
IDIOMATIC INTEGRATED CIRCUIT DESIGN

Neil Bergmann

Ph.D.

University of Edinburgh

193U

ABSTRACT

An examination is made of the capture, storage and

instantiation of well-known, generalised structures used

in the design of MOS integrated circuits. These

structures are called "idioms 11 .

The capture of an idiom for translating from a high

level language specification to a complete digital signal

processing system, called the FIRST silicon compiler, is

examined.

A system is presented which allows and encourages the

capture of a large number of idioms at the cell level zf

1C design. This system is based on a purely textual

language, VIRGIL, which captures circuits and idioms at

the sticks level, in terms of a set of structural

components laid out on a so-called virtual grid. The

language supports parameterisation, selection and

repetition as textual operations, and also allows idioms

to be composed from a set of leaf cells which are joined

by simple abutment.

An algorithm is presented for the conversion of

virtual grid circuits into mask level representations,

and in so doing the notion of a quasi-virtual grid is

introduced.

A new style of CMOS design, called "generalised CMOS",

is introduced, which allows the design of circuits which

could be fabricated in a wide range of CMOS technologies.

An idea for a method of converting existing mask level

circuits into other technologies, called "sticks

extraction", is presented.

A prototype implementation of a system to support the

capture of idioms using the VIRGIL language, and their

subsequent instantiation including conversion to mask

geometry is discussed, and examples of idioms which have

been captured by this system are presented.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, David Rees, for

his guidance, support and encouragement throughout the

period of my study for this thesis. Thanks must also go

to the many people within the University of Edinburgh who

assisted me during this time, most especially John Gray,

Irene Buchanan, Gordon Hughes, Hamish Dewar, Peter Denyer

and David Renshaw.

I am grateful to the University of Edinburgh for

providing the facilities to conduct this research, and to

the Association of Commonwealth Universities for their

fianancial support under the Commonwealth Scholarship

scheme.

DECLARATION

I hereby declare that this thesis has been composed by

myself and that the work described in this thesis is my

own.

CONTENTS

1: Introduction..9

1.1: The Need for Research into CAD for VLSI......... 9

1.2: CAD in VLSI Design Capture..................... 1 0

1.3: Current CAD Tools for Design Capture........... 13

1.4: The Notion of Design "Idioms".................. 1 9

1.5: The Scope of this Thesis....................... 21

2: The Current State of the Art....................... 25

2.1: Structured VLSI Design. 25

2.2: VLSI Design Languages and

Programming Languages.......................... 27

2.3: Design Languages and Verification. 28

2.4: VLSI Design Languages &

the Control of Complexity...................... 31

2.5: Composition of VLSI Designs 33

2.6: Methods of Circuit Description. 37

2.7: Sticks Compaction..............................41

2.8: Technology Independent Design. 43

2.9: Cell Libraries................................. 45

2.10: Silicon Compilers............................ .46

3: The F.I.R.S.T. Silicon Compiler.................... 48

3.1: Background to the FIRST Silicon Compiler.......48

3.2: An Innovative Architecture..................... 49

3.3: Software Support for an

Integrated Design Environment.................. 52

3.3-1: Language Compiler.......................... 52

3-3.2: Simulation................................. 58

3.3.3: Physical Layout........................... .6 1

3 4: An Example System.............................. 65

3.5: Conclusions....................................70

4: An Idiom Description Language...................... 72

4.1 The Virtual Grid.72

4.2 Idioms and Instantiations....................... 77

4.3: VG - A Virtual Grid Circuit

Description Language...........................78

4.3.1 Notes About the Language Description. 30

4.3.2 Alphabet.................................... 81

4.3-3 Identifiers.81

4.3.4 Reserved Words 32

4.3.5: Numerals and Expressions. 32

4.3-6: Statements................................. 84

4.4: VG Leaf CelIs..................................34

4.4.1 Leaf Cell Header and Terminator............. 84

4.4.2: Leaf Cell Component Specification. 85

4.4.3 An Example Leaf Cell Description............ 96

4.5: VG Composition CelIs 96

4.5.1: Header and Terminator Statements........... 99

4.5.2: Basic Composition Operators................ 99

4.5.3: Rotation and Reflection................... 105

4.5.4: Port Hiding & Renaming.................... 108

4.6: VIRGIL - An Idiom Description Language........ 113

4.6.1: Parameterisation.114

4.6.2: Selection.................................117

4.6.3 Repetition................................. 1 18

4.6.4: Qualifiers.120

4.7: Circuit Connections and their Validity........ 121

4.8: An Example Idiom 1 33

4.9: Summary....................................... 143

5: Sticks Compaction of the Virtual Grid............. 145

5.1: Background.................................... 145

5.2 Mask Level Representation on a

Quasi-Virtual Grid ' 43

5.3: Translation to a Quasi-Virtual Grid........... 155

5.4: Device Templates 159

5.5 Coordinate Mappings.''67

5.6: Translation of CMOS Circuits to Mask Level....''7 2

5.7: Sticks Extraction.*53

5.8: Summary.^ ^6

6: A Prototype Implementation of

the VIRGIL Systern................................. 193

6.1: System Overview............................... 198

6.2: A Cell Librarian.............................. 193

6.3: Text Analysis................................. 200

6.4: Internal Representation of a Virtual Grid.....201

6.5: Analysing Leaf Cell Definitions.202

6.6: Analysing Composition Cell Definitions........ 203

6.7: Outputting the Virtual Grid. 2:4

6.8: Conversion from Virtual Grid to GIF 2 . 0 2 : 4

7

6.9: User Interface 205

6.10: Some Implementation Issues 2D7

7: Example Idioms.................................... 2 1 0

7.1: Shift Register............................... .210

7.2: Programmable Logic Array 210

7.2.1 Introduction...............................213

7.2.2: Capture at the Mask Level................. 213

7.2.3: Capture Using VIRGIL...................... 215

7.2.4: Comparison and Discussion. 221

7-3: Parallel Multiplier 223

7.3.1 A Hardware Algorithm. 223

7.3.2: A Multiplier Circuit...................... 229

7.3.3: A Multiplier Chip 222

7.3.4: Discussion.............................. . . 23 -

8: Conclusions and Limitations.255

8.1: Conclusions...................................235

8.2: Limitations & Areas for Further Research...... 238

Appendix A: VIRGIL "include" File.................... 241

Appendix B: PLA Mask Level Leaf CelIs. 25"

Appendix C: PLA VIRGIL Cell Definitions.............. 257

Appendix D: Mutiplier Cell Definitions............... 2?5

References......233

1: INTRODUCTION

1,1; The Need for Research into CAD for VLSI

A revolution is now underway which is comparable in

scale and importance to the industrial revolution. This

new revolution is based on the emerging field of

Information Technology. One of the cornerstones of

Information Technology is the provision of cheap, readily

accessible computing power. It is only through the

extensive use of Very Large Scale Integrated (VLSI)

circuits that this power can be realised. The design of

integrated circuits is then an area of immense interest,

and will remain so for the forseeable future.

VLSI circuits are among the most complex systems

designed by man. Mead [Mead 81] compares the design of

an integrated circuit using the technology available by

the end of this decade with the task of designing an

urban density road network the size of an entire

continent. Even with current leading edge technologies,

managing the mere complexity of a VLSI circuit is the

most pressing problem facing design engineers. Research

into methods of handling this complexity is one of the

most important tasks facing the academic and industrial

communities. The provision of sophisticated Computer

Aided Design (CAD) systems does and will continue to play

a major role in the management of VLSI designs.

1.2; CAD in VLSI Design Capture

There are several rather distinct steps which can be

identified in the design of VLSI circuits. These steps

cannot be treated in complete isolation, rather each step

should be considered in relation to the others.

Firstly, there is the specification of the intended

function of the system to be designed. Next is the

translation of this specification into a description of a

physical realisation of that system. Next is the

verification that the intended realisation performs the

specified function. Finally there is device fabrication.

The area of interest in this thesis is the translation of

some specification into a description of a physical

realisation, here called the design capture phase.

An integrated circuit is fabricated using a set of

masks to define the patterns which will appear on the

different physical layers of the circuit. The masks are

in turn fabricated from some machine readable description

of the geometric patterns which comprise them. Within

the research and academic communities, a standard

language for describing such patterns, GIF 2.0 [Mead 80],

has now been established. The design capture phase may

then be considered as the production of a GIF description

of an 1C from some initial specification.

1 0

The production of a set of mask descriptions is not a

straightforward task, but rather it is a complicated and

error prone process of multiple translations, each into a

finer level of detail. A typical set of such

translations might be as follows.

(1) Translation of a general product specification,

which may be a rather imprecise natural language

description, into a formal behavioural specification,

such as a set of input / output relations.

(2) Design of an algorithm to implement the

behavioural specification.

(3) Choice of a hardware architecture to support the

algorithm, and thence production of a system block

diagram.

(4) Mapping of the block diagram into a

two-dimensional floorplan of a chip.

(5) Production of logic diagrams to implement each

hardware block.

(6) Translation of logic circuits into a topological

arrangement of transistors and their interconnections.

1 1

(7) Translation of this topological arrangement into

final mask geometries.

Although such a description of the design process is

perhaps oversimplified, it does serve to illustrate the

number of different levels at which descriptions of a

design exist, and the number of translations, each into a

finer level of detail, which must be done to produce the

final mask geometries. Such translations can be

performed manually, or with the aid of CAD tools. Since

the final design description exists as a machine readable

GIF description, the designer's intent must at some stage

be captured by a suitable CAD system. Once captured, the

CAD system may then perform one or more of the above

translations to yield the final mask level description.

Ideally, it might seem that this design capture should

occur at as high a level as possible, so as to reduce rhe

number of error-prone translations which must be

performed manually. However, none of the translations

are by any means straightforward. While it is probably

true that CAD tools exist to perform all of the

translations in some form or other, none of these tools

are yet able to match the flexibility and ultimate area

efficiency of good manual design. At present, the major

advantages of automatic translations are that they are

far quicker and less likely to contain design errors, so

reducing both the length and number of design iterations

2

necessary. They are therefore most used in low and

medium volume applications, where design cost is the

major portion of overall device cost.

The tradeoffs which exist between automated and manual

design are sufficiently varied for different applications

that CAD tools which capture designs at many different

levels are still used. As long as CAD tools do not

perform as well as manual designers, such tradeoffs will

continue to exist. One motivation for this thesis is to

examine aspects of manual design and incorporate these

into automated design systems, to make the latter more

compe ti tive.

Current CAD Tools for Design Capture

A great variety of CAD tools for design capture

already exist, and it is useful to examine some of these

tools to place the work of this thesis in its correct

perspective.

The most basic method of converting VLSI designs into

machine readable form is by digitizing hard copy

representations of mask geometries. Such a process is

very error-prone, and is not viable for designs of VLSI

complexi ty.

1 3

A more direct method of capturing designs at the mask

level is by the use of a graphics workstation. Here the

designer is able to create and manipulate shapes

representing the actual mask geometries using some form

of graphics editor. Such workstations allow the

definition of individual cells, and also the composition

of these cells to produce complete chips.

Design capture by graphics workstations is now quite a

mature field, with many commercial manufacturers offering

such systems for sale [Werner 83]. Design at the mask

level gives the designer maximum flexibility to decide on

the final circuit geometries. However, the designs

produced at this level are not constrained to represent

valid circuit constructs, and the detection and

correction of errors in the mask definitions is a

time-consuming task. Often such errors are not detected

until prototype devices are fabricated.

Design directly at the mask level also suffers from

another major disadvantage. The individual cells which

make up a design are described absolutely in terms of

their mask geometries. Such cells are considered to be

"hard", in the sense that their structure is fixed. A

change in one cell will often require changes to be made

in many adjoining cells.

1 4

A solution to this problem is to design cells to be

"soft", i.e. to be able to adapt automatically to their

surroundings. The simplest method of achieving this is

to describe cells, and indeed the whole chip, not as a

set of mask geometries, but rather as a computer program

which produces those geometries. If cells are carefully

described in terms of their relationships with

neighbouring cells, then when a change is made to one

cell, and the program run again to produce a new design,

all dependent cells will also have changed to match.

Design by program also allows inherently programmable

structures, such as PLA's to be easily described.

This type of 1C design language can be produced by

adding a set of routines to draw mask shapes onto an

existing programming language. Such a language is called

an embedded 1C design language. This approach allows the

full data and control structures of the original language

to be used. Useful features can be added incrementally

to the library of available routines to continually

enrich and improve the language. An excellent example of

such an approach is the language ILAP [Hughes 83],

developed at Edinburgh University, and embedded in the

programming language IMP [Robertson 83].

The amount of parameterisation which can be introduced

into a design description using an embedded language is

virtually unlimited, even to the extent of producing a

15

silicon compiler [Bergmann 83]. However, the design is

still being specified in terms of the final mask

patterns, and the responsibility still rests with the

designer to ensure that these patterns represent valid

circuits.

An alternative to embedded 1C design languages is the

use of a special purpose design language. In this case

special syntactic structures are used to specify mask

features. Such descriptions tend to be clearer and mere

concise than embedded language descriptions, however

special purpose languages are usually not as rich in

control and data structures. In addition, they require

special compilers to be written for them. Examples of

such languages are SILT [Davis 82], and SCALE [Marshall

84].

Some special purpose languages attempt to constrain

the designer in the mask descriptions which can be

described, in an attempt to reduce the possibility of

design errors. Such languages are also able to provide

special syntactic structures to aid in the composition of

designs. SCALE [Marshall 84] is an example of such a

language.

Many of the problems of mask level design can be

attributed to the fact that a circuit is not constructed

from arbitrary mask shapes, but rather from a set of

16

items with real circuit significance, notably

transistors, wires, contacts and bonding pads. It is

therefore sensible to allow a designer to design in terms

of these structural components [Buchanan 80], rather than

the mask shapes which comprise them. Also it is usually

not the absolute position of such items which is

important, but rather their topological arrangement with

respect to each other. Design at the level of a

topological arrangement of structural components is

popularly referred to as "sticks" design [Williams 773,

or alternatively as symbolic design.

Since sticks designs are concerned primarily with the

relative placement of components, and not their absolute

positions, sticks cells are inherently "soft" cells.

Thus the speed and convenience of graphical entry can te

used without the disadvantages of "hard" cell

descriptions. An example of a primarily graphics based

sticks system is MULGA [Weste 8lb]. Sticks descriptions

can also be language based. ABCD [Rosenberg 82] is an

example of a sticks language.

Since sticks descriptions do not specify the exact

positions of structural items, the design is no longer

tied to a single fabrication process, with its

accompanying design rules. Rather, the conversion froa

sticks to mask geometries can incorporate these design

rules, and so allow a single description to be fabricated

1 7

using several different technologies.

At levels of abstraction above sticks level, the

designer is removed from many of the topological details

of the final design. The design system itself determines

these details. This can be done in two ways - either the

system restricts the designs to a limited class of

topological arrangements which are built into the system,

or the system deduces a suitable arrangement from

scratch, using sophisticated algorithms to do so. The

fundamental principles by which such arbitrary

arrangements should be determined are not well

understood, and in general systems to produce arbitrary

layouts do not perform particularly well.

Design at the logic level, in terms of boolean logic

function primitives, is at present mostly restricted to

standard cell systems. Here the designer is presented

with a library of cells to perform various logic

functions, which can then be connected together to

produce complete chips. DUMBO [Wolf 83a], is an example

of a system which can lay out arbitrary logic functions.

At the highest level are systems which take

behavioural descriptions of complete systems, and produce

complete chips which implement the specified behaviour.

At present, all such systems - called silicon compilers -

produce chips only within a limited architectural

18

framework. Often such systems are also restricted in the

class of behavioural descriptions they can translate.

Examples of such systems are Bristle Blocks [Johannsen

79], FIRST [Bergmann 83], Model [Gray 82], MacPitts

[Siskind 82] and UNIT [Deas 83].

1.4; The Notion of Design "Idioms"

It has been shown that design capture can occur at any

one of a large number of levels of abstraction. However

all design capture mechanisms share a common feature -

capture is achieved by the use of a fixed set of design

primitives. These primitives vary from complete

functional units in the case of a silicon compiler down

to simple geometric shapes in the case of mask level

design. Nonetheless, the design process remains one of

composing elements from a set of available primitives

together to give a system which exhibits the required

behaviour.

One of the principle arguments in this thesis is that

the composition of primitives to give solutions to

specific problems relies heavily on the use of known

constructs. These known constructs are called idioms,

and the aspect of design concerned with their use is

called idiomatic design. Idioms are in some sense the

embodiment of a designer's experience.

19

Examples of idioms abound in 1C design. At the mask

level, structural primitives such as transistors and

contacts could be considered as idioms constructed by

overlaying particular shapes on particular layers. These

idioms are so important that almost all mask level design

systems include them in their set of design primitives.

It has already been explained that 1C design involves

translations into finer and finer levels of detail.

Idioms can be seen as known ways of making these

translations. The Gate Array can be considered an idiom

which maps a structural description in terms of

interconnected transistors, onto a regular form of mask

geometry. The PLA is an example of an idiom which maps

from a set of boolean equations into mask geometries.

Idioms are equally valid whether the translations they

represent are done manually or by CAD tools. In both

cases, the larger the repertoire of idioms, the better the

final design is likely to be. The aim of this thesis is

then not just to investigate means of capturing designs

but rather to investigate means of capturing idioms, so

that these are available for use in many different

designs.

20

1.5: The Scope of this Thesia

As described earlier, idioms exist at many different

levels in the 1C design process. For the purposes of

this thesis, two areas of particular interest have been

chosen.

The first of these is the investigation of idioms for

the automatic production of complete integrated circuits

- in other words, silicon compilers.

The second area of particular interest is in that of

so-called "cell design". At this level, the designer

produces the mask level layouts to implement individual

logic functions. The division of a complete system into

such cells is the final step in a top-down decomposition

of a specification, and the design of these cells

represents the first stage in a bottom-up implementation

of that specification.

The study of idiomatic design at both these levels

draws much from the ideas and principles developed in

related fields of VLSI research. In chapter 2, the

current state of research in these related areas will be

examined, and some of the ways in which idiomatic design

furthers many of these ideas will be noted.

21

Idioms at the two levels of particular interest in

this thesis - cell idioms and silicon compiler idioms -

differ not only in the level of the design hierarchy at

which they exist, but also in the manner in which such

idioms may be captured.

A silicon compiler represents the capture of a single,

quite complex idiom. In chapter 3, a suite of software,

written by the author, to capture a single idiom for the

production of signal processing chips will be examined.

It will be shown that by the production of an integrated

software environment to specifically support this one

idiom, a quick and economical method for designing one

class of systems can be developed.

At the leaf cell level, it is possible not just to

capture single idioms, but to design a system for the

capture and instantiation of a large number of useful

idioms by the production of an appropriate idiomatic

design system. The design and investigation of such a

system forms the basis for much of the remainder of this

thesis. Such an investigation is valuable for several

reasons.

Firstly, this area of design already makes heavy use

of idioms based on designer experience. There is

therefore a need for a system which can formalise the

collection and retrieval of such idioms.

22

Secondly, the structure of idioms at this level is

relatively straightforward. The idioms are in some sense

recipes for producing mask level circuits to implement

particular functions. Methods of describing mask level

descriptions are well understood. Indeed, the design of

mask level descriptions of 1C cells is one of the most

intensively investigated areas of 1C design. This has

the twin advantages that the investigation of idiom

capture at this level can benefit from principles used in

more traditional design systems, and also that any new

ideas investigated for use in idiomatic design are likely

to have application in the wider field of custom cell

design.

Because of this possibility of the wider applicability

of idiom capture techniques, it has been decided that,

where possible, new and novel methods of design

description will be investigated. In this way the work

of this thesis can contribute not only to the novel field

of idiomatic design, but can also explore ideas with

applicability to more traditional design styles.

The most fundamental decision to be made in the

production of the idiomatic design system is the way in

which idioms are to be described. It is argued that

design capture at the "sticks" level (i.e. joint

structural and topological level) has overwhelming

advantages over other levels of design description, such

23

as mask level. Furthermore, it will be shown that a

so-called "virtual grid" [Weste 8la] provides an

attractive and elegant method of sticks level circuit

description. To these ends, a novel sticks level circuit

description language has been devised, and this is

described in detail in chapter 4.

Since the ultimate output from the idiomatic design

system is mask level descriptions, a translator from

sticks to mask level is needed. Such "sticks compactors"

are presently a topic of keen research interest. A

sticks compactor which combines some well established

ideas about compaction with some novel and original ideas

is presented in chapter 5.

A prototype implementation of an idiomatic design

system has been developed, and this is described in

chapter 6, along with a discussion of some of the

software engineering issues raised in the production of

such a suite of software.

Several specific examples of cell idioms which have

been entered into the idiomatic design system are

described in chapter 7. Some conclusions about the work

of the thesis, plus some possible areas of further

research are presented in chapter 8.

2: THE CURRENT STATE OF THE ART

The work of this thesis draws from many fields of VLSI

design, most of which remain areas of active research

interest. In this chapter, it is intended to review the

current state of research in these areas, and where

possible relate them to the work of this thesis.

2.1: Structured VLSI Design

VLSI circuits differ from other methods of digital

system implementation in several important ways.

The most fundamental feature of VLSI circuits is their

overwhelming complexity [Mead 81]. Circuits containing

over 200,000 transistors are now being designed and

fabricated, and the number of devices which can be

accommodated in a single integrated circuit is expected

to continue to increase exponentially for the foreseeable

future [Noyce 77], The prospect of designing circuits of

such complexity is even more daunting when it is

remembered that even one single design error may render

an entire circuit useless.

Another fundamental feature of VLSI circuits is that

interconnections often have an equal or greater influence

on circuit size and performance than do functional

elements such as transistors [Sutherland 77]. There is

an inherent wiring "cost" associated with communication

within an integrated circuit which must be taken account

of during design. It is therefore important to plan the

way individual sections of the circuit will be composed

together early in the design process. This includes both

the relative positions of the various parts of a circuit

("floorplanning") and the way in which connections will

be made between these parts.

About 1970, the need for a more methodical approach to

writing computer software became apparent as computer

programs became increasingly complex. This need resulted

in the development of "structured programming" techniques

[Wirth 7lb] [Dijkstra 72] [Knuth 74] [NATO 76] [Alagic

78] [Yourdan 78], which subsequently lead to the

development of languages designed to support these

techniques, such as Pascal [Wirth 71a] [Jensen 74],

Modula [Wirth 77a] and ADA [DoD 78] [ADA 79].

The rapidly increasing complexity of VLSI circuits has

resulted in the development of a similar, structured

approach to VLSI design. The publication, in 1980, of a

book by Mead and Conway [Mead 80], which presented a

simple, structured approach to VLSI design, was an

important force in bringing about the widespread

acceptance of this new methodology.

26

2t2; VLSI Design Languages and Programming Languages

The structured design approach to VLSI is often

thought of as a "computer science" approach, since it

borrows heavily from many ideas inherent in structured

programming. Just as structured programming lead to the

development of new programming languages, so structured

VLSI design has lead to a great deal of research into new

VLSI design languages.

However, although new programming languages were

quickly developed and widely accepted as a result of the

development of structured programming, the development of

VLSI design languages to support structured VLSI design

are still mostly in the research stage, and no single

language has yet to gain any wide acceptance outside the

institutions where it was developed.

This can largely be attributed to some fundamental

differences between the nature of computer programs and

VLSI circuits. The most important of these is that in

computers, memory is arranged as a one dimensional set of

locations, all of which are more or less equally

accessible. This corresponds well to the one dimensional

nature of computer program text.

27

On the other hand, an 1C is a two dimensional

structure, where only physically adjacent points are

accessible from any position in the circuit. The

placement of the elements in an integrated circuit can

have a major effect on circuit size and performance,

since interconnecting elements must be physically joined

by a wire which consumes space and has an inherent

propagation delay.

The best way to represent the two dimensional aspects

of a VLSI circuit in an essentially one dimensional

textual language is by no means certain, and some of the

diversity of VLSI design languages can be attributed to

this uncertainty. It is argued that the development cf

VLSI design languages is fundamentally a more difficult

problem than the development of programming languages,

and in the following sections some of the features which

affect the design of such languages are discussed.

Design Languages and Verification

Since the fabrication of a silicon chip is a lengthy

and expensive process, and since chips cannot, in

general, be modified after fabrication, it is essential

that every effort be made to ensure that a design is

correct before fabrication begins. This is called

verification, and the ease with which design verification

can be done is dependent on the design language used.

28

At the highest level, design languages for use with

silicon compilers provide a functional description of a

circuit. This functional specification can be simulated

directly to determine the performance of the complete

system at a functional level. Examples of such languages

are the input language for FIRST, described in chapter 3,

and also the language MODEL [Gray 82], which has its own

special simulator called EXERT.

Design languages at the mask level have traditionally

tended to describe only the physical geometry of

circuits. In order to simulate a circuit it is necessary

to know the structure of a circuit. This can be done by

either extracting the electrical circuit from the circuit

layout using computationally expensive CAD software, or

alternatively, producing a separate structural

description of the circuit by hand. The latter

alternative is particularly unattractive since there can

be undetected inconsistencies between the two circuit

descriptions.

Buchanan [Buchanan 80] developed a language, ICSYS,

which allows joint structural and physical descriptions

of a circuit. A consistent design representation is thus

ensured without the need for an expensive circuit

extraction from the physical geometry. The idiom

description language VIRGIL, which has been developed as

part of this thesis and which is described in chapter 4,

includes both structural and physical information by

describing circuits in terms of structural primitives

which are implicitly interconnected according to their

relative positions.

At present, the only method readily available to show

that a circuit meets some behavioural specification is by

simulation. Using a joint structural and physical design

description can help to ensure that the simulation

adequately reflects the performance of the physical

circuit, however simulation can only ever show that a

circuit performs correctly for those combinations of

input values which have been exercised.

If both the circuit and the desired behaviour can be

described using some formal calculus then it may be

possible to formally prove that a circuit meets its

specification. Milne [Milne 83a] has designed such a

language, called CIRCAL, and Gordon [Gordon 81] has

investigated similar ideas.

Furthermore, if a silicon compiler could be designed

which accepted the behavioural specification of a circuit

as its input language, then if the same formal proof

methods were used to prove that the transformation

(between specification and circuit) that is implemented

by the silicon compiler is correct, then iLL circuits

designed using the compiler could be guaranteed to meet

30

their specification [Milne 83b]. Such a breakthrough

would eliminate the need for circuit simulation.

This formal approach is similar to that of formally

proving computer programs correct, and the difficulties

which have been encountered in the widespread application

of program proving techniques indicates that the

widespread application of similar techniques to VLSI

circuit design may still be a long way in the future.

2.4: VLSI Design Languages & the Control of Complexity

One principle of structured VLSI design is to

introduce sufficient hierarchy into a design that the

amount of information which must be handled at any one

time is not too great. It is obviously easier to adopt:

such a hierarchical design style if this methodology is

specifically supported and encouraged by the design

language being used.

Even simple geometric design languages such as GIF 2.0

[Mead 80] are capable of describing a design

hierarchically by the definition of symbols, which may in

turn be composed from previously defined symbols. Such

symbols are very much like procedure calls in a high

level programming language, except that no

parameterisation of symbols is allowed.

More sophisticated languages such as SCALE [Buchanan

82] not only support a design hierarchy, but also allow

the parameterisable definition of cells. Languages which

can describe designs parameterisably can describe not

only circuits but also idioms. The language VIRGIL is

specifically for the description of idioms and as such

has special support for both a hierarchical design style

and parameterisa tion.

It is argued that textual design languages, such as

VIRGIL, provide a powerful tool, not only for controlling

design complexity, but also for providing additional

design information which can help ensure the correct

composition of designs.

Graphical design systems usually only support the

simple repetition of fixed cells as an aid to building

large regular structures. Textual languages, since they

can easily accommodate selection, repetition and

parameterisation, can describe far more general

structures. .Designing structures sufficiently

generally that they can be used many times in one or more

designs can be a valuable aid in reducing design

complexity, and thus design time and design cost.

Graphical systems may facilitate the rapid entry of

the physical aspects of a circuit design, but it has

already been mentioned that it is also desirable to

32

capture structural design information, rather than to

attempt to infer structural details from the physical

design.

Specifically, one often wants to name certain items in

a design, such as ports for connection to other parts of

the circuit, so that during design composition only like

named ports are connected together. One might also like

to include other useful information, such as whether

outputs from one part of the circuit are restored or

non-restored logic levels, and similarly whether inputs

are designed to accept restored or non-restored levels.

Textual languages allow the simple and natural

specification and manipulation of such structural design

information as well as the physical design details.

2.5: Composition of VLSI Designs

An essential feature in controlling design complexity

is the use of hierarchy [Rowson 80]. Like SCALE, VIRGIL

separates the design hierarchy into cells which contain

only structural primitives, called leaf cells, and cells

which contain only instances of other cells, called

composition cells. This distinction helps to highlight

what, in the author's opinion, is a fundamental

difference between the tasks of designing leaf cells and

of composing them together to give a complete circuit.

33

This composition of cells to give larger cells is a

fundamental and frequently performed operation in a

hierarchically designed system. Researchers with close

contacts with industry already report that the

composition phase of design now takes far longer than

leaf cell design [Smith 83]. As circuits become more and

more complex, so the proportion of time spent composing

cells together will tend to become increasingly greater.

The design process is again greatly eased if the design

language being used specifically supports composition as

a fundamental operation.

As mentioned earlier, there are two main factors which

influence a composition operation - the relative position

of cells and the interconnections between them. In some

cases, it is possible that the definition of one of these

also defines the other. In GIF, for example, composition

is achieved by placing instances of cells at specified

physical positions, relative to a common origin. If, in

placing the cells, geometry from one cell touches or

overlaps geometry from another cell then connection is

made between the cells.

In the case of GIF, there is no guarantee that placing

cells so that they touch or overlap produces correct

connections between them. Rather, the resulting layout

must be examined either manually or automatically to

determine if connections have been made correctly. Often

incorrect connections can go undetected until circuits

have been fabricated.

A better approach is to ensure that connections are

only made as intended by the designer by explicitly

checking connections as cells are being composed. To do

this, the points where connections may be made to a cell

must be identified. These are variously called "ports"

or "pins". Such information is specifically included in

languages, such as VIRGIL, which support joint structural

and physical design descriptions.

Next, the interconnections between ports of various

cells must be specified. One method of doing this is ty

explicitly naming pairs of ports which are to be joined -

this approach is used in SCALE, for example.

An alternative approach is to implicitly connect all

pairs of ports along edges of cells which are placed next

to each other (i.e. "abutted"). This is the approach

used in VIRGIL. To avoid the problems of incorrect

connections, pairs of ports are checked before connection

to ensure that they match both in type (such as

polysilicon, metal or diffusion) and in name. If ports

do not match, then the composition of the cells

containing them fails. The only concession made to this

rule is that cells may be "stretched" so that matching

ports align.

35

Other languages support more complex operations to

assist in correctly joining ports together. In the

proposed language SILVER [Rees 83], such operations are

referred to as coercions. Examples of coercions would be

the automatic inclusion of contacts between ports on

different layers, and also the automatic insertion of

routing networks between cells where ports cannot be

joined by simply abutting the cells.

Other researchers [Lengauer 84] have also developed

systems which apply such coercions to automatically aid

the completion of cell composition operations.

Such sophisticated coercions are not included in

VIRGIL, since it is argued that as VIRGIL is being used

primarily to describe well known idioms, the nature of

interconnections are already known and can be described

precisely in the circuit description.

The only composition operation in VIRGIL is the

abutting of cells together to produce larger cells.

Relative placement of cells is achieved by specifying the

way the cells are to be abutted. This contrasts with

some other languages, such as ABCD [Rosenberg 82] where

placement is done by instancing cells at specified

positions. Part of the work of this thesis is to

evaluate a system where all composition is in terms of

simple abutment.

36

2.»6; Methods of Circuit Description

Circuit description methods can be categorised both by

the manner in which circuits are described (graphically

or textually), and by the level at which they are

described (mask level, sticks level, gate level etc.).

Some discussion of the various types of circuit

description methods has already been presented in chapter

1. Tools for design at the mask level are now reasonably

mature and well understood. However, design styles at

higher levels of abstraction are still an area of active

research interest.

The major area of interest in this thesis is the

capture of idioms at the cell level. It is desired, not

only to capture the functional aspects of these idioms,

but also the topological aspects of their layout. For

this reason, design styles which do not allow topology to

be captured, such as gate level descriptions, are not

considered further here.

At mask level, the designer is free to create an

arbitrary collection of shapes on the various layers.

The object of most recently developed design styles is to

somehow constrain this freedom so that the designer is

less likely to introduce design errors, and also that -r.e

37

amount of information needed to specify a design is

reduced.

An early excursion into this field was the development

of coarse-grid layout systems [Gibson 76] [Clary 80].

Here the designer could choose from a selection of

rectangular "tiles" containing fragments of geometry, and

by arranging these in a rectangular array, a complete

design could be built up. Tiles would typically be about

the size of the worst case tolerances in a given

technology - say two or three lambda, in Mead-Conway

terms. A major advantage of such systems is that tiles

can be represented by different ASCII characters,

allowing graphical design on normal alphanumeric

terminals. Coarse grid systems, however, do not really

provide any structural information about a circuit - they

merely ease the task of describing its physical geometry.

A similar, alphanumeric based approach is the Bell

Laboratories "gate matrix" design style [Lopez 80]. This

imposes a structured design style on the user, which also

allows the mapping of the alphanumeric grid of the

circuit description onto a reasonably dense, variable

pitch physical grid. Layouts exhibiting "hand-packed"

densities are claimed, but this is most probably due to

the structured design style rather than the design systea

which implements it.

38

Languages such as SCALE [Buchanan 82] and ICSYS

[Buchanan 80] allow the specification of joint structural

and physical design descriptions at the mask level.

In a sticks based system, the designer is removed from

the physical details about widths and separations, and

designs in terms of structural primitives such as

transistors, wires and contacts. Sticks based systems

are thus not only design rule free but they also

implicitly provide a joint structural and physical design

des cription.

There are two methods by which sticks level design can

be described. One method is by so called gridless design

systems [Williams 78] [Dunlop 80] [Lengauer 84]. Here

the designer specifies the relative positions of

components, and their interconnections. This information

constitutes a set of "constraints" which any mask level

equivalent of the sticks description must meet. Within

these constraints, components may be moved around so as

to achieve a compact layout.

The other method is to arrange components using a

so-called "virtual grid" [Weste 8la] [Rosenberg 82].

Structural components are laid out on a two dimensional

grid, but unlike coarse grid systems, the grid lines have

no implicit correspondence to physical positions.

Rather, it is only the relative positions of components

39

which are implied by their positions on the grid which ia

strictly important. Thus, relative positions can be

easily expressed without the need to reduce a circuit to

a set of positional inequalities which must be both

determinate and consistent, as is the case in most

gridless sticks systems.

It is argued that the virtual grid provides a very

neat and elegant method of representing sticks level

designs which captures joint structural and physical

design information. For this reason a virtual grid based

sticks level design language has been chosen for the

description of idioms.

Some other sticks based systems are either extensions

of existing languages such as Pascal [Lengauer 84] or

Lisp [Pettengill 83], or else they can be accessed via a

procedural interface from such a language [Weste 8lb].

Thus, such languages are capable of describing idioms as

well as circuits. The VIRGIL language is not an

extension of any other language, rather it is a special

purpose language for the description of idioms. It is

felt that the use of a special purpose language allows

idioms to be described more naturally and more concisely

than is possible with embedded languages. The manner in

which parameterisable features have been added to VIRGIL

is novel, and allows very general selection and

repetition operations to be performed.

40

2 t7 ;—Sticks Compaction

Once a sticks description has been entered into a

design system, it must at some stage be converted into

mask geometries - a process called "sticks compaction*.

Ideally, one would like the final mask arrangement to

be optimally compact, but the determination of such a

layout has been shown to be NP-complete with respect to

the number of components being arranged [Schlag 83]. In

most cases this is computationally too expensive, and so

sub-optimal compactors are usually used.

The simplest method of compaction is so called

1-dimensional compaction, used in several design systems

[Williams 78], [Dunlop 80]. In this method, components

are placed as closely together as possible in the

x-direction, and then as closely together as possible in

the y-direction.

For gridless sticks systems, such compactors have been

shown to exhibit complexity 0(N»»1.5), where N is the

number of circuit components [Zmszner 83]. Weste [Weste

8!b] describes a very simple algorithm which performs

1-dimensional compaction on a virtual grid with

complexity 0(N). An algorithm based on this approach has

been implemented in this thesis.

The sticks compactor developed in this thesis combines

this algorithm with some novel ideas about methods of

specifying process-specific design rules. Some

interesting results about the way in which

interconnections between components at mask level can be

realised are also presented. Perhaps the most important

results produced during the work on compaction are those

to do with the technology independence of CMOS circuits,

which is discussed more fully in section 2.8.

Sticks compaction is an area of quite active research

interest, and investigation of especially efficient or

clever sticks compactors is outside the scope of this

thesis. Some of these developments are nonetheless worthy

of mention, since they could be applied to the VIRGIL

system if it were to be developed beyond the research

stage.

Improvements to the basic algorithm which has been

used for virtual grid compaction can provide a constant

factor speed up to the computation time needed for

compaction [Boyer 83]. A similar approach can be

employed to allow for hierarchical sticks compaction,

which could give very considerable improvements in

computation time, especially for very regular structures

[Rosenberg 8U]. Both these improvements are primarily to

do with the time required for computing the compaction,

and not with improving the density of the final mask

level description.

Such density improvements are the goal of so-called

2-dimensional compaction algorithms. Sometimes, in order

to place components closer to each other in one

dimension, it is necessary to move them apart in the

other dimension. 1-dimensional compactors cannot detect

this. An algorithm for detecting these situations and

dealing with them has been presented by Wolf et al [Wolf

83b]. Similar optimisations can be made manually in the

VIRGIL system, by the designer identifying and modifying

critical areas of the circuit.

The compactor developed for this thesis is described

in detail in chapter 5.

2.8: Technology Independent Design

One of the principles upon which the work of Mead and

Conway [Mead 80] is founded is the production of a simple

set of conservative geometric design rules for NMOS

technologies, based on a single scalable constant,

lambda. Designs based on these rules can be scaled

simply by changing the value of lambda. It is estimated

that these rules are sufficient to allow design down to

about 1 micron feature sizes. Sequin [Sequin 82] has

proposed a similar set of lambda based rules for CMOS

pr oce sse s.

By their very nature, sticks designs are design rule

free, and so are even more applicable to producing

designs which will remain valid as critical dimensions

shrink. Sticks designs can also accommodate variations

between design rules for processes which do not conform

to lambda based rules.

Design styles which allow a circuit to be implemented

in several different processes within a general class Df

fabrication technology - say one layer metal, one layer

polysilicon NMOS with buried contacts - are here called

"process independent". Often such styles are called

"technology independent", but here that term is reserved

for design styles which can describe designs that are

valid in several different general classes of fabricatic^

technologies. Specifically, in section 5.6 of this

thesis, a design style called "generalised CMOS" is

introduced which allows circuit descriptions which can ze

implemented in four different classes of CMOS

technologies, viz. n-well, p-well, twin-well and SOI

(silicon-on-insulator).

At sticks level, the only significant difference

between the four CMOS technologies mentioned above is -ne

location of substrate wells (or in SOI, island dopings).

There are several structures which are specific to

certain technologies, such as island-island contacts in

SOI, but these can be avoided.

To design technology independent CMOS circuits, it

would be best if wells were not included at all in the

design description, but rather included automatically if

they are needed in a particular technology. An

alternative is to include both p-wells and n-wells, and

them remove one or other if they are not needed in the

particular technology. The former seems a better

solution, since the designer is freed from the need to

describe wells at all.

The ways in which wells are handled in various sticks

systems are not often described in detail or even

mentioned. Zinszner et al [Zinszner 83] describe a

sticks system which can specifically handle wells, but ir

seems that one must must explicitly include the specific

well structure of the class of CMOS circuit being

implemented - i.e. the design descriptions are process

independent, not technology independent.

In chapter 5.6 of this thesis, an algorithm for

automatically generating the specific well structure

needed for a particular technology is presented.

2.9: Cell Libraries

At present, almost all integrated circuits are still

custom designed. In some cases, a library of useful

cells is maintained, but these are almost invariably

stored as mask geometries.

Recently, a library of such cells has been published

[Newkirk 83]. Many of the cells described are part of

larger parameterisable structures. Although the cells

themselves are described in a standard language (GIF),

the way in which they are composed to form these larger

structures is described somewhat informally in the

documentation. This is undoubtedly due to the lack of

any standard procedural description language.

With the exception of a few very important and regular

structures, such as counters, PLA's, ROM's and RAM's,

design systems tend not to have a large repertoire of well

known idioms available for instantiation. Partly, this

is because with conventional, embedded mask level design

languages, the capture and debugging of such idioms is a

reasonably time consuming task.

The system presented in this thesis specifically

supports and facilitates the concise description of

idioms, and so will hopefully encourage the capture of a

large number of useful structures.

: Silicon Compilers

Apart from the work on the capture of cell idioms,

some work has been done in this thesis on the capture of

an idiom at the silicon compiler level.

Unlike cell design, silicon compilation is only a very

new field, and there is little published work in this

area. Mostly, this presents the results of compilers

which have been developed to meet specific needs of

particular projects.

The first silicon compiler was "Bristle Blocks"

[Johannsen 79], used to produce datapath chips.

MacPitts [Siskind 82] implements digital systems as a

datapath plus controller, and includes specific support

for concurrent datapath operations where possible.

Model [Gray 82] is a silicon compiler which allows

arbitrary logic descriptions to be implemented as gate

arrays.

The FIRST silicon compiler, described in chapter 3» is

a compiler for bit-serial digital signal processing

systems, and is a typical example of the first generation

of silicon compilers.

3r THE F.I.R.S.T. SILICON COMPILER

In this chapter, a specific idiom for the production

of complete VLSI systems from high level specifications

is examined. More especially, the software to support

this "silicon compiler 11 is discussed.

The FIRST silicon compiler idiom was devised by Dr.

Peter Denyer, while the library of primitive functional

cells was produced by David Renshaw. The author was

responsible for writing the software to support the

silicon compiler, i.e. the software which captures the

idiom.

The work in this chapter was presented, in a slightly

different form, at the 3rd Caltech Conference on VLSI in

March, 1983 [Bergmann 83].

3.1; Background to the FIRST Silicon Compiler

The FIRST silicon compiler (Fast Implementation of

Real-time Signal Transforms) has been developed as a

cooperative project between the departments of Electrical

Engineering and Computer Science at the University of

Edinburgh, in order to allow the rapid investigation and

implementation of VLSI digital signal processing systems.

The FIRST system is built around an underlying

bit-serial signal representation as proposed by Lyon

[Lyon 81], and systems are implemented as hard-wired

networks of pipelined bit-serial operators. A typical

flow diagram for a system suitable for implementation by

the FIRST compiler is shown in figure 3-1.

1.2: An Innovative Architecture

The hardware implementation of a FIRST circuit

consists of a network of interconnected bit-serial

operators, laid out according to a relatively fixed

floorplan. Each bit-serial operator is implemented as a

separate function block, which is, in turn, assembled

from a library of hand-designed leaf cells. A typical

leaf cell might comprise, say, a single bit-slice of a

given function, and the complete operator would then be

arranged, both logically and physically, as a linear

systolic array of these individual bit-slices. In this

way, the logical size and exact function of each function

block can be easily varied by selecting different numbers

and types of leaf cells. For example, figure 3-2 shows

two possible configurations for a bit serial multiplier -

one which uses an 8-bit coefficient and rounds the least

significant product bit, and the other which uses a

12-bit coefficient and truncates. (Note: the multiplier

design uses 2-bit systolic array elements).

IN

OUT
A

—5\ DELAY

V

Figure 3—1: A Signal Processing System
Suitable for FIRST Implementation

50

Top Cell

2-blt
Slice

First
2-blt
Slice

Input Buffers

2-blt
Slice

Pounding
2-blt
Slice

Output Buffers

(a)

Top Cell

2-blt
Slice

2-blt
Slice

First
2-blt
Slice

Input Buffers

2-blt
Slice

2-blt
Slice

Truncating
2-blt
Slice

Output Buffers

(b)

Rgure 3-2: Two Possible Multiplier Configurations
fa) 8 bit coefficient, product Is rounded
(b)12 bit coefficient, product Is truncated

51

The function blocks on a chip are arranged in two rows

along either side of a single, central communications

channel. Interconnections between function blocks and

connections to bonding pads are all made within this

channel. A typical floorplan is shown in figure 3-3.

Some silicon area is wasted by this approach, since

function blocks may differ in height. Typically, this

area is about 20* of the total chip area, which, since it

is not active area, has only a linear effect on good

die/wafer yield.

Bonding pads are arranged more or less evenly around

the chip periphery. After some thought it was decided to

allow the pad order to be user controlled, in order to

improve PCB level wiring management.

3.3L Software SuDoort for an Integrated Design Environment

The software support for the FIRST system consists of

a small suite of programs which are able to provide the

designer with a complete, specialised design environment.

The structure of this environment is shown in figure 3- 1*,

and each of the major components is described below.

.1: Language Compiler

The only design input available to the FIRST user is

the FIRST high level language. This language provides a

52

PADS

OPERATORS

WIRING CHANNEL

OPERATORS
1 1 1
PADS

Rgure 3-3: Typical Floorplan

53

FIRST Language Description

COMPILER

V

Listings & Errors

Intermediate Format

Input
Values

SIMULATOR

V
LAYOUT PROGRAM

V
Mask Geometry

Output
Values

Pin
Assignments

V
TRANSLATOR

V
Test Pattern Generator Rle

Figure 3—4: The Software Environment

54

s

cons

tructural description of the circuit under

ideration, in that it describes the function blocks

(i.e. bit-serial operators) which are present in a

circuit, and their interconnections. In addition,

because the structural design primitives have been chosen

to correspond to functional design primitives, it also

serves as a de facto functional description of a circuit.

The language is able to capture the designer's intent in

a form which closely matches the designer's logical

conception of a system. This is a major advantage over

designing with proprietary parts, where the designer must

translate from his or her logical conception of a system

into a quite different structural realisation, often in

terms of ill-matched and inconvenient functional units.

The FIRST language identifies four distinct data types

needed to build a circuit description:

(1) OPERATORS, corresponding to arithmetic and logical

functions.

(2) CONSTANTS, which are integer expressions

corresponding to the values of parameterisable operator

attributes.

(3) SIGNALS, corresponding to network nodes which

carry sampled-signal data.

55

(4) CONTROLS, corresponding to network nodes which

carry timing information such as 'START OF WORD 1 and

'START OF FRAME'.

A circuit is a collection of parameterised operators,

each with a set of input and output ports which are

connected to control or signal nodes. Interconnections

between different operator ports are made implicitly by

connecting several ports to the same node. Each operator

invocation, corresponding to a line of the FIRST language

description, contains the following information:

- the operator name.

- the values of any parameterisable attributes.

- ordered lists of the names of the nodes to which

input/output ports are connected.

These different data types are syntactically separated

in an operator invocation, which is in essence a

mathematical expression in prefix notation. The general

form is:

NAME [params] (ctls in -> ctls out) sigs in -> sigs out

e.g.

ADD [DELAY+2,0 ,0] (LSBTIME) A,B,CARRYIN -> SUM,CARRY?:T

56

The FIRST language also allows the definition of

common, parameterisable sub-circuits as user-defined

operators. These operators may then be invoked any

number of times in exactly the same manner as primitive

operators. Operator calls are grouped into CHIP

definitions, corresponding to physical integrated

circuits. These CHIP definitions may then be grouped

into SUBSYSTEM definitions, and finally into a single

SYSTEM definition. Thus the design language spans the

whole hierarchy from structural primitives, to complete

multi-chip signal processing systems.

The language compiler reduces this hierarchy into a

list of primitive operator invocations, with node names

replaced by unique node numbers. The resultant

description is called the FIRST intermediate format, and

it is this description which is used by later phases of

the design software.

A high level language design interface allows

considerable error checking to be performed, e.g. type

checking, undefined names, incorrect number of operator

port connections etc. The relatively constricted syntax

of the language helps to avoid many of these errors in

the first place.

The form of the language has been derived from the

structural design language for the MODEL gate-array

57

design system [Gray 82]. The language compiler was built

using the lexical and syntax analysis phases of an

existing teaching compiler, SKIMP [Rees 80], with a

custom "code generation" section added. The result is a

very simple single pass, recursive descent compiler.

Since FIRST circuit descriptions are typically only about

one page in length, the simplicity and ease with which

the compiler can be altered have far outweighed any

considerations about run-time efficiency.

3 .3 .2 : Simulation

Two different simulators have been produced in the

development of the FIRST system. The earlier simulator

was clock driven. On each clock cycle, every operator in

the system would be simulated in turn, using the preser.-

binary values on its input nodes along with any stored

internal state to produce new values on its output nodes

at the next clock cycle. Once all operators had been so

invoked, the clock would advance by one cycle, and the

process repeated. External inputs to the simulator were

entered via an external data file. Similarly the values

on any nodes could be output to another data file for

subsequent inspection.

The operation of this simulator was a direct

algorithmic interpretation of the physical circuit - 23

much so in fact that the functional definitions of

58

operators could often be written such that each logic

equation in the functional description would have a

direct hardware counterpart in the physical realisation.

This proved useful in determining if a proposed hardware

realisation of an operator did, in fact, implement the

desired function, and also gave a great deal of

confidence that the simulator provided an accurate model

of operator behaviour.

However, because this simulator was using a

sequential, word oriented machine (i.e. the computer) to

directly simulate the operation of a highly concurrent,

bit-oriented architecture, the computational effort

required for a thorough simulation of a large system WE.S

unacceptable.

For this reason, another simulator has been designed

which simulates a system at a higher level of

abstraction. This simulator is event driven, and

simulates the operation of individual operators on a word

by word basis. The values on nodes, which in reality

consist of serial bit streams, are modelled as discrete

words of data occuring at discrete time intervals. When

a new word of data reaches a node, an event is said to

have occurred. Events are described in terms of the node

to which they refer, the new value of that node as a

result of the event, and the time at which the event

occurs.

59

The scheduling of events is handled by keeping all

pending events on an event queue. All events due to

occur at a given time are removed from the queue, and the

values of the associated nodes are updated to reflect

their new values. All operators which have any of these

nodes as their inputs are activated. The new values

which have arrived at their inputs will generate new

values at their outputs. These new values are modelled

as further events scheduled to occur at some later time,

as determined by the latency of the particular operator.

In general, new values should arrive at all inputs of

a particular operator at the same time. If not, this

usually implies that the designer has made an error in

matching the latency of the various signal paths leading

to this operator. When such mismatching occurs, the

simulator issues a warning, and continues the simulation.

The operation of the simulator in such cases will not

truly echo that of the physical system, which is itself

unlikely to be a valid circuit. Once all such timing

"bugs" have been eliminated (and this simulator provides

a powerful tool for such debugging) the designer can have

a high degree of confidence in the simulation results.

Inputs and outputs to the system are again via

external data files. These data files are essentially

lists of events relevant to the system input or output

nodes. Since the system is being modelled at a higher

60

level than in the clock driven simulator, the computing

effort required for a given simulation has been reduced

by about an order of magnitude.

A program also exists within the FIRST suite to

convert the simulator's output into a form suitable for

use with an automatic test pattern generation system.

3.3.3: Physical Layout

The task of the FIRST layout program is to produce a

physical realisation of the system implied by a FIRST

language description. This process proceeds in distinct

phases, according to a strict layout strategy.

For every invocation of a predefined operator in a

FIRST language description of a system, a corresponding

function block appears in the physical layout. Each
c

function block is assembled from the appropriate leaf

cells as described above. Once constructed, operator

blocks are placed along "waterfronts" at the top and

bottom edges of a central wiring channel. The layout

program uses the criteria of minimum chip area to decide

on a suitable arrangement of the blocks. The size of

operator bounding boxes typically covers quite a range of

sizes. The overall size of the chip, however, depends on

four main factors:-

6 1

- the height of the tallest block on the top row

- the height of the tallest block on the bottom row

- the width of the wider of the two rows

- the size of the wiring channel

The first three factors depend only on which blocks

are placed on the top row, and which are placed on the

bottom, and the placement algorithm first decides on this

subdivision. Without rigorously attempting to explain

the algorithm, the basic idea is to place all the tall

blocks on the top row, and the short blocks on the bottom

row, where the division between tall and short is chosen

so that the total area is minimized. Perturbations are

then made to this arrangement to reduce the area further

by making the rows more equal in width. The size of -r.e

wiring channel is considered constant during these

calcula tions.

Next, the arrangement of the blocks within each row is

decided. The width of the wiring channel, and hence

total chip area will differ with different arrangements.

Rather than use an algorithmic method for determining a

good arrangement, the blocks are placed left to right

within each row in the same relative order that they were

invoked in the FIRST language description of the systea.

Since a designer may be expected to write this

description such that the general flow of information is

from one operator to the next down the page, such a

strategy should lead to closely coupled operators being

placed close together on the chip. Wiring channel area

is only a relatively small part of the overall chip area,

and so it was not considered worth the effort, both in

terms of programming time, and run time, to calculate any

more optimal arrangement.

All routing between operators is done in the single

central wiring channel. Inputs and outputs of all

operators are available along the channel waterfront. A

very simple two layer router is used, with metal lines

running horizontally, and diffusion lines running

vertically. The input and output ports of operators =re

restricted to points on a fixed grid, with the grids f:r

the two sides being offset. This ensures that

connections can be made between any two ports with a

single horizontal wire and two vertical wires, i.e.

without dog-legs. Figure 3-5 shows a section of a

typical wiring channel.

Finally bonding pads are arranged around the chip, snd

ancillaries such as power, ground and a global two-phase

non-overlapping clock are added.

The layout program has been written using an embedded

1C design language called ILAP [Hughes 83], based on LA?

[Locanthi 78], but using IMP as a host language. IM?

[Robertson 83] is a high level Algol-like programming

63

Rgure 3-5: Wiring Channel Section

64

language used extensively within the Edinburgh computing

environment.

3 rH ; An Example System

As an illustrative example of a FIRST circuit,

consider a chip to implement a simple four-stage,

cascadable FIR filter section. A flow diagram of such a

section is shown in figure 3-6. For illustrative

purposes, consider it divided into two "TWO STAGE"

sections as shown in figures 3-7 and 3-8. From these

flow diagrams, an implementation in terms of FIRST

operators could be derived to give the circuits shown in

figures 3-9 and 3-10. Note that the final delay element

in TWO STAGE has been made parame terisable in order ts

allow the final TWO STAGE section on the chip to have 2

slightly shorter inter-stage delay which compensates for

the delay in going off-chip to the next stage in a

multi-chip system. Also note that a network of timing

(CONTROL) signals has been added in order to give 'start

of word 1 information to the various bit-serial operators.

These signals are shown in figures 3-9 and 3-10 as broken

lines .

The FIRST language description of a single section is

shown in figure 3-11, while the resultant layout is shown

in figure 3-12. If such a chip was fabricated using a 5

micron NM&S process, it would be approximately 5mm x = 33,

65

Delay Delay Delay

V
Delay

V

V
ADD

Rgure 3-6: Flow Diagram

A

MULTIPLY

DELAY |———r-> DELAY f—> AOUT

MULTIPLY

ADD

Rgure 3-7: TWOSTAGE sub-circuit

TWOSTAGE TWOSTAGE XOUT

ADD

Rgure 3-8: Simplified Row Diagram

66

XCONTROL

BITDELAYt Wj

CV MOLTIPLT

P1

PCOKTROL- --!

-|BITDELAY[N]——-A GOT

C2 MDLTIPLT

P2

ADD

B

Figure 3-9: Row Diagram for 7WOSTAGE[N]

C 1 I |C 2LE C3

XMID

XCONTROL XCONTROL

XO'JT

T¥OSTAGE[W] TWCSTAGEf W-2]

CBITDELAY[C]

PCONTROL

CBITPELAYf 1]

PCONTROL

A2

ACONTROL

ICBITDELAY[1]
j- . i • ' •"—— "• ~

YCONTROL

Rgure 3-10: Complete Row Diagram

FIRST COMPILER - Copyright Denyer,Renshaw,Bergmann 1982
SOURCE FILE: FIR

! Global Constants
CONSTANT wlth=10,

obits =10,
d = cbits/2,
truncate = 0

! Data word length
! Coefficient word length
! Multiplier latency
! Type of multiplier

! Define simple forms of ADD and MULTIPLY

OPERATOR Adder (c) a,b -> sum
Add[1,0,0,0] (c) a,b,gnd -> sum,no

END
OPERATOR Multiplier (c) a,b -> p
Multiply[truncate,obits,0,0] (c->nc) a,b

END
-> p,nc

! Two stages of an FIR filter, n=2nd stage delay

a, c1,c2 -> aout, bOPERATOR TwoStage[n] (xctl,pctl)
SIGNAL d,p1,p2
BitdelayCwlth] a -> d
Bitdelay[n] d -> aout
Multiplier (xctl) a,c1 -> p1
Multiplier (xctl) d,c2 -> p2
Adder (pctl) p1,p2 -> b

END

! Define the whole chip , including pad ordering
CHIP FIR (xxctl -> yyctl) xx , d1 , d2 ,d3 , d4 -> xxout,yy

CONTROL pctl, actl, xctl, yctl
SIGNAL xmid,a2,a3,x,y,c1 ,c2,c3,c4,xout

!!!!Specify order of bonding pads
PADORDER VDD,xx,xxout,yy,GND,

xxctl, yyctl , CLOCK, d1 ,d2,d3,d4
! I! (Equate external bonding pads to internal nodes

Padin (xxctl->xctl) xx , d1 , d2 , d3 , d4 -> x, d , c2 , c3
Padout (yctl -> yyctl) xout,y -> xxout,yy

IMISpecify operators to be included
TwoStage[wlth] (xctl, pctl) x,c1,c2 -> xmid,a2
TwoStage[wlth-2] (xctl, pctl) xmid,c3,c4 -> xout,a3
Adder (actl) a2 , a3 -> y
CbitdelayCd] (xctl -> pctl)
Cbitdelay[1] (pctl -> actl)
CbitdelayC 1] (actl -> yctl)

END
ENDOFPROGRAM

Figure 3-11: FIR Filter Listing

Rgure 3-12: FIR RIter Layout

69

and have a clock speed of 8 MHz, corresponding to a

sample rate for 10 bit samples of 800 kHz.

At present, test chips are being fabricated to test

and debug the primitive operator cells, which have been

designed using traditional custom design methods. FIRST

has been used to design and simulate several different

systems, but none of these have yet been fabricated,

mostly due to delays in debugging primitive operator

eelIs.

.5: Conclusions

The FIRST system is not simply an automatic layout

system, rather it provides a complete design environment

for bit-serial signal processing systems. It allows

designers with no previous 1C design experience to

exploit silicon as an implementation medium.

A simple, high level structural design language

provides a consistent circuit description for both

simulation and layout. Complete signal processing

systems can be functionally simulated both quickly and

accurately, encouraging designers to explore and compare

a wide variety of possible circuit solutions without the

need to produce hardware prototypes. When a design has

been thoroughly simulated, the same structural

description can be used to produce a hardware realisation

70

which will exactly match the simulated performance. This

physical layout process neither requires nor allows human

intervention, precluding the possibility of

designer-introduced layout errors.

By using an innovative architectural floorplan, this

automatic and error-free silicon compilation can be

achieved at the expense of a relatively small increase in

overall silicon area, while at the same time reducing

design time and cost by at least an order of magnitude in

comparison with conventional custom 1C design.

All of the FIRST software has been specifically

designed for the capture of this one idiom. The savings

in design cost for suitable systems is more than enough

to justify this effort. The advantages of capturing just

this single idiom provide strong motivation for the

development of a more general system for the capture of a

whole range of idioms. The design and investigation of

such a system forms the basis for the remainder of the

work of this thesis.

71

U: AN IDIOM DESCRIPTION LANGUAGE

4.1 The Virtual Grid

Integrated circuits are usually designed in terms of

the mask layers from which they are fabricated. From

combinations of these mask layers, the basic circuit

primitives, such as transistors, wires and contacts, are

constructed. A structural design system allows the

designer to specify a circuit entirely in terms of these

circuit primitives, rather than in terms of the mask

layers used to build the primitives. A structural design

system may also allow the designer to specify the

relative topological arrangement of design primitives, in

which case it is referred to as a "sticks" system

[Williams 77]. Figure 4-1 shows inverters represented at

both the mask level and sticks level.

Mask level descriptions can be described as sets of

polygons existing on the various mask layers. The

polygons can be defined in terms of the physical

coordinates of their vertices. A sticks based

representation, however, does not impose any physical

coordinates on the elements within it. Rather it only

imposes relative spatial orderings on components, and

also specifies connections between components. An

elegant method of describing these orderings and

connections is the virtual grid, as reported by Weste

72

I t I I
t I
I.

(a) Mask Level

(b) Sticks Level

Rgure 4—1: Equivalent Representations of an Inverter

73

[Weste 8la].

A virtual grid consists of a two-dimensional grid of

coordinate points. Circuit primitives are then placed on

this grid - transistors and contacts are placed at grid

points, and wires are placed on the line segments joining

grid points. Only wires parallel to coordinate axes are

allowed in the type of virtual grid considered in this

thesis. The relative ordering of components on a virtual

grid is implied by the relative ordering of the virtual

grid points on or between which these components lie.

The actual coordinates of grid points are not

significant, it is only the relative topological

orderings which they impose on circuit components which

are important. For example, figures 4-2(a), 4-2(b) a r.d

even 4-2(c) describe topologically similar circuits. In

practical virtual grid systems use can be made of the

extra twists and bends in the circuit in figure 4-2(c).

Such bends can be used by the designer to convey advice

such as: "When this circuit is converted to mask level

descriptions, a better layout might be achieved by

including these bends in these wires". The ability to

include "hints" like these is a useful feature in a

design sytem, since it allows the designer to aid the

efficiency but not hinder the correctness of automated

translation between different levels of representation.

F3A

0 1

to)

F3C
6

-I

F3B

2

0123

(b)

1234

(c)

Rgure 4—2: Topologically Similar Circuits

75

One of the most important features of a virtual grid

representation is that it has a natural textual

equivalent. The virtual grid coordinates allow the

position of items in this type of sticks level

description to be easily specified. The ability to

describe circuits textually is considered to be an

important aid in controlling the overwhelming complexity

of VLSI circuits, as has already been mentioned in section

2.4. Textual descriptions allow features such as

selection, repetition and parameterisation to be added to

a design description. In addition, textual based

representations can use the same editing and filing

facilities as are used for ordinary computer programs -

in fact most of their advantages are related to their

similarity to computer source ciode , and many ideas can -e

borrowed from the lessons learned in structured

programming.

A textual, virtual grid based system has then been

chosen as a suitable base on which to build an idiomatic

design system. As the description of this system is

presented, more advantages of using such a system will

become apparent.

Certain conventions have been adopted throughout this

thesis for the graphical representation of both mask

level and virtual grid circuits. The following colours

are used to represent the various mask layers and

76

corresponding virtual grid features:

Red

Blue

Green

Black

Dotted Red

- Polysilicon

- Metal

- Diffusion

- Contact

- Implant

Dotted Black - Buried Contact

Dotted Green - Substrate Contact

Chained Red - N well

Chained Green - P well

Virtual grid devices are described graphically by

symbols, which should be largely self explanatory. Ports

are shown as diamond shapes of the appropriate colour.

Different types of transistors are labelled with the

following letters:

N - n channel

P - p channel

L - load device

D - depletion mode

Idioms and Instantiations

An idiom is not merely a useful circuit, but rather it

is the manner in which a whole range of circuits can be

generated. Each of the individual circuits which is

77

embraced by an idiom is called an instantiation of that

idiom.

It is important to be aware of the fundamental

differences between idioms and their instantiations. An

instantiation corresponds to a single circuit, which in

this thesis will be described using a virtual grid. Such

a circuit could be graphically displayed, or equally

well, described textually. However, an idiom is a recipe

for generating such circuits, and the parameterisable

features of an idiom do not lend themselves to simple

graphical representation. For this reason, a purely

textual notation has been developed for the description

of idioms.

This has been done by first developing a language,

called VG, for the description of virtual grid circuits,

and then adding additional features to produce another

language, called VIRGIL, for the description of idioms.

U.^r VG - A Virtual Grid Circuit Description Language

In designing a language to capture circuits, it was

recognised that even relatively simple circuits are often

best described hierarchically. Typically, a circuit is

decomposed into a number of simple cells, which are then

individually designed and composed together to give the

complete circuit. The simple cells are called leaf

•7 3

cells, because they are the leaf nodes in the tree

representing the hierarchical decomposition of the

circuit. Cells which are generated by the composition of

smaller cells are called composition cells, and

correspond to non-leaf nodes in the tree.

The reason for using such a hierachical approach is to

reduce the complexity of the design task. People have a

natural limit on the amount of data which can be

simultaneously comprehended, and it is by keeping within

this limit that design systems are best utilised by huaan

designers. By representing a circuit hierarchically, the

amount of information which must be handled at any one

time is controlled. Such an approach has long been

recognised in the design of computer software, and forns

the basis of structured programming.

VG supports such a design hierarchy, by describing

designs in terms of leaf cells and composition cells.

Leaf cells describe a set of primitive structural

components which are laid out on a virtual grid.

Composition cells describe the way in which leaf cells

are composed together to form complete circuits. There

are no mixed cells which contain both structural

primitives and instances of other cells. Such a

restriction serves to highlight the differences between

the cell design and cell composition phases of circuit

design.

79

HtStl Notes About the Language Description

The following is not meant to be a rigorous definition

of the VG language. The language is meant to be,

initially at least, a private research tool, rather than

a generally available facility. What follows is more in

the nature of a description of the features of the

language, rather than a definition of it.

In general, the language shares many of the syntactic

features of high level languages. Where necessary, the

syntax of parts of the language will be described using

the conventions proposed by Wirth [Wirth 77b].

Basically, these are as follows.

Productions are of the form:

phrase = definition

Repetition, zero or more times, is denoted by braces

{..}.

Parts of a definition enclosed in square brackets [..]

are optional.

The f j ' character is used for selection.

Parentheses (. .) are used merely for grouping.

Terminal symbols, i.e literals, are enclosed in double

quote s.

80

4.3.2 Alohabet

The language is written using the ASCII charcter set.

Lower case letters are considered equivalent to their

upper case counterparts. Spaces may be inserted anywhere

except within identifiers and numerals (see below).

Comments may be placed anywhere except within identifiers

and numerals, and may consist of any text, except '}'»

enclosed within braces {..}.

.3.3 Identifiers

Identifiers consist of any combination of letters a-i

digits, beginning with a letter. Identifiers may

optionally include a single '.' which divides the

identifier into a root (before the dot) and an extension

(after the dot). Examples of legal identifiers are:

FRED

AReallyLongAndCom plica ted. One

-9p

but not:

4Minute.Warning

Nimble Toadstool

{Contains illegal charcter '#'}

(Starts with a digit)

(Spaces not allowed}

31

4.3.4 Reaerved Words

The following words have special significance within

the language, and are not available for use as

identifiers.

IF THEN

BOOLEAN

ELSE

ARRAY

LEAF COMPOSITION

DWIRE PWIRE NWIRE

PSUB NSUB PPORT

FOR

OF

REPEAT TRUE FALSE

INTEGER INX

CELL END

MWIRE DM

NPORT DPORT

INY

BURIED BUTTIK-3

PM

MPORT

NM

. "3 . 5 : Numerals and Expressions

Numerals consist of any combination of digits, and are

interpreted as base ten non-negative integers. Negative

integers are written as expressions.

Expressions may yield either boolean (true or false)

values or integer values. They conform to the normal

rules of arithmetic, including the use of parentheses to

alter the order of evaluation. The following operators

are available in decreasing order of precedence;

operators on same line have equal precedence.

82

Integer Operators: Take integer operands

Yield integer result

Unary -

Relational Operators: Take boolean or integer operands

Yield boolean result

>, <, >=, <=, =, # (not equal)

Boolean Operators: Take boolean operands

Yield boolean result

NOT

AND

OR

Integer operands may be either numerals or integer

valued expressions. Boolean operands may be one of the

predefined boolean constants TRUE and FALSE (where

TRUE>FALSE) or boolean valued expressions.

It is a general feature of the language that

expressions may be used whenever a value is required.

83

4.3.6: Statements

A VG language description consists of a number of

statements. Statements are written one to a line.

Statements may be continued onto the next line by ending

the current line with a hyphen '-', which is otherwise

ignored.

4.4: VG Leaf Cells

Leaf cells are constructed from a set of structural

components positioned on a virtual grid.

4.4.1 Leaf Cell Header and Terminator

In order to define a leaf cell, it is first necessary

to define the virtual grid on which it is based. This is

done by beginning each leaf cell with a header statement

of the form:-

header = "LEAF" "CELL" identifier "=" bounds

where

bounds = n (" llx ", " lly ", n urx n ," ury ")"

identifier is the name of the cell

llx, lly, urx, ury are all integer expressions whi^h

give, in order, the X and Y coordinates of the lower left

corner of the virtual grid and the X and Y coordinates of

the upper right corner.

The last statement in a leaf cell description is

terminator = "END"

e.g., the statements

Leaf Cell TEST = (0,0,2,3)

End

would enclose the statements defining a leaf cell called

TEST, with components laid out on the virtual grid shown

in figure 4-3.

4.4.2: Leaf Cell Component Specification

Virtual grid circuits are specified in terms of their

structural components, and so a suitable set of such

components must be chosen. The components chosen will

depend on the underlying fabrication technology which

will be used. For the purposes of this thesis, it was

decided to choose a set of primitives which would allow

the description of NMOS and CMOS digital circuits. It

was also decided to restrict the system to technologies

with a single layer of metal and a single layer of

polysilicon.

85

Rgure 4-3: A Typical Virtual Grid

86

The primitives which are available for use in VG

descriptions are identified by individual names. The

primitives may be divided into four classes, as detailed

below.

Wires

Wires are used for interconnection between other

components. Wires are placed between grid points, and

they automatically connect components on those grid

points. The exact manner of this connection is described

later. Four types of wire are available:

MWIRE : a wire on the metal layer

PWIRE : a wire on the polysilicon layer

NWIRE : a wire on the n-type diffusion layer

DWIRE : a wire on the p-type diffusion layer

Contacts

Contacts allow wires of different types to be

connected to each other, and allow metal wires to be

connected to the silicon substrate. The following types

of contact are available:

PM : PWIRE to MWIRE

DM : DWIRE to MWIRE

NM : NWIRE to MWIRE

BURIED: NWIRE to PWIRE

BUTTING: NWIRE to PWIRE and MWIRE

37

PSUB : MWIRE to p-type substrate

NSUB : MWIRE to n-type substrate

Translator^

The following types of transistor are available:

PTYPE : p-channel enhancement-mode transistor

NTYPE : n-channel enhancement-mode transistor

DEPLETION: n-channel depletion-mode transistor

LOAD: n-channel depletion-mode transistor with common

gate-source connection, used as NMOS "pullup"

Ports

Ports are virtual grid items which do not have a

physical realisation. Ports are used to identify where

external connections may be made to a cell. Only wires

which are connected to ports may extend to the edge of a

leaf cell. There are four types of ports, corresponding

to the four types of wires:

MPORT: for MWIRE

PPORT: for PWIRE

NPORT: for NWIRE

DPORT: for DWIRE

Items are placed on the virtual grid by specifying the

X and Y coordinates of their position. Coordinate pairs

are written as integer expressions enclosed in

a 8

parentheses and separated by a comma. In practice, the

expressions are almost invariably simple integer values

Ports, contacts and transistors are specified by

statements of the form:

statement = item_name n § n coordinate

e. g.

NPORT 0 (0,1)

PTYPE § (2,4)

The simplest form of wire specification is for wires

which run parallel to the X or Y axis, and between

adjacent grid points:

statement = wire_name "§" coordinate "->" coordinate

e.g.

NWIRE e (0,1) -> (1,1)

The same form of statement is used for wires which

extend in the same direction for more than one grid unit,

e.g.

NWIRE § (0,1) -> (2,1)

which is exactly equivalent to the two statements:

NWIRE § (0,1) -> (1,1)

NWIRE 6 (1,1) -> (2,1)

Wires may be specified with more complicated paths.

Such wires are described by breaking the path into a

39

series of sections parallel to one or other of the

coordinate axes. This more general form of wire

statement is:

statement = wire_name n @" coordinate "->" coordinate

{ «->" coordinate" }

where a statement of the form

wire § (X1,Y1) -> (X2,Y2) -> (X3,Y3) -> .. -> (Xn,Yn)

is equivalent to

wire § (X1,Y1) -> (X2,Y2)

wire @ (X2,Y2) -> (X3,Y3)

wire § (Xm,Ym) -> (Xn,Yn)

e.g. the path shown in figure 4-4 could be described

by any of the following sets of statements:

NWIRE § (0,1) -> (2,1) -> (2,2) -> (4,2)

or

NWIRE 0 (4,2) -> (2,2) -> (2,1) -> (0,1)

or

NWIRE 6 (0,1) -> (1,1) -> (2,1) -> (2,2)

NWIRE § (4,2) -> (2,2)

Labels can be added to statements specifying component

positions, and take the form:

statement = identifier ": n rest of statement

e.g.

input : nport 0 (0,1)

90

WIRE

NWIRE ® (0,1) -> (2,1) -> (2,2) -> (4,2)

Rgure 4-4: A Virtual Grid Wire

91

The label can subsequently be used to refer to the

grid item with which it has been associated, and also to

refer to the coordinates of that item. In the case of

wires, the label refers to the first coordinate in the

wire path. Labels can then be used instead of explicit

coordinates in subsequent statements, e.g.

Given the statements:

Contactl: nm 0 (3,2)

Contact2: nm § (3,4)

then the statement:

Mwire @ contact! -> contact2

could be used instead of:

Mwire £ (3,2) -> (3,4)

Forward references to labels are not allowed in the

current implementation.

Coordinates can be specified relative to some other

coordinate. Such relative coordinates are specified by

relative_coordinate = base n + n offset

where both base and offset may be labels or explicit

coordinate pairs.

A relative coordinate:

(basex,basey) + (offsetx,offsety)

is equivalent to the coordinate

(basex+offsetx, basey+offsety)

92

The circuit in figure 4-5 could thus be described by

the following statements:

point!: nm § (1,2)

point2: nm @ pointl + (1,-1)

mwire § point! -> point! + (1,0) -> point2

Such constructs enable related components to have

their absolute position within the grid determined by the

absolute position of some single base point (in the above

case 'point!').

It is often necessary to have some control over the

physical properties of various components, most notably

the relative lengths and widths of transistor channels.

In this language, values may be specified for various

physical attributes by adding a list of parameter

assignments to the name of a grid item. This has the

form:

item = ltem_name ["(n parameter_list n) n]

where

parameter_list = assignment { ", w assignment }

and

assignment = identifier "=" expression

e.g.

ntype(1=2,w=3)

Each assignment has the effect of giving the value of

the expression to the attribute associated with the

93

RELATED

0123

Rgure 4-5: A Group of Related Components

94

identifier. If parameters are not specified, they

implicitly take on default values. The available

parameters are:

(a) For all types of transistor

w : channel width

1 : channel length

Channel sizes are all in multiples of the minimum

size, default values for both parameters are 1, except in

the case of load transistors where the default for 1 is

4.

(b) For load transistors

Connections to load transistors cannot always be mie

unambiguously, since the source and drain connections

appear on the same layer, and are not interchangable. 1i

is therefore sometimes necessary to specify the direction

in which the source connection will be made. This is

done by specifying a value for the parameter SOR.

Possible values are 0,1,2,3 and these have the effect of

placing the source connection facing east, north, west,

south respectively. Component orientation is discussed

more fully in section 4.7.

95

(c) For MWIRE

It is sometimes necessary to make metal wires wider

than the minimum possible width. This can be done by

specifying a value for the parameter 'W. The value of

the parameter is the width in integral multiples of the

minimum width. The default value is 1.

Users might also wish to make wires on other layers

wider than the minimum possible width. The prototype

implementation of VIRGIL currently only supports the

specification of widths for metal wires but such

specification could easily be extended to other wires if

nece ssary.

An Example Leaf Cell Description

Figure 4-6(a) shows a typical VG leaf cell

description, in this case a shift register cell. Figure

M-6(b) shows a graphical representation of the same cell

4^!i: VG Composition Cells

By a series of successive compositions, a collection

of leaf cells can be arranged so as to produce a complete

circuit. Composition cells define the nature of these

composi tions.

Leaf Cell SHIFT = (0,0,4,4)
{A single stage of a shift register}

{Ground Lines}
gnd.e: mport 0 (4,0)
gnd.w: mport 0 (0,0)
gnd.s: nport § (1,0)
mwire § gnd.e -> gnd.w

{Power Lines}
vdd.w: mport § (0,4)
vdd.e: mport 0 (4,4)
vdd.n: nport @ (1,4)
mwire § vdd.e -> vdd.w

{Inverter}
nm § vdd.n
nm @ gnd.s
nwire @ vdd.n -> gnd.s
load § vdd.n + (0 ,- 1)
pulldown: ntype(w=2) @ gnd.s + (0,1)

{Input signal}
in: pport @ (0,1)
pwire @ in -> pulldown

{Clock Line}
clock.n: pport @ (2,4)
clock.s: pport @ (2,0)
pwire @ clock.n -> clock.s

{Pass transistor and output signal}
pass: ntype § (2,2)
contact: buried @ (3»1)
out: pport § (4,1)
nwire e (1,2) -> pass -> (3,2) -> contact
pwire § contact -> out

END

Rgure 4-6(a): Textual Representation of Shift Cell

97

SHIFT
4 .A, VDD.W r-i VDD.N ^ CLOCK.N VDD.E

PASS

IN Jk PULLDO\ CONTACT

6ND.W pi. GND.S 1 CLOCK.S

OUT

GND.E

1

Figure 4-6(b): Graphical Representation of Shift Cell

98

4,5t1; Header and Terminator Statements

All the composition operations needed to produce a

complete circuit are grouped together in a COMPOSITION

CELL. Such a cell is delimited by a header of the form

header = "COMPOSITION" "CELL" identifier

and by a terminator of the form:

terminator = "END"

4.5.2: Basic Composition Operators

The simplest form of cell composition is by abutment,

i.e. by placing cells next to each other, so that

matching connections line up. All composition of cells

in VG is done by abutment. Such abutment may be done in

the vertical or horizontal direction as shown in figures

4-7 and 4-8.

When cells are joined by abutment, they combine to

give a single larger cell. Abutment of more than two

cells can be considered as a series of simple two-cell

abutments. The composition constructs in the VG language

supports composition by abutment through the use of two

composition operators:

» : compose by horizontal abutment

* * : compose by vertical abutment

99

V

1
1

1
! 2
1

1

3
1

NEWCELL « » CELL1 » CELL2 » CELL3

Rgure 4-7: Horizontal Abutment

NEWCELL = — CELL1 ~~ CELL2

Rgure 4-8: Vertical Abutment

100

The form of these composition statements is:

statement = identifier " = " cell__call { cell_call }

where

cell_call = operator cell_name

operator = "»" j «**«

Such a statement has the effect of creating a new

cell, called an intermediate cell, with its name given by

the identifier, which is composed of the cells,

identified by cell_name, abutted left to right in the

order given, for horizontal composition, or bottom to top

for vertical composition.

Thus the statement:

Newcell = » cell! » cel!2 » cellS

would give the composition shown in figure 4-7.

Similarly, a vertical composition statement :

Newcell = " celH " cel!2

would give the composition shown in figure 4-8.

Multiple instances of a single cell can be composed

together, e.g.

OneBitShift = » SHIFT » SHIFT

Previously constructed intermediate cells, as well as

leaf cells, can be composed together to give new

intermediate cells. Leaf cells and intermediate cells

1 01

may be mixed in the same composition statement. Vertical

and horizontal composition cannot be mixed within a

single statement.

The definition of a complete circuit then consists of

a number of LEAF CELL definitions and a single

COMPOSITION CELL definition. The various levels of

hierarchy in the composition of cells to produce a

complete circuit are supported by the various

intermediate cells defined within the composition cell.

The last intermediate cell defined in the composition

cell is taken to be the definition of the complete

circuit.

The composition of cells shown in figure 4-9 would be

defined by the following composition cell:

Composition Cell Example

cel!6 = » celll » celll

cell? = ~" cell6 ~ cel!2 "" cel!2

cellS = » cells » cell?

cel!9 = ~~ cellS " cell4

example = » cel!9 » cel!5

End

Note that it is not possible to describe a composition

of cells such as that in figure 4-10 as a set of vertical

and horizontal compositions, however such compositions

would rarely be encountered in practice.

1 02

4

3

2

2

1 1

5

8

EXAMPLE

Figure 4—9: A Series of Successive Compositions
to Produce a Complete Circuit

103

Rgure 4-10: A Composition of Cells
not Descnbable In VG

104

^t^; Rotation and Reflection

It is often desirable to be able to rotate or reflect

cells before composing them. This is supported by a more

general form of composition statement:

statement = identifier "= n cell_call {cell_call}

where

cell__call = operator cell_name [rotation] [reflection]

operator = »»» j """

rotation = "§" integer_expression

reflection = "INX" j "INY"

The amount of rotation, if any, is in integral

multiples of 90 degrees anticlockwise. Thus '§ 3' wo-Id

correspond to 270 degrees anticlockwise rotation.

Reflection, which is always done after any rotation, nay

either be about the X axis (INX) or about the Y axis

(INY). Figure 4-11 shows some examples of rotation and

relection of a single cell called CELLA.

A composition statement corresponding to the

arrangement (of the same CELLA) shown in figure 4-12

would be:

1 05

cello cello

cello 03 cello INX

cello INY cello 03 INX

Rgure 4—11: Examples of Rotation and Reflection

106

cellb = » cello

cellc = » cellb » cellb INY

square = ^^ cellc INX — cellc

Rgure 4-12: Composition of Rotated and Reflected Cells

107

Composition Cell Square

cellb = » cella § 1

cello = » cellb » cellb INY

square = ~~ cello INX "~ cello

End

4.5.U: Port Hiding & Renaming

The most important task in composing cells together is

to ensure that connections are made correctly between the

cells. The points where connections may be made to leaf

cells have already been explicitly defined by the

definition of PORTS. It is by matching ports that

correct connections between cells are made. For correct

matching, the ports must match both in type and position.

Since components have been laid out on a virtual grid, it

is only the relative ordering of components, and thus

only the relative ordering of ports to be matched which

is significant. The virtual grids for the connecting

cells can be stretched, by the inclusion of extra grid

lines, to bring ports into alignment, as shown in figure

4-13. Stretching can also be used to match the overall

length of the abutting sides of the cells. This ensures

that the union of the two rectangular cells is itself a

rectangle.

1 08

B

A

n
(a) Cells to be Composed

B B

h
(b) Ports Aligned and Cell Heights

Matched by Adding Grid Lines

~

(c) Cells Joined

Figure 4-13: Cell Stretching During Composition

109

In addition to the constraint that connections must be

between ports of the same type, it would be advantageous

to have some additional constraints which help ensure

that connections are made correctly. Such a constraint

has been made in VG, and it is that matching ports must

match in name as well as position and type. In order to

allow some flexiblity port names are said to match if the

roots of the port names match (remember, names can have

the form root. extension). Unnamed ports match any port

of the correct type.

It is sometimes desirable not to make a connection to

a port, e.g. a cell might have multiple ports for

connection to power, only one of which need actually be

externally connected. The port matching process,

however, seeks to match all ports on the abutting edges

of cells. To avoid a port being considered for such

matching, it can be hidden, using the port hiding

construct [Cardelli 81].

It is also sometimes useful to connect together ports

with different names. Thus the language allows ports to

be renamed before composition so that they will

subsequently correctly match when connected. Both port

hiding and port renaming are achieved by adding a

renaming list to the composition construct. The most

general form of the composition statement is then:

statement = identifier " = " cell_call {cell__call}

1 10

where

cell__call = operator cell_name {renaming}

[rotation] [reflection]

renaming = »/" port_name [lf = 11 new_por t_name]

The effect of each renaming is to either change the

name of the port called port_name to new_port_name if

this is present, or to hide the port if no new_port_n=ae

is specified. Figure 4-14 shows the effect on the ports

of a cell by certain renamings.

When two cells are composed, the ports visible on the

new cell are all those ports on the old cells except

those on the abutting edges. Thus joining instances of

the same cell may lead to an intermediate cell with

several instances of the same port name. Therefore port

renaming and port hiding might not be able to be appliei

unambiguously to intermediate cells. These operations are

therefore only allowed to be applied to instances of leaf

cells. If port hiding or renaming is required with

intermediate cells, then it must be done to the

constituent leaf cells as they are being composed to give

these intermediate cells.

The ideas of port hiding and renaming are similar to

those used in more abstract circuit description languages

such as "Sticks and Stones" [Cardelli 81] and CIRCAL

[Milne 83a].

1 1 1

outputw < >

vdd.top—e—

< >input.e

vdd.bottom

CELLA

input.w < > < >mput.e

vdd.bottom

CELLA /VDD.TOP /OUTPUT.W=INPUT.W

Figure 4—14: Port Hiding and Renaming

112

4.6; VTRGIL - An Idiom Description Language

The similarities between textual circuit descriptions

and programming languages have already been noted. It is

by adding programming language constructs, such as

selection, repetition and parameterisation, to the

virtual grid description language VG that the idiom

description language VIRGIL will be developed.

Before deciding on a method for adding such

constructs, it is worth noting a fundamental difference

between VG and programming languages. VG is not

"executed" in the sense that a programming language is

executed. There is no flow of control in a VG

description, rather there is a static correspondence

between the textual description and the virtual grid

circuit it describes. An instantiation of an idiom

corresponds to a particular virtual grid circuit, and so

also corresponds to the textual description of that

circuit. Instantiating an idiom can then be thought of

as the production of a textual description of a circuit

in a language such as VG.

Since the form of an idiom instantiation will be a

textual description, selection, repetition and

parameterisation are implemented as basically textual

operations. The process of idiom instantiation is then

1 13

similar to that of "macro expansion" in some programming

languages, especially assembly languages.

4.6.1: Par^meterisation,

If an idiom is to give different circuits for

different sets of input data then there must be some

method of specifying the values of this input data. This

is done by the use of parameters, which are identifiers

which appear in a VIRGIL idiom description, and which may

take a range of different values. Parameters may be

applied to both leaf cell and composition cell

definitions.

Parameters may be one of two basic data types -

integer and boolean. Parameters for use in composition

cells may also be arrays, of up to six dimensions, of

these basic types. Array subscripts may be of either

basic data type.

Parameters are declared in the cell header statements.

At the time they are declared they may be assigned a

default value. If a default value is supplied for an

array it applies to all elements of that array. The form

of the header statements is then:

1 U

header = "LEAF" "CELL" cell_name [parameter_list]

" = » bounds

and

header = "COMPOSITION" "CELL" cell_name [parameter_list]

where

parameter_list = "(" parameter {"," parameter} w)"

parameter = identifier ":" type ["=" default_value]

type = simple |

array "(" dim {"," dim} ")" "OF" simple

simple = "INTEGER" j "BOOLEAN"

dim = expression ".." expression

default_value = expression

e. g.

Leaf Cell Test (m:integer = 4, n:integer = 5) = (0,0,m,n'

or

Composition Cell Ctest (j : integer = 4,

a:array(1..j) of integer)

Parameters can be used in subsequent parts of the same

statement in which they are declared, or in any

subsequent statement as part of an expression. Array

elements are accessed by constructs of the form:

element = array_name "(" expression {"," expression} ")*

e. g.

1 15

Given the declarations above, statements of the form:

MWIRE § (0,0) -> (0,n) -> (m,n)

would be allowed. However, the main use of parameters is

in the control of selection and repetition constructs,

which are described later.

When a cell is instanced, such as a leaf cell being

instanced in a composition cell statement, it is possible

to supply values for its parameters. This is done using

the same sort of construct as was used for supplying

values for component parameters, viz.:

cell = cell__name [B (" assignment { ", " assignment} ")"]

where

assignment = identifier n =" expression

e. g.

Test(n=4,m=5)

Since it would be clumsy to assign values to an array

in this manner, arrays are not allowed in leaf cell

descriptions.

If a parameter which is defined within a cell is not

given a value when that cell is instanced, then it takes

the default value supplied. Since parameters are

explicitly named when they are given values, parameters

can be listed in any order.

1 16

Assuming the above parameter definitions for the leaf

cell TEST, possible composition cell statements might be

Cella = » test(m=3,n=2) » test(n=6,m=3)

Cellb = ~* test ** test(m=1)

Cello = » test(n=2*j-1,m=j) » test(n=a(1))

Values for parameters in composition cells determine

the particular instantiation of an idiom, and are

supplied by the design system user.

4.6.2: Selectio n

In the selection construct, portions of text are

selected to be either included or not in the circuit

definition, depending on the value of a boolean

expression. The form of this construct is:

if = »[» "IF" expression "THEN" textl ["ELSE" text2] "]"

If the expression evaluates to true, then textl is

chosen, if the expression to false, then text2 is chosen

if it is present. The chosen piece of text is

substituted for the entire selection construct.

E.g., assuming the existence of a boolean parameter

P1, the following statement:

[if p1 then mwire 0 (2,2) -> (2,3) -

else pwire § (2,2) -> (2,3)]

1 17

would be replaced by, if P1 were true:

mwire @ (2,2) -> (2,3)

and if pi were false by:

pwire g (2,2) -> (2,3)

The above selection could also be written:

[if p1 then mwire else pwire] § (2,2) -> (2,3)

The text which is selected can be as long or short as

desired, provided identifiers, reserved words or numerals

are not split by the selection construct. The above text

could NOT be written as:

[if p1 then M else P]wire g (2,2) -> (2,3)

Multiple lines of text are allowed, and line breaks in

the text are significant. Thus:

[if p1 then mwire

else pwire] @ (2,2) -> (2,3)

would give, for p1 = true:

mwire

3 (2,2) -> (2,3)

which is incorrect.

U.S.3 Repetition

In the repetition construct, a given piece of text is

repeated a given number of times. The repeated text is

substituted for the entire repeat construct. The form

1 18

is:

for = "[" "FOR" identifier "=" for_list "REPEAT" text •]"

where

for_list = for_item {"," for__item}

for_item = expression !

(expression ".. n expression)

The for_list defines a set of values which are

assigned, in turn, to the identifier. This identifier is

a local variable which is declared by its use in the FOR

construct, and whose scope is limited to the FOR

statement. A for__item may be an expression or a pair of

expressions denoting a range of values. For such ranges,

the identifier is assigned the value of each element in

the range, starting with that given by the first

expression, up to that given by the last. E.g.

[for i = 1 ,3,1 ,2..5 ,3 • .0 repeat text]

would result in 'i 1 taking the following values:

1 ,3,1 ,2,3,4,5,3,2,1 ,0

and text would be repeated 11 times.

The identifier associated with the repetition

construct may appear as part of expressions within the

text, and for each repetition it will be replaced by the

appropriate value. Thus:

2 [for i = 3• .5 ,-2. .0,12 repeat + i]

would give the text

2+3+4+5+ -2+ -1+0+ 12

119

As for selection, line breaks in text are significant

Selection and repetition constructs may be nested,

provided nested repetition statements have different

associated identifiers. This can lead to quite complex

statements, e.g.:

ABC = [for i = 1..3 repeat -

» cella -

[if i=1 then (firsts true)] -

[if i = 3 then (last=true)]]

would give

ABC = » cella (first = true) -

» cella » cella (last=true)

4.6.4: Qualifiers

It is often desirable to build up rectangular arrays

of cells by a pair of repetition statements, one of which

builds up the rows, and another which composes the rows

to give the whole array. The exact composition of

individual rows might vary from row to row, so a separate

intermediate cell would be needed for each. In such

cases it would be nice to have an "array" of rows so each

row could be called by the same name, but with a

different "index". Such a notion is supported by the use

of intermediate cell name qualifiers. Intermediate cell

names can be subscripted by an integer expression, called

a qualifier, using a construct of the form:

1 20

qualif ied_name = name "__" expression

e.g.

cella_i, cella_i+1 , cella__6

The composition shown in figure 4-15 could thus be

constructed by the following statements, with N taking

its default value of 4.

Composition Cell Block (N:integer=4)

[for i = 1..n repeat

row_i = [for j = 1..n repeat -

» [if i=j then cellb else cellaj]

]

block = [for i = 1..n repeat ^^ row_i]

End

4.7: Circuit Connections and their Validity

The previous sections have described how components

may be arranged on a virtual grid to produce a circuit.

However, arbitrary arrangements of circuit elements do

not always yield valid circuit constructs. By examining

the way interconnections are implicitly made between

components, it is possible to identify many invalid

circuit situations. By checking a circuit for such

invalid situations, many possible errors can be

identified early in the design cycle.

121

cello

cello

cello

cellb

cello

cello

cellb

cello

cello

cellb

cello

cello

cellb

cello

cello

cello

Rgure 4-15: A Composition of 'cello 1
with 'cellb' on the Diagonal

122

Items which are placed at grid points may be

considered as multiport devices. Device ports are

referred to as pins. Each pin exists on a certain layer,

and on a certain side of the device. Each point within a

virtual grid has up to four immediate neighbours, in the

directions of the coordinate axes. Wires can exist

between a given grid point and any of its nearest

neighbours. Correct connections between wires and

devices are made by insisting that wires which approach a

grid point from a certain direction must connect to a pin

on that particular side of a device at that grid point.

e.g. a metal wire approaching from the right side of a

grid point must connect to a metal pin on the right sice

of some device which exists at that grid point.

To allow the above requirement to be met it is

necessary to introduce the notion of null devices. There

is one type of null device corresponding to each

different type of wire. A null device of a certain ty;e

has one pin of the corresponding type on each of its four

sides. The null device connects together any wires

connected to its pins. A null device of a particular

type implicitly exists at a grid point if there is a wire

of that type approaching the grid point, and no other

devices at that grid point have any pins of that type.

The usual physical realisation of a null device is a

minimum size square of wire of the appropriate type.

123

As an example, consider a metal wire running from

point (1,1) to point (3,1). Also assume there are no

grid items explicitly placed at point (2,1). Then, at

point (2,1), a metal null device implicitly exists. Both

the metal wires approaching point (2,1), viz. one from

the left and one from the right, now connect to pins of

the null device, and the requirement that all wires

approaching the point be connected to pins of the correct

type is satisfied.

Another useful notion, which helps development of a

consistent analysis, is that a VIRGIL port implies that a

wire of the same type as the port is approaching the grid

point from outside the cell. Thus ports can be thought

of as a special type of wire, rather than as grid items.

The available types of grid items are then categorised

as:

Transistors: NTYPE, PTYPE, DEPLETION

Load Devices: LOAD

Substrate Contacts: PSUB, NSUB

Interwire Contacts: PM, NM, DM, BUTTING, BURIED

Null Devices

A single grid item may be available in a number of

different "arrangements". An arrangement is defined by

the pins available on each of the four sides of the grid

item. In the case of active devices, viz. transistors

and load devices, different pins connect to different

parts of the device. These different parts are given

different names, "gate", "source" and "drain". In a load

device, there is no pin named "gate", since all pins

named "source" are internally connected to the gate of

the device as well as the source. Pins are identified by

the type of wire that can connect to them, the part of

the device they connect to, and the side of the device on

which they are available. In the case of null devices

and contacts, all pins are connected to effectively the

same point, named "common".

Figure 4-16 shows diagrams of all the possible

arrangements for each different device. Note that the

drain and source connections of transistors (not load

devices) are symmetrical, thus halving the number of

functionally distinct arrangements of these devices. A

rotation of one arrangement is considered a separate

arrangement.

Given this set of arrangements it is possible to

produce a relatively simple set of conditions to ensure

validity of circuit constructs. Recall first the

conditions under which a null device exists at a grid

point. A null device of a particular type exists at a

point if a wire of that type approaches the grid point,

and no other device at that grid point has a pin of that

type (on any side). Thus if a metal wire approached a

125

DEVICE ARRANGEMENTS

M as metal; P = poly;
D = ptype diffusion; N = ntype diffusion

(1) PM : X <- P
DM : X <- D
NM : X <- N

All pins connected to "common"

M X

MO

<> M

<> X

X M

(2) BUTTING All pins connected to "common"

M P

MO

N M

M MO

M
O

N

O M

P M

M

M

M

p<
M<

—— S7 ——

> <

> <
/\

> M

> N

N<

M<

V
> <

> <
—— A ——

M

cont.../

126

DEVICE ARRANGEMENTS (cont)

M = metal; P = poly;
D = ptype diffusion; N = ntype diffusion

(3) BURIED All pins connected to "common 11

NO

P<>

<> P

<> N

N

P
P

N

P<> <> P

N

P

NO O N

N
(4) NTYPE : X <- N

PTYPE : X <- D
DEPLETION : X <- N
"source" and "drain" may be interchanged

X.source

P,gate <> <> P.gate X.source <>

P.gate
—0—

<> X.drain

X,drain P.gate

cont.../

127

DEVICE ARRANGEMENTS (cont)

M = metal; P = poly;
D = ptype diffusion; N = ntype diffusion

(5) LOAD
Appropriate SOR parameter values shown

P.source N,source

N,drain < X <> N,source P,source<>0- 0 „—U oUK= l

P.source

P.source

N,draln

P,source

N,sourceOcnD_0<> N.drain P,sourceOe- D <> P,source
oUK— f. oUK—o

P.source

N,drain
—0—

N,source

(6) PSUB : X <-
NSUB : X <-

Null Devices
MWIRE : X <
NWIRE : X <-
DWIRE : X <-
PWIRE : X <-

M Y
M \

M X<
N
D

V

> <

— ̂ ——

> X

P X

Rgure 4—16: Device Arrangements

128

grid point where a buried contact existed, then a metal

null device would also exist at that point since a buried

contact has no metal wire pins.

If some set of devices (perhaps some null) exist at a

grid point, and there is a set of wires which approach

that grid point from specified directions, then these

sets of components specify a valid circuit construct only

if all the following conditions are met.

(1) It must be possible to choose an arrangement fsr

every device, such that every wire can connect to a pin

of the correct type and on the correct side of a devi-e.

(2) For each device, there must be at least one wi-=

connected to one member of each set of similarly name::

pins.

(3) There may never be more than two devices at any

grid point. If there are two devices, then one device

must be a metal wire null device.

(4) Every device, except substrate contacts, must have

at least two wires connected to its pins. In the case of

interwire contacts, at least two of these wires must be

of different types. In the case of butting contacts at

least one wire must be polysilicon and at least one must

be diffusion. (Remember VIRGIL ports count as wires). A

1 29

single unconnected VIRGIL port is allowed as a special

case.

Some examples of invalid circuit constructs and the

manner in which the above conditions detect them are

illustrated by the following examples, shown in figure

4-17.

(1) No arrangement of BUTTING can be chosen such that

all wires can be connected to pins of the correct type,

so condition 1 is violated.

(2) There is no wire connected to any of the "gate"

pins, so condition 2 is violated.

(3) Poly crosses diffusion without a transistor. No

explicit devices exist, therefore there is a poly null

device and an n-type diffusion null device, so condition

3 is violated.

(4) No explicit devices exist at the grid point,

therefore metal wire and polysilicon wire null devices

exist. The metal wire null device has only one wire

connecting to it, so condition 4 is violated.

The only interesting circuit construct which violates

these simple conditions is a PM contact over a transistor

gate. Such a construct is often disallowed in many MOS

130

(1)
BUTTING NW|RE

PWIRE

(2)

NTYPE

NWIRE NWIRE

(3)
PWIRE

NWIRE

(4)
PWIRE

MWIRE

Rgure 4—17: Invalid Circuit Constructs

131

design rules, and is unlikely to be allowed at all in

small geometry technologies, so in many cases it is

indeed an invalid circuit construct.

In a very few cases it is possible to find more than

one possible arrangement of a device which satisfies the

above conditions. In fact the only case where this

happens is if two diffusion wires connect to the source

and drain of a load device. In this case it is necessary

to decide on which arrangement is chosen, since they are

not functionally the same. This is done by specifying

the direction of the source diffusion connection, using

the SOR parameter described earlier. The four

arrangements shown in figure 4-16 correspond to SOR

values of 0,1,2,3 respectively. If unspecified, a SOR

value of 0 or 3 is chosen (rather than 2 or 1

respectively).

In all other cases, a valid set of wires uniquely

determine a device arrangement. Mostly, device

arrangement is merely to do with the orientation of

asymmetric devices. In the case of buried contacts, it

also determines whether the contact is realised as a

colinear or orthogonal buried contact.

132

4.8: An Example Idiom

A simple example of an idiom which illustrates many of

the points raised in the preceding sections is now

presented. More complicated examples will be examined la

chapter 7.

Figure 4-18 shows a mixed notation description of a

generalised two-phase shift register, including

connection grids for power, ground and clocks. Figure

4-19 shows the subdivision of the generalised shift

register into an array of VIRGIL leaf cells.

SHIFT is just the shift cell described in figure 4-f.

SIDE, TOP and CORNER are wiring cells which make the

necessary power, ground and clock connections. SIDE

connects either power (on the right side of the array) -r

ground (on the left) lines together. TOP similarly

connects different phases of the clock together at the

top and bottom edges of the shift register. CORNER

completes the rectangular array of cells, and allows

common clock lines to pass out under the power line on

the right of the cell.

The cells TOP and CORNER have been made

parameterisable to allow connections to be either made or

not made to certain clock lines. The VIRGIL descriptions

133

GND VDD

IN

IN

IN

PHI1

OUT

OUT

OUT

PHI2

Rgure 4-18: Shift Register Circuit

134

corner

side

side

side

corner

top

shift

shift

shift

top

top

shift

shift

shift

top

I

I

•

top

shift
i

shift

shift

top

corner

side
i

side

side

corner

Rgure 4-19: Shift Register Cells

135

of the various cells, (see figure 4-6 for SHIFT), and

graphical illustrations of instantiations of the cells

are shown in figure 4-20.

The manner in which the cells are composed together to

produce a complete shift register is given in the VIRGIL

composition cell definition shown in figure 4-21.

Although quite simple to write, this cell definition is

at first glance quite difficult to understand, and it is

instructive to explain it in detail.

The shift register definition can best be explained by

looking at one particular instantiation of the cell, in

this case the instantiation with wide=2 and long=4.

The cell definition makes extensive use of an

arithmetic odd/even expression of the form (i-i/2*2=0)

which yields TRUE if i is even and FALSE if i is odd.

Such an expression is used to select every second element

of some array for some special action, e.g. a common

clock connection is made to every second phase of each

row of the shift register. The textual form produced by

this instantiation is shown in figure 4-22. The

graphical representation of the complete shift register

is shown in figure 4-23.

Note that certain ports, such as power ports on the

left and ground ports on the right have been hidden so

136

Leaf Cell Corner(via:boolean=false) = (0,0,1,1)
gnd.s: mport § (0,0)
gnd.n: mport § (0,1)
mwire @ gnd.s -> gnd.n
[if via then

clock.e: pport § (1,1)
clock,w: pport § (0,1)
pwire @ clock.e -> clock.w]

End

Leaf Cell Side = (0,0,1,2)
gnd.e: mport § (1,0)
gnd.s: mport @ (0,0)
gnd.n: mport @ (0,2)
mwire @ gnd.e -> gnd.s -> gnd.n
in.e: pport § (1,1)
in.w: pport @ (0,1)
pwire £ in.e -> in.w

End

Leaf Cell Top (join:boolean=false) = (0,0,3,1)
clock.e: pport @ (3,1)
clock.w: pport @ (0,1)
clock.s: pport § (2,0)
nport § (1,0)
pwire $ clock.e -> clock.w
[if join then pwire 0 clock.s -> clock.s + (0,1)]

End

Rgure 4-20(a): VIRGIL Leaf Cell Descriptions

137

CORNER
GND.N

GNO.S

via=false

CORNER
CLOCK.W

A GND.N >v CLOCK.E

GND.S

via=true

SIDE

1<

GND.N

IN,WV IM«V¥ /

GND.S

IN.E

GND.E

1<&

TOP
CLOCK.W

TOP

yv CLOCK.8

CLOCK.E:

V1

1 <

0 -/*^ •{ .CLOCK.S

join=false

CLOCK.E

0 1 2

join=true

Figure 4—20(b): Graphical Representations of
Leaf Cell Instantiations

138

Composition Cell SR (wide:integer=2, long: integer^)

Row = » Side -
[for 1=1..long repeat -
» Shift/out=in [if 1=1 then /vdd.w] -

[if i=long then /gnd.e] -
] » Side/gnd.s=vdd/gnd.n=vdd/gnd.e=vdd § 2

TopRow = » corner [for 1=1..long repeat -
» top (join = (1-1/2*2 = 1)) -

[if 1=1 then /clock.w]] -
» corner (via = true) /gnd.s = vdd/gnd.n=vdd iny

BotRow = » corner [for 1=1..long repeat -
» top (join = (1-1/2*2 = 0)) -

[if 1=1 then /clock.w] inx] -
» corner (via=true)/gnd.s=vdd/gnd.n=vdd § 2

SR r ** BotRow [for 1=1..wide repeat -
~~ row [if 1-1/2*2 = 0 then INX]] ** TopRow

END

Rgure 4-21: Shift Register Composition Cell Definition

139

COMPOSITION CELL SR

ROW =» SIDE -
» SHIFT / OUT=IN / VDD.W -
» SHIFT / OUT=IN -
» SHIFT / OUT=IN -
» SHIFT / OUT=IN / GND.E -
» SIDE / GND.S=VDD / GND.N=VDD / GND.E=VDD § 2

TOPROW =» CORNER -
» TOP (JOIN=(1-1/2*2=1))/ CLOCK.W -
» TOP (JOIN=(2-2/2*2=1)) -
» TOP (JOIN=(3-3/2*2=1)) -
» TOP (JOINr(4-4/2*2=1)) -
» CORNER (VIA=TRUE) / GND.S=VDD / GND.N=VDD INY

BOTROW =» CORNER -
» TOP (JOIN=(1-1/2*2=0))/ CLOCK.W INX -
» TOP (JOIN=(2-2/2*2=0)) INX -
» TOP (JOIN=(3-3/2*2=0)) INX -
» TOP (JOIN=(4-4/2*2=0)) INX -
» CORNER (VIA=TROE) / GND.SrVDD / GND.N=VDD @ 2

SR =** BOTROW ~" ROW ~~ ROW INX " TOPROW

END

Rgure 4-22: Textual Form of Composition Cell
Definition after Instantiation

140

SR

• r T I * I T

1 1 i 1

Figure 4-23: Graphical Representation of
a Shift Register

141

that no connections are made to them. A different method

has been used to hide unconnected clock lines. Such

lines are connected to ports in TopRow and BottomRow

which are then internally unconnected to the common clock

wire.

The shift cell has been designed with power and ground

connections at the top and bottom of the cell. When

cells are composed, if alternate rows of cells are

mirrored, it is possible to share power and ground lines,

and the diffusion-metal contacts on them, between

adjacent rows. This can be achieved in VIRGIL by placing

the features to be shared on the very top and bottom grid

lines, since these grid lines will be merged with those

on the adjacent cell during composition. This merging

can be seen in the VDD line in figure 4-23.

Another feature worthy of note is that of automatic

wire trimming. Wires which are connected to ports

subsequently hidden in composition operations are left

"dangling" in the middle of the newly created cell. Such

wires are automatically removed, so that the complete

idiom instantiation still meets the validity requirements

given in section 4.7. Examples are the clock and power

lines in figure 4-23-

: Summary

The VIRGIL language includes several features which

distinguish it from other VLSI design languages, and

which are worthy of further discussion.

Primarily, VIRGIL is a textual language for the

description of idioms, but it can also describe circuits.

This differs from most design systems which are primarily

for the description of circuits, and often have a strong

bias towards graphical entry of designs.

The syntax of VIRGIL has been designed to allow

concise idiom descriptions, but not at the expense of

being too cryptic. Examples are the use of syntactic

"sugar" such as parentheses around coordinate pairs and

arrows between coordinates in wire paths. While not

strictly necessary, they help to make the design

description more readable.

Selection and repetition have been implemented as

textual operations, allowing selection and repetition

down to the level of individual lexical entities. This

allows for very concise idiom descriptions. For example,

if a whole row of cells were identical except for some

port hiding on the end cells, only the port hiding part

of the cell call would need to be placed in a selection

construct. Examples of this can be seen in the shift

register description in figure 4-21.

The notion of device arrangements has been introduced.

These provide a simple but powerful tool for the

detection of invalid circuit constructs. Such detection

is greatly aided by the structural information implicit

in the design description. Such information is

especially well handled by a virtual grid description,

since the information needed to verify correct circuit

constructs can be obtained by looking, independently, at

each grid point and the grid lines leading from it. The

detection of invalid circuit constructs is a valuable ail

in quickly debugging a circuit description.

Device arrangements also allow, in most cases, the

automatic orientation of non-symmetric devices such as

transistors, and butting and buried contacts, meaning

that the designer need only specify their position on tt

virtual grid and not their orientation.

Finally, because idioms are described at the sticks

level, they are valid for a wide range of different

fabrication processes. As will be shown in the next

chapter, CMOS idioms especially can be designed to be

valid in a wide range of different technologies.

1 44

5r STICKS COMPACTION OF THE VIRTUAL GRID

5.1: Background

Sticks compaction is the common name given to the

translation between sticks level representations and mask

level representations. Sticks are converted to mask

descriptions by creating mask level equivalents of

structural items in the sticks description, and arranging

these items so that the relative topological orderings

and interconnections implied by the sticks description

are preserved, and also so that none of the minimum mask

level spacing requirements (i.e. design rules) are

violated. A brief discussion of the current state of ~he

art in sticks compaction has already been presented in

section 2.7-

Sticks compactors are now available which can

efficiently produce acceptably dense mask level

equivalents of sticks circuits. Given such compactors,

it would seem far quicker and easier to design circuits

at the sticks level rather than at the mask level,

especially considering the other advantages of sticks

design such as freedom from process-specific design

rules. However, in practice, design at the sticks level

has yet to gain any real degree of widespread industry

acceptance as a production tool, rather than as merely a

research topic. Some of the reasons for this lack of

145

acceptance are worthy of brief investigation.

One reason for this is seen by the author to be that

the largest contribution to reductions in circuit area

are not made by clever compaction of a fixed topological

arrangement. Rather, the greatest savings are made by

changes in the topological arrangement of components once

the circuit has been initially laid out and the parts of

the circuit preventing further compaction have been

identified.

Furthermore, a human designer, who has a good global

overview of a circuit, can often see areas where slight

changes in one area of a circuit can give a globally more

compact circuit. However, it may be impossible to convey

this information to the sticks compactor, and so in

frustration the design returns to design directly at the

mask level.

The compactor designed for the VIRGIL system is

intended to allow the designer to interact in the

compaction process by including "hints" to the compactor

in the virtual grid representation of a circuit, such as

was mentioned in section 4.1. Changes in topology can be

rapidly made, and their effect on circuit area rapidly

gauged by use of automated compaction. In such cases,

the main requirement is for predictable and controllable

compaction. The designer must be able to gauge the

effects which certain changes in the sticks

representation will have on mask level circuit

representation. Similar observations have been made by

other researchers in the field of sticks design systems

[Weste 81a].

The sticks compactor produced as part of the work for

this thesis has been designed to be both predictable and

controllable.

Obtaining the densest possible circuit realisation,

and hence lowest fabrication cost per part is not always

the primary consideration in circuit implementation. In

designing circuits for low and medium volume

applications, initial design cost is often the major

portion of the overall cost of each device. Design at

the sticks level can play a part in reducing this overall

cost by allowing the rapid design of circuits which are

both free of design rule infringements and which can be

rapidly implemented in new technologies as these become

available, even though this may result in less dense

circuit layouts.

Just as most software is now written in high level

languages, so it can be expected that VLSI circuits will

increasingly be designed at levels of abstraction above

the mask level. Using the same analogy, it can be

expected that there will always be a place for design

1 47

directly at the mask level, just as there is still a

place for programming in machine specific assembly code

5.2 Mask Level Representation on a Quasi-Virtual grid

A virtual grid description of a circuit provides not

only physical but also structural information about a

circuit. It is also a "stretenable" design

representation because as grid lines are spread further

apart, perhaps by insertion of extra grid lines during

composition, then it is only wires which are affected.

These wires automatically become longer so as to maintain

connections between the devices at their end points.

When converting to a mask level representation of a

circuit, it would seem a pity to lose these attributes of

a joint physical and structural design description, and

of a stretchable design representation. For these

reasons, a novel method of mask level circuit

representation based on the idea of a virtual grid is

introduced. This is referred to as the quasi-virtual

grid.

Circuits, whether at the sticks or mask level, consist

of a set of devices (transistors and contacts) and points

of external connection (ports) interconnected by wires.

At mask level, devices are constructed by overlaying

several different mask layers in a specific way. The

1 U3

sets of overlaying mask shapes which comprise the various

devices are called "templates". In some cases, all

devices of a certain type (such as polysilicon to metal

contacts) can be formed from the same template, while in

other cases (such as buried contacts) there may be

several different templates for the same type of device.

Devices in a circuit can then be described in terms of

a template and a pair of coordinates representing the

physical position of the template within the complete

mask level circuit. Wires can be represented in terms of

a type (layer and width) and a path followed by the

centre line of the wire. This path can in turn be

represented as the set of the coordinate pairs of the end

points of the line segments comprising it.

Within a circuit, there will be a finite number of

coordinate pairs needed to describe the positions of all

the devices and the paths of all the wires in that

circuit. These coordinate pairs can then be broken up

into a set of X-coordinates {X1..Xn}, and a set of

Y-coordinates {Y1..Ym}, such that Xi <= Xi+1 and Yi <=

Yi+1. A set of lines, parallel to the Y-axis, can be

defined by {x=Xi}. A similar set of lines, parallel to

the X-axis are defined by {y=Yi}. All the coordinate

pairs needed to specify the circuit appear at

intersections of these lines, and so these lines are

called the "lines of action" within the circuit. All

1 49

significant points in the circuit can be mapped to a ne

more canonical, integer coordinate plane by the simple

mapping:

This new coordinate system is called the quasi-virtual

grid. A circuit described on a quasi-virtual grid is the

same as a circuit on a virtual grid - devices at grid

points, wires between grid points - plus some additional

information, viz. a set of device templates, and a set of

physical coordinate values corresponding to the

quasi-virtual integer coordinates.

Consider, for example, the shift register cell shew-

in figure 5-1. This cell is designed using lambda basei

Mead-Conway design rules, with a lambda of 3 microns.

The device templates for this cell are shown in figure

5-2 in graphical form. Device templates are included for

the null devices which implicitly exist in virtual grid

circuits (see section 4.7). Wire widths are all minizua

allowable line widths. Figure 5-3 shows the lines of

action in the shift register cell, and shows the physical

coordinate to quasi-virtual coordinate mappings. Figure

5-4 shows the quasi-virtual grid corresponding to the

shift cell.

150

Figure 5-1: A Shift Cell at Mask Level

151

Figure 5-2: Device Templates in Shift Cell

152

0/4 12/4

1

33/4 48/4 54/4

3 4

84/4

57/4

27/4

12/4

0/4

Figure 5-3: Lines of Action and Coordinate Mappings

153

SHIFT

0 1 234

Figure 5-4: Quasi-Virtual Grid for Shift Cell

154

The quasi-virtual grid of figure 5-4 together with the

coordinate mappings of figure 5-3 and the device

templates of figure 5-2 then comprise the entire

quasi-virtual representation of the mask level

description in figure 5-1.

5.^; Translation to a Quasi-Virtual Grid

The quasi-virtual grid provides a way of representing

mask level circuits which is especially convenient for

translating from virtual grid "sticks" circuits. Since

the quasi-virtual grid consists of a virtual grid plus

device templates and coordinate mappings, translation

from sticks to mask level can be achieved by simply

adding these latter two components to an existing virtual

grid.

It should be immediately emphasised that this simple

translation is by no means the only possible translation

which can be made. A virtual grid may be translated into

a mask level representation which is based on a different

quasi-virtual grid. It should be remembered that a

virtual grid itself imposes no restriction, other than

relative topological ordering, on the components within

it. On the other hand, the quasi-virtual grid imposes

the much stronger restriction that items with the same X

or Y quasi-virtual coordinate are positioned at the saae

physical X or Y coordinate. This restriction is then

155

also implicitly imposed on the original virtual grid if

this simple translation is used.

This restriction is not necessarily a particularly

harsh one, in fact this restriction gives the

controllability and predictability of sticks to mask

level translation which has previously been shown to re

useful. This constraint is also the reason that virtual

grid sticks compaction can be computed with time

complexity 0(N), rather than 0(N*»1.5) as is the case fcr

gridless compaction, or virtual grid compaction without

this constraint. A sticks compactor based on this sizzle

translation has been developed for this thesis.

The quasi-virtual grid is primarily used here as a

target for the sticks compactor, rather than as a design

representation produced directly by a designer. As s^:~.

it is only necessary that the quasi-virtual grid is

capable of representing those circuits which can be

produced by the sticks compactor, and this leads to

several simplifications.

Any geometric restrictions imposed on a virtual grii

are also likely to be imposed on a quasi-virtual grid

directly derived from it. Specifically, if only paraxial

(i.e. parallel to one or other coordinate axis) wires are

allowed on the virtual grid, then wires on the

quasi-virtual grid will also all be paraxial.

1 56

Device templates need not be composed of purely

Manhattan geometry shapes, the only restriction imposed

by the Manhattan nature of the virtual grid is that

connections between wires and devices will be in one of

the four Manhattan directions. In practice, Manhattan

geometry templates are quite adequate, and the use of

purely Manhattan shapes simplifies the representation of

templates.

Another simplification, which is less obviously

justified, is to do with so-called "bent" transistors.

In NMOS circuits particularly, the use of ratioed logic

often results in the use of transistors with channels

which are quite long or quite wide. These devices can

often be fitted more neatly into a circuit by twisting

the path of the channel. An example is shown in figure

5-5, where a load device with a length to width ratio of

16:1 is shown both "straight" and "bent".

In this compactor, only "straight" transistors are

used, for several reasons. Firstly, interconnections

between wires and devices can be greatly simplified if

device templates conforming to certain conditions (which

are fully discussed in section 5.4) are used. These

conditions are not met by bent transistors.

Secondly, bent transistors are not really an issue in

CMOS circuits, where ratioless logic is used. A good

157

jm~mmmm^~mj

Rgure 5-5: "Bent" and "Straight" Transistors

158

deal of the original work done here on compaction is

specifically to do with CMOS circuits, and CMOS circuits

are increasingly overtaking NMOS as the most widely used

technology. It was felt that it was not worth spending

too much time on subjects not directly applicable in CMOS

circuits.

Finally, the provision of "bent" transistors really

requires the bends to be arranged so as to fit into the

surrounding circuit layout, if these bends are to be most

effective in reducing circuit area. The generation of

such "context sensitive" device templates is a far harder

problem than the simple approach adopted here of having a

single type of device template (i.e. straight

transistors) which are always used.

In summary then, the compactor developed for this

thesis has been deliberately made as simple as possible.

It is hoped to show that these simplifications allow

compaction to proceed in a very simple and predictable

manner.

5.4: Device Templates

Device templates are the mask level equivalents of

device "arrangements" mentioned in section 4.7. If

templates are restricted to Manhattan geometry figures,

then templates can be specified as a set of paraxial

1 59

rectangles, each on a specific mask layer, and placed

relative to some device origin at the centre of the

device. Some of these rectangles exist on notional mask

layers, which although not corresponding to physical mask

layers, are still useful to include. An example is a

layer called "active 11 , which defines the transistor

channel areas. It is simpler to specify these layers

directly than to specify rules for how they can be

derived in general. Some device arrangements (e.g. the

four arrangements of BUTTING in figure 4-16) are simply

rotations of a single arrangement, so in such cases only

one template needs to be specified.

Some devices' shapes depend on parameters such as

channel length and width. In these cases the templates

are best specified parameterisably. Given the name of a

device and an optional set of parameters, such a

parameterisable definition returns the set of boxes on

various mask layers which correspond to the exact

template for the device.

Since wires are to go between devices to connect them

together, it might seem that it is necessary to include

in the templates the coordinates of the points on the

devices to which wires may connect. Because of the

simplifications mentioned in the previous section, it is

possible to design templates in a manner so that this

need is removed, viz. the templates are designed such

160

that if a wire is to be connected to a device, then

correct connection is made by connecting the end of the

wire to the centre of the device. In other words, wires

do not go merely between edges of devices, rather they go

between the centres of devices. Wires can always be

placed in this way such that they do not interfere with

the device template.

As an example, consider an orthogonal buried contact

as shown in figure 5-6 (a). Wires can extend from the

centre of the device in all four directions (figure 5-6

(b)-(e)) quite legitimately.

This property leads to the very useful result that

wires can be placed on a quasi-virtual grid such that

their centre lines extend between grid lines, without

regard to what devices are placed at grid points. Note

that these wires no not extend past the end-points of

their centre lines (as, for example, GIF wires do), as

illustrated in figure 5-7. Null device templates provide

the overlap between the ends of orthogonal wires segments

which is provided by the extended ends of wires in GIF.

Figure 5-8 (a) shows a simple virtual grid, which can

be divided into devices (5-8 (b)) and wires (5-8 (c)).

These can be converted to mask representations

independently (5-8 (d),(e)) and when combined (5-8 (f))

give the correct mask equivalent of the whole circuit.

161

I
I1.

(a) Buried Contact Template

I.

(b) Wire from North (c) Wire from South

I
i.

1
1

11

• •

1

\
\

(d) Wire from West (e) Wire from East

Figure 5-6: Wires Connecting to the Centre of a Device

162

(a) Centre Line of Wire

(b) Quasi-Virtual Grid Wire

(c) CIF 2.0 Wire

Rgure 5—7: Wires in CIF and in Quasi—Virtual Grids

163

ALL

i<

t i i

(a) Complete Virtual Grid Circuit
DEVICES

• i a

(b) Devices

D

WIRES

• it

(c) Wires

(d) Mask Level Devices (e) Mask Level Wires

(f) Complete Mask Level Circuit

Rgure 5—8: Independent Translation of Wires and Devices

164

Since null device templates are squares of the minimiza

possible size on various layers, the null device

templates are sufficient to define minimum wire widths.

In some cases, it might be desirable to connect to

points of a device other than the centre, especially

where connection can be made over a wide area, such as

the poly gate of a long transistor. In such cases, a

wire which runs out of the centre of the device, and then

along to the preferred connection point usually gives

similar results. Figure 5-9(a) shows the way such a

construct is represented on a virtual grid, and figure

5-9(b) shows the resulting mask level layout.

Device templates provide an elegant method of

expressing all the design rules concerned with widthz =ni

lengths of items in a mask level representation. A list

of minimum separations between layers completes the

information required to specify all the design rules

concerned with widths and separations for a particular

fabrication technology. Separations such as active area

to implant make use of the notional mask layers (in this

case "active") mentioned earlier.

It is argued that a list of templates plus a list of

layer separations provides a more elegant and more

natural method of capturing the design rules associated

with a particular technology than the specification of =

1 65

CONNECT

v^
0 1

(a) Virtual Grid

(b) Mask Level Representation

Rgure 5-9: Connection Desired to be Made
to Bottom of Transistor Gate

166

large number of constants such as "poly gate over channel

overlap" and "metal around contact hole overlap".

Some sets of design rules include rules which are not

simple widths and separations. An example is "no

coincident poly and metal edges". Such design rules are

not conveniently handled by a set of templates plus a set

of separations, and special code would need to be written

for each special case. No such special cases are

included in the simple compactor produced for this

thesis. Note that device templates plus separations are

sufficient to capture Mead-Conway design rules [Mead 80].

5.5 Coordinate Mappings

The next, and more difficult, phase of producing a

quasi-virtual grid description is to find the mapping

between quasi-virtual grid coordinates and physical

coordinates. This amounts to finding the minimum

physical spacing between grid lines such that no design

rules are violated, and corresponds to what is normally

called sticks compaction.

It is significant that wires have no direct effect on

the grid spacing, and can be ignored during this phase of

the translation. This is because the spacings between

the devices which exist at the ends of wires are

sufficient to ensure correct spacing between the wires

167

themselves.

The spacing between vertical grid lines is determined

first, and is achieved by assigning an X-coordinate to

each grid line, in turn, from left to right. A grid line

is first given the same X-coordinate as its predecessor.

Each device on the vertical grid line is examined in

turn. The minimum spacing between the device and any

devices directly to its left (i.e. on the same horizontal

line) is determined, and, if necessary, the X-coordinate

of the current grid line is increased so that this

spacing requirement is met. Notice that items on grid

lines several grid lines away can affect the spacing, as

shown in figure 5-10. In practice, all items closer than

the maximum possible separation are checked.

Y-coordinates are assigned to horizontal grid lines,

from bottom to top, in the same manner.

Finally, diagonal spacings are checked. Devices are

sufficiently separated diagonally if they are

sufficiently separated either horizontally or vertically.

Figure 5-11 shows two possible arrangements of a circuit

which would satisfy diagonal spacing requirements.

The basic operation required to calculate grid

spacings is that of finding the separation between two

devices, given their relative positions (left, right,

168

SPACING

(a) Before Compaction

(b) After Compaction: Metal to Metal Spacing Dominates

Rgure 5-10: Influence of Items over Several Grid Lines

169

DIAGONAL

• i

(a) Circuit with Diagonal Spacing
Requirement between Contacts

(b) Layout Providing Vertical Spacing

(c) Layout Providing Horizontal Spacing

Figure 5—11: Diagonal Spacing Requirement is Satisfied
by Sufficient Horizontal or Vertical Spacing

170

above, below) and the layers on which they are connected.

Figure 5-12 shows an example of two items whose

separation depends on connectivity.

Note that in situations such as that in figure 5-12,

it is necessary to know that, for example, metal and

polysilicon are connected in a PM contact. This can be

done by including in device templates a list of connected

layers. In each device, all layers marked as "connected"

are considered to be electrically connected.

Such connection information is sometimes rather

artificial, e.g. in a PM contact, the "contact" mask is

not marked as connected, so that correct contact window

to contact window spacing is maintained between adjacent

contact s.

The only other information needed to calculate device

spacings is a list of minimum separations necessary

between the various layers.

To find the separation between two devices, the

connections between the different layers in each device

must be calculated. If a wire of a certain type joins

the two devices, then boxes on that layer in both devices

are considered connected to the wire. If that layer is

marked "connected" in the template of one device, then

all other layers also marked "connected" are considered

171

UNCONNECTED

1< fit H
n
a a

1

(a) Separation between Centres of
Unconnected Contacts = 7 lambda

CONNECTED

1< a a

(b) Separation between Centres of
Connected Contacts = 4 lambda

Rgure 5—12: Effect of Connectivity on Separation

172

to be connected to the wire.

Boxes on each layer in one device template are

compared with boxes on each layer of the other. If the

two layers on which the boxes exist are connected, or if

there is no minimum spacing requirement between them,

then this pair of boxes is ignored. Otherwise, the

minimum spacing requirement imposed by this pair of boxes

is the sum of the minimum separation between the layers

and the size of each box in a direction towards the

other, as shown in figure 5-13.

The largest spacing imposed by any pair of boxes

determines the minmum spacing (centre to centre) between

the two devices. Notional layers such as "active" allow

spacings such as active to implant to be calculated.

A set of coordinate mappings as produced by the

compactor represents a minimum set of spacings between

grid lines. By increasing any of these spacings, a mask

level circuit can be stretched, perhaps to allow

connection to some previously designed mask level

circuit.

5.6: Translation of CMOS Circuits to Mask Level

The amount of design-rule independence offered by

virtual grid design is far more important in the design

173

Calculation of Centre to Centre
Separation between PM and NM

(All Units in Lambda)

Metal To Metal
Spacing

= 24-3+2 = 7

Poly to Diff
Spacing

= 2+1+2 = 5

Contact to Contact
Spacing

= 1+2+1 = 4

Maximum Layer to Layer Separation = 7,
So Minimum PM to NM Separation = 7

Figure 5-13: Minimum Separation Calculation

174

of CMOS circuits than in NMOS. At present there are at

least four major classes of CMOS technologies, none of

which is particularly more favoured than the others.

These are N-well, P-well, twin-well and SOI

(silicon-on-insulator). A new design style, called

generalised CMOS, is now introduced which allows the

design of circuits which are valid in all of these

technologies.

Circuits (and hence idioms) which are designed in

generalised CMOS are able to offer the circuit designer a

wider choice of possible target technologies.

Furthermore, the choice of technology can be left to far

later in the design cycle. A single circuit might also

be implemented in two different technologies for

different applications - say twin-well for performance

and SOI for radiation hardness.

The conversion of CMOS circuits from virtual grid to

mask level representation involves an extra step not

present in the conversion of NMOS circuits. This is the

insertion of wells. Wells are used to change the

substrate doping in certain areas of a circuit so that

the two complementary types of transistor (NTYPE and

PTYPE) can be fabricated on the same substrate.

Wells differ from other circuit features in that they

are not associated with individual devices, but rather

175

with whole groups of devices. Where possible, wells

around adjacent devices should be amalgamated. In

particular, every distinct well region must usually

contain at least one substrate contact. Although SOI

does not have wells like the other technologies do, it

does have island doping masks, which are similar.

Ideally, each well should contain as many adjacent

devices as possible, but it should be no larger than is

necessary to contain these devices, or else it might

cause unnecessarily large separations between devices

inside the well and those outside.

Wells are of two types. A P-well is an area of p-ty?e

diffusion, and can contain n-type (i.e. n-channel)

transistors and n-type diffusion wires. An N-well is an

area of n-type diffusion, and can contain p-type

transistors and p-type diffusion wires. In single well

processes, areas outside the well are as if they were in

a well of the opposite type.

Design at the mask level forces a designer to select a

specific CMOS technology. Even design at the sticks

level often requires the specification of well areas, and

so ties the design to a specific CMOS technology.

Generalised CMOS circuits are just CMOS designs which

contain no constructs specific to a single technology,

such as wells. The sticks compactor developed for this

176

thesis is able to automatically determine suitable well

areas using a novel algorithm which is described below,

and so is able to handle generalised CMOS circuits.

All virtual grid devices can be classified according

to whether they can exist only in a P-well (class-p

devices: NTYPE, NWIRE, NPORT, PSUB, NM); whether they can

exist only in an N-well (class-n devices: PTYPE, DWIRE,

DPORT, NSUB, DM); or whether they can exist in wells of

either type (class-u devices: MWIRE, MPORT, PWIRE, PPC3T,

PM) .

Each point on a virtual grid circuit can be similarly

classified. If any class-n device exists at a point,

then it is a class-n point, similarly for class-p. A

point which has no class-p or class-n devices is a

class-u point. Note that a class-p point or class-n

point may contain class-u devices. Figure 5-14 shows a

virtual grid circuit of a 4-input generalised CMOS nand

gate. Figure 5-15 shows the classification of the grid

points into class-n, class-p and class-u.

On the virtual grid, wells are constructed so as only

to contain devices of the correct classes. P-wells may

not contain class-n devices, and vice versa. Wells are

described as sets of rectangles, perhaps overlapping,

surrounding groups of grid points. Such rectangles are

constructed so as to contain as many devices of the

177

NAND4
VDOE

Figure 5-14: 4-input NAND Gate
in Generalised CMOS

178

N = can exist only in N—well

P = can exist only in P-well

U = can exist in either well

4 U—U—U—N—U—N—U—N—U—U—U
I I I I I I I I I I I 3 U—N—N—N—N—N—N—N—N—N—U
I I I I I I I I I I I 2 U—U—U—U—U—U—U—U—U—U—U
I I I I I I I I I I I 1 U—P—P—P—P—P—P—P—P—P—U
I I I I I I I I I I I0 U—P—U—U—U—P—U—U—U—U—U

01 23456789 10

Figure 5-15: Classification of Grid Points
in 4-input NAND Gate

179

appropriate class as possible, but also so as to be only

as large as is necessary to contain those devices, e.g.

in figure 5-16, arrangement (c) would be preferred.

To generate rectangles of the desired type, the

following algorithm is used, in this case for a P-well.

(1) Select a class-p grid point not yet included in a

P-well. Put a rectangle just around that point.

(2) Increase the size of the rectangle by one grid

square in each direction, (east, north, west, south) in

turn, provided such an increase would not bring a class-n

device into the rectangle. Continue increasing the

rectangle, one grid square at a time, until it cannot be

increased in any direction at all.

(3) Decrease the rectangle by one grid square in each

direction in turn, provided such a decrease would not

take a class-p device out of the rectangle. Continue

decreasing until the rectangle cannot be decreased in any

direction.

(4) Place a P-well "null device" at each class-u point

in the rectangle, changing these to class-p points.

1 80

U— U — U — N— U — N— U— N— U— U — U
I I I I I I I I I I I U— N — N— N— N — N— N—N— N— N— U
I I I I I I I I I I I U—U—U—U—U—U—U—U—U—U—U

-I——I——I——I——I——I——I——I——I I I
U— P — P — P — P — P — P — P — P— P — U
I I I I I I I I I I I U— P— U— U— U— P— U—U— U— U— U

(a)

UI
UI
UI
U
I
U

-U
I-N

-U
I•P
I•P

— U
I— N

— U
I_ p
I— U

— N
I— N

— U
I— P
I— U

— U
I— N

— U
I— P
I— U

— N
I— N

— U
I— P
I— P

— U
I— N

— U
I— P
I— U

— N
I— N

— U
I— P
I— U

— U
I— N

— U
I— P
I— U

— u
I— N

— U
I— P
I— U

^

^

^m

-U
I-u
I-u
I-u
I-u

(b)

u-
1u-
1

-U— U— N— U
1 1 1 1-N— N— N— NH — r — i — i-

— N— U
1 1— N— N— i — r

— N— U
1 1— N— N— i — r

— u-
1— N-

— t-1

— U— U--U
I I I— N—N--U

u—u—u—u—u—u—u—u—u—u—u
I
uI
u

I
uIu

M

••

-r
-p

i-p

— r
— p

I— u

— r
— p

I— u

— r
_ p

1— U

— r
— p

1— p

— r
— p

1— u

— r
_ P

1—u

— r
— p

I— u

— r
— p-

1— u-
(c)

Figure 5-16: 3 Possible Well Area Groupings
for CMOS NAND Gate

(Arrangement (c) Preferred)

181

The "null devices" mentioned in (4) above are used in

the same way as null devices for wires, to define a

minimum size area of well geometry. In a twin-well

process, where both N-well and P-well rectangles are

grown, placing null devices in wells also prevents the

same class-u point being in both a P-well and an N-well

rectangle.

Well rectangles are grown before grid line spacings

are determined. After grid line spacings have been

determined, well rectangles can be added to the mask

level representation.

Well mask layers are included in device templates,

even if there is no physical mask corresponding to thea,

such as a P-well mask layer in an N-well process. In

this case, this nominal layer represents "anti-well", or

in other words, the distance which devices must be placed

away from the edges of the other well layer. Since all

class-p device templates contain a P-well mask layer, and

all class-n devices contain an N-well layer, and all

class-u devices contain neither, this provides a

convenient method of determining the class of a device

from its template. Including such well information in

templates also ensures correct spacing between devices,

without the need to consider the presence of the large

well areas.

1 82

Substrate contacts are explicitly specified by the

user in circuit descriptions, and in processes where

these are not needed, they can be omitted by the

compactor. The automatic insertion of substrate contacts

would remove some of the predictability of the compaction

process.

Figure 5-17 shows examples of N-well, P-well,

twin-well and SOI mask level circuits corresponding to

the single generalised CMOS circuit of figure 5-14.

5.7: Sticks Exjt r a c t i o n

The usefulness of sticks circuits as a method of

design representation has already been emphasised, and in

particular, the relatively straight-forward manner in

which virtual grid sticks circuits can be translated to

mask level representations has been discussed. An

equally valid translation, which is potentially just as

useful but has not been an area of particular research

interest, is the reverse translation from mask level to

sticks, here called sticks extraction.

Sticks extraction reduces a mask level circuit to a

topological arrangement of devices interconnected by

wires. In other words, it removes design rule dependent

features of the circuit such as widths and separations.

If the sticks circuit is subsequently converted back to

133

(a) N-well CMOS

1

1
D

LJ!
1

••

'D;

n

HI

j n l

j"

^^•a

LJ
-.
J

:

1
i

(b) P-well CMOS

I
fL1
r

[1 .

H
y

b

r
i!

•••* * fnl
T

1

!D:

f

-

1

* • ••

1 ———— ! i — __ •

r

î
1

^•Hn
-

D

!

1̂
•M

j

1

i

(c) Twin-well CMOS

(d) SOI CMOS

Figure 5-17: Generalised CMOS NAND Gate Implemented
in Four Different Technologies

184

maak level, but with a different set of design rules,

then the original circuit has effectively been

automatically translated from one technology to another.

The advantages of such translation are especially evident

in CMOS circuits, where translation is possible not only

between different sets of design rules, but also between

different classes of CMOS technologies.

There is already a large investment which has been

made in designing circuits at the mask level. If the

lifetime of such circuits can be extended by allowing

them to be automatically translated into newer

technologies as these become available, then designers

will be able to make better use of this investment. 1~

is worth noting that this approach does not offer a

simple way to take advantage of new processes offering

more layers of interconnect.

The problem of sticks extraction has not been examined

in great detail, but an algorithm which would seem to

work for simple Manhattan geometry circuits is presented

as a first excursion into this area.

Sticks extraction amounts to identifying devices and

the wires which interconnect them within a circuit. As

such, it is quite similar to the process of circuit

extraction, but it must also retain the topology of a

circuit. Sticks extraction could also be thought of as

185

converting from a traditional mask level representation

to a quasi-virtual grid representation. As an example,

consider the inverter of figure 5-18, which is

implemented in a twin-well CMOS process.

Devices can be located by finding particular

combinations of intersecting (i.e. overlapping) mask

layers. In a twin-well CMOS process, the combinations

identifying the various devices are as follows.

NTYPE: diffusion, poly, pwell

PTYPE: diffusion, poly, nwell

PM: poly, metal, contact

NM: diffusion, pwell, metal, contact

DM: diffusion, nwell, metal, contact

PSUB: substrate, pwell, metal, contact

NSUB: substrate, nwell, metal, contact

Ports can be identified by points where geometry

reaches a user-defined cell boundary. Figure 5-19 shows

the devices and ports in the CMOS inverter under

consideration.

Once identified, these sets of overlapping layers,

which form the "core" of devices (i.e. they do not form

the entire device templates), can be removed from the

mask level representation. This should leave a number of

disjoint areas on the different mask layers corresponding

186

VDD

IN
OUT

GND

Figure 5-18: Twin-well CMOS Inverter

187

DM = diff+nwell+metal+contact
9

MPORT

i
NSUB = sub+nwdll+metal+contact

•

j PTYPE = n

PPORT

velU di Ff+poly

MPORT

MPORT

drf+poiy

I

MPORT

MPORT

*

PSUB = sub+pwejl+metal+contact

MM = dfff+pwell+metal+contact

Figure 5-19: Devices Located By Overlapping Layers
Ports Located at Edges of Cell

188

to wires in a sticks circuit. In the example process,

these layers are as follows.

PWIRE: polysilicon

NWIRE: diffusion and pwell

DWIRE: diffusion and nwell

MWIRE: metal

Each separate area on each mask layer will be

connected to a number of points where devices have been

removed from the circuit. Each area can then be reduced

to a number of connected line segments which both connect

all such points, and also lie wholly within the

particular mask layer area. These line segments

correspond to wires in the sticks circuit. Figure 5-20

shows a possible set of wires for the CMOS inverter.

Finally, in order to represent the sticks circuit as a

virtual grid, it is necessary to identify a set of "lines

of action 11 which are sufficient to allow all devices and

wires to be placed on an integer coordinate plane. The

lines of action for the inverter are shown in figure

5-21, and the resulting virtual grid is shown in figure

5-22. Figure 5-23 shows a SOI implementation of the same

inverter circuit, illustrating how circuits can be

translated automatically from one class of CMOS

technology to another.

1 89

(a) Wires on Metal Layer

190

(b) Wires on Polysilicon Layer

191

L-41

(c) Wires on Diffusion Layers

Figure 5-20: Finding Wires Joining Ports and Devices

192

7

6

— 5

4
3

1

0

Figure 5-21: Lines of Action in CMOS Inverter

193

INVERT

6

Figure 5-22: Virtual Grid Representation
of CMOS Inverter

194

J

Figure 5—23: Inverter Converted to SOI

195

Since existing mask level circuits may use constructs

which are specific to one technology (such as island to

island contacts) or devices such as bent transistors, it

may be necessary to do some manipulation on these

circuits at the sticks level before recompaction. For

example, an island to island contact could be converted

to a ptype diffusion to metal contact joined by a metal

wire to an ntype diffusion to metal contact.

No software has been produced to implement the sticks

extraction algorithm presented here, rather the area of

sticks extraction is presented as an interesting idea

which has emerged during the course of the main work on

the thesis.

5.8: Summary

A sticks compactor has been developed, which while

being quite simple, has explored some interesting and

novel ideas.

Firstly, the quasi-virtual grid has been introduced as

a convenient method of describing mask level circuits,

which retains structural information and is inherently

stretchable.

It has been shown that predictable, controllable

conversion from sticks level to mask level is achieved zj

196

adding the concepts of device templates and coordinate

mappings to a virtual grid to give a quasi-virtual grid

circuit.

Device templates plus a list of layer to layer

separations have been shown to be an elegant method of

describing simple sets of design rules.

A new CMOS design style called generalised CMOS has

been introduced, and a new algorithm for adding CMOS

wells in a technology dependent manner has been

introduced to support this design style.

Finally, the notion of sticks extraction has been

introduced as an aid to the automated conversion of mask

level circuits from one technology to another.

197

6; A PROTOTYPE IMPLEMENTATION OF THE VIRGIL SYSTEM

6.1; System Overview

An experimental implementation of a system for the

capture, storage and implementation of MOS idioms has

been developed as part of this thesis. Figure 6-1 shows

an overview of the structure of this prototype system.

All programs for the VIRGIL system have been written

in the general purpose high level programming language

IMP [Robertson 83], and have been implemented on a DEC

VAX 11/780 running the VMS operating system.

It is intended to describe the function of each

component of the software system in the following

sections, and also to comment on some issues which have

arisen during the production of this relatively large

suite of programs.

6.2: A Cell Librarian

The VIRGIL system describes idioms in terms of

composition cells and leaf cells. In order that

composition cell definitions can access the appropriate

leaf cell definitions, it is useful to hold all cell

definitions in a single database. A simple database

1 98

USER

Master Controller
t A A A

Library Manager
A

V

Cell Data Base

Leaf Cell Assembler

Text Analyser

Composition Cell Assembler

Cell Verifier

Textual Output

Graphical Output

| Sticks Compactor & GIF Output

Set of
Instantiated

Cells

Figure 6-1: Overview of Software Environment

199

manager has been written to handle such storage of cell

definitions.

The basic operation which the database manager

performs during idiom instantiation is, given a cell

name, to return the definition of that cell. The

database manager is therefore more accurately described

as a librarian. An interactive interface to the

librarian also allows cell definitions to be added,

deleted and updated.

6.3; Text Analysis

Text analysis is the name given to the lexical

analysis and syntax analysis phases of the VIRGIL

language compiler. Since selection and repetition are

textual operations, these are performed as part of

lexical analysis. Any IF or FOR construct is fully

expanded, and resulting lines of text are passed one by

one to the syntax analyser.

The syntax analyser uses the recursive descent method

of parsing [Davfe 81], and is driven from an external

list of production rules.

Cell header statements must be analysed before lexical

analysis of the body of cell definition commences, so

that values of parameters, which may be used subseque r. "1 y

?00

in IF and FOR constructs, are known.

6.4: Internal Representation of a Virtual Griii

Virtual grid representations of instantiated cells are

stored internally as a graph, with grid points

represented as graph nodes, and the grid lines between

grid points represented as bidirectional graph edges.

Each graph representing a virtual grid has an

accompanying header record which lists the cell name, the

ports available for interconnection, and the values of

any cell parameters.

Once a leaf cell or an intermediate cell has been

composed, a copy of the internal representation of that

cell is held in a set of instantiated cells. In this

way, if a cell is used more than once in a complete idiom

definition, this internal representation need only be

generated once from the textual definition. Different

values for cell parameters will result in different cell

instantiations, hence the need to store parameter values

in the cell header. The location of ports within a cell

instantiation is stored in the header to assist in port

hiding and renaming operations.

201

6.5: Analysing Leaf Cell Definitions

The header statement in a leaf cell definition

includes the virtual grid coordinate bounds for that

cell, and so after this statement has been analysed, it

is possible to set up the graph used to hold the internal

representation of the virtual grid.

Subsequent statements in the fully expanded leaf cell

definition consist of the names of structural components

and their positions. These components can be added to

the graph-base representation independently of each

other, and so each statement in the cell definition can

be dealt with as it is produced by the text analyser.

Some errors can be dealt with during the analysis of

individual statements, such as coordinates outside the

stated bounds, and wire paths which are not orthogonal.

Errors concerned with invalid circuit constructs are

detected later, when the entire virtual grid circuit is

checked in the grid verification phase. This grid

verification consists of checking the circuit constructs

at each grid point in accordance with the rules presented

in section 4.7. Detection of such errors is a powerful

aid in circuit debugging.

202

6.6: Analysing Comoosition CelL Definitions

Each statement in the body of a composition cell

definition defines the way in which previously

instantiated cells are composed together to form a new

intermediate cell. Within a statement, each composition

can be considered as a separate operation, namely that of

joining the specified cell instantiation to the partly

completed intermediate cell to produce a more complete

intermediate cell.

Each composition operation is performed by merging

grid points and grid lines on the abutting edges of the

cells being composed, ensuring that ports which are

joined together match in both type and name. Cells can

be stretched so that matching ports are brought into

alignment, as was described in section 4.5. If a pair of

unmatched ports is encountered, then the composition

fails and instantiation of the idiom is halted.

In VIRGIL, composition is a simple but surprisingly

powerful operation. The fact that cells are

automatically stretched during composition to ensure

correct connection of ports means that the designer is

relieved from the need to "pitch match" adjoining cells,

as is required in non-stretchable design styles. Most

especially, changes to the pitch of one cell do not

203

require adjoining cells to also be redesigned

6.7; Outputting the Virtual Grid

Once a cell has been analysed, and an internal

representation produced, this internal representation can

be output in either graphical or textual form. Both

forms are output by scanning the grid in order of

increasing Y coordinate, and within the same Y, in or-er

of increasing X coordinate. Devices at nodes and wires

on edges are output as they are encountered.

Graphically, wires are output as coloured lines, and

devices as symbolic shapes (icons). Use of a largely

device independent graphics package [Hughes 81] allows

graphical output on a number of hard copy and screen

oriented graphics devices.

6.8: Conversion from Virtual Grid to GIF 2.0

Conversion from the internal representation of a

virtual grid to a mask level representation in the

language GIF 2.0 [Mead 80] is achieved by first producing

a quasi-virtual grid of the type described in chapter 5.

As device templates are created, they are also output

to a GIF file as GIF "symbols". Each device in the

virtual grid, including null devices, is then converted

204

to GIF by calls to these symbols at the appropriate

physical positions, as determined by the quasi-virtual to

physical coordinate mapping. Wires are constructed as

rectangles of the appropriate width and stretching

between physical grid line coordinates.

The overlap of wires and devices gives the complete

mask level circuit.

6.Q: User Interface

To instantiate an idiom, the user must supply the nazie

of the cell defining the idiom, the database in which

this cell definition is to be found, the parameter values

which specify the particular instantiation of the idi-~,

and the form in which the instantiation is to be outrun.

The output format may be either mask level textual

representation (GIF 2.0), virtual grid textual

representation, or virtual grid graphical representation.

The format or formats to be output are specified by the

user as VAX/VMS command language qualifiers [VAX 78].

Other information regarding the particulars of the

idiom are specified interactively in response to prompts

issued by the idiom instantiation program. The following

is typical of a terminal dialogue to produce an idiom

instantiation. Text output by the program is underlined.

05

text enclosed in braces is annotation and not part of the

dialogue.

vgdo/plot/compact {output plotted and in cif}

DATABASE?: cells

CELL?; shiftreg

BITS?: 4

WORDS?: 3

1

{library name is "cells")

{name of cell definition}

{parameter values}

For some structures such as PLA's and ROM's, large

arrays of parameters would be needed to specify the exact

idiom instantiation, and it would be tiresome and error

prone to enter these interactively. The system therefore

allows such lists of parameters to be input from an

external file, which in turn may have been generated by

some other program (e.g. the PLA parameter generator

described in chapter 7). A typical terminal dialogue is

such a case might be:

A vgdo/compact

DATABASE?: pla

CELL?: pla

INPUTS?: gdata.pla

{take further input from file "data.pla"}

206

In the current implementation, lines of text as output

from the text analyser, and also information regarding

various stages of translation to mask level are displayed

on the terminal so that the user can have some feedback

as to the progress of the current program run.

6.10; Some Implementation Issues

Particular problems arise when programming "in the

large", i.e. when composing and debugging large computer

programs. Such problems have mostly to do with being

able to control the complexity of such large programs,

and these can best be solved by imposing some sort of

hierarchy. The methods used to overcome these problems

in this particular implementation of a large system are

worthy of brief comment.

The VIRGIL system consists of a single executable

program, which in turn is composed of a large number

(about 20) of separately compiled modules, held in a

so-called object library. Each module is written in the

programming language IMP, which has only moderate support

for separately compiled modules. This support consists

of so called include files, which allow arbitrary text

from another file to be included in the source code of a

program, and also the facility to declare routines and

variables which are externally visible from separately

compiled modules other than the one in which they are

20?

declared.

In the VIRGIL system, each module includes one or more

externally visible routines (and in a few cases

externally visible variables), through which all

"communication 11 to and from the module is made. All

other internal structure of the module is hidden from

other modules, giving an easily managable method of

preventing interference between modules.

The source code for each module includes a global

declaration file. This file consists of a list of global

constant and data-type declarations, plus the

specifications of all externally available routines in

all modules. A copy of this file appears in appendix A.

Use of this single global file for such declarations

ensures that all modules maintain a consistent view of

the system as a whole. Most especially, all modules use

exactly the same data type and constant definitions, and

also specifications for externally available routines can

all be checked with the actual definitions of the

routines.

Partitioning of the complete VIRGIL software (about

10,000 lines of code), into a number of relatively simple

modules (about 200 to 1000 lines of code each) allowed

each module to be written, tested and added to the object

library relatively independently of other modules.

-?03

Newer programming languages, notably ADA [ADA 79],

specifioally provide language features to support modular

development of programs, and so a discussion of these

issues might seem out of place in a thesis such as this.

The motivation for including this discussion is to

indicate that with care and discipline most of the

advantages of modular programming are available with

currently available languages, and furthermore that the

author has found these techniques to be most useful, and

recommends such a structured, modular approach to others

undertaking a project of similar size.

09

7r EXAMPLE IDIOMS

7.1; Shift Register

A simple example of an idiom - a generalised shift

register - has already been presented in section 4.8.

Figure 7-1 shows a mask level representation of the 2

bits wide by 4 clock phases long shift register

instantiation discussed in section 4.8. A mask level

representation of a different instantiation of the same

idiom, this time 9 bits wide by 3 clock phases long, is

shown in figure 7-2.

7.2: Programmable Logic Array

7.2.1 Introduction

PLA's (Programmable Logic Arrays) are a widely known

idiom for implementing irregular combinatorial functions

using a regular structure. For those unfamiliar with

PLA's, a good introduction appears in section 3.10 of

Mead and Conway [Mead 80].

Since one aim of this thesis is to investigate the

capture of known idioms, it was decided to attempt the

capture, as exactly as possible, of an existing PLA

idiom. Since the PLA is quite a complicated idiom in

terms of the number of different leaf cells needed to

2 10

J

1

1
1

•

•

1
•

^^^H

*-

^m

1

t

r
.u

I

a
i

••i

mm

mm

mm

••i

mmm

[

3

•
•i

• J

•••

«

1 1
t*i

1

1

1

^H

f

t

t

»•

ft—T-
i

:i•]

— H

ia
•i

1 rrfA — '
»•

c
1
• -1
^

L..

1

::

* >•

•H
J 1

C

1

r
hr
ml

ii
•«
^
L

1

•v

»

• «

1

i-

17-

tt
•••

«*-
i
i

i

— 1

•i

J-

\

1
\T•h

•V

i

r±

,̂i

n
•^^^

'
MM«

»•

^B

^

f

»•

•••

I

a

•ji
•̂

%

>«• i >*<

i

r-

1

_

t
L

f

t

••

»•

.

—— 1

i

•i

i
A-

^mm

'T
+

7.

r
*•

i

ĉ̂̂

»•<

»»

c
—

q
•^M

a

i

•*

•i

:

•«
•»
.

i
•i

• ^

• •

i

MUM

f

f

»

L

»^«

»••

».»

»•«•

Rgure 7—1: 2 X 4 Shift Register Instantiation

211

».*

Rgure 7—2: 9X3 Shift Register Instantiation

212

describe it, and also because of the high degree of

parameter!sation, the study of this idiom provides good

insight into the use of VIRGIL as a means of idiom

capture.

"The VLSI Designer's Library" [Newkirk 83] is a

publication which gives details of a large collection of

leaf cell descriptions (at mask level), and also some

information on how these can be composed together to fcra

larger structures. As such it represents one of the few-

attempts to make a collection of useful idioms publicly

available.

Included in this collection is a set of cells for tr.e

construction of various types of PLA's. It has been

decided to implement a simple clocked input, clocked

output PLA generator using the cells presented in this

collection. The capture of this one idiom will be done

at both mask level (i.e. a "traditional" PLA generator),

and also using the VIRGIL system, so that the two methods

can be directly compared.

7.2.2: CaDtujre at the Mask Level

"The VLSI Designer's Library" describes a collection

of leaf cells for composing PLA's, giving a graphical

representation of each cell, the GIF 2.0 representation

of each cell, the sizes of the cells, and in a few cases

213

some information about how certain cells abut to other

cells. A picture of a completed PLA is the only

information which details the way the individual cells

are arranged to produce the complete circuit. The reader

is left to deduce the exact nature of the composition,

and to capture this composition using whatever design

system is available. Again this highlights the lack of

any widespread, standard language for the description of

parameterisable designs.

The leaf cells presented in "The VLSI Designer's

Library" are easily captured simply by copying the GIF

descriptions of the various cells. Graphical

representations of the various leaf cells, including some

wiring cells not included in the book, are shown in

appendix B.

The composition of these cells has been described

using the embedded, mask level 1C design language ILAP

[Hughes 83]. With a few exceptions, cells are composed

by simple abutment. Although ILAP does not directly

support the abutment of cells as a primitive operation,

it can be implemented by a sequence of operations such

as:-

214

Move to position (X,Y)

Place Cell A

Move to position (X',Y.)» where X ! = X + width of A

Place Cell B

Such composition merely places cells next to each

other, and does nothing to ensure that correct

interconnections between the two cells being abutted have

been made.

The user of a PLA generator needs some method of

specifying the various parameters which define a

particular PLA instantiation. Within the Computer

Science department at Edinburgh University the design

tools include several programs for use in the design and

specification of PLA's [Hughes 83]. To specify PLA

parameterisation, i.e. the number of inputs, outputs and

minterms, and also the programming of the AND and OR

planes of the PLA, a form of table is used. This tabular

form is also used for the specification of parameters for

the PLA generator discussed here. A full description of

this form appears in section 3.1 of "VLSI Design Tools"

[Hughes 83], but the basics are that entries in the table

for the AND plane may take the values:

215

X = Minterm does not use input term

1 = Minterm uses input term

0 = Minterm uses complement of input term

and for the OR plane:

1 = Output uses minterm

0 = Output does not use minterm

Figure 7-3 gives an example of such a PLA parameter

table (for the traffic light controller described in

section 3.11 of Mead and Conway, after appropriate logic

minimisation), and figure 7-4 shows the PLA corresponding

to these parameters, as generated by the mask level PLA

generator.

7.2.3: Capture Using VIR GIL

The mask level generation of PLA's is achieved by

composing cells using a series of vertical and horizontal

abutments. Since this type of composition by abutment is

supported directly in VIRGIL, all that is necessary to

capture the PLA idiom is to convert each mask level leaf

cell to a VIRGIL leaf cell, and then describe the manner

of their composition in a VIRGIL composition cell.

The programming of mask level PLA AND plane and OR

plane cells is achieved by overlaying the leaf cell

"PlaCel!" with another cell, such as "PlaProgLeft" (see

appendix B). In the VIRGIL leaf cells, this

216

IN C,TL,TS,YO,Y1
XXXOX 000
X X X 0 1 100
X X 1 0 1 011
0
X
X
X
1
1

X
1
X
X
1
0

X
X
1
0
X
X

1
1
1
1
0
1

1
1
0
0
0
1

0
0
0
0
1
1

1
1
0
1
0
1

1
1
1
0
1
0

1
1
1
1
0
1

0
0
0
0
0
0

0
0
0
0
0
0

0
0
1
1
0
0

OUT Y1,YO,ST,HLO,HL1,FLO,FL1

Rgure 7-3: PLA Parameter Table

217

Figure 7-4: PLA Generated at Mask Level

218

programmability can be more directly expressed by making

"PlaCell" a parameterisable leaf cell. Another feature

of programming a PLA is that adjacent programming cells

can share a single contact between the drain of the

programming transistor and the minterm line. This is

achieved in VIRGIL by placing these contacts on the edges

of cells, so that if contacts appear on the abutting

edges of two cells then they will be merged.

The textual descriptions of the VIRGIL PLA leaf cells,

and of the PLA composition cell, plus graphical

representations of some leaf cell instantiations, and an

example of a complete idiom instantiation are all given

in appendix C.

Since VIRGIL PLA parameters are expressed as a set of

integers for the number of inputs, outputs and minterias,

plus boolean arrays representing the programming of the

AND and OR planes, a program has been written to convert

from the table form of parameter specification described

earlier to the list of integer and boolean values needed

for the idiom instantiation program.

This program was used to process the PLA specification

in figure 7-3. The resulting list of parameters were

then presented to the idiom instantiation program, and

after conversion to mask level, the circuit shown in

figure 7-5 was produced. A minimum metal wire width of A

219

Figure 7-5: PLA Generated by VIRGIL

220

lambda was used during compaction to more closely model

the mask level PLA generator, which uses 4 lambda wide

metal throughout.

7.2.4; Comparison and Discussion

Perhaps the most striking differences between the mask

level PLA and the VIRGIL PLA are due to the effect of

automatic wire trimming. Wires are reduced in length (at

the virtual grid level) to be only as long as is

necessary. In the example of the PLA used, only 9

minterms are used, but since minterm rows are added in

pairs a blank minterm line appears along the top of the

PLA. The wire trimming algorithm has detected that this

wire is connected at only one end to another object, and

so has removed it completely, including the unused pullup

at the left hand side. Minterm lines across the OR plane

and input lines up through the AND plane have also been

shortened.

Overall, the sizes of the two PLA's are almost

identical, 186 by 16? lambda for the VIRGIL PLA, 188 by

170 lambda for the mask level PLA. A more sophisticated

compaction algorithm could probably decrease the size of

the VIRGIL PLA still further.

The relatively good compaction of the virtual grid

representation of the VIRGIL PLA was achieved by takir.z

221

advantage of the controllablity (ability to change final

layout by changing virtual grid layout) and the

predictability (knowing the effect that changes will be

likely to have) of the sticks compactor. The cells were

originally laid out on the virtual grid by capturing the

precise topology of the corresponding mask level circuit.

This was then compacted, and areas in which the circuit

would obviously benefit from small changes were then

adjusted. Only the design of the relatively complicated

input and output buffer driver cells had to be iterated

to achieve a good overall layout.

Unlike with the mask level PLA generator, the VIRGIL

system can check the validity of all cell

interconnections as cells are being composed. The design

rule free nature of sticks design ensures that no

geometric design rule violations will appear in the final

circuit, and also that this single PLA idiom description

will be valid for a wide range of different NMOS butting

contact processes, not just those which conform to Mead

and Conway lambda based rules. The description of the

way in which cells have been composed to give a complete

idiom is neat and concise. Finally, all these advantages

have been gained without any overall increase in circuit

area.

22.?

7.3: Parallel Multiplier

A Hardware Algorithm

In this example, a single idiom - a parallel

multiplier - has been designed which performs a complete

LSI function, so being suitable for hardware

implementation without the need for any extra circuitry.

Multiplication of binary numbers can be achieved by a

successive shift and add algorithm, much the same as is

used in manual decimal number multiplication. Figure 7-6

shows how two four bit numbers could be multiplied by a

series of shifts and additions. The algorithm

represented by figure 7-6 maps very neatly into hardware.

Figure 7-7 shows external connections to a gated full

adder circuit which performs the binary addition:

(S,A.B,C) -> (S',C') where S' = sum, C' = carry

Such cells can be arranged in an array as shown in

figure 7-8 so as to perform binary multiplication of the

unsigned binary integers A and B. Rearranging the array

slightly gives the square array of figure 7-9. Diagonal

connections nan be replaced by routing these connections

through adjoining cells, giving the array shown in figure

7-10. This array is particularly attractive for VLSI

223

A3 A2 A1 AQ

B0

6,^2 B^A,

2*3 2*2 2*1 2*0

B3 .A3 B3 .A2 B3 .A 1 B3 .A0

BO .AO

s5 s4 s3 s2 s t s

Rgure 7-6: Multiplication by Shift and Add

224

o

C 1 = carry bit of (A.B + S + C)

S1 = sum bit of (A.B + S + C)

A,B connected through

B

C 1

V
S'

B

Rgure 7-7: Gated Full Adder Cell

225

B,

B

B,

B.

I S

0 A3 0 A 9 0 A t O A 0
X SI SI SI

o

T
s.

s s^5 ^4

T
s.

0

Figure 7-8: Array of Cells to Perform Multiplication

226

0 A 0 A 0 A 0 A

\. ^ i_
^C V

Figure 7-9: Array Rearranged to be Rectangular

227

B

N' ^ V V

6

Rgure 7-10: Array with only Orthogonal Connections

228

implementation because every cell communicates only with

its four nearest neighbours, and so no global wiring is

needed. 'A 1 inputs come in from the top of the array, '3'

inputs come in from the left side, and outputs come out

from the right side and from the bottom of the array.

The basic cell from which the array is composed is

shown in figure 7-11. The outputs Scarry, A and B are

all connected directly to the corresponding inputs. The

other outputs are given by:

S* = S * (A.B) * C (« = exclusive OR)

C 1 = S.(A.B) + S.C + (A.B).C

The adder inputs S and (A.B) can be receded to give

signals P (propogate) and G (generate) to reduce ripple

carry propogation time [Mead 80]. The resulting

equations are then:

P = (A.B) * S

G = (A.B).S

S» = P « S

C» = P.C + G

7.3.2: A Multiplier Circuit

For simplicity, it was decided to implement the adder

circuitry using only logic gates, rather than any more

conceptually complex structures such as pass transistor

chains. The resulting NMOS gates then correspond to the

229

C1 = carry bit of (A.B + S + C)

S1 = sum bit of (A.B + S + C)

.B, SMprv connected through
%0%vl t jf

B
C1

%

^rry

B

C
S 1

Scarry A

Figure 7—11: Basic Multiplier Array Cell

230

following equations:

Gbar = A.B.C

Pbar = ((A.B)+S).Gbar)

P = Pbar

Cbar = "5"

= Gbar.(Pbar+Cbar)

= (Cbar+P).(C+Pbar)

These gates have then been implemented in NMOS as a

virtual grid circuit, described by a VIRGIL leaf cell

definition.

When these cells are arranged to form a multiplier,

the *S f inputs for the top row of cells, and the 'C f

inputs for the right side cells are unused and can be

tied to ground. For cells on the left side of the array,

the C f output and the Scarry input need to be connected

together. Rather than add these connections externally,

the VIRGIL leaf cell definition can be made

parameterisable to conditionally include them internally

in the appropriate cells.

As in the shift register idiom described earlier,

common power and ground lines can be added up the left

and right sides of the complete array. In this case

these lines are conditionally included in the single

multiplier leaf cell definition.

23 1

The manner in which an array of these cells is

composed to give a complete multiplier is then very

straightforward - individual cells are built up into

rows, and these rows are composed to give the complete

idiom.

The VIRGIL leaf cell and composition cell definitions

for this multiplier are given in appendix D, along with a

selection of graphical representations of leaf cell

instantiations.

A Multiplier Ohio

A 4 by 4 bit multiplier has been instantiated and

converted to mask level. With the aid of an automatic

pad placement program included in the Edinburgh

University Computer Science department VLSI design tools

[Hughes 83], pads have been added to this multiplier

circuit to give a complete multiplier chip. The layout

for this chip is shown in figure 7-12.

The chip has been fabricated using a 6 micron NMOS

process. Total circuit size is about 2 mm square. The

fabricated devices have been tested, and some working

parts have been obtained. With zero volts substrate

bias, worst case multiplication time is about 400 ns.

232

Rgure 7-12: Multiplier Chip

233

7.3.4: Discuss1on

The total time for the complete design of this

multiplier chip, including design of the original

algorithm, specification of the VIRGIL idiom,

instantiation of the idiom and addition of bonding pads

was about 2 person-days.

Although the multiplier is a simple circuit, design at

the virtual grid level was still considerably easier than

it would have been at the mask level. Cell design was

aided by the circuit validity checks incorporated in the

VIRGIL system, and also the design rule free nature of

virtual grid design. Composition was aided by both the

concise manner in which it could be described in the

VIRGIL language, and the automatic checking and matching

of ports during cell abutment.

Circuit area for the multiplier could have been

reduced by further iterations of the cell layout at the

virtual grid level, and also by designing special cells

for the top and left side cells, where grounded inputs

mean some of the internal circuitry is not needed.

However, the size of the multiplier chip is already

limited by the area required for the pads, and this extra

effort would not decrease overall chip size, and so this

effort was not considered necessary.

8r CONCLUSIONS AND LIMITATIONS

8.1: Conclusions

The most fundamental issue facing 1C designers is

still the overwhelming complexity of VLSI circuits. The

ideas presented in this thesis are directly concerned

with the control of this complexity. The design of

circuits containing many thousands of devices is a

daunting task. By having an easily accessible collection

of useful circuit structures, the designer will be

encouraged to use such structures as basic circuit

building blocks, reducing the overall complexity of the

design task. An experimental system for the capture,

storage and instantiation of such circuit "idioms" has

been presented and discussed in this thesis.

Unlike most other 1C design systems, the emphasis in

the VIRGIL system is on the capture of generalised,

parameterisable circuit structures rather than specific

circuits. A purely textual description for the capture

of circuit idioms has been developed as part of the

VIRGIL system.

The novel implementation of selection and repetition

as textual operations which are performed in an initial

"macro expansion" phase of idiom instantiation gives a

very simple yet very powerful and flexible method of

235

describing the parameterisable features of an idiom.

The VIRGIL system provides a structural description of

circuits and idioms at the sticks level using a so-called

virtual grid. The inclusion of structural as well as

physical design information allows a large number of

checks to be made about the validity of various circuit

constructs, reducing the possibility of undetected design

errors. Design at the sticks level gives freedom from

geometric design rules, which also reduces the

possibility of design errors being introduced. The

virtual grid has been shown to be an elegant method of

sticks level circuit description (as has also been noted

by other researchers), and furthermore has been shown to

be an elegant method for the capture of idioms at the

same level.

The VIRGIL system also includes special support for

the hierarchical composition of circuits and idioms. All

composition is done using simple horizontal and vertical

abutment. The notions of port hiding and port renaming

are used to support the enforced matching of ports on the

abutting edges of cells which are being composed, further

reducing the chances of design errors being introduced.

In summary, the VIRGIL language allows the rapid and

accurate capture of design idioms at the cell level.

Idiom descriptions are quickly debugged because of the

236

design rule free nature of sticks level design, and

because of the considerable number of circuit validity

checks which are applied during idiom instantiation.

A style of CMOS design called "generalised CMOS" has

been introduced which allows circuits and idioms to be

described which are valid in a large number of different

CMOS technologies. The notion of "sticks extraction" has

been introduced which would allow the automatic

conversion of existing mask level circuits into other

circuits using related, but different, fabrication

technologies.

A sticks compaction algorithm which is simple,

controllable and predictable has been presented. This

algorithm employs the novel notion of a quasi-virtual

grid, and incorporates some novel ideas about the

independent translation of wires and devices from sticks

to mask level representations.

Examples of idioms which have been captured using the

VIRGIL system have been presented in this thesis,

including an example of a complete 1C which was

subsequently fabricated, tested and found to function

correctly. The advantages of VIRGIL as a method of idiom

capture have been illustrated by investigating the

capture of a single idiom (a PLA) using both VIRGIL and

more traditional methods.

3 T

While the main work of this thesis has been on the

capture of idioms at the cell level, idioms exist at all

levels of the design hierarchy. The FIRST silicon

compiler has been presented as an example of a captured

idiom at the highest level of the design hierarchy.

8.2: Limitations & Areas for Further Research

With the exception of the investigation of the FIRST

silicon compiler, the work on the capture of idioms has

concentrated on idioms at the cell level. The VIRGIL

system would also provide a useful starting point in the

development of a system for the capture of idioms at

higher levels of the design hierarchy. Such idioms might

be hierarchically composed from smaller idioms, although

more complicated composition operations involving

automatic routing would be likely to be required.

In the VIRGIL system, parameterisation is expressed in

terms of physical attributes, rather than in terms of

functional attributes. In the case of the PLA example,

specially written programs were needed to convert from

logic equations into VIRGIL physical parameters. A

solution to this problem would require investigation into

more general methods of capturing idiom parameters at a

functional level.

o -} Q_ j 3

In a system where parameters were entered

functionally, an expert system approach might be feasible

for finding and choosing between suitable idioms for

implementing that function. With such a system, VIRGIL

descriptions of idioms might form the knowledge base of

known circuit constructs. Each idiom description would

need to include additional information to allow the

expert system to understand the function of that idiom,

and to allow the expert system to choose between various

idioms for a particular application. The VIRGIL system

is only an initial step towards such a goal.

The validity checks which are applied during VIRGIL

idiom instantiation provide a powerful means of detecting

circuit errors. However, such checks are only able to

assist in the checking of the correctness of individual

idiom instantiations. It is not possible, with the

VIRGIL system, to show that all possible instantiations

of a given idiom would be valid circuits. Such a problem

is considerably more difficult. This limitation is not

considered a serious drawback since any erroneous

instantiation will be discovered if it is invoked by a

user.

A more significant limitation of the validity checks

is that although they provide a good deal of confidence

that all the circuit constructs used are valid, they do

not provide any real assurance that the combination of

239

these constructs performs the desired function. Such

automatic circuit verification is, like proving programs

correct, a difficult problem, and research in this area

is still in its infancy. The problem of proving a

generalised idiom correct, rather than just a circuit,

would be an even more difficult problem.

Perhaps the most important limitation of the VIRGIL

system is that it exists only as a stand-alone system.

To be a really useful production tool, rather than just

an experimental tool, it needs to part of a complete,

integrated design system. Such a design system, based on

the capture of designs at the virtual grid level, could

provide an integrated design environment with facilities

such as graphical entry of circuits, simulation of

circuits, help with global placement and routing, and

secure, consistent handling of parts of the 1C design

description as they are entered and composed together.

Despite these limitations, the development of the

VIRGIL system remains a valuable experimental exercise

which successfully examines the usefulness of circuit

design at the virtual grid level with subsequent

conversion to mask level, and, more importantly, the

capture of idioms at the virtual grid level by the use of

a purely textual language.

240

APPENDIX A: VIRGIL "INCLUDE" FILE

In the IMP programming language, the contents of a

text file, called an "include" file, may be included,

verbatim, within the source text of a program.

In the VIRGIL system, all separately compiled modules

"include" the following file, which contains a list of

global data type declarations, some global variables and

constants, and specifications of globally accessible

routines as described in section 6.10. As such, it gives

some idea of the various components in the VIRGIL system,

and it is for this reason that a copy has been included

here.

241

! VIRGIL specs included
end .af list

INCLUDE FILE FOR VIRGIL PROGRAMS
Version 1.0.0
Author : Neil Bergmann

{Global Constants}
const integer true=1, false=0
const integer llx = 1 , lly=2,urx=3,uryr4
const integer mink = 128, { lowest keyword token }

minp = 256, { lowest phrase token }
maxp = 400 { highest phrase token }

const integer error signal=12

const integer 0, (Data type values}
= 128 ,
= 256 ,
= 257,
= 258,
1 ,
2,

__ _undefined =
reserved
variable
constant
statement
integer =
boolean =
rela tional = 3 ,
for variable = 4 ,
parameter = 5 ,
coord = 6,
port = 7,
contact = 8,
device = 9,
array = 10,
nowell = 11,
pwell = 12,
nwell = 13

{ Values for operator types }
{ Priority is encoded into 2nd byte }
{ General form is TYPE ! PRIORITY LEVEL « P f TY OFFSET
{ Decreasing level of precedence }

pmask = 255
1 « 16

po I umask,
po,
po,
po,
PO,
po,
PO,

const inte
congt; inte
const inte
uminus
divide
multiply
plus
minus
LE
LT

ge r PO = 8
ger umask
ge
~

=
-
^
=
=
=

r £
1
2
3
4
5
6
7

8 <
7 <
7 <
6 <
6 <
5 <
5 <

242

GT
EQ
NE
GE
not
and
or
maxop

8
9

10
1 1
12
13
14
14

5
5
5
5
4
3
2

po,
po,
po,
po,
po
po,
po,

! umask,

{Virtual grid item values}

const integer pwire mask = 2_0001,
nwire mask = 2_0010,
dwire mask = 2_0100,
mwire mask = 2 1000

{Wires}

const integer buried mask = 2_0111,
butting mask = 2_1111,
burieda mask = buried mask,

{contacts)

buriedb mask = 2_10000 ! buried mask,
bor shift = 6,
bor mask = 2_111111,
pm mask = pwire mask !

mask !
mask

dm mask =
nm mask =
psub mask
nsub mask

dwire
nwire
= 2_011000,
= 2 101000

mwire mask,
mwire mask,

! mwire mask,

{dev ice s)const integer ptype = 1000,
ntype = 1001,
depletion = 1002,
load = 1003

{Record Format Specifications}
{Symbol Table Entry}
record format HASHF(string (*) name sname,

integer type,
(integer value or

record (*) name rname))

{Single Lexical Item}
record format LEXF(integer type,

(record (hashf) name data
or integer value))

{Complete Lexical Entity}
record format LEX ARRAY(£

record (lexf) array name array,
integer first,last,max)

{Elements of the Syntax Tree}

record format spec ELTF
format ELT NAME (record (eltf) name name)
format ELTF (record (elt name) next,

243

integer item)
gonat record (eltf) name nil elt == 0

record format; spec ALTF
record format ALT NAME (record (altf) name name)
record format^ ALTF (record (alt name) next,

record (elt name) items)
ponst record (altf) game nil alt == 0

{Record to hold syntax trees for complete grammar)

record format PHRASEF (record (alt name) def,
string(15) ident)

record format^ REDUCEF (2.
record (phrasef) array phrases(minp:maxp),
integer currp)

const record (reducef) name nil reduce == 0

{Analysis Record Nodes}

record format spec SYNTAXF
record format SYNTAX NAME (_£

record (syntaxf) name name)
record format^ SYNTAXF (record (lexf) item,

record (syntax name) next,def)
const record (syntaxf) name nil syntax == 0

{Array Bounds Info}
record format BOUNDF (integer low, high, type)

{Array Header}
const integer max bounds = 6
record format ARRAY HEAD (integer base type,

integer number of bounds,
integer size,
record (boundf) array bound(1:max bounds),
integer array name array name,
record (*) name rname)

coqst record (array head) name nil array head == 0

{Expression Evaluation Records}

record format EXPRFf integer type,value)
record format spec STACKF
record format STACK NAME ("record (stackf) name name)
record format STACKF (record (exprf) item,

record (stackf) name next)
const record (stackf) name nil stackf == 0

{Virtual Grid Item}
record format DEVICEF (integer 1,w,sor,dtype)
c o n a fr record (devicef) name nil device == 0

record format spec ITEMF

244

record format ITEM NAME(record (itemf) name name)
record format ITEMF(integer type,

record (item name) next,
string (64) item name,
record (*) name symbol,
(record (devicef) name dname si
or integer value))

const record (itemf) name nil item == 0

{Virtual Grid Nodes and Edges}

record format spec VGEDGE
record format VGNODE (record (item name) item list,

record (vgedge) name n,s,e,w)
const record (vgnode) name nil vgnode == 0

record format YGEDGE (integer wire,
record (vgnode) name n1,n2,
integer mwire width)

const record (vgedge) name nil vgedge == 0

{Port List declarations}
record format spec portf
record format port namef record (portf) name name)
record format nor tf(stringf 64) port name,

record (vgnode) name portp,
record (port name) next)

const record (portf) name nil port == 0

{Parameter Lists}
record format spec plistf
record format plist namefrecord (plistf) name name)
record format plis tf(integer type,

f integer value or .Q.
record (array head) name aname),
string (64) pname,

record (plist name) next)
const record (plistf) name nil plist == 0

{Virtual Grid Pointer}
record format gridf (integer array bounds(llx:ury),

string (255) cell name,
record (plist name) plist,
record (port name) port list,
record (vgnode) name vgp)

const record (gridf) name nil grid == 0

{Virtual Grid Coordinate}
recor^ format COORDF (integer x,y)

{List of Ext f l Integers Identifying Grammatical Items}

external integer spec true const,
false const,
unop phrase,

245

and name,
or name,
not name,
if name,
for name,
then name,
else name,
repeat name,
operand phrase,
op phrase,
expr phrase,
exprrest phrase,
for item phrase,
for rest phrase,
for list phrase,
fmlitem phrase,
type phrase,
simple phrase,
default phrase,
header phrase,
celltype phrase,
formals phrase,
fmlrest phrase,
integer name,
boolean name,
cell name,
acti tern phrase,
call phrase,
actuals phrase,
actres t phrase,
gridsize phrase,
coord phrase,
label phrase,
griditem phrase,
nodeitem phrase,
position phrase,
path phrase,
pathrest phrase,
offset phrase,
port phrase,
contact phrase,
device phrase,
wire phrase,
mport name,
pport name,
dport name,
nport name,
buried name,
pm name,
dm name,
nm name,
butting name,
psub name,
nsub name,
ptype name,

246

ntype name,
depletion name,
load name,
pwire name,
dwire name,
nwire name,
mwire name,
end name,
rename phrase,
arrayelt phrase,
idxlist phrase,
idxrest phrase,
array phrase,
array name,
of name,
bounds phrase,
bdsrest phrase,
bdsitem phrase,
cal1st phrase,
complist phrase,
uprest phrase,
rtitem phrase,
rtrest phrase,
upitem phrase,
qual phrase,
renitem phrase,
rotation phrase,
reflect phrase,
inx name,
iny name

{External Routines Available in Utils.olb}

{ERROR Module Routines}
external routine spec FATAL ERROR fstringC 255) s)
external routine spec WARNING MESSAQE(string(255) s)
external routine spec SOURCE ERRQRf string(2S5) s)
external string(255) fn spec ERROR TEXT

{HEAP Module Routines}
external string(*) map spec NEWS (stringf255) s)

{HEAPA Module Routines}
external routine spec NEW ARRAY(.c_

record (array head) name ap)
external routine spec DISPOSE ARRAY(.c_

record (array head) name ap)

{HASH Module Routines}
external routine spec INITIALISE HASH
extern^), record (hashf) map spec ENTER KEY(.c_

string(255) s)
external routine spec RESET HASH
external routine spec USE LOCAL HASH
external routine spec USE GLOBAL HASH

external routine spec COPY GLOBAL TO LOCAL
external routine spec PRINT HASH

{DBMS Module Routines}
const integer t=80, f=20, n=40 {string sizes}

external routine spec INITIALISE DB(.c_
string(f) directory stem)

external stringf f) fn spec FIND FILE(.c_
string(t) text)

{EXTRACT Module Routines}
external routine spec EXTRACT (.c_

record (lex array) name complete,line)

{LEX Module Routines}
external routine spec LEXICAL ANALYSIS (3.

record (lex array) name complete,
string (20) file)

external routine spec STRING ANALYSIS (3.
record (lex array) name complete,
string(255) name s)

external routine spec PRINT LEX (5.
record(lex array) name rec)

{REDUCE Module Routines}
external routine spec REDUCE(string(^0) filename)
external routine spec PRINT SYNTAX
external routine spec SET GRAMMAR (s.

record (reducef) name grammar)
external record (reducef) map spec GRAMMAR

! Syntax analysis declarations included

{FIND Module Routines}

external routine spec FIND NAMES (£.
record (reducef) name grammar)

{COMPARE Module Routines}
external record (syntaxf) map spec ANALYSE (£.

record (lex array) name line)
external record (syntaxf) map spec SYNTAX ANALYSE (&.

record (lex array) name line,
integer token)

external routine spec PRINT ANALYSIS (Q.
record (syntaxf) name elt,
integer level)

external routine spec DISPOSE ELT (£
record(syntax name) name. 3)

248

gxternal routine spec CHECK(.c_
record (syntaxf) name sp,
integer type)

(EXPR Module Routines)
external record (exprf) function spec EVALUATE (£.

record (syntaxf) name exp)
external routine spec PRINT EXPfrecord(exprf) e)

{LINE Module Routines}
external routine spec PROCESS LINE(.c_

record (lex array) name line)
external routine spec use process item
external routine spec use build

{MACRO Module Routines}
external routine spec PROCESS LEX (3.

record (lex array) name from,
integer name from p)

{GRID Module Routines}

external routine spec? SET GRID (c_
record (gridf) name grid)

external record (gridf) map spec GRID
external routine spec CREATE GRID
external record (vgnode) map spec FIND NODE(.c_

record (gridf) name grid,
integer x,y)

{HEADER Module Routines}
external record (gridf) fn spec PROCESS HEADER (£.

record (lex array) name lex)

{COORD Module Routines}
external record (coordf) fn spec POSITION(.c_

record (syntaxf) name p)

{ITEM Module Specs}
external routine spec PROCESS ITEM (£

record (syntaxf) name p,
record (gridf) name grid)

{VERIFY Module Routines}
external routine spec VERIFY GRID

{PLOT Module Routines}
external routine spec DRAW GRID(.c_

record (gridf) name grid)

{MATCH Module Routines}
external record (gridf) map spec CELL CALL (£.

record (syntaxf) name callp,
integer ask)

external record (gridf) map 3peo COPY GRID(.c_
record (gridf) name oldgrid)

external routine spec DISPOSE GRID (s.
record (gridf) name grid)

{Array Module Routines}
external routine spec ANALYSE ARRAY(.c_

record (syntaxf) name p)
external record (exprf) fn spec FIND ARRAY ELT (s,

record (syntaxf) name p)

{Formals Module Routines}
externalrecordfplist name) fnspeo ANALYSE FORMALS(c,

record (syntaxf) name p,
record (plist name) actuals,
integer ask)

{Build Module Routines}
external routine spec build cell(.c_

record (syntaxf) name sp)
external record (gridf) map spec composed

record(syntaxf) name sp)

{Join Module Routines}

external routine spec join grids(_s.
record (gridf) name new gridp,

gridp,
integer ontop)

external routine spec DESPIKE GRID(c_
record (gridf) name gridp)

{READIN Module Routines}
external record (gridf) map spec READ CELL (£.

3tring(255) file)

{FLESH Module Routines}
external routine spec COMPACT GRID(_c_

record (gridf) name grid)

{DUMP Module Routines}
external routine spec DUMP GRID(.c_

record (gridf) name grid)

en4 of file

250

APPENDIX B: PLA MASK LEVEL LEAF CELLS

This appendix contains graphical representations of

the various leaf cells which are used in the mask level

PLA generator described in section 7.2.2.

251

PlaClockln

PU Mask Level Leaf Cells

252

ess

S||OQ

S||90 POI |9A91

nn

p9UUOQD|d

n
n

n

n

D

D

D

PlaConnectSpace PlaOrSpoce

PlaHoleWires PlaOutSpace

a a

PlaGroundSpace PlaPullupSpace

PLA Mask Level Leaf Cells

255

PlaVddTop PlaVddHole

PlaVddSlde PlaVddCorner

PLA Mask Level Leaf Cells

256

APPENDIX C: PLA VIRGIL CELL DEFINITIONS

This appendix contains the VIRGIL leaf cell and

composition cell definitions which capture the PLA idiom

described in section 7.2.3. Graphical representations of

cell instantiations are also shown.

257

Leaf Cell PlaClockln = (0,0,9,22)
clk.e: pport 0 (9,1)
clk.w: pport § (0,1)
pwire 0 clk.e -> clk.w

vdd. e: mpor t @ (9,12)
vdd.w: mport § (0,12)
mwire § vdd.e -> vdd.w

gnd.e: mport £ (9,20)
gnd.w: mport § (0,20)
mwire § gnd.e -> gnd.w
gnd.n: nport § (5,22)
nm § (5,20)
nwire 6 (5,20) -> gnd.n

in: nport § (6,0)
out: pport § (2,22)
outbar: pport @ (6,22)

{device s}
ntype(w=8) § (6,7)
ntype(w=4) § (6,16)
depletion 6 (4,11)
depletion § (4,14)
ntype § (6,1)

nwire @ in -> (6,3)
butting e (6,3)
pwire § (6,3) -> (6,7)

nm § (8,20)
(8,20) -> (7,20) -> (7,7)
(5,7) -> (5,10) -> (3,10)
(4,10) -> (4,16)
(3,16) -> (7,16)

nm § (4,12)
butting § (3,10)
butting @ (3,16)

nwire
nwire
nwire
nwire

@
§
@
6

-> (5,7)

pwire
pwire
pwire

End

(3,10) -> (1,10) -> (1,11) -> (6,11)
(3,16) -> (1 ,16) -> (1 ,14) -> (4,14)
(1,16) -> (1,19) -> (2,19) -> out

-> outbar

258

PU\CLOCKIN
OUT OND.NOUTBAR

zz

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1 <

n

OND.W
•

••

J

VDD.W

1

—————— 1

J
»f

•

CLK.W

•i

•

(

i —

j—<

a ——— |
i ———

K=1

>-

_n.—— ̂ fc —— 1

,

f

Id

1

i
MBM -^

TllN

OND.E
»

VDD.E

CUCE

6 8 9

259

Leaf Cell PlaClockOut = (0,0,14,22)
clk.e: pport § (14,21)
clk.w: pport § (0,21)
pwire § clk.e -> clk.w

vdd.e: mport @ (14,5)
vdd.w: mport 0 (0,5)
mwire § vdd.e -> vdd.w
gnd.e: mport 0 (14,15)
gnd.w: mport @ (0,15)
mwire @ gnd.e -> gnd.w

outl.s: pport § (2,0)
out2.s: pport 0 (9,0)

(9,4)
(8,7)

{devices}
depletion(l=2) §
depletion(l=2) &
ntype § (5,21)
ntype 6 (12,21)
ntype(w=4)0 (6,12)
ntype(w=4) § (10,11)

nm §
nm §
butting
but ting
butting

(4,5)
(9,15)

§
e

(11,2)
(3,8)
(5,18)

butting g (12,18)

pwire § outl.s -> (2,2) -> (1,2) -> (1,7) -> (8,7)
pwire § (3,7) -> (3,8)
pwire § out2.s -> (9,4)
pwire § (9,2) -> (11 ,2)
pwire § (6,12) -> (6,17) -> (5,17) -> (5,18)
pwire § (10,11) -> (10,12) -> (13,12) -> (13,17)
pwire § (13,17) -> (12,17) -> (12,18)

nwire £ (12,18) -> in2.n
nwire § (5,18) -> in1 .n
nm @ i n 1 . n
nm § in2.n

nwire
nwire
nwire
nwire
nwire
nwire

End

0 (11,2) -> (13,2) -> (13,4)
0 (4,5) -> (6,5) -> (6,6) ->
0 (8,9) -> (3,9)
0 (3,8) -> (3,9) -> (2,9) ->
0 (9,15) -> (7,15) -> (7,1D
0 (7,11) -> (13,11) -> (13,^

-> (6,4) -> (6,5)
(8,6) -> (8,9)

(2,12) -> (7,12)

260

Ill
U

l

o

o3

El

CO
CM

lOn

—

o

Leaf Cell PlaHoleWires = (0,0,3,22)
vdd.e: mport 0 (3,5)
vdd.w: mport § (0,12)
mwire § vdd.w -> (1,12) -> (1,5) -> vdd.e
gnd.e: mport @ (3,15)
gnd.w: mport § (0,20)
gnd.n: mport § (2,22)
mwire § gnd.w -> (2,20) -> (2,15) -> gnd.e
mwire 0 gnd.n -> (2,20)
pport § (3,21)
pport § (0,1)

End

Leaf Cell PlaPullupSpace = (0,0,1,2)
vdd.s: mport § (0,0)
vdd.n: mport § (0,2)
mwire § vdd.n -> vdd.s
gnd. e: mport § (1,1)

End

Leaf Cell PlaOutSpace = (0,0,2,4)
gnd .e : mport § (2,2)
gnd.w: mport § (0,2)

mport @ (1,4)
§ gnd.e -> gnd.w
§ gnd.n -> (1,2)
mpor t @ (2,1)
mport § (0,1)

§ vdd.e -> vdd.w
pport @ (2,3)
pport § (0,3)

§ clk.e -> clk.w

gnd. n:
mwire
mwire
vdd. e:
vdd. w:
mwire
elk. e :
olk.w:
pwire

End

Leaf Cell PlaVddSide = (0,0,1,3)
vdd. e: mport § (1,2)
vdd. n: mport § (0,3)

vdd.e -> (0,2) -> vdd.n
pport @ (1,1)
pport @ (0,1)
clk.e -> clk.w

mwire
elk.e:
clk.w:
pwire

End
§

Leaf Cell PlaVddCorner = (0,0,1,1)
vdd.e: mport 0 (1,1)
vdd.s: mport @ (0,0)
mwire £ vdd.e -> (0,1) -> vdd.s

End

262

PLAHOLEWIRES
OND.N

zz

21

20

19

18

17

16

15

14

13

12<

11

10

9

8

7

6

5

4

3

2

1 <

n

OND.W< > ——————

r

4

—————— <

VDD.W> ———

—————— <

0

OND.E

VDD.E

263

PL^PULLUPSPACE
2 *

1

0

VDD.N

<

VDD.S

GND.E

1

PLAOUTSPACE
OND.N

CLK.E

6ND.E

VDD.E

CUCYY> — • —

GND.Yi

r

——— <

^> —————— ̂

VDD.W> —————— <

PLWDDSIDE
VDD.No «

2

1 <

n

r

——— <

CLK.W> —— <

VDD.E
>

CLK.E

PL^VDDCORNER
VDD.E

I VDD.S |

1

264

Leaf Cell PlaVddTop = (0,0,4,1)
out.a: pport § (1,0)
outbar.s: pport § (3»0)
gnd.s: nport @ (2,0)

vdd.e: mport & (4,1)
vdd.w: mport § (0,1)
mwire @ vdd.e -> vdd.w

End

Leaf Cell PlaVddHole = (0,0,2,1)
vdd.e: mport § (2,1)
vdd.w: mport § (0,1)
mwire £ vdd.e -> vdd.w
gnd.s: mport § (1,0)

End

Leaf Cell PlaGroundSpace = (0,0,2,2)
gnd.s: mport @ (1,0)
gnd.n: mport @ (1,2)
mwire § gnd.s -> gnd.n
gnd.e: pport 0 (2,1)
gnd.w: pport § (0,1)
pwire § gnd.e -> gnd.w
pm 0 (1,1)

End

265

PLAVDDTOP
VDD.W VDD.E

OULS GND.S 0
1

PLAVDDHOLE
VDD.W VDD.E

GND.S
1

PLAGROUNDSPACE
6ND.N

OND.E

266

Leaf Cell PlaCell (11:boolean=false,ur:boolean=false,
lr:boolean=false, ul:boolean=false,
left:boolean=false) = (0,0,4,3)

out.s: pport § (1,0)
out.n: pport § (1,3)
pwire g out.s -> out.n

outbar.s: pport § (3,0)
outbar.n: pport § (3,3)
pwire Q outbar.s -> outbar.n

gnd.s: nport § (2,0)
gnd.n: nport § (2,3)
nwire @ gnd.s -> gnd.n

linel.e: mport @ (4,1)
linel.w: mport £ (0,1)
mwire § linel.e -> linel w

Iine2.e: mport @ (4,2)
Iine2.w: mport @ (0,2)
mwire @ Iine2.e -> Iine2.w

nport £ 1inel.e
nport § linel.w
nport § Iine2.e
nport @ Iine2.w

[if 11 then
ntype(w=2) @ (1,1)
[if not left then nm §
nwire § (0,1) -> (2,1)

[if lr then
ntype(w=2) 6 (3,1)
nm @ (4,1)
nwire § (4,1) -> (2,1)

[if ul then
ntype(w=2) §
[if not left
nwire @ (0,2)

[if ur then
ntype(w=2) § (3,2)
nm § (4,2)
nwire $ (4,2)

(1,2)
then nm &
-> (2,2)

(0,1)]
]

(0,2)]
]

-> (2,2)]

End

267

PL^CELL
3

2 ^

1 <

n

^

UNE2,> ———

UNE1,> ———

j

OUT.N

W

W

OUT.S

OND.N

OND.S
L. ^

OU7BAR.N
'

—— <

—— <

oura*

UNE2.E

UNE1.E

R.S

ur = true
Ir = true

3

2

1

0

PUCELL
OUT.NOND.NOUTBAR.N

LJNE1,

OND

= true

PLACELL
OUT.N OND.N OUTBAR.N

LJNE2.E

UNE1.E

268

Leaf Cell PlaGround = (0,0,4,2)
out.s: pport § (1,0)
out.n: pport @ (1,2)
pwire @ out.s -> out.n

outbar.s: pport § (3»0)
outbar.n: pport § (3>2)
pwire @ outbar.s -> outbar.n

gnd.s: nport § (2,0)
gnd.n: nport @ (2,2)
nwire 0 gnd.s -> gnd.n

gnd.e: mport @ (4,1)
gnd.w: mport @ (0,1)
mwire § gnd.e -> gnd.w

nm § (2,1)
End

Leaf Cell PlaPullup = (0,0,4,3)
vdd.s: mport § (0,0)
vdd.n: mport § (0,3)
mwire @ vdd.n -> vdd.s
linel.e: mport £ (4,1)
Iine2.e: mport @ (4,2)
nport @ linel.e
nport § Iine2.e
load(l=3) § (2,1)
load(l=3) § (2,2)
mwire § (0,1) -> (1,1)
mwire § (0,2) -> (1,2)
nm § (1,1)
nm § (1,2)
nwire @ (1,1) -> linel.e
nwire @ (1,2) -> Iine2.e
mwire @ (2,1) -> linel.e
mwire § (2,2) -> Iine2.e

End

269

PL^GROUND
2

1 <

n

——— <

GND.V> ———

Y

OUT.N GND.N

f

OUT^IOND^
L. yftk y

OUTBAR.N^ ———

——— <

OUTB/
y.

6ND.E

ts

PU\PULLUP
VDD.N

J <

2

1

o 4

» ——————————————

— a ;& ——— i
„

B ty1 ^
VDD.S

01234

UNE2.E

UNE1.E

270

Leaf Cell PlaConnect = (0,0,3,6)
gnd.s: mport § (2,0)
gnd.n: mport £ (2,6)
mwire § gnd.s -> gnd.n
linel.w: mport § (0,1)
Iine2.w: mport g (0,4)
out.e: pport § (3,5)
outbar.e: pport § (3,2)
pm § (1,1)
mwire @ linel.w -> (1,1)
pwire § (1,1) -> (1,2) -> outbar.e
pm 0 (1,4)
mwire 0 Iine2.w -> (1,4)
pwire § (1,4) -> (1,5) -> out.e
gnd.e: nport § (3,3)
nm 0 (2,3)
nwire @ (2,3) -> gnd.e
nport @ linel.w
nport @ Iine2.w

End

Leaf Cell PlaConnectSpace = (0,0,3,3)
gnd.s: mport § (2,0)
gnd.n: mport § (2,3)
mwire § gnd.s -> gnd.n
gnd.e: pport § (3,2)
gnd.w: mport § (0,1)
mwire § gnd.w -> (2,1)
pm § (1,1)
pwire 0 (1,1) -> (1,2) -> gnd.e

End

Leaf Cel
linel .
Iine2.
linel .
Iine2.
nport
nport
nport
nport
mwire
mwire
gnd. e :
gnd.w:
pwire

End

1
s
s
n
n
§
@
§
§
§
@

§

PlaOr
: mpor
: mpor
: mpor
: mpor
linel
Iine2
linel
Iine2
linel
Iine2

pport
pport
gnd . e

Spa ce =
t § (1 ,
t 0
t g
t 0
. n
. n
. s
. s
. 3
. s
§ (
e (->

' (2,
1 (1 ,
1 (2,

-> 1
-> 1
3,1)
0,1)
gnd

(0,0,3,2)
0)
0)
2)
2)

inel . n
ine2 . n

. w

27 1

PLACONNECT
OND.N

OULE

3

2

1

0

PLACONNECTSPACE
OND.N

ON0.1

GND.S

GND.E

PLAORSPACE
UNHH UNBM

z

1 <

o 1 —— ,

on*

0 1

T ^

ueu
4
4

UNEU

3

272

Composition Cell PLA (ni : integer = 2,
no: integer = 2,
nmin: integer = 2,
anda: array(1 : ni*2 , 1 : nmin) of boolean = true,
ora: array(1 : no, 1 : nmin) of boolean= true)

[for in = 1 . . ni repeat
incol_in = "" PlaClockln [if in=1 then /gnd.w] -

[for min = 1 . . nmin/2 repeat -
"~ PlaCell (ll = anda(in*2-1 ,min*2-1) , -

lr=anda(in*2,min»2-1) , -
ul=anda(in*2-1 ,min*2) , -
ur=anda(in*2 ,min*2) , -
left=in=1) -

[if min-min/2*2=0 or min= nmin/2
then ~~ PlaGround]] -

*" PlaVddTop

[for out = 1..(no+1)/2 repeat
outcol_out = ^"PlaClockOut /in1.m=line1.m/in2.m=line2.m -

[for min = 1..nmih/2"repeat -
" PlaCell (lr=ora(out»2-1,min»2-1),

ur=ora(out*2,min*2-1),
ll=ora(out*2-1,min*2),
ul=ora(out*2,min*2), -
left=min=nmin/2) § 3 -

[if min-min/2*2=0 and min#nmin/2 -
then " A PlaOrSpace]] -

"~ PlaPullup @ 3

leftcol = " PlaVddSide -
[for min = 1 .. nmin/2 repeat -

*" PlaPullup -
[if min-min/2*2=0 or min=nmin/2 -

then " PlaPullupSpace]]-
"", PlaVddCorner

holecol = " PlaHoleWires -
[for min = 1 .. nmin/2 repeat -

** PlaConnect -
[if min-min/2*2=0 or min=nmin/2 -

then "" PlaConnectSpace]-
[if min=nmin/2 then /gnd.e]] -

"* PlaVddHole

spacecol = " A PlaOutSpace -
[for min = 1.. nmin/2 repeat -

** PlaGround § 3 -
[if min-min/2»2=0 and min#nmin/2

then ** PlaGroundSpace]]-
*" PlaPullupSpace § 3

273

rightcol = ~~ PlaOutSpace /gnd.e/vdd.e -
[for min = 1..nmin/2 repeat -

~~PlaGround /out.n/outbar.n/gnd.n g 3
[if min-min/2*2=0 and min#nmin/2 then

PlaGroundSpace/gnd.e]] -
"" PlaPullupSpace/vdd.n § 3

pla = » leftcol
[for in=1..ni repeat » incol__in] -
» holeool -
[for out=1..(no+1)/2 repeat » outcol_out -

[if out-out/2*2=0 and out#(no+1)/2 -
then » spacecol]]-

» rightcol

End

274

PIA

H

I
—r-

-

• 1 ft • 4 U • M 17 H

Example PLA: ni=1, no=2, nmin=2

275

APPENDIX D: MULTIPLIER CELL DEFINTTTDMS

This appendix contains the VIRGIL leaf cell and

composition cell definitions which capture the Multiplier

idiom described in section 7-3. Graphical

representations of some leaf cell instantiations are also

shown.

276

Leaf Cell Mult (lef t : boolean=false ,
ri gh t: bo olean= false,
top:boolean=false) = (0,0,19,11)

vdd.w: mport @ (0,6)
mwire § vdd.w -> (16,6)

gnd.be: mport § (19tO)
mwire § (1,0) -> gnd.be

gnd.te: mport @ (19,11)
mwire % (1,11) -> gnd. te

[if right then
mwire(w=2) § gnd.be -> gnd.te

else
vdd. e : mport § (19,6)
mwire § (16,6) -> (19,6)

[if left then
vdd. b : mport % (0,0)
vdd. t: mport @ (0,11)
mwire(w=2) § vdd.b -> vdd.t
gnd.tw: mport § (1,11)
gnd.bw: mport @ (1,0)

else
gnd.bw: mport @ (0,0)
mwire § (0,0) -> (1,0)
gnd.tw: mport @ (0,11)
mwire § (0,11) -> (1,11)

a. t : pport @ (5,11)
a. b: pport § (5,0)
pwire § a . t -> a . b

[if not right then
b. e : mport § (19,7)
mwire § (6,7) -> b.e

[if left then
b.w: pport § (0,7)
b. o: pm § (1,7)
pwire @ b.w -> b.c
mwire § b.c -> (6,7)

else
b.w: mport § (0,7)
mwire § (6,7) -> b.w

s,carry b: pport § (3,0)
[if left then
pwire § (1,1) -> (3,1) -> s^carry b

277

else
s,carry,w: pport § (0,5)
pwire @ s«carry, b -> (3,5) -> s,carry w
c,out : pport § (0,1)
pwire § cout -> (1,1)

s,in: pport § (3,11)
[if top then

pm e (2,11)
pport § (2,11)
pwire 0 (2,1 1) -> (3,11)

s.out : pport § (19,5)

[if right then
mwire § (17,1) -> (17,0)
pm 6 (17,1)

else
q,in: pport § (19,1)
pwire 6 (19,1) -> (17,1)

pwire 6 (17,1) -> (17,10)
pwire § (15,1) -> (15,7) -> (16,7)
pwire § (13,4) -> (13,7) -> (12,7)
pwire § (11,1) -> (11,10)
pwire @ (8,1) -> (8,10)
pwire § (6,7) -> (6,1 0)
pm « (6,7)
pwire @ (3,8) -> s^.n
pwire £ (7,7) -> (8,7)
pwire § (9,7) -> (1 1 ,7)

nm 6 (1,11)
nport @ (1,11)
nport § (1,0)
nwire § (1,11) -> (1,8) -> (7,8) -> (7,6)
nm § (7,6)

nwire § (2,10) -> (9,10) -> (9,6)
nm 0 (9,6)
nwire § (4,10) -> (4,11)
nm § (4,11)
nport @ (4,11)
nport § (4,0)

nport § (10,11)
nport § (10,0)
nport § (18,11)
nport 0 (18,0)
nm £ (10,11)
nm 0 (18,11)
nwire @ (10,11) -> (10,10) -> (12,10) -> (12,6)

278

nm 0 (12,6)
nwire 0 (18,11) -> (18,10) -> (16,10) -> (16,6)
nm 6 (16,6)

nwire 0 (7,6) -> (7,1) -> (16,1)

nwire 0 (9,6) -> (9,4) -> (18,4)
nm 0 (14,0)
nport 0 (14,0)
nport 0 (14,11)
nwire 0 (14,0) -> (14,4)

nm 0 (2,10)
nm 0 (7,10)
mwire § (2,10) -> (2,9) -> (7,9) -> (7,10)

pm 0 (1,1)
nm § (7,2)
mwire § (1,1) -> (1,2) -> (7,2)

nm 0 (10,1)
nm § (16,1)
mwire 0 (10,1) -> (10,2) -> (16,2) -> (16,1)

nm § (12,4)
nm 0 (16,4)
mwire 0 (12,4) -> (12,3) -> (16,3) -> (16,4)

nm § (10,4)
nm § (18,4)
mwire § (10,4) -> (10,5) -> (18,5) -> (18,4)
pm @ (18,5)
pwire § (18,5) -> s.out

ntype § (3,1 0)
ntype(w=2) 0 (5,10)
ntype(w=2) § (6,10)
ntype § (8,10)
ntype § (11,10)
load(3or=1) § (12,7)
load(sor=1) § (16,7)
ntype & (17,10)

ntype(w=2) 0 (3,8)
ntype(w=2) § (5,8)
ntype(w=2) 0 (6,8)
load(sor=1 ,1=2) § (7,7)
load(sor=1 ,1=2) § (9,7)

load(l=2) 0 (7,5)
ntype 0 (11,4)
ntype 0 (13,4)
ntype 0 (15,4)
ntype 0 (17,4)

279

load(l=2) § (9,5)
ntype § (8,1)
ntype § (11,1)
ntype § (15,1)

END

Composition Cell Multiplier (sizea : integer=4 ,
sizeb : integer=4)

[for 1=1.. sizeb repeat
row_i = [for j=1..sizea repeat -
» mult(top=(i=sizeb),left=(j=1),right=(j=sizea))]

multiplier = [for 1 = 1.. sizeb repeat ~~ row__i]

End

280

GND.T1

j mfm^tf »• ^ , , ^ IHI
21 4 I 6 7 6 6 10 11 12 13 ^» 16 16 17 16 %

left = false
right = false
top = false

281

MULT
VOO.'

4

3

2

1

0

flND.11

80UT

w " w T
ypfvagMpLHjr ISOMMKB AM J.
••^^^^^"^•^^^^^^t^^^^**^^^. L^^—^^^^^^^^^^^^^—^^^ ^^^M^BM

1234 l' 8 7 8 8 10 11 12 13 T4 15 18 17 18
ONDA

left = true
right = true
top = true

282

REFERENCES

[ADA 79] "Preliminary ADA Reference Manual",

ACM SIGPLAN Notices,

Vol. 14, No. 6, Part A, June 1979.

[Alagic 78] S. Alagic, M. Arbib, "The Design of

Well-Constructed and Correct Programs",

Springer-Verlag, 1978.

[Bergmann 83] N. Bergmann, "A Case Study of the

F.I.R.S.T. Silicon Compiler",

Proceedings of 3rd Caltech Conference on

VLSI, Computer Science Press (ed. Bryant),

1983. PP 379-394

[Boyer 83] D. Boyer, N. Weste, "Virtual Grid Compaction

Using the Most Recent Layers Algorithm",

Proceedings of the IEEE ICCAD Conference,

1983. PP 92-93

[Buchanan 80] I. Buchanan, "Modelling and Verification

in Structured Integerated Circuit Design",

Ph.D. Thesis, University of Edinburgh, 1980.

283

[Buchanan 82] I. Buchanan, "A Language for the Combined

Physical and Structural Description of Leaf

and Composition Cells",

Proceedings of Microelectronics 82,

The Institute of Engineers, Australia, 1982

[Cardelli 81] L. Cardelli, "Sticks and Stones:

An Applicative VLSI Design Language",

University of Edinburgh,

Dept. of Computer Science,

Report CSR-85-81 , 1981.

[Clary 80] D. Clary, R. Kirk, S.Sapiro, "SIDS -

A Symbolic Interactive Design System",

Proceedings of the 17th Design Automation

Conference, June 1980. pp 292-295

[Davie 81] A.J.T. Davie, R. Morrison,

"Recursive Descent Compiling",

Wiley, 1981.

[Davis 82] T. Davis, J. Clark,

"SILT: A VLSI Design Language",

Computer Systems Laboratory,

Stanford University,

Technical Report No. 226, October, 1982.

234

[Deas 83] A.R. Deas, "The UNIT Silicon Compiler",

University of Edinburgh,

Dept. of Computer Science,

Report CSR-145-83, 1983.

[Dijkstra 72] E.W. Dijkstra, "Notes on Structured

Programming" in "Structured Programming"

(ed. Dahl et al), Academic Press,

1972. pp 1-82

[DoD 78] U.S. Department of Defence STEELMAN

Requirement for High Order Computer

Programming Languages, June 1978.

[Dunlop 80] A. Dunlop, "SLIM - The Translation of

Symbolic Layouts into Mask Data",

Proceedings of the 17th Design Automation

Conference, June 1980. pp 595-602

[Gibson 76] D. Gibson, S. Nance, "SLIC -

Symbolic Layout of Integrated Circuits",

Proceedings of the 13th Design Automation

Conference, June 1976. pp 434-440

[Gordon 81] M. Gordon, "A Very Simple Model of

Sequential Behaviour in Nmos",

VLSI '81, Academic Press (ed. Gray), 1981

235

[Gray 82] J. Gray, I.Buchanan, P. Robertson,

"Designing Gate Arrays Using a Silicon

Compiler", Proceedings of the 19th Design

Automation Conference, June 1982.

[Hughes 81] J.G. Hughes, "The Edwin User's Guide",

University of Edinburgh,

Dept. of Computer Science,

Report CSR-74-81 , 1981.

[Hughes 831 J.G. Hughes, "VLSI Design Tools",

University of Edinburgh,

Dept. of Computer Science,

Internal Report, 1983.

[Jensen 74] K. Jensen, N. Wirth,

"Pascal: User Manual and Report",

Lecture Notes in Computer Science, Vol. 1

Springer-Verlag, 1974.

[Johannsen 79] D. Johannsen, "Bristle Blocks",

Proceedings of the 16th Design Automation

Conference, June 1979. PP 310-313

[Knuth 74] D.E. Knuth, "Structured Programming with

GOTO Statements", Computing Surveys,

Vol. 6, 1974. pp 261-301

[Lengauer 84] T. Lengauer, K. Mehlhorn,

"The HILL System: A Design Environment

for the Hierarchical Specification,

Compaction, and Simulation of Integrated

Circuit Layouts",

Proceedings of the 1984 MIT Conference on

Advanced Research in VLSI, Artech House

(Penfield ed.), Jan 1984. pp 139-149

[Locanthi 78] B. Locanthi,

"LAP: A Simula Package for 1C Design",

Caltech Display File No. 1862, 1978.

[Lopez 80] A.D. Lopez, H.F. Law, "A Dense Gate

Matrix Design Style for MOS LSI",

Proceedings of ISSSC, Feb 1980.

[Lyon 81] R. Lyon, "A Bit Serial Architectural

Methodology for Signal Processing",

VLSI '81, Academic Press (ed. Gray), 1981,

[Marshall 84] R. Marshall, I. Buchanan,

"SCALE: A Language for VLSI Design",

University of Edinburgh,

Dept. of Computer Science,

Report CSR-158-84, 1984.

287

[Mead 80] C. Mead, L. Conway,

"Introduction to VLSI Systems",

Addison-Wesley, 1980.

[Mead 81] C. Mead,

"VLSI and Technological Innovation",

VLSI »81, Academic Press (ed. Gray), 1981.

[Milne 83a] G.J. Milne, "CIRCAL -

A Calculus for Circuit Description",

Integration, Vol. 1, Nos. 2 & 3, 1983

[Milne 83&] G.J. Milne, "The Correctness of

a Simple Silicon Compiler",

Proceedings of the 6th International

Symposium on Computer Hardware Languages

and their Application, North-Holland,

May 1983.

[NATO 76] "Software Engineering, Concepts and

Techniques: Proceedings of the NATO

Conferences", (ed. Naur et al),

Petrocelli/Charter, 1976.

[Newkirk 83] J. Newkirk, R. Matthews,

"The VLSI Designers Library",

Addison-Wesley, 1983-

288

[Noyce 77] R.N. Noyce, "Microelectronics 11 ,

Scientific American, Vol. 237, No. 6,

September 1977. PP 63-69

[Pettengill 83] R.C. Pettengill, G.A. Haynes,

"The SLED/SDL Symbolic VLSI Design System"

Proceedings of the IEEE ICCAD Conference,

1983. PP 10-11

[Rees 80] D.J. Rees, "Skimp Mkll",

University of Edinburgh,

Dept. Of Computer Science,

Report CSR-52-80, 1980.

[Rees 83] D.J. Rees, "High-Level Tools for the

Composition of VLSI Designs",

Research Proposal,

University of Edinburgh,

Dept. of Computer Science, 1983.

[Robertson 83] P. Robertson, "The IMP77 Language",

University of Edinburgh,

Dept. of Computer Science,

Report CSR-19-77, 3rd Edition, 1983.

233

[Rosenberg 82] J. Rosenberg, N. Weste, "ABCD - A Better

Circuit Description Language",

Microelectronics Centre of North Carolina,

Technical Report No. 82-01, 1982.

[Rosenberg 84] J. Rosenberg, "Chip Assembly Techniques

for Custom 1C Design in a Symbolic,

Virtual-Grid Environment",

Proceedings of the 1984 MIT Conference on

Advanced Research in VLSI, Artech Hose

(Penfield ed.), Jan 1984.

[Rowson 80] J.A. Rowson,

Understanding Hierarchical Design,

Ph.D. Thesis, Dept. of Computer Science,

California Institute of Technology, 1980.

[Schlag 83] M. Schlag, Y.Z. Liao, C.K. Wong,

"An Algorithm for Optimal Two-Dimensional

Compaction of VLSI Layouts", Proceedings

of the IEEE ICCAD Conference, 1983. PP 88-89

[Sequin 82] C.H. Sequin, "Generalized 1C Layout",

Report, Computer Sciences Division,

Electrical Engineering and Computer Sciences,

University of California, Berkeley. 1982.

290

[Siskind 82] Siskind, Southard, Crouch, "Generating

Custom High-Performance VLSI Designs from

Succinct Algorithmic Descriptions",

Proceedings of MIT Conference

on Advanced Research in VLSI, 1982.

[Smith 831 Lee Smith, Acorn Computers,

Personal Communication.

[Sutherland 77] I.E. Sutherland, C.A. Mead,

"Microelectronics and Computer Science",

Scientific American, Vol. 237, No. 3,

September 1977. PP 210-228

[VAX 78] VAX11 Software Handbook,

Digital Equipment Corporation, 1978. pp 29-32

[Weste 8la] N. Weste, "Virtual Grid Symbolic Layout",

Proceedings of the 18th Design Automation

Conference, 1981. pp 225-233.

[Weste 81b] N. Weste, "MULGA - An Interactive Symbolic

Layout System for the Design of

Integerated Circuits",

The Bell System Technical Journal, Vol. 60,

No. 6, July-August 1981. pp 823-857-

291

[Werner 831 J. Werner, G. Robson, R. Harris, "Compariig

the Computer-Aided Engineering Systems in

Action", VLSI Design, Vol. IV, No. 7,

November 1983.

[Williams 77] J. Williams, "Sticks - A New Approach to

LSI Design", MSEE Thesis,

Dept. of Electrical Engineering and

Computer Science, M.I.T., June 1977.

[Williams 78] J. Williams, "STICKS - A Graphical Compiler

For High Level LSI Design",

Proceedings 1978 NCC, May 1978. pp 289-295

[Wirth 71a] N.Wirth, "The Programming Language Pascal".

Acta Informatica, Vol. 1, No. 1,

1971. PP 35-63

[Wirth 71b] N. Wirth, "Program Development by Stepwise

Refinement", Communications of the ACM,

Vol. 14, No. 6, April 1971. PP 221-227

[Wirth 77a] N. Wirth, "Modula, A Language for Modular

Multiprogramming", Software Practice and

Experience, Vol. 7, 1977. PP 3-35

2 92

[Wirth 77b] N. Wirth, "What Can We Do about the

Unnecessary Diversity of Notation for

Syntactic Definitions?",

Communications of the ACM, Vol. 20, No. 11,

November 1977. PP 822-823

[Wolf 83a] W. Wolf, J. Newkirk, R.Matthews, R. Dutton,

"Dumbo, A Schematic-to-Layout Compiler",

Proceedings of 3rd Caltech Conference on

VLSI, Computer Science Press (ed. Bryant),

1983. PP 379-394

[Wolf 83b] W. Wolf, R. Matthews, J. Newkirk, R. Dutton,

"Two-Dimensional Compaction Strategies",

Proceedings of the IEEE ICCAD Conference,

1983. PP 90-91

[Yourdan 78] E. Yourdan, L. Constantine,

"Structured Design", Yourdan Press, 1978.

[Zinszner 83] R. Zinszner, H. De Man, K. Croes,

"Technology Independent Symbolic Layout

Tools", Proceedings of the IEEE ICCAD

Conference, 1983. PP 12-13

293

