

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Generating Programming

Environments with

Integrated Text and Graphics

for VLSI Design Systems

George Alexander McCaskill

Ph D

University of Edinburgh

1986

Abstract

The constant improvements in device integration, the development of new tech-

nologies and the emergence of new design techniques call for flexible, maintain-

able and robust software tools. The generic nature of compiler-compiler systems,

with their semi-formal specifications, can help in the construction of those tools.

This thesis describes the Wright editor generator which is used in the synthe-

sis of language-based graphical editors (LBGEs). An LBGE is a programming

environment where the programs being manipulated denote pictures. Editing

actions can be specified through both textual and graphical interfaces. Editors

generated by the Wright system are specified using the formalism of attribute

grammars.

The major example editor in this thesis, Stick-Wright, is a design entry system

for the construction of VLSI circuits. Stick-Wright is a hierarchical symbolic

layout editor which exploits a combination of text and graphics in an interactive

environment to provide the circuit designer with a tool for experimenting with

circuit topologies. A simpler system, Pict-Wright: a picture drawing system, is

also used to illustrate the attribute grammar specification process.

This thesis aims to demonstrate the efficacy of formal specification in the

generation of software-tools. The generated system Stick-Wright shows that a

text/graphic programming environment can form the basis of a powerful VLSI

design tool, especially with regard to providing the designer with immediate

graphical feedback. Further applications of the LBGE generator approach to

system design are given for a range of VLSI design activities.

Table of Contents

1. Introduction 1

1.1 Programs and Pictures . 1

1.2 Outline of Thesis . 5

2. VLSI and Programming Environments 6

2.1 Introduction . 6

2.2 VLSI Design Tools 7

2.2.1 Introduction . 7

2.2.2 Structured Design . 7

2.2.3 Design at the Mask Data Level 10

2.2.4 Symbolic Layout . 17

2.2.5 Silicon Compilers . 22

2.2.6 Floorplanning . 23

2.2.7 Verification . 26

2.3 Programming Environments . 27

2.4 VLSI Programming Environments 31

2.4.1 Introduction . 31

2.4.2 Interactive ILAP . 33

2.4.3 Conclusions . 36

iii

Table of Contents iv

3. The Wright Editor Generator 37

3.1 Introduction . 37

3.2 Attribute Grammars . 38

3.3 LALR Parsing .. . 42

3.3.1 Introduction . 42

3.3.2 Lexical Analysis . 43

3.3.3 Syntax Analysis . 47

3.4 Attribute Evaluation . 55

3.5 Structure Editing . 59

3.5.1 Introduction . 59

3.5.2 Window Management 60

3.5.3 Pretty-Printing . 62

3.5.4 Editing . 63

3.6 Summary . 64

4. Pict-Wright 65

4.1 Introduction . 65

4.2 Lexical Definition . 68

4.3 Syntactic Definition . 71

4.4 Semantic Definition . 73

4.4.1 The Attributes . 73

4.4.2 Semantic Functions . 76

4.5 The Editor in Operation . 85

Table of Contents v

5. Stick-Wright 92

5.1 Introduction . 92

5.2 Lexical Definition . 95

5.3 Syntactic Definition . 97

5.4 Semantic Definition . 104

5.4.1 The Attributes . 104

5.4.2 Semantic Functions . 107

5.5 The Editor in Operation . 114

5.6 Extended Stick-Wright . 120

6. Results, Conclusions and Extensions 126

6.1 The Wright System . 126

6.2 Stick-Wright . 129

6.3 Extensions . 130

5.3.1 Structure Editing . 130

6.3.2 Physical Design . 131

6.3.3 Silicon Compilation . 132

6.3.4 Verification and Simulation 133

Bibliography 134

A. Wright Reference Manual 142

A.1 Editor Commands . 142

A.1.1 Introduction . 142

A.1.2 Generic-Commands . 143

.1.3 Pict-Wright . 144

Table of Contents vi

A.1.4 Stick-Wright . 145

A.2 Wright Input Language . 145

A.2.1 Introduction . 145

A.2.2 Lexical Definition . 145

A.2.3 Grammar . 147

B. Attribute Grammar for Pict-Wright 149

B.1 The Auxiliary Definition File "Pict. src" 149

B.2 The Grammar . 155

C. Attribute Grammar for Stick-Wright 160

List of Figures

2-1 A Sticks&Stones Selector Circuit 13

2-2 A Plates Primitive . 14

2-3 An ALI program . 15

2-4 An example of Hill composition mode 20

2-5 A Virgil Composition Cell . 20

2-6 A Virgil Leaf Cell (text) . 21

2-7 A Virgil Leaf Cell (graphics) . 21

2-8 A MODEL four-way multiplexor 24

2-9 A MODEL parameterised multiplexor 24

2-10 A Mentol abstract syntax tree . 27

2-11 ILAP Design Cycle . 33

2-12 Interactive ILAP Structure . 35

3-1 Editor Structure . 37

3-2 Syntax Tree for 1101.01 . 40

3-3 Attributed Syntax Tree for 1101.01 42

3-4 LR Parser . 49

3-5 Stack Operations for 3 + 4 * 5 50

3-6 The sets of LR(0) items for grammar Calc 52

vii

List of Figures viii

3-7 Stack Operations on 3 * 4 + 5 53

3-8 Order of Attribute Calculation for 1101.01 58

3-9 Changing a sub-tree . 59

3-10 Device Configuration . 60

3-11 Devices and Windows . 61

4-1 The Pict-Wright Editor . 66

4-2 Symbol Table Attribute Flow . 79

4-3 Procedure Call By Recursive Evaluation 82

4-4 Editing with Pict-Wright . 86

4-5 A new cursor position . 87

4-6 Deleting a sub-tree . 88

5-1 Port Exterior for Tally {n} . 99

5-2 Stick-Wright's Primitive Cells . 100

5-3 A TallyUnit . 103

5-4 Vertical Port Composition . 109

5-5 Row Translation Calculation . 110

5-6 Horizontal Port Composition . 111

5-7 Transformations to Ports Exterior 112

5-8 Mirroring and Rotation ("-) . 113

5-9 The Stick-Wright Editor . 115

5-10 A new cursor position in TallyUnit 116

5-11 Moving to a new tile . 117

5-12 An incorrect TallyUnit . 118

List of Figures ix

5-13 4 input Tally (program) . 120

5-14 4 input Tally (picture) . 121

5-15 4 input Tally (picture (full instantiation)) 122

5-16 Pad-Placement Example . 123

5-17 Tally {n} (program) . 124

5-18 Tally {n} and Col {n} (pictures) 125

Chapter 1

Introduction

1.1 Programs and Pictures

The task of designing artifacts, be they electronic circuits, computer programs

or suspension bridges, has led to the development of many design notations.

Notations allow a designer to formulate a design idea using pen and paper or a

computer display without the need to build the object that is being represented.

The representation of the design can take many forms and can model the de-

sign at many levels of abstraction. Notations are usually characterised by two

properties; syntax and semantics. The syntax of a notation is a set of rules de-

scribing the primitive elements of the notation and their legal compositions. The

semantics of a notation are a set of rules which assign meaning to the structures

formed using the syntactic rules. An example of a design notation is a schematic

drawing representing an integrated circuit. Here both pictures and text are used

to describe the interconnection of logic gates. Notations using pictures are gen-

erally at one level of the design hierarchy; a schematic drawing does not include

details of logic gate implementation. A schematic drawing is a mixed notation

since it often contains textual annotation of its symbols. The introduction of

text allows a drawing to refer to other drawings and to label iterated structures

with numerals (e.g. a number of wires can be abstracted into a bus).

Textual notations are more abstract than pictures in that they are not directly

representative of an object and can be used to express notions such as hierarchy,

data abstraction, parameterisation, iteration and expression evaluation. In com-

puter science textual representations of execution sequences, i.e. programming

1

Chapter 1. Introduction 2

languages, are abundant and have been invented at every opportunity. Although

attempts have been made at expressing conventional programming concepts us-

ing pictures [14] [42] this is still very much an undeveloped medium.

The major property of a pictorial representation, concreteness, has both ad-

vantages and disadvantages. A human can comprehend a schematic drawing

more easily than its corresponding net-list, however, concepts like parameterisa-

tion and conditional evaluation are hard to express using pictures.

A further issue in the design and selection of notations is their suitability for

processing by computer. The criteria for adopting a CAD approach include:

Implementation Costs Issues here include design time, development time (cod-

ing) and verification (debugging). Formal descriptions of notations can

lead to greater confidence in correctness and also the use of automatic

implementation techniques. Although formal techniques are often used in

programming language development, the implementation of graphics sys-

tems is generally more ad-hoc.

Machine Resources Notations which use colour pictures require more sophis-

ticated hardware than those using only black and white. Purely textual

notations can run on the humblest of hardware. With the current advent of

affordable graphics workstations, the use of pictorial notations is becoming

more prevalent.

Performance At an extreme level of concrete representation, for example a 3-

D solid modelling package complete with colour and shading, the amount

of computation involved in generating an image generally precludes fast

user manipulation of the design. Some notations are distinctly batch ori-

entated, i.e. each modification of the design requires a lengthy compilation

phase. The use of abstraction mechanisms, e.g. stick models for solids,

can significantly improve performance, at the expense of detail.

Chapter 1. Introduction 3

Adaptability Specifications of systems can evolve with time. In a rapidly de-

veloping area, such as integrated circuit technology, software tools have to

cope with changing system parameters.

When considering design notations it is important to separate the notions of

syntax and semantics. The syntax of a design notation ultimately defines the

physical appearance of the design representation as presented to the user on the

video terminal or graphics display. The semantic rules define the translations

and evaluations to be performed on the structure obtained from the syntactic

stage. The effectiveness of the syntax and semantics of a design notation can be

measured using the following properties:

Clarity To what extent is the underlying semantics `intuitively' obvious from

the notation's syntax ? How easy is the notation to learn ?

Conciseness How economically (in terms of amount of actual text or graphics)

does the notation represent the structures being designed ?

Elegance This is a less tangible property than the others, elegance is often

achieved by using simple and general notational constructs which are ap-

plied uniformly throughout the design notation. The elegance of a language

directly impacts on the ease with which it can both be learned and used.

Malleability This is a property which relates to the notation's suitability for

manipulation using a syntax directed editor. Certain syntactic and seman-

tic constructions can be efficiently exploited by such editing systems (as I

will show in later chapters).

Flexibility Can the notation adapt to changing system parameters (e.g. new

composition rules, new primitives) ?

Security How easy is it to build incorrect constructs ? Can errors in a design

be detected during the static analysis phases ?

Chapter 1. Introduction 4

This thesis is concerned with design notations that combine text with graph-

ics, thus providing the user with the benefits afforded by both representations. I

present a method for formally describing these systems and a software tool, the

Wright editor generator, which can automatically synthesise programming envi-

ronments from this specification. Particular emphasis is made on applications

in the field of VLSI CAD tools, and a VLSI tool built using the Wright system

is described.

The interest and diversity of the problems involved in VLSI have made it

a very popular research area. For many researchers it is the combination of

different cultures (hardware, software, electronics, language design, graphics,

verification, simulation, architecture ...) which makes it so attractive. This

mixture has generated the need for a diversity of user-interfaces and translation

mechanisms, making use of both linguistic and pictorial notations. This thesis is

concerned with providing the means for describing and building those interfaces

and translation mechanisms.

Chapter 1. Introduction 5

1.2 Outline of Thesis

In the next chapter I describe in more detail the need for VLSI design tools and

survey both the VLSI and programming environment literature.

Chapter 3 presents the Wright editor generator and gives an introduction to

attribute grammars, LALR parsing and structure editing.

In Chapter 4 I run through the development of an example editor using the

Wright system, namely Pict-Wright, a picture editor used to build some of the

illustrations in this thesis.

Chapter 5 contains the description of a VLSI tool, Stick-Wright, a hierarchical

symbolic layout editor which was developed using the Wright system.

In Chapter 6 I present my conclusions and outline areas for future work. A

reference manual for the Wright system is included as an appendix.

Chapter 2

VLSI and Programming

Environments

2.1 Introduction

In 1981 Carver Mead [55] heralded a new era of technological innovation which

he claimed would rival the industrial revolution in its impact. He was referring

to the emergence of Very Large Scale Integration technology (VLSI) and the

potential for its exploitation. As the number of devices which can be integrated

on a single chip continues to grow, the major problem in VLSI is managing the

complexity of systems which will soon contain millions of components [69].

In response to this challenge many research programs have been started and

VLSI continues to be a popular topic for researchers from many different disci-

plines, in both industry and academia.

The next section outlines work related to the tool presented in Chapter 5, and

gives the background for further applications of the Wright system, as discussed

in Chapter 6. Section 2.3 reviews work on programming environments, and the

final section discusses VLSI programming environments.

6

Chapter 2. VLSI and Programming Environments 7

2.2 VLSI Design Tools

2.2.1 Introduction

The demand for VLSI implementations of systems has caused the development

of a wide range of tools and techniques, many of which have been borrowed

from other design disciplines. In reviewing some of this work I am particularly

interested in two aspects relevant to this thesis:

design notations

tool integration

The design tools which deal with physical layout are given closer examination,

since this is the problem area addressed by Stick-Wright in Chapter 5.

2.2.2 Structured Design

As in many other design disciplines (notably computer programming), the need

to control design complexity has led to the formulation of sets of design principles.

Buchanan [9] gives the following principles for structured IC design:

Modularity allows work to be partitioned into manageable sub-goals, also per-

mitting work to be distributed among more than one designer. Modules

can be re-used in later projects.

Hierarchy i.e. the vertical partitioning of designs; modules are themselves com-

posed of smaller sub-modules. There are also hierarchies of abstractions

(e.g. geometry, devices, circuits, logic, floorplans), allowing information

hiding at each successive layer (thus making descriptions smaller and-per-

mitting efficient algorithms that exploit the hierarchy).

Chapter 2. VLSI and Programming Environments 8

Regularity Regular structures are simpler to describe, manipulate and under-

stand. Regularity in the physical domain (rectangular or hexagonal blocks

designed to abut together) can yield high packing density. Irregular layout

can result in great amounts of wiring (spaghetti layout).

Locality Modules can only be accessed through well defined external interfaces,

similarly, the internals of a module can not depend on external factors,

except as described through the interface. This black box approach allows

proof by construction techniques to be performed (e.g. hierarchical design

rule checking (DRC)).

Parameterisation (also Programmability). Circuit structures (e.g. RAMS,

ROMS, datapaths) can be described algorithmically with particular in-

stances being created using some personality matrix or set of parameters.

These are all familiar concepts from computer programming, Buchanan shows

their application to hardware systems, with reference to their analogies in struc-

tured programming. An early appraisal of hierarchical design by vanCleemput

[90] draws attention to some possible problems; hardware systems can be viewed

as having several different hierarchies (Buchanan identifies behavioural, struc-

tural and physical hierarchies) and each class of hierarchy can have many real-

isations. The multiplicity of hierarchies is seen as problematic because of the

expense of maintaining correct mappings between them. Buchanan addresses

this problem by employing the co-ordinode, a data structure which unifies the

hierarchies with a common representation. The co-ordinode together with as-

sociated wire and transistor models are implemented using the object oriented

language SIMULA [6]. The object oriented programming paradigm has proven

to be popular among some VLSI researchers, a major reason being that it fully

supports the principles of structured design. Object-oriented systems are dis-

cussed more fully in the programming environment section.

Cardelli [12] uses algebraic techniques for describing VLSI systems at various

levels of abstraction. Circuits are described using net-algebras and he shows

Chapter 2. VLSI and Programming Environments 9

how a behavioural description, the Clocked Transition Algebra, can be trans-

lated through intermediate descriptions (Connector Switch Attenuator - planar

sticks - grids) down to layout. A practical demonstration of this design style,

the layout editor Sticks&Stones [13] , uses the data abstraction mechanisms of

the functional programming language ML [25] to implement the net-algebra rep-

resentation. The major feature of this representation is that circuit structures

can only be manipulated by their external named ports (thus applying the prin-

ciples of modularity and locality). Picture composition is achieved by linking

port names (not by stating geometrical position or displacement). This saves

the user from having to deduce translations, mirrorings and rotations which en-

able the construction of the picture. By exploiting the referential transparency

of the host functional language (an example of the application of the principle of

locality), correctness by construction proofs can be performed (e.g. hierarchical

design rule checking [94]). The actual design notation is described in the next

section.

The Palladio project [27] also exploits the power of abstraction in its tech-

nique of multiple perspectives. Circuit design is viewed as a process of incremental

refinement of structural and behavioural specifications over a range of perspec-

tives (circuit level to PMS). Different programming paradigms are applied to

the various aspects of the design process; a rule based logical language is used

in behavioural specification and simulation, while an object oriented approach is

used in structural specification. The Palladio system is based on the following

premises about circuit design:

it is a process of incremental refinement.

it is an exploratory process in which design specifications and design goals

co-evolve.

circuit designers need an integrated design environment (i.e. compatibility

between a range of tools).

Chapter 2. VLSI and Programming Environments 10

These premises are compatible with the Wright system's design goals, and I

will later argue the importance of joint textual/graphical notations for design

exploration.

The application of algebraic techniques (e.g. formal semantics) and the use of

structured design are widely reported in the computer science literature for con-

trolling the the complexity of computer programs and also for guiding the design

of programming languages [86]. The previous projects have demonstrated the

usefulness of ̀ programming techniques' to hardware design, and the need for the

abstraction mechanisms they provide. In later sections the importance of picto-

rial notations will also emerge. The view of hardware design as a programming

exercise, and consequently accruing benefit from these techniques, is becoming

more prevalent and is even making an impact on some industrial practitioners.

2.2.3 Design at the Mask Data Level

The design tools surveyed in this section all deal directly, at some stage, with

mask geometry. This approach gives the designer precise control over the physi-

cal realisation of a circuit, but with this freedom the potential for error is intro-

duced.

The embedded design language [49] was the earliest attempt at using high

level programming techniques for circuit design. Such systems are simple to de-

velop and can exploit the power and familiarity of their host high level language

(e.g. ILAP [30] uses IMP [73] and Sticks&Stones [13] uses ML [25]). These sys-

tems can be viewed as being too powerful in the sense that it is difficult to prove

properties of large software systems (we could not easily prove that an ILAP pad-

placement program will always give a correct result). The systems are weak in

the sense that since they do not directly support two-dimensional programming

(i.e. layout generation), the specification of circuit constructs can be obscure

and inflexible. Major benefits of these systems include ease of implementation

(no new compilation technology is required) and ease of use (i.e. assuming that

the host language is already known and is itself easy to use). Much, of course,

Chapter 2. VLSI and Programming Environments 11

depends on the quality of the embedding. In the following discussion I will

mostly be concerned with how various systems deal with cell composition, leaf

cell design is usually carried out by graphical editors that generate the embedded

language as output.

The Lubrick cell assembler [80] uses an embedded language (Pascal is the

host language). It is a cell composition system which assumes the correctness

of leaf cells. This assumption allows the inclusion of arbitrary geometry in leaf

cells, although cell boundaries must be rectangular. Lubrick uses the concept

of type-directed connections to facilitate the joining of cells. Essentially this

involves inserting an appropriate routing channel between cell boundaries, which

depends on the type information contained in the port definitions. Composition

of cells is specified using Pascal functions. The construction of the following

structure is illustrated:

mAa rBb
Cc

mAa rBb

where cells Aa, Bb, and Cc are leaf cells, mAa is the mirror image of Aa in the

Y-axis, rBb is the rotation of Bb. The corresponding LUBRICK code is:

p:=OPENCELL('EXAMPLE')
pi:=REPY(SYMY(GETCELL('Aa')),2);
p2:=REPY(ROTP(GETCELL('Bb')),2);
p3:=GETCELL('Cc');

p:=CLOSECELL(RIGHT(RIGHT(RIGHT(p,pl,1,0),p2,1,0),p3,1,0));

This would look like the following in ILAP notation:

SYMBOL("EXAMPLE")
DRAWMX("Aa",SX("Aa"),SY("Aa")*i) %for I = 0,1,1

'- - . .. -. . L - s It.2 cL . S..

Chapter 2. VLSI and Programming Environments 13

I
S

*

g.W

r.N

no,

Poe

out

4

S

S

S

r.S

Selector

.5 g41S

let seln a

tori
iter

ml
(for S

: :exp(2
inn

er bit(i

with
1• g.E LI,

:r.S

posE:

posE:
1• g.E

,n)

a a

whererec bit(i .3)
=> i mod2

a a

I bit(i//2, 3.sl)
I

Figure 2 S. A Sticks&Stones Selector Circuit

component relations are derived from the design rules and the composition of

cells. All necessary relationships are discovered by the system, but the user

can manually specify relationships using the constraint mechanism. With this

feature the user can control circuit features (e.g. S imp ose maximum

lengths on wires and specify transistor sizes): Figure 2—2 is an example of the

Plates language, namely the definition of the circuit primitive PasaTransistor.

Figure 2--2 is a small example of the Plates language, a description of a

register is 45 lines long5 Part of the reason for the verbosity of this notation

is that the overlapping of boxes is a level abstraction, and is used

in both the definition of primitives (as above) and in the composition of cells.

U

LI

it el Ii el)0

with C

Se g.W
ee r.N

: g.E ee g.W :] (neg{r.?\r'.?})
: se g.W :] (poa{r.flr'.?j)
ee g.W

; r'.S a e e :rit S ee g.N

p

directly

very low

Chapter 2. VLSI and Programming Environments

Source

Gatel n GateOut--f

Drain

Primitive PassTransistor
(GateIn {Position (Left), Access (Top, Bot, Left) },
GateOut {Position (Right), Access (Top, Bot, Right)},
Source {Position (Top). Access (Top, Left, Right) },
Drain {Position (Bot), Access (Bot, Left, Right)));

Begin
Instantiate D using Diffusion,

P using Poly with (Left outside D.Left,
Right outside D.Right.
Top inside D.Top,
Bot inside D.Bot);

DefinePorts GateIn is (P outside D.Left),
GateOut is (P outside D.Right),
Source is (D outside P.Top),
Drain is (D outside P.Bot);

End I PassTransistor !

Figure 2-2: A Plates Primitive

14

While allowing the specification of very general constraints, this is bought at the

expense of unwieldy descriptions. The goal of having a metric-free representation

is, however, a useful contribution and is developed further in the ALI system [48).

ALI is an example of an extended language (Pascal + circuit description syn-

tax and semantics). The ALI system bases its representation of circuit structures

on a set of linear inequalities. These inequalities refer to the relative placement

of objects within the circuit, either as supplied-by the user or derived-from the

design rule file. This approach liberates the `programmer' (in the ALI project

circuit design is viewed as programming) from. specifying sizes and positions. Cell

'a—

Chapter 2. VLSI and Programming Environments

composition is achieved by 8tretching the cells, he. constraints are S

which cause ports to match up exactly.

the required object relations (e.g.

The design rules can provide many of
wire spacing) . The ALT system must check

S

that all relations between circuit entities are specified. This condition, known
as completeness, involves computing the transitive closure of a graph. Although

this has O(n) time complexity, n is never more than the number of objects in

The execution time due to the solution of the set of linear inequalities

is proportional to the number of inequalities. Figure 2—3 is an example ALl

program (with corresponding picture).

I

1'

'p

I
t —IlL - i-sr-r•i—

1±

H'? r
-- —-I—-

—a

.-— I
end.

Figure 2 3: An AL! program

Although the ALl team claim that their system 'S avoidance of explicit sizes

and positions is novel with respect to other systems, including graphical edi-

tors, this is not true of the various symbolic layout systems. The placement

of devices on a virtuahgrid (described in the next section) is no more concrete

than the gluing, separation and overlap primitives of ALL

one cell.

11

'a

a•
I

•1

a

Chip simple;

const

hnuinber = 10;
length 20;

width 6;

boxtype

htype = array
var
1: integer;

box

[1. .hnuinber] S

I

I

begin

of metal

begin

-,

I horizontal :htype
vertical : metal;

for i:1 to hnuinber a do
above(horlzontal [i] ,horlzontal [1+1]) ;

glueright(horizontal [i]
xmore (horizontal [1] , length)

end;

glueright (horizontal [hnumber] , vertical)
xinore (horizontal [hnu,nber] , length);
xinore (vertical , width)

,vertical);

I

I

I

II

While these are the

Chapter 2. VLSI and Programming Environments 16

teresting notational devices (an abstraction made use of in the text formatting

language TEX) they are not any more or less descriptive than a symbolic layout

stick-diagram or program script. Unlike the symbolic layout tools, ALI doesn't

completely remove the possibility of a design containing an explicit size (as in

Figure 2-3), and does not directly deal with layout at the level of abstraction

corresponding to wires and transistors. ALI does provide an implicit DRC and

circuit extraction capability (an improvement over the previous systems), but

both these functions are only provided on a completely instantiated design (i.e.

they are batch oriented).

The Magic [67] design system supports incremental design by representing

mask data in a data structure called corner stitching. This representation sup-

ports a design style called logs which allows the manipulation of abstract layers

(which represent transistors, wires and contacts) in a manner similar to symbolic

layout systems. In Magic, however, logs appear with actual sizes and positions.

Corner stitching supports incremental design rule checking and a wire perturba-

tion action called plowing. The major advantages over the previously described

systems are:

improved interaction The design representation is graphical, all editing is

done through a graphical interface, making use of command menus and

providing multiple windows onto the design. The-- a lgorrithms-- associa:terl-

with the editor's major operations (DRC, routing and plowing) are incre-

mental (i.e. they avoid re-evaluating the whole design, thus speeding up

response times).

higher level of abstraction Although Magic allows the direct manipulation

of mask geometry, the use of abstract layers means that the system has

knowledge of the circuit's structure (i.e. not just its physical layout), thus

allowing trivial circuit extraction for verification and simulation.

Whitney [93] describes the hierarchical composition of cells built using the

Pooh design representation. In Pooh transistors and wires are represented as

line segments which have associated widths and separations. The geometry in a

Chapter 2. VLSI and Programming Environments 17

Pooh design can form arbitrary angles. When cells are composed (by matching

a pair of sides) only information about the new external boundary is retained. A

further development of the Pooh system [84] adds the restriction that geometry

can only take 90° and 45° angles. By doing this the system removes the need for

real arithmetic thus greatly improving the efficiency of the system with little loss

in generality (arbitrary angles do not give much greater layout density than 90°

and 45°). Pooh is actually much more than a layout- language its-wwireltrar<sistor-

model form the basis of a large design system which also incorporates a symbolic

layout interface.

The major benefit in dealing directly with mask data is that the physical

result can always be determined (usually without much delay) and is directly

controllable. A major disadvantage is the lack of freedom the designer is af-

forded with regard to cell stretching and port juxtaposition, (the ALI system's

cell stretching ability is bought at the expense of limited layout control and in-

teraction, a conscious design decision). The last two systems (Magic and Pooh)

guard against the possibility of incorrect layout by integrating design rule check-

ing into the design entry process.

2.2.4 Symbolic Layout

Symbolic Layout systems allow the specification of integrated circuits as sticks,

i.e. diagrams which show the topology of a circuit without showing the precise

physical placement and sizing of the circuit components. The designer provides

the relative position and connectivity of a circuit components, from which the

system deduces the final transistor and wire geometries. Sticks can be described

textually as well as graphically, and also as hierarchies of sticks. Layout is

produced from stick descriptions by the action of a compaction algorithm. The

tool described in Chapter 5, Stick-Wright, is a symbolic layout editor, making

use of both stick diagrams and a textual notation. Here is an example stick

diagram and textual description (a quick preview of Stick-Wright, in fact), using

the example introduced in the last section:

Chapter 2. YL SI an d Program rxilng En vironm en ts 18

where <

t
e e ._.. ii -.. . t e — ._.. a . e . .. aeuJ --- - --

> indicate vertical composition, (S • S iteration, S mire

roring in the Y-Axis and a clockwise rotation.

The earliest symbolic layout systems used a technique known as fixede grid

[
43] . Here components are arranged on a grid which is spaced out according to

the worst-case design rule (Le. the largest of the minimum distances that any of

the rows or columns has to be away from its neighbour for the circuit to operate

I

i

S The grid can not be compacted further.

The next generation of tools, the relative grid systems use a grid initially
. t . . .

to specify the placement and electrical connectivity of the components, but a

compaction process could then attempt to improve the layout density by moving

components off the grid lines. The Williams [95] relativ&grid system used sticks

diagrams to enter the design (he uses the term gridle8s).

the compaction process as graphical compilation.

treats placement separately in the X and Y directions. In Slim [181 Dunlop makes

an improvement to the Williams compaction strategy by adding a critical path

I

heuristic to guide trad&offs between X and Y compaction. The Slim s}siwem also
I

uses partitioning techniques to reduce the number of tolerance tests on large

layouts.

A combination of the fixed and relative-grid compaction schemes, virtuslegTld,

was introduced in the MULGA system [92]. Virtualsgrid components can move
I

about during compaction, but must stay on their grid lines, and the distance

t

between grid lines can als. vary.

the

The textual stick language of MULGA. ICDL,

VIVID system.

I

S

e e a e e e • 3

I
I
I
I
I
$
I
I
'a

Cell Example (;;;) =

Abut
<AC[2]> <Bba[2]> Cc.

. S

—'—-.'.-— — ——-——-- —
. s_ • * , ' '. — —,— -—— ,— qnw —'j.

I

I

—'V. _ .—"
• •. A.

i•
Bti I

I

L

.

e e a ee_e±ee e ee a 4&! . .- • , 4, . ..e .e L - teo . .. S

Cc

I

I

I

I

)

Williams describes

The compactor in this system

1

I evolved into language ABCD (75J in the VIVID

Chapter 2. VLSI and Programming Environments 19

hierarchical virtual-grid compactor which only compacts each cell once. The

compactor can extend the cell boundaries of a previously compacted cell to

conform to a new placement context.

In ASTRA [72] compaction is linked with the system's floorplanner. The

compactor is called initially to determine the minimum size for a given cell.

This information is then used to determine cell placement. The compactor is

called again with a set of port constraints in a final cell assembly stage. This is

illustrative of the oscillations which can occur between bottom-up (compaction)

and top-down (floorplanning) design activities.

In the Hill system [46] the compaction scheme (based on Williams) is en-

hanced by topological flexibility; if during compaction it can perturb the circuit's

topology while maintaining the original circuit structure, it does so (if this saves

area). The Hill system proposes a design language which allows flexibility in

the specification of a cell's external appearance, its template. The system then

checks that the given implementation for that cell can be distorted to meet the

given context. This flexibility is specified by giving a partial order for the ports

in either the X or Y direction (the distortion mechanism only copes with free-

dom in one dimension). At each level in the hierarchy three layout modes are

available; composition, placement and graphical. Composition and placement

are both text descriptions (placement is a more verbose version of composition

modes, where every cell instantiation has a unique name and it provides better

checking and simulation facilities), while the graphical interface is a stick editor.

Figure 2-4 is an example of composition mode.

In Figure 2-4 basic is a previously declared cell. This definition of chain is

recursive, the Hill implementors observe that in the same way as iteration is good

for describing array structures, recursion is descriptive of tree structures (e.g.

hierarchical multipliers). There is no graphical dual for the above description,

except for that of a particular instantiation (they show a picture of chain(3)).

What the Hill system does not provide is an integrated environment which allows

switching between the different design notations, the system they describe is

Chapter 2. VLSI and Programming Environments

Cell chain (n:int);
Temp Pins over: cbits;

cin: poly;

data: Array [0..2""n -1] Of
Record in: cbits; out: poly End;

psi, psr: Array [1..n] Of ps;
Order Implicit:Ver;

Top: over, cin;
Bottom: data Reverse;
Left: psi;

Right: psr;
Constraints
Begin

cin Above data[0].out;
over.p LeftOf data[2""(n+i)].out

End
Pmet
Composed
Begin If n >= 2 Then

chain := basic(n) Ver
(chain(n-1) Hor Chain(n-1))

Else
chain := basic(n)

Figure 2-4: An example of Hill composition mode

20

batch oriented. The graphical representation of programming language features

which avoid full instantiation is discussed in Chapter 5.

Since symbolic layouts are a level of abstraction above layout, they are

buffered from design rule variations. Bergmann [51 also shows that stick de-

scriptions can give a degree of technology-independence within -a-prooess-fa-mily,

As a final example of VLSI design notations Figure 2-5 is the last section's

example written in Bergmann's idiom description language Virgil.

Composition Cell Example
AA = A INY A INY

BB=B01 B01
Example >> A >> B >> C

End

Figure 2-5: A Virgil Composition Cell

Chapter 2. VLSI and Programming Environments 21

Virgil is a cell composition language where the leaf cells are described using

a virtual grid. Figure 2-6 shows the textual form of such a cell.

Leaf Cell Side = (0, 0, 1, 2)
gnd.e: mport @ (1, 0)

gnd.s: mport @ (0, 0)

gnd.n: mport @ (0. 2)

mwire @ gnd.e -> gnd.a -> gnd.n
in.e: pport @ (1, 1)

in.w: pport @ (0, 1)

pwire @ in.e -> in.w
End

Figure 2-6: A Virgil Leaf Cell (text)

Virgil leaf cells are usually created using the graphical representation pro-

vided by a graphical editor (see Figure 2-7).

GND.N

IN.W IN.E

GND.S GND.E

Figure 2-7: A Virgil Leaf Cell (graphics)

Symbolic layout will not suit circuit designers who are used to optimising

every last box in a layout by hand, and who want to create unusual geometries

and perform `neat tricks'. The claims of the symbolic lobby of process and tech-

nology independence will not worry a designer who has a stable design facility.

However, some of the arguments about symbolic versus hand layout sound very

much like the arguments you still here today about assembly code versus high

level languages. Given the complexity demands of large VLSI systems and the

increasinp quality of symbolic layout compaction schemes, it seems reasonable

Chapter 2. VLSI and Programming Environments 22

to expect symbolic layout to continue to gain ground, and it is the chosen ab-

straction for the design tool in Chapter 5. A more detailed survey of symbolic

layout is given by Newton [62] and a review of commercially available systems

is given by Taylor [83].

2.2.5 Silicon Compilers

Silicon compilation is a rather overloaded term, frequently to be found in mar-

keting hyperbole, but is nevertheless an extremely apt description of those tools

which automatically synthesise complete IC layouts from some input specifica-

tion. The term has been applied to systems using structural design descriptions

(e.g. Lattice Logic's gate array system [26] [44]) and also more ambitious sys-

tems which process behavioural descriptions (e.g. the algorithmic LISP like

design language of MacPitts [81] [82]). In systems like MacPitts the compiler

is not only responsible for the placement and routing of the circuit primitives

implicit in the design language (called organelles in MacPitts), but it must also

synthesise the control logic which governs the operation of the circuit.

While the task of finding efficient layouts for arbitrarily complex structural

descriptions is no easy task, the synthesis of layout from behavioural specifica-

tions also involves much more complex partitioning and architectural decisions.

So far the most successful silicon compilers have made this task more feasible

by restricting both the problem domain and the target architecture: MacPitts

has a fixed datapath/controller architecture, and the primitive operators in the

design language have directly corresponding hardware implementations.

A further example of this `target application' approach is the FIRST [16] sili-

con compiler which transforms a high-level design language description of digital

signal processors into IC layout. The internal architecture is restricted to hard-

wired networks of pipelined bit-serial operators. The FIRST system supports

functional simulation of the design language and can give precise performance

estimates. This combination of high-level design language, functional simulation

and performance prediction together with a fully automated layout synthesis

Chapter 2. VLSI and Programming Environments 23

stage enables FIRST to provide silicon implementations for designers with no

previous IC design experience, i.e. systems designers can produce chips. By fully

automating the layout synthesis stage, the layout can be guaranteed to be free

of human introduced layout errors.

So far the tools in this section have not made much use of graphical inter-

faces, however, Lattice Logic's gate-array compiler is a notable exception. As a

commercial product it has had to meet the demands of design engineers who re-

quire schematic entry (in preference to the structural design language MODEL).

For this reason a schematic entry system was implemented which converts cir-

cuit diagrams into MODEL language constructs. A problem encountered during

the implementation, and consequent maintenance of this system [8] was that the

MODEL language was also undergoing design iterations. Since the implementa-

tion of the picture -> language translator was not directly connected or driven by

the language's specification (i.e. grammar) the updates needed significant hand

re-coding. A further problem with schematics entry for the MODEL language

is that schematics, at least in their current form, can not exploit the structured

programming features of MODEL, i.e. parameterisation, iteration and condi-

tionals, and so the MODEL generated by the schematics package is in a fully

instantiated form. Figure 2-8 shows the schematic and corresponding MODEL

for a four-way multiplexor, and Figure 2-9 shows a parameterised version of the

multiplexor.

These problems, and the application of the Wright system to silicon compi-

lation in general, are discussed in the final chapter.

2.2.6 Floorplanning

Floorplanning in the context of VLSI design is the act of determining a relative

placement of system elements so as to minimise the communication (wiring) costs

between them, and hence the overall size. Additional aspect-ratio constraints

may also be specified. Floorplanning is used in the initial stages of design to

place major circuit elements. Although the exact size of the elements to be

Chapter 2. VLSI and Programming Environments 24
.s. — — a- SwMS

dath

doth (2)

data (3)

ctil(3)

data fl)
ct:1(4)

S tujfl.j

temp(1
nand[data(1) ,ctrl(1)]

2
nand[data(3) ,ctrl(3)]
nand[data(4) ,ctrl(4))

:4))

Figure 2 •

a> output

temp(1)
e) temp(2)

temp(3)
a-> ternp(4)

AeMODEL fourrway. multiplexor

PART varimux
SIGNAL

Cm) [input(1:m) ,control(1 : m)] a> output

INTEGER I

REPEAT

nand[t
END {of

emp] a>

vail rnux}
output

Figure 2 9: A MODEL parameterised multiplexor

placed cannot be found (except by full implementation), estimates can be made

either by expert knowledge or by statistical methods

Heller et al. [28] [si] use graph dualisation to determine a chip floorplan

from a connectivity graph. The graphic input is first tested for and 'a

I

1'

I

Si

PART

SIGNAL
rnux[data(1 :4) ,ctrl(1 :4)]

:4)

nand [data () ,ctrl(2)]

nand [temp (1
END {of rnux}

output

temp(1 :rn)

FORI = 1:rn CYCLE

nand[input(1) ,control(i)) e> temp(i)

Chapter 2. VLSI and Programming Environments 25

then dualised. Planarity can always be enforced by the introduction of nodes

corresponding to routing channels. The rectangular dual which best meets these

constraints is picked. Unfortunately, this process has exponential time complex-

ity.

Brebner and Buchanan [7] add a textual interface to the Heller et al. algo-

rithm and automatically produces a suitable graph for dualisation. Because the

algorithm is applied to a hierarchical structure, with small graphs at each level,

the complexity issue is partly avoided.

Otten [66] describes the application of planar projection to floorplanning.

This involves embedding the interconnection graph with n nodes into (n-1) di-

mensional space. Projections can then be made onto a 2-dimensional plane. The

edges of the graph are sized according to the degree of connectivity between

the nodes; short distance implies high communication. A number of projections

are made and the one which least disrupts the inter-node distances is chosen.

The last stage, called slicing, is to partition the 2-D plane into rectangular areas

determined by the projection.

An experimental environment using- the- Heller- and- Otten- methods- is- de=

scribed by Schmid in [79]. The Otten algorithm is described as being fast enough

for an interactive system, but solutions meeting all communication and size cri-

teria cannot always be found. The system uses the Otten algorithm to help the

user refine a specification that will drive the Heller algorithm.

The emphasis in these tools is design automation, rather than computer aided

design. Because of the computational expense involved in automatic floorplan

tools, it seems reasonable to expect graphical design aids will continue to be used

for some time, and hence the techniques described later in this thesis can usefully

be brought to 6&r on this subject. Indeed, it is later, argued) that graphical design

aids are crucial to the effective use of silicon.

Chapter 2. VLSI and Programming Environments 26

2.2.7 Verification

There are being developed verification tools which attempt to prove that im-

plementations of systems conform to their specification. This is an extremely

important objective as exhaustive simulations are already prohibitive in even

modest sized systems.

Milne describes a calculus for circuit descriptions called Circal [58]. He

demonstrates an application of Circal by verifying the correctness of a simple

silicon compiler [59]. In this- example- Milne_describ.es_a_sema.ntic_function_which_

maps Nor expressions (the input language of the compiler) to Circal and a func-

tion which maps layout (the output of the compiler) to Circal. By showing

that both Circal expressions are equivalent, in this example they turn out to

be the same, the correctness of all possible circuits of the system is proven. In

more complex examples it is predicted that the expressions would have to be

manipulated using Circals laws to prove the equivalence. Traub [87] describes

an experimental Lisp system which provides machine assistance in manipulat-

ing Circal expressions. Circal has also been used as a basis for an interactive

simulation system, where Circal expressions are animated on a graphics screen

Barrow [4] presents a system, Verify, which performs functional verification of

circuits, without regard to timing issues. The system attempts to prove that the

description of the behaviour of the circuit at one level in the hierarchy matches

the behaviour derived from the interconnection of its constituents. The proof is

made automatically as far as is possible, using a Prolog based algorithm, and has

an interactive mode where the user can guide the proof (i.e. suggest application

of laws).

The work in this thesis is relevant to design verification in two areas, ex-

pression manipulation (including proof-editing), and implementing interactive

simulation systems.

Chapter 2. VLSI and Programming Environments

2.3 Programming Environments

27

A programming- environment.. is-an.integration _of_the-tools -associated with. pro.

gram development (text editors, compilers, interpreters, debuggers, display pro-

grams, etc.) within a unifying framework. A component of most programming

environments is a structured editor (sometimes also known as a structure editor,

reflecting a subtle change in emphasis). This tool combines the functions of a

text editor with that of a parser to yield an editing system which has knowledge

of the structure being edited, and can hence forbid illegal constructs and permit

actions which make use of the structure (e.g. movement and deletion of large

sections of program). The Mentor project [17] built a structured editor for Pas-

cal which provided a tree manipulation language called Mentol. Using Mentol

it is possible to specify complex tree traversals, insertions and deletions. The

following piece of pascal:

if X>O then P(X,A[Y,Z])
else begin

Y:=Y*2;
X:=O
end

if

gtr call Istat

X 0 P lexp ass ass

X index Y mult X 0

Y Z

Figure 2-10: A Mentol abstract syntax tree

Chapter 2. VLSI and Programming Environments 28

is represented by the abstract syntax tree in Figure 2-10, and is transformed by

the following Mentol-commands:

:OTOP

S2 X S3

S2 S1 I S3
S3 C &

Z:=0

I place current marker at top of tree
% exchange sons two and three

insert son3 at song of sons
replace S3 with ...

the parse tree of this line

into the tree having the following unparsing:

if X>O then
begin
Y:=Y*2;

P(X.A[Y.Z]) ;

X:=O

end else Z:=O

The Cornell Program Synthesiser [85] introduces the terms template, place-

holder and phrase. A template is a predefined formatted pattern of lexical tokens

and placeholders. A placeholder identifies locations in a template where inser-

tions can be made. A phrase is a sequence of lexical tokens (e.g. keywords,

numerals and identifiers). Each placeholder designates the syntactic class of

permissible insertions. An example of a template (from [85]) is:

IF (condition)

THEN statement

ELSE statement

where condition and statement are placeholders. Programs can bn_entered .b_y.

expansion of templates either by the insertion of further templates into placehold-

ers (a top-down approach) or by entering a phrase at a placeholder (a bottom-up

approach). The bottom-up entry method requires the use of a parser to prevent

illegal sentences being inserted.

Many other programming environments include editors which have features

in common with the Cornell Program Synthesizer, including the editor module

of the Wright system (Chapter 3). 1 shall continue to use their terminology.

Chapter 2. VLSI and Programming Environments 29

An all embracing approach to programming environments can be seen in the

Smalltalk project [24] where everything from the virtual-machine architecture to

the high-level programming paradigm has been conceived as a whole. The object-

oriented approach taken in Smalltalk lends itself to tool integration, making

possible natural descriptions for inter-tool communication and resource sharing.

To describe the essence of Smalltalk it is necessary to introduce some of its

vocabulary:

object A component of the Smalltalk system represented by some private mem-

ory and a set of operations.

message A request for an object to carry out one of its operations.

class A description of a group of similar objects.

instance One of the objects described by a class.

method A description of how to perform one of an object's operations.

In Smalltalk, computations are described by the interaction of objects, which

communicate using messages. When an object receives a message it applies the

corresponding method to perform the desired computation. Objects with shared

properties are structured in classes, and new classes can be derived from existing

classes using the subclass mechanism. Subclasses inherit all of the properties of

their superclass, however, they can modify these properties and add their own.

For example if the class `WindowManager' has a method `DrawFrame' which

draws a thick border round a window, to provide a new window manager which

draws only thin borders round windows, would simply involve creating a subclass

of `WindowManager' which overrides the method `DrawFrame' with one that

draws thin borders. The concepts of inheritance and message passing can lead

to very elegant descriptions and implementations of systems.

Similar developments have led to the SYMBOLICS 3600 LISP machine which

has been used to develop a VLSI CAD system NS [15]. The authors attribute the

Chapter 2. VLSI and Programming Environments 30

success of their system to abstraction mechanisms provided by the LISP machine;

the Flavors object-oriented programming language, large uniform virtual address

space and procedure-data duality (procedures are first-class citizens, i.e. they

have a well-defined data representation which allows them to be manipulated

just like any other data object). Flavors makes an alteration to the Smalltalk

and Simula class structure by providing the mechanism of multiple inheritance.

Flavors can inherit methods from multiple-superclasses, i.e. new flavors can be

constructed by mixing existing flavors.

An important aspect of programming environments is the level of support

given to graphics. Both the Symbolics and Smalltalk systems make extensive

use of the graphics capabilities present on their workstations, indeed, this is a

measure of the success of their programming paradigm.

Programming environments have been created for traditional procedural lan-

guages (e.g. Pascal) and developments have been made in not only syntax-

directed editing but also in such things as debugging aids, source code version

control systems and incremental compilers. Research programs in this area in-

clude Gandalf [57], POE [21] and SAGA [11].

In the area of syntax-dictci'cdediting a popular formalism to specify context-

dependent language features has been the attribute grammar [39], and this is

the formalism that forms the basis of the Wright system. Major work in this

area has been done in the development of the successor to the Cornell Program

Synthesizer, namely, the Synthesizer Generator [71]. This project has success-

fully developed optimal-time incremental attribute evaluators and has developed

methods for reducing the storage requirements of attributes. The Cornell system

has been used in many applications, including the following:

Pascal editor with full static-semantics checking.

An editor for partial-correctness program proofs using Hoare-style logic.

A full-screen desk calculator.

Chapter 2. VLSI and Programming Environments 31

a text formatter.

a mathematical equations formatter.

Further discussion of the Cornell project is made in the next chapter, follow-

ing the introduction of the formalism of attribute grammars.

2.4 VLSI Programming Environments

2.4.1 Introduction

The work in this thesis is primarily motivated by an interest in applying the tech-

niques of programming environments to VLSI design. This area has seen some

interesting research projects, of which SAM [88] is perhaps the most relevant

to this thesis. In SAM, Trimberger implements an embedded language package

using the SMALLTALK programming environment. It contains the following

key features:

Text and graphics The user can view the design as either text or graphics.

One internal representation The text and graphics windows onto a design

are different views of the same internal data structure. Hence a change to

this structure causes the regeneration of both views.

Trimbereger identifies two areas of difficulty in reconciling textual and graphical

representations:

expressions what happens when an x coordinate described by the expression

3*w+4 is transformed by a graphical command to a new position ? Say the

value of the expression was 10 and is now 13. The following substitutions

are possible in the text version:

Chapter 2. VLSI and Programming Environments 32

13 destroy parameterisation

3 * w + 7 add a constant (translate)

(13/10) * (3 * w + 4) multiply by a constant (scale)

3 * w + 4 where w = 3 change the value of the identifier

iteration If a change is made graphically to one instance of a cell invoked by a

loop statement, should only it, or all the instances change ?

These problems are partly due to the level of abstraction used in the system,

i.e. the use of absolute values, and also the nature of the graphics commands

available. The approach taken in the Wright system to solve these problems is

presented in chapters four and five.

There are now commercial products emerging which are showing a high level

of tool-integration, and which make use of both textual and graphical inter-

faces. Representative of these are SDA's SKILL system [45] and SDL's GDT

(generator development tools) [10]. Both these products have procedural design

languages for the development of module generators, and allow these descrip-

tions to be entered using graphical editors. Neither of these sytems, however,

supports graphical and textual manipulation of the same object at the same time.

Central to both these systems is the design data-base which is closely tied to the

respective design language (SKILL and L). All the tools involved in the design

process (simulators, routers, compactors, schematic editors etc.) communicate

through this shared design representation.

The application of attribute grammar techniques to VLSI design systems has

also recently been suggested by Jones and Simon [36]. Their work has been based

very closely on the Cornell Synthesizer Generator, and has so far focused on the

development of evaluators for circular attribute grammars. The need for circular

attribute grammars has arisen since they are interested in describing some of

the more dynamic features of circuits which are inherently circular (e.g. delay

propagation and logic simulation). The Wright system is primarily concerned

with the relationship of programs to pictures, and has only needed to make use

of non-circular attribute grammars.

Chapter 2. VLSI and Programming Environments

2.4.2 Interactive ILAP

33

Interactive ILAP was my final year project as an undergraduate [54]. I include

a brief description of it here because the work reported in this thesis has largely

followed on from it, and it amply illustrates some of the problems I am address-

ing.

As introduced before, ILAP is VLSI layout language embedded in the pro-

gramming language IMP. Figure 2-11 illustrates the ILAP design cycle.

Text Editor

Compiler

Linker

ILAP Program

Cifview

Figure 2-11: ILAP Design Cycle

I

During the evolution of a circuit the designer makes use of the following

programs:

text editor In the university there are an abundance of full-screen text editors

available, some of which, e.g. EMACS, can be instructed how to format

language constructs.

TED

TED Leaf cells (i.e. cells containing only geometry primitives) can be con-

structed using the Ted graphical layout editor.

Chapter 2. VLSI and Programming Environments 34

compiler The ILAP package makes use of the IMP compiler, which even on

a lightly loaded or personal machine can take a few minutes to compile a

moderately sized design.

linker Resolves external references in the object code generated by the compiler

providing an executable image (this stage is eliminated in systems with

dynamic linking) .

ILAP program The compiled ILAP program is now executed to generate the

CIF file [56] corresponding to the design.

CIFview Finally the user can observe on a display (or plot) the geometry that

has been constructed.

All the tools in the design cycle view the design as a whole; if the coor-

dinates of a cell translation in a design were entered- in reverse, in order to

correct that one point all of the above tools would have to be re-invoked and the

whole design re-evaluated. Interactive ILAP's brief was to remove the redundant

re-evaluation thus reducing design time. In order to do this a programming en-

vironment approach was taken and some of the features of the systems described

by Trimberger [88] and Medina-Mora [57] were incorporated.

Figure 2-12 show the major components of Interactive ILAP.

editor Interactive ILAP provides a syntax-directed editor for IMP. The edi-

tor Also provides the control mechanisms through which the user directs

the execution and display of the system. The editor maintains two data

structures; a list of analysis records (collapsed parse trees) associated with

each source line, and an array of pseudo-machine code generated from the

analysis records.

interpreter The interpreter executes the pseudo-machine code maintained by

the editor. The interface between editor and interpreter allows direct con-

trol of execution and comprehensive monitoring facilities.

Chapter 2. VLSI and Programming Environments

text

Editor

Interpreter

ILAP Kernel

graphics

Graphics
Library

ILAP
Library

Figure 2-12: Interactive ILAP Structure

35

ILAP kernel The normal ILAP kernel produces CIF layout as output. Inter-

active ILAP has its own kernel which generates internal graphics code at

run time. This dynamically generated code can then itself be executed

causing calls on graphics procedures and, hence, pictures.

Graphics library Interactive ILAP uses EDWIN [29] for the presentation of

circuit layouts. EDWIN is particularly useful because of its portability

over a range of hosts and graphics devices.

ILAP library The ILAP library contains programmable structures built on

top of the ILAP kernel. Since these are independent from the kernel and

appear as external references, Interactive ILAP can use them without mod-

ification.

The textual representation of an ILAP design, i.e. the IMP program, is

displayed and edited using a normal VDU. The editing functions provided include

the normal structured editor tree traversal and manipulation procedures, and

source lines can be entered bottom-up using the system's parser.

Chapter 2. VLSI and Programming Environments 36

An important feature is the integration of the graphics device into design

entry; by using a mouse or tablet to point to locations on the current design pic-

ture, the user can use the current mouse coordinates in the insertion of various

text macros into the current source line, e.g. a coordinate pair 34,23, or a more

complex macro might use two sets of coordinates to insert box (10.20.10.3) .

2.4.3 Conclusions

Interactive ILAP was a successful attempt at producing a programming environ-

ment for a procedural language, and indicated the potential of using a graphics

device during the composition of programs (i.e. the use of positional information

from the mouse). It did not, however, solve some of the insecurities of ILAP it-

self, and was not itself a firm basis for further development. The major deficiency

in the implementation of Interactive ILAP was its parsing scheme (table-driven

recursive descent) which imposed severe restrictions on the class of grammars

which could be used and had efficiency problems. The other problem with the

implementation was the rather ad-hoc relationship between the analysis records

provided by the parser and the semantic actions which operated on them. Any

change to the grammar required significant hand re-coding of large sections of

code. The next chapter is concerned with providing a more secure framework

for the development of a VLSI programming environment.

—

a
-

-v
..-

- j-
--

-
.—

- —
--

--

W
4'

flf
lW

.

.
.

r
."

W
Y

'P
 "

fl'
 M

W
"f

l'P

'
'

.
rx

w
'w

—

 ----'
 -

.-
—

--

--
c-

-y

rv
w

vr

.
,

".

p n —
.

C
, iS

C
D

C
D

C
D

—
.

0 0 -I

C
D

0 P

p —
.

0 P
t. p iS

—

0 I

n 0 en

n —
.

0

'1

p —
.

n —

—
.

C
D

C
D

 p —
.

0 C
D

U
) p —
.

n I U
)

C
D

E

p —
.

n U
)

C
D

I n 0 '1

'1

C
D

C

,

C
D

U

)
U

)

0 0

—
.

—

C
D

U
) 0 U
)

C
D

U
) '1

n C
D

0 -a

p p —
.

n p -a

C
D

—
.

0

cc

'1

C
D

I

LT
J

0 U
) n C

D

'1

—
.

C
D

p —

p —
.

C
)

0 en

'1

n —
.

0

'a
'.

S

4

N
—

--

—
-

w
-

--

—
--

--

-
-

L

p C
D

—
.

p C
D

C
D

C
o

I

C
D

'1
 0

'1

—
.

C
D

'1

p p '1

n p p U
) 0 C
D

U
)

C
D

 0 C
D

C
D

C
D

E
n

C
, '1

p —
.

C
D

'1

p p '1
 p —

—

0 U
)

C
D

U
)

C
D

 n —
.

C
, p —
.

0

—
.

C
D

 iS

C
D

n 0 C
D

U

) 0 —
.

—
.

n C
D

 z 0 0 n p C
D

'1

p p

C
D

—
.

—

—
.

0 —
.

n '1

as

—
S

1.

0 C
s)

 0

C
o

p —

C
D

—
.

n '1

C
D

'1

C
D

C
D

'1

0 0 C
D

 n 0

/
p '1

U

) —
.

p 54

n C
D

0

C
D

—
.

C
)

en

0 0 C
D

E

C
D

C
D

C
D

C
D

n C
D

I

C
D

C
.

C
, .-

'<
 E
 as

0 —

—
.

n —

as

C
D

 0 fl.
a n C

D

t 0 —

0 c+

p U
)

'a

C
D

I

—
.

C
D

p 'a

—

C
•P

S

Q
a

p p en

as

—

. —

IT
I

—
.

c+

0

4•
4

et

C
D

-
.-

--
--

-
r

I
I

1'

sq

,
—

 i•
__

ii
—

I

—
S

tE

l

C
D

C
D

C

*9
 I I I

C
)

'1

—
S

0

Chapter 3. The Wright Editor Generator 38

syntax tree) which the user can view and edit as either a language construct-or.

as a picture. By allowing editing operations through both these interfaces the

system combines the advantages of conventional programming techniques (hi-

erarchy, parameterisation, iteration, conditional evaluation, type security etc.)

with the benefits afforded by graphical entry (icons, menus, pointing devices,

etc.) as well as providing constant pictorial feedback on the progress of the de-

sign. The use of an incremental evaluator restricts re-computation of attributes

to only those affected by an editing change.

3.2 Attribute Grammars

I begin the discussion of attribute grammars (AGs) with a few definitions and

assume the usual notational conventions [1] [91].

Definition 1 A context free grammar for the language L is a quadruple, G =

(N, T, P, Z) with

N the set of non terminals

T the set of terminals with N and T disjoint

P a finite subset of N x V*, the set of productions, where V = N U T

Z a distinguished non terminal, the start symbol.

Definition 2 An attribute grammar is a quadruple, AG = (G, A, R, B) with

G a context free grammar

A = U A(X) is a finite set of attributes
XETuN

R = U R(p) is a finite set of attribution rules
pEP

B = U B(p) is a finite set of conditions
pEP

Chapter 3. The Wright Editor Generator 39

For each occurrence of X in the structure

tree corresponding to a sentence of L(G), at most one rule is applicable for the

computation of each attribute a E A(X).

Definition 3 For each p : Xo - Xl ... Xn E P the set of defining occurrences

o f attributes AF is AF(p) = {X;.a I X;.a +- f (. . .) E R(p)}. An attribute X.a

is called derived or synthesised if there exists a production p : X X and X.a

is in AF(p); it is called inherited if there exists a production q : Y µXv and

X.a E AF(q).

Definition 4 Let the set of synthesised attribute occurrences be S(X) and the

set of inherited attribute occurrences be I(X).

S(X) n I(X) = 0, S(X) U I(X) = A(X).

An AG is said to be in normal form if for every p : X0 Xl ... Xn E P the values

of the attribute occurrences in S(Xo) and I(Xl<k<n) are defined as functions of

attribute occurrences in I(Xo) and S(Xl«<n).

At this stage it will prove useful to introduce the notation used by the Wright

system. This is the binary arithmetic example of Knuth [39]:

Grammar Binary is

Code [%include "att.src"]

Lexicals _zero, _one , _dot;

Synthesised B(value), L(value, length), N(value), A(value);

Inherited B(scale), L(scale);

Productions

A -> N <vaaue$0 = vaaue$1>;

B -> _zero <value$O = 0> I

_one <value$0 = twotothe(scale$0)>;

L -> B <value$0 = value$1>
<length$0 = 1>
<scale$1 = scale$0>;

Chapter 3. The Wright Editor Generator

L -> L B <value$O = value$1 + value$2>
<length$O = length$1 + 1>
<scale$2 = scale$O>
<scale$1 = scale$O + 1>;

N -> L <value$O = value$1>
<scale$1 = 0>;

N -> L _dot L <value$O = value$1 + value$3>
<scale$3 = -length$3>
<scale$1 = 0>;

end of productions
end of grammar

In the following discussion the non terminals -zero, -one, dot will be in-

dicated by their literal occurrences ' 0' , ' 1 ' , . ' when used in example strings.

The above definition is used to give a precise meaning to the set of strings which

are admitted by the grammar Binary. For example, the string 1101. 01 can be

parsed to form the tree shown in Figure 3-2.

A

i

N L/ !\L
\B L/ B L

B

B

I,

Figure 3-2: Syntax Tree for 1101.01

Meaning is assigned to this structure by evaluation of the attributes asso-

ciated with the grammar's non terminals (e.g. non terminal L has synthesised

Chapter 3. The Wright Editor Generator 41

attributes value and length, non terminal B has inherited attribute scale). The

brackets < ... > contain the defining occurrences of the AG, i.e. the semantic

functions which link the attributes.

In the defining occurrence <value$0 = value$1 + value$3> for production

L -> L _dot B , the $" labels are used to indicate which subtree of the current

production the attribute belongs to (note that this index also includes terminals

in its calculation). All synthesised attributions can only be made at position

0 in the production, indicating movement of data up the syntax tree. In this

example the `values' synthesised for two subtrees are `added' together. Also for

this production there are the inherited attributions <scale$3 = -length$0>

and <scale$1 = 0>. This is information flow down the syntax tree.

The defining occurrence <value$0 = twotothe(scale$0)> uses an auxiliary

function twotothe which is just normal exponentiation 2". The actual form of

the semantic actions is not covered by the formalism of attribute grammars,

and the Wright system makes use of the IMP [73] programming language. The

defining occurrences are just fragments of IMP code with attribute instances.

The system replaces the attribute instances with appropriate references into the

internal attributed syntax tree data structure. The above examples make use

of IMP's arithmetic operators and assignment statement (indeed, the defining

occurrences must always be of the form <attr$" = xyz > where xyz is a valid

IMP integer expression, optionally containing attribute instance references).

The example Binary has been chosen because of its brevity and because it

illustrates the information flow possible in an AG. The grammar seeks to give

an `intuitive' meaning to binary strings which have a radix point (i.e. binary

fractions). The above set of functions, when applied to the parse tree of our

previous string 1101.01, yields the attributed syntax tree shown in Figure 3-3.

The order in which defining occurrences are applied is determined by the

evaluation scheme being used, and is discussed later. However, for the purposes

of this example, observe that the length attributes to the right of the radix

are required to be evaluated (bottom up) before the scale attributes can be

B
 p —
.

n p '1

In

C
D

'-1

 0 C
D

C
D

 p 0 '1

H

C
D

V
 p C

D

E

0 C
D

C
D

In

In

c+

C
D

 E

C
O

C

. p '1

C
D

C
D

—
.

'1
 0 E

C
D

 S

C
D

 n p V

C
D

In

V

'-1

C
D

C

l)

C
D

 p C
D

 0 p

E
 p p C

D
 p 0 p

n C
D

C
D

 p 0 0

C
D

 n C
D

 0

S

C
l)

C
D

 n —
.

n p C
D

C
D

C
D

C
D

C
l)

 0 C
D

C
D

C

l)

C
D

I

C
D

 0 0

p

0 0 C
D

0

U

-
.

C
D

'1

cm

—
S

.
I.

C
t

01

II

n p

a-
'

II II

.
—

4

-
.

.
.

.
.
r

-
—

 -
-,

—
—

-'.

-.

.

—

-
..

.
.

.
—

 .
.'—

-.

-'-

--
—

-.
-—

-.
 —

 -—

.
—

—
—

'-—
—

-—
--

.-

—
—

.

-"
.

'
,

S

S
*,

,
,q

. "

p
C

D

r'
ID

r

L.
&

—

—

 •
C

—
—

0
C

D

w

is
a,

r

e+

—
.

p
e

ri
—

r

C
-'

C
l)

nf

l
cc

t%

.)

—

C
l)

c_
tie

e
In

0

(1
4

0
-I

It

s'

!.
Iy

!)

r
V

ID

ç:

C

D

—

/4
kb

ID

/t!

J

a
I

C
D

t\)

N

)

cr

tn

(7
1

C
a n

/0
3

t-

ill
 I

0
I I

is

/
II

0 C
D

V

C
D

 H

V

og

C
D

C
D

C
D

 0 V

C
D

 S.

C
D

C
D

 p '1

/ •I
t

cc

II 0
II / S

£1
3 II
 0

.p

F

In

C
D

 n —
.

0 C
l)

.-

,.
—

I t I I I I I I I, F I I

a

C
D

 I

/
I

r

C
.

C
D

(t
) 9

r
U

3M

si
n.

II C
a II I

1

0 p-
ta

p —
.

C
D

og
 p p '-1

C
l)

 p

E

0 '-1

C
D

 n 0 E

V

C
D

 p O
s

ID

/ C

•1
I

a,

H
 I

'a

S

a

V

Chapter 3. The Wright Editor Generator 43

stages of the work described here, and was the first response to the experiences

gained in implementing Interactive ILAP. Parsing technology is a crucial com-

ponent in any translation process and so was the natural candidate for early

investigation. The tools Lex [20] and Yacc [34] provided the kind of improve-

ments needed on the Interactive ILAP scheme (this is discussed further after the

tools have been described) but were not available on the computing resource I

was using and do not conveniently fit in with- tire-- IMP- promgrammirrg-enviroir=

ment. In order both to learn further the concepts involved and to provide a

parsing facility for my computing-environment, I- designed. and- implemented - an

IMP parser generating system based on Lex and Yacc (ASG and APG) which I

have been able to tailor exactly to my requirements.

LALR is the term given to the largest class of grammars which can be ac-

cepted by the APG system and is explained after a brief introduction to lexical

analysis, as implemented by ASG.

3.3.2 Lexical Analysis

Lexical analysis is the process which builds tokens from the raw input provided

in a program source. The split between syntax analyser and lexical analyser is

fairly arbitrary (it would be possible to have the set of ascii characters as the

tokens of the language, and use the parser to recognise numbers, identifiers, etc.)

but it is usually convenient to let the lexical analyser build up groups of letters

which are logically bound together (i.e. the components of a number), thus

improving both the modularity and efficiency of the parsing process. In non-

interactive systems the lexical analyser is also responsible for throwing away

insignificant formatting characters and comments. Tokens correspond to the

terminals in a grammar description (e.g. the tokens _one, -zero and _dot of

AG Binary). For the rest of this section on parsing I will illustrate the APG

programs by showing the implementation of the expression evaluator Calc. Here

is the lexical definition of Calc:

lexical definition Calc is

Chapter 3. The Wright Editor Generator_ 44_

ranges
ON is '0'..'9'; {numbers}
@L is 'a'..'z' + 'A' .. 'Z' {letters}
@B is 0 .. 16_20; {white space}
@E is 0 .. 127 - '}' {comments}

end of ranges

macros
#case is $$;
#p is $($)* {1 or more operator}

end of macros

expressions

#case;

keyword -> \keyword; {_keyword is case insensitive}

#;

_equals
_plus -> \+;

_minus -> \-;
_rb -> \);

_lb -> \(;

_div -> \/;

_times -> *;
_form -> #p[@B] ;

_int -> #p[@N]

_comm
(_#p[@N I @L] I);

-> \{@E*\}

end of expressions

end of lexical-definition

The ASG specification consists of the declaration of ranges, macros and ex-

pressions:

Ranges Ranges are sequences of characters or combinations of ranges. Sup-

ported combinations are addition + and subtraction -. Ranges can be

specified as lists of characters between double quotes, single characters be-

tween single quotes or ascii code ranges (e.g. 0..32). Range names can be

used anywhere in the definitions where a character could appear.

Chapter 3. The Wright Editor Generator 45

Macros The expression defining -form uses the macro #p. In the definition

of #p the $ is a substitution operator which corresponds to the argument

enclosed by [.. 1. Hence #p [@B] is expanded out into @B (@B) * in

the definition body. The operator $$ substitutes a case conversion pair;

#case [a] becomes WA), A), #case [A] becomes (A I a) and #case [,] be-

comes .. Macros can also be used without parameters between expression

definitions, causing every following character to have the macro applied to

it. Global macro application of this nature is applied using a stack, which

can be popped using the null macro #. The spurious definition keyword is

inserted to show this working.

Expressions The tokens are defined using sequences of characters and ranges

grouped by parenthesis. The following operators are available:

* post-fix operator which means "zero or more".

i infix operator which separates alternatives.

() denotes the null expression.

Lexical Conventions The character \ indicates that the following character

is to be interpreted literally (thus allowing the definition of keywords and

punctuation which are reserved ASG tokens). In all APG systems it is the

convention to indicate that a name refers to a terminal by prefixing the

character - to the identifier (as in int).

The underlying formalism in ASG is regular expressions. A definition from

above (with macros expanded):

_int -> ON ON* (- (ON I @L). (ON I @L)* I);

can be read as associate with the name _int the set of strings which consist of one

number followed by zero or more numbers optionally followed by the radix charac-

ter - and a non zero sequence of numbers or letters. The set of regular expressions

Chapter 3. The Wright Editor Generator 46

which together describe the complete token vocabulary are converted into a de-

terministic finite automaton which is implemented as a compacted transition
table. Details of both the theory and this construction process are given by Aho

and Ullman [1]. The lexical scanner operates as follows: each character from the

input stream is used as an index into the transition table T(character,state)
at the current state. The content of this position in the table is the next state.

If this state is the error state then either a token has been recognised (i.e. the

present state is an accept state) or there has been a lexical error, and a warning

is issued.

Lexical scanners specified by regular expressions have several advantages over

their hand crafted counterparts:

it is very easy to add definitions or modify existing ones.

the only code requiring maintenance i5 the generic system modules, hence

an improvement or new feature to the scanner is immediately available to

all system users.

it is easier to define complex tokens correctly.

the specification also provides a source for system documentation.

the state transition table can form the basis of an auto-completion facility,

i.e. once the user has typed a few characters of a token (in an interactive

session), the system may be able to automatically complete the token, or

provide a menu of possible completions.

Although not inherent in the formalism of regular expressions (which are of-

ten used as the specification for hand crafted scanners) but rather a feature of

many automatic systems like Lex and ASG, is the use of large data structures

like the transition table representation. Although the table is compacted (with a

consequential run time speed penalty), equivalent hand crafted scanners can be

expected to have less space requirements and to run faster. For interactive sys-

tems and prototype systems, space/time efficiency considerations are outweighed

Chapter 3. The Wright Editor Generator 47

by the previously described benefits. Even batch oriented systems are not sig-

nificantly impaired by using an ASG scanner (applications of the APG/ASG

system are presented later).

ASG is actually unmodified for use in the Wright system, the AG Binary

has the trivial ASG description:

Lexical_Definition Binary Is

Ranges
tB Is 0..32;
CC Is 0..127

End Of Ranges

Expressions

_zero -> \O;
_one -> \1;
_dot -> \.;

_form -> CBCB*; {white space}
_comm -> \{@C*\}; {comments like this one!}

End Of Expressions

End Of Lexical Definition

3.3.3 Syntax Analysis

I continue the development of the expression evaluator Calc by giving its APG
definition:

Grammar Calc is

Code [%include "calc.src"]

Lexicals _int [lex int],
_plus, _times, _minus, _div,
_equals,
_lb, _rb;

Productions

exp_list -> exp_list ans I ans

ans -> exp _equals
[print string("result = ")

write(pop,0)

Chapter 3. The Wright Editor Generator 48

newlinel
_error
[print string("finger trouble!")

I

newline];

exp -> _minus exp [push(-pop)] I

_lb exp _rb I

exp _times exp [push(pop*pop)] I

exp _plus exp [push(pop+pop)] I

exp _minus exp [push(-pop+pop)] I

exp _div exp [push(div(pop,pop))] I

_int [do int];

End of Productions

Priorities (_times, _div) (_plus, _minus);

End of Grammar

An APG specification consists of the declaration of Code, Lexicals, Pro-

ductions, Priorities and Associativities (not used in Calc).

Lexicals The names in the lexical list correspond to the regular expression

definitions in the ASG specification.

Productions The grammar is specified using a variant of BNF, which includes

the normal extension of parenthesis (..) followed by one of the op-

erators ?, *, + for optional , zero or more and one or more groups of

terminals and non terminals. This extension is not yet used by the Wright

system, however, analogous notational extensions to AGs have been pro-

posed [37], and would be a useful development.

Code Sections of the IMP programming language can be included within [..]

brackets in three places; following the Code construct, at the end of each

terminal definition and at the end of every production. The first piece

of code is usually a set of declarations used later (often contained in a

file referenced by the IMP %include statement). The code placed after

lexical items is executed after the scanner passes the current token to the

parser. The code at the end of production definitions is executed after the

production is reduced.

Chapter 3. The Wright Editor Generator 49

Priorities and Associativities APG allows the use of ambiguous grammars

by allowing the user to specify disambiguating relationships (e.g. multipli-
cation and division have the same precedence but have higher precedence

than addition and subtraction)-

In order to explain some of the terminology introduced above, I now will
briefly discuss the underlying mechanism of APG, namely LALR parsing.

In, the same;way that ,regular expressions can be implemented using finite

automata;- a subset of ; the - context ,froe, grammars- can be implemented using

deterministic pushdown automata (DPDA). Informally, a DPDA can be regarded

as a finite .automaton (i.e. transition.table):.-and an associated stack. A method:

of 'parsing which makes explicit,use, of this)fotmalism is_.LR parsing [381, so-called

because theparset scans the-;input from left to right, and, constructs, a rightmost

derivation in-reverse. Figure 3-4 shows the main components of an LR parser.

01 an Input

Stack

Driver
Routine Parsing

Table

Figure 3-4: LR Parser

The parse tables consist of two parts Action (token. state) and Goto(non

terminal, state). The parser operates as follows: as each token is provided by

the scanner an entry in the table Action(token,state) is looked up (initially

at state zero). The contents of this location can be one of:

"shift s" push current input symbol onto the stack and the next state s.

Chapter 3. The Wright Editor Generator 50

"reduce A --+,3" pop the symbols off the stack corresponding to this produc-

tion and execute the code associated with this reduction. Push A onto the

stack and push Goto(s. A), where s is the new top of the stack.

"accept" Parsing completed.

"error" Syntax error, issue warning and perform error recovery.

For the grammar Calc and the input string 3 + 4 * 5 the parser will cause

the sequence of stack operations shown in Figure 3-5.

Stack Pending Input

1 0 3+4*5
2 0 3 1 +4*5
3 0 Exp7 5 + 4* 5

4 0 Exp7 5 + 8 4* 5

5 0 Exp7 5 + 8 4 1 * 5

6 0 Exp7 5 + 8 Exp7 13 * 5

7 0 Exp7 5 + 8 Exp7 13 * 9 5

8 0 Exp7 5 + 8 Exp7 13 * 9 5 1

9 0 Exp7 5 + 8 Exp7 13 * 9 Exp7 14

10 0 Exp7 5 + 8 Exp3 13

11 0 Exp4 5

12 0 Ans 4

Figure 3-5: Stack Operations for 3 + 4 * 5

The actual parsing mechanism is very straight forward to implement, the

major task in building an LR parser is determining the contents of the parse

tables. This would be an extremely tedious and difficult task to do by hand

for all but the most trivial grammars, and so automatic tools must be used.

The method used by APG is LALR (lookahead-LR), again, the theory and some

Chapter 3. The Wright Editor Generator 51

implementation strategies for using this technique can be found in Aho and

Ullman's book [1].

An essential stage in the construction of the parsing tables Action and Goto

is building a data structure known as the sets of LR(O) items, illustrated in

Figure 3.fo The item labels 10, 11 . . 116 correspond to the state field in the

parse tables. Items are marked with a . to indicate how much of their production

has been processed, and the possible transitions from that state are shown at

the end of the item. For example, 17 has a LR(O) item which corresponds to

the production exp -> -lb exp _rb reaching the point mob. If a _rb is the next

move from 17 then 112 will become the next state.

The class of grammars which can be directly implemented from the LR(O)

data structure are known as SLR (simple LR). LALR parsers extend the range

of admissible grammars by calculating lookahead symbols for each LR(O) item.

These lookahead symbols reduce the number of ambiguities that can arise when

deriving the parse table from the LR(O) construction. Ambiguities arise in the

Action table when it can not be determined which stack operation to perform:

shift/reduce conflicts At the present state it is possible to either shift on the

current input symbol and enter a new state, or to recognise a production

on the top off the stack and reduce it.

reduce/reduce conflicts Two or more different productions can be reduced.

Sometimes ambiguities are deliberately introduced and then disambiguated

using the Priority and Associativity statements. Compare the previous ex-

ample of 3 + 4 * 5 with the operations on the string 3 * 4 + 5 shown in Fig-

ure 3-7.

The stack does not grow as far in this example because the parser generator has

decided (from the Priority statement) to make a reduction by Exp3 (Exp -+ Exp

_times Exp) at state 114 instead of the equally possible shift on plus to state

18, thus giving multiplication precedence over addition. The Associativities

command allows the user to specify right or left associativities, e.g. in 3 + 4 - 2

Chapter 3. The Wright Editor Generator

10:
-p .ane] START

ans -. exp]
exp -. .'minus'exp]
exp - .'Jb'exp'sb']
exp -. .exp'_times'expl
exp -. .exp'_plus'exp]
exp -. .exp'lninus'exp]
exp -. .exp'.div'exp]
[exp - .'int']
exp -p 15
ans - 14 '1b'-iI3
-minus' - 12
'int' -. I1

16:
exp -. exp.'.div'exp]
exp -. exp.'minus'exp]
exp -. exp.'_plus'exp]
exp -. exp.'-times'exp]
[exp -. 'minus'exp.]
_div' -. Ill
'minus' -p I10
-times' -. I9
-plus' -p I8

I10:
[exp -. exp'minus'.exp]
exp -. .'minus'exp]
exp - .'Jb'exp'sb']
exp - .exp'_times'expl
exp -. .exp'_plus'exp]
exp -. .exp'minus'exp]
exp -. .exp'-div'expl
exp - .'int']
exp - 115
'1b' -I3
'minus' -p 12
'int' - I1

115:
exp - exp.'.div'exp]
exp -. exp.'minus'exp]
exp -+ exp.'_plus'exp]
exp -. exp.'_times'exp]
exp -. exp'minus'exp.]
.div' -. Ill
'minus' -p I10
_times' -. I9
'_plus' -. I8

12:
exp -. 'minus'.expl
exp -. .'minus'exp
exp -. .'Jb'exp'sb']
exp -. .exp'_times'exp]
exp - .exp'_plus'exp]
exp -. .exp'-minus'exp]
exp -. .exp'. div'expl
exp - .'int']
exp - 16 :1b' 13
minus' -p 12
int' -. I1

I7:
exp - exp.'.div'exp]
exp -. exp.'-ninus'exp]
exp -. exp.'_plus'exp]
exp -. exp.'_times'exp]
[exp - 'Jb'exp.'sb']
'-b' -p 112
'_div' -. Ill
'minus' - I10
'-times' -p I9
'_plus' -p I8

Ill:
[exp - exp'-div'.exp]
exp -. .'minus'exp]
exp - .'Jb'exp'sb']
exp -. .exp'_times'exp]
exp - .exp'_plus'expj
exp -. .exp'minus'exp]
exp -. .exp'-div'exp]
exp - .'int']

exp -i 116
'1b' -i 13
'minus' -. 12
' int' -i I l

116:
exp - exp.'_div'exp]
exp -. exp.'minus'exp]
exp - exp.'_plus'exp]
exp -. exp.'_times'exp]
exp -. exp'.div'exp.]
'_div' -. Ill
'minus' - I10
'-times' -. I9
'_plus' -p I8

I3:
exp - 'Jb'.exp'sb']
exp -. .'minus'exp]
exp -. .'Jb'exp'sb']
exp -. .exp'-times'exp]
exp - .exp'-plus'exp]
exp -. .exp'minus'expl
exp - .exp'-div'expj
exp -. .'int']

exp - 17
'1b' -i 13
'-minus' - 12
'int' -. I1

52

I5:
exp -+ exp.'.div'exp]
exp -. exp.'minus'exp]
exp - exp.'_plus'exp]

[exp -. exp.'_times'exp]
fans exp.]
'_div' - Ill
'minus' -. I10
'-times' -. I9
'-plus' -. I8

I8:
exp -. exp'_plus'.exp]
exp - .'-ninus'exp]
exp - .'Jb'exp'sb']

I 9:
exp -. exp'_times'.exp]
exp -. .'-ninus'exp]
exp -. .'Jb'exp'sb']

exp -. .exp'_times'exp] exp -. .exp'_times'expl
exp - .exp'-plus exp] exp - .exp'-plus'expl
exp -. .exp'minus'exp] exp -. .exp'-ninus'expi
exp - .exp'-div'expl exp -. .exp'-div'expl
exp - .'int'] exp - .'int']
exp -p 113 exp -. 114
'1b' -iI3 ' 1b'-iI3
'minus' -. 12 ' minus' - 12
'int' -. I1 ' int' -i I1

113:
[exp - exp.'.div'exp]
exp -. exp.'minus'exp]
exp -. exp.'_plus'exp]
exp -. exp.'_times'exp]
exp -. exp'_plus'exp.]
'_div' - Ill
'minus' -. I10
'-times' -. I9
'-plus' -. I8

114:
[exp - exp.'.div'exp]
exp -. exp.'minus'exp]
exp - exp.'_plus'exp]
exp -. exp.'_times'expi
exp -. exp'-times'exp.
'.div' - Ill
'minus' - I10
'_times' -. I9
'-plus' -i I8

I1:
[exp - 'int'.]

14:
[START -p ans.]

112:
[exp - 'Jb'exp'sb'.]

Figure 3-6: The sets of LR(O) items for grammar Calc

addition and subtraction have equal precedence, but since the default is left

associativity, 3 + 4 is recognised as an expression first, and not 4 - 2.

Sometimes ambiguities arise because of poor grammar design or an incorrect

grammar description. APG provides various diagnostic options which allow the

parse tables (expanded), LR(O) sets of items, lookahead items, etc. to be printed

Chapter 3. The Wright Editor Generator

Stack Pending Input

1 0 3*4+5
2 0 3 1 * 4+ 5

3 0 Exp7 5 * 4+5
4 0 Exp7 5 * 9 4+5
5 0 Exp7 5 * 9 4 1 + 5

6 0 Exp7 5 * 9 Exp7 14 + 5

7 0 Exps 5 + 5

8 0 Exps 5 + 8 5

9 0 Exps 5 + 8 5 1

10- -0- E- cp3 5- + 8- E-xp7 13-

11 0 Exp4 5

12 0 Ana 4

Figure 3-7: Stack Operations on 3 * 4 + 5

53

out. I have found this an invaluable aid in debugging both grammars and the

system itself.

The reasons for choosing LR parsing can now be stated:

Wide Range of Grammars LR parsers cover the range of grammars which

can be parsed using the major alternative method, recursive descent, and

can admit many other grammars in addition. The ability to use both right

and left recursion leads to succinct expression syntaxes, as does the ability

to state operator precedences.

Errors LR parsers detect syntactic errors as soon as it is possible in a left-to-

right scan of the input, and so are ideal for interactive entry. For batch-

oriented applications many error recovery schemes have been developed

which make use of the parse tables to attempt intelligent repair and re-

covery from errors. The APG system does not provide anything more

sophisticated than a simple restart mechanism which is controlled by the

Chapter 3. The Wright Editor Generator 54

special terminal _error which the user puts as an alternative production

on the syntactic entity on which parsing is to continue after a syntax error

(i.e. tokens are skipped until A --+ _error is a valid reduction). This tech-

nique (known as panic mode) is similar to the skip until semi-colon error

action of some Pascal compilers.

Table Driven The LALR(1) automaton is stored as a table; this simplifies the

organisation of incremental parsing schemes by allowing un-expanded sec-

tions of the parse tree to record positions in the automaton which will later

be used to restart parsing (this is described in more detail in the next chap-

ter). Having the automaton readily available helps in the implementation

of the error recovery schemes mentioned before, and in interactive systems

makes the provision of error messages a trivial matter (i.e. whenever an er-

ror occurs it is possible to give a menu of legal alternatives, derived straight

from the table). This technique could be extended on lines analagous to

the auto-completion of lexical tokens, however, this is -not--currently- part-

of the Wright generic parser.

Although not all used by APG, there are a great number of space/time op-

timisation techniques which can be employed to make LR parsers more efficient

than they already are. APG parsers certainly perform well enough for the pur-

poses of the Wright system, and indeed, many other systems.

At this moment APG has been in service for two years and has been ported

to a number of machines and operating systems. Among the projects that have

made use of it are:

A microcode assembler.

An IMP syntax analyser.

A silicon compiler (Chip Churn [64]).

An OCCAM to hardware compiler [52].

Chapter 3. The Wright Editor Generator 55

APG (isn't bootstrapping wonderful!).

A hardware description language based on Pascal.

An EDIF [19] syntax analyser (which had 605 productions !)

While not attempting to fully explain LALR parsing or parser generation, this

section has introduced the basic structure (the LALR(1) automaton) on which

the Wright-Syst-em-bases-its-parsingfunctions, and--the-motivation-for-this-choice.

The APG module and its grammar description language has been incorporated

into the Wright system with only one major difference; the addition of attribute

declarations and defining occurrences. The major contribution of APG to the

Wright System has been its provision of a framework for bottom-up program

entry during sub-tree replacement.

3.4 Attribute Evaluation

The attribute grammar's defining occurrences are a declarative specification of

the syntax tree's semantics; they do not imply any specific order of evaluation,

other than the obvious restriction that a function can not be evaluated until

all its arguments have been evaluated. There are many ways of organising the

evaluation phase, the method used in Wright was chosen because of its simplicity

(it can be implemented fairly quickly) and also because the described implemen-

tation supported incremental evaluation. Before giving a brief overview of the

algorithm it is necessary to make another two definitions:

Definition 5 For each p : Xo -* X1... Xf, E P the set of direct attribute

dependencies is given by:

DDP(p) = {(XX.a, X;.b) lX;.b <- f (... Xt.a ...) E R(p)}

Definition 6 For an attributed syntax tree S with nodes Ko ... K corresponding

to application of p : Xo -* Xl ... X, the dependency tree relation is given by

the set:

Chapter 3. The Wright Editor Generator

DT(S) _ {(K;.a,K;.b)I (Xi.a,X;.b) E DDP(p)}

where we consider all applications of productions in S.

56

The direct attribute dependency sets (which can be directly derived from the

attribute grammar specification) give the dependencies between attributes in a

single production. The dependency tree relation gives the complete attribute

dependencies for any given parse tree, and can be viewed as the gluing together

of the DDPs of that tree. If this relation contains a cycle, then the attribute

grammar is said to be circular.

The Wright system uses an evaluation method described by Jalili [32] [31].

The algorithm starts by taking, the synthesised attributes at the root of the parse

tree and pushes them onto a stack of attributes pending evaluation. Evaluation

can occur if the attribute at the top of the stack has no dependencies in its DDP

(i.e. for evaluation of X1.b there must not exist (X;.a, X1.b) E DDP, or all its

dependencies have already been computed). If evaluation can not occur then

the dependent set of attributes (all the X;.a) which have not been computed

are pushed onto the stack. If an attribute has already been marked as having

been pushed, then there is a circularity in the DT, and the evaluation fails. If
evaluation of the attribute at the top of the stack can occur, then its semantic

action is executed, the attribute is marked as being evaluated and it is popped

off the stack. The algorithm continues until a circularity is detected or the stack

becomes empty.

Figure 3-8 shows the order in which the attributes are calculated for the

Binary example 1101.01 (the symbol '*' indicates that the attribute was not

required to be evaluated).

The process being performed here is a topological sort of the DT relation by

depth-first search, interleaved with attribute evaluation and circularity checking.

The method is dynamic, with the DT relation never actually being constructed.

A procedural version of this algorithm, which makes the stack implicit in its

procedure calls, gives a more succinct description of this tree traversal (modified

from an example by Engelfriet [50]):

Chapter 3. The Wright Editor Generator 57

for a synthesised:

Proc a_eval (K:node)

Begin If Not evaluated(a,K)

Then Let p : X0 -> X1... Xfz be the production at K -
Let X.a := f (... Xi.b,, ...) E AF(p)

...;b1_eval(K;);...

K.a := f (... Ki.b,, ...)

evaluated(a,K) := true

Fi

End.

for a inherited

Proc a_eval (K:node)

Begin If Not evaluated(a,K)

Then Let FK be the father of K with production

p:Xo->X1...X.
where X8 labels the son corresponding to K.

Let X8.a := f (... X;.b,, ...) E AF(p)

...;b1_eval(FK;);...
K.a := f (... FKK.b,, ...)

evaluated(a,K) := true

Fi

End.

The major feature of this algorithm is that the DT relation is not actually

constructed, dependencies are determined dynamically from the DDPs and the

parse tree. The stack based version extends the marking method used to detect

AG circularity by adding a timestamp field to the status field associated with

each attribute. The evaluator uses the timestamp field and status field in such

a way as to avoid un-necessary re-evaluation of attributes during interactive

Chapter 3. The Wright Editor Generator
58

A v 25
I

N v 24

L I L / v23,1 *8 s9 v8,12,s 3

L 6 L/ B
v 22, I *, s 13 v 1 1 , s 10 v7 ,11 , v 5, s 4

21,I*,s14 Bv12,s* 1 Bv6,s*
/Lv
L v 20, 1 s 17

B
y 16, s 15

0 0

1

Figure 3-8: Order of Attribute Calculation for 1101.01

tree editing, (i.e. it evaluates only those attributes affected by a given subtree

replacement). The time complexity for the update is O (N) where N is the

number of attribute instances needed for static evaluation of the synthesised

instances of the root of the semantic tree. Figure 3-9 shows the order and extent

of attribute re-evaluation for the modification of the Binary example 1101.01

to 1110.01.

The drawback to this algorithm is that although linear, it requires the traver-

sal of the tree , to s .c t at _ the_ rnn1, _ since_ this_ is_ the_ only. way. that _ changed-at--

tributes can be identified. In the Cornell Synthesizer Generator an incremental

evaluation method has been developed which is linear in number of attributes

which have actually been affected by the current sub-tree replacement. Since this

algorithm is optimal in time, it would be a serious candidate for inclusion within

the Wright system. However, the Jalili algorithm has enabled the Wright system

to be produced quickly, and is sufficient for the purposes of demonstrating the

AG specification technique.

Chapter 3. The Wright Editor Generator

Av 17, new value = 14.25
I

L
v 15,

L v 14, s 3

L B v13,s6 y

Lv 12, s9

By 11, s 10

1

B
V 1

not traversed, v=.25
L

L

5, s 4

B
v 8, s 7

1

Figure 3-9: Changing a sub-tree

B

B \ 1

0

59

The availability of a superior algorithm highlights both a deficiency in the

Wright system, and a strength of using high level specification techniques; sys-

tems making use of a formalism which is the area of active research have the

potential to benefit from the discoveries made by that research. Any improve-

ment made to the Wright evaluator module would benefit every editor specified

for the system.

3.5 Structure Editing

3.5.1 Introduction

The previous sections have introduced the formalism of attribute grammars,

shown the specification language for the system and described the underlying

evaluation mechanism. This section will introduce the operational components

of a Wright Editor; the window manager, the prettyprinter and the editing

interface.

Chapter 3. The Wright Editor Generator

3.5.2 Window Management

60

The display functions of the Wright system are organised using a window man-

ager specially developed for the project. The computing environment on which

Wright was developed has excellent graphics hardware facilities, but very little
software with which to exploit them. Wright's window manager (WM) was devel-

oped to provide support-for-the--device -configuration-used-in-text/picture-editing;

namely, a video terminal and an 8-plane colour graphics display. Figure 3-10

shows this hardware configuration.

VDU

windows

keyboard

windows or
graphics

mouse

graphics
monitor

Figure 3-10: Device Configuration

Figure 3-11 shows the organisation of the WM's universe, known as device

space. Windows and devices can be mapped arbitrarily onto device space and

the devices will display any windows that intersect with them. Windows can

overlap and are organised in a circular queue, the ones at the top overlaying

those below. Windows can be moved about in device space and can also be

moved about in the display queue. Devices can also be moved about in device

space.

The windows can be accessed by application-programs-in-two-ways:

Chapter 3. The Wright Editor Generator
61

Figure 3-11: Devices and Windows

normal system I/O routines are intercepted by the window manager which

diverts the output to the currently selected window which behaves just like

a video terminal would (scrolling, cursor movements, highlighting etc.)

a memory mapped screen image (character based) which the applications

program can manipulate directly.

The window manager also lpxovides gone special window which supports the

graphics package EDWIN [29]. This window ;takes up ,.one "half ,6f the graphics

device's frame-store and has exclusive rightst.tto itt.' Applications Yprograms. can

cause 'pictures-to, appear in this -window by calling Edwin graphics procedures.

Other windows can appear in the other °half of the frame-store, and a software

switch allows either half to be instantly displayed using the whole of the display.
I

The current Wright Editor module makes use of four windows:

a window for the syntax tree un-parsing (pretty-printing).

a window for attribution error messages and system warnings.

a window for command and text entry.

Chapter 3. The Wright Editor Generator 62

the graphics window.

In addition, the WM has its own
windowIIwindow manager'jwhich

can be

invoked at any time to re-arrange device space or to escape to the operating

system.

3.5.3 Pretty-Printing

Pretty-printing [65] [96] is the process of un-parsing the attributed syntax tree

into its textual form on a display device. The aim of any un-parsing scheme is

to present as much useful information as possible in the available space, which

can range from a 80x24 screen to a full listing on paper. The control of what

can appear in the available space is known as holophrasting. Although structure

editing necessarily requires pretty-printing of some sort (since the user is manip-

ulating tree structures, not lines of text), it is a useful topic in itself due to the

increasing importance of program readability (whether using structure editors or

not). Whereas the bulk of a program may be written only once, it is likely to

be read and modified many times, possibly by more than one person (including

the original author). Consistency in layout style can make this an easier task.

In the Wright system pretty-printing is performed by a tree-walking proce-

dure which uses information yielded by the evaluation of a synthesised attribute

which is associated with every non terminal in the parse tree. Each non termi-

nal has a maximum width in which it can display its sub-components, overflows

cause the non terminal to be displayed vertically with appropriate indentation.

The grammar designer controls the operation of the pretty-printer by setting

various parameters in each attribute occurrence of the pretty-printing attribute.

This will be illustrated in the next chapter.

Specifying an un-parsing scheme using an attribute grammar follows natu-

rally from the proposal by Rose and Welsh [74] that language definitions for

programming languages should contain indications on how the language is to be

formatted. This work is developed by Woodman [96] who presents a formatted

Chapter 3. The Wright Editor Generator 63

definition of Modula2, using Rose and Welsh's extension to BNF which includes

formatting commands and has an associated pretty-printing algorithm. The ap-

proach taken in Wright is rather more restrictive, and suggestions for further

developments are given in the final chapter.

3.5.4 Editing

The Wright editor provides the normal tree traversal commands found in struc-

ture editors and also provides an interactive parser. Appendix A. includes a

summary of the available commands, and most of them will be introduced in the

next two chapters.

In addition to tree editing operations, Wright supports graphical interaction.

Graphical interaction can take two forms:

Graphics Editor Commands The Wright system allows the user to define

editor commands and bind them to keys on the keypad. These commands

may make use of information contained in the attributed syntax tree and

also positional information provided by the graphics pointing device. In

Stick-Wright a command of this nature is defined which moves the system

cursor to a position in the abstract syntax tree determined by the position

of the pointing device on the current display image.

Graphics Text Macro Insertion In a similar manner to the mechanism de-

scribed above, the user can define text insertion macros which can be

invoked during the parsing of a sub-tree replacement. This macro can

also make use of the attributed syntax tree and positions from the point-

ing device. In Pict-Wright a text insertion macro is defined for inserting

co-ordinates into the program script.

These activities are further explained in the example editing sessions pre-

sented in the next two chapters.

Chapter 3. The Wright Editor Generator 64

3.6 Summary

A Wright specified editor consists of the following components;.

a lexical analyser specified by regular expressions

a syntax analyser specified by an LALR grammar

a set of semantic functions specified by an attribute grammar

an incremental attribute evaluation algorithm

a window manager

a graphics package

a pretty-printer

an interactive parser

a tree editor

a set of graphical commands

The following chapters illustrate these components in action.

Chapter 4

Pict-Wright

4.1 Introduction

Pict-Wright is a simple picture editing system built to demonstrate the efficacy

of attribute grammar specification techniques to interactive editing and picture

generation. While the grammar is small, and hence more easily described, the

techniques used are powerful and have a much wider range of applications. A no

less important reason for building the system was that it enabled the generation

of many of the figures that appear in this thesis. Figure 4-1 shows a snap-shot of

a Pict-Wright editing session (using an illustration taken from the last chapter).

The textual interface of Pict-Wright consists of a simple imperative language

which uses the line and text graphics primitives provided by the Edwin [29]

graphics package. The language allows parameterised groups of graphics com-

mands to be bundled into procedures. Within each command procedure (includ-

ing the top level list of commands) there is the notion of a current position. This

is defined to be the place where the last graphics command finished drawing,

and is the default starting position for the following command. Each drawing

command takes the following form:

action {x, y} (a, b)

where action is the name of the drawing command, {x, y} are the coordinates

of the command's local origin (the default is the current position) and (a, b) are

the command's parameters (there may be any number and type of parameters).

65

66

Pict--
ddefins scale := 18

font (12
size (scale)
define NY (e, b [colour (1)

move (0, 20)
text e

colour (2)
move (6, -20)
text (b)
move (-(length &)-(length b)-6, 0))

BI {480, 800}(010, v--13.16)

move (0, -80)
NT (N", v--13.160)

move -150, -80
IT ('L', v=13,l 4,s=0)

0) move (260,
IT (D.O.

---C nman d-
p<Dsslgn 1>>

VDU

Figure 4-1: The Pict-Wright Editor

I

Chapter 4. Pict-Wright 67

Parameter values can be integer expressions or string expressions (the grammar

includes type-checking rules for preventing illegal expressions, e.g. 2 + "two".

In Figure 4-1 the picture being displayed (shown in greater detail on page 42)

is constructed as a list of procedure calls separated by relative move commands.

The first procedure call:

NT {480, 800}("A", "v=13.25")

fixes the root of the tree being depicted in this figure. The final screen position

1480, 800} went through several iterations as I interactively discovered how

the tree was growing. The connecting lines in the figure were all instantiated

using a graphical insertion macro. The macro used to draw lines takes two

coordinates (the end-points of the desired line) which are provided by the user

via the graphics pointing device. The Pict-Wright statement that will cause the

line to be drawn is then inserted into the current text-window.

Pict-Wright is not a full implementation of an imperative programming lan-

guage, and has several constraining omissions (e.g. no condition or loop state-

ments). Pict-Wright was implemented in an evolutionary manner (i.e. new

primitives were added as I found them necessary), and the extension of the lan-

guage to include more features and control structures should pose no serious

problems. The features currently provided, however, seem to be sufficient for

the production of simple line/text drawings.

This chapter proceeds by introducing the lexical and syntactic aspects of

Pict-Wright, in preparation for the explanation of the attributes and attribution

rules which govern Pict-Wright's operation. An example of a Pict-Wright editing

session is then followed through.

Chapter 4. Pict-Wright

4.2 Lexical Definition

68

The following text is the specification for Pict-Wright's lexical analyser (and is

the input for the Wright scanner generator ASG):

Lexical-definition pict is

Ranges
@L is 'a' .. 'z' + 'A' .. 'Z';
ON is '0' '9';
@B is 0 .. 32;
@S is 0 .. 127 - '"';
@NotNL is 0 ..127 - 10;

end of ranges

macros
#case is $$;

end of macros

expressions

#case;
-define
-line
_colour
-font
_size
_text
_length
_move

-> \def ine ;
-> \line;
-> \colour;
-> \f ont ;

-> \size;
-> \text;
-> \length;
-> \move;

_lb -> \(;
_rb -> \);
_slb -> \[;
_srb -> \];
_clb -> \{;
_crb -> \};
_comma

_ass
_minus -> \-;
_plus -> \+;
times -> *;
div -> \/;

_id -> @L(@LI@N)*;
_int -> @N@N* {was that a radix ?}

({yes} _(@NI@L) ! (@NI@L)* I {no});

Chapter 4. Pict-Wright 69

_string -> \S*\(\@S*\)*;
_blank -> @B@B*;

_comment -> \\\-CNotNL*\

end of expressions

end of lexical-definition

The above definition introduces Pict-Wright's eight keywords (define, line,
colour, font , size , text, length and move) all of which are case insensitive,

the delimiters and separator (() [] { } ,), the assignment operator : =, the

arithmetic operators (+ - * /) and identifiers, integers, strings, formatting

characters and comments. From this specification a complete lexical analyser is

generated.

Notice that the definition of -string allows strings of the form:

"this is a single-double-quote -> I'll <- it

which is later interpreted by the system as being the string:

this is a.single-double-quote -> " <-

The definition -int allows the optional specification of a number base, the default

being decimal (e.g. 16-A0 is interpreted as the decimal integer 160).

The following statistics are printed by ASG during the construction of the

lexical analyser:

ASG: parsing complete with no errors in 1277ms
ASG: DFA took 32844ms to build
ASG: DFA took 868ms to minimise
ASG:Compact: old size = 62*58 = 3596 entries
ASG:Compact: new size = 62*2 + 309*2 = 742 entries (38 misses)

in 8924ms

This shows the times taken for various operations (the total construction

time, including program loading and file writing, being under a minute). The

Chapter 4. Pict- Wright 70

DFA (deterministic finite automaton) has a 62 character alphabet and 58 states.

The space requirements for representing this are reduced by a table compaction

procedure to 742 entries (a miss is a redundant entry in the compacted repre-

sentation).

While the output from ASG could form the basis of an operational scanner,

it still has unexpanded ranges (i.e. alphabet characters which represent ranges of

characters) and has no knowledge of the tokens expected by the syntactic stage.

A linking stage between the scanner and parser, implemented by the program

HARD, changes the alphabet to include all the ascii characters 1 ...127, and

expands the range characters of the ASG DFA into this new character set (e.g.

transitions previously entered for character range ON are now entered for all the

characters `0' ... `9'). The final task of the HARD program is to work out which

token from the parser the scanner has recognised: it does this by comparing the

names of the definitions in the ASG specification and the Lexical names in the

Wright grammar specification. The following statistics are issued by HARD:

HARD: scanner token _blank will be ignored by parser
HARD: scanner token _comment will be ignored by parser
HARD:Compact: old size = 62*127 = 7874 entries
HARD:Compact: new size = 62*2 + 990*2 = 2104 entries (44 misses)

in 38522ms

The scanner tokens blank and _comment are not in the grammar, and are

discarded by the scanner. This has the implication that comments can not

survive editing sessions, unless they are explicitly made part of the grammar

specification. The Wright system therefore makes comments a direct respon-

sibility of the editor designer, who must determine where they can occur in a

program text by specifying legal positions for them in the grammar. There are

other approaches to dealing with comments so that they can appear anywhere

a token can begin; in Interactive ILAP [54] comments were extracted from the

current line (during lexical analysis) and then positioned with right justifica-

tion at the edge of the screen. Another feature of this system was that some

comments were automatically introduced, e.g. modification times in the pro-

gram header and procedure names repeated at the end of their definition. In

Chapter 4. Pict- Wright 71

Wright editors these kinds of activities are not built in and must be specified by

the editor designer through the attribute grammar and the user defined editing

commands.

4.3 Syntactic Definition

This section contains the syntax definition part of the AG, the attribution rules

will be introduced later. The complete grammar specification is given in Ap-

pendix B.

Grammar Pict is

Productions

Design -> CommandList;

CommandList -> CommandList Command I

Command;

Command -> -define _id ArgL Defn
_id Argi Arg2
-line Argi Arg2
_colour Arg2
_size Arg2
-font Arg2

move Argi Arg2
_text Argi Arg2;

From the above it can be seen that a Pict program is sequence of one or more

commands. The first command associates an identifier -.d with a definition

contained in Defn. The second command is a invocation of a defined command,

and the following commands are the drawing primitives.

ArgL -> _lb NL _rb 1;

NL -> NL _comma _id I _id;

Argi -> _clb List _crb 1;

Arg2 -> _lb List _rb 1;

List -> List _comma Item I Item;

Chapter 4. Pict- Wright 72

These definitions introduce the argument syntax, an ArgL list can only con-

tain identifiers, Argi and Arg2 have different brackets and can contain any kind

of Item. All three types of argument list are optional.

Defn -> _ass _slb CommandList _srb
_ass Item;

A definition can associate an identifier with either a CommandList or an Item.

The former is the procedure mechanism implemented in Pict-Wright.

Item -> _lb Item _rb
_minus Item
Item _times Item
Item _div Item
Item -plus Item
Item _minus Item
_length Item
_id

_int

_string;

Pict-Wright has a single grammar construction for its expression syntax,

namely the non terminal Item. Two data types are supported in the grammar;

strings and integers. The operator .length is only meaningful when used on

strings, the arithmetic operators (_times, _div, -minus) are only meaningful

when used on integers, with plus causing string concatenation when used on

strings. I will later show how the attribute grammar ensures that only meaningful

combinations are evaluated.

End of Productions

Priorities. (_t-imes, _div)-(=plus, _minus)-;

End of Grammar

Finally the precedence rules for the Item operators are given: _times and

_div have equal precedence and both have greater precedence than plus and

Minus.

This syntax part of the AG description is handled by the Wright parser gen-

erator module, which is derived from the APG program described in Chapter 3.

The table compaction statistics issued by Wright are:

Chapter 4. Pict-Wright 73

WRIGHT old size = 65*24 = 1560 entries
WRIGHT new size = 65*2 + 534*2 = 1198 entries (137 misses) in 4040ms

WRIGHT old size = 65*10 = 650 entries
WRIGHT new size = 65*2 + 50*2 = 230 entries (7 misses) in 1271ms

The first table is the Action table, the second is the Goto parse table. The

total processing time for the whole grammar is about 1.5 minutes. Before ex-

plaining the semantics of the language, a short example will illustrate all the

syntactic features defined above:

define scale := 18

font (0)
size (scale)
wrong (1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 114, 1555, 234234,

345, 123123, 123132)
define box (a, b, c):_ [colour (c)

line (a, 0)
line (0, b)

line (-a, 0)
line (0, -b)]

define textbox (c):= (box ((length c)+2*scale, 3*scale, 3)
colour (4)

text scale, scale(c)

box (1000, 500, 2)

textbox {500, 100}("Pict-Wright")

move (100, 0)

textbox ("Stic-Wright")

4.4 Semantic Definition

4.4.1 The Attributes

This section outlines Pict-Wright's attributes by introducing the semantic do-

mains. The semantic domains are not included in the formalism itself, but are

defined as IMP record structures in the auxiliary definition file, which also in-

cludes the semantic functions used in the attribute occurrences (the statement

Chapter 4. Pict-Wright 74

%include "pict. src" in the AG informs Wright where to find the auxiliary

definitions).

A summary of the file "pict. arc" is given with the complete AG in Ap-

pendix B. The attributes in the AG are introduced in the following non terminal

declaration lists:

Synthesised
Design (box, def, pos),
CommandList (box, def, pos),
Command (box, def, pos),
Argl (box,vals),
Arg2 (box,vals),
ArgL (box,def),
NL (box,def),
List (box,vals),
Defn (box,val),
Item (box,val);

There are five synthesised attributes:

box This is the attribute used by the pretty-printer, and is a record structure

containing information for the current non terminal's un-parsing.

%record %format Text Box Fm (%short x, y, last x,
%byte folds, extra, auto, indent)

x contains the x-dimension of the text box.

y contains the y-dimension of the text box.

last x contains the x-coordinate of the last entry in the text box.

folds marks grammar symbols for folding, i.e. growth in Y-direction.

extra marks grammar symbols needing extra space (e.g. space after key-

words and identifiers (defineuscaleu:= ...).

auto marks grammar symbols requiring a forced line break (folding) after

being printed.

indent marks grammar symbols requiring indentation after being folded.

def This attribute is a symbol table (environment) associating identifiers with

definitions. ,

Chapter 4. Pict- Wright 75

%record %format env fm (%string(*)%name id,

%integer val,

%record(env fm)%name split, next)

id contains a pointer to the identifier.

val contains the value associated with the identifier.

split, next are links in the symbol table.

pos This attribute is the current cursor position, relative to the current origin:

%record %format pos fm (%integer x, y)

vals, val These attributes contain the list of parameter (name, value) pairs

provided in a procedure call.

Here are the inherited attribute declarations:

Inherited
CommandList (env,origin),
Command (env, origin),
Argi (env),

Arg2 (env),
NL (env),

List (env),

Defn (env, origin),
Item (env);

There are two inherited attributes:

env This attribute contains the current environment. The environment is con-

structed from bindings between identifiers and definitions generated by the

def attributions, and uses the same record structure.

origin This attribute contains the coordinates of the origin of the current

CommandList (and uses the pos attribute's record structure).

In the parse tree maintained by the editor, non terminal nodes have a single

storage location allocated for each of their attribute values. This storage location

is made available to the semantic functions as an IMP %integer variable. For

Chapter 4. Pict- Wright 76

simple attributes, such as integer expression values, the storage location can

directly contain the attribute value. For more complex attributes the storage

location is used to contain a pointer to a record structure built on the IMP heap.

Whereas all the semantic functions in the file "pict. src" appear as %integer

%function the majority are returning the address of some record structure

on the heap.

The decision to restrict the attribute occurrences to IMP %integer assign-

ments and making all attributes appear as %integer values to Wright consid-

erably simplified the implementation of those parts of the Wright system which

deal with the semantic functions, however, it places the burden of type security

on the-- user- (i:e: the-- system- cannot- check- whether- the-- address- supplied- by - a-

semantic function is a pointer to the appropriate record structure). Methods for

improving the type security of the system are discussed in the final chapter.

4.4.2 Semantic Functions

The purpose of the attributes introduced in the last section will be made clearer

by the explanation of a selection of the attribute occurrences contained in the

AG:

Design -> CommandList
<box$0 = c(box$1 default, 0,0,0)> (1)

<pos$0 = pos$1 > (2)

<def$0 = def$1 > (3)
<env$1 = initial environment > (4)

<origin$1 = new origin > (6)

Command -> -define _id ArgL Defn
<box$0 = c2(box$3 ,box$4 ,80, 2_1100,

2_0001,

2_0011)> (6)

<env$4 = envadd(def$3 , env$0)> (7)

<origin$4 = origin$0 > (8)

<pos$O = origin$0.> (9)

<def$0 = do binding(val$4)> (10)

Here we have two sets of attribution occurrences for two productions of the

grammar Pict. Nos. (2.3,8,9) are simple transfer rules which some AG no-

Chapter 4. Pict- Wright 77

tations automatically assume if no other attribution is provided, however, in

Wright they must be explicitly included. Nos. (4.5) provide the initial (empty)

symbol table for the top-level CommandList and an initial origin, (0,0).

The semantic function c in (1) and the semantic function c2 in (6) evaluate

the pretty-printing attribute box:

%integer %function %spec c (%integer boxi,

size, extra,
auto, indent)

%integer %function %spec c2 (%integer boxi, box2,
size, extra,
auto, indent)

Both functions return the address of a new record structure which will be

the new value of box$0. This new structure is determined by the text boxes

synthesised lower down in the syntax tree (boxi for c and boxi, box2 for c2)

and also by the parameters specified by the grammar designer:

size The maximum width of the text box for the current non terminal. For

Pict-Wright, the default width (used in (1)) is 30.

extra Marks the grammar symbols requiring extra spacing (2_1100 indicates

the first two grammar symbols out of four)

auto Marks the grammar symbols requiring auto line-breaking.

indent Marks the grammar symbols requiring indentation after being folded.

From the parameters given for the call of c2 in (6) we can see that a definition

Command requires space after its first two lexical symbols and indentation if line-

breaking occurs in its subsequent non terminals. The auto-line break for the final

grammar symbol ensures a blank line after every definition. The pretty-printing

attributes do not themselves cause text to be printed, rather, they decorate

the tree with information that is used by a tree-walking procedure which re-

evaluates the contents of the Wright text-window after every cursor move. The

Chapter 4. Pict- Wright 78

redrawing of the textual un-parsing makes use of the minimal-redraw algorithm

implemented in the window manager (i.e. only changes in the current image have

to be repaired). The example program script given on page 73 is an example of

output from the pretty-printer using the style parameters given in (1) and (6).

Attribution No. (7) causes the symbol table for the Defn non terminal to be

the addition of the current global symbol table env$0 and also the symbol table

synthesised for its parameters def $0.

Attribution No. (10) creates a new symbol table entry which is the binding

of the identifier -id to the value val$4 synthesised in the non- terminal - Defn:

This leads us to the attribution occurrences:

CommandList -> CommandList Command

<def$O = defadd(def$1 , def$2)> (11)
<env$1 = env$0 > (12)

<env$2 = envadd(def$1 env$0)> (13)

Bindings created by the definition Command are added to the inherited symbol

table of subsequent Command non terminals (13). This flow of symbol bindings

is illustrated in Figure 4-2.

The semantic function:

%integer %function %spec envadd (%integer env1, env2)

generates a pointer to a new symbol table link element which itself points

to the either further link elements or a binding generated by a def attribution.

The symbol table in Pict Wright is therefore implemented as a tree of linked

identifier /value bindings.

The semantic function:

%integer %function %spec def add (%integer deft, deft)

takes the symbol table def element contained in deft and causes its link

element to point at def 1, thus creating a chain of identifier /value bindings (which

Chapter 4. Pict- Wright

def 1 +def2+def3
CL env0 \ envO+def 1 +def 2

f 1 +d f2 d
CL

env0

CL ' ef2

79

I

Figure 4-2: Symbol Table Attribute Flow

can then be inherited as env attributes by subsequent Command non terminals,

as described above) .

The symbol table structure as constructed above is made use of in the--fol-

lowing Command and Defn attribution occurrences:

Command -> _id Argi Arg2
<env$2 = env$0 > (14)
<env$3 = env$0 > (15)
<pos$O = do call(env$0. vals$2 , vals$3 ,

origin$0)> (16)
<def$0 = 0 {vals$2 vals$3 }> (17)

/ ' def 1 +def2+de
CL

f3+def4
env0 envO+def 1 +def2+def3

env0/

e e
C 'r",\c

\ envO+def 1 C \def3

Chapter 4. Pict- Wright 80

Defn -> _ass _s1b CommandList _srb
<val$0 = command ref(def$3)> (18)
<origin$3 = copy origin(origin$0)> (19)
<env$3 = env$0 > I (20)

_ass Item <env$2 = env$0 > (21)
<val$0 = val$2 > (22)

No. (16) is a drawing attribution which updates the current cursor position

pos$O. The drawing operation is a recursive call of the attribution evaluator on

the CommandList tree, which the binding of Ad should reference (18). If _id is

not in the current symbol table env$O, or is an Item value (22), an attribution

error is reported'.

The recursive evaluation (see also Figure 4-3) in (16) operates as follows: the

arguments in Argi (or the current position if Argi is empty) are made available

as an initial origin for the CommandList tree bound to _id (19), i.e. when copy

origin is next called the coordinates provided in Argi will be given as the value

of origin$3. The values given in the parameter list Arg2 are substituted into

the environment synthesised for the arguments of the definition of _id (19)

(def $3 in (7)). All the attributes in the CommandList tree are marked as being

unevaluated. With the new origin and symbol table the synthesised attribute

pos at the root of the CommandList is pushed onto the evaluation stack and the

evaluator is then called.

This recursive evaluation technique for implementing procedure calling is a

novel extension to normal AG practice and it led to the very fast development

of the Pict-Wright editor. This is because there is no need to generate and store

picture drawing code, pictures are drawn as a side effect of attribute evaluation.

However, the method has a number of problems:

The Wright-System does not directly implement attribute conditions supported by

some AG systems, but the same effect is achieved by having condition checking and

error reporting as a side effect of semantic functions

Chapter 4. Pict- Wright 81

it precludes the use of incremental evaluation (the called tree must have

all its attributes marked as being unevaluated) and so looses the efficiency

benefits of incremental compilation.

it precludes the use of procedure recursion (unless multiple copies of the

procedure's attributed syntax tree are to be made).

For a small system like Pict-Wright the efficiency problem is not a great

concern (the system still operates fast enough to be interactive) and the lack of

recursion has not prevented the description of fairly complex pictures.

The commented attributes val$2 and val$2 in (17) are there to cause evalu-

ation of these argument lists during a CommandList procedure declaration (thus

ensuring the checking of their identifier references, which would otherwise be

delayed until the procedure was invoked).

So far no primitive drawing operations have been described, this is now reme-

died:

Command -> _text Argi Arg2
<pos$0 = do text(vals$2, vals$3 , origin$O)> (23)

Attribution No. (23) cause the display of a text string contained in the

parameter vals$3 and at a position determined from origin$O and vals$2.

The synthesised attribute pos$0 is set to a coordinate at the end of the text

string, relative to the current origin.

Pictures are generated in Pict-Wright as a side effect of the calculation of the

synthesised attribute pos. Since an incremental-evaluation scheme is being used-

(except during procedure call evaluation), it follows that subsequent editing to

an initial attributed syntax tree would cause only the partial regeneration of

the image (i.e. the portion just changed). This could cause anomalies since

the Pict-Wright system does not know which areas of the screen image to erase

before evaluating the new image. A brute force approach is taken to solve this

problem; the origin for the whole picture is set as having been changed, causing

Chapter 4. Pict-Wright

Parameter env

1? 1

p2
p3

I p4
p5

id (10,20,11a",11b",c)

procedure call at (x, y)

CL

82

origin

originO

procedure id's parse tree

Figure 4-3: Procedure Call By Recursive Evaluation

the whole picture to be regenerated. In the chapter on Stick-Wright, a more

efficient picture generation technique is presented which retains the incremental

evaluation property lost by the recursive evaluation scheme used in Pict-Wright,

and which also avoids unnecessary re-drawing.

The preceding environment attributions have used pointers to share common

sections of symbol table, hence, each node in the syntax tree does not require

its own copy of the symbol table. The linked list of identifier/value bindings is a

rather inefficient representation since many identifier lookups would require long

searches through the list structure until the desired binding was found. More

10

20
'I_I'

CL

1

Chapter 4. Pict-Wright 83

efficient representations for such structures do exist, e.g. Reps uses shareable 2-3

trees to implement symbol tables [71].

One problem with this distributed representation of symbol tables is that the

distance between identifier declaration and usage can require a large number of

copy rules to pass the attributes up and down in the parse tree. One proposed so-

lution to describing remote relationships in attributed syntax trees, which avoids

copy rules, is given by Johnson and Fischer [33], who present an extension to

the AG formalism which permits non-syntactic attribute flow. This extension to

the formalism allows distant nodes in the parse tree, which are closely connected

semantically, to communicate directly. By leaving the standard AG formalism,

however, they loose the ability to exploit the optimal incremental evaluation

techniques as used in the Synthesizer Generator, and the automatic generation

of editing systems is made more difficult by the introduction of the ad-hoc se-

mantic relationships.

Finally, I discuss an expression attribution:

Item -> Item _plus Item
<val$O = do plus(val$1 , val$3)>

The semantic function do plus checks whether val$1 and val$3 are both

integers or both strings. Type can be determined from the value alone in Pict-

Wright, since integers are constrained to be in a range less than the address

value of strings, i.e. if a val$1 is a valid IMP address, then the value of val$1

is taken to be the string at that address, otherwise the value of the integer itself

is taken. More complex data typing can be achieved by having a separate type

field. Examples of type coercion and over-loading, and also further symbol-table

schemes are given by Watt [50], a complete AG for ADA is presented by Uhl et

al. [89].

In the first chapter the notion of design malleability was introduced. This

property refers to a notation's suitability for manipulation using a syntax di-

rected editor. Wright departs from conventional structure-editor wisdom by

Chapter 4. Pict-Wright 84

basing the editing activities on the concrete syntax of the AG. Systems like the

Syntheziser generator allow several concrete syntax specifications corresponding

to an internal abstract parse-tree data-structure, on which the attributes are

evaluated and stored. Wright uses the AG's concrete syntax without change

mainly as an implementation expediency (it simplifies both the input specifica-

tion and the integration of the parser with the editor). This has not proven to

be a problem for the grammars developed for this thesis, but it did have implica-

tions on their design for malleability. This means in practice that the grammars

have to be designed with their screen appearance firmly in mind. As the user

traverses up and down the parse tree structure the current position is indicated

by highlighting in the text window (Pict) and the current non terminal name

is given in the Command window. The grammar designer must make sure that

the structures being traversed are easy to follow, and form reasonable partitions.

This is achieved by design choices like sticking to left-recursion for list structures

(the user soon learns how lists of statements, ports, etc. are arranged) and us-

ing ambiguous expression grammars (with precedence rules), which form smaller

trees than expression grammars using Term and Factor non terminals. Extra

non terminals can be inserted to improve partioning between logically separated

terms, which are otherwise left as siblings.

Chapter 4. Pict-Wright 85

4.5 The Editor in Operation

I continue the development of the example presented in the syntax section; Fig-

ure 4-4 shows a picture of the system after processing the program script given

on page 73.

The example contains a deliberate error, the procedure call wrong, indeed we

can see that the system has detected this and has reported:

procedure wrong not declared

The Command window also shows which grammar construct the cursor is currently

positioned on, Design 1, and the number of attribution errors, >1> , if any.

Figure 4-5 shows the new screen image after invoking a series of tree cursor

movements (e.g. MoveToSon, MoveToRightSibling).

Now that the cursor is over the List non terminal covering the terminals 1,

2, 3 the command ReplaceSubTree can be invoked, and a set of new values

entered via the Wright parser module. Here is the program script for the new

wrong procedure call:

wrong (10000, 2000000, 30000, 4, 5, 6

7, 8, 9, 10, 11, 12, 13, 114

1555, 234234, 345, 123123,

123132)

The Wrong call shows a weakness in the pretty-printing algorithm used by

Wright; it would be more pleasing if the lines were broken after commas, and

not numbers. The current algorithm, however, breaks a line at the first token

which causes the line to be too large.

In order to remove the offending procedure call, the command Delete Sub-

Tree is invoked, an action described in Figure 4-6.

Chapter 4. Pict-Wright

Plot-ihILeht

Graphics I

Pict

font (0)
size (scale)
wrong (1, 2, 3, 4, 6, 6, 7, S. 9, 10,

11. 12, 13. 114, 1666. 234234.
346. 123123, 123132)

define box (a, b, c) :_ [colour (c)
line (a, 0)
line (0, b)
line (-a, 0)
line (0, -b)]

define tsxtbox (c):= [box ((length c)+2*ecale, 3*scale, 3)

colour (4)
text {scale, scale}(c)]

box (1000. 600, 2)
textbox {600, 100}("Pict-Wright")
move (100, 0)

textbox ("Stic-Iri.ht")!

-Command
procedure wrong not declared
p<Deeign 1>1>

VDU

Stt*-WrLg

Figure 4-4: Editing with Pict-Wright

1

I

86

I

I

Chapter 4. Pict- Wright

Plat-WrLght

Graphics

-Pict
font (0)
size (scale)
wrong 1, 2. 4. S. 6. 7. 8. 9, 10,

It. 12. 13. 114. 1 666, 234234.
346, 123123. 123132)

define box (a, b, c):_ [colour (c)
line (a, 0)
line (0, b)
line (-a. 0)
line (0. -b)]

define textbox (c):= [box ((length c)+2*ecals, 3*scale, 3)
colour (4)
text {scale, scale}(c) J

box (1000, 500. 2)
textbox {600, 100}('Pict-Wright)
move (100. 0)
textbox ('Stic-Vright)

-C amssan d

p<List 1>1>

p<List 1>1>

VDU

Stlo-WrL4

6

87

Figure 4-5: A new cursor position

CL

selected sub-tree

CL Y

Figure 4-6: Deleting a sub-tree

After the previous sequence of editing commands the current graphics display

image is:

I

I

Piot-Wright StLo-Wrlga

The editor cursor is now moved to the List non terminal of the first call

of textbox. The command ReplaceSubTree is issued and the graphics lexical

macro Insert Coords is invoked. This is a user supplied graphical interaction

routine which invokes the graphics display's cursor, which can be moved using a

mouse, and inserts the current screen position into the scanner's input buffer.

After inserting a new coordinate pair the text representation of the syntax

tree becomes (on page 89):

Chapter 4. Pict- Wright

define scale := 18

font (0)
size (scale)
define box (a, b, c) := [colour (c)

line (a, 0)
line (0, b)
line (-a, 0)
line (0, -b)]

i

define textbox (c):= [box ((length c)+2*scale, 3*scale,
colour (4)
text scale, scale(c)

box (1000, 500, 2)
textbox {72, 249}("Pict-Wright")
move (100, 0)
textbox ("Stic-Wright")

E

With these new coordinates the graphics display image is:

I
Plot-Wright Stlo-Wright

]1

89

the picture is still a little small, and so the cursor is placed at the definition

of scale, and a new value 36 is inserted:

I

PLct-WrLght
I

Tt c-WrLgh

This is still too large, and so the value 30 is inserted:

i

Chapter 4. Pict-Wright

StLc-WrLgh PLot-WrLght IF

L.

The size now seems fine, so the cursor is now moved over

90

move (100, 0)

to correct the alignment between the two boxes. The value -30 is substituted in

place of 0.

i PL.ct-Wrlght StLc-Wrlght
I

i

This positioning is fine, so move the cursor to font (0) and choose a more

interesting font:

I

I

1

The program script now looks like this:

Chapter 4. Pict-Wright

define scale := 30

font (62)-
size (scale)
define box (a, b, c):_ [colour (c)

line (a, 0)
line (0, b)
line (-a. 0)
line (0, -b)]

define textbox (c):= [box ((length c)+2*scale, 3*scale, 3)
colour (4)
text scale, scale(c)]

box (1000, 500, 2)
textbox {72, 249}("Pict-Wright")
move (100, -30)
textbox ("Stic-Wright")

91

This kind of editing sequence is very easy to perform, and the evaluation time

for each new screen image is negligible (although the current implementation is

rather slow when using fonts other than the default, however, the default font

can be used until the picture is nearly finished).

Pict-Wright is a small system with some inefficient implementation strate-

gies, however, it performs well as an interactive environment for the production

of simple text/line illustrations. The specification of the system by means of

an attribute grammar proved to be a rewardingly straight-forward operation,

and led to a very succinct implementation. The major work during the imple-

mentation of Pict-Wright was in refining the generic system modules (e.g. the

editor commands and the interactive parser) since Pict-Wright was the first ed-

itor generated by Wright. The improvements made in the generic modules are,

of course, passed on to any subsequently generated editor.

Chapter 5

Stick-Wright

5.1 Introduction

A major problem in the design of large integrated circuits is the assembly of

circuit elements (e.g. RAMs, PLAs, adders, gates, pads etc.) in such a way

as to minimise chip area which is devoted to wiring. Not only does wiring

take up valuable space, it also significantly contributes to parasitic capacitances

and resistances. Large routing channels can occur when an attempt is made to

assemble modules together which have incompatible and fixed topologies.

A current trend in commercial IC development is the implementation of

mainframe architectures in minimal chip-sets. The internal architecture of these

systems has been heavily influenced by the designers' experience with previous

technologies. At the start of a new technology it is expedient to draw on pre-

vious system design in order to produce working products quickly. The early

LSI processors are an illustration of this phenomenon. The architecture of these

chips (e.g. INTEL 4004, 8008 and 8080 families) resemble the single bus dis-

tributed system architecture employed by some of the PCB based processors of

that time. With the next generation of LSI processor the bit-sliced architec-

ture was adopted, bringing better performance. Present day partitioning of the

IC design problem is still based on an effective method for assembling discrete

devices on a PCB [79]. Chip assembly techniques based on the placement and

routing of large and fixed cells (e.g. standard cells, PLAs, user leaf cells) tend to

produce large areas of wiring channels. For better results cells must be designed

to fit together, and library generated parts must be configurable to fit a variety

92

Chapter 5. Stick-Wright 93

of contexts. The need to be fully aware of the physical design constraints of

silicon right from the earliest stages of system design is succinctly described by

Anceau, "The future of computer hardware must be imagined on silicon" [2]. -

Much research is currently going on into improving the physical design pro-

cess. The tools and techniques being developed generally seem to apply in one of

two directions; top-down or bottom-up. The top-down tools are concerned with

floorplanning; placing the blocks at the top level in the structural hierarchy so

as to best meet their connectivity and sometimes continuing this process down

through the design hierarchy. Estimates, often relying on previous experience

or guess work, have to made about block sizes and aspect ratios. These actual

block dimensions are ultimately provided by the bottom up-tools; the symbolic

compactors, cell generators and leaf cell editors. Interesting oscillations can

occur between top-down and bottom-up design decisions. The most compact

realisation of a particular cell may actually turn out to be more wasteful than

one designed to be compatible with its neighbours. Similarly a change in the

floorplan might make the compacted cell's topology more acceptable.

Physical design systems can also be categorised by two different approaches;

design automation (DA) and computer aided design (CAD). Typical of the design

automation approach are the floorplanning, placement and cell layout tools which

use optimisation techniques (e.g. simulated annealing [23] [76]) or heuristics

(e.g. as captured in an expert system [40]) to attempt solutions to problems

for which tractable algorithms have not yet been found. Much success has been

achieved in areas like routing (which generally is no longer trusted to human

layout designers) and cell compaction, where polynomial algorithms have been

found which give acceptable results (although full 2-D compaction has been

shown to be NP-complete [78]). At the present time it is the tasks at the lower

end of the physical design hierarchy that are best understood, e.g. routing

and cell compaction. At the higher level of automatic cell generation (where

the system is given the structure of the circuit, but not the planar embedding)

research is not so far advanced, although the graph theoretical approach of Ng

[63] shows some promise. The system described by Ng generates several circuit

Chapter 5. Stick- Wright 94

topologies from an initial stick-diagram, choosing the one which proves to be

the most compactable (although it may not necessarily be the best topology

wrt. cell abutment). At the higher levels, the floor-planning tools introduced in

Chapter 2, the automatic tools still have a long way to go.

In the CAD approach the primary design decisions are made by a human

designer, with the computer aiding in the visualisation and verification of each

design step. As tools ascend the layers of abstraction in the design hierarchy,

the role of the human designer becomes more important, as the problems being

solved become more open-ended. Complete design systems often make use of

both CAD and DA approaches; the system described by Piguet [68] combines a

manual floorplanning stage with an automatic cell layout stage.

Stick-Wright is a VLSI design tool for allowing VLSI circuits to be "imag-

ined on silicon", and as such concentrates on the visual exploration and the

verification aspects of the CAD approach. The major feature of-tire-system-is-a-

symbolic layout language which has both textual and graphical representations.

The ability to manipulate the design through both these mediums is the major

contribution to design exploration. The enforcement of certain cell composi-

tion rules by the attribute grammar specification is the contributing factor to

increased design verification.

Rem .and_Mead_[701.s_uggested_a_set..of. design.conatraints_.for. CMOS..circuits_.

which can be enforced through the syntactic and semantic rules specified for a

design language. An attribute grammar provides an implementation method for

just such a set of constraints, and Stick-Wright demonstrates the application of

grammar rules to the type-checking of port compositions.

The system is intended to be used as a means for entering hierarchical floor-

plans of system components, with the lowest level cells being made up of wire

and transistor primitives. Cells are constructed by the vertical or horizontal

composition of sub-cells, forming rows and columns of abutted rectangles. This

resulting grid is used to capture relative placement and to provide a framework

for the port type-checking mechanism. As in similar grid based systems, the

Chapter 5. Stick- Wright 95

tiling of cells does not necessarily convey information on actual sizes or aspect

ratios.

The attribution rules in the AG given for Stick-Wright are for a static subset

of the originally conceived system, and do not implement parameterisation in cell

definitions. The presented implementation does, however, fully demonstrate AG

specification techniques for the syntactic checking of cell compositions and the

incremental construction of pictures. The syntactic definition of Stick-Wright,

as contained in its AG, includes the parameterisation phrases of the extended

version of Stick-Wright. Notational devices and implementation strategies for

this extended system are presented in Section 5.6.

Stick-Wright is designed as the front-end to a cell-compaction chip-assembly

tool. While the attributed parse tree maintained by the system contains all the

information necessary to generate a data-structure suitable for these activities,

the integration with further design stages was not a task undertaken for this

thesis. The major concern of this thesis is the role of the front-end in fully

exploiting the DA algorithms and techniques surveyed in Chapter 2.

Another objective of Stick-Wright is to demonstrate that the AG specification

technique is effective in certain key areas, and that those designing production

quality systems could benefit from adopting these techniques in some form (the

problems of using current AG technology in production quality tools is discussed

in the final chapter).

5.2 Lexical Definition

As was done for Pict-Wright, I begin the description of Stick-Wright by present-

ing its lexical analysis specification:

Lexical-definition Stic is

Ranges
@L is 'a' .. 'z' + 'A' .. 'Z'
ON is '0' .. '9';

Chapter 5. Stick- Wright

@B is 0 .. 32;
@S is 0 .. 127 -
@NotNL is 0 ..127 - 10;

end of ranges

macros
#case is $$;
#p is $($)*;
#0 is ($1)

end of macros

expressions

#case;

_cell -> \cell; _abut -> \abut;
_true -> \true; _false -> \false;
_b -> \b; _g -> \g;
_r -> \r; _bs -> \bs;
_gs -> \gs; _rs -> \rs;
_bc -> \bc; _gc -> \gc;
rc -> \rc; rbx -> \rbx;

_gbx -> \gbx; _pass -> \pass;
_enh -> \enh; _dep -> \dep;
_rbc -> \rbc; _gbc -> \gbc;
_rgcs -> \rgcs; _rgcc -> \rgcc;
_bt -> \bt; _gte -> \gt;
_rt -> \rt;

_equs
_lb -> \(

_ass
; _rb -> \);

_slb -> \ [; _srb -> \] ;

_clb -> \{ ; _crb -> \};
_it -> \< ; _gt -> \>;
_arrow -> \- \>; _choice -> \I;
_tilda _hat -> V ;

_comma _colon -> \:;
_semi -> \; ; _stop -> \.;
_dots -> \. \.; _minus -> \-;
_plus -> \+ ; _times -> *;
_divide -> \/
_or V

; _and
.. _not -> \\;

_identifier -> @L(@LI@N).*;
_integer -> @N@N* {was that a radix ?}

({yes} _(@NIQL) ! (@NI@L)* I {no});

_blank -> @B@B*;

96

_comment -> \\\-@NotNL*\

Chapter 5. Stick- Wright

end of expressions

end of lexical definition

The ASG statistics for this specification are:

97

ASG: parsing complete with no errors in 2030ms
ASG: DFA took 39388ms to build
ASG: DFA took 772ms to minimise
ASG:Compact: old size = 77*56 = 4312 entries
ASG:Compact: new size = 77*2 + 275*2 = 704 entries (38 misses)

in 7806ms

The HARD statistics are:

HARD: scanner token _blank will be ignored by parser
HARD: scanner token _comment will be ignored by parser
HARD:Compact: old size = 77*127 = 9779 entries
HARD:Compact: new size = 77*2 + 814*2 = 1782 entries (100 misses)

in 38148ms

5.3 Syntactic Definition

To simplify the explanation of the attribution rules, I give a brief description

of the underlying syntax and an informal introduction to the semantics. The

grammar presented here also includes the parameterisation phrases discussed in

Section 5.6.

Grammar Stic is

Productions

Design -> CellList Ident;

CellList -> CellList Cell I Cell

Cell -> _cell -identifier Params PortSpec _equs Abut -stop;

A Stick-Wright design consists of one or more Cell definitions followed by

an Ident (which can be a primitive Cell or a call to a defined Cell).

Chapter 5. Stick-Wright 98

Params -> _clb Mist -crb 1;

IList -> IList _comma _identifier I _identifier;

A cell may have a list of parameters.

PortSpec -> _lb OPorts _rb;

OPorts -> OList _semi OList _semi OList _semi OList I;

OList -> List I;

List -> List _comma Id I Id;

Id -> _lb List _rb QualS Olter I

_identifier QualS Olter ;

QualS -> QualS _colon ODir _identifier I;

ODir -> _gt I _1t;

Each cell has a list of ports corresponding to the West, North, East and South

cell boundaries:

Cell Tally {n}(vdd:d, gnd:d[1 .. n];

z:d[n+1 .. n] ;

(X:m, gnd:d, Xbar:m)[n .. 1])

In this example the West OList contains a single vdd port on layer d (diffu-

sion) and a vector of gnd ports. The North side of the cell has no ports and the

South side has a vector of three ports grouped together (i.e. all three are iterated

together). All ports are ordered in a clockwise direction, hence the vectors on

the West side count up, and the vectors on the East count down. Figure 5-1

shows the corresponding picture for this group of port declarations.

Abut -> _abut AbutBlock;

AbutBlock -> AbutBlock _semi Row I Row;

Row -> Row _comma Item I Item;

(x:m, gnd:d, Xbarm)[n..1

Figure 5-1: Port Exterior for Tally {n}

VRow -> VRow _comma Item I Item;

Item -> Ident Syms Olter;

Cells are formed by the abutment of other composition cells, or primitive

cells. The AbutBlock is formed from the vertical composition of Rows, which

in turn are composed of the horizontal abutment of Items. An Item consists

of a reference to a more primitive cell structure, Ident, an optional series of

geometrical transformations, Syms, and an optional iteration operator, Olter.

Ident -> _lb Row _rb I

_lt VRow _gt I

_s1b Cond _srb I

-identifier OPar
_b I _g I _r I _bs I _gs I _rs I _bc

I

_gc I _rc I _rbx I _gbx I _pass I _enh I _dep
_bt I _gte I _rt I _rbc I _gbc I _rgcs I _rgcc I;

OPar -> _c1b Pars _crb I;

Pars -> Pars _comma Expression
Expression;

I

The Ident cell abutment primitive can itself be a nested Row; round brackets

...) indicates horizontal abutment, angle brackets < ... > indicates vertical

Chapter 5. Stick- Wright 100

C

I

I

Figure 5-2: Stick-Wright's Primitive Cells

Olter -> _s1b Iter _srb I;

abutment. There is also a conditional form Cond indicated by square [...]

brackets. The fourth Ident is a cell call, the rest are primitive cells (wires,

contacts and transistors). Figure 5-2 shows the primitive cells. The non terminal

OPar is the optional parameter list for a cell call.

oLI
6-6

Iter -> -identifier _ass flange i

flange ;

Cond -> Condition _arrow Item OBar;
I

Syms -> Syms Sym I;

i

Chapter 5. Stick- Wright 101

Sym -> _tilda I hat;

Range -> Expression _dots Expression
Expression;

I

OBar -> _choice Item I;

An Iter phrase contains an iteration specification, which can also declare an

iteration variable, for use as a parameter to the cell being iterated. A range can

be between two expressions, e.g. 2*k . . n, while a single expression indicates

a ranging starting from 1, with the expression denoting the final position e.g. 1

n-1.

A Cond statement will choose the first Item after the _arrow if Cond is true,

otherwise the Item contained in OBar (possibly null).

The Sym _tilda (") is a post-fix operator indicating reflection in the Y-axis,

the Sym -hat (-) indicates a clockwise 90° rotation.

Expression -> _minus Expression
_lb Expression _rb
Expression _times Expression
Expression _divide Expression
Expression _plus Expression
Expression _minus Expression
-identifier
_integer;

Condition -> _lb Condition _rb
not Condition

Condition _and Condition
Condition _or Condition
Expression _equs Expression
Expression _lt Expression
Expression _gt Expression
true

_false;

End of Productions

Priorities (-times, -divide) (_plus, _minus);

End of Grammar

Chapter 5. Stick-Wright 102

The grammar ends with a set of integer expression and condition phrases.

Figure 5-3 on page 103 shows a complete Stick-Wright script, with its corre-

sponding picture.

The following statistics are taken from diagnostics issued by the Wright pars-

ing building module:

WRIGHT building PDA
WRIGHT PDA generated in 48858ms
WRIGHT lookaheads generated in 133260ms
WRIGHT s/r : [3, _slb] <state # 7, Ident> =>s (i)

WRIGHT s/r [62, _times] <state # 70, Expression> =>s (ii)

WRIGHT s/r [63, _and] <state # 73, Condition> rL (iii)

WRIGHT tables took 63376ms to fill
WRIGHT old size = 151*54 = 8154 entries
WRIGHT new size = 151*2 + 1008*2 = 2318

in 37376ms

WRIGHT old size = 151*29 = 4379 entries

entries (168 misses)

WRIGHT new size = 151*2 + 121*2 = 544 entries (21 misses)
in 6057ms

WRIGHT tables printed in 112749ms

The lines marked (i) (iii) are some of the shift/reduce errors de-

tected by the system:

(i) This ambiguity arises from the fact that the syntax for a conditional Ident
is the same as an iterated null statement in an Item phrase. This ambigu-

ity was left as it was because the default action of the parser is to shift on

the slb, thus making the assumption that the conditional Ident is fol-

lowing, however, the iterated null Ident can be achieved using the syntax

0 [iter variable].

(ii) This kind of ambiguity is resolved by the precedence rules given at the end

of the grammar.

(iii) This kind of ambiguity is resolved by taking the default action of assuming

left-associativity of operators.

The complete processing of the AG by Wright takes just over 5 minutes.

*
1*

a

set

cv,
0

I.
-t

'
'

S

,1,
,*n

S

E
L

'A

I
t'

a
-

•ii
I

—

N

L 1 1;
.

Z
2 I,

t
t

J

p r I

S

S
.,'

E
l

11

•a

I

1
L

I

I

I

Pt

i:

•1
ki

11

I'
q

p
I.

I I

t

I

.1
II

N

I

I

.4

F
I

W
a

—

t
n

a'
T

I
I

lass
S

I
11.1

4.
II

'3

i '4
C

)

k

.2
I

1sS

43
-

U
j

S

t . a
I I I U

bO

. a

I
a

I
>

4

bO
tO

bO

a

am

I
C

O

II
bocd

. a
a

P
u

E

I
a

..
E

•a

bO
l

>
1114

..
I

1,-I
a

aC
O

a

C
d,O

A

I-i(
'ci

,0
kV

I
..

>
114

a
I

C
M

a

aC
O

4.3

a
aC

O
l

;i
'dl

LO
U

0

..
I

cd
bC

a

P
u

U

a
•a

U

•a E
'd-I

bC

al
,d

••
..

I
I

..
I-i'—

4
a

a(
I

a

L
O

U
U

V

%

uid
a

a
a

>
4

aU
bO

4.3

,0>
4,0

•rI
ttO

,O
F

-i
a

bO

a
a

a

I
al

pa
rail

U
4.3C

0
—

bO

tO
F

-I
a

C
d

H

ral
rd
a,

C
)

I

I
.1

L
'.aU

24

...- —

.
-a"..

,
u

IL
.Lm

rrflhrIIr

. —

V

•••1
V

i

H

ice I 0)

be

-.
—

S

S

as—

•'
"

—

-
—

.'

'S

S

C

*•a

I V

I

I.
.i.

I

iLilil
I

t Ii

p.

.1;

S

%

—

I

'.5
J

I

n
L

I
i•n a

a,'

.1

C

U

___'s-J-
&

sr.

I

a
C

' J

s'e

4.3

I
....L

F
JIL

rd
ral
C

d

H

4

.-
?. .

Chapter 5. Stick-Wright 104

5.4 Semantic Definition

5.4.1 The Attributes

There are nine synthesised attributes (refer to Appendix C for their respective

non terminals):

box This is the same pretty-printing attribute described in the last chapter.

ports This attribute contains the current port exterior of its non terminal, and

is used in the verification of cell compositions:

%record %format Port Block Fm (%record(Port List fm)%name N, E,
S, W.

%integer mir,
%string(*)%name id)

A Port Block has four sides of ports, may be mirrored and is given a

name. A Port List:

%record %format Port List Fm (%record(Port fm)%name P,
%record(Port List fm)%name next)

is a list of Port

%record %format Port fm (%string(*)%name id,
%record(Constraint List fm)%name Cs)

which have a name, and a list of Constraints:

%record %format Constraint List Fm

%integer dir,
%string(*)%name id,
%record(Constraint List fm)%name next)

A Constraint can impose a signal direction, dir, and a signal name, id.

Chapter 5. Stick-Wright 105

def The def attribute is similar to the symbol table attribute in Pict-Wright,

storing bindings of cell names to their definitions.

x This attribute stores the number of Item non terminals in a Row or VRow cell

abutment phrase.

y This attribute stores the number of Row non terminals in a AbutBlock cell

abutment phrase, or the number of Item non terminals in a VRow cell

abutment phrase.

mir, rot Attributes which indicate the geometrical transformations to be per-

formed for a Ident phrase in a Item phrase. (mir indicates mirror in the

Y-axis, rot indicates a 90° clockwise rotation.

val The value of an expression. In the present implementation only constant

expressions (i.e. not containing identifier references) are meaningful.

bool The value of a boolean expression.-

There are three inherited attributes:

env The symbol table containing bindings of cell names to cell definitions.

Again, this is implemented using the method presented in Pict-Wright,

however, some of the fields are different:

%record %format env fm (%string(*)%name id,
%integer addr,
%integer x, y, ports,

%record(env fm)%name next)

addr The address of the cell definition in the attributed parse tree.

x, y The x,y attributes synthesised for that definition.

ports The port exterior synthesised for that definition.

origin This is the attribute crucial to the implementation of incremental picture

drawing, and contains a geometrical transformation matrix [61] [22] for the

current non terminal:

Chapter 5. Stick-Wright 106

%record %format TRANS FM (%real %array A (0:8))

where A represents the 3 x 3 transformation matrix. This matrix store

the current composition of translations, rotations, scalings and mirrorings

which will transform points drawn for the current non terminal onto an

appropriate region of the graphics display. The basic transformations are

obtained from the following formulations:

Translation by T(x, Y):

y

Rotation by 0:

I
x' y' 1 1-

1 0 0

1] 0 1 0

Tx Ty 1

cos0 -sing 0

X y 1, sin0 cos0 0

0 0 1

Scaling by S (x, y):

Mirroring in Y:

x'

y' 1

y' 1

S. 0 0

Y 1] 0 Sy 0

0 0 1

y

-1 0 0

0 1 0

0 0 1

compositions of transformations are achieved by matrix multiplication.

dir This attribute informs an Item non terminal whether it is being horizontally

composed in a Row phrase, or vertically composed in a VRow phrase.

Chapter 5. Stick-Wright 107

In Stick-Wright there are no active drawing attributes, i.e. pictures are not

drawn as the result of attribute evaluation, rather, a separate tree-walking proce-

dure generates the picture in a depth-first traversal of the attributed syntax tree.

The evaluation of the origin attribute decorates the tree with all the positioning

and scaling information needed for displaying the graphical representation of the

design (this is similar to the way the box attribute provides the pretty-printer

with its data). The evaluation of this graphics data-structure enjoys the benefits

of the incremental evaluation scheme, and also provides the means for directly

displaying any part of the design, as represented in any arbitrary sub-tree.

5.4.2 Semantic Functions

The semantic functions for pretty-printing and symbol table management are as

presented in Pict-Wright, with the exception that Stick-Wright does not have

identifier/expression-value bindings, and so the symbol table has only to deal

with cell names. The major new attribution rules in Stick-Wright are those for

the syntactic checking of port-compositions through the attribute ports, and

also those for determining the transformation attribute origins:

Design -> CellList Ident
<ports$O = ports$2> (1)

<origin$2 = top origin> (2)

Attribution No. (1) triggers the evaluation of the port exterior for the whole

design, determined by Ident, which in turn triggers the inherited attribution

of No. (2), which gives the top level Ident the unity transformation matrix,

thus providing it with the whole of the graphics display (all drawing commands

assume that they have the whole display available, but the scaling component of

their origin matrix will make the corresponding Ident picture the appropriate

size).

lorigin is an extension of the coordinate attribute of Pict-Wright to include scaling,

rotation and mirroring information

Chapter 5. Stick-Wright 108

CellList -> CellList Cell
<env$2 = def$1> (3)
<def$0 = add def(def$1, def$2)> (4)

Cell
<def$0 = def$1> (5)

Cell -> _cell _identifier Params PortSpec _equs Abut _stop
<def$0 = do binding(x$6, y$6, ports$6)> (6)
<env$6 = env$0> (7)

Cell identifier /definition bindings are made in the same manner as in Pict-

Wright, with successive cell definitions inheriting the accumulated symbol table

(3). Recursive cell specifications are prevented by a cell's name not being in

the symbol table inherited by the cell's Abut non terminal (7). The identifier

binding operation in (6) triggers the evaluation of the cell's ports attribute

(which will also later trigger the evaluation of its origin attribute).

Phrases Params ... ODir are part of Extended Stick-Wright (Section 5.6)

and only have pretty-printing attributes.

Abut -> _abut AbutBlock (8)

<ports$0 = ports$2> (9)

<x$0 = x$2> <y$O = y$2 > (10, 11)

<origin$2 = new origin(x$2, y$2)> (12)

The x and y attribute for a Abut non terminal (obtained by copy rules (10,

11)) give the dimensions for the current cell's tiling, i.e. each composition cell

is made up of the regular composition of rectangular blocks in the X and Y

directions. The figure on page 103 shows a composition cell consisting of a 7 x 4

x/y tiling grid. The origin for the AbutBlock non terminal is constructed with

x and y scaling factors which will cause its constituent parts to be scaled down

to fit onto the tiling grid.

AbutBlock -> AbutBlock _semi Row

<ports$0 = do Abut compose(ports$1, ports$3, y$1)> (13)
<x$0 = check length(x$1, x$3)> (14)

<y$O = y$1 + 1> (15)

<origin$3 = do origin(origin$0, 0, y$1)> (16)
<origin$1 = origin$0> I (17)

Row

Chapter 5, Stick-Wright

k t

109

k t

m
c' d'

c d
a

e

n
e

h g

h g check c joins c' and
d joins d'

I

Figure 5-4: Vertical Port Composition

<origin$1 = origin$0> (18)
<ports$0 = ports$1> (19)
<x$0 = x$1> <y$0 = 1> (20,21)

The AbutBlock phrase of Stick-Wight causes the vertical composition of the

Row phrase. When composing two rows of ports the attribution rule do Abut

compose (13) checks that the South port-list of the top block of ports ports$1

matches with the North port-List of the bottom block of ports ports$3. The

port-block returned by this function has the North side of the top port-block, the

South side of the bottom port-block and the concatenation of the ports on the

East and West sides. Figure 5-4 illustrates this attribute evaluation. Matching,

in the context of port-type checking, is defined to mean having the same port-

constraint-lists. A more elaborate definition of what constitutes a valid match is

given in Extended Stick-Wright.

Attributions Nos. (14,15,20,21) construct the tiling attributes x and y,

attribution No. (14) also checks that the rows in an AbutBlock are the same

length (and signals an attribution error if they are not the same).

Chapter 5. Stick-Wright

/ Y

AbutBlock

originO/ /

origin / / \\origin0 + y

Y

AbutBlock

origin /
/ y

AbutBlock

first row, y=0
Row

Row

Figure 5-5: Row Translation Calculation

110

The origin attributions, Nos. (16, 17 ,18) pass on the scaling information

determined for the current tiling, but now add on the appropriate translation

transformation, in order to position each row correctly. Attribution No. (18)

has no translation, since the origin given from the Abut phrase is also the

origin of the top row. Attribution No. (16) gives the translation from the top of

the tiling grid to the current row being added (a distance which is immediately

available from the tiling attribute y). Figure 5-5 illustrates this calculation of

translations.

Row -> Row _comma Item
<ports$0 = do Row compose(ports$1, ports$3, x$1)>
<origin$1 = origin$0>
<origin$3 = do origin(origin$O, x$1, 0)>
<dir$3 = 0>
<x$0 = x$1 + x$3> I

Item
<ports$O = ports$1>
<x$0 = x$1>
<origin$1 = origin$0>
<dir$1 = 0>

(22)
(23)
(24)
(25)
(26)

(27)
(28)
(29)
(30)

Chapter 5. Stick- Wright

i

The attribution rules for the horizontal composition of Item non terminals
in a Row phrase follows a similar pattern to the vertical composition of rows.
Figure 5-6 illustrates the horizontal port composition attribution of (22). The
translation composed into the current origin attribute in (24) causes the correct
positioning of the Item within the Abut tiling. The dir attributions (25,30)
pass down the information that the current item is undergoing a horizontal
composition.

o d

b

hg

f

j

n m

k
t

e' f
c d i j

ill

1..

k
I

hg nm
check e joins e' and f joins f

Figure 5-6: Horizontal Port Composition

VRow -> VRow _comma Item
<ports$0 = do Abut compose(ports$1, ports$3, y$1)>
<origin$1 = origin$O>
<origin$3 = do origin(origin$O, 0, y$1)>
<dir$3 = 1>
<y$0 = y$1 + x$3> I

Item
<origin$1 = origin$O>
<y$0 = x$1>
<ports$0 = ports$1>
<dir$1 = 1>

(31)
(32)
(33)
(34)
(35)

(36)
(37)
(38)
(39)

Chapter 5. Stick- Wright
112

The VRow phrase follows the same pattern as the AbutBlock phrase. The dir
attributions (34,39) pass down the information that- the Item is. undergoing a
vertical composition.

Item -> Ident Syms Olter
<x$0 = x$3>

(40)
<ports$0 = do port trans(ports$1, mir$2, rot$2,

x$3, dir$0)> (41)
<origin$1 = do transf orms(origin$0, mir$2, rot$2)> (42)

An Item tile can take up several x-positions if it has a non-empty Olter
phrase (40). The presence of geometric transformations in the form of a non-

empty Syms phrase causes appropriate changes to the port exterior attribute
ports (41), shown in Figure 5-7, and appropriate additions to the accumulated

transformation matrix (42), shown in in Figure 5-8.

Q it

9

Syme =

h

e

f
Q

d

b

e

Figure 5-7: Transformations to Ports Exterior

f

Ident -> _1b Row _rb
<origin$2 = do hor trans(origin$0, x$2)> (43)

<ports$O = ports$2> I
(44)

_1t VRow _gt
<ports$O = ports$2> (45)

h

8

Chapter 5. Stick-Wright

A M

M
inherited

origin

113

-1 0 0 0 -1 0 1 0 0

0 1 0 x 1 0 0 x 0 1 0 x M
0 0 1 0 0 1 O S 1

mirror in rotate 90° translate back

Y-axis into 1st quadrant

(S= size of tile)

Figure 5-8: Mirroring and Rotation (-")

<origin$2 = do ver trans(origin$O, y$2)> I (46)
_slb Cond _srb
<ports$0 = ports$2> (47)

<origin$2 = origin$0> I (48)
_identifier OPar
<ports$0 = do call(env$0, origin$0)> I (49)
_b
<ports$0 = do b(origin$0)> (50)

The grouping of the Ident phrase into bracketed compositions of horizontally

or vertically composed rows (43 , 44 , 45 , 46) involves the adding in of a further

scaling transform to the inherited origin attribute. The conditional cell evalu-

ation phrase is only really useful in Extended Stick-Wright, but a limited use is

presented in the next section.

Attribution No. (49) performs an identifier lookup in the current symbol

table (refer to the complete AG, Appendix C, to see the copy rules for the

attribute env). The entry in the symbol table (if found, otherwise an attribution

error is signalled) has as one of its fields the exterior port appearance of the called

cell. This is then passed up the tree for use in cell composition checking.

Attribution (50) synthesises the port appearance of the primitive b, a blue

wire.

Chapter 5. Stick-Wright 114

The attributions for the rest of the grammar are straight-forward copy rules,

expression evaluations and condition evaluations. At present only constant ex-

pressions are permitted, and so expressions can be evaluated directly on the tree

as synthesised attributes.

5.5 The Editor in Operation

I begin the presentation of the operational aspects of-Stick-Wright-by returning-to -

the TallyUnit introduced earlier (Figure 5-3) and showing some editing actions

being performed with it. Figure 5-9 shows the system configuration, with the

TallyUnit as the currently selected cell.

The graphics cursor (the cross) in Figure 5-9 has been invoked by the major

graphics interaction command of Stick-Wright, SelectTile, Figure 5-10 shows

the system configuration after clicking the mouse at the position selected in

Figure 5-9. SelectTile converts the window-coordinates provided by the mouse

into tile-coordinate- The tilecoordinate.system,has. its origin. at.. the bottom-

right, so the coordinate corresponding to the tile selected in in Figure 5-9 is

(3, 3), the lowest rbc is (2, 1) and the other rbc is (6, 2). These coordinates

are is used to drive tree traversals on the Abut phrase in the TallyUnit parse

tree; the new text cursor position is found by descending down the number of

AbutBlock phrases given by the y coordinate, and then down the number of

Row phrases given by the x coordinate. Figure 5-11 shows the moves taken to

arrive at the second g" of the second AbutBlock from the top (which is the third

AbutBlock down in the Abut phrase).

Relating device coordinates to particular entities in a graphics data-structure

(an activity known as hit detection) is significantly simplified when the graphics

screen has been segmented into non-overlapping regions, as in the tiling of Stick-

Wright. In a data-structure without the tiling property, e.g. Pict-Wright, objects

relating to points provided by a cursor position can be found by traversing the

data-structure, searching for hits within a small area around this point. The

Pt

I

i

I

I

I
I

I

4

I

. Chapter 5.

4-

L__

-

.

.a

Wriiht

c.11 Ta]lyUnit (inl:d;
— -—

lbar:m, out2:d, 1:m;

outl:d;

aaa USC UI

Figure

a

a4. a
I

ga• gbx, SI.
gbx, ICaaa;

a
I

ga, gbx, S.

S t a s

Pt

U

.'-

The Stick-Wright Editor

.

a.

;:• • ---------'- I"
w

I 115

- ..-;a.

I
I

-I-.

. -. -I sa —a
%

7

p.

a

r t

r
'a —

S

£

a

.—

a
I

p

t

I

C

•- •, a S

Graphics

I

I

ci

I

*

t

I

i t

r 'S -a Ic -a

S

I

-4

S. •' fl

I

I

I

I

I
a

I

C
I
to'

I

I
U'

I

I

L'

I

I
I

L

I

— . . - -.. S

a

a-

I

6,

I

I

p

I

I

F

I

I

I

•t

Abut gC. gbx, ga

St U
gbx,

S S

b I U

rr. rDC, rC

I r>
ga

,gC

t

— - —- . - . -i_

. - .

= Abut U b, , I U
b,

5U gbx, ga, ga

c.11 rout.S (;

S

I

)

S ---— —- r
-

pcCsllLiSt 2>>

!<dhhl 1>>

VDTJ

I I I b,
I

paa
I I

d

— 4

t

Chapter S. Stick- Wright

Graphics

L

tic
C.11 TallyUnit (inl:d;

Xbar:m, out2:d, 1:m;
outl:d;
1:s, in2:d, Xbar:a

Abut gc'. gbx, g', gc "", , be

gt, gbx, <rs'^. pass, r>, ggbx, gt " ;
rs', rbc, rc^^ '. gc', <rs" , pass. r>. gbx, gc"' ;
, be , g, rc, rbc, rs""

Call ront.S (;

= Abnt , be , , , be ;

g', gbx. g'. g'.

. be . gs_. . be

onvand-
p<Call 1»
p<Idsnt i»

VDU

F

g'. gbx. g';

116

Figure 5-10: A new cursor position in TallyUnit

Chapter 5. Stick- Wright

(abridged tree)

Abut

AbutBlook

AbutBlook Row

AbutBlook Row

AbutBlook Row

Row

11110 ;/ \ / Row Bt^^

down by y
Row °w 8bx

Row /
Row

at
down by x

Figure 5-11: Moving to a new tile

117

Wright generated editors have an added advantage that this traversal/evaluation

can be restricted to only those parts of the tree whose attributes have been

altered.

Now that this primitive cell has been selected,,the port type-checking attribu-

tion rules can be exercised by the insertion of an incorrect wire. The command

ReplaceSubTree is given at this new position, and the g" is replaced by the

primitive r (see Figure 5-12). Only the new tile needs to be drawn, the correct

scaling and positioning being determined from the tile's origin attribute. This

replacement causes the following attribution errors to be signalled:

I ports clash 31 g1 and r[01
I port clash 41r[01 and gbx

port clash 6 I blank [3] and 6 I gte2 [4]

port clash 1"61 gte2 [5] and 61 gc3 [4]

Chapter 5. Stick- Wright

0

F1

TI

7Q

Figure 5-12: An incorrect TallyUnit

118

The I character indicates horizontal abutment, the " character indicates

vertical abutment. The first two errors are caused by the lack of ports for the

diffusion wires on either side of the new cell, while the bottom two errors are

caused by the extra red wires on the top and bottom of the new cell. The

error messages are not as clear as they might be - interpret the first message as

horizontal port clash between the row which has 3 tiles abutted to a green wire at

orientation 1 and a red wire (with no added orientation) which has no ports. The

major obfuscation here is determining which ports the error applies to, however,

this is not a major problem since the system knows where the semantic error

occurs in both the textual-un-parsing and the screen image (and it is also obvious

Chapter 5. Stick-Wright 119

that it was the last sub-tree replacement that introduced the error). The quality

of the error messages becomes more important with larger sub-tree replacements,

and more sophisticated actions are called for. Although not implemented in the

current version of Wright, the obvious thing to do is to highlight the areas on

the screen and graphics display which correspond to attribution errors occurring

in the attributed parse tree.

To illustrate the iteration and horizontal grouping language features a 4 in-

put Tally cell is given in Figure 5-13, and the corresponding picture is given

in Figure 5-14. Iterated cells are only shown once, with the remaining area

overlayed by an iteration tile which indicates the number of repeated cells with

an appropriate number of dots. The user can interactively control the amount

of detail that is shown in the picture by altering the depth of cell instantiation.

Figure 5-15 shows a fully instantiated 4 input tally cell.

In this example the cell headers for routeS, route and Tally do not contain

port names, the external port appearance is taken to be that of their respective

AbutBlock. Figure 5-16 shows how a pad placement stage could be specified

using Stick-Wright. The text at the start of the screen is the end of the Cor

(corner cell) definition.

The pad placement example shows how a quite complex arrangement of cells

can be specified in a succinct manner. The use of implicit port connection leads

to this, while the type checking attributes help prevent un-intended connec-

tions. The main reason for adopting abutment over explicit port connection

(c.f. Sticks&Stones [13]) is that it leads to shorter descriptions, and is hence

easier to write- anti mo ify.- The- explicit-connection- strat-egy-may-prevent-some-

un-intended connections being made which are let through by the Stick-Wright

scheme (i.e. legal syntactic connections, but not what the user meant), how-

ever, the added complication in the explicit connection description may lead to

mistakes in the specification itself. The added responsibility of dealing with ge-

ometric transformations for the user in Stick-Wright has not proven to be too

burdensome, and is in keeping with the notion that circuit structures should be

conceived with the planarity of the design space firmly in mind.

Chapter 5. Stick-Wright 120

Cell TallyUnit (inl:d;

Xbar:m, out2:d, X:m;

out1:d;

X:m, in2:d, Xbar:m
Abut gc", gbx, g", gc""", , b, ;

gt, gbx, <rs"", pass, r>, g", g", gbx.gt"";
rs", rbc, rc""", gc <rs"",

pass, r>, gbx, gc""";
, b, , g, rc, rbc, rs"""

Cell routeS (;

= Abut , b. , , , b. ;

g", gbx, g g", g",gbx. g";
. b. . . . b. ;

b, , gs"", , b,

Cell route (;

= Abut , b. , , , b. ;
g". gbx, g", g". g",gbx. g";

b. . . . b,
b, , , , b,

Cell Tally (;

= Abut (, b, , , , b,)[31, (, b, , gs"", , b,
route [2] , routeS, TallyUnit ;

route, routeS. TallyUnit[2];
routeS, TallyUnit[3];

TallyUnit [4] ;

TallyUnit[4]

Figure 5-13: 4 input Tally (program)

5.6 Extended Stick-Wright

The implementation of Stick-Wright presented in the last section can always

directly derive a picture (or more accurately, the information needed to draw

a picture) from any Cell definition. When parameterisation is added to the

language this is no longer the case; what does a Tally {n} look like ? Presently,

Chapter 5. Stick-Wright

I route .I I routes

I route I;I routes ICI,vt .j

=------Il----_-- -------------------------

II routes I I vt I . . ,
,1 L--- L -_ - 0 j-----_--- --------------------------------

---=,

I r,vrict II

Figure 5-14: 4 input Tally (picture)

121

most graphics systems address this problem by delaying any drawing until all

the parameters have been evaluated, and so a particular instantiation is drawn.

The introduction of variable expressions would also demand changes in the

current implementation scheme; values of expressions could not be stored as

attributes in the parse tree since cell definitions can be used many times with

different sets of values. Variables would have to be represented as address ref-

erences to a data-stack, and hence expression evaluation would be delayed until

the cell was to be instantiated. The attribute evaluation stage would therefore

act like a programming language compiler, with the attributed syntax tree corre-

sponding to the generated machine code, and the tree-walking picture generation

stage corresponding to the machine interpretation of that code. Parse tree inter=

pretation is a technique which has successfully been used in other systems, e.g.

the OCCAM interpreter implemented by Marshall [52] derives its interpretation

data-structure directly from the parse tree constructed by an APG [531 parser.

Although full picture instantiation is often desirable, there is an intermediate

notational stage available to answer the question what does Tally {n} look like

C
D

 p C
D

 0 U
)

C
D

 n C
D

'

p D
i

ci
- w

0 C
)

1
1

C
D

•c
l

C
D

U
) 0 0 -3

C

l)
—

S

n I C
D

U

) n —
.

as

C
D

—
 S

C
D

U
)

C
D

 n —
 S 0 p C

D

0 n 0 —
S

—
.

0 p C
D

U

)

•c
l p —
' S p as

C
D

 U
) p C
D

B

C
D

—
 S

U
)

C
D

 p C
D

—
 a

C
D

—
 S

C
D

 p C
D

 n C
D

C
D

p •c
l p —
 S p C

D

C
D

—
 S

U
)

I-
I

C
D

I-
I

C
D

U

)
C

D

C
D

 0 C
D

—
.

U
) p n C
D

 0

C
D

C
D

 p —
S

0 0

p '1
 0 ct

C
D

C
D

C
D

—
 S

C
D

01

I P

C
D

C
D

U

)
C

D

—

C
D

B

C
D

 p 0

C
D

n 0 E
 0 U

)
—

 S

—
 S 0 U

)
'I.

 as

—

C
D

C
D

 p —
 S

0 P

C
D

C
D

U

)
C

D
 p —
 S

0 P
 H

—
 S

U
)

—
 S n C

D

n 0

as

U
)

C
D

U

) as

C
D

—

 S

as

C
D

—

 S I'

—
 S

U
)

I-
I

C
D

C
D

U

)
C

D
 p —
 S 0 U
)

—
 S

I-
I

C
D

01

I 0 p C
D

(0

P

C

—
 S

C
D

'1

C
D

C
R

I C
R

 a —
 S

—
 S

U
) p —
 S

p —
 S

0

S

I
•4

i0

'
I

4
•

H

3d

n C
D

n

p
as

-:
:

U
) D
i

i::

ct

w

U
)

C
D

C
D

p U
) —

U
) n p —

C

D

C
D

U
)

C
D

'a
 p

C
D

S

0 C
)

'I.

0 —
 S

1-
-(

C
D

C
D

—
 S

U
)

C
D

 p 1-
-(

C
D

 p —
 S 0 as

C
D

 n C
D

U
) -3

'S
I C

S
t

'1
 0 ct

C
D

C
,)

U
)

0 —
 S

U
)

—
 S

U
) p —
 S

—
 S p n C

D

—
 S

H

C
D

n 0 —
.

—
S

0 p

C
D

-3

n C
D

n p as

C
D

•c
l

—
 S

C
D

C
D

Ic
j . I I

I I.
I .5
_

a
S

a

I S

S

p C
D

 0 0

U

I

I

a1
 a

p
•a

I
I

a

I I I a

C

C
D

—

C
D

 p C
D

U
)

C
D

I
W

I

sa

a
.

'I IL
.J

I
. a

 a

V

p S

I
U

I
U

U

._
__

.IJ
j

S

I.
I

I
—

 a

e
le

a
a

a
a

a
a

a
a

I a
 a

4
a

a
a

't a
w

r
uu

I

I
I

I
I

I
I

I
U

U

t

t
I

I_
I

I.
I

I
I

I
I

•a

U

.t.

U

I
I

I
I

I
I

I I
U

I

I
4
a

a
ta

a

a
—

a

a
a

a
a

a
a

a
aa

 DS
 a

 t
a

a
a

.
.i

.
.

'i

p.

I
I

I
I

t I
a 0 ¶1

U

a

S
 a

a
na

 a
 a

 —
:

.
-

I

It

0 C
D

U

) 0 U
) 0 —
 S

U
)

a
a

I 4

.
a

is

C
l)

—
 S n

I

p 0

I
•

I
I

Ie
I

I
a

S

a

0

a

I
aa

 r I
I

I a
hi

I
Is

a

a
a

a
S

I I a
 a

 a

—
 S

' a
 a

a

I I
U

a

IF

II
II I

as

a

a
a

a
U

 t I
I

II I

S
 —

 S
 a

 a

II
Ii-

'
.

a
a2

a

I

U

a I te
l

S
I

S

Ii

I r . U

—
jt

•I

a!
e

1
a

a 'ri
'

IL

II
.
a

a—
, I

C
D

a
a

a
a

a

a
a

S
 —

a

I I S I-

a!
 I

F
aa

 a
s

p.

-I
s a

I.
a

e

U
 'I I S
 I I

S

S
 a

I

I

a
a

0 C
D

'-3

'S
I

C
)

C
D

j-J

I—

n U
)

C
D

U

)

a
a

—

a
a

I
a

C
D

C
D

n C
D

S
 a

S

—
,
a

S
 I . a

.
s
S
a

•
1

I

U
 I a
a

a

n C
D

C
D

C
D

I

'I II

a

a
a

a
- U

•S
'a

'Q

4.

I
I

S

I

a
a

a

I

a
a

a
a

i

I
a

a
a

a
a

a
a

I
I

S

I I
a

a
s.

S

b'

—

'iM
IS

I,

chapter 5. Stick- Wright

-------- - - - - ---------
I

I

' cor !; ;!
I cor I

I:
L -------------

'
_

. ,

Graphics

-Stic

r

i

.

Stock LJ1 --------- --------- ---------

I I ! cor ! ! C or !

! I

gnd:m, vdd:a) _ Abut be""", b', b';

b, ;

b be

Call Block (in:d[8];
vdd:a. (sn:p, ont:p, in:a)[8];
ont:p r8 -r;

gnd:a Abut (bs, (bs, re. rs) [8]) ,

Call Chip

.s.

_ 1bnt cor, (vdd.
<in"" [81>.

inont[8]), cor";
Block. <ont"[8]>;

cor__ gnd cor"

VDU

1>>

Figure 5-16: Pad-Placement Example

I
I

T

i

123

Chapter 5. Stick- Wright 124

Cell Col {i, n }(;

= Abut [i=n -> (bs"", gs"", bs"")I(bs"", bs")];
<[i<n-1 -> route[n-i-1]I(b, g, b)]>;
[i<n -> routeSl(b, g, b)];
<TallyUnit [1]>

Cell Tally {n}(;

) = Abut Coli+1, n+1[i := 1 .. n].

Figure 5-17: Tally {n} (program)

implementation of Stick-Wright, and hence only port constraints generated by

the primitive cells are available for use in composition checking (they are the

layer names m, d and p. In an implementation of Extended Stick-Wright the

cell exterior would be obtainable directly from the cell header. The presence

of parameters in any of the port expressions for that cell would require evalua-

tion, but the cell itself would not have to be constructed to provide the exterior

profile. This does, however, make the assumption that the cell's header is an

accurate statement of what the implementing AbutBlock will provide for any set

of parameters. With the proposed scheme either the user's specification has to

be trusted, or else every cell instantiation has to be fully expanded (this would

happen in any case, when the final design is expanded prior to being passed

on to further processing stages). An other alternative would be to heavily con-

strain the use of parameters in the AbutBlock implementation, making the port

exterior statically derivable (directly from attribution rules).

Ports can be labelled with lists of conditions which all have to be present in

both ports during a port connection, e.g. a port vdd:m:VDD could connect to a

port vddl:m:VDD but not to a port vddl:m, since the latter port does not have

the constraint name VDD. Static Stick-Wright uses only layer constraint names,

as generated by the primitive cells, but the mechanism for multiple constraint

0 p C
, 0 —
S

C
,

C
D

 0 C
D

 p 0 I-
I

C
, 0 —

t C
D

C
D

C
D

—
 S

0 p E
 0 C

D

C
, 0 C

l)
 p —
 S

C
D

C
D

C

l)
C

l) —
 S 0 C

l)

'iS
 C
D

0 t 0 I-
I

C
l) C
,

C
D

C
l) C
, p as

C

D
 0 —
 S

C
D

 0 C
D

—
 S

 t t 0 C
l)

 0 -3

0 C
, 0 C

l)

I-
I p —
 S p E

C
D

 p as

C
D

C
D

C
, p C

D

C
l)

C
D

C
D

 0 C
l)

 p C
D

C
D

C
, 0 C

l)
 p p E

C
D

C

l) —
 S

C
,.

C
D

 p C
D

C
D

C

, 0 p —
 S

—
 S

C
l)

C
l)

C
l)

—
S

p C
,

C
D

 p —
I

0 C
D

 F

C
l) C
,

C
D

C
D

C
l) t I-
I 0 0 C
l)

C
D

I S
. I p C
)

0 C
,

I-
I

C
D

C

l)

S
I

S
I. L

I

V
 5!

S
I

4
a

'1
tt%

'

01

..a
ri

ut
:

w
aa

au
%

p

le
d

.._
p.

.

.
•

_
!J

...

su

r
•

rr

—
—

U
—

—
L-

1—

fl
fl

t
J1

—

.
-

-
-

—
.

-
.,

.
.

.
.

.
—

-8

-I

,-
1

0 C
D

0
0 C

D

I-
I p c+

0 I-
I

c+

—
5

C
,

.

I —
.

og

c+

I.

S

C
D

 p E
 t C

D

'iS
 C
D

C
D

C
l)

 p E

C
D

ra
aa

 ea
 a

aa
a

aa
a

aa
a

I S

S

S

S

S

C
, I

C
ol

F

u-
•-

-—
.a

.-
•-

-—
.a

.-
•-

-—
.e

s
na

rn
.e

t.
ta

t.
ta

t.
.1

5

S
 i—

S
.

.1

ar

..
ia

 i—S.

.1

a

i—
--

ta

te

a_
ge

a
a

a
a

a
a

a
a

a
a

a
a

a
S

S

S

S
 S

S

S

S

S

S

S

S

p 0 C
, 0 C
l) p —
 S

0 0 0 '1

1:
1 '-S

1:
1 a V

0 ct

e
•

e
• 0 ct

'-S

S
. A

0 ct

II

0 -3

0

S

S

2•

C
D

 '1

S

S

S

S

S

S
 S

S

S

I

S

S

C
,

C
D

C
l)

'iS

 —
I

C
l)

C
, p 0 0 —
 S

—
 S

C
l)

'iS
 0 0 C
l) 0 —
 S

0 t C
l)

. H

—

 S

C
l) —
 S

C
l) p

S

S

S
 S

S

S

S

(

ac
t 'a
t n

S

S

S

S
 ba

ea
a

aa
 a

a
a
aa

ae
aa

 a
a

aa
 a

sa
sa

 a
aa

 a
 a

S
 S

S

-—

-I
I

I

a

II.

—

I

I
I

S
.

S

S

W
I

—

p
1 ae

ea
ae

E

C
D

S
 . S

I
S

S

S

C
,

I

S

S

S

S

S

S

C
,

S

c.
ts

A

0

p 0 C
D

. . .

S

S

S
 . S
 5 S

S

S

S

S
 S

S

S

I I 1 1 I I

.

t p c.
ts

0 S

C
D

O

c+

C

D

Q
a

L
T

J

c.
ts

C

D

S

S
 I S S

.5

c•
ti.

c+

0

i—
3

pu
p'

C

D

S
 .

I

te
se

se
e a

C
D

 0 C
D

 p —
S

—
.

0

S
 S
I

S

—

I

a
—

I

Ii

I.

—
3

I•

-s
a

—
.

iL
L

I

ii
S

—

a

S

S

S
P

!i

S

U

1 Ii

—

—

T

t. p

E
l

S

I

#1

Chapter 6

Results, Conclusions and Extensions

6.1 The Wright System

The major piece of work undertaken for this thesis was the design and imple-

mentation of the Wright generator for language-based graphical editors. The

primary motivation behind the development of the Wright system was the desire

to provide a formal basis for the development of text/graphic tools. The syn-

tax and semantic analysis stages of this system owe much to work reported by

other researchers in programming environments, however, the graphical interface

and the use of an attributed-syntax-tree as a graphical-data-structure are novel

contributions in this area.

The system was developed from scratch, for the simple reason that no other

tools were available at the outset, however, this provided the opportunity for

making the integration of text and graphics the primary design consideration.

In comparison with other systems, notably the Cornell Synthesizer Generator,

the attribute evaluation algorithm and attribute storage strategies are rather

inefficient. However, they have proved adequate for the purposes of this thesis

and are repairable deficiencies. Wright has succeeded in demonstrating the effi-

cacy of attribute-grammar specification techniques to the text/graphic problem

domain, and has developed into a useful tool for the production of working sys-

tems. The syntax and lexical analysis components of the Wright system have

also successfully been used in a number of other research projects, including an

OCCAM compiler and a PLA based silicon compiler.

126

Chapter 6. Results, Conclusions and Extensions 127

The use of compiler-compiler systems for generating graphical tools was sug-

gested as long ago as 1967 by Kulsrud [41]. While improvements in hardware

since then have been quite dramatic, the development of such compiler-compiler

technology has been decidedly less so, and very few systems see much use outside

universities. Perhaps the major reason for this is that very few systems undergo

the code refinement necessary to meet production quality standards, and that

it is generally perceived to be easier to hand-craft one-off systems, rather than

invest the effort in a more general approach.

For a compiler-compiler to be a product, its output must also be of production

quality. This implies greater attention to issues like efficient storage schemes,

and space/time tradeoffs in table compaction. For such a refinement process

to be undertaken in a commercial setting, the compiler-compiler must be seen

to be in demand. Reasons for wanting formally specified, automatically gener-

ated systems were outlined in the first chapter. Briefly restated, they provide

ease of implementation (assuming the user is familiar with the formalism being

used), security (less bugs) and flexibility. The generated systems themselves,

the structure editors and incremental compilers, open up new possibilities in de-

sign exploration and verification, as well as spurring on the trend towards more

user-friendly, interactive systems. The Wright system allows the relatively fast

generation of prototypes as a new system evolves. The generic modules, such

as the display and parsing modules, relieve the tool-builder from the necessity

of continualy having to re-invest effort in implementing front-ends from scratch.

As a new tool develops, even partial implementations can be tested using the

editing modules.

The limitations of the approach taken in this thesis must also be recognised,

formalisms have a habit of breaking down every now and then when applied to

real problems. For example, the formalism of regular-expressions does not cope

with every lexical item one might like to define, while attribute grammars in

their standard form only allow the declaration of local relationships in the parse

tree. The response to these kinds of problems is usually to tack on extensions to

the formalism which increase the class of candidate problems, e.g. the regular-

Chapter 6. Results, Conclusions and Extensions 128

expression basis of LEX [20] has added operators for detecting ends of lines and

files, and a backtracking operator for re-reading the input. The trouble with

extensions is that they can over-complicate the system, and may also remove

properties of the formalism that lead to automatic implementation and the ap-

plication of verification techniques. In the area of lexical analysis and syntactic

analysis, the usual tricks to increase the utility of the systems do not seriously

impact on either the elegance-- or- security - of- tire-- generated- systems-; however,

more care is needed in the area of semantic functions.

In the Wright system the semantic functions in the attribute grammar are

left entirely to the the user as an exercise in normal HLL programming, with the

system only responsible for controlling the order of application of the functions,

within the context of an interactive editing session. Because the user is allowed

the freedom of an unconstrained procedural programming language, there is

nothing to prevent the semantic functions being written in a style which makes

use of side-effects and shared resources. While this is necessary for improving

the storage demands of attributes, it does involve a departure from the strict

application of the formalism. This situation can be partially avoided by providing

a library of standard semantic functions, e.g. constructors for list structures, and

constraining the user to only using predefined operators and structures in the

attribute occurrences (this is effectively achieved in the Cornell system by the

inclusion of such functions and structures in the grammar specification language

itself).

The attribute grammar is a useful descriptive tool, but it is limited in its

range of application, e.g. context-sensitive syntax checking (e.g. type-checking)

and simple translation and construction processes (e.g. the construction of a

graphical data-structure). As such it can play a crucial role in the front-ends of

a wide range of design-tools.

Chapter 6. Results, Conclusions and Extensions 129

6.2 Stick-Wright

The Stick-Wright editor serves two purposes; it is a working demonstration of a

Wright generated programming environment, and it also contributes some new

ideas to the area of VLSI design tools. The essential feature of the system is

that the major data-structure of the editor, the attributed syntax tree, is used

to represent both a textual and a pictorial representation of the object being

designed (in this case, an IC stick-diagram). This close coupling between text

and graphics is crucial to the provision of an interactive design environment in

which the user can control the development of a design using a variety of editing

techniques.

The first method of graphical interaction demonstrated in this thesis was

the graphics text macros developed for Pict-Wright. These macros allow the

editor designer to structure graphical actions (e.g. mouse movements, menu se-

lections etc.) by associating them with editor keys (which initiate the graphical

command) and also with textual insertions into the program text. This pro-

vides a way for developing graphics commands which modify the design using

the language interface (and hence guarantee a correct internal representation).

The second type of graphical action does not necessarily cause text insertions

(although it could initiate them), but provides a way for graphical interactions

to cause changes in the status of the current edit, e.g. changing the current tree

position, or repainting parts of the tree.

The use of syntactic and semantic constraints to enforce a design methodology

has great potential for controlling the complexity of a VLSI design [70]. Stick-

Wright demonstrates an effective implementation technique for applying such-

design strategies.

Graphical notations for dealing with programming language features have

been presented; iteration of cells within a cell composition is implemented by

the iteration tile in Stick-Wright and conventions for dealing with conditions

Chapter 6. Results, Conclusions and Extensions 130

and parameters, without recourse to full instantiation, are suggested in Extended

Stick-Wright.

Stick-Wright, although a small system with a compact specification, has many

powerful features and is a significant step towards a VLSI programming envi-

ronment that fully supports design exploration and verification.

6.3 Extensions

6.3.1 Structure Editing

The generic editor module in the Wright system provides a basic selection from

the tree and text editing commands commonly found in such systems, and could

easily be extended to include a wider range. The graphical editing commands

tend to be more application specific, although common techniques could be

shared between systems (e.g. the geometrical transformation attributes of Stick-

Wright could be adapted to implement a variety of graphical data-structures).

A major component of the Wright system's text editing module is the pretty-

printer which displays the textual version of the attributed syntax tree. At the

moment the pretty-printer produces a flattened version of the current position

and surrounding text, thus partially loosing the hierarchy implicit in the original

tree, although the tree structure is indicated by the highlighting of the current

sub-tree. It would be desirable to have more complicated schemes available

which were more selective of what they displayed, e.g. reducing detail (e.g. pro-

cedure bodies) when displaying text outside the the current area of interest. The

attribute grammar presents a direct means for allowing the grammar designer

to control such activities, if appropriate printing primitives are provided. By

viewing a program text as both a hierarchical and dynamic structure, it should

be possible to maintain a view of the design which keeps the user fully briefed

on currently salient features, thus speeding up the design process. Just how

such views can be provided, and whether the attribute grammar is the best way

Chapter 6. Results, Conclusions and Extensions 131

to specify their automatic generation, remain an interesting problem. Related

work in the area of pretty-printing by Rose and Welsh [74] and also Woodman

[96], are folding and indentation algorithms for displaying the text in a fully flat-

tened form. These algorithms are more adaptive than the simple fixed parameter

approach taken in Wright and could either be applied'to the text structures gen-

erated by the attribution stage, or even integrated into the semantic functions

themselves.

The use of parsing tables for the auto-completion of tokens and phrases (as

described in Chapter 3) is another area where the editing modules of Wright

could be extended; the information for performing such activities is freely avail-

able to the generic modules. A working auto-completion module was written for

ASG (the lexical analyser), but has not yet been adapted for inclusion into the

Wright system.

6.3.2 Physical Design

In Stick-Wright the attribute grammar specification is mostly concerned with

the decoration of the parse tree for graphical display and the syntactic checking

of port compositions. Both these areas are extremely important to any CAD

system, and are certainly candidates for further development. The standard

symbol-table, expression compilation and pretty-printing attribution techniques

can apply to a wide range of input-languages, and present the opportunity for a

range of related design tools to share implementation modules. In this and the

following sections I consider wider areas of application for the AG specification

technique.

Stick-Wright is only one possible approach to a symbolic layout system. Its

tiling/abutment strategy could be replaced by an explicit port-matching/wiring

approach (as in Sticks&Stones), indeed, a mixture of these techniques was origi-

nally considered for Stick-Wright. Further developments to the dedicated editing

functions could be made, e.g. program transformations which alter the external

appearance of a cell to conform to some new positional context (possibly by the

Chapter 6. Results, Conclusions and Extensions 132

automatic recursive re-arrangement of cell interiors (as suggested by Cardelli

[12]), or by the addition of routing channels. A graphical representation of dy-

namic language features is suggested in Extended Stick-Wright, but has yet to

be tested in a full implementation.

The graphical data-structure supported by the Stick-Wright suggests a foun-

dation for the implementation of many other graphical tools, e.g. the schematic

entry system described in section 2.2.5. In schematic entry the physical po-

sitioning of the symbols in the schematic is not meant to suggest a specific

placement in the generated layout, but it is important- that- the symbols. and.

the connecting wiring do have a clear and understandable layout in the actual

schematic. Although algorithms have been developed which generate pleasing

wiring patterns and component placements (and those algorithms will continue

to be important), the user can significantly contribute to a good schematic layout

by judicious graphical placement with a pointing device. By providing an ap-

propriate set of graphical primitives the system could allow the user to enter an

entire design without even being aware of the text version, however, the presence

of the textual interface may also encourage the use of programming features like

parameterisation and conditional evaluation, perhaps using the graphical-nota-

tional devices suggested in the previous chapter. The close coupling between

graphics and language should also aid in the maintenance of any such system,

since the implementation is effectively driven from one single specification, the

attribute grammar.

6.3.3 Silicon Compilation

Perhaps the greatest demand for the automatic generation of language proces-

sors (at least in the area of VLSI) will come in the emerging field of silicon

compilation. The reasons for this are simply that it is unlikely that any particu-

lar hardware description language (HDL) will dominate for some time to come,

and that many attempts at finding the best way to specify hardware systems

will have to be made. Not only are the specifications of such systems a mov-

Chapter 6. Results, Conclusions and Extensions 133

ing target, the underlying technologies are also continually evolving. The quick

production of prototype systems offered by systems such as Wright may be an

answer to these problems.

Many current attempts at HDLs (e.g. VHDL [47]) beox strong resemblances

to either Pascal or ADA, with added keywords like Signal and After. If this

continues to be a trend then the attribute grammar specification work on such

procedural languages [89] will prove useful in generating appropriate program-

ming environments for such systems. Other types of programming language, in-

cluding applicative and object-oriented, can also benefit from the AG approach,

and may also be explored as candidates for implementing HDLs.

6.3.4 Verification and Simulation

Stick-Wright demonstrates a syntactic method for restricting the domain of al-

lowable circuit structures. This approach can be extended to deal with further

physical, structural and behavioural properties, e.g. Milne's calculus for cir-

cuit descriptions, Circal [58], could be implemented using an AG, and program

transformations and editing commands could be developed for manipulating the

Circal expressions. A major problem in the formal language approach to VLSI

verification has been the size of the expressions which represent relatively sim-

ple structures, and the difficulty in performing equivalence proofs on such ex-

pressions. Proof editing has been the subject of investigation for a number of

AG projects, and is an active area of research. Machine assistance will be of

paramount importance in the completion of any large scale verification.

An appealing design system which would make full use of the graphical facil-

ities provided by the Wright system is an interactive simulator using a hardware

description language and circuit model [60] to animate a design specification on

a graphics screen. The structure editor and graphics commands could be used

for editing not only the circuit description, but also the driving simulation script.

The techniques developed in this thesis provide a means for building just such

an interactive design environment.

Bibliography

[1] A.V. Aho and J.D. Ullman. Principles of Compiler Design. Addison-
Wesley, Reading, Mass., 1979.

[2] F. Anceau. LSI-processor architecture. 1984. Presented at the NATO
Advanced Study Institute on Microarchitecture of VLSI Computers, Urbino,
Italy.

[3] F. Anceau. Statistical properties and layout strategies for NMOS and
CMOS layout. 1984. Presented at the NATO Advanced Study Institute
on Microarchitecture of VLSI Computers, Urbino, Italy.

[4] H.G. Barrow. Proving the correctness of digital hardware designs. VLSI
Design, 5(7):64-77, July 1984.

[5] N. Bergmann. Idiomatic Integrated Circuit Design. PhD thesis, University
of Edinburgh, August 1984.

[6] G.H. Birtwistle, O.J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA begin.
Auerbach Publishers Inc., Philadelphia, 1973.

[7] G. Brebner and D. Buchanan. On compiling structural descriptions to floor-
plans. In International Conference on Computer Aided Design, pages 6-7,
1983.

[8] D. Buchanan. personal communication, 1985.

[9] I. Buchanan. Modelling and Verification in Structured Integrated Circuit
Design. PhD thesis, University of Edinburgh, 1980.

[10] M. Burich. SDL compiler compiler - the design of module generators. July
1986. Presented at the NATO Advanced Study Institute on Logic Synthesis

and Silicon Compilation for VLSI Design.

[11] R.H. Campbell and P.A. Kirslis. The SAGA project: a system for software
development. ACM SIGPLAN Notices, 19(5):73-80, May 1984.

134

Bibliography 135

[12] L. Cardelli. An Algebraic Approach to Hardware Description and Verifica-
tion. PhD thesis, University of Edinburgh, 1982.

[13] L. Cardelli. Sticks and Stones: An Applicative VLSI Design Language.
Technical Report CSR-85-81, University of Edinburgh Department of Com-
puter Science, June 1981.

[14] L. Cardelli. Two-Dimensional Syntax for Functional Languages. Techni-
cal Report CSR-115-82, University of Edinburgh Department of Computer
Science, May 1982.

[15] J. Cherry, H. Shrobe, N. Mayle, C. Baker, H. Minsky, K. Reti, and N.
Weste. Ns: an integrated design system. In E. Horbst, editor, VLSI 85,

pages 325-334, August 1985.

[16] P.B. Denyer, D.A. Renshaw, and N. Bergmann. A silicon compiler for VLSI
signal processors. In Digest of Technical Papers, pages 215-218, ESSCIRC,
1982.

[17] V. Donzeau-Gouge, G. Huet, G. Kaha, and B. Lang. Programming En-
vironments based on structured editors: the Mentor experience. Technical
Report, INRIA, France, May 1980.

[18] A.E. Dunlop. Slim - the translation of symbolic layouts into mask data.
In ACM IEEE 17th Design Automation Conference, pages 595-602, 1980.

[19] EDIF: Electronic Design Interchange Format, Version 1.0.0. Electronic
Design Interchange Format Steering Committee, 1985.

[20] Lesk E.M. and Schmidt E. Lex: A Lexical Analyser Generator. Bell Labo-
ratories, 1978. UNIX Programmer's Manual.

[21] C.N. Fischer and et al. The POE language-based editor project. ACM
SIGPLAN Notices, 19(5):21-29, May 1984.

[22] J.D. Foley and A. Van Dam. Fundamentals of Interactive Computer Graph-
ics. Addison-Wesley, Reading, Mass., 1982.

[23] J.G. Gay, R. Richter, and B.J. Berne. Component placement in VLSI cir-
cuits using a constant pressure monte carlo method. Integration, the VLSI
Journal, 3(4):271-282, 1985.

[24] A. Goldberg and D. Robson. SMALLTALK-80. Addison-Wesley, Reading,
Mass., 1983.

[25] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF. Volume 78 of
Lecture Notes in Computer Science, Springer-Verlag, New York, 1979.

Bibliography 136

[26] J.P. Gray, I. Buchanan, and P.S. Robertson. Designing gate arrays using
a silicon compiler. In ACM IEEE 19th Design Automation Conference,
pages 377-383, 1982.

[27] Brown H., Tong C., and Foyster G. Palladio: an exploratory environment
for circuit design. Computer, 16(12):41-56, December 1983.

[28] W.R. Heller, Sorkin G., and K. Maling. The planar package planner for
system designers. In ACM IEEE 19th Design Automation Conference,
pages 253-260, 1982.

[29] J.G. Hughes. The Edwin User's Guide (Fourth Edition). Technical Re-
port CSR-74-81, University of Edinburgh Department of Computer Sci-
ence, August 1981.

[30] J.G. Hughes. The ILAP library. VLSI Design Tools Volume 1, University
of Edinburgh Department of Computer Science.

[31] F. Jalili. A general incremental evaluator for attribute grammars. Moore
School of Electrical Engineering, Philadelphia, March 1983.

[32] F. Jalili. A general linear-time evaluator for attribute grammars. ACM
SIGPLAN Notices, 18(9):35-44, 1983.

[33] G.F. Johnson and C.N. Fischer. Non-syntactic attribute flow in language
based editors. In 9nth Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pages 185-195, 1982.

[34] S.C. Johnson. Yacc: Yet Another Compiler-Compiler. Bell Laboratories,
1978. UNIX Programmer's Manual.

[35] S.G. Johnston. Graphical Display of a Concurrent Device Simulation using
CIRCAL. Technical Report CSR-204-86, University of Edinburgh, Depart-
ment of Computer Science, August 1986.

[36] L.G. Jones and J. Simon. Hierarchical VLSI design sytems based on at-
tribute grammars. In 14th Annual ACM SIGACT-SIGPLAN Symposium

on Principles of Programming Languages, 1986.

[37] R.K. Jullig and F. DeRemer. Regular right-part attribute grammars. In
ACM SIGPLAN Symposium on Compiler Construction, pages 171-178,
June 1984. SIGPLAN Notices Vol. 19, No. 6.

[38] D.E. Knuth. On the translation of languages form left to right. Information
and Control, 8(6):607-639, 1965.

Bibliography 137

[39] D.E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2(2):127-145, 1968. correction in vol.5,1, p.95-96, 1971.

[40] P.W. Kollaritsch and N.H.E. Weste. A rule-based symbolic layout expert.
VLSI Design, 5(8):34-42, August 1984.

[41] H. E. Kulsrud. A general purpose graphic language. Communications of
the ACM, 11(4):247-254, April 1968.

[42] F. Lakin. Computing with text-graphic forms. In LISP Conference, Stan-
ford, pages 100-106, 1980.

[43] R.P. Larsen. Computer-aided preliminary layout design of customized MOS
arrays. IEEE Transactions on Computers, C-20(5):512-523, May 1971.

[44] Chipsmith, a random logic compiler for gate arrays, optimised arrays and
standard cells. Lattice Logic Ltd., 9 Wemyss Place, Edinburgh EH3 6DH,
1985.

[45] H.S. Law and G. Wood. A mixed-media approach to module generator
design. July 1986. Presented at the NATO Advanced Study Institute on
Logic Synthesis and Silicon Compilation for VLSI Design.

[46] T. Lenguaer and K. Mehlhorn. The HILL system: a design environment for
the hierarchical specification, compaction, and simulation of integrated cir-
cuit layouts. In P. Penfield, Jnr., editor, Conference On Advanced Research
in VLSI, pages 139-149, Massachusetts Institute of Technology, 1984.

[47] R. Lipsett, E. Marschner, and M. Shahdad. VHDL - the language. IEEE
Design & Test, 3(2):28-41, April 1986.

[48] R.J. Lipton, J. Valdes, G. Vijayan, S.C. North, and R. Sedgewick. VLSI
layout as programming. ACM Transactions on Programming Languages

and Systems, 5(3):405-421, July 1983.

[49] B. Locanthi. A simula package for IC layout. Caltech Display File #1862,
1978.

[50] B. Lorho, editor. Methods and Tools for Compiler Construction. Cambridge
University Press, 1984.

[51] K. Maling, S. Mueller, and W.R. Heller. On finding most optimal rectan-
gular package plans. In ACM IEEE 19th Design Automation Conference,

pages 663-670, 1982.

Bibliography 138

[52] R.M. Marshall. Automatic generation of controller systems from control
software. To appear at the International Conference on Computer Aided
Design, November 1986.

[53] G.A. McCaskill. APG: An Automatic Parser Generator. University of
Edinburgh Department of Computer Science, 1985.

[54] G.A. McCaskill. Interactive ILAP. Technical Report CSR-147-83, Univer-
sity of Edinburgh, Department of Computer Science, October 1983.

[55] C.A. Mead. VLSI and technological innovations. In J.P. Gray, editor, VLSI
81, pages 3-11, August 1981.

[56] C.A. Mead and L.A. Conway. Introduction to VLSI Systems. Addison-
Wesley, Reading, Mass., 1980.

[57] R. Medina-Mora and P.H. Feiler. An incremental programming envi-
ronment. IEEE Transactions on Software Engineering, SE-7(5:472-482,
September 1981.

[58] G.J. Milne. Circal: a calculus for circuit description. Integration, the VLSI
Journal, 1(2,3):121-160, 1983.

[59] G.J. Milne. The Correctness of a Simple Silicon Compiler. Internal Re-
port CSR-127-83, University of Edinburgh, Department of Computer Sci-
ence, January 1983.

[60] G.J. Milne. A model for hardware description and verification. In ACM
IEEE 21st Design Automation Conference, pages 251-257, IEEE, June 1984.

[61] W.M. Newman and R.F. Sproull. Principles of Interactive Computer Graph-
ics. McGraw-Hill, New York, 1973.

[62] A.R. Newton. Symbolic layout and procedural design. July 1986: Presented"
at the NATO Advanced Study Institute on Logic Synthesis and Silicon
Compilation for VLSI Design.

[63] T. Ng and S.L. Johnsson. Generation of layouts from mos circuit schemat-
ics: a graph theoretic approach. In ACM IEEE 22nd Design Automation
Conference, pages 39-45, IEEE, June 1985.

[64] I.M. Nixon. Chip churn: a PLA based silicon compiler. To appear at
the International Conference on Custom and Semi-Custom ICs, November
1986.

[65] D.C. Oppen. Prettyprinting. ACM Transactions on Programming Lan-
guages and Systems, 2(4):466-483, October 1980.

Bibliography 139

[66] R.H.J.M. Otten. Automatic floorplan design. In ACM IEEE 19th Design
Automation Conference, pages 261-267, 1982.

[67] J.K. Ousterhout, G.T. Hamachi, R.N. Mayo, W.S. Scott, and G.S. Taylor.
Magic: a VLSI layout system. In ACM IEEE 21st Design Automation
Conference, pages 152-159, IEEE, June 1984.

[68] C. Piguet, E. Dijkstra, and G. Berweiler. Automatic generation of CMOS
layout cells from a hardware description language. In K. Waldschmidt and
B. Myhrhaug, editors, Euromicro 85, pages 477-486, September 1985.

[69] M. Rem. The VLSI challenge: complexity bridling. In J.P. Gray, editor,
VLSI 81, pages 65-73, August 1981.

[70] M. Rem and C.A. Mead. A notation for designing restoring logic circuitry
in CMOS. In Charles L. Seitz, editor, Proceedings of the Second Caltech
Conference on Very Large Scale Integration, pages 399-411, January 1981.

[71] T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent
analysis for language-based editors. ACM Transactions on Programming
Languages and Systems, 5(3):449-477, July 1983.

[72] M.C. Revett and P. Ivey. Astra - a CAD system to support a structured
approach to IC design. In F. Anceau and A.J. Aas, editors, VLSI 83,

pages 413-422, August 1983.

[73] P.S. Robertson. The IMP77 Language. Technical Report CSR-19-77, Uni-
versity of Edinburgh Department of Computer Science, November 1980.

[74] G.A. Rose and J. Welsh. Formatted programming languages. Software -
Practice and Experience, 11(7):651-669, July 1981.

[75] J.B. Rosenberg. Chip assembly techniques for custom IC design in a sym-
bolic virtual-grid environment. In P. Penfield, Jnr., editor, Conference

On Advanced Research in VLSI, pages 213-225, Massachusetts Institute
of Technology, 1984.

[76] A. Sangiovanni-Vincentelli. Placement and routing in a synthesis environ-
ment. July 1986. Presented at the NATO Advanced Study Institute on
Logic Synthesis and Silicon Compilation for VLSI Design.

[77] S. Sastry and S. Klein. Plates: a metric free VLSI layout language.

In P. Penfield, Jnr., editor, Conference On Advanced Research in VLSI,
pages 165-174, Massachusetts Institute of Technology, 1982.

Bibliography 140

[78] M. Schlag, Y.Z. Liao, and C.K. Wong. An algorithm for optimal two-
dimensional compaction of VLSI layout. In International Conference on
Computer Aided Design, pages 88-89, 1983.

[79] R. Schmid and U.G. Baitinger. The Role of Floor Plan Tools in the
VLSI Design Process. Technical Report, Institut Fur Technik der Infor-
mationsverarbeitung, Universitat Karlsruhe, 1984.

[80] J. Schoellkopf. Lubrick: a silicon assembler and its application to data-path
design for fisc. In F. Anceau and A.J. Aas, editors, VLSI 83, pages 435-455,
August 1983.

[81] M.J. Siskind, Southard J.R., and Crouch K.W. Generating custom high
performance VLSI designs from algorithmic descriptions. In P. Penfield,
Jnr., editor, Conference On Advanced Research in VLSI, pages 28-39, Mas-
sachusetts Institute of Technology, 1982.

[82] J.R. Southard. Macpitts: an approach to silicon compilation. Computer,
6-12:74-82, December 1983.

[83] S. Taylor. Symbolic layout. VLSI Design, 5(4):34-42, March 1984.

[84] Whitney T.E. and Mead C. An integer based hierarchical representation
for VLSI. In C.E. Leiserson, editor, Conference On Advanced Research in
VLSI, pages 241-257, Massachusetts Institute of Technology, 1986.

[85] T. Teitelbaum, T. Reps, and S. Horowitz. The Cornell program synthesizer:
a syntax-directed programming environment. Communications of the ACM,
24(9):563-573, September 1981.

[86] R.D. Tennent. Language design methods based on semantic principles. Acta
Informatica, 8:97-112, 1977.

[87] N. Traub. A - Lisp-Based- Circal-Environment; Interrral-Report- CSR-152-
83, University of Edinburgh, Department of Computer Science, November
1983.

[88] S. Trimberger. Combining graphics and a layout language in a single interac-
tive system. In ACM IEEE 18th Design Automation Conference, pages 234-
239, 1981.

[89] J. Uhl, S. Drossopoulo, G. Persch, G. Goos, D. Dausmann, G. Winterstein,
and W. Kirchgassner. An Attribute Grammar for the Semantic Analysis of
ADA. Volume 139 of Lecture Notes in Computer Science, Springer-Verlag,

New York, 1982.

Bibliography 141

[90] W.M. vanCleemput. Hierarchical design for VLSI: problems and advan-
tages. In Charles L. Seitz, editor, Proceedings of the First Caltech Confer-
ence on Very Large Scale Integration, pages 259-274, January 1979.

[91] W.M. Waite and G. Goos. Compiler Construction. Texts and Monographs
in Computer Science, Springer-Verlag, New York, 1984.

[92] N.H.E. Weste and B. Ackland. A pragmatic approach to topological sym-
bolic IC design. In J.P. Gray, editor, VLSI 81, pages 117-129, August 1981.

[93] T.E. Whitney. Hierarchical Composition of VLSI Circuits. PhD thesis,
California Institute of Technology, 1985.

[94] T.E. Whitney. A hierarchical design-rule checking algorithm. Lambda,
2(1):40-43, First Quarter 1981.

[95] J.D. Williams. A graphical compiler for high level lsi design. In AFIPS
Conference Proceedings, pages 289-295, 1978.

[96] M. Woodman. Formatted syntaxes and modula-2. Software - Practice and
Experience, 16(7):605-626, July 1986.

Appendix A

Wright Reference Manual

A.1 Editor Commands

A.1.1 Introduction

This section contains a brief introduction to the editing commands available in

the two editors presented in this thesis. The editor commands are assigned to

the keypad and cursor keys of the VDU's keyboard. Here is the keypad layout

for the VT100 terminal:

PF1 PF2 PF3 PF4

7

4

1

8

5

2

9

6

3

7

Enter

0

In the explanation of the editor commands the keyboard key-name is given

before the editor command name. In addition to the keypad names above, most

keyboards also have cursor-keys and function keys (F1 ... F13).

142

Appendix A. Wright Reference Manual 143

A.1.2 Generic-Commands

These commands are found in all Wright generated editors:

cursor-UP - MoveToFather

less at top of tree).

move to the father of the current tree node (un-

I
- MoveToSon move to first son of current tree node.

cursor-RIGHT - MoveToRight move to parent and then down to next son.

If the current node is a terminal node and there is no next sibling then

traverse the tree up and then down to the next terminal. If the current

node is not a terminal and there is not a rightmost sibling, then wrap

round to the first sibling.

I cursor-LEFT - MoveToLeft

0 - MoveToLeftSibling

same as above, but in the other direction.

Same as MovetoLeft, but always wrap round at left-

most position to the right-most position.

. - MoveToRightSibling Same as MovetoRight, but always wrap round at

right-most position to the left-most position.

1 - NextTerminal

14 - DeleteSubTree

Descend down the tree until a terminal is reached.

Replace the current node with the first child which matches

the current production.

6 - Diagnostics

values).

Print out information on the current node (e.g. attribute

7 - InsertSubTree Push down current node into parse stack and invoke

parser (this command enables list structures to grow).

8 - ReplaceSubTree Delete current node and invoke parser to read in re-

placement.

Appendix A. Wright Reference Manual 144

, - DoPDFaction This command calls the user supplied routine which should

save the current text and picture to files.

Enter - ToggleGraphics This command switches between the graphics win-

dow and the text window view on the graphics monitor.

Home - TopOf Tree

F3 - APGDebug

F4 - LexDebug

Move to root of tree, and also re-evaluate the whole tree.

Switch on/off diagnostics for the parser.

Switch on/off diagnostics for the lexical analyser.

When the parser is invoked the Command window prompts for user input.

While in program-entry mode the user can invoke any lexical macros which have

been defined in the procedure do user macro. Macros can be bound to any

keypad key.

The window-manager for the system can be invoked using Ctrl-W. Com-

mands for the window manger are:

Cursor Keys

Home-Key

move the current window/device about.

selects current option (which is displayed in window).

U execute shell command.

0 dump current window to file.

A.1.3 Pict-Wright

Pict-Wright has no special editing commands, but defines the following lexical

insertion macros which can be invoked during program-entry mode.

Enter insert mouse provided x, y coordinate pair.

0 1 insert mouse provided x coordinate.

Appendix A. Wright Reference Manual 145

0 insert mouse provided y coordinate.

H insert a statement line{x1, y1} (x2, y2) provided by two mouse positions.

A.1.4 Stick-Wright

Stick-Wright has no lexical insertion macro, but defines the editor commands:

- - MoveToTile select a tile in the current graphics image with the mouse.

The command then moves the text-cursor to the matching position.

12 - MoveToCall move to the Ident phrase of the Design phrase. This node

defines which picture is displayed on the graphics monitor.

3 - SetDepth

fault=1).

select the depth to which cell calls should be printed (de-

Shifted 3 - SetBounding

9 - Refresh

Switch bounding boxes on/off.

re-evaluate and re-draw graphics display.

A.2 Wright Input Language

A.2.1 Introduction

This section contains the ASG (scanner generator) and APG (parser generator)

specifications of the Wright Input Language, as used for the description of Pict-

Wright and Stic-Wright in Chapters four and five.

A.2.2 Lexical Definition

Lexical definition WRT is

Ranges

Appendix A. Wright Reference Manual 146

@L is 'a' .. 'z' + 'A' .. 'Z';
ON is '0' .. '9';
@B is 0 .. 32;
@C is 0 .. 127 -
@D is 0 .. 127 -
@A is 0 .. 127 - '>' - @L

end of ranges

macros
#case is $$;
#p is $($)*;

#0 is ($1)

end of macros

expressions

#case;

_grammar -> \grammar;
_is -> \is;
_lex -> \lexicals;
_code -> \code;
_synth -> \synthesised;
_inher -> \inherited;
_prod -> \productions;
_prior -> \priorities;
_assoc -> \associativities;
_end -> \end;
_of -> \of;
right -> \right;

_left -> \left;
_start -> \start;

_arrow -> \->;
_comma -> \.;
_semi -> \;;
_bar -> \I;
_plus -> \+;
_star -> *;
_opt -> \?;
_lb -> \(;

_rb -> \);
_user -> \ [@D*\] ;

_att -> \<\ * #p[@L\ * 7 \$'@N I @N* \ * _
#p[

@A* #o[#p[@L\ *1 #o[\$ ON ! @N* 11

] \> ;

_form -> @B@B*;

Appendix A. Wright Reference Manual

_comm

_name
-> \{@C*\};
-> (@LI_)(@LI@NI_)*

end of expressions

end of lexical-definition

A.2.3 Grammar

Grammar Wright is

Code [{}]

Lexicals _grammar, _is, _lex, _code, _synth. _inher, _prod, _prior,
_assoc, _end. _of, _right, _left, name, _start, _arrow,
_comma, _semi. _bar, _plus. _star, _opt, _lb,
_rb, _att, _user;

Productions

-> _grammar name _is
iCode
Lexs
Synth
Inher
Prods
Priors
Ass

_end _of _grammar;

iCode -> _code imp-code I _error

Lexs -> _lex Name-list _semi

Synth -> _synth Def_list _semi I;

Inher -> _inher Def_list _semi I;

Def_list -> Def_list _comma Def I Def

Def -> name _lb Name-list _rb ;

Name-list -> Name-list _comma Name-code

Name_code;

Name-code -> _name imp-code;

147

Prods -> _prod
Prod-list

_end _of _prod;

Appendix A. Wright Reference Manual

Prod-list -> Prod_list Prod I Prod ;

Prod -> Startl NT _arrow RHS_list _semi I

_error ;

Startl -> _start I;

NT -> _name ;

RHS_list -> RHS_list bar Alt I

Alt;

Alt -> RHS imp_code;

RHS -> element RHS I

element -> _name I

LB RHS_list RB op;

LB _lb
RB -> _rb ;

op -> _plus I

_star I

_opt I

imp-code -> imp_code pCode I ;

pCode -> user I _att ;

Priors -> _prior PP _semi
PP -> PP PPO I PPO;

PPO -> LB Name-list RB Name-list;

Ass -> _assoc Ass-list _semi I ;

Ass-list -> Ass-list _comma Ass-spec I Ass-spec

Ass-spec -> name _is _left I

_name _is _right

end of productions

end of grammar

148

Appendix B

Attribute Grammar for Pict-Wright

B.1 The Auxiliary Definition File "Pict. src"

This section contains an abridged extract from the auxiliary definition file (which

is too long to include in its entirety), and is provided to give an impression as

to the implementation of Pict-Wright's semantic functions.

! ----------------
! Lexical Actions

%routine lex integer
! takes current token character string and evaluates an
! integer value from it. This value is stored in the parse tree

%end

i --
1 Lexical Insertion routines

%external %routine %spec REQUEST %alias "EDWIN ___F REQ" -
(%integer %name but, x, y)

! finds the current display device cursor position

%routine do user macro (%integer i)

these are the user-supplied graphical interaction routines

%integer but,x,y,x2,y2

request(but,x,y) {find position on screen}

%if i = Keypad Enter %start {coord pair}
give to scanner(coordinate pair(x, y))

%else %if i = Keypad 0 {x coord}
give to scanner(single coordinate(x))

149

Appendix B. Attribute Grammar for Pict- Wright 150

%else %if i = Keypad Dot
give to scanner(single coordinate(y))

%else %if i = Keypad Minus
request(but,x2,y2)

{y coord}

draw a line from (x,y) to (x2.y2)

give to scanner(line statement(x,y,x2,y2))
%f ini sh

%end

%routine do user editor action (%integer i)
! none for Pict-Wright

%end

!--
Pretty Printing Attribution routines

%constant %integer default = 30 {maximum size in X-direction}

%record %format text box fm (%short x, y, last x,
%byte folds, extra, auto, indent)

%integer %function cO (%integer size, extra, auto, indent)
! make new text box

%end

%integer %function c (%integer boxi, size, extra, auto, indent)
! make new text box

%end

%integer %function c2 (%integer boxi, box2, size, extra, auto, indent)

I make new text box
%end

! Arithmetic Operations

%constant %integer max int = 1000000
{values > max int => string address}

%integer %function do negate (%integer a)
attribution error("type error, expected integer") %if a > max int

%result = -a

%end

%integer %function do times (%integer a, b)
attribution error("type error, expected integer") %if a > max int
attribution error("type error, expected integer") %if b > max int
%result = a*b

%end

Appendix B. Attribute Grammar for Pict-Wright' 15T

%integer %function do divide (%integer a, b)
attribution error("type error, expected integer") %if a > max int
attribution error("type error, expected integer") %if b > max int
%result = a // b

%end

%integer %function do plus (%integer a, b)
%if a > max int %start

%if b < max int %start
attribution error("type error, adding string and integer")

%f ini sh
%result = concatenate(a, b)

%else
%if b > max int %start

attribution error("type error, adding string and integer") -
%finish
%result = a + b

%f ini sh
%end

%integer %function do minus (%integer a, b)
attribution error("type error, expected integer") %if a > max int
attribution error("type error, expected integer") %if b > max int
%result = a - b

%end

%integer %function do int
%result = integer at first son of current production

%end

%integer %function do string
%result = address of string at first son of current production

%end

Environment Handling (ident -> type,value)

%record %format env fm (%integer val,
%string(*)%name id,
%record(env fm)%name split, next)

%integer %function defadd (%integer a, b)
%result = add definition lists a and b

%end

%integer %function do binding (%integer a)
%result = new binding of current _id to value a

%end

%integer %function envadd (%integer a, b)
%result = addition of environments a and b

Appendix B. Attribute Grammar for Pict- Wright 152

%end

%integer %function def and bind (%integer def)
%result = create symbol table entry for current _id and

link with def
%end

%integer %function do bind
%result = create symbol table entry for current _id

%end

%integer %function initial environment
%result = the null symbol table

%end

%integer %function do name ref (%integer env)
%if can find current _id in symbol table env %start

%result = its value
%else

attribution error("identifier _id not declared")
%f ini sh

%end

%integer %function do length (%integer s)
! discover length of string drawing (at current scaling)

%end-

Graphic Data Structure

%record %format pos fm (%integer x, y)

%record %format arg fm (%integer arg, %record(arg fm)%name next)

%integer %function copy origin (%integer i)
%result = current value of procedure call origin

%end

%integer %function new origin
%result = zero origin

%end

%integer %function do colour (%integer argi, origin)
! set colour to argi
%result = origin

%end

%integer %function do colour (%integer argi, origin)
! set colour to argi
%result = origin

%end

Appendix B. Attribute Grammar for Pict-Wright 153

%integer %function do size (%integer argi, origin)
! set font size to argi
%result = origin

%end

%integer %function do font (%integer argi, origin)
! set font to argi
%result = origin

%end

%integer % ctzan- do- prove- (%i tteger- argl-, arg2; origizr) -
! change current position

%if- argi- = 0- %st-art"
new position = origin + arg2 {where + is pairwise}

{addition of coords}
%else

new position = origin from parent Command List +

argi + arg2
%f inish
%result = new position

%end

%integer %function do line (%integer argi, arg2, origin)
! similar to move, but also draws line

%end

%integer %function do text (%integer argi, arg2, origin)
! similar to move, but also draws text.
! arg2 is a string, the length of which is used as a
! x-translation, thus leaving the cursor at the end

%end

%integer %function do call (%integer a, argi, arg2, origin)

%if id not found in symbol table(a) %start
attribution error("procedure ".id." not declared")

%else

insert parameters into symbol table(proc, arg2)
I gives attribution error if too many parameters, or too few.

move origin(proc, argi)
zero tree(proc found for id)

evaluate tree(proc, Command List Pos) {call evaluator}

%result = final position after call

%f ini sh
%result = origin

Appendix B. Attribute Grammar for Pict- Wright 154

%end

--
Argument List

%integer %function add vals (%integer a. %integer b)
! build arg list

%end

%integer %function add val (%integer a)
! initial arg list

%end

%integer %function command ref (%integer definitions)
%result = address of CommandList

%end

%routine initialise user globals
! called by parser to initialise user variables

%end

%routine do user eval actions
chance for user to supply graphics commands
prior to tree evaluation (e.g. erasing the display)

%end

%routine do user post eval actions
! chance for user to supply commands
! after evaluation (e.g. printing of attribute values)

%end

%routine do user move actions
! chance for user to supply commands
! after a cursor move (like calling the pretty--printer

%end

%routine do user pdf action
user supplied routine for preparing hard copy
of the current graphics display

%end

External Interface

%external %routine Pict parse (%string(255) file)

! application program calls this

parse(file.".pct") {the generic parser}

Appendix B. Attribute Grammar for Pict-Wright 155

%end

%end %of %file

B.2- The- Grammar-

Grammar Pict is

Code [%include "pict.src"]

Lexicals _id,_clb,_crb,_slb,_srb,_comma,_ass,
-define,
-line,

-colour,

-size,
-font,
-text,

-move,

_lb,_rb, minus,_times,
-length,

_div,_plus,_int [lex integer],-string;

Synthesised
Design (box, def, pos),
CommandList (box, def, pos),
Command (box, def, pos),
Argi (box,vals),
Arg2 (box,vals),
ArgL (box,def),
NL (box,def),
List (box,vals),
Defn (box,val),
Item (box,val);

Inherited
CommandList (env,origin),
Command (env,origin),
Argi (env),
Arg2 (env),
NL (env),
List (env),
Defn (env,origin),
Item (env);

Productions

Design -> CommandList
<box$O = c(box$1, default, 0, 0, 0)>

Appendix B. Attribute Grammar for Pict-Wright 156

<pos$0 = pos$1 >

<def$O = def$1 >

<env$l = initial environment >

<origin$l = new origin >;

CommandList -> CommandList Command

<box$O = c2(box$1, box$2, 0, 0, 0, 0)>
<pos$0 = pos$2>
<def$0 = defadd(def$1, def$2)>
<env$l = env$0 >

<env$2 - envadd(def$1, env$0)>
<origin$l = origin$O >

<origin$2 = pos$1 > I

Command <box$O = c(box$1, 0, 0, 0, 0)>
<pos$0 = pos$1 >

<def$O = def$1 >

<env$l = env$0 >

<origin$l = origin$0 >;

Command -> _define _id ArgL Defn
<box$0 = c2(box$3,box$4, 80, 2_1100, 2_0001, 2_O011)>

<env$4 = envadd(def $3, env$0)>

<origin$4 = origin$0 >

<pos$0 = origin$0 >

<def$0 = do binding(val$4)>

_id Argi Arg2
<box$0 = c2(box$2, box$3, 80,

2100,
0,
2_011)>

<env$2 = env$O >

<env$3 = env$O >

<pos$0 = do call(env$O, vals$2, vals$3,
origin$O)>

<def$0 = 0 {vals$2 vals$3 } > I

_line Argi Arg2
<box$O = c2(box$2, box$3, 80, 2_100,0,0)>
<pos$O = do line(vals$2, vals$3, origin$O)>
<env$2 = env$O >

<env$3 = env$O >

<def$0 = 0 {vals$2 vals$3 }> I

_colour Arg2
<box$O = c(box$2, 80, 2_10,0,0)>
<pos$0 = do colour(vals$2, origin$O)>
<env$2 = env$O >

<def$0 = 0 {vals$2 }> I

_size Arg2

Appendix B. Attribute Grammar for Pict-Wright 157

<box$O = c(box$2, 80, 2_10,0,0)>
<pos$0 = do size(vals$2, origin$0)>
<env$2 = env$O >

<def$0 = 0 {vals$2 }> I

-font Arg2
<box$0 = c(box$2, 80, 2_10,0,0)>
<pos$O = do font(vals$2, origin$0)>
<env$2 = env$0 >

<def$0 = 0 {vals$2 }> I

move Argi Arg2
<box$0 = c2(box$2, box$3, 80, 2_100,0,0)>
<pos$O = do move(vals$2, vals$3,

origin$0)>
<env$2 = env$0 >

<env$3 = env$0 >

<def$0 = 0 {vals$2 vals$3 }> I

_text Argi Arg2
<box$0 = c2(box$2, box$3, 80, 2_100,0,0)>
<pos$O = do text(vals$2, vals$3,

origin$0)>
<def $0 = 0 {vals$2 vals$3 }>
<env$2 = env$0 >

<env$3 = env$0 >;

Argi -> _clb List _crb

<box$0 = c(box$2, 50, 0,0,0)>
<vals$0 = vals$2 >

<env$2 = env$0 > I

<vals$0 = 0>

<box$0 = cO(default,0,0,0)>;

Arg2 -> _lb List _rb
<box$0 c(box$2, 50, 0,0,0)>
<vals$0 = vals$2 >

<env$2 = env$0 > I

<vals$0 = 0 >

<box$0 = cO(default,0,0,0)>;

ArgL -> _lb NL _rb
<box$0 = c(box$2, 50, 0,0,0)>
<def$0 = def$2 > I

<def$0 = 0>
<box$0 = cO(def ault,O,0,0)>;

NL -> NL _comma _id
<box$0 = c(box$1, 30, 2_010,0,0)>
<def$0 = def and bind(def$1)> I

_id
<box$0 cO(default, O,Q,Q)>-.-

Appendix B. Attribute Grammar for Pict-Wright 158

<def$0 = do bind>;

List -> List _comma Item
<box$0 =c2(box$1, box$3, 30, 2_010,0,0)>
<vals$0 = addvals(vals$1, val$3)>
<env$1 = env$0 >
<env$3 = env$0 > I

Item
<box$0 =c(box$1, default, 0,0,0)>
<vals$0 = addval(val$1)>
<env$1 = env$0 >;

Defn -> _ass _slb CommandList _srb
<box$0 =c(box$3, 60, 2_1000,0,0)>
<val$0 = command ref(def$3)>
<origin$3 = copy origin(origin$0)>
<env$3 = env$0 > I

_ass Item
<box$0 =c(box$2, default, 2_10,0,0)>
<env$2 = env$0 >
<val$0 = val$2 >;

Item -> _lb Item _rb
<box$0 =c(box$2, default, 0,0,0)>
<val$0 = val$2 >
<env$2 = env$0 >1

_minus Item
<box$0 =c(box$2, default, 0,0,0)>
<val$0 = do negate(val$2)>
<env$2 = env$0 > I

Item _times Item
<box$0 =c2(box$1, box$3, default, 0,0,0)>
<val$0 = do times(val$1, val$3)>
<env$1 = env$0 >
<env$3 = env$0 >1

Item _div Item
<box$0 =c2(box$1, box$3, default, 0,0,0)>
<val$0 = do divide(val$1, val$3)>
<env$1 = env$0 >
<env$3 = env$0 > I

Item _plus Item
<box$0 =c2(box$1, box$3, default, 0,0,0)>
<val$0 = do plus(val$1, val$3)>
<env$1 = env$0 >
<env$3 = env$0 > I

Appendix B. Attribute Grammar for Pict-Wright 159

Item _minus Item
<box$0 =c2(box$1, box$3, default, 0,0,0)>
<val$0 = do minus(val$1, val$3)>
<env$1 = env$0 >

<env$3 = env$0 > I

_id
<box$0 =cO(default, 0,0,0)>
<val$0 = do name ref(env$0)>I

_int
<box$0 =c0(default, 0,0,0)>
<val$0 = do int>I

_length Item
<box$O = c(box$2, def ault,2_10,0,0)>
<env$2 = env$0 >

<val$0 = do length(val$2)> I

_string
<box$0 = cO(def cult, 0,0,0)>
<val$0 = do string>;

End of Productions

Priorities (_times, _div) (_plus, minus);

End of Grammar

Appendix C

Attribute Grammar for Stick-Wright

Grammar Stic is

Code [%include "stic.src"]

Lexicals _cell, _abut, _equs, _ass, _lb, _rb, _slb, _srb, _clb, _crb,
_1t, _gt, _arrow, _choice, _tilda, _hat, _comma, _colon,
_semi, _stop, _dots, _minus, _plus, _times, _divide,

_identifier, _integer [lex int],
_true, _false, _and, _or, _not,

_b, _g, _r, bs, _gs. _rs. _bc, _gc, _rc, _gbx, _rbx,

_pass, _dep, _enh, bt, _gte, _rt,

_rbc, _gbc, _rgcs, _rgcc;

Synthesised
Design (box, ports),
CellList (box, dei),
Cell (box, def),
Params (box),
IList (box),
PortSpec (box),
OPorts (box),
OList (box),
List (box),
Id (box),
Ident (box, ports),
QualS (box),
ODir (box),
Abut (box, ports, x, y).
AbutBlock (box, ports, x, y),
Row (box, ports, x),
VRow (box, ports, y),
Item (box, ports, x),
OPar (box),
Pars (box).
Olter (box, x),
Iter (box, x),

160

Appendix C. Attribute Grammar for Stick-Wright

Cond (box, ports),
Syms (box, rot, mir),
Sym (box, rot, mir),
Range (box, x),
OBar (box, ports, x),
Expression (box, val),
Condition (box, bool);

Inherited
Design (env),
CellList (env),
Cell (env),
Params (env),
IList (env),
PortSpec (env),
OPorts (env),
OList (env),
List (env),
Id (env),
Ident (env, origin),
QualS (env),
ODir (env),
Abut (env),
AbutBlock (env, origin),
Row (env, origin),
VRow (env, origin),
Item (env, origin, dir).
OPar (env),
Pars (env),
Olter (env),
Iter (env),
Cond (env, origin),
Syms (env),
Sym (env),
Range (env),
OBar (env, origin),
Expression (env),
Condition (env);

Productions

Design -> CellList Ident
<env$1 = 0>
<env$2 = def$1>
<ports$0 = ports$2>
<origin$2 = top origin>
<box$0 = c2(box$1, box$2. 0, 0, 0, 0)>;

CellList -> CellList Cell
<env$1 = env$0>
<env$2 = def$1>
<def$0 = add def (def$1, def$2)>

161

Appendix C. Attribute Grammar for Stick-Wright

Cell ->

<box$0 = c2(box$1, box$2, 0, 0, 0, 0)> I

Cell
<def$0 = def$1>
<env$1 = 0>
<box$0 = c(box$1, 0, 0, 0, 0)>;

<env$6 =
<box$0 =

_-cell _identifier Params PortSpec _equs Abut _stop
<def$0 = do binding(x$6, y$6, ports$6)>

env$0>
c3(box$3, box$4, box$6, default,

2_1101100,
2_0000001,
2_0011010)>;

Params -> _clb Mist -crb
<box$0 = c(box$2, default, 0, 0, 0)> I

<box$0 = cO(default, 0, 0, 0)>;

IList -> IList _comma _identifier
<box$0 = c(box$1, default, 2010, 0, 0)> I

_identifier
<box$0 = cO(default, 0, 0, 0)>;

PortSpec -> _lb OPorts _rb
<box$0 = c(box$2, default, 0, 0, 0)>;

OPorts -> OList _semi OList _semi OList _semi OList
<box$0 = c4(box$1, box$3, box$5, box$7,

default, 0, 2_0101010, 0)>I
<box$0 = cO(default, 0, 0, 0)>;

OList -> List
<box$0 = c(box$1, 0, 0, 0, 0)>I
<box$0 = cO(def ault, 0, 0, 0)>;

List -> List _comma Id
<box$0 = c2(box$1, box$3, default, 2010, 0, 0)> I

Id
<box$0 = c(box$1, default, 0, 0, 0)>;

Id -> _lb List _rb QualS Olter
<box$0 = c3(box$2, box$4, box$5, default, 0, 0, 0)> I

_identifier QualS Olter
<box$0 = c2(box$2, box$3, default, 0, 0, 0)>;

QualS -> QualS _colon ODir _identifier
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I
<box$0 = cO(default, 0, 0, 0)>;

162

ODir -> _gt
<box$0 = cO(def ault, 0, 0, 0)>I

_lt

Appendix C. Attribute Grammar for Stick-Wright 163

<box$O = cO(default, 0, 0, 0)>I
<box$0 = c0(default, 0, 0, 0)>;

Abut -> _abut AbutBlock
<ports$0 = ports$2>
<x$0 = x$2> <y$0 = y$2>
<env$2 = env$0>
<origin$2 = new origin(x$2, y$2)>
<box$0 = c(box$2, default, 2_10, 0, 0)>;

AbutBlock -> AbutBlock _semi Row
<ports$0 = do Abut compose(ports$1, ports$3, y$1)>
<x$0 = check length(x$1, x$3)>
<y$0 = y$1 + 1>

<origin$3 = do origin(origin$0, 0, y$1)>
<origin$1 = origin$0>
<env$1 = env$0>
<env$3 = env$0>
<box$0 = c2(box$1, box$3, default, 0, 2_010, 0)>I

Row
<origin$1 = origin$0>
<ports$0 = ports$1>
<env$1 = env$0>
<x$0 = x$1> <y$0 = 1>

<box$0 = c(box$1, default, 0, 0, 0)>;

Row -> Row _comma Item
<ports$0 = do Row compose(ports$1, ports$3, x$1)>
<origin$1 = origin$0>
<origin$3 - do origin(origin$0, x$1, 0)>
<env$1 - env$0>
<env$3 - env$0>
Cdir$3 = 0>
:x$0 = x$1 + x$3>
:box$0 = c2(box$1, box$3, default, 2_010, 0, 0)>I
;em

torigin$1 = origin$0>

<x$0 = x$1>
<dir$1 = 0>

<ports$0 = ports$1>

<env$1 = env$0>

<box$0 = c(box$1, default, 0, 0, 0)>

VRow -> VRow _c- mma- Item--
<ports$0 = do Abut compose(ports$1, ports$3, y$1)>
<origin$1 = origin$0>
<origin$3 = do origin(origin$0, 0, y$1)>

<env$1 = env$0>
<env$3 = env$0>
<dir$3 - 1>
<y$0 = y$1 + x$3>

<box$0 - c2(box$1, box$3, default, 2_010, 0, 0)>I

Appendix C. Attribute Grammar for Stick- Wright 164

Item
<origin$1 = origin$O>
<y$O = x$1>
<ports$O = ports$1>
<env$1 = env$O>
<dir$1 = 1>
<box$O = c(box$1, default, 0, 0, 0)>

Item -> Ident Syms Olter
<x$0 = x$3>
<ports$0 = do port trans(ports$1, mir$2, rot$2,

x$3, dir$0)>
<origin$1 = do transforms(origin$O, mir$2, rot$2)>
<env$1 = env$0>
<env$3 = env$0>
<box$0 = c3(box$1, box$2, box$3, default, 0, 0, 0)>;

Ident -> _lb Row _rb
<origin$2 = do hor trans(origin$O, x$2)>
<ports$O = ports$2>
<env$2 = env$0>
<box$0 = c(box$2, default, 0, 0, 0)>I

_lt VRow _gt
<ports$O = ports$2>
<origin$2 = do ver trans(origin$O, y$2)>
<env$2 = env$0>
<box$0 = c(box$2, default, 0, 0, 0)>I

_slb Cond _srb
<ports$O = ports$2>
<env$2 = env$0>
<origin$2 = origin$O>
<box$0 = c(box$2, default, 0, 0, 0)>I

_identifier OPar
<ports$0 = do call(env$0, origin$0)>
<box$0 = c(box$2, default, 0, 0, 0)> I

_b

<ports$O = do b(origin$0)>
<box$0 = cO(default, 0, 0, 0)> I

_g
<ports$O = do g(origin$O)>
<box$0 = cO(default, 0, 0, 0)> I

all the other primitives follow the above form

_rgcc
<ports$0 = do rgcc(origin$0)>
<box$0 = cO(default, 0, 0, 0)> I

{null cell}
<ports$0 = do blank(origin$0)>

<box$0 = cO(default, 0, 0, 0)>;

OPar -> _clb Pars _crb
<box$0 = c(box$2, default, 0, 0, 0)>I

Appendix C. Attribute Grammar for Stick- Wright 165

<box$O = cO(default, 0, 0, 0)>;

Pars -> Pars _comma Expression
<box$O = c2(box$1, box$3, default, 2010, 0. " -1

Expression
<box$O = c(box$1, default, 0, 0, 0)>;

Olter -> _slb Iter _srb
<env$2 = env$0>
<x$0 = x$2>
<box$O = c(box$2, default, 0, 0, 0)>I
<x$0 = 1>

<box$O = cO(default, 0, 0, 0)>;

Iter -> _identifier _ass Range
<box$O = c(box$3, default, 2_110, 0, 0)>
<x$0 = x$3>I

Range
<env$1 = env$O>

<x$0 = x$1>

<box$O = c(box$1, default, 0, 0, 0)>;

Cond -> Condition _arrow Item OBar
<origin$3 = origin$O>
<origin$4 = origin$O>
<env$1 = env$O>
<env$3 = env$O>
<env$4 = env$O>
<dir$3 = 0>
<ports$0 = do condition(bool$1, ports$3, ports$4,

x$3, x$4)>
<box$O = c3(box$1, box$3, box$4, default, 2_1100, 0, 0)>;

Syms -> Syms Sym

<box$O = c2(box$1, box$2, default, 0, 0, 0)>
<rot$O =

<mir$O =

rot$1 + rot$2>
mir$1 + mir$2>

<mir$O = 0>

<rot$O = 0>
<box$O = cO(default, 0, 0, 0)>;

Sym -> _tilda
<mir$O = 1>

<rot$O = 0>
<box$O = cO(default, 0, 0, 0)>I
hat

<rot$O = 1>

<mir$O = 0>
<box$O = cO(default, 0, 0, 0)>;

Range -> Expression _dots Expression

Appendix C. Attribute Grammar for Stick- Wright 166

<env$1 = env$O> <env$3 = env$O>
<x$O = I val$3 - val$1

I + 1>
<box$O = c2(box$1, box$3, default, 2110, 0, 0)>I

Expression
<x$O = val$1>
<env$1 = env$O>
<box$O = c(box$1, default, 0, 0, 0)>;

OBar -> choice Item
<ports$O = ports$2>
<env$2 = env$O>
<dir$2 = 0>
<x$O = x$2>
<origin$2 = origin$O>
<box$O = c(box$2, default, 0, 0, 0)>I
<ports$O = do blank(origin$O)>
<box$O = cO(default, 210, 0, 0)>;

Expression -> -minus Expression
<env$2 = env$O>
<val$O = -val$2>
<box$O = c(box$2, default, 0, 0, 0)>I

_lb Expression _rb
<env$2 =
<val$O =

<box$O =

env$O>
val$2>
c(box$2, default, 0, 0, 0)>I

Expression _times Expression
<env$1 = env$O> <env$3 = env$O>
<val$O = val$1 * val$3>
<box$O = c2(box$1, box$3, default, 0, 0, 0)>I

Expression _divide Expression
<env$1 = env$O> <env$3 = env$O>
<val$O = val$1 // val$3>
<box$O = c2(box$1, box$3, default, 0, ,)>I

Expression _plus Expression
<env$1 = env$O> <env$3 = env$O>
<val$O = val$1 + val$3>
<box$O = c2(box$1, box$3, default, 0, 0, 0)>I

E xpression _minus Expression
<env$1 = env$O> <env$3 = env$O>
<val$O = val$1 - val$3>
<box$O = c2(box$1, box$3, default, 0, ,)>I

-identifier
<val$O = do name ref(env$O)>
<box$O = cO(default, 0, 0, 0)>I

-integer
<val$O = do integer>
<box$O = cO(default, 0, 0, 0)>;

Condition -> _lb Condition _rb
<env$2 = env$O>
<bool$O = bool$2>

Appendix C. Attribute Grammar for Stick- Wright 167

<box$O = c(box$2, default, 0, 0, 0)>I
_not Condition

<env$2 = env$0>
<bool$O = \bool$2>
<box$0 = c(box$2, default, 0, 0, 0)>I

Condition ..and Condition
<env$1 = env$0> <env$3 = env$0>
<bool$0 = bool$1 & bool$3>
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I

Condition _or Condition
<env$1 = env$0> <env$3 = env$0>
<bool$0 = bool$1 ! bool$3>
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I

Expression _equs Expression
<env$1 = env$0> <env$3 = env$0>
<bool$0 = do equs(val$1, val$3)>
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I

Expression _lt Expression
<env$1 = env$0> <env$3 = env$0>
<bool$0 = do lt(val$1, val$3)>
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I

Expression _gt Expression
<env$1 = env$0> <env$3 = env$0>
<bool$0 = do gt(val$1, val$3)>
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I

_true
<bool$0 = -1>
<box$0 = cO(default, 0, 0, 0)>I

_false
<bool$0 = 0>
<box$0 = cO(default, 0, 0, 0)>;

End of Productions

Priorities (_times, _divide) (_plus, _minus);

End of Grammar

	PhD coversheet April 2012
	EDI-INF-PHD-86-007.pdf

