string (*) name sname,

integer type, 
(integer value or 

record (*) name rname))

{Single Lexical Item}
record format LEXF( integer type,

(record (hashf) name data 
or integer value))

{Complete Lexical Entity}
record format LEX ARRAY( £

record (lexf) array name array, 
integer first,last,max)

{Elements of the Syntax Tree}

record format spec ELTF
format ELT NAME (record (eltf) name name)
format ELTF (record (elt name) next,
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integer item) 
gonat record (eltf) name nil elt == 0

record format; spec ALTF
record format ALT NAME (record (altf) name name)
record format^ ALTF (record (alt name) next,

record (elt name) items) 
ponst record (altf) game nil alt == 0

{Record to hold syntax trees for complete grammar)

record format PHRASEF (record (alt name) def,
string(15) ident) 

record format^ REDUCEF (2.
record (phrasef) array phrases(minp:maxp),
integer currp) 

const record (reducef) name nil reduce == 0

{Analysis Record Nodes}

record format spec SYNTAXF 
record format SYNTAX NAME (_£

record (syntaxf) name name) 
record format^ SYNTAXF ( record (lexf) item,

record (syntax name) next,def) 
const record (syntaxf) name nil syntax == 0

{Array Bounds Info}
record format BOUNDF ( integer low, high, type)

{Array Header}
const integer max bounds = 6
record format ARRAY HEAD ( integer base type,

integer number of bounds,
integer size,
record (boundf) array bound(1:max bounds),
integer array name array name,
record (*) name rname)

coqst record (array head) name nil array head == 0 

{Expression Evaluation Records}

record format EXPRFf integer type,value)
record format spec STACKF
record format STACK NAME ("record (stackf) name name)
record format STACKF (record (exprf) item,

record (stackf) name next) 
const record (stackf) name nil stackf == 0

{Virtual Grid Item}
record format DEVICEF ( integer 1,w,sor,dtype)
c o n a fr record (devicef) name nil device == 0

record format spec ITEMF
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record format ITEM NAME( record (itemf) name name)
record format ITEMF( integer type,

record (item name) next, 
string (64) item name, 
record (*) name symbol, 
(record (devicef) name dname si 
or integer value))

const record (itemf) name nil item == 0

{Virtual Grid Nodes and Edges}

record format spec VGEDGE
record format VGNODE ( record (item name) item list,

record (vgedge) name n,s,e,w) 
const record (vgnode) name nil vgnode == 0

record format YGEDGE ( integer wire,
record (vgnode) name n1,n2, 
integer mwire width)

const record (vgedge) name nil vgedge == 0

{Port List declarations}
record format spec portf
record format port namef record (portf) name name)
record format nor tf(stringf 64) port name,

record (vgnode) name portp, 
record (port name) next)

const record (portf) name nil port == 0

{Parameter Lists}
record format spec plistf
record format plist namefrecord (plistf) name name)
record format plis tf(integer type,

f integer value or .Q.
record (array head) name aname),
string (64) pname,

record (plist name) next) 
const record (plistf) name nil plist == 0

{Virtual Grid Pointer}
record format gridf ( integer array bounds(llx:ury),

string (255) cell name, 
record (plist name) plist, 
record (port name) port list, 
record (vgnode) name vgp )

const record (gridf) name nil grid == 0

{Virtual Grid Coordinate}
recor^ format COORDF ( integer x,y)

{List of Ext f l Integers Identifying Grammatical Items}

external integer spec true const,
false const, 
unop phrase,
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and name, 
or name, 
not name, 
if name, 
for name, 
then name, 
else name, 
repeat name, 
operand phrase, 
op phrase, 
expr phrase, 
exprrest phrase, 
for item phrase, 
for rest phrase, 
for list phrase, 
fmlitem phrase, 
type phrase, 
simple phrase, 
default phrase, 
header phrase, 
celltype phrase, 
formals phrase, 
fmlrest phrase, 
integer name, 
boolean name, 
cell name, 
acti tern phrase, 
call phrase, 
actuals phrase, 
actres t phrase, 
gridsize phrase, 
coord phrase, 
label phrase, 
griditem phrase, 
nodeitem phrase, 
position phrase, 
path phrase, 
pathrest phrase, 
offset phrase, 
port phrase, 
contact phrase, 
device phrase, 
wire phrase, 
mport name, 
pport name, 
dport name, 
nport name, 
buried name, 
pm name, 
dm name, 
nm name, 
butting name, 
psub name, 
nsub name, 
ptype name,
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ntype name, 
depletion name, 
load name, 
pwire name, 
dwire name, 
nwire name, 
mwire name, 
end name, 
rename phrase, 
arrayelt phrase, 
idxlist phrase, 
idxrest phrase, 
array phrase, 
array name, 
of name, 
bounds phrase, 
bdsrest phrase, 
bdsitem phrase, 
cal1st phrase, 
complist phrase, 
uprest phrase, 
rtitem phrase, 
rtrest phrase, 
upitem phrase, 
qual phrase, 
renitem phrase, 
rotation phrase, 
reflect phrase, 
inx name, 
iny name

{External Routines Available in Utils.olb}

{ERROR Module Routines}
external routine spec FATAL ERROR fstringC 255) s) 
external routine spec WARNING MESSAQE(string(255) s) 
external routine spec SOURCE ERRQRf string(2S5) s) 
external string(255) fn spec ERROR TEXT

{HEAP Module Routines}
external string(*) map spec NEWS (stringf255) s)

{HEAPA Module Routines}
external routine spec NEW ARRAY(.c_

record (array head) name ap) 
external routine spec DISPOSE ARRAY(.c_

record (array head) name ap)

{HASH Module Routines}
external routine spec INITIALISE HASH 
extern^), record (hashf) map spec ENTER KEY(.c_

string(255) s)
external routine spec RESET HASH 
external routine spec USE LOCAL HASH 
external routine spec USE GLOBAL HASH



external routine spec COPY GLOBAL TO LOCAL 
external routine spec PRINT HASH

{DBMS Module Routines}
const integer t=80, f=20, n=40 {string sizes}

external routine spec INITIALISE DB(.c_
string( f) directory stem)

external stringf f) fn spec FIND FILE(.c_
string( t) text)

{EXTRACT Module Routines} 
external routine spec EXTRACT (.c_

record (lex array) name complete,line )

{LEX Module Routines}
external routine spec LEXICAL ANALYSIS (3.

record (lex array) name complete, 
string (20) file) 

external routine spec STRING ANALYSIS (3.
record (lex array) name complete, 
string(255) name s)

external routine spec PRINT LEX (5.
record(lex array) name rec)

{REDUCE Module Routines}
external routine spec REDUCE(string(^0) filename)
external routine spec PRINT SYNTAX
external routine spec SET GRAMMAR (s.

record (reducef) name grammar) 
external record (reducef) map spec GRAMMAR

! Syntax analysis declarations included

{FIND Module Routines}

external routine spec FIND NAMES (£.
record (reducef) name grammar)

{COMPARE Module Routines}
external record (syntaxf) map spec ANALYSE (£.

record (lex array) name line) 
external record (syntaxf) map spec SYNTAX ANALYSE (&.

record (lex array) name line, 
integer token)

external routine spec PRINT ANALYSIS (Q.
record (syntaxf) name elt, 
integer level)

external routine spec DISPOSE ELT ( £
record( syntax name) name. 3)
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gxternal routine spec CHECK(.c_
record (syntaxf) name sp, 
integer type)

(EXPR Module Routines)
external record (exprf) function spec EVALUATE ( £.

record (syntaxf) name exp) 
external routine spec PRINT EXPfrecord(exprf) e)

{LINE Module Routines}
external routine spec PROCESS LINE(.c_

record (lex array) name line) 
external routine spec use process item 
external routine spec use build

{MACRO Module Routines}
external routine spec PROCESS LEX (3.

record (lex array) name from,
integer name from p)

{GRID Module Routines}

external routine spec? SET GRID (c_
record (gridf) name grid) 

external record (gridf) map spec GRID 
external routine spec CREATE GRID 
external record (vgnode) map spec FIND NODE(.c_

record (gridf) name grid,
integer x,y)

{HEADER Module Routines}
external record (gridf) fn spec PROCESS HEADER (£.

record (lex array) name lex)

{COORD Module Routines}
external record (coordf) fn spec POSITION(.c_

record (syntaxf) name p)

{ITEM Module Specs}
external routine spec PROCESS ITEM (£

record (syntaxf) name p, 
record (gridf) name grid)

{VERIFY Module Routines}
external routine spec VERIFY GRID

{PLOT Module Routines}
external routine spec DRAW GRID(.c_

record (gridf) name grid)

{MATCH Module Routines}
external record (gridf) map spec CELL CALL (£.

record (syntaxf) name callp,
integer ask)



external record (gridf) map 3peo COPY GRID(.c_
record (gridf) name oldgrid)

external routine spec DISPOSE GRID (s.
record (gridf) name grid)

{Array Module Routines}
external routine spec ANALYSE ARRAY(.c_

record (syntaxf) name p)
external record (exprf) fn spec FIND ARRAY ELT (s, 

record (syntaxf) name p)

{Formals Module Routines}
externalrecordfplist name) fnspeo ANALYSE FORMALS(c,

record (syntaxf) name p,
record (plist name) actuals,
integer ask)

{Build Module Routines}
external routine spec build cell(.c_

record (syntaxf) name sp) 
external record (gridf) map spec composed

record(syntaxf) name sp)

{Join Module Routines}

external routine spec join grids(_s.
record (gridf) name new gridp,

gridp,
integer ontop) 

external routine spec DESPIKE GRID(c_
record (gridf) name gridp)

{READIN Module Routines}
external record (gridf) map spec READ CELL (£.

3tring(255) file)

{FLESH Module Routines}
external routine spec COMPACT GRID(_c_

record (gridf) name grid)

{DUMP Module Routines}
external routine spec DUMP GRID(.c_

record (gridf) name grid)

en4 of file
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APPENDIX B: PLA MASK LEVEL LEAF CELLS

This appendix contains graphical representations of 

the various leaf cells which are used in the mask level 

PLA generator described in section 7.2.2.
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APPENDIX C: PLA VIRGIL CELL DEFINITIONS

This appendix contains the VIRGIL leaf cell and 

composition cell definitions which capture the PLA idiom 

described in section 7.2.3. Graphical representations of 

cell instantiations are also shown.
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Leaf Cell PlaClockln = (0,0,9,22) 
clk.e: pport 0 (9,1) 
clk.w: pport § (0,1) 
pwire 0 clk.e -> clk.w

vdd. e: mpor t @ (9,12) 
vdd.w: mport § (0,12) 
mwire § vdd.e -> vdd.w

gnd.e: mport £ (9,20) 
gnd.w: mport § (0,20) 
mwire § gnd.e -> gnd.w 
gnd.n: nport § (5,22) 
nm § (5,20) 
nwire 6 (5,20) -> gnd.n

in: nport § (6,0) 
out: pport § (2,22) 
outbar: pport @ (6,22)

{device s}
ntype(w=8) § (6,7) 
ntype(w=4) § (6,16) 
depletion 6 (4,11) 
depletion § (4,14) 
ntype § (6,1)

nwire @ in -> (6,3)
butting e (6,3)
pwire § (6,3) -> (6,7)

nm § (8,20)
(8,20) -> (7,20) -> (7,7)
(5,7) -> (5,10) -> (3,10)
(4,10) -> (4,16)
(3,16) -> (7,16) 

nm § (4,12) 
butting § (3,10) 
butting @ (3,16)

nwire 
nwire 
nwire 
nwire

@ 
§ 
@ 
6

-> (5,7)

pwire 
pwire 
pwire 

End

(3,10) -> (1,10) -> (1,11) -> (6,11)
(3,16) -> (1 ,16) -> (1 ,14) -> (4,14)
(1,16) -> (1,19) -> (2,19) -> out

-> outbar
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Leaf Cell PlaClockOut = (0,0,14,22) 
clk.e: pport § (14,21) 
clk.w: pport § (0,21) 
pwire § clk.e -> clk.w

vdd.e: mport @ (14,5) 
vdd.w: mport 0 (0,5) 
mwire § vdd.e -> vdd.w 
gnd.e: mport 0 (14,15) 
gnd.w: mport @ (0,15) 
mwire @ gnd.e -> gnd.w

outl.s: pport § (2,0) 
out2.s: pport 0 (9,0)

(9,4) 
(8,7)

{devices} 
depletion(l=2) § 
depletion(l=2) & 
ntype § (5,21) 
ntype 6 (12,21) 
ntype(w=4)0 (6,12) 
ntype(w=4) § (10,11)

nm § 
nm § 
butting 
but ting 
butting

(4,5) 
(9,15)

§
e

(11,2)
(3,8)
(5,18)

butting g (12,18)

pwire § outl.s -> (2,2) -> (1,2) -> (1,7) -> (8,7)
pwire § (3,7) -> (3,8)
pwire § out2.s -> (9,4)
pwire § (9,2) -> (11 ,2)
pwire § (6,12) -> (6,17) -> (5,17) -> (5,18)
pwire § (10,11) -> (10,12) -> (13,12) -> (13,17)
pwire § (13,17) -> (12,17) -> (12,18)

nwire £ (12,18) -> in2.n 
nwire § (5,18) -> in1 .n 
nm @ i n 1 . n 
nm § in2.n

nwire 
nwire 
nwire 
nwire 
nwire 
nwire 

End

0 (11,2) -> (13,2) -> (13,4)
0 (4,5) -> (6,5) -> (6,6) ->
0 (8,9) -> (3,9)
0 (3,8) -> (3,9) -> (2,9) ->
0 (9,15) -> (7,15) -> (7,1D
0 (7,11) -> (13,11) -> (13,^

-> (6,4) -> (6,5) 
(8,6) -> (8,9)

(2,12) -> (7,12)
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Leaf Cell PlaHoleWires = (0,0,3,22)
vdd.e: mport 0 (3,5)
vdd.w: mport § (0,12)
mwire § vdd.w -> (1,12) -> (1,5) -> vdd.e
gnd.e: mport @ (3,15)
gnd.w: mport § (0,20)
gnd.n: mport § (2,22)
mwire § gnd.w -> (2,20) -> (2,15) -> gnd.e
mwire 0 gnd.n -> (2,20)
pport § (3,21)
pport § (0,1) 

End

Leaf Cell PlaPullupSpace = (0,0,1,2)
vdd.s: mport § (0,0)
vdd.n: mport § (0,2)
mwire § vdd.n -> vdd.s
gnd. e: mport § (1,1) 

End

Leaf Cell PlaOutSpace = (0,0,2,4) 
gnd .e : mport § (2,2) 
gnd.w: mport § (0,2) 

mport @ (1,4) 
§ gnd.e -> gnd.w 
§ gnd.n -> (1,2) 
mpor t @ (2,1) 
mport § (0,1) 

§ vdd.e -> vdd.w 
pport @ (2,3) 
pport § (0,3) 

§ clk.e -> clk.w

gnd. n: 
mwire 
mwire 
vdd. e: 
vdd. w: 
mwire 
elk. e : 
olk.w: 
pwire 

End

Leaf Cell PlaVddSide = (0,0,1,3) 
vdd. e: mport § (1,2) 
vdd. n: mport § (0,3)

vdd.e -> (0,2) -> vdd.n 
pport @ (1,1) 
pport @ (0,1) 
clk.e -> clk.w

mwire 
elk.e: 
clk.w: 
pwire 

End
§

Leaf Cell PlaVddCorner = (0,0,1,1)
vdd.e: mport 0 (1,1)
vdd.s: mport @ (0,0)
mwire £ vdd.e -> (0,1) -> vdd.s 

End
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Leaf Cell PlaVddTop = (0,0,4,1) 
out.a: pport § (1,0) 
outbar.s: pport § (3»0) 
gnd.s: nport @ (2,0)

vdd.e: mport & (4,1) 
vdd.w: mport § (0,1) 
mwire @ vdd.e -> vdd.w 

End

Leaf Cell PlaVddHole = (0,0,2,1)
vdd.e: mport § (2,1)
vdd.w: mport § (0,1)
mwire £ vdd.e -> vdd.w
gnd.s: mport § (1,0) 

End

Leaf Cell PlaGroundSpace = (0,0,2,2)
gnd.s: mport @ (1,0)
gnd.n: mport @ (1,2)
mwire § gnd.s -> gnd.n
gnd.e: pport 0 (2,1)
gnd.w: pport § (0,1)
pwire § gnd.e -> gnd.w
pm 0 (1,1) 

End
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Leaf Cell PlaCell (11:boolean=false,ur:boolean=false,
lr:boolean=false, ul:boolean=false, 
left:boolean=false) = (0,0,4,3)

out.s: pport § (1,0)
out.n: pport § (1,3)
pwire g out.s -> out.n

outbar.s: pport § (3,0) 
outbar.n: pport § (3,3) 
pwire Q outbar.s -> outbar.n

gnd.s: nport § (2,0) 
gnd.n: nport § (2,3) 
nwire @ gnd.s -> gnd.n

linel.e: mport @ (4,1) 
linel.w: mport £ (0,1) 
mwire § linel.e -> linel w

Iine2.e: mport @ (4,2) 
Iine2.w: mport @ (0,2) 
mwire @ Iine2.e -> Iine2.w

nport £ 1inel.e 
nport § linel.w 
nport § Iine2.e 
nport @ Iine2.w

[if 11 then
ntype(w=2) @ (1,1)
[if not left then nm §
nwire § (0,1) -> (2,1) 

[if lr then
ntype(w=2) 6 (3,1)
nm @ (4,1)
nwire § (4,1) -> (2,1) 

[if ul then
ntype(w=2) §
[if not left
nwire @ (0,2) 

[if ur then
ntype(w=2) § (3,2)
nm § (4,2)
nwire $ (4,2)

(1,2) 
then nm & 
-> (2,2)

(0,1)] 
]

(0,2)] 
]

-> (2,2) ]

End
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Leaf Cell PlaGround = (0,0,4,2) 
out.s: pport § (1,0) 
out.n: pport @ (1,2) 
pwire @ out.s -> out.n

outbar.s: pport § (3»0) 
outbar.n: pport § (3>2) 
pwire @ outbar.s -> outbar.n

gnd.s: nport § (2,0) 
gnd.n: nport @ (2,2) 
nwire 0 gnd.s -> gnd.n

gnd.e: mport @ (4,1) 
gnd.w: mport @ (0,1) 
mwire § gnd.e -> gnd.w

nm § (2,1) 
End

Leaf Cell PlaPullup = (0,0,4,3) 
vdd.s: mport § (0,0) 
vdd.n: mport § (0,3) 
mwire @ vdd.n -> vdd.s 
linel.e: mport £ (4,1) 
Iine2.e: mport @ (4,2) 
nport @ linel.e 
nport § Iine2.e 
load(l=3) § (2,1) 
load(l=3) § (2,2) 
mwire § (0,1) -> (1,1) 
mwire § (0,2) -> (1,2) 
nm § (1,1) 
nm § (1,2)
nwire @ (1,1) -> linel.e 
nwire @ (1,2) -> Iine2.e 
mwire @ (2,1) -> linel.e 
mwire § (2,2) -> Iine2.e

End
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Leaf Cell PlaConnect = (0,0,3,6)
gnd.s: mport § (2,0)
gnd.n: mport £ (2,6)
mwire § gnd.s -> gnd.n
linel.w: mport § (0,1)
Iine2.w: mport g (0,4)
out.e: pport § (3,5)
outbar.e: pport § (3,2)
pm § (1,1)
mwire @ linel.w -> (1,1)
pwire § (1,1) -> (1,2) -> outbar.e
pm 0 (1,4)
mwire 0 Iine2.w -> (1,4)
pwire § (1,4) -> (1,5) -> out.e
gnd.e: nport § (3,3)
nm 0 (2,3)
nwire @ (2,3) -> gnd.e
nport @ linel.w
nport @ Iine2.w 

End

Leaf Cell PlaConnectSpace = (0,0,3,3)
gnd.s: mport § (2,0)
gnd.n: mport § (2,3)
mwire § gnd.s -> gnd.n
gnd.e: pport § (3,2)
gnd.w: mport § (0,1)
mwire § gnd.w -> (2,1)
pm § (1,1)
pwire 0 (1,1) -> (1,2) -> gnd.e 

End

Leaf Cel
linel .
Iine2.
linel .
Iine2.
nport
nport
nport
nport
mwire
mwire
gnd. e :
gnd.w:
pwire

End
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Composition Cell PLA ( ni : integer = 2, 
no: integer = 2, 
nmin: integer = 2,
anda: array( 1 : ni*2 , 1 : nmin) of boolean = true, 
ora: array( 1 : no, 1 : nmin ) of boolean= true)

[for in = 1 . . ni repeat
incol_in = "" PlaClockln [if in=1 then /gnd.w] - 

[for min = 1 . . nmin/2 repeat -
"~ PlaCell ( ll = anda(in*2-1 ,min*2-1) , -

lr=anda(in*2,min»2-1 ) , - 
ul=anda( in*2-1 ,min*2) , - 
ur=anda( in*2 ,min*2) , - 
left=in=1) - 

[if min-min/2*2=0 or min= nmin/2
then ~~ PlaGround]] - 

*" PlaVddTop

[for out = 1..(no+1)/2 repeat
outcol_out = ^"PlaClockOut /in1.m=line1.m/in2.m=line2.m -

[for min = 1..nmih/2"repeat -
" PlaCell (lr=ora(out»2-1,min»2-1),

ur=ora(out*2,min*2-1), 
ll=ora(out*2-1,min*2), 
ul=ora(out*2,min*2), - 
left=min=nmin/2) § 3 - 

[if min-min/2*2=0 and min#nmin/2 -
then " A PlaOrSpace ]] - 

"~ PlaPullup @ 3

leftcol = " PlaVddSide -
[for min = 1 .. nmin/2 repeat -

*" PlaPullup -
[if min-min/2*2=0 or min=nmin/2 -

then " PlaPullupSpace] ]- 
"", PlaVddCorner

holecol = " PlaHoleWires -
[for min = 1 .. nmin/2 repeat -

** PlaConnect -
[if min-min/2*2=0 or min=nmin/2 -

then "" PlaConnectSpace]- 
[if min=nmin/2 then /gnd.e]] - 

"* PlaVddHole

spacecol = " A PlaOutSpace -
[for min = 1.. nmin/2 repeat -

** PlaGround § 3 - 
[if min-min/2»2=0 and min#nmin/2 

then ** PlaGroundSpace ]]-
*" PlaPullupSpace § 3
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rightcol = ~~ PlaOutSpace /gnd.e/vdd.e - 
[for min = 1..nmin/2 repeat -

~~PlaGround /out.n/outbar.n/gnd.n g 3 
[if min-min/2*2=0 and min#nmin/2 then

PlaGroundSpace/gnd.e]] - 
"" PlaPullupSpace/vdd.n § 3

pla = » leftcol
[for in=1..ni repeat » incol__in] - 
» holeool -
[for out=1..(no+1)/2 repeat » outcol_out - 

[if out-out/2*2=0 and out#(no+1)/2 -
then » spacecol]]- 

» rightcol

End
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APPENDIX D: MULTIPLIER CELL DEFINTTTDMS

This appendix contains the VIRGIL leaf cell and 

composition cell definitions which capture the Multiplier 

idiom described in section 7-3. Graphical 

representations of some leaf cell instantiations are also 

shown.
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Leaf Cell Mult ( lef t : boolean=false ,
ri gh t: bo olean= false, 
top:boolean=false) = (0,0,19,11)

vdd.w: mport @ (0,6) 
mwire § vdd.w -> (16,6)

gnd.be: mport § (19tO) 
mwire § (1,0) -> gnd.be

gnd.te: mport @ (19,11) 
mwire % (1,11) -> gnd. te

[if right then
mwire(w=2) § gnd.be -> gnd.te 

else
vdd. e : mport § (19,6)
mwire § (16,6) -> (19,6)

[if left then
vdd. b : mport % (0,0) 
vdd. t: mport @ (0,11) 
mwire(w=2) § vdd.b -> vdd.t 
gnd.tw: mport § (1,11) 
gnd.bw: mport @ (1,0)

else
gnd.bw: mport @ (0,0) 
mwire § (0,0) -> (1,0) 
gnd.tw: mport @ (0,11) 
mwire § (0,11) -> (1,11)

a. t : pport @ (5,11) 
a. b: pport § (5,0) 
pwire § a . t -> a . b

[if not right then 
b. e : mport § (19,7) 
mwire § (6,7) -> b.e

[if left then
b.w: pport § (0,7) 
b. o: pm § (1,7) 
pwire @ b.w -> b.c 
mwire § b.c -> (6,7)

else
b.w: mport § (0,7) 
mwire § (6,7) -> b.w

s,carry b: pport § (3,0) 
[if left then
pwire § (1,1) -> (3,1) -> s^carry b
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else
s,carry,w: pport § (0,5)
pwire @ s«carry, b -> (3,5) -> s,carry w
c,out : pport § (0,1)
pwire § cout -> (1,1)

s,in: pport § (3,11) 
[if top then

pm e (2,11)
pport § (2,11)
pwire 0 (2,1 1) -> (3,11)

s.out : pport § (19,5)

[if right then
mwire § ( 17,1 ) -> (17,0)
pm 6 (17,1) 

else
q,in: pport § (19,1)
pwire 6 (19,1) -> (17,1)

pwire 6 ( 17,1 ) -> (17,10)
pwire § (15,1) -> (15,7) -> (16,7)
pwire § (13,4) -> (13,7) -> (12,7)
pwire § (11,1) -> (11,10)
pwire @ (8,1) -> (8,10)
pwire § (6,7) -> (6,1 0)
pm « (6,7)
pwire @ (3,8) -> s^.n
pwire £ (7,7) -> (8,7)
pwire § (9,7) -> ( 1 1 ,7)

nm 6 (1,11) 
nport @ (1,11)
nport § (1,0)
nwire § (1,11) -> (1,8) -> (7,8) -> (7,6)
nm § (7,6)

nwire § (2,10) -> (9,10) -> (9,6)
nm 0 (9,6)
nwire § (4,10) -> (4,11)
nm § (4,11)
nport @ (4,11)
nport § (4,0)

nport § (10,11) 
nport § (10,0) 
nport § (18,11) 
nport 0 (18,0) 
nm £ (10,11)
nm 0 (18,11)
nwire @ (10,11) -> (10,10) -> (12,10) -> (12,6)
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nm 0 (12,6)
nwire 0 (18,11) -> (18,10) -> (16,10) -> (16,6)
nm 6 (16,6)

nwire 0 (7,6) -> (7,1) -> (16,1)

nwire 0 (9,6) -> (9,4) -> (18,4)
nm 0 (14,0)
nport 0 (14,0)
nport 0 (14,11)
nwire 0 (14,0) -> (14,4)

nm 0 (2,10) 
nm 0 (7,10) 
mwire § (2,10) -> (2,9) -> (7,9) -> (7,10)

pm 0 (1,1) 
nm § (7,2) 
mwire § (1,1) -> (1,2) -> (7,2)

nm 0 (10,1) 
nm § (16,1) 
mwire 0 (10,1) -> (10,2) -> (16,2) -> (16,1)

nm § (12,4) 
nm 0 (16,4) 
mwire 0 (12,4) -> (12,3) -> (16,3) -> (16,4)

nm § (10,4)
nm § (18,4)
mwire § (10,4) -> (10,5) -> (18,5) -> (18,4)
pm @ (18,5)
pwire § (18,5) -> s.out

ntype § (3,1 0) 
ntype(w=2) 0 (5,10) 
ntype(w=2) § (6,10) 
ntype § (8,10) 
ntype § (11,10) 
load(3or=1) § (12,7) 
load(sor=1) § (16,7) 
ntype & ( 17,10)

ntype(w=2) 0 (3,8) 
ntype(w=2) § (5,8) 
ntype(w=2) 0 (6,8) 
load(sor=1 ,1=2) § (7,7) 
load(sor=1 ,1=2) § (9,7)

load(l=2) 0 (7,5) 
ntype 0 (11,4) 
ntype 0 ( 13,4) 
ntype 0 (15,4) 
ntype 0 (17,4)
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load(l=2) § (9,5) 
ntype § (8,1) 
ntype § (11,1) 
ntype § (15,1)

END

Composition Cell Multiplier ( sizea : integer=4 ,
sizeb : integer=4)

[for 1=1.. sizeb repeat
row_i = [for j=1..sizea repeat - 
» mult( top=( i=sizeb),left=(j=1),right=(j=sizea))]

multiplier = [for 1 = 1.. sizeb repeat ~~ row__i] 

End
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