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Abstract 

The constant improvements in device integration, the development of new tech- 

nologies and the emergence of new design techniques call for flexible, maintain- 

able and robust software tools. The generic nature of compiler-compiler systems, 

with their semi-formal specifications, can help in the construction of those tools. 

This thesis describes the Wright editor generator which is used in the synthe- 

sis of language-based graphical editors (LBGEs). An LBGE is a programming 

environment where the programs being manipulated denote pictures. Editing 

actions can be specified through both textual and graphical interfaces. Editors 

generated by the Wright system are specified using the formalism of attribute 

grammars. 

The major example editor in this thesis, Stick-Wright, is a design entry system 

for the construction of VLSI circuits. Stick-Wright is a hierarchical symbolic 

layout editor which exploits a combination of text and graphics in an interactive 

environment to provide the circuit designer with a tool for experimenting with 

circuit topologies. A simpler system, Pict-Wright: a picture drawing system, is 

also used to illustrate the attribute grammar specification process. 

This thesis aims to demonstrate the efficacy of formal specification in the 

generation of software-tools. The generated system Stick-Wright shows that a 

text/graphic programming environment can form the basis of a powerful VLSI 

design tool, especially with regard to providing the designer with immediate 

graphical feedback. Further applications of the LBGE generator approach to 

system design are given for a range of VLSI design activities. 



Table of Contents 

1. Introduction 1 

1.1 Programs and Pictures . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.2 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2. VLSI and Programming Environments 6 

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

2.2 VLSI Design Tools . . . .. . . .. . . . . . .. . . .. . . . . . . 7 

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2.2.2 Structured Design . . . . . . . . . . . . . . . . . . . . . . 7 

2.2.3 Design at the Mask Data Level . . . . . . . . . . . . . . . 10 

2.2.4 Symbolic Layout . . . . . . . . . . . . . . . . . . . . . . . 17 

2.2.5 Silicon Compilers . . . . . . . . . . . . . . . . . . . . . . . 22 

2.2.6 Floorplanning . . . . . . . . . . . . . . . . . . . . . . . . . 23 

2.2.7 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

2.3 Programming Environments . . . . . . . . . . . . . . . . . . . . . 27 

2.4 VLSI Programming Environments . . . . . . . . . . . . . . . . . 31 

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 31 

2.4.2 Interactive ILAP . . . . . . . . . . . . . . . . . . . . . . . 33 

2.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

iii 



Table of Contents iv 

3. The Wright Editor Generator 37 

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

3.2 Attribute Grammars . . . . . . . . . . . . . . . . . . . . . . . . . 38 

3.3 LALR Parsing . . . . . . . . . . . . . . . . . . . . . . . . . .. . 42 

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 42 

3.3.2 Lexical Analysis . . . . . . . . . . . . . . . . . . . . . . . 43 

3.3.3 Syntax Analysis . . . . . . . . . . . . . . . . . . . . . . . 47 

3.4 Attribute Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 55 

3.5 Structure Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 59 

3.5.2 Window Management . . . . . . . . . . . . . . . . . . 60 

3.5.3 Pretty-Printing . . . . . . . . . . . . . . . . . . . . . . . . 62 

3.5.4 Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

4. Pict-Wright 65 

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

4.2 Lexical Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

4.3 Syntactic Definition . . . . . . . . . . . . . . . . . . . . . . . . . 71 

4.4 Semantic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

4.4.1 The Attributes . . . . . . . . . . . . . . . . . . . . . . . . 73 

4.4.2 Semantic Functions . . . . . . . . . . . . . . . . . . . . . . 76 

4.5 The Editor in Operation . . . . . . . . . . . . . . . . . . . . . . . 85 



Table of Contents v 

5. Stick-Wright 92 

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

5.2 Lexical Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

5.3 Syntactic Definition . . . . . . . . . . . . . . . . . . . . . . . . . 97 

5.4 Semantic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 104 

5.4.1 The Attributes . . . . . . . . . . . . . . . . . . . . . . . . 104 

5.4.2 Semantic Functions . . . . . . . . . . . . . . . . . . . . . . 107 

5.5 The Editor in Operation . . . . . . . . . . . . . . . . . . . . . . . 114 

5.6 Extended Stick-Wright . . . . . . . . . . . . . . . . . . . . . . . . 120 

6. Results, Conclusions and Extensions 126 

6.1 The Wright System . . . . . . . . . . . . . . . . . . . . . . . . . . 126 

6.2 Stick-Wright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 

6.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

5.3.1 Structure Editing . . . . . . . . . . . . . . . . . . . . . . . 130 

6.3.2 Physical Design . . . . . . . . . . . . . . . . . . . . . . . . 131 

6.3.3 Silicon Compilation . . . . . . . . . . . . . . . . . . . . . 132 

6.3.4 Verification and Simulation . . . . . . . . . . . . . . . . . 133 

Bibliography 134 

A. Wright Reference Manual 142 

A.1 Editor Commands . . . . . . . . . . . . . . . . . . . . . . . . . . 142 

A.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 142 

A.1.2 Generic-Commands . . . . . . . . . . . . . . . . . . . . . 143 

.1.3 Pict-Wright . . . . . . . . . . . . . . . . . . . . . . . . . . 144 



Table of Contents vi 

A.1.4 Stick-Wright . . . . . . . . . . . . . . . . . . . . . . . . . 145 

A.2 Wright Input Language . . . . . . . . . . . . . . . . . . . . . . . 145 

A.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 145 

A.2.2 Lexical Definition . . . . . . . . . . . . . . . . . . . . . . . 145 

A.2.3 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 

B. Attribute Grammar for Pict-Wright 149 

B.1 The Auxiliary Definition File "Pict. src" . . . . . . . . . . . . . 149 

B.2 The Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 

C. Attribute Grammar for Stick-Wright 160 



List of Figures 

2-1 A Sticks&Stones Selector Circuit . . . . . . . . . . . . . . . . . . 13 

2-2 A Plates Primitive . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

2-3 An ALI program . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

2-4 An example of Hill composition mode . . . . . . . . . . . . . . . 20 

2-5 A Virgil Composition Cell . . . . . . . . . . . . . . . . . . . . . . 20 

2-6 A Virgil Leaf Cell (text) . . . . . . . . . . . . . . . . . . . . . . . 21 

2-7 A Virgil Leaf Cell (graphics) . . . . . . . . . . . . . . . . . . . . 21 

2-8 A MODEL four-way multiplexor . . . . . . . . . . . . . . .. . . 24 

2-9 A MODEL parameterised multiplexor . . . . . . . . . . . . . . . 24 

2-10 A Mentol abstract syntax tree . . . . . . . . . . . . . . . . . . . . 27 

2-11 ILAP Design Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

2-12 Interactive ILAP Structure . . . . . . . . . . . . . . . . . . . . . 35 

3-1 Editor Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

3-2 Syntax Tree for 1101.01 . . . . . . . . . . . . . . . . . . . . . . . 40 

3-3 Attributed Syntax Tree for 1101.01 . . . . . . . . . . . . . . . . 42 

3-4 LR Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

3-5 Stack Operations for 3 + 4 * 5 . . . . . . . . . . . . . . . . . . 50 

3-6 The sets of LR(0) items for grammar Calc . . . . . . . . . . . . . 52 

vii 



List of Figures viii 

3-7 Stack Operations on 3 * 4 + 5 . . . . . . . . . . . . . . . . . . . 53 

3-8 Order of Attribute Calculation for 1101.01 . . . . . . . . . . . . 58 

3-9 Changing a sub-tree . . . . . . . . . . . . . . . . . . . . . . . . . 59 

3-10 Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 60 

3-11 Devices and Windows . . . . . . . . . . . . . . . . . . . . . . . . 61 

4-1 The Pict-Wright Editor . . . . . . . . . . . . . . . . . . . . . . . 66 

4-2 Symbol Table Attribute Flow . . . . . . . . . . . . . . . . . . . . 79 

4-3 Procedure Call By Recursive Evaluation . . . . . . . . . . . . . . 82 

4-4 Editing with Pict-Wright . . . . . . . . . . . . . . . . . . . . . . 86 

4-5 A new cursor position . . . . . . . . . . . . . . . . . . . . . . . . 87 

4-6 Deleting a sub-tree . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

5-1 Port Exterior for Tally {n} . . . . . . . . . . . . . . . . . . . . . 99 

5-2 Stick-Wright's Primitive Cells . . . . . . . . . . . . . . . . . . . . 100 

5-3 A TallyUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

5-4 Vertical Port Composition . . . . . . . . . . . . . . . . . . . . . . 109 

5-5 Row Translation Calculation . . . . . . . . . . . . . . . . . . . . 110 

5-6 Horizontal Port Composition . . . . . . . . . . . . . . . . . . . . 111 

5-7 Transformations to Ports Exterior . . . . . . . . . . . . . . . . . 112 

5-8 Mirroring and Rotation ("-) . . . . . . . . . . . . . . . . . . . . . 113 

5-9 The Stick-Wright Editor . . . . . . . . . . . . . . . . . . . . . . . 115 

5-10 A new cursor position in TallyUnit . . . . . . . . . . . . . . . . 116 

5-11 Moving to a new tile . . . . . . . . . . . . . . . . . . . . . . . . . 117 

5-12 An incorrect TallyUnit . . . . . . . . . . . . . . . . . . . . . . . . 118 



List of Figures ix 

5-13 4 input Tally (program) . . . . . . . . . . . . . . . . . . . . . . . 120 

5-14 4 input Tally (picture) . . . . . . . . . . . . . . . . . . . . . . . . 121 

5-15 4 input Tally (picture (full instantiation)) . . . . . . . . . . . . . 122 

5-16 Pad-Placement Example . . . . . . . . . . . . . . . . . . . . . . . 123 

5-17 Tally {n} (program) . . . . . . . . . . . . . . . . . . . . . . . . . 124 

5-18 Tally {n} and Col {n} (pictures) . . . . . . . . . . . . . . . . . . . 125 



Chapter 1 

Introduction 

1.1 Programs and Pictures 

The task of designing artifacts, be they electronic circuits, computer programs 

or suspension bridges, has led to the development of many design notations. 

Notations allow a designer to formulate a design idea using pen and paper or a 

computer display without the need to build the object that is being represented. 

The representation of the design can take many forms and can model the de- 

sign at many levels of abstraction. Notations are usually characterised by two 

properties; syntax and semantics. The syntax of a notation is a set of rules de- 

scribing the primitive elements of the notation and their legal compositions. The 

semantics of a notation are a set of rules which assign meaning to the structures 

formed using the syntactic rules. An example of a design notation is a schematic 

drawing representing an integrated circuit. Here both pictures and text are used 

to describe the interconnection of logic gates. Notations using pictures are gen- 

erally at one level of the design hierarchy; a schematic drawing does not include 

details of logic gate implementation. A schematic drawing is a mixed notation 

since it often contains textual annotation of its symbols. The introduction of 

text allows a drawing to refer to other drawings and to label iterated structures 

with numerals (e.g. a number of wires can be abstracted into a bus). 

Textual notations are more abstract than pictures in that they are not directly 

representative of an object and can be used to express notions such as hierarchy, 

data abstraction, parameterisation, iteration and expression evaluation. In com- 

puter science textual representations of execution sequences, i.e. programming 

1 



Chapter 1. Introduction 2 

languages, are abundant and have been invented at every opportunity. Although 

attempts have been made at expressing conventional programming concepts us- 

ing pictures [14] [42] this is still very much an undeveloped medium. 

The major property of a pictorial representation, concreteness, has both ad- 

vantages and disadvantages. A human can comprehend a schematic drawing 

more easily than its corresponding net-list, however, concepts like parameterisa- 

tion and conditional evaluation are hard to express using pictures. 

A further issue in the design and selection of notations is their suitability for 

processing by computer. The criteria for adopting a CAD approach include: 

Implementation Costs Issues here include design time, development time (cod- 

ing) and verification (debugging). Formal descriptions of notations can 

lead to greater confidence in correctness and also the use of automatic 

implementation techniques. Although formal techniques are often used in 

programming language development, the implementation of graphics sys- 

tems is generally more ad-hoc. 

Machine Resources Notations which use colour pictures require more sophis- 

ticated hardware than those using only black and white. Purely textual 

notations can run on the humblest of hardware. With the current advent of 

affordable graphics workstations, the use of pictorial notations is becoming 

more prevalent. 

Performance At an extreme level of concrete representation, for example a 3- 

D solid modelling package complete with colour and shading, the amount 

of computation involved in generating an image generally precludes fast 

user manipulation of the design. Some notations are distinctly batch ori- 

entated, i.e. each modification of the design requires a lengthy compilation 

phase. The use of abstraction mechanisms, e.g. stick models for solids, 

can significantly improve performance, at the expense of detail. 
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Adaptability Specifications of systems can evolve with time. In a rapidly de- 

veloping area, such as integrated circuit technology, software tools have to 

cope with changing system parameters. 

When considering design notations it is important to separate the notions of 

syntax and semantics. The syntax of a design notation ultimately defines the 

physical appearance of the design representation as presented to the user on the 

video terminal or graphics display. The semantic rules define the translations 

and evaluations to be performed on the structure obtained from the syntactic 

stage. The effectiveness of the syntax and semantics of a design notation can be 

measured using the following properties: 

Clarity To what extent is the underlying semantics `intuitively' obvious from 

the notation's syntax ? How easy is the notation to learn ? 

Conciseness How economically (in terms of amount of actual text or graphics) 

does the notation represent the structures being designed ? 

Elegance This is a less tangible property than the others, elegance is often 

achieved by using simple and general notational constructs which are ap- 

plied uniformly throughout the design notation. The elegance of a language 

directly impacts on the ease with which it can both be learned and used. 

Malleability This is a property which relates to the notation's suitability for 

manipulation using a syntax directed editor. Certain syntactic and seman- 

tic constructions can be efficiently exploited by such editing systems (as I 

will show in later chapters). 

Flexibility Can the notation adapt to changing system parameters (e.g. new 

composition rules, new primitives) ? 

Security How easy is it to build incorrect constructs ? Can errors in a design 

be detected during the static analysis phases ? 
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This thesis is concerned with design notations that combine text with graph- 

ics, thus providing the user with the benefits afforded by both representations. I 

present a method for formally describing these systems and a software tool, the 

Wright editor generator, which can automatically synthesise programming envi- 

ronments from this specification. Particular emphasis is made on applications 

in the field of VLSI CAD tools, and a VLSI tool built using the Wright system 

is described. 

The interest and diversity of the problems involved in VLSI have made it 

a very popular research area. For many researchers it is the combination of 

different cultures (hardware, software, electronics, language design, graphics, 

verification, simulation, architecture ...) which makes it so attractive. This 

mixture has generated the need for a diversity of user-interfaces and translation 

mechanisms, making use of both linguistic and pictorial notations. This thesis is 

concerned with providing the means for describing and building those interfaces 

and translation mechanisms. 
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1.2 Outline of Thesis 

In the next chapter I describe in more detail the need for VLSI design tools and 

survey both the VLSI and programming environment literature. 

Chapter 3 presents the Wright editor generator and gives an introduction to 

attribute grammars, LALR parsing and structure editing. 

In Chapter 4 I run through the development of an example editor using the 

Wright system, namely Pict-Wright, a picture editor used to build some of the 

illustrations in this thesis. 

Chapter 5 contains the description of a VLSI tool, Stick-Wright, a hierarchical 

symbolic layout editor which was developed using the Wright system. 

In Chapter 6 I present my conclusions and outline areas for future work. A 

reference manual for the Wright system is included as an appendix. 



Chapter 2 

VLSI and Programming 

Environments 

2.1 Introduction 

In 1981 Carver Mead [55] heralded a new era of technological innovation which 

he claimed would rival the industrial revolution in its impact. He was referring 

to the emergence of Very Large Scale Integration technology (VLSI) and the 

potential for its exploitation. As the number of devices which can be integrated 

on a single chip continues to grow, the major problem in VLSI is managing the 

complexity of systems which will soon contain millions of components [69]. 

In response to this challenge many research programs have been started and 

VLSI continues to be a popular topic for researchers from many different disci- 

plines, in both industry and academia. 

The next section outlines work related to the tool presented in Chapter 5, and 

gives the background for further applications of the Wright system, as discussed 

in Chapter 6. Section 2.3 reviews work on programming environments, and the 

final section discusses VLSI programming environments. 

6 
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2.2 VLSI Design Tools 

2.2.1 Introduction 

The demand for VLSI implementations of systems has caused the development 

of a wide range of tools and techniques, many of which have been borrowed 

from other design disciplines. In reviewing some of this work I am particularly 

interested in two aspects relevant to this thesis: 

design notations 

tool integration 

The design tools which deal with physical layout are given closer examination, 

since this is the problem area addressed by Stick-Wright in Chapter 5. 

2.2.2 Structured Design 

As in many other design disciplines (notably computer programming), the need 

to control design complexity has led to the formulation of sets of design principles. 

Buchanan [9] gives the following principles for structured IC design: 

Modularity allows work to be partitioned into manageable sub-goals, also per- 

mitting work to be distributed among more than one designer. Modules 

can be re-used in later projects. 

Hierarchy i.e. the vertical partitioning of designs; modules are themselves com- 

posed of smaller sub-modules. There are also hierarchies of abstractions 

(e.g. geometry, devices, circuits, logic, floorplans), allowing information 

hiding at each successive layer (thus making descriptions smaller and-per- 

mitting efficient algorithms that exploit the hierarchy). 
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Regularity Regular structures are simpler to describe, manipulate and under- 

stand. Regularity in the physical domain (rectangular or hexagonal blocks 

designed to abut together) can yield high packing density. Irregular layout 

can result in great amounts of wiring (spaghetti layout). 

Locality Modules can only be accessed through well defined external interfaces, 

similarly, the internals of a module can not depend on external factors, 

except as described through the interface. This black box approach allows 

proof by construction techniques to be performed (e.g. hierarchical design 

rule checking (DRC)). 

Parameterisation (also Programmability). Circuit structures (e.g. RAMS, 

ROMS, datapaths) can be described algorithmically with particular in- 

stances being created using some personality matrix or set of parameters. 

These are all familiar concepts from computer programming, Buchanan shows 

their application to hardware systems, with reference to their analogies in struc- 

tured programming. An early appraisal of hierarchical design by vanCleemput 

[90] draws attention to some possible problems; hardware systems can be viewed 

as having several different hierarchies (Buchanan identifies behavioural, struc- 

tural and physical hierarchies) and each class of hierarchy can have many real- 

isations. The multiplicity of hierarchies is seen as problematic because of the 

expense of maintaining correct mappings between them. Buchanan addresses 

this problem by employing the co-ordinode, a data structure which unifies the 

hierarchies with a common representation. The co-ordinode together with as- 

sociated wire and transistor models are implemented using the object oriented 

language SIMULA [6]. The object oriented programming paradigm has proven 

to be popular among some VLSI researchers, a major reason being that it fully 

supports the principles of structured design. Object-oriented systems are dis- 

cussed more fully in the programming environment section. 

Cardelli [12] uses algebraic techniques for describing VLSI systems at various 

levels of abstraction. Circuits are described using net-algebras and he shows 
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how a behavioural description, the Clocked Transition Algebra, can be trans- 

lated through intermediate descriptions (Connector Switch Attenuator - planar 

sticks - grids) down to layout. A practical demonstration of this design style, 

the layout editor Sticks&Stones [13] , uses the data abstraction mechanisms of 

the functional programming language ML [25] to implement the net-algebra rep- 

resentation. The major feature of this representation is that circuit structures 

can only be manipulated by their external named ports (thus applying the prin- 

ciples of modularity and locality). Picture composition is achieved by linking 

port names (not by stating geometrical position or displacement). This saves 

the user from having to deduce translations, mirrorings and rotations which en- 

able the construction of the picture. By exploiting the referential transparency 

of the host functional language (an example of the application of the principle of 

locality), correctness by construction proofs can be performed (e.g. hierarchical 

design rule checking [94]). The actual design notation is described in the next 

section. 

The Palladio project [27] also exploits the power of abstraction in its tech- 

nique of multiple perspectives. Circuit design is viewed as a process of incremental 

refinement of structural and behavioural specifications over a range of perspec- 

tives (circuit level to PMS). Different programming paradigms are applied to 

the various aspects of the design process; a rule based logical language is used 

in behavioural specification and simulation, while an object oriented approach is 

used in structural specification. The Palladio system is based on the following 

premises about circuit design: 

it is a process of incremental refinement. 

it is an exploratory process in which design specifications and design goals 

co-evolve. 

circuit designers need an integrated design environment (i.e. compatibility 

between a range of tools). 
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These premises are compatible with the Wright system's design goals, and I 

will later argue the importance of joint textual/graphical notations for design 

exploration. 

The application of algebraic techniques (e.g. formal semantics) and the use of 

structured design are widely reported in the computer science literature for con- 

trolling the the complexity of computer programs and also for guiding the design 

of programming languages [86]. The previous projects have demonstrated the 

usefulness of ̀ programming techniques' to hardware design, and the need for the 

abstraction mechanisms they provide. In later sections the importance of picto- 

rial notations will also emerge. The view of hardware design as a programming 

exercise, and consequently accruing benefit from these techniques, is becoming 

more prevalent and is even making an impact on some industrial practitioners. 

2.2.3 Design at the Mask Data Level 

The design tools surveyed in this section all deal directly, at some stage, with 

mask geometry. This approach gives the designer precise control over the physi- 

cal realisation of a circuit, but with this freedom the potential for error is intro- 

duced. 

The embedded design language [49] was the earliest attempt at using high 

level programming techniques for circuit design. Such systems are simple to de- 

velop and can exploit the power and familiarity of their host high level language 

(e.g. ILAP [30] uses IMP [73] and Sticks&Stones [13] uses ML [25]). These sys- 

tems can be viewed as being too powerful in the sense that it is difficult to prove 

properties of large software systems (we could not easily prove that an ILAP pad- 

placement program will always give a correct result). The systems are weak in 

the sense that since they do not directly support two-dimensional programming 

(i.e. layout generation), the specification of circuit constructs can be obscure 

and inflexible. Major benefits of these systems include ease of implementation 

(no new compilation technology is required) and ease of use (i.e. assuming that 

the host language is already known and is itself easy to use). Much, of course, 
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depends on the quality of the embedding. In the following discussion I will 

mostly be concerned with how various systems deal with cell composition, leaf 

cell design is usually carried out by graphical editors that generate the embedded 

language as output. 

The Lubrick cell assembler [80] uses an embedded language (Pascal is the 

host language). It is a cell composition system which assumes the correctness 

of leaf cells. This assumption allows the inclusion of arbitrary geometry in leaf 

cells, although cell boundaries must be rectangular. Lubrick uses the concept 

of type-directed connections to facilitate the joining of cells. Essentially this 

involves inserting an appropriate routing channel between cell boundaries, which 

depends on the type information contained in the port definitions. Composition 

of cells is specified using Pascal functions. The construction of the following 

structure is illustrated: 

mAa rBb 
Cc 

mAa rBb 

where cells Aa, Bb, and Cc are leaf cells, mAa is the mirror image of Aa in the 

Y-axis, rBb is the rotation of Bb. The corresponding LUBRICK code is: 

p:=OPENCELL('EXAMPLE') 
pi:=REPY( SYMY( GETCELL('Aa') ),2 ); 
p2:=REPY( ROTP( GETCELL('Bb') ),2 ); 
p3:=GETCELL('Cc'); 

p:=CLOSECELL(RIGHT(RIGHT(RIGHT(p,pl,1,0),p2,1,0),p3,1,0)); 

This would look like the following in ILAP notation: 

SYMBOL("EXAMPLE") 
DRAWMX("Aa",SX("Aa"),SY("Aa")*i) %for I = 0,1,1 
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component relations are derived from the design rules and the composition of 

cells. All necessary relationships are discovered by the system, but the user 

can manually specify relationships using the constraint mechanism. With this 

feature the user can control circuit features ( e.g. S imp ose maximum 

lengths on wires and specify transistor sizes): Figure 2—2 is an example of the 

Plates language, namely the definition of the circuit primitive PasaTransistor. 

Figure 2--2 is a small example of the Plates language, a description of a 

register is 45 lines long5 Part of the reason for the verbosity of this notation 

is that the overlapping of boxes is a level abstraction, and is used 

in both the definition of primitives (as above) and in the composition of cells. 
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Source 

Gatel n GateOut--f 

Drain 

Primitive PassTransistor 
(GateIn {Position (Left), Access (Top, Bot, Left) }, 
GateOut {Position (Right), Access (Top, Bot, Right)}, 
Source {Position (Top). Access (Top, Left, Right) }, 
Drain {Position (Bot), Access (Bot, Left, Right))); 

Begin 
Instantiate D using Diffusion, 

P using Poly with (Left outside D.Left, 
Right outside D.Right. 
Top inside D.Top, 
Bot inside D.Bot); 

DefinePorts GateIn is (P outside D.Left), 
GateOut is (P outside D.Right), 
Source is (D outside P.Top), 
Drain is (D outside P.Bot); 

End I PassTransistor ! 

Figure 2-2: A Plates Primitive 
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While allowing the specification of very general constraints, this is bought at the 

expense of unwieldy descriptions. The goal of having a metric-free representation 

is, however, a useful contribution and is developed further in the ALI system [48). 

ALI is an example of an extended language (Pascal + circuit description syn- 

tax and semantics). The ALI system bases its representation of circuit structures 

on a set of linear inequalities. These inequalities refer to the relative placement 

of objects within the circuit, either as supplied-by the user or derived-from the 

design rule file. This approach liberates the `programmer' (in the ALI project 

circuit design is viewed as programming) from. specifying sizes and positions. Cell 
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composition is achieved by 8tretching the cells, he. constraints are S 

which cause ports to match up exactly. 

the required object relations (e.g. 

The design rules can provide many of 
wire spacing) . The ALT system must check 

S 

that all relations between circuit entities are specified. This condition, known 
as completeness, involves computing the transitive closure of a graph. Although 

this has O(n ) time complexity, n is never more than the number of objects in 

The execution time due to the solution of the set of linear inequalities 

is proportional to the number of inequalities. Figure 2—3 is an example ALl 

program (with corresponding picture). 
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Figure 2 3: An AL! program 

Although the ALl team claim that their system 'S avoidance of explicit sizes 

and positions is novel with respect to other systems, including graphical edi- 

tors, this is not true of the various symbolic layout systems. The placement 

of devices on a virtuahgrid (described in the next section) is no more concrete 

than the gluing, separation and overlap primitives of ALL 

one cell. 
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Chip simple; 

const 

hnuinber = 10; 
length 20; 

width 6; 

boxtype 

htype = array 
var 
1: integer; 

box 

[1. .hnuinber] S 
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begin 

of metal 

begin 

-, 

I horizontal :htype 
vertical : metal; 

for i:1 to hnuinber a do 
above(horlzontal [i] ,horlzontal [1+1]) ; 

glueright(horizontal [i] 
xmore (horizontal [1] , length) 

end; 

glueright (horizontal [hnumber] , vertical) 
xinore (horizontal [hnu,nber] , length); 
xinore (vertical , width) 

,vertical); 

I 

I 

I 

II 

While these are the 
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teresting notational devices (an abstraction made use of in the text formatting 

language TEX) they are not any more or less descriptive than a symbolic layout 

stick-diagram or program script. Unlike the symbolic layout tools, ALI doesn't 

completely remove the possibility of a design containing an explicit size (as in 

Figure 2-3), and does not directly deal with layout at the level of abstraction 

corresponding to wires and transistors. ALI does provide an implicit DRC and 

circuit extraction capability (an improvement over the previous systems), but 

both these functions are only provided on a completely instantiated design (i.e. 

they are batch oriented). 

The Magic [67] design system supports incremental design by representing 

mask data in a data structure called corner stitching. This representation sup- 

ports a design style called logs which allows the manipulation of abstract layers 

(which represent transistors, wires and contacts) in a manner similar to symbolic 

layout systems. In Magic, however, logs appear with actual sizes and positions. 

Corner stitching supports incremental design rule checking and a wire perturba- 

tion action called plowing. The major advantages over the previously described 

systems are: 

improved interaction The design representation is graphical, all editing is 

done through a graphical interface, making use of command menus and 

providing multiple windows onto the design. The-- a lgorrithms-- associa:terl- 

with the editor's major operations (DRC, routing and plowing) are incre- 

mental (i.e. they avoid re-evaluating the whole design, thus speeding up 

response times). 

higher level of abstraction Although Magic allows the direct manipulation 

of mask geometry, the use of abstract layers means that the system has 

knowledge of the circuit's structure (i.e. not just its physical layout), thus 

allowing trivial circuit extraction for verification and simulation. 

Whitney [93] describes the hierarchical composition of cells built using the 

Pooh design representation. In Pooh transistors and wires are represented as 

line segments which have associated widths and separations. The geometry in a 
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Pooh design can form arbitrary angles. When cells are composed (by matching 

a pair of sides) only information about the new external boundary is retained. A 

further development of the Pooh system [84] adds the restriction that geometry 

can only take 90° and 45° angles. By doing this the system removes the need for 

real arithmetic thus greatly improving the efficiency of the system with little loss 

in generality (arbitrary angles do not give much greater layout density than 90° 

and 45°). Pooh is actually much more than a layout- language its-wwireltrar<sistor- 

model form the basis of a large design system which also incorporates a symbolic 

layout interface. 

The major benefit in dealing directly with mask data is that the physical 

result can always be determined (usually without much delay) and is directly 

controllable. A major disadvantage is the lack of freedom the designer is af- 

forded with regard to cell stretching and port juxtaposition, (the ALI system's 

cell stretching ability is bought at the expense of limited layout control and in- 

teraction, a conscious design decision). The last two systems (Magic and Pooh) 

guard against the possibility of incorrect layout by integrating design rule check- 

ing into the design entry process. 

2.2.4 Symbolic Layout 

Symbolic Layout systems allow the specification of integrated circuits as sticks, 

i.e. diagrams which show the topology of a circuit without showing the precise 

physical placement and sizing of the circuit components. The designer provides 

the relative position and connectivity of a circuit components, from which the 

system deduces the final transistor and wire geometries. Sticks can be described 

textually as well as graphically, and also as hierarchies of sticks. Layout is 

produced from stick descriptions by the action of a compaction algorithm. The 

tool described in Chapter 5, Stick-Wright, is a symbolic layout editor, making 

use of both stick diagrams and a textual notation. Here is an example stick 

diagram and textual description (a quick preview of Stick-Wright, in fact), using 

the example introduced in the last section: 
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hierarchical virtual-grid compactor which only compacts each cell once. The 

compactor can extend the cell boundaries of a previously compacted cell to 

conform to a new placement context. 

In ASTRA [72] compaction is linked with the system's floorplanner. The 

compactor is called initially to determine the minimum size for a given cell. 

This information is then used to determine cell placement. The compactor is 

called again with a set of port constraints in a final cell assembly stage. This is 

illustrative of the oscillations which can occur between bottom-up (compaction) 

and top-down (floorplanning) design activities. 

In the Hill system [46] the compaction scheme (based on Williams) is en- 

hanced by topological flexibility; if during compaction it can perturb the circuit's 

topology while maintaining the original circuit structure, it does so (if this saves 

area). The Hill system proposes a design language which allows flexibility in 

the specification of a cell's external appearance, its template. The system then 

checks that the given implementation for that cell can be distorted to meet the 

given context. This flexibility is specified by giving a partial order for the ports 

in either the X or Y direction (the distortion mechanism only copes with free- 

dom in one dimension). At each level in the hierarchy three layout modes are 

available; composition, placement and graphical. Composition and placement 

are both text descriptions (placement is a more verbose version of composition 

modes, where every cell instantiation has a unique name and it provides better 

checking and simulation facilities), while the graphical interface is a stick editor. 

Figure 2-4 is an example of composition mode. 

In Figure 2-4 basic is a previously declared cell. This definition of chain is 

recursive, the Hill implementors observe that in the same way as iteration is good 

for describing array structures, recursion is descriptive of tree structures (e.g. 

hierarchical multipliers). There is no graphical dual for the above description, 

except for that of a particular instantiation (they show a picture of chain(3)). 

What the Hill system does not provide is an integrated environment which allows 

switching between the different design notations, the system they describe is 
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Cell chain (n:int); 
Temp Pins over: cbits; 

cin: poly; 

data: Array [0..2""n -1] Of 
Record in: cbits; out: poly End; 

psi, psr: Array [1..n] Of ps; 
Order Implicit:Ver; 

Top: over, cin; 
Bottom: data Reverse; 
Left: psi; 

Right: psr; 
Constraints 
Begin 

cin Above data[0].out; 
over.p LeftOf data[2""(n+i)].out 

End 
Pmet 
Composed 
Begin If n >= 2 Then 

chain := basic(n) Ver 
(chain(n-1) Hor Chain(n-1)) 

Else 
chain := basic(n) 

Figure 2-4: An example of Hill composition mode 
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batch oriented. The graphical representation of programming language features 

which avoid full instantiation is discussed in Chapter 5. 

Since symbolic layouts are a level of abstraction above layout, they are 

buffered from design rule variations. Bergmann [51 also shows that stick de- 

scriptions can give a degree of technology-independence within -a-prooess-fa-mily, 

As a final example of VLSI design notations Figure 2-5 is the last section's 

example written in Bergmann's idiom description language Virgil. 

Composition Cell Example 
AA = A INY A INY 

BB=B01 B01 
Example >> A >> B >> C 

End 

Figure 2-5: A Virgil Composition Cell 
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Virgil is a cell composition language where the leaf cells are described using 

a virtual grid. Figure 2-6 shows the textual form of such a cell. 

Leaf Cell Side = ( 0, 0, 1, 2) 
gnd.e: mport @ ( 1, 0 ) 

gnd.s: mport @ ( 0, 0 ) 

gnd.n: mport @ ( 0. 2 ) 

mwire @ gnd.e -> gnd.a -> gnd.n 
in.e: pport @ ( 1, 1 ) 

in.w: pport @ ( 0, 1 ) 

pwire @ in.e -> in.w 
End 

Figure 2-6: A Virgil Leaf Cell (text) 

Virgil leaf cells are usually created using the graphical representation pro- 

vided by a graphical editor (see Figure 2-7). 

GND.N 

IN.W IN.E 

GND.S GND.E 

Figure 2-7: A Virgil Leaf Cell (graphics) 

Symbolic layout will not suit circuit designers who are used to optimising 

every last box in a layout by hand, and who want to create unusual geometries 

and perform `neat tricks'. The claims of the symbolic lobby of process and tech- 

nology independence will not worry a designer who has a stable design facility. 

However, some of the arguments about symbolic versus hand layout sound very 

much like the arguments you still here today about assembly code versus high 

level languages. Given the complexity demands of large VLSI systems and the 

increasinp quality of symbolic layout compaction schemes, it seems reasonable 
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to expect symbolic layout to continue to gain ground, and it is the chosen ab- 

straction for the design tool in Chapter 5. A more detailed survey of symbolic 

layout is given by Newton [62] and a review of commercially available systems 

is given by Taylor [83]. 

2.2.5 Silicon Compilers 

Silicon compilation is a rather overloaded term, frequently to be found in mar- 

keting hyperbole, but is nevertheless an extremely apt description of those tools 

which automatically synthesise complete IC layouts from some input specifica- 

tion. The term has been applied to systems using structural design descriptions 

(e.g. Lattice Logic's gate array system [26] [44]) and also more ambitious sys- 

tems which process behavioural descriptions (e.g. the algorithmic LISP like 

design language of MacPitts [81] [82]). In systems like MacPitts the compiler 

is not only responsible for the placement and routing of the circuit primitives 

implicit in the design language (called organelles in MacPitts), but it must also 

synthesise the control logic which governs the operation of the circuit. 

While the task of finding efficient layouts for arbitrarily complex structural 

descriptions is no easy task, the synthesis of layout from behavioural specifica- 

tions also involves much more complex partitioning and architectural decisions. 

So far the most successful silicon compilers have made this task more feasible 

by restricting both the problem domain and the target architecture: MacPitts 

has a fixed datapath/controller architecture, and the primitive operators in the 

design language have directly corresponding hardware implementations. 

A further example of this `target application' approach is the FIRST [16] sili- 

con compiler which transforms a high-level design language description of digital 

signal processors into IC layout. The internal architecture is restricted to hard- 

wired networks of pipelined bit-serial operators. The FIRST system supports 

functional simulation of the design language and can give precise performance 

estimates. This combination of high-level design language, functional simulation 

and performance prediction together with a fully automated layout synthesis 
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stage enables FIRST to provide silicon implementations for designers with no 

previous IC design experience, i.e. systems designers can produce chips. By fully 

automating the layout synthesis stage, the layout can be guaranteed to be free 

of human introduced layout errors. 

So far the tools in this section have not made much use of graphical inter- 

faces, however, Lattice Logic's gate-array compiler is a notable exception. As a 

commercial product it has had to meet the demands of design engineers who re- 

quire schematic entry (in preference to the structural design language MODEL). 

For this reason a schematic entry system was implemented which converts cir- 

cuit diagrams into MODEL language constructs. A problem encountered during 

the implementation, and consequent maintenance of this system [8] was that the 

MODEL language was also undergoing design iterations. Since the implementa- 

tion of the picture -> language translator was not directly connected or driven by 

the language's specification (i.e. grammar) the updates needed significant hand 

re-coding. A further problem with schematics entry for the MODEL language 

is that schematics, at least in their current form, can not exploit the structured 

programming features of MODEL, i.e. parameterisation, iteration and condi- 

tionals, and so the MODEL generated by the schematics package is in a fully 

instantiated form. Figure 2-8 shows the schematic and corresponding MODEL 

for a four-way multiplexor, and Figure 2-9 shows a parameterised version of the 

multiplexor. 

These problems, and the application of the Wright system to silicon compi- 

lation in general, are discussed in the final chapter. 

2.2.6 Floorplanning 

Floorplanning in the context of VLSI design is the act of determining a relative 

placement of system elements so as to minimise the communication (wiring) costs 

between them, and hence the overall size. Additional aspect-ratio constraints 

may also be specified. Floorplanning is used in the initial stages of design to 

place major circuit elements. Although the exact size of the elements to be 
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Figure 2 9: A MODEL parameterised multiplexor 

placed cannot be found (except by full implementation), estimates can be made 

either by expert knowledge or by statistical methods 

Heller et al. [28] [si] use graph dualisation to determine a chip floorplan 

from a connectivity graph. The graphic input is first tested for and 'a 
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then dualised. Planarity can always be enforced by the introduction of nodes 

corresponding to routing channels. The rectangular dual which best meets these 

constraints is picked. Unfortunately, this process has exponential time complex- 

ity. 

Brebner and Buchanan [7] add a textual interface to the Heller et al. algo- 

rithm and automatically produces a suitable graph for dualisation. Because the 

algorithm is applied to a hierarchical structure, with small graphs at each level, 

the complexity issue is partly avoided. 

Otten [66] describes the application of planar projection to floorplanning. 

This involves embedding the interconnection graph with n nodes into (n-1) di- 

mensional space. Projections can then be made onto a 2-dimensional plane. The 

edges of the graph are sized according to the degree of connectivity between 

the nodes; short distance implies high communication. A number of projections 

are made and the one which least disrupts the inter-node distances is chosen. 

The last stage, called slicing, is to partition the 2-D plane into rectangular areas 

determined by the projection. 

An experimental environment using- the- Heller- and- Otten- methods- is- de= 

scribed by Schmid in [79]. The Otten algorithm is described as being fast enough 

for an interactive system, but solutions meeting all communication and size cri- 

teria cannot always be found. The system uses the Otten algorithm to help the 

user refine a specification that will drive the Heller algorithm. 

The emphasis in these tools is design automation, rather than computer aided 

design. Because of the computational expense involved in automatic floorplan 

tools, it seems reasonable to expect graphical design aids will continue to be used 

for some time, and hence the techniques described later in this thesis can usefully 

be brought to 6&r on this subject. Indeed, it is later, argued) that graphical design 

aids are crucial to the effective use of silicon. 
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2.2.7 Verification 

There are being developed verification tools which attempt to prove that im- 

plementations of systems conform to their specification. This is an extremely 

important objective as exhaustive simulations are already prohibitive in even 

modest sized systems. 

Milne describes a calculus for circuit descriptions called Circal [58]. He 

demonstrates an application of Circal by verifying the correctness of a simple 

silicon compiler [59]. In this- example- Milne_describ.es_a_sema.ntic_function_which_ 

maps Nor expressions (the input language of the compiler) to Circal and a func- 

tion which maps layout (the output of the compiler) to Circal. By showing 

that both Circal expressions are equivalent, in this example they turn out to 

be the same, the correctness of all possible circuits of the system is proven. In 

more complex examples it is predicted that the expressions would have to be 

manipulated using Circals laws to prove the equivalence. Traub [87] describes 

an experimental Lisp system which provides machine assistance in manipulat- 

ing Circal expressions. Circal has also been used as a basis for an interactive 

simulation system, where Circal expressions are animated on a graphics screen 

Barrow [4] presents a system, Verify, which performs functional verification of 

circuits, without regard to timing issues. The system attempts to prove that the 

description of the behaviour of the circuit at one level in the hierarchy matches 

the behaviour derived from the interconnection of its constituents. The proof is 

made automatically as far as is possible, using a Prolog based algorithm, and has 

an interactive mode where the user can guide the proof (i.e. suggest application 

of laws). 

The work in this thesis is relevant to design verification in two areas, ex- 

pression manipulation (including proof-editing), and implementing interactive 

simulation systems. 
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2.3 Programming Environments 
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A programming- environment.. is-an.integration _of_the-tools -associated with. pro. 

gram development (text editors, compilers, interpreters, debuggers, display pro- 

grams, etc.) within a unifying framework. A component of most programming 

environments is a structured editor (sometimes also known as a structure editor, 

reflecting a subtle change in emphasis). This tool combines the functions of a 

text editor with that of a parser to yield an editing system which has knowledge 

of the structure being edited, and can hence forbid illegal constructs and permit 

actions which make use of the structure (e.g. movement and deletion of large 

sections of program). The Mentor project [17] built a structured editor for Pas- 

cal which provided a tree manipulation language called Mentol. Using Mentol 

it is possible to specify complex tree traversals, insertions and deletions. The 

following piece of pascal: 

if X>O then P(X,A[Y,Z]) 
else begin 

Y:=Y*2; 
X:=O 
end 

if 

gtr call Istat 

X 0 P lexp ass ass 

X index Y mult X 0 

Y Z 

Figure 2-10: A Mentol abstract syntax tree 
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is represented by the abstract syntax tree in Figure 2-10, and is transformed by 

the following Mentol-commands: 

:OTOP 

S2 X S3 

S2 S1 I S3 
S3 C & 

Z:=0 

I place current marker at top of tree 
% exchange sons two and three 

insert son3 at song of sons 
replace S3 with ... 

the parse tree of this line 

into the tree having the following unparsing: 

if X>O then 
begin 
Y:=Y*2; 

P(X.A[Y.Z]) ; 

X:=O 

end else Z:=O 

The Cornell Program Synthesiser [85] introduces the terms template, place- 

holder and phrase. A template is a predefined formatted pattern of lexical tokens 

and placeholders. A placeholder identifies locations in a template where inser- 

tions can be made. A phrase is a sequence of lexical tokens (e.g. keywords, 

numerals and identifiers). Each placeholder designates the syntactic class of 

permissible insertions. An example of a template (from [85]) is: 

IF (condition) 

THEN statement 

ELSE statement 

where condition and statement are placeholders. Programs can bn_entered .b_y. 

expansion of templates either by the insertion of further templates into placehold- 

ers (a top-down approach) or by entering a phrase at a placeholder (a bottom-up 

approach). The bottom-up entry method requires the use of a parser to prevent 

illegal sentences being inserted. 

Many other programming environments include editors which have features 

in common with the Cornell Program Synthesizer, including the editor module 

of the Wright system (Chapter 3). 1 shall continue to use their terminology. 
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An all embracing approach to programming environments can be seen in the 

Smalltalk project [24] where everything from the virtual-machine architecture to 

the high-level programming paradigm has been conceived as a whole. The object- 

oriented approach taken in Smalltalk lends itself to tool integration, making 

possible natural descriptions for inter-tool communication and resource sharing. 

To describe the essence of Smalltalk it is necessary to introduce some of its 

vocabulary: 

object A component of the Smalltalk system represented by some private mem- 

ory and a set of operations. 

message A request for an object to carry out one of its operations. 

class A description of a group of similar objects. 

instance One of the objects described by a class. 

method A description of how to perform one of an object's operations. 

In Smalltalk, computations are described by the interaction of objects, which 

communicate using messages. When an object receives a message it applies the 

corresponding method to perform the desired computation. Objects with shared 

properties are structured in classes, and new classes can be derived from existing 

classes using the subclass mechanism. Subclasses inherit all of the properties of 

their superclass, however, they can modify these properties and add their own. 

For example if the class `WindowManager' has a method `DrawFrame' which 

draws a thick border round a window, to provide a new window manager which 

draws only thin borders round windows, would simply involve creating a subclass 

of `WindowManager' which overrides the method `DrawFrame' with one that 

draws thin borders. The concepts of inheritance and message passing can lead 

to very elegant descriptions and implementations of systems. 

Similar developments have led to the SYMBOLICS 3600 LISP machine which 

has been used to develop a VLSI CAD system NS [15]. The authors attribute the 
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success of their system to abstraction mechanisms provided by the LISP machine; 

the Flavors object-oriented programming language, large uniform virtual address 

space and procedure-data duality (procedures are first-class citizens, i.e. they 

have a well-defined data representation which allows them to be manipulated 

just like any other data object). Flavors makes an alteration to the Smalltalk 

and Simula class structure by providing the mechanism of multiple inheritance. 

Flavors can inherit methods from multiple-superclasses, i.e. new flavors can be 

constructed by mixing existing flavors. 

An important aspect of programming environments is the level of support 

given to graphics. Both the Symbolics and Smalltalk systems make extensive 

use of the graphics capabilities present on their workstations, indeed, this is a 

measure of the success of their programming paradigm. 

Programming environments have been created for traditional procedural lan- 

guages (e.g. Pascal) and developments have been made in not only syntax- 

directed editing but also in such things as debugging aids, source code version 

control systems and incremental compilers. Research programs in this area in- 

clude Gandalf [57], POE [21] and SAGA [11]. 

In the area of syntax-dictci'cdediting a popular formalism to specify context- 

dependent language features has been the attribute grammar [39], and this is 

the formalism that forms the basis of the Wright system. Major work in this 

area has been done in the development of the successor to the Cornell Program 

Synthesizer, namely, the Synthesizer Generator [71]. This project has success- 

fully developed optimal-time incremental attribute evaluators and has developed 

methods for reducing the storage requirements of attributes. The Cornell system 

has been used in many applications, including the following: 

Pascal editor with full static-semantics checking. 

An editor for partial-correctness program proofs using Hoare-style logic. 

A full-screen desk calculator. 
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a text formatter. 

a mathematical equations formatter. 

Further discussion of the Cornell project is made in the next chapter, follow- 

ing the introduction of the formalism of attribute grammars. 

2.4 VLSI Programming Environments 

2.4.1 Introduction 

The work in this thesis is primarily motivated by an interest in applying the tech- 

niques of programming environments to VLSI design. This area has seen some 

interesting research projects, of which SAM [88] is perhaps the most relevant 

to this thesis. In SAM, Trimberger implements an embedded language package 

using the SMALLTALK programming environment. It contains the following 

key features: 

Text and graphics The user can view the design as either text or graphics. 

One internal representation The text and graphics windows onto a design 

are different views of the same internal data structure. Hence a change to 

this structure causes the regeneration of both views. 

Trimbereger identifies two areas of difficulty in reconciling textual and graphical 

representations: 

expressions what happens when an x coordinate described by the expression 

3*w+4 is transformed by a graphical command to a new position ? Say the 

value of the expression was 10 and is now 13. The following substitutions 

are possible in the text version: 
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13 destroy parameterisation 

3 * w + 7 add a constant (translate) 

(13/10) * (3 * w + 4) multiply by a constant (scale) 

3 * w + 4 where w = 3 change the value of the identifier 

iteration If a change is made graphically to one instance of a cell invoked by a 

loop statement, should only it, or all the instances change ? 

These problems are partly due to the level of abstraction used in the system, 

i.e. the use of absolute values, and also the nature of the graphics commands 

available. The approach taken in the Wright system to solve these problems is 

presented in chapters four and five. 

There are now commercial products emerging which are showing a high level 

of tool-integration, and which make use of both textual and graphical inter- 

faces. Representative of these are SDA's SKILL system [45] and SDL's GDT 

(generator development tools) [10]. Both these products have procedural design 

languages for the development of module generators, and allow these descrip- 

tions to be entered using graphical editors. Neither of these sytems, however, 

supports graphical and textual manipulation of the same object at the same time. 

Central to both these systems is the design data-base which is closely tied to the 

respective design language (SKILL and L). All the tools involved in the design 

process (simulators, routers, compactors, schematic editors etc.) communicate 

through this shared design representation. 

The application of attribute grammar techniques to VLSI design systems has 

also recently been suggested by Jones and Simon [36]. Their work has been based 

very closely on the Cornell Synthesizer Generator, and has so far focused on the 

development of evaluators for circular attribute grammars. The need for circular 

attribute grammars has arisen since they are interested in describing some of 

the more dynamic features of circuits which are inherently circular (e.g. delay 

propagation and logic simulation). The Wright system is primarily concerned 

with the relationship of programs to pictures, and has only needed to make use 

of non-circular attribute grammars. 
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2.4.2 Interactive ILAP 

33 

Interactive ILAP was my final year project as an undergraduate [54]. I include 

a brief description of it here because the work reported in this thesis has largely 

followed on from it, and it amply illustrates some of the problems I am address- 

ing. 

As introduced before, ILAP is VLSI layout language embedded in the pro- 

gramming language IMP. Figure 2-11 illustrates the ILAP design cycle. 

Text Editor 

Compiler 

Linker 

ILAP Program 

Cifview 

Figure 2-11: ILAP Design Cycle 

I 

During the evolution of a circuit the designer makes use of the following 

programs: 

text editor In the university there are an abundance of full-screen text editors 

available, some of which, e.g. EMACS, can be instructed how to format 

language constructs. 

TED 

TED Leaf cells (i.e. cells containing only geometry primitives) can be con- 

structed using the Ted graphical layout editor. 



Chapter 2. VLSI and Programming Environments 34 

compiler The ILAP package makes use of the IMP compiler, which even on 

a lightly loaded or personal machine can take a few minutes to compile a 

moderately sized design. 

linker Resolves external references in the object code generated by the compiler 

providing an executable image (this stage is eliminated in systems with 

dynamic linking) . 

ILAP program The compiled ILAP program is now executed to generate the 

CIF file [56] corresponding to the design. 

CIFview Finally the user can observe on a display (or plot) the geometry that 

has been constructed. 

All the tools in the design cycle view the design as a whole; if the coor- 

dinates of a cell translation in a design were entered- in reverse, in order to 

correct that one point all of the above tools would have to be re-invoked and the 

whole design re-evaluated. Interactive ILAP's brief was to remove the redundant 

re-evaluation thus reducing design time. In order to do this a programming en- 

vironment approach was taken and some of the features of the systems described 

by Trimberger [88] and Medina-Mora [57] were incorporated. 

Figure 2-12 show the major components of Interactive ILAP. 

editor Interactive ILAP provides a syntax-directed editor for IMP. The edi- 

tor Also provides the control mechanisms through which the user directs 

the execution and display of the system. The editor maintains two data 

structures; a list of analysis records (collapsed parse trees) associated with 

each source line, and an array of pseudo-machine code generated from the 

analysis records. 

interpreter The interpreter executes the pseudo-machine code maintained by 

the editor. The interface between editor and interpreter allows direct con- 

trol of execution and comprehensive monitoring facilities. 
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text 

Editor 

Interpreter 

ILAP Kernel 

graphics 

Graphics 
Library 

ILAP 
Library 

Figure 2-12: Interactive ILAP Structure 
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ILAP kernel The normal ILAP kernel produces CIF layout as output. Inter- 

active ILAP has its own kernel which generates internal graphics code at 

run time. This dynamically generated code can then itself be executed 

causing calls on graphics procedures and, hence, pictures. 

Graphics library Interactive ILAP uses EDWIN [29] for the presentation of 

circuit layouts. EDWIN is particularly useful because of its portability 

over a range of hosts and graphics devices. 

ILAP library The ILAP library contains programmable structures built on 

top of the ILAP kernel. Since these are independent from the kernel and 

appear as external references, Interactive ILAP can use them without mod- 

ification. 

The textual representation of an ILAP design, i.e. the IMP program, is 

displayed and edited using a normal VDU. The editing functions provided include 

the normal structured editor tree traversal and manipulation procedures, and 

source lines can be entered bottom-up using the system's parser. 
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An important feature is the integration of the graphics device into design 

entry; by using a mouse or tablet to point to locations on the current design pic- 

ture, the user can use the current mouse coordinates in the insertion of various 

text macros into the current source line, e.g. a coordinate pair 34,23, or a more 

complex macro might use two sets of coordinates to insert box (10.20.10.3) . 

2.4.3 Conclusions 

Interactive ILAP was a successful attempt at producing a programming environ- 

ment for a procedural language, and indicated the potential of using a graphics 

device during the composition of programs (i.e. the use of positional information 

from the mouse). It did not, however, solve some of the insecurities of ILAP it- 

self, and was not itself a firm basis for further development. The major deficiency 

in the implementation of Interactive ILAP was its parsing scheme (table-driven 

recursive descent) which imposed severe restrictions on the class of grammars 

which could be used and had efficiency problems. The other problem with the 

implementation was the rather ad-hoc relationship between the analysis records 

provided by the parser and the semantic actions which operated on them. Any 

change to the grammar required significant hand re-coding of large sections of 

code. The next chapter is concerned with providing a more secure framework 

for the development of a VLSI programming environment. 
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syntax tree) which the user can view and edit as either a language construct-or. 

as a picture. By allowing editing operations through both these interfaces the 

system combines the advantages of conventional programming techniques (hi- 

erarchy, parameterisation, iteration, conditional evaluation, type security etc.) 

with the benefits afforded by graphical entry (icons, menus, pointing devices, 

etc.) as well as providing constant pictorial feedback on the progress of the de- 

sign. The use of an incremental evaluator restricts re-computation of attributes 

to only those affected by an editing change. 

3.2 Attribute Grammars 

I begin the discussion of attribute grammars (AGs) with a few definitions and 

assume the usual notational conventions [1] [91]. 

Definition 1 A context free grammar for the language L is a quadruple, G = 

(N, T, P, Z) with 

N the set of non terminals 

T the set of terminals with N and T disjoint 

P a finite subset of N x V*, the set of productions, where V = N U T 

Z a distinguished non terminal, the start symbol. 

Definition 2 An attribute grammar is a quadruple, AG = (G, A, R, B) with 

G a context free grammar 

A = U A(X) is a finite set of attributes 
XETuN 

R = U R(p) is a finite set of attribution rules 
pEP 

B = U B(p) is a finite set of conditions 
pEP 
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For each occurrence of X in the structure 

tree corresponding to a sentence of L(G), at most one rule is applicable for the 

computation of each attribute a E A(X). 

Definition 3 For each p : Xo - Xl ... Xn E P the set of defining occurrences 

o f attributes AF is AF(p) = {X;.a I X;.a +- f (. . .) E R(p)}. An attribute X.a 

is called derived or synthesised if there exists a production p : X X and X.a 

is in AF(p); it is called inherited if there exists a production q : Y µXv and 

X.a E AF(q). 

Definition 4 Let the set of synthesised attribute occurrences be S(X) and the 

set of inherited attribute occurrences be I(X). 

S(X) n I(X) = 0, S(X) U I(X) = A(X). 

An AG is said to be in normal form if for every p : X0 Xl ... Xn E P the values 

of the attribute occurrences in S(Xo) and I(Xl<k<n) are defined as functions of 

attribute occurrences in I(Xo) and S(Xl«<n). 

At this stage it will prove useful to introduce the notation used by the Wright 

system. This is the binary arithmetic example of Knuth [39]: 

Grammar Binary is 

Code [ %include "att.src" ] 

Lexicals _zero, _one , _dot; 

Synthesised B(value), L(value, length), N(value), A(value); 

Inherited B(scale), L(scale); 

Productions 

A -> N <vaaue$0 = vaaue$1>; 

B -> _zero <value$O = 0> I 

_one <value$0 = twotothe(scale$0)>; 

L -> B <value$0 = value$1> 
<length$0 = 1> 
<scale$1 = scale$0>; 
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L -> L B <value$O = value$1 + value$2> 
<length$O = length$1 + 1> 
<scale$2 = scale$O> 
<scale$1 = scale$O + 1>; 

N -> L <value$O = value$1> 
<scale$1 = 0>; 

N -> L _dot L <value$O = value$1 + value$3> 
<scale$3 = -length$3> 
<scale$1 = 0>; 

end of productions 
end of grammar 

In the following discussion the non terminals -zero, -one, dot will be in- 

dicated by their literal occurrences ' 0' , ' 1 ' , . ' when used in example strings. 

The above definition is used to give a precise meaning to the set of strings which 

are admitted by the grammar Binary. For example, the string 1101. 01 can be 

parsed to form the tree shown in Figure 3-2. 

A 

i 

N L/ !\L 
\B L/ B L 

B 

B 

I, 

Figure 3-2: Syntax Tree for 1101.01 

Meaning is assigned to this structure by evaluation of the attributes asso- 

ciated with the grammar's non terminals (e.g. non terminal L has synthesised 
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attributes value and length, non terminal B has inherited attribute scale). The 

brackets < ... > contain the defining occurrences of the AG, i.e. the semantic 

functions which link the attributes. 

In the defining occurrence <value$0 = value$1 + value$3> for production 

L -> L _dot B , the $" labels are used to indicate which subtree of the current 

production the attribute belongs to (note that this index also includes terminals 

in its calculation). All synthesised attributions can only be made at position 

0 in the production, indicating movement of data up the syntax tree. In this 

example the `values' synthesised for two subtrees are `added' together. Also for 

this production there are the inherited attributions <scale$3 = -length$0> 

and <scale$1 = 0>. This is information flow down the syntax tree. 

The defining occurrence <value$0 = twotothe(scale$0)> uses an auxiliary 

function twotothe which is just normal exponentiation 2". The actual form of 

the semantic actions is not covered by the formalism of attribute grammars, 

and the Wright system makes use of the IMP [73] programming language. The 

defining occurrences are just fragments of IMP code with attribute instances. 

The system replaces the attribute instances with appropriate references into the 

internal attributed syntax tree data structure. The above examples make use 

of IMP's arithmetic operators and assignment statement (indeed, the defining 

occurrences must always be of the form <attr$" = xyz > where xyz is a valid 

IMP integer expression, optionally containing attribute instance references). 

The example Binary has been chosen because of its brevity and because it 

illustrates the information flow possible in an AG. The grammar seeks to give 

an `intuitive' meaning to binary strings which have a radix point (i.e. binary 

fractions). The above set of functions, when applied to the parse tree of our 

previous string 1101.01, yields the attributed syntax tree shown in Figure 3-3. 

The order in which defining occurrences are applied is determined by the 

evaluation scheme being used, and is discussed later. However, for the purposes 

of this example, observe that the length attributes to the right of the radix 

are required to be evaluated (bottom up) before the scale attributes can be 
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stages of the work described here, and was the first response to the experiences 

gained in implementing Interactive ILAP. Parsing technology is a crucial com- 

ponent in any translation process and so was the natural candidate for early 

investigation. The tools Lex [20] and Yacc [34] provided the kind of improve- 

ments needed on the Interactive ILAP scheme (this is discussed further after the 

tools have been described) but were not available on the computing resource I 

was using and do not conveniently fit in with- tire-- IMP- promgrammirrg-enviroir= 

ment. In order both to learn further the concepts involved and to provide a 

parsing facility for my computing-environment, I- designed. and- implemented - an 

IMP parser generating system based on Lex and Yacc (ASG and APG) which I 

have been able to tailor exactly to my requirements. 

LALR is the term given to the largest class of grammars which can be ac- 

cepted by the APG system and is explained after a brief introduction to lexical 

analysis, as implemented by ASG. 

3.3.2 Lexical Analysis 

Lexical analysis is the process which builds tokens from the raw input provided 

in a program source. The split between syntax analyser and lexical analyser is 

fairly arbitrary (it would be possible to have the set of ascii characters as the 

tokens of the language, and use the parser to recognise numbers, identifiers, etc.) 

but it is usually convenient to let the lexical analyser build up groups of letters 

which are logically bound together (i.e. the components of a number), thus 

improving both the modularity and efficiency of the parsing process. In non- 

interactive systems the lexical analyser is also responsible for throwing away 

insignificant formatting characters and comments. Tokens correspond to the 

terminals in a grammar description (e.g. the tokens _one, -zero and _dot of 

AG Binary). For the rest of this section on parsing I will illustrate the APG 

programs by showing the implementation of the expression evaluator Calc. Here 

is the lexical definition of Calc: 

lexical definition Calc is 
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ranges 
ON is '0'..'9'; {numbers} 
@L is 'a'..'z' + 'A' .. 'Z' {letters} 
@B is 0 .. 16_20; {white space} 
@E is 0 .. 127 - '}' {comments} 

end of ranges 

macros 
#case is $$; 
#p is $($)* {1 or more operator} 

end of macros 

expressions 

#case; 

keyword -> \keyword; {_keyword is case insensitive} 

#; 

_equals 
_plus -> \+; 

_minus -> \-; 
_rb -> \); 

_lb -> \(; 

_div -> \/; 

_times -> \*; 
_form -> #p[@B] ; 

_int -> #p[@N] 

_comm 
(_#p[@N I @L] I ); 

-> \{@E*\} 

end of expressions 

end of lexical-definition 

The ASG specification consists of the declaration of ranges, macros and ex- 

pressions: 

Ranges Ranges are sequences of characters or combinations of ranges. Sup- 

ported combinations are addition + and subtraction -. Ranges can be 

specified as lists of characters between double quotes, single characters be- 

tween single quotes or ascii code ranges (e.g. 0..32). Range names can be 

used anywhere in the definitions where a character could appear. 
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Macros The expression defining -form uses the macro #p. In the definition 

of #p the $ is a substitution operator which corresponds to the argument 

enclosed by [ .. 1. Hence #p [@B] is expanded out into @B (@B) * in 

the definition body. The operator $$ substitutes a case conversion pair; 

#case [a] becomes WA), A), #case [A] becomes (A I a) and #case [ , ] be- 

comes .. Macros can also be used without parameters between expression 

definitions, causing every following character to have the macro applied to 

it. Global macro application of this nature is applied using a stack, which 

can be popped using the null macro #. The spurious definition keyword is 

inserted to show this working. 

Expressions The tokens are defined using sequences of characters and ranges 

grouped by parenthesis. The following operators are available: 

* post-fix operator which means "zero or more". 

i infix operator which separates alternatives. 

( ) denotes the null expression. 

Lexical Conventions The character \ indicates that the following character 

is to be interpreted literally (thus allowing the definition of keywords and 

punctuation which are reserved ASG tokens). In all APG systems it is the 

convention to indicate that a name refers to a terminal by prefixing the 

character - to the identifier (as in int). 

The underlying formalism in ASG is regular expressions. A definition from 

above (with macros expanded): 

_int -> ON ON* ( - ( ON I @L ). ( ON I @L)* I ); 

can be read as associate with the name _int the set of strings which consist of one 

number followed by zero or more numbers optionally followed by the radix charac- 

ter - and a non zero sequence of numbers or letters. The set of regular expressions 
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which together describe the complete token vocabulary are converted into a de- 

terministic finite automaton which is implemented as a compacted transition 
table. Details of both the theory and this construction process are given by Aho 

and Ullman [1]. The lexical scanner operates as follows: each character from the 

input stream is used as an index into the transition table T(character,state) 
at the current state. The content of this position in the table is the next state. 

If this state is the error state then either a token has been recognised (i.e. the 

present state is an accept state) or there has been a lexical error, and a warning 

is issued. 

Lexical scanners specified by regular expressions have several advantages over 

their hand crafted counterparts: 

it is very easy to add definitions or modify existing ones. 

the only code requiring maintenance i5 the generic system modules, hence 

an improvement or new feature to the scanner is immediately available to 

all system users. 

it is easier to define complex tokens correctly. 

the specification also provides a source for system documentation. 

the state transition table can form the basis of an auto-completion facility, 

i.e. once the user has typed a few characters of a token (in an interactive 

session), the system may be able to automatically complete the token, or 

provide a menu of possible completions. 

Although not inherent in the formalism of regular expressions (which are of- 

ten used as the specification for hand crafted scanners) but rather a feature of 

many automatic systems like Lex and ASG, is the use of large data structures 

like the transition table representation. Although the table is compacted (with a 

consequential run time speed penalty), equivalent hand crafted scanners can be 

expected to have less space requirements and to run faster. For interactive sys- 

tems and prototype systems, space/time efficiency considerations are outweighed 
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by the previously described benefits. Even batch oriented systems are not sig- 

nificantly impaired by using an ASG scanner (applications of the APG/ASG 

system are presented later). 

ASG is actually unmodified for use in the Wright system, the AG Binary 

has the trivial ASG description: 

Lexical_Definition Binary Is 

Ranges 
tB Is 0..32; 
CC Is 0..127 

End Of Ranges 

Expressions 

_zero -> \O; 
_one -> \1; 
_dot -> \.; 

_form -> CBCB*; {white space} 
_comm -> \{@C*\}; {comments like this one!} 

End Of Expressions 

End Of Lexical Definition 

3.3.3 Syntax Analysis 

I continue the development of the expression evaluator Calc by giving its APG 
definition: 

Grammar Calc is 

Code [%include "calc.src"] 

Lexicals _int [lex int], 
_plus, _times, _minus, _div, 
_equals, 
_lb, _rb; 

Productions 

exp_list -> exp_list ans I ans 

ans -> exp _equals 
[print string("result = ") 

write(pop,0) 
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newlinel 
_error 
[print string("finger trouble!") 

I 

newline]; 

exp -> _minus exp [push(-pop)] I 

_lb exp _rb I 

exp _times exp [push(pop*pop)] I 

exp _plus exp [push(pop+pop)] I 

exp _minus exp [push(-pop+pop)] I 

exp _div exp [push(div(pop,pop))] I 

_int [do int]; 

End of Productions 

Priorities (_times, _div) (_plus, _minus); 

End of Grammar 

An APG specification consists of the declaration of Code, Lexicals, Pro- 

ductions, Priorities and Associativities (not used in Calc). 

Lexicals The names in the lexical list correspond to the regular expression 

definitions in the ASG specification. 

Productions The grammar is specified using a variant of BNF, which includes 

the normal extension of parenthesis ( .. ) followed by one of the op- 

erators ?, *, + for optional , zero or more and one or more groups of 

terminals and non terminals. This extension is not yet used by the Wright 

system, however, analogous notational extensions to AGs have been pro- 

posed [37], and would be a useful development. 

Code Sections of the IMP programming language can be included within [ .. ] 

brackets in three places; following the Code construct, at the end of each 

terminal definition and at the end of every production. The first piece 

of code is usually a set of declarations used later (often contained in a 

file referenced by the IMP %include statement). The code placed after 

lexical items is executed after the scanner passes the current token to the 

parser. The code at the end of production definitions is executed after the 

production is reduced. 
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Priorities and Associativities APG allows the use of ambiguous grammars 

by allowing the user to specify disambiguating relationships (e.g. multipli- 
cation and division have the same precedence but have higher precedence 

than addition and subtraction)- 

In order to explain some of the terminology introduced above, I now will 
briefly discuss the underlying mechanism of APG, namely LALR parsing. 

In, the same;way that ,regular expressions can be implemented using finite 

automata;- a subset of ; the - context ,froe, grammars- can be implemented using 

deterministic pushdown automata (DPDA). Informally, a DPDA can be regarded 

as a finite .automaton (i.e. transition.table):.-and an associated stack. A method: 

of 'parsing which makes explicit,use, of this )fotmalism is_.LR parsing [381, so-called 

because theparset scans the-;input from left to right, and, constructs, a rightmost 

derivation in-reverse. Figure 3-4 shows the main components of an LR parser. 

01 an Input 

Stack 

Driver 
Routine Parsing 

Table 

Figure 3-4: LR Parser 

The parse tables consist of two parts Action (token. state) and Goto(non 

terminal, state). The parser operates as follows: as each token is provided by 

the scanner an entry in the table Action(token,state) is looked up (initially 

at state zero). The contents of this location can be one of: 

"shift s" push current input symbol onto the stack and the next state s. 
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"reduce A --+,3" pop the symbols off the stack corresponding to this produc- 

tion and execute the code associated with this reduction. Push A onto the 

stack and push Goto(s. A), where s is the new top of the stack. 

"accept" Parsing completed. 

"error" Syntax error, issue warning and perform error recovery. 

For the grammar Calc and the input string 3 + 4 * 5 the parser will cause 

the sequence of stack operations shown in Figure 3-5. 

Stack Pending Input 

1 0 3+4*5 
2 0 3 1 +4*5 
3 0 Exp7 5 + 4* 5 

4 0 Exp7 5 + 8 4* 5 

5 0 Exp7 5 + 8 4 1 * 5 

6 0 Exp7 5 + 8 Exp7 13 * 5 

7 0 Exp7 5 + 8 Exp7 13 * 9 5 

8 0 Exp7 5 + 8 Exp7 13 * 9 5 1 

9 0 Exp7 5 + 8 Exp7 13 * 9 Exp7 14 

10 0 Exp7 5 + 8 Exp3 13 

11 0 Exp4 5 

12 0 Ans 4 

Figure 3-5: Stack Operations for 3 + 4 * 5 

The actual parsing mechanism is very straight forward to implement, the 

major task in building an LR parser is determining the contents of the parse 

tables. This would be an extremely tedious and difficult task to do by hand 

for all but the most trivial grammars, and so automatic tools must be used. 

The method used by APG is LALR (lookahead-LR), again, the theory and some 
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implementation strategies for using this technique can be found in Aho and 

Ullman's book [1]. 

An essential stage in the construction of the parsing tables Action and Goto 

is building a data structure known as the sets of LR(O) items, illustrated in 

Figure 3.fo The item labels 10, 11 . . 116 correspond to the state field in the 

parse tables. Items are marked with a . to indicate how much of their production 

has been processed, and the possible transitions from that state are shown at 

the end of the item. For example, 17 has a LR(O) item which corresponds to 

the production exp -> -lb exp _rb reaching the point mob. If a _rb is the next 

move from 17 then 112 will become the next state. 

The class of grammars which can be directly implemented from the LR(O) 

data structure are known as SLR (simple LR). LALR parsers extend the range 

of admissible grammars by calculating lookahead symbols for each LR(O) item. 

These lookahead symbols reduce the number of ambiguities that can arise when 

deriving the parse table from the LR(O) construction. Ambiguities arise in the 

Action table when it can not be determined which stack operation to perform: 

shift/reduce conflicts At the present state it is possible to either shift on the 

current input symbol and enter a new state, or to recognise a production 

on the top off the stack and reduce it. 

reduce/reduce conflicts Two or more different productions can be reduced. 

Sometimes ambiguities are deliberately introduced and then disambiguated 

using the Priority and Associativity statements. Compare the previous ex- 

ample of 3 + 4 * 5 with the operations on the string 3 * 4 + 5 shown in Fig- 

ure 3-7. 

The stack does not grow as far in this example because the parser generator has 

decided (from the Priority statement) to make a reduction by Exp3 (Exp -+ Exp 

_times Exp) at state 114 instead of the equally possible shift on plus to state 

18, thus giving multiplication precedence over addition. The Associativities 

command allows the user to specify right or left associativities, e.g. in 3 + 4 - 2 
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10: 
-p .ane] START 

ans -. exp] 
exp -. .'minus'exp] 
exp - .'Jb'exp'sb'] 
exp -. .exp'_times'expl 
exp -. .exp'_plus'exp] 
exp -. .exp'lninus'exp] 
exp -. .exp'.div'exp] 
[exp - .'int'] 
exp -p 15 
ans - 14 '1b'-iI3 
-minus' - 12 
'int' -. I1 

16: 
exp -. exp.'.div'exp] 
exp -. exp.'minus'exp] 
exp -. exp.'_plus'exp] 
exp -. exp.'-times'exp] 
[exp -. 'minus'exp.] 
_div' -. Ill 
'minus' -p I10 
-times' -. I9 
-plus' -p I8 

I10: 
[exp -. exp'minus'.exp] 
exp -. .'minus'exp] 
exp - .'Jb'exp'sb'] 
exp - .exp'_times'expl 
exp -. .exp'_plus'exp] 
exp -. .exp'minus'exp] 
exp -. .exp'-div'expl 
exp - .'int'] 
exp - 115 
'1b' -I3 
'minus' -p 12 
'int' - I1 

115: 
exp - exp.'.div'exp] 
exp -. exp.'minus'exp] 
exp -+ exp.'_plus'exp] 
exp -. exp.'_times'exp] 
exp -. exp'minus'exp.] 
.div' -. Ill 
'minus' -p I10 
_times' -. I9 
'_plus' -. I8 

12: 
exp -. 'minus'.expl 
exp -. .'minus'exp 
exp -. .'Jb'exp'sb'] 
exp -. .exp'_times'exp] 
exp - .exp'_plus'exp] 
exp -. .exp'-minus'exp] 
exp -. .exp'. div'expl 
exp - .'int'] 
exp - 16 :1b' 13 
minus' -p 12 
int' -. I1 

I7: 
exp - exp.'.div'exp] 
exp -. exp.'-ninus'exp] 
exp -. exp.'_plus'exp] 
exp -. exp.'_times'exp] 
[exp - 'Jb'exp.'sb'] 
'-b' -p 112 
'_div' -. Ill 
'minus' - I10 
'-times' -p I9 
'_plus' -p I8 

Ill: 
[exp - exp'-div'.exp] 
exp -. .'minus'exp] 
exp - .'Jb'exp'sb'] 
exp -. .exp'_times'exp] 
exp - .exp'_plus'expj 
exp -. .exp'minus'exp] 
exp -. .exp'-div'exp] 
exp - .'int'] 

exp -i 116 
'1b' -i 13 
'minus' -. 12 
' int' -i I l 

116: 
exp - exp.'_div'exp] 
exp -. exp.'minus'exp] 
exp - exp.'_plus'exp] 
exp -. exp.'_times'exp] 
exp -. exp'.div'exp.] 
'_div' -. Ill 
'minus' - I10 
'-times' -. I9 
'_plus' -p I8 

I3: 
exp - 'Jb'.exp'sb'] 
exp -. .'minus'exp] 
exp -. .'Jb'exp'sb'] 
exp -. .exp'-times'exp] 
exp - .exp'-plus'exp] 
exp -. .exp'minus'expl 
exp - .exp'-div'expj 
exp -. .'int'] 

exp - 17 
'1b' -i 13 
'-minus' - 12 
'int' -. I1 
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I5: 
exp -+ exp.'.div'exp] 
exp -. exp.'minus'exp] 
exp - exp.'_plus'exp] 

[exp -. exp.'_times'exp] 
fans exp.] 
'_div' - Ill 
'minus' -. I10 
'-times' -. I9 
'-plus' -. I8 

I8: 
exp -. exp'_plus'.exp] 
exp - .'-ninus'exp] 
exp - .'Jb'exp'sb'] 

I 9: 
exp -. exp'_times'.exp] 
exp -. .'-ninus'exp] 
exp -. .'Jb'exp'sb'] 

exp -. .exp'_times'exp] exp -. .exp'_times'expl 
exp - .exp'-plus exp] exp - .exp'-plus'expl 
exp -. .exp'minus'exp] exp -. .exp'-ninus'expi 
exp - .exp'-div'expl exp -. .exp'-div'expl 
exp - .'int'] exp - .'int'] 
exp -p 113 exp -. 114 
'1b' -iI3 ' 1b'-iI3 
'minus' -. 12 ' minus' - 12 
'int' -. I1 ' int' -i I1 

113: 
[exp - exp.'.div'exp] 
exp -. exp.'minus'exp] 
exp -. exp.'_plus'exp] 
exp -. exp.'_times'exp] 
exp -. exp'_plus'exp.] 
'_div' - Ill 
'minus' -. I10 
'-times' -. I9 
'-plus' -. I8 

114: 
[exp - exp.'.div'exp] 
exp -. exp.'minus'exp] 
exp - exp.'_plus'exp] 
exp -. exp.'_times'expi 
exp -. exp'-times'exp. 
'.div' - Ill 
'minus' - I10 
'_times' -. I9 
'-plus' -i I8 

I1: 
[exp - 'int'.] 

14: 
[START -p ans.] 

112: 
[exp - 'Jb'exp'sb'.] 

Figure 3-6: The sets of LR(O) items for grammar Calc 

addition and subtraction have equal precedence, but since the default is left 

associativity, 3 + 4 is recognised as an expression first, and not 4 - 2. 

Sometimes ambiguities arise because of poor grammar design or an incorrect 

grammar description. APG provides various diagnostic options which allow the 

parse tables (expanded), LR(O) sets of items, lookahead items, etc. to be printed 
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Stack Pending Input 

1 0 3*4+5 
2 0 3 1 * 4+ 5 

3 0 Exp7 5 * 4+5 
4 0 Exp7 5 * 9 4+5 
5 0 Exp7 5 * 9 4 1 + 5 

6 0 Exp7 5 * 9 Exp7 14 + 5 

7 0 Exps 5 + 5 

8 0 Exps 5 + 8 5 

9 0 Exps 5 + 8 5 1 

10- -0- E- cp3 5- + 8- E-xp7 13- 

11 0 Exp4 5 

12 0 Ana 4 

Figure 3-7: Stack Operations on 3 * 4 + 5 
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out. I have found this an invaluable aid in debugging both grammars and the 

system itself. 

The reasons for choosing LR parsing can now be stated: 

Wide Range of Grammars LR parsers cover the range of grammars which 

can be parsed using the major alternative method, recursive descent, and 

can admit many other grammars in addition. The ability to use both right 

and left recursion leads to succinct expression syntaxes, as does the ability 

to state operator precedences. 

Errors LR parsers detect syntactic errors as soon as it is possible in a left-to- 

right scan of the input, and so are ideal for interactive entry. For batch- 

oriented applications many error recovery schemes have been developed 

which make use of the parse tables to attempt intelligent repair and re- 

covery from errors. The APG system does not provide anything more 

sophisticated than a simple restart mechanism which is controlled by the 
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special terminal _error which the user puts as an alternative production 

on the syntactic entity on which parsing is to continue after a syntax error 

(i.e. tokens are skipped until A --+ _error is a valid reduction). This tech- 

nique (known as panic mode) is similar to the skip until semi-colon error 

action of some Pascal compilers. 

Table Driven The LALR(1) automaton is stored as a table; this simplifies the 

organisation of incremental parsing schemes by allowing un-expanded sec- 

tions of the parse tree to record positions in the automaton which will later 

be used to restart parsing (this is described in more detail in the next chap- 

ter). Having the automaton readily available helps in the implementation 

of the error recovery schemes mentioned before, and in interactive systems 

makes the provision of error messages a trivial matter (i.e. whenever an er- 

ror occurs it is possible to give a menu of legal alternatives, derived straight 

from the table). This technique could be extended on lines analagous to 

the auto-completion of lexical tokens, however, this is -not--currently- part- 

of the Wright generic parser. 

Although not all used by APG, there are a great number of space/time op- 

timisation techniques which can be employed to make LR parsers more efficient 

than they already are. APG parsers certainly perform well enough for the pur- 

poses of the Wright system, and indeed, many other systems. 

At this moment APG has been in service for two years and has been ported 

to a number of machines and operating systems. Among the projects that have 

made use of it are: 

A microcode assembler. 

An IMP syntax analyser. 

A silicon compiler (Chip Churn [64]). 

An OCCAM to hardware compiler [52]. 
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APG (isn't bootstrapping wonderful!). 

A hardware description language based on Pascal. 

An EDIF [19] syntax analyser (which had 605 productions !) 

While not attempting to fully explain LALR parsing or parser generation, this 

section has introduced the basic structure (the LALR(1) automaton) on which 

the Wright-Syst-em-bases-its-parsingfunctions, and--the-motivation-for-this-choice. 

The APG module and its grammar description language has been incorporated 

into the Wright system with only one major difference; the addition of attribute 

declarations and defining occurrences. The major contribution of APG to the 

Wright System has been its provision of a framework for bottom-up program 

entry during sub-tree replacement. 

3.4 Attribute Evaluation 

The attribute grammar's defining occurrences are a declarative specification of 

the syntax tree's semantics; they do not imply any specific order of evaluation, 

other than the obvious restriction that a function can not be evaluated until 

all its arguments have been evaluated. There are many ways of organising the 

evaluation phase, the method used in Wright was chosen because of its simplicity 

(it can be implemented fairly quickly) and also because the described implemen- 

tation supported incremental evaluation. Before giving a brief overview of the 

algorithm it is necessary to make another two definitions: 

Definition 5 For each p : Xo -* X1... Xf, E P the set of direct attribute 

dependencies is given by: 

DDP(p) = {(XX.a, X;.b) lX;.b <- f (... Xt.a ...) E R(p)} 

Definition 6 For an attributed syntax tree S with nodes Ko ... K corresponding 

to application of p : Xo -* Xl ... X, the dependency tree relation is given by 

the set: 
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DT(S) _ {(K;.a,K;.b)I (Xi.a,X;.b) E DDP(p)} 

where we consider all applications of productions in S. 
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The direct attribute dependency sets (which can be directly derived from the 

attribute grammar specification) give the dependencies between attributes in a 

single production. The dependency tree relation gives the complete attribute 

dependencies for any given parse tree, and can be viewed as the gluing together 

of the DDPs of that tree. If this relation contains a cycle, then the attribute 

grammar is said to be circular. 

The Wright system uses an evaluation method described by Jalili [32] [31]. 

The algorithm starts by taking, the synthesised attributes at the root of the parse 

tree and pushes them onto a stack of attributes pending evaluation. Evaluation 

can occur if the attribute at the top of the stack has no dependencies in its DDP 

(i.e. for evaluation of X1.b there must not exist (X;.a, X1.b) E DDP, or all its 

dependencies have already been computed). If evaluation can not occur then 

the dependent set of attributes (all the X;.a) which have not been computed 

are pushed onto the stack. If an attribute has already been marked as having 

been pushed, then there is a circularity in the DT, and the evaluation fails. If 
evaluation of the attribute at the top of the stack can occur, then its semantic 

action is executed, the attribute is marked as being evaluated and it is popped 

off the stack. The algorithm continues until a circularity is detected or the stack 

becomes empty. 

Figure 3-8 shows the order in which the attributes are calculated for the 

Binary example 1101.01 (the symbol '*' indicates that the attribute was not 

required to be evaluated). 

The process being performed here is a topological sort of the DT relation by 

depth-first search, interleaved with attribute evaluation and circularity checking. 

The method is dynamic, with the DT relation never actually being constructed. 

A procedural version of this algorithm, which makes the stack implicit in its 

procedure calls, gives a more succinct description of this tree traversal (modified 

from an example by Engelfriet [50]): 
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for a synthesised: 

Proc a_eval (K:node) 

Begin If Not evaluated(a,K) 

Then Let p : X0 -> X1... Xfz be the production at K - 
Let X.a := f (... Xi.b,, ...) E AF(p) 

...;b1_eval(K;);... 

K.a := f (... Ki.b,, ...) 

evaluated(a,K) := true 

Fi 

End. 

for a inherited 

Proc a_eval (K:node) 

Begin If Not evaluated(a,K) 

Then Let FK be the father of K with production 

p:Xo->X1...X. 
where X8 labels the son corresponding to K. 

Let X8.a := f (... X;.b,, ...) E AF(p) 

...;b1_eval(FK;);... 
K.a := f (... FKK.b,, ...) 

evaluated(a,K) := true 

Fi 

End. 

The major feature of this algorithm is that the DT relation is not actually 

constructed, dependencies are determined dynamically from the DDPs and the 

parse tree. The stack based version extends the marking method used to detect 

AG circularity by adding a timestamp field to the status field associated with 

each attribute. The evaluator uses the timestamp field and status field in such 

a way as to avoid un-necessary re-evaluation of attributes during interactive 
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Figure 3-8: Order of Attribute Calculation for 1101.01 

tree editing, (i.e. it evaluates only those attributes affected by a given subtree 

replacement). The time complexity for the update is O (N) where N is the 

number of attribute instances needed for static evaluation of the synthesised 

instances of the root of the semantic tree. Figure 3-9 shows the order and extent 

of attribute re-evaluation for the modification of the Binary example 1101.01 

to 1110.01. 

The drawback to this algorithm is that although linear, it requires the traver- 

sal of the tree , to s .c t at _ the_ rnn1, _ since_ this_ is_ the_ only. way. that _ changed-at-- 

tributes can be identified. In the Cornell Synthesizer Generator an incremental 

evaluation method has been developed which is linear in number of attributes 

which have actually been affected by the current sub-tree replacement. Since this 

algorithm is optimal in time, it would be a serious candidate for inclusion within 

the Wright system. However, the Jalili algorithm has enabled the Wright system 

to be produced quickly, and is sufficient for the purposes of demonstrating the 

AG specification technique. 
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Figure 3-9: Changing a sub-tree 
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The availability of a superior algorithm highlights both a deficiency in the 

Wright system, and a strength of using high level specification techniques; sys- 

tems making use of a formalism which is the area of active research have the 

potential to benefit from the discoveries made by that research. Any improve- 

ment made to the Wright evaluator module would benefit every editor specified 

for the system. 

3.5 Structure Editing 

3.5.1 Introduction 

The previous sections have introduced the formalism of attribute grammars, 

shown the specification language for the system and described the underlying 

evaluation mechanism. This section will introduce the operational components 

of a Wright Editor; the window manager, the prettyprinter and the editing 

interface. 
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3.5.2 Window Management 
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The display functions of the Wright system are organised using a window man- 

ager specially developed for the project. The computing environment on which 

Wright was developed has excellent graphics hardware facilities, but very little 
software with which to exploit them. Wright's window manager (WM) was devel- 

oped to provide support-for-the--device -configuration-used-in-text/picture-editing; 

namely, a video terminal and an 8-plane colour graphics display. Figure 3-10 

shows this hardware configuration. 

VDU 

windows 

keyboard 

windows or 
graphics 

mouse 

graphics 
monitor 

Figure 3-10: Device Configuration 

Figure 3-11 shows the organisation of the WM's universe, known as device 

space. Windows and devices can be mapped arbitrarily onto device space and 

the devices will display any windows that intersect with them. Windows can 

overlap and are organised in a circular queue, the ones at the top overlaying 

those below. Windows can be moved about in device space and can also be 

moved about in the display queue. Devices can also be moved about in device 

space. 

The windows can be accessed by application-programs-in-two-ways: 
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Figure 3-11: Devices and Windows 

normal system I/O routines are intercepted by the window manager which 

diverts the output to the currently selected window which behaves just like 

a video terminal would (scrolling, cursor movements, highlighting etc.) 

a memory mapped screen image (character based) which the applications 

program can manipulate directly. 

The window manager also lpxovides gone special window which supports the 

graphics package EDWIN [29]. This window ;takes up ,.one "half ,6f the graphics 

device's frame-store and has exclusive rightst.tto itt.' Applications Yprograms. can 

cause 'pictures-to, appear in this -window by calling Edwin graphics procedures. 

Other windows can appear in the other °half of the frame-store, and a software 

switch allows either half to be instantly displayed using the whole of the display. 
I 

The current Wright Editor module makes use of four windows: 

a window for the syntax tree un-parsing (pretty-printing). 

a window for attribution error messages and system warnings. 

a window for command and text entry. 
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the graphics window. 

In addition, the WM has its own 
windowIIwindow manager'jwhich 

can be 

invoked at any time to re-arrange device space or to escape to the operating 

system. 

3.5.3 Pretty-Printing 

Pretty-printing [65] [96] is the process of un-parsing the attributed syntax tree 

into its textual form on a display device. The aim of any un-parsing scheme is 

to present as much useful information as possible in the available space, which 

can range from a 80x24 screen to a full listing on paper. The control of what 

can appear in the available space is known as holophrasting. Although structure 

editing necessarily requires pretty-printing of some sort (since the user is manip- 

ulating tree structures, not lines of text), it is a useful topic in itself due to the 

increasing importance of program readability (whether using structure editors or 

not). Whereas the bulk of a program may be written only once, it is likely to 

be read and modified many times, possibly by more than one person (including 

the original author). Consistency in layout style can make this an easier task. 

In the Wright system pretty-printing is performed by a tree-walking proce- 

dure which uses information yielded by the evaluation of a synthesised attribute 

which is associated with every non terminal in the parse tree. Each non termi- 

nal has a maximum width in which it can display its sub-components, overflows 

cause the non terminal to be displayed vertically with appropriate indentation. 

The grammar designer controls the operation of the pretty-printer by setting 

various parameters in each attribute occurrence of the pretty-printing attribute. 

This will be illustrated in the next chapter. 

Specifying an un-parsing scheme using an attribute grammar follows natu- 

rally from the proposal by Rose and Welsh [74] that language definitions for 

programming languages should contain indications on how the language is to be 

formatted. This work is developed by Woodman [96] who presents a formatted 
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definition of Modula2, using Rose and Welsh's extension to BNF which includes 

formatting commands and has an associated pretty-printing algorithm. The ap- 

proach taken in Wright is rather more restrictive, and suggestions for further 

developments are given in the final chapter. 

3.5.4 Editing 

The Wright editor provides the normal tree traversal commands found in struc- 

ture editors and also provides an interactive parser. Appendix A. includes a 

summary of the available commands, and most of them will be introduced in the 

next two chapters. 

In addition to tree editing operations, Wright supports graphical interaction. 

Graphical interaction can take two forms: 

Graphics Editor Commands The Wright system allows the user to define 

editor commands and bind them to keys on the keypad. These commands 

may make use of information contained in the attributed syntax tree and 

also positional information provided by the graphics pointing device. In 

Stick-Wright a command of this nature is defined which moves the system 

cursor to a position in the abstract syntax tree determined by the position 

of the pointing device on the current display image. 

Graphics Text Macro Insertion In a similar manner to the mechanism de- 

scribed above, the user can define text insertion macros which can be 

invoked during the parsing of a sub-tree replacement. This macro can 

also make use of the attributed syntax tree and positions from the point- 

ing device. In Pict-Wright a text insertion macro is defined for inserting 

co-ordinates into the program script. 

These activities are further explained in the example editing sessions pre- 

sented in the next two chapters. 
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3.6 Summary 

A Wright specified editor consists of the following components;. 

a lexical analyser specified by regular expressions 

a syntax analyser specified by an LALR grammar 

a set of semantic functions specified by an attribute grammar 

an incremental attribute evaluation algorithm 

a window manager 

a graphics package 

a pretty-printer 

an interactive parser 

a tree editor 

a set of graphical commands 

The following chapters illustrate these components in action. 



Chapter 4 

Pict-Wright 

4.1 Introduction 

Pict-Wright is a simple picture editing system built to demonstrate the efficacy 

of attribute grammar specification techniques to interactive editing and picture 

generation. While the grammar is small, and hence more easily described, the 

techniques used are powerful and have a much wider range of applications. A no 

less important reason for building the system was that it enabled the generation 

of many of the figures that appear in this thesis. Figure 4-1 shows a snap-shot of 

a Pict-Wright editing session (using an illustration taken from the last chapter). 

The textual interface of Pict-Wright consists of a simple imperative language 

which uses the line and text graphics primitives provided by the Edwin [29] 

graphics package. The language allows parameterised groups of graphics com- 

mands to be bundled into procedures. Within each command procedure (includ- 

ing the top level list of commands) there is the notion of a current position. This 

is defined to be the place where the last graphics command finished drawing, 

and is the default starting position for the following command. Each drawing 

command takes the following form: 

action {x, y} (a, b) 

where action is the name of the drawing command, {x, y} are the coordinates 

of the command's local origin (the default is the current position) and (a, b) are 

the command's parameters (there may be any number and type of parameters). 

65 
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Pict-- 
ddefins scale := 18 

font (12 
size (scale) 
define NY (e, b [colour (1) 

move (0, 20) 
text e 

colour (2) 
move (6, -20) 
text (b) 
move (-(length &)-(length b)-6, 0)) 

BI {480, 800}(010, v--13.16) 

move (0, -80) 
NT (N", v--13.160) 

move -150, -80 
IT ('L', v=13,l 4,s=0) 

0) move (260, 
IT (D.O. 

---C nman d- 
p<Dsslgn 1>> 

VDU 

Figure 4-1: The Pict-Wright Editor 

I 



Chapter 4. Pict-Wright 67 

Parameter values can be integer expressions or string expressions (the grammar 

includes type-checking rules for preventing illegal expressions, e.g. 2 + "two". 

In Figure 4-1 the picture being displayed (shown in greater detail on page 42) 

is constructed as a list of procedure calls separated by relative move commands. 

The first procedure call: 

NT {480, 800}("A", "v=13.25") 

fixes the root of the tree being depicted in this figure. The final screen position 

1480, 800} went through several iterations as I interactively discovered how 

the tree was growing. The connecting lines in the figure were all instantiated 

using a graphical insertion macro. The macro used to draw lines takes two 

coordinates (the end-points of the desired line) which are provided by the user 

via the graphics pointing device. The Pict-Wright statement that will cause the 

line to be drawn is then inserted into the current text-window. 

Pict-Wright is not a full implementation of an imperative programming lan- 

guage, and has several constraining omissions (e.g. no condition or loop state- 

ments). Pict-Wright was implemented in an evolutionary manner (i.e. new 

primitives were added as I found them necessary), and the extension of the lan- 

guage to include more features and control structures should pose no serious 

problems. The features currently provided, however, seem to be sufficient for 

the production of simple line/text drawings. 

This chapter proceeds by introducing the lexical and syntactic aspects of 

Pict-Wright, in preparation for the explanation of the attributes and attribution 

rules which govern Pict-Wright's operation. An example of a Pict-Wright editing 

session is then followed through. 
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4.2 Lexical Definition 
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The following text is the specification for Pict-Wright's lexical analyser (and is 

the input for the Wright scanner generator ASG): 

Lexical-definition pict is 

Ranges 
@L is 'a' .. 'z' + 'A' .. 'Z'; 
ON is '0' '9'; 
@B is 0 .. 32; 
@S is 0 .. 127 - '"'; 
@NotNL is 0 ..127 - 10; 

end of ranges 

macros 
#case is $$; 

end of macros 

expressions 

#case; 
-define 
-line 
_colour 
-font 
_size 
_text 
_length 
_move 

-> \def ine ; 
-> \line; 
-> \colour; 
-> \f ont ; 

-> \size; 
-> \text; 
-> \length; 
-> \move; 

_lb -> \(; 
_rb -> \); 
_slb -> \[; 
_srb -> \]; 
_clb -> \{; 
_crb -> \}; 
_comma 

_ass 
_minus -> \-; 
_plus -> \+; 
times -> \*; 
div -> \/; 

_id -> @L(@LI@N)*; 
_int -> @N@N* {was that a radix ?} 

( {yes} _(@NI@L) ! (@NI@L)* I {no} ); 
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_string -> \S*\(\@S*\)*; 
_blank -> @B@B*; 

_comment -> \\\-CNotNL*\ 

end of expressions 

end of lexical-definition 

The above definition introduces Pict-Wright's eight keywords (define, line, 
colour, font , size , text, length and move) all of which are case insensitive, 

the delimiters and separator (( ) [ ] { } ,), the assignment operator : =, the 

arithmetic operators ( + - * / ) and identifiers, integers, strings, formatting 

characters and comments. From this specification a complete lexical analyser is 

generated. 

Notice that the definition of -string allows strings of the form: 

"this is a single-double-quote -> I'll <- it 

which is later interpreted by the system as being the string: 

this is a.single-double-quote -> " <- 

The definition -int allows the optional specification of a number base, the default 

being decimal (e.g. 16-A0 is interpreted as the decimal integer 160). 

The following statistics are printed by ASG during the construction of the 

lexical analyser: 

ASG: parsing complete with no errors in 1277ms 
ASG: DFA took 32844ms to build 
ASG: DFA took 868ms to minimise 
ASG:Compact: old size = 62*58 = 3596 entries 
ASG:Compact: new size = 62*2 + 309*2 = 742 entries (38 misses) 

in 8924ms 

This shows the times taken for various operations (the total construction 

time, including program loading and file writing, being under a minute). The 
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DFA (deterministic finite automaton) has a 62 character alphabet and 58 states. 

The space requirements for representing this are reduced by a table compaction 

procedure to 742 entries (a miss is a redundant entry in the compacted repre- 

sentation). 

While the output from ASG could form the basis of an operational scanner, 

it still has unexpanded ranges (i.e. alphabet characters which represent ranges of 

characters) and has no knowledge of the tokens expected by the syntactic stage. 

A linking stage between the scanner and parser, implemented by the program 

HARD, changes the alphabet to include all the ascii characters 1 ...127, and 

expands the range characters of the ASG DFA into this new character set (e.g. 

transitions previously entered for character range ON are now entered for all the 

characters `0' ... `9'). The final task of the HARD program is to work out which 

token from the parser the scanner has recognised: it does this by comparing the 

names of the definitions in the ASG specification and the Lexical names in the 

Wright grammar specification. The following statistics are issued by HARD: 

HARD: scanner token _blank will be ignored by parser 
HARD: scanner token _comment will be ignored by parser 
HARD:Compact: old size = 62*127 = 7874 entries 
HARD:Compact: new size = 62*2 + 990*2 = 2104 entries (44 misses) 

in 38522ms 

The scanner tokens blank and _comment are not in the grammar, and are 

discarded by the scanner. This has the implication that comments can not 

survive editing sessions, unless they are explicitly made part of the grammar 

specification. The Wright system therefore makes comments a direct respon- 

sibility of the editor designer, who must determine where they can occur in a 

program text by specifying legal positions for them in the grammar. There are 

other approaches to dealing with comments so that they can appear anywhere 

a token can begin; in Interactive ILAP [54] comments were extracted from the 

current line (during lexical analysis) and then positioned with right justifica- 

tion at the edge of the screen. Another feature of this system was that some 

comments were automatically introduced, e.g. modification times in the pro- 

gram header and procedure names repeated at the end of their definition. In 
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Wright editors these kinds of activities are not built in and must be specified by 

the editor designer through the attribute grammar and the user defined editing 

commands. 

4.3 Syntactic Definition 

This section contains the syntax definition part of the AG, the attribution rules 

will be introduced later. The complete grammar specification is given in Ap- 

pendix B. 

Grammar Pict is 

Productions 

Design -> CommandList; 

CommandList -> CommandList Command I 

Command; 

Command -> -define _id ArgL Defn 
_id Argi Arg2 
-line Argi Arg2 
_colour Arg2 
_size Arg2 
-font Arg2 

move Argi Arg2 
_text Argi Arg2; 

From the above it can be seen that a Pict program is sequence of one or more 

commands. The first command associates an identifier -.d with a definition 

contained in Defn. The second command is a invocation of a defined command, 

and the following commands are the drawing primitives. 

ArgL -> _lb NL _rb 1; 

NL -> NL _comma _id I _id; 

Argi -> _clb List _crb 1; 

Arg2 -> _lb List _rb 1; 

List -> List _comma Item I Item; 
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These definitions introduce the argument syntax, an ArgL list can only con- 

tain identifiers, Argi and Arg2 have different brackets and can contain any kind 

of Item. All three types of argument list are optional. 

Defn -> _ass _slb CommandList _srb 
_ass Item; 

A definition can associate an identifier with either a CommandList or an Item. 

The former is the procedure mechanism implemented in Pict-Wright. 

Item -> _lb Item _rb 
_minus Item 
Item _times Item 
Item _div Item 
Item -plus Item 
Item _minus Item 
_length Item 
_id 

_int 

_string; 

Pict-Wright has a single grammar construction for its expression syntax, 

namely the non terminal Item. Two data types are supported in the grammar; 

strings and integers. The operator .length is only meaningful when used on 

strings, the arithmetic operators (_times, _div, -minus) are only meaningful 

when used on integers, with plus causing string concatenation when used on 

strings. I will later show how the attribute grammar ensures that only meaningful 

combinations are evaluated. 

End of Productions 

Priorities. (_t-imes, _div)-(=plus, _minus)-; 

End of Grammar 

Finally the precedence rules for the Item operators are given: _times and 

_div have equal precedence and both have greater precedence than plus and 

Minus. 

This syntax part of the AG description is handled by the Wright parser gen- 

erator module, which is derived from the APG program described in Chapter 3. 

The table compaction statistics issued by Wright are: 
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WRIGHT old size = 65*24 = 1560 entries 
WRIGHT new size = 65*2 + 534*2 = 1198 entries (137 misses) in 4040ms 

WRIGHT old size = 65*10 = 650 entries 
WRIGHT new size = 65*2 + 50*2 = 230 entries (7 misses) in 1271ms 

The first table is the Action table, the second is the Goto parse table. The 

total processing time for the whole grammar is about 1.5 minutes. Before ex- 

plaining the semantics of the language, a short example will illustrate all the 

syntactic features defined above: 

define scale := 18 

font (0) 
size (scale) 
wrong (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 114, 1555, 234234, 

345, 123123, 123132 ) 
define box (a, b, c ):_ [colour (c) 

line (a, 0) 
line (0, b) 

line (-a, 0) 
line (0, -b)] 

define textbox (c):= (box ((length c)+2*scale, 3*scale, 3) 
colour (4) 

text scale, scale(c) 

box (1000, 500, 2) 

textbox {500, 100}("Pict-Wright") 

move (100, 0) 

textbox ("Stic-Wright") 

4.4 Semantic Definition 

4.4.1 The Attributes 

This section outlines Pict-Wright's attributes by introducing the semantic do- 

mains. The semantic domains are not included in the formalism itself, but are 

defined as IMP record structures in the auxiliary definition file, which also in- 

cludes the semantic functions used in the attribute occurrences (the statement 
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%include "pict. src" in the AG informs Wright where to find the auxiliary 

definitions). 

A summary of the file "pict. arc" is given with the complete AG in Ap- 

pendix B. The attributes in the AG are introduced in the following non terminal 

declaration lists: 

Synthesised 
Design (box, def, pos), 
CommandList (box, def, pos), 
Command (box, def, pos), 
Argl (box,vals), 
Arg2 (box,vals), 
ArgL (box,def), 
NL (box,def), 
List (box,vals), 
Defn (box,val), 
Item (box,val); 

There are five synthesised attributes: 

box This is the attribute used by the pretty-printer, and is a record structure 

containing information for the current non terminal's un-parsing. 

%record %format Text Box Fm (%short x, y, last x, 
%byte folds, extra, auto, indent) 

x contains the x-dimension of the text box. 

y contains the y-dimension of the text box. 

last x contains the x-coordinate of the last entry in the text box. 

folds marks grammar symbols for folding, i.e. growth in Y-direction. 

extra marks grammar symbols needing extra space (e.g. space after key- 

words and identifiers (defineuscaleu:= ...). 

auto marks grammar symbols requiring a forced line break (folding) after 

being printed. 

indent marks grammar symbols requiring indentation after being folded. 

def This attribute is a symbol table (environment) associating identifiers with 

definitions. , 
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%record %format env fm (%string(*)%name id, 

%integer val, 

%record(env fm)%name split, next) 

id contains a pointer to the identifier. 

val contains the value associated with the identifier. 

split, next are links in the symbol table. 

pos This attribute is the current cursor position, relative to the current origin: 

%record %format pos fm (%integer x, y) 

vals, val These attributes contain the list of parameter (name, value) pairs 

provided in a procedure call. 

Here are the inherited attribute declarations: 

Inherited 
CommandList (env,origin), 
Command (env, origin), 
Argi (env), 

Arg2 (env), 
NL (env), 

List (env), 

Defn (env, origin), 
Item (env); 

There are two inherited attributes: 

env This attribute contains the current environment. The environment is con- 

structed from bindings between identifiers and definitions generated by the 

def attributions, and uses the same record structure. 

origin This attribute contains the coordinates of the origin of the current 

CommandList (and uses the pos attribute's record structure). 

In the parse tree maintained by the editor, non terminal nodes have a single 

storage location allocated for each of their attribute values. This storage location 

is made available to the semantic functions as an IMP %integer variable. For 
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simple attributes, such as integer expression values, the storage location can 

directly contain the attribute value. For more complex attributes the storage 

location is used to contain a pointer to a record structure built on the IMP heap. 

Whereas all the semantic functions in the file "pict. src" appear as %integer 

%function .... the majority are returning the address of some record structure 

on the heap. 

The decision to restrict the attribute occurrences to IMP %integer assign- 

ments and making all attributes appear as %integer values to Wright consid- 

erably simplified the implementation of those parts of the Wright system which 

deal with the semantic functions, however, it places the burden of type security 

on the-- user- (i:e: the-- system- cannot- check- whether- the-- address- supplied- by - a- 

semantic function is a pointer to the appropriate record structure). Methods for 

improving the type security of the system are discussed in the final chapter. 

4.4.2 Semantic Functions 

The purpose of the attributes introduced in the last section will be made clearer 

by the explanation of a selection of the attribute occurrences contained in the 

AG: 

Design -> CommandList 
<box$0 = c(box$1 default, 0,0,0)> (1) 

<pos$0 = pos$1 > (2) 

<def$0 = def$1 > (3) 
<env$1 = initial environment > (4) 

<origin$1 = new origin > (6) 

Command -> -define _id ArgL Defn 
<box$0 = c2(box$3 ,box$4 ,80, 2_1100, 

2_0001, 

2_0011)> (6) 

<env$4 = envadd(def$3 , env$0 )> (7) 

<origin$4 = origin$0 > (8) 

<pos$O = origin$0.> (9) 

<def$0 = do binding( val$4 )> (10) 

Here we have two sets of attribution occurrences for two productions of the 

grammar Pict. Nos. (2.3,8,9) are simple transfer rules which some AG no- 



Chapter 4. Pict- Wright 77 

tations automatically assume if no other attribution is provided, however, in 

Wright they must be explicitly included. Nos. (4.5) provide the initial (empty) 

symbol table for the top-level CommandList and an initial origin, (0,0). 

The semantic function c in (1) and the semantic function c2 in (6) evaluate 

the pretty-printing attribute box: 

%integer %function %spec c (%integer boxi, 

size, extra, 
auto, indent) 

%integer %function %spec c2 (%integer boxi, box2, 
size, extra, 
auto, indent) 

Both functions return the address of a new record structure which will be 

the new value of box$0. This new structure is determined by the text boxes 

synthesised lower down in the syntax tree (boxi for c and boxi, box2 for c2) 

and also by the parameters specified by the grammar designer: 

size The maximum width of the text box for the current non terminal. For 

Pict-Wright, the default width (used in (1)) is 30. 

extra Marks the grammar symbols requiring extra spacing (2_1100 indicates 

the first two grammar symbols out of four) 

auto Marks the grammar symbols requiring auto line-breaking. 

indent Marks the grammar symbols requiring indentation after being folded. 

From the parameters given for the call of c2 in (6) we can see that a definition 

Command requires space after its first two lexical symbols and indentation if line- 

breaking occurs in its subsequent non terminals. The auto-line break for the final 

grammar symbol ensures a blank line after every definition. The pretty-printing 

attributes do not themselves cause text to be printed, rather, they decorate 

the tree with information that is used by a tree-walking procedure which re- 

evaluates the contents of the Wright text-window after every cursor move. The 
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redrawing of the textual un-parsing makes use of the minimal-redraw algorithm 

implemented in the window manager (i.e. only changes in the current image have 

to be repaired). The example program script given on page 73 is an example of 

output from the pretty-printer using the style parameters given in (1) and (6). 

Attribution No. (7) causes the symbol table for the Defn non terminal to be 

the addition of the current global symbol table env$0 and also the symbol table 

synthesised for its parameters def $0. 

Attribution No. (10) creates a new symbol table entry which is the binding 

of the identifier -id to the value val$4 synthesised in the non- terminal - Defn: 

This leads us to the attribution occurrences: 

CommandList -> CommandList Command 

<def$O = defadd(def$1 , def$2 )> (11) 
<env$1 = env$0 > (12) 

<env$2 = envadd(def$1 env$0 )> (13) 

Bindings created by the definition Command are added to the inherited symbol 

table of subsequent Command non terminals (13). This flow of symbol bindings 

is illustrated in Figure 4-2. 

The semantic function: 

%integer %function %spec envadd (%integer env1, env2) 

generates a pointer to a new symbol table link element which itself points 

to the either further link elements or a binding generated by a def attribution. 

The symbol table in Pict Wright is therefore implemented as a tree of linked 

identifier /value bindings. 

The semantic function: 

%integer %function %spec def add (%integer deft, deft) 

takes the symbol table def element contained in deft and causes its link 

element to point at def 1, thus creating a chain of identifier /value bindings (which 



Chapter 4. Pict- Wright 

def 1 +def2+def3 
CL env0 \ envO+def 1 +def 2 

f 1 +d f2 d 
CL 

env0 

CL ' ef2 
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I 

Figure 4-2: Symbol Table Attribute Flow 

can then be inherited as env attributes by subsequent Command non terminals, 

as described above) . 

The symbol table structure as constructed above is made use of in the--fol- 

lowing Command and Defn attribution occurrences: 

Command -> _id Argi Arg2 
<env$2 = env$0 > (14) 
<env$3 = env$0 > (15) 
<pos$O = do call(env$0. vals$2 , vals$3 , 

origin$0 )> (16) 
<def$0 = 0 {vals$2 vals$3 }> (17) 

/ ' def 1 +def2+de 
CL 

f3+def4 
env0 envO+def 1 +def2+def3 

env0/ 

e e 
C 'r",\c 

\ envO+def 1 C \def3 
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Defn -> _ass _s1b CommandList _srb 
<val$0 = command ref(def$3 )> (18) 
<origin$3 = copy origin(origin$0 )> (19) 
<env$3 = env$0 > I (20) 

_ass Item <env$2 = env$0 > (21) 
<val$0 = val$2 > (22) 

No. (16) is a drawing attribution which updates the current cursor position 

pos$O. The drawing operation is a recursive call of the attribution evaluator on 

the CommandList tree, which the binding of Ad should reference (18). If _id is 

not in the current symbol table env$O, or is an Item value (22), an attribution 

error is reported'. 

The recursive evaluation (see also Figure 4-3) in (16) operates as follows: the 

arguments in Argi (or the current position if Argi is empty) are made available 

as an initial origin for the CommandList tree bound to _id (19), i.e. when copy 

origin is next called the coordinates provided in Argi will be given as the value 

of origin$3. The values given in the parameter list Arg2 are substituted into 

the environment synthesised for the arguments of the definition of _id (19) 

(def $3 in (7)). All the attributes in the CommandList tree are marked as being 

unevaluated. With the new origin and symbol table the synthesised attribute 

pos at the root of the CommandList is pushed onto the evaluation stack and the 

evaluator is then called. 

This recursive evaluation technique for implementing procedure calling is a 

novel extension to normal AG practice and it led to the very fast development 

of the Pict-Wright editor. This is because there is no need to generate and store 

picture drawing code, pictures are drawn as a side effect of attribute evaluation. 

However, the method has a number of problems: 

The Wright-System does not directly implement attribute conditions supported by 

some AG systems, but the same effect is achieved by having condition checking and 

error reporting as a side effect of semantic functions 
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it precludes the use of incremental evaluation (the called tree must have 

all its attributes marked as being unevaluated) and so looses the efficiency 

benefits of incremental compilation. 

it precludes the use of procedure recursion (unless multiple copies of the 

procedure's attributed syntax tree are to be made). 

For a small system like Pict-Wright the efficiency problem is not a great 

concern (the system still operates fast enough to be interactive) and the lack of 

recursion has not prevented the description of fairly complex pictures. 

The commented attributes val$2 and val$2 in (17) are there to cause evalu- 

ation of these argument lists during a CommandList procedure declaration (thus 

ensuring the checking of their identifier references, which would otherwise be 

delayed until the procedure was invoked). 

So far no primitive drawing operations have been described, this is now reme- 

died: 

Command -> _text Argi Arg2 
<pos$0 = do text( vals$2, vals$3 , origin$O )> (23) 

Attribution No. (23) cause the display of a text string contained in the 

parameter vals$3 and at a position determined from origin$O and vals$2. 

The synthesised attribute pos$0 is set to a coordinate at the end of the text 

string, relative to the current origin. 

Pictures are generated in Pict-Wright as a side effect of the calculation of the 

synthesised attribute pos. Since an incremental-evaluation scheme is being used- 

(except during procedure call evaluation), it follows that subsequent editing to 

an initial attributed syntax tree would cause only the partial regeneration of 

the image (i.e. the portion just changed). This could cause anomalies since 

the Pict-Wright system does not know which areas of the screen image to erase 

before evaluating the new image. A brute force approach is taken to solve this 

problem; the origin for the whole picture is set as having been changed, causing 
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Parameter env 

1? 1 

p2 
p3 

I p4 
p5 

id (10,20,11a",11b",c) 

procedure call at (x, y) 

CL 

82 

origin 

originO 

procedure id's parse tree 

Figure 4-3: Procedure Call By Recursive Evaluation 

the whole picture to be regenerated. In the chapter on Stick-Wright, a more 

efficient picture generation technique is presented which retains the incremental 

evaluation property lost by the recursive evaluation scheme used in Pict-Wright, 

and which also avoids unnecessary re-drawing. 

The preceding environment attributions have used pointers to share common 

sections of symbol table, hence, each node in the syntax tree does not require 

its own copy of the symbol table. The linked list of identifier/value bindings is a 

rather inefficient representation since many identifier lookups would require long 

searches through the list structure until the desired binding was found. More 

10 

20 
'I_I' 

CL 

1 
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efficient representations for such structures do exist, e.g. Reps uses shareable 2-3 

trees to implement symbol tables [71]. 

One problem with this distributed representation of symbol tables is that the 

distance between identifier declaration and usage can require a large number of 

copy rules to pass the attributes up and down in the parse tree. One proposed so- 

lution to describing remote relationships in attributed syntax trees, which avoids 

copy rules, is given by Johnson and Fischer [33], who present an extension to 

the AG formalism which permits non-syntactic attribute flow. This extension to 

the formalism allows distant nodes in the parse tree, which are closely connected 

semantically, to communicate directly. By leaving the standard AG formalism, 

however, they loose the ability to exploit the optimal incremental evaluation 

techniques as used in the Synthesizer Generator, and the automatic generation 

of editing systems is made more difficult by the introduction of the ad-hoc se- 

mantic relationships. 

Finally, I discuss an expression attribution: 

Item -> Item _plus Item 
<val$O = do plus( val$1 , val$3 )> 

The semantic function do plus checks whether val$1 and val$3 are both 

integers or both strings. Type can be determined from the value alone in Pict- 

Wright, since integers are constrained to be in a range less than the address 

value of strings, i.e. if a val$1 is a valid IMP address, then the value of val$1 

is taken to be the string at that address, otherwise the value of the integer itself 

is taken. More complex data typing can be achieved by having a separate type 

field. Examples of type coercion and over-loading, and also further symbol-table 

schemes are given by Watt [50], a complete AG for ADA is presented by Uhl et 

al. [89]. 

In the first chapter the notion of design malleability was introduced. This 

property refers to a notation's suitability for manipulation using a syntax di- 

rected editor. Wright departs from conventional structure-editor wisdom by 
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basing the editing activities on the concrete syntax of the AG. Systems like the 

Syntheziser generator allow several concrete syntax specifications corresponding 

to an internal abstract parse-tree data-structure, on which the attributes are 

evaluated and stored. Wright uses the AG's concrete syntax without change 

mainly as an implementation expediency (it simplifies both the input specifica- 

tion and the integration of the parser with the editor). This has not proven to 

be a problem for the grammars developed for this thesis, but it did have implica- 

tions on their design for malleability. This means in practice that the grammars 

have to be designed with their screen appearance firmly in mind. As the user 

traverses up and down the parse tree structure the current position is indicated 

by highlighting in the text window (Pict) and the current non terminal name 

is given in the Command window. The grammar designer must make sure that 

the structures being traversed are easy to follow, and form reasonable partitions. 

This is achieved by design choices like sticking to left-recursion for list structures 

(the user soon learns how lists of statements, ports, etc. are arranged) and us- 

ing ambiguous expression grammars (with precedence rules), which form smaller 

trees than expression grammars using Term and Factor non terminals. Extra 

non terminals can be inserted to improve partioning between logically separated 

terms, which are otherwise left as siblings. 
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4.5 The Editor in Operation 

I continue the development of the example presented in the syntax section; Fig- 

ure 4-4 shows a picture of the system after processing the program script given 

on page 73. 

The example contains a deliberate error, the procedure call wrong, indeed we 

can see that the system has detected this and has reported: 

procedure wrong not declared 

The Command window also shows which grammar construct the cursor is currently 

positioned on, Design 1, and the number of attribution errors, >1> , if any. 

Figure 4-5 shows the new screen image after invoking a series of tree cursor 

movements (e.g. MoveToSon, MoveToRightSibling). 

Now that the cursor is over the List non terminal covering the terminals 1, 

2, 3 the command ReplaceSubTree can be invoked, and a set of new values 

entered via the Wright parser module. Here is the program script for the new 

wrong procedure call: 

wrong (10000, 2000000, 30000, 4, 5, 6 

7, 8, 9, 10, 11, 12, 13, 114 

1555, 234234, 345, 123123, 

123132 ) 

The Wrong call shows a weakness in the pretty-printing algorithm used by 

Wright; it would be more pleasing if the lines were broken after commas, and 

not numbers. The current algorithm, however, breaks a line at the first token 

which causes the line to be too large. 

In order to remove the offending procedure call, the command Delete Sub- 

Tree is invoked, an action described in Figure 4-6. 
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Plot-ihILeht 

Graphics I 

Pict 

font (0) 
size (scale) 
wrong (1, 2, 3, 4, 6, 6, 7, S. 9, 10, 

11. 12, 13. 114, 1666. 234234. 
346. 123123, 123132 ) 

define box (a, b, c ) :_ [colour (c) 
line (a, 0) 
line (0, b) 
line (-a, 0) 
line (0, -b)] 

define tsxtbox (c):= [box ((length c)+2*ecale, 3*scale, 3) 

colour (4) 
text {scale, scale}(c) ] 

box (1000. 600, 2) 
textbox {600, 100}("Pict-Wright") 
move (100, 0) 

textbox ("Stic-Iri.ht")! 

-Command 
procedure wrong not declared 
p<Deeign 1>1> 

VDU 

Stt*-WrLg 

Figure 4-4: Editing with Pict-Wright 
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Plat-WrLght 

Graphics 

-Pict 
font (0) 
size (scale) 
wrong 1, 2. 4. S. 6. 7. 8. 9, 10, 

It. 12. 13. 114. 1 666, 234234. 
346, 123123. 123132 ) 

define box (a, b, c ):_ [colour (c) 
line (a, 0) 
line (0, b) 
line (-a. 0) 
line (0. -b)] 

define textbox (c):= [box ((length c)+2*ecals, 3*scale, 3) 
colour (4) 
text {scale, scale}(c) J 

box (1000, 500. 2) 
textbox {600, 100}('Pict-Wright) 
move (100. 0) 
textbox ('Stic-Vright) 

-C amssan d 

p<List 1>1> 

p<List 1>1> 

VDU 

Stlo-WrL4 

6 
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Figure 4-5: A new cursor position 



CL 

selected sub-tree 

CL Y 

Figure 4-6: Deleting a sub-tree 

After the previous sequence of editing commands the current graphics display 

image is: 

I 

I 

Piot-Wright StLo-Wrlga 

The editor cursor is now moved to the List non terminal of the first call 

of textbox. The command ReplaceSubTree is issued and the graphics lexical 

macro Insert Coords is invoked. This is a user supplied graphical interaction 

routine which invokes the graphics display's cursor, which can be moved using a 

mouse, and inserts the current screen position into the scanner's input buffer. 

After inserting a new coordinate pair the text representation of the syntax 

tree becomes (on page 89): 
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define scale := 18 

font (0) 
size (scale) 
define box (a, b, c ) := [colour (c) 

line (a, 0) 
line (0, b) 
line (-a, 0) 
line (0, -b)] 

i 

define textbox (c):= [box ((length c)+2*scale, 3*scale, 
colour (4) 
text scale, scale(c) 

box (1000, 500, 2) 
textbox {72, 249}("Pict-Wright") 
move (100, 0) 
textbox ("Stic-Wright") 

E 

With these new coordinates the graphics display image is: 

I 
Plot-Wright Stlo-Wright 

]1 

89 

the picture is still a little small, and so the cursor is placed at the definition 

of scale, and a new value 36 is inserted: 

I 

PLct-WrLght 
I 

Tt c-WrLgh 

This is still too large, and so the value 30 is inserted: 

i 
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StLc-WrLgh PLot-WrLght IF 

L. 

The size now seems fine, so the cursor is now moved over 

90 

move (100, 0) 

to correct the alignment between the two boxes. The value -30 is substituted in 

place of 0. 

i PL.ct-Wrlght StLc-Wrlght 
I 

i 

This positioning is fine, so move the cursor to font (0) and choose a more 

interesting font: 

I 

I 

1 

The program script now looks like this: 
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define scale := 30 

font (62)- 
size (scale) 
define box (a, b, c ):_ [colour (c) 

line (a, 0) 
line (0, b) 
line (-a. 0) 
line (0, -b)] 

define textbox (c):= [box ((length c)+2*scale, 3*scale, 3) 
colour (4) 
text scale, scale(c) ] 

box (1000, 500, 2) 
textbox {72, 249}("Pict-Wright") 
move (100, -30) 
textbox ("Stic-Wright") 

91 

This kind of editing sequence is very easy to perform, and the evaluation time 

for each new screen image is negligible (although the current implementation is 

rather slow when using fonts other than the default, however, the default font 

can be used until the picture is nearly finished). 

Pict-Wright is a small system with some inefficient implementation strate- 

gies, however, it performs well as an interactive environment for the production 

of simple text/line illustrations. The specification of the system by means of 

an attribute grammar proved to be a rewardingly straight-forward operation, 

and led to a very succinct implementation. The major work during the imple- 

mentation of Pict-Wright was in refining the generic system modules (e.g. the 

editor commands and the interactive parser) since Pict-Wright was the first ed- 

itor generated by Wright. The improvements made in the generic modules are, 

of course, passed on to any subsequently generated editor. 
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Stick-Wright 

5.1 Introduction 

A major problem in the design of large integrated circuits is the assembly of 

circuit elements (e.g. RAMs, PLAs, adders, gates, pads etc.) in such a way 

as to minimise chip area which is devoted to wiring. Not only does wiring 

take up valuable space, it also significantly contributes to parasitic capacitances 

and resistances. Large routing channels can occur when an attempt is made to 

assemble modules together which have incompatible and fixed topologies. 

A current trend in commercial IC development is the implementation of 

mainframe architectures in minimal chip-sets. The internal architecture of these 

systems has been heavily influenced by the designers' experience with previous 

technologies. At the start of a new technology it is expedient to draw on pre- 

vious system design in order to produce working products quickly. The early 

LSI processors are an illustration of this phenomenon. The architecture of these 

chips (e.g. INTEL 4004, 8008 and 8080 families) resemble the single bus dis- 

tributed system architecture employed by some of the PCB based processors of 

that time. With the next generation of LSI processor the bit-sliced architec- 

ture was adopted, bringing better performance. Present day partitioning of the 

IC design problem is still based on an effective method for assembling discrete 

devices on a PCB [79]. Chip assembly techniques based on the placement and 

routing of large and fixed cells (e.g. standard cells, PLAs, user leaf cells) tend to 

produce large areas of wiring channels. For better results cells must be designed 

to fit together, and library generated parts must be configurable to fit a variety 

92 
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of contexts. The need to be fully aware of the physical design constraints of 

silicon right from the earliest stages of system design is succinctly described by 

Anceau, "The future of computer hardware must be imagined on silicon" [2]. - 

Much research is currently going on into improving the physical design pro- 

cess. The tools and techniques being developed generally seem to apply in one of 

two directions; top-down or bottom-up. The top-down tools are concerned with 

floorplanning; placing the blocks at the top level in the structural hierarchy so 

as to best meet their connectivity and sometimes continuing this process down 

through the design hierarchy. Estimates, often relying on previous experience 

or guess work, have to made about block sizes and aspect ratios. These actual 

block dimensions are ultimately provided by the bottom up-tools; the symbolic 

compactors, cell generators and leaf cell editors. Interesting oscillations can 

occur between top-down and bottom-up design decisions. The most compact 

realisation of a particular cell may actually turn out to be more wasteful than 

one designed to be compatible with its neighbours. Similarly a change in the 

floorplan might make the compacted cell's topology more acceptable. 

Physical design systems can also be categorised by two different approaches; 

design automation (DA) and computer aided design (CAD). Typical of the design 

automation approach are the floorplanning, placement and cell layout tools which 

use optimisation techniques (e.g. simulated annealing [23] [76] ) or heuristics 

(e.g. as captured in an expert system [40]) to attempt solutions to problems 

for which tractable algorithms have not yet been found. Much success has been 

achieved in areas like routing (which generally is no longer trusted to human 

layout designers) and cell compaction, where polynomial algorithms have been 

found which give acceptable results (although full 2-D compaction has been 

shown to be NP-complete [78]). At the present time it is the tasks at the lower 

end of the physical design hierarchy that are best understood, e.g. routing 

and cell compaction. At the higher level of automatic cell generation (where 

the system is given the structure of the circuit, but not the planar embedding) 

research is not so far advanced, although the graph theoretical approach of Ng 

[63] shows some promise. The system described by Ng generates several circuit 
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topologies from an initial stick-diagram, choosing the one which proves to be 

the most compactable (although it may not necessarily be the best topology 

wrt. cell abutment). At the higher levels, the floor-planning tools introduced in 

Chapter 2, the automatic tools still have a long way to go. 

In the CAD approach the primary design decisions are made by a human 

designer, with the computer aiding in the visualisation and verification of each 

design step. As tools ascend the layers of abstraction in the design hierarchy, 

the role of the human designer becomes more important, as the problems being 

solved become more open-ended. Complete design systems often make use of 

both CAD and DA approaches; the system described by Piguet [68] combines a 

manual floorplanning stage with an automatic cell layout stage. 

Stick-Wright is a VLSI design tool for allowing VLSI circuits to be "imag- 

ined on silicon", and as such concentrates on the visual exploration and the 

verification aspects of the CAD approach. The major feature of-tire-system-is-a- 

symbolic layout language which has both textual and graphical representations. 

The ability to manipulate the design through both these mediums is the major 

contribution to design exploration. The enforcement of certain cell composi- 

tion rules by the attribute grammar specification is the contributing factor to 

increased design verification. 

Rem .and_Mead_[701.s_uggested_a_set..of. design.conatraints_.for. CMOS..circuits_. 

which can be enforced through the syntactic and semantic rules specified for a 

design language. An attribute grammar provides an implementation method for 

just such a set of constraints, and Stick-Wright demonstrates the application of 

grammar rules to the type-checking of port compositions. 

The system is intended to be used as a means for entering hierarchical floor- 

plans of system components, with the lowest level cells being made up of wire 

and transistor primitives. Cells are constructed by the vertical or horizontal 

composition of sub-cells, forming rows and columns of abutted rectangles. This 

resulting grid is used to capture relative placement and to provide a framework 

for the port type-checking mechanism. As in similar grid based systems, the 
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tiling of cells does not necessarily convey information on actual sizes or aspect 

ratios. 

The attribution rules in the AG given for Stick-Wright are for a static subset 

of the originally conceived system, and do not implement parameterisation in cell 

definitions. The presented implementation does, however, fully demonstrate AG 

specification techniques for the syntactic checking of cell compositions and the 

incremental construction of pictures. The syntactic definition of Stick-Wright, 

as contained in its AG, includes the parameterisation phrases of the extended 

version of Stick-Wright. Notational devices and implementation strategies for 

this extended system are presented in Section 5.6. 

Stick-Wright is designed as the front-end to a cell-compaction chip-assembly 

tool. While the attributed parse tree maintained by the system contains all the 

information necessary to generate a data-structure suitable for these activities, 

the integration with further design stages was not a task undertaken for this 

thesis. The major concern of this thesis is the role of the front-end in fully 

exploiting the DA algorithms and techniques surveyed in Chapter 2. 

Another objective of Stick-Wright is to demonstrate that the AG specification 

technique is effective in certain key areas, and that those designing production 

quality systems could benefit from adopting these techniques in some form (the 

problems of using current AG technology in production quality tools is discussed 

in the final chapter). 

5.2 Lexical Definition 

As was done for Pict-Wright, I begin the description of Stick-Wright by present- 

ing its lexical analysis specification: 

Lexical-definition Stic is 

Ranges 
@L is 'a' .. 'z' + 'A' .. 'Z' 
ON is '0' .. '9'; 
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@B is 0 .. 32; 
@S is 0 .. 127 - 
@NotNL is 0 ..127 - 10; 

end of ranges 

macros 
#case is $$; 
#p is $($)*; 
#0 is ($1) 

end of macros 

expressions 

#case; 

_cell -> \cell; _abut -> \abut; 
_true -> \true; _false -> \false; 
_b -> \b; _g -> \g; 
_r -> \r; _bs -> \bs; 
_gs -> \gs; _rs -> \rs; 
_bc -> \bc; _gc -> \gc; 
rc -> \rc; rbx -> \rbx; 

_gbx -> \gbx; _pass -> \pass; 
_enh -> \enh; _dep -> \dep; 
_rbc -> \rbc; _gbc -> \gbc; 
_rgcs -> \rgcs; _rgcc -> \rgcc; 
_bt -> \bt; _gte -> \gt; 
_rt -> \rt; 

_equs 
_lb -> \( 

_ass 
; _rb -> \); 

_slb -> \ [ ; _srb -> \] ; 

_clb -> \{ ; _crb -> \}; 
_it -> \< ; _gt -> \>; 
_arrow -> \- \>; _choice -> \I; 
_tilda _hat -> V ; 

_comma _colon -> \:; 
_semi -> \; ; _stop -> \.; 
_dots -> \. \.; _minus -> \-; 
_plus -> \+ ; _times -> \*; 
_divide -> \/ 
_or V 

; _and 
.. _not -> \\; 

_identifier -> @L(@LI@N).*; 
_integer -> @N@N* {was that a radix ?} 

( {yes} _(@NIQL) ! (@NI@L)* I {no} ); 

_blank -> @B@B*; 

96 

_comment -> \\\-@NotNL*\ 
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end of expressions 

end of lexical definition 

The ASG statistics for this specification are: 

97 

ASG: parsing complete with no errors in 2030ms 
ASG: DFA took 39388ms to build 
ASG: DFA took 772ms to minimise 
ASG:Compact: old size = 77*56 = 4312 entries 
ASG:Compact: new size = 77*2 + 275*2 = 704 entries (38 misses) 

in 7806ms 

The HARD statistics are: 

HARD: scanner token _blank will be ignored by parser 
HARD: scanner token _comment will be ignored by parser 
HARD:Compact: old size = 77*127 = 9779 entries 
HARD:Compact: new size = 77*2 + 814*2 = 1782 entries (100 misses) 

in 38148ms 

5.3 Syntactic Definition 

To simplify the explanation of the attribution rules, I give a brief description 

of the underlying syntax and an informal introduction to the semantics. The 

grammar presented here also includes the parameterisation phrases discussed in 

Section 5.6. 

Grammar Stic is 

Productions 

Design -> CellList Ident; 

CellList -> CellList Cell I Cell 

Cell -> _cell -identifier Params PortSpec _equs Abut -stop; 

A Stick-Wright design consists of one or more Cell definitions followed by 

an Ident (which can be a primitive Cell or a call to a defined Cell). 
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Params -> _clb Mist -crb 1; 

IList -> IList _comma _identifier I _identifier; 

A cell may have a list of parameters. 

PortSpec -> _lb OPorts _rb; 

OPorts -> OList _semi OList _semi OList _semi OList I; 

OList -> List I; 

List -> List _comma Id I Id; 

Id -> _lb List _rb QualS Olter I 

_identifier QualS Olter ; 

QualS -> QualS _colon ODir _identifier I; 

ODir -> _gt I _1t; 

Each cell has a list of ports corresponding to the West, North, East and South 

cell boundaries: 

Cell Tally {n}(vdd:d, gnd:d[1 .. n]; 

z:d[n+1 .. n] ; 

(X:m, gnd:d, Xbar:m)[n .. 1]) 

In this example the West OList contains a single vdd port on layer d (diffu- 

sion) and a vector of gnd ports. The North side of the cell has no ports and the 

South side has a vector of three ports grouped together (i.e. all three are iterated 

together). All ports are ordered in a clockwise direction, hence the vectors on 

the West side count up, and the vectors on the East count down. Figure 5-1 

shows the corresponding picture for this group of port declarations. 

Abut -> _abut AbutBlock; 

AbutBlock -> AbutBlock _semi Row I Row; 

Row -> Row _comma Item I Item; 



(x:m, gnd:d, Xbarm)[n..1 

Figure 5-1: Port Exterior for Tally {n} 

VRow -> VRow _comma Item I Item; 

Item -> Ident Syms Olter; 

Cells are formed by the abutment of other composition cells, or primitive 

cells. The AbutBlock is formed from the vertical composition of Rows, which 

in turn are composed of the horizontal abutment of Items. An Item consists 

of a reference to a more primitive cell structure, Ident, an optional series of 

geometrical transformations, Syms, and an optional iteration operator, Olter. 

Ident -> _lb Row _rb I 

_lt VRow _gt I 

_s1b Cond _srb I 

-identifier OPar 
_b I _g I _r I _bs I _gs I _rs I _bc 

I 

_gc I _rc I _rbx I _gbx I _pass I _enh I _dep 
_bt I _gte I _rt I _rbc I _gbc I _rgcs I _rgcc I; 

OPar -> _c1b Pars _crb I; 

Pars -> Pars _comma Expression 
Expression; 

I 

The Ident cell abutment primitive can itself be a nested Row; round brackets 

...) indicates horizontal abutment, angle brackets < ... > indicates vertical 
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C 

I 

I 

Figure 5-2: Stick-Wright's Primitive Cells 

Olter -> _s1b Iter _srb I; 

abutment. There is also a conditional form Cond indicated by square [ ... ] 

brackets. The fourth Ident is a cell call, the rest are primitive cells (wires, 

contacts and transistors). Figure 5-2 shows the primitive cells. The non terminal 

OPar is the optional parameter list for a cell call. 

oLI 
6-6 

Iter -> -identifier _ass flange i 

flange ; 

Cond -> Condition _arrow Item OBar; 
I 

Syms -> Syms Sym I; 

i 
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Sym -> _tilda I hat; 

Range -> Expression _dots Expression 
Expression; 

I 

OBar -> _choice Item I; 

An Iter phrase contains an iteration specification, which can also declare an 

iteration variable, for use as a parameter to the cell being iterated. A range can 

be between two expressions, e.g. 2*k . . n, while a single expression indicates 

a ranging starting from 1, with the expression denoting the final position e.g. 1 

n-1. 

A Cond statement will choose the first Item after the _arrow if Cond is true, 

otherwise the Item contained in OBar (possibly null). 

The Sym _tilda (") is a post-fix operator indicating reflection in the Y-axis, 

the Sym -hat (-) indicates a clockwise 90° rotation. 

Expression -> _minus Expression 
_lb Expression _rb 
Expression _times Expression 
Expression _divide Expression 
Expression _plus Expression 
Expression _minus Expression 
-identifier 
_integer; 

Condition -> _lb Condition _rb 
not Condition 

Condition _and Condition 
Condition _or Condition 
Expression _equs Expression 
Expression _lt Expression 
Expression _gt Expression 
true 

_false; 

End of Productions 

Priorities (-times, -divide) (_plus, _minus); 

End of Grammar 
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The grammar ends with a set of integer expression and condition phrases. 

Figure 5-3 on page 103 shows a complete Stick-Wright script, with its corre- 

sponding picture. 

The following statistics are taken from diagnostics issued by the Wright pars- 

ing building module: 

WRIGHT building PDA ...... 
WRIGHT PDA generated in 48858ms 
WRIGHT lookaheads generated in 133260ms 
WRIGHT s/r : [ 3, _slb] <state # 7, Ident> =>s (i) 

WRIGHT s/r [ 62, _times] <state # 70, Expression> =>s (ii) 

WRIGHT s/r [ 63, _and] <state # 73, Condition> rL (iii) 

WRIGHT tables took 63376ms to fill 
WRIGHT old size = 151*54 = 8154 entries 
WRIGHT new size = 151*2 + 1008*2 = 2318 

in 37376ms 

WRIGHT old size = 151*29 = 4379 entries 

entries (168 misses) 

WRIGHT new size = 151*2 + 121*2 = 544 entries (21 misses) 
in 6057ms 

WRIGHT tables printed in 112749ms 

The lines marked (i) (iii) are some of the shift/reduce errors de- 

tected by the system: 

(i) This ambiguity arises from the fact that the syntax for a conditional Ident 
is the same as an iterated null statement in an Item phrase. This ambigu- 

ity was left as it was because the default action of the parser is to shift on 

the slb, thus making the assumption that the conditional Ident is fol- 

lowing, however, the iterated null Ident can be achieved using the syntax 

0 [iter variable]. 

(ii) This kind of ambiguity is resolved by the precedence rules given at the end 

of the grammar. 

(iii) This kind of ambiguity is resolved by taking the default action of assuming 

left-associativity of operators. 

The complete processing of the AG by Wright takes just over 5 minutes. 
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5.4 Semantic Definition 

5.4.1 The Attributes 

There are nine synthesised attributes (refer to Appendix C for their respective 

non terminals): 

box This is the same pretty-printing attribute described in the last chapter. 

ports This attribute contains the current port exterior of its non terminal, and 

is used in the verification of cell compositions: 

%record %format Port Block Fm (%record(Port List fm)%name N, E, 
S, W. 

%integer mir, 
%string(*)%name id) 

A Port Block has four sides of ports, may be mirrored and is given a 

name. A Port List: 

%record %format Port List Fm (%record(Port fm)%name P, 
%record(Port List fm)%name next) 

is a list of Port 

%record %format Port fm (%string(*)%name id, 
%record(Constraint List fm)%name Cs) 

which have a name, and a list of Constraints: 

%record %format Constraint List Fm 

%integer dir, 
%string(*)%name id, 
%record(Constraint List fm)%name next) 

A Constraint can impose a signal direction, dir, and a signal name, id. 
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def The def attribute is similar to the symbol table attribute in Pict-Wright, 

storing bindings of cell names to their definitions. 

x This attribute stores the number of Item non terminals in a Row or VRow cell 

abutment phrase. 

y This attribute stores the number of Row non terminals in a AbutBlock cell 

abutment phrase, or the number of Item non terminals in a VRow cell 

abutment phrase. 

mir, rot Attributes which indicate the geometrical transformations to be per- 

formed for a Ident phrase in a Item phrase. (mir indicates mirror in the 

Y-axis, rot indicates a 90° clockwise rotation. 

val The value of an expression. In the present implementation only constant 

expressions (i.e. not containing identifier references) are meaningful. 

bool The value of a boolean expression.- 

There are three inherited attributes: 

env The symbol table containing bindings of cell names to cell definitions. 

Again, this is implemented using the method presented in Pict-Wright, 

however, some of the fields are different: 

%record %format env fm (%string(*)%name id, 
%integer addr, 
%integer x, y, ports, 

%record(env fm)%name next) 

addr The address of the cell definition in the attributed parse tree. 

x, y The x,y attributes synthesised for that definition. 

ports The port exterior synthesised for that definition. 

origin This is the attribute crucial to the implementation of incremental picture 

drawing, and contains a geometrical transformation matrix [61] [22] for the 

current non terminal: 
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%record %format TRANS FM (%real %array A (0:8)) 

where A represents the 3 x 3 transformation matrix. This matrix store 

the current composition of translations, rotations, scalings and mirrorings 

which will transform points drawn for the current non terminal onto an 

appropriate region of the graphics display. The basic transformations are 

obtained from the following formulations: 

Translation by T(x, Y): 

y 

Rotation by 0: 

I 
x' y' 1 1- 

1 0 0 

1] 0 1 0 

Tx Ty 1 

cos0 -sing 0 

X y 1, sin0 cos0 0 

0 0 1 

Scaling by S (x, y): 

Mirroring in Y: 

x' 

y' 1 

y' 1 

S. 0 0 

Y 1 ] 0 Sy 0 

0 0 1 

y 

-1 0 0 

0 1 0 

0 0 1 

compositions of transformations are achieved by matrix multiplication. 

dir This attribute informs an Item non terminal whether it is being horizontally 

composed in a Row phrase, or vertically composed in a VRow phrase. 
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In Stick-Wright there are no active drawing attributes, i.e. pictures are not 

drawn as the result of attribute evaluation, rather, a separate tree-walking proce- 

dure generates the picture in a depth-first traversal of the attributed syntax tree. 

The evaluation of the origin attribute decorates the tree with all the positioning 

and scaling information needed for displaying the graphical representation of the 

design (this is similar to the way the box attribute provides the pretty-printer 

with its data). The evaluation of this graphics data-structure enjoys the benefits 

of the incremental evaluation scheme, and also provides the means for directly 

displaying any part of the design, as represented in any arbitrary sub-tree. 

5.4.2 Semantic Functions 

The semantic functions for pretty-printing and symbol table management are as 

presented in Pict-Wright, with the exception that Stick-Wright does not have 

identifier/expression-value bindings, and so the symbol table has only to deal 

with cell names. The major new attribution rules in Stick-Wright are those for 

the syntactic checking of port-compositions through the attribute ports, and 

also those for determining the transformation attribute origins: 

Design -> CellList Ident 
<ports$O = ports$2> (1) 

<origin$2 = top origin> (2) 

Attribution No. (1) triggers the evaluation of the port exterior for the whole 

design, determined by Ident, which in turn triggers the inherited attribution 

of No. (2), which gives the top level Ident the unity transformation matrix, 

thus providing it with the whole of the graphics display (all drawing commands 

assume that they have the whole display available, but the scaling component of 

their origin matrix will make the corresponding Ident picture the appropriate 

size). 

lorigin is an extension of the coordinate attribute of Pict-Wright to include scaling, 

rotation and mirroring information 
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CellList -> CellList Cell 
<env$2 = def$1> (3) 
<def$0 = add def(def$1, def$2)> (4) 

Cell 
<def$0 = def$1> (5) 

Cell -> _cell _identifier Params PortSpec _equs Abut _stop 
<def$0 = do binding( x$6, y$6, ports$6)> (6) 
<env$6 = env$0> (7) 

Cell identifier /definition bindings are made in the same manner as in Pict- 

Wright, with successive cell definitions inheriting the accumulated symbol table 

(3). Recursive cell specifications are prevented by a cell's name not being in 

the symbol table inherited by the cell's Abut non terminal (7). The identifier 

binding operation in (6) triggers the evaluation of the cell's ports attribute 

(which will also later trigger the evaluation of its origin attribute). 

Phrases Params ... ODir are part of Extended Stick-Wright (Section 5.6) 

and only have pretty-printing attributes. 

Abut -> _abut AbutBlock (8) 

<ports$0 = ports$2> (9) 

<x$0 = x$2> <y$O = y$2 > (10, 11) 

<origin$2 = new origin(x$2, y$2)> (12) 

The x and y attribute for a Abut non terminal (obtained by copy rules (10, 

11)) give the dimensions for the current cell's tiling, i.e. each composition cell 

is made up of the regular composition of rectangular blocks in the X and Y 

directions. The figure on page 103 shows a composition cell consisting of a 7 x 4 

x/y tiling grid. The origin for the AbutBlock non terminal is constructed with 

x and y scaling factors which will cause its constituent parts to be scaled down 

to fit onto the tiling grid. 

AbutBlock -> AbutBlock _semi Row 

<ports$0 = do Abut compose(ports$1, ports$3, y$1)> (13) 
<x$0 = check length(x$1, x$3)> (14) 

<y$O = y$1 + 1> (15) 

<origin$3 = do origin(origin$0, 0, y$1)> (16) 
<origin$1 = origin$0> I (17) 

Row 
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Figure 5-4: Vertical Port Composition 

<origin$1 = origin$0> (18) 
<ports$0 = ports$1> (19) 
<x$0 = x$1> <y$0 = 1> (20,21) 

The AbutBlock phrase of Stick-Wight causes the vertical composition of the 

Row phrase. When composing two rows of ports the attribution rule do Abut 

compose (13) checks that the South port-list of the top block of ports ports$1 

matches with the North port-List of the bottom block of ports ports$3. The 

port-block returned by this function has the North side of the top port-block, the 

South side of the bottom port-block and the concatenation of the ports on the 

East and West sides. Figure 5-4 illustrates this attribute evaluation. Matching, 

in the context of port-type checking, is defined to mean having the same port- 

constraint-lists. A more elaborate definition of what constitutes a valid match is 

given in Extended Stick-Wright. 

Attributions Nos. (14,15,20,21) construct the tiling attributes x and y, 

attribution No. (14) also checks that the rows in an AbutBlock are the same 

length (and signals an attribution error if they are not the same). 
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The origin attributions, Nos. (16, 17 ,18) pass on the scaling information 

determined for the current tiling, but now add on the appropriate translation 

transformation, in order to position each row correctly. Attribution No. (18) 

has no translation, since the origin given from the Abut phrase is also the 

origin of the top row. Attribution No. (16) gives the translation from the top of 

the tiling grid to the current row being added (a distance which is immediately 

available from the tiling attribute y). Figure 5-5 illustrates this calculation of 

translations. 

Row -> Row _comma Item 
<ports$0 = do Row compose(ports$1, ports$3, x$1)> 
<origin$1 = origin$0> 
<origin$3 = do origin(origin$O, x$1, 0)> 
<dir$3 = 0> 
<x$0 = x$1 + x$3> I 

Item 
<ports$O = ports$1> 
<x$0 = x$1> 
<origin$1 = origin$0> 
<dir$1 = 0> 

(22) 
(23) 
(24) 
(25) 
(26) 

(27) 
(28) 
(29) 
(30) 
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The attribution rules for the horizontal composition of Item non terminals 
in a Row phrase follows a similar pattern to the vertical composition of rows. 
Figure 5-6 illustrates the horizontal port composition attribution of (22). The 
translation composed into the current origin attribute in (24) causes the correct 
positioning of the Item within the Abut tiling. The dir attributions (25,30) 
pass down the information that the current item is undergoing a horizontal 
composition. 
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Figure 5-6: Horizontal Port Composition 

VRow -> VRow _comma Item 
<ports$0 = do Abut compose(ports$1, ports$3, y$1)> 
<origin$1 = origin$O> 
<origin$3 = do origin(origin$O, 0, y$1)> 
<dir$3 = 1> 
<y$0 = y$1 + x$3> I 

Item 
<origin$1 = origin$O> 
<y$0 = x$1> 
<ports$0 = ports$1> 
<dir$1 = 1> 

(31) 
(32) 
(33) 
(34) 
(35) 

(36) 
(37) 
(38) 
(39) 
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The VRow phrase follows the same pattern as the AbutBlock phrase. The dir 
attributions (34,39) pass down the information that- the Item is. undergoing a 
vertical composition. 

Item -> Ident Syms Olter 
<x$0 = x$3> 

(40) 
<ports$0 = do port trans(ports$1, mir$2, rot$2, 

x$3, dir$0)> (41) 
<origin$1 = do transf orms(origin$0, mir$2, rot$2)> (42) 

An Item tile can take up several x-positions if it has a non-empty Olter 
phrase (40). The presence of geometric transformations in the form of a non- 

empty Syms phrase causes appropriate changes to the port exterior attribute 
ports (41), shown in Figure 5-7, and appropriate additions to the accumulated 

transformation matrix (42), shown in in Figure 5-8. 

Q it 

9 

Syme = 

h 

e 

f 
Q 

d 

b 

e 

Figure 5-7: Transformations to Ports Exterior 

f 

Ident -> _1b Row _rb 
<origin$2 = do hor trans(origin$0, x$2)> (43) 

<ports$O = ports$2> I 
(44) 

_1t VRow _gt 
<ports$O = ports$2> (45) 

h 

8 
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Figure 5-8: Mirroring and Rotation (-") 

<origin$2 = do ver trans(origin$O, y$2)> I (46) 
_slb Cond _srb 
<ports$0 = ports$2> (47) 

<origin$2 = origin$0> I (48) 
_identifier OPar 
<ports$0 = do call( env$0, origin$0)> I (49) 
_b 
<ports$0 = do b(origin$0)> (50) 

The grouping of the Ident phrase into bracketed compositions of horizontally 

or vertically composed rows (43 , 44 , 45 , 46) involves the adding in of a further 

scaling transform to the inherited origin attribute. The conditional cell evalu- 

ation phrase is only really useful in Extended Stick-Wright, but a limited use is 

presented in the next section. 

Attribution No. (49) performs an identifier lookup in the current symbol 

table (refer to the complete AG, Appendix C, to see the copy rules for the 

attribute env). The entry in the symbol table (if found, otherwise an attribution 

error is signalled) has as one of its fields the exterior port appearance of the called 

cell. This is then passed up the tree for use in cell composition checking. 

Attribution (50) synthesises the port appearance of the primitive b, a blue 

wire. 
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The attributions for the rest of the grammar are straight-forward copy rules, 

expression evaluations and condition evaluations. At present only constant ex- 

pressions are permitted, and so expressions can be evaluated directly on the tree 

as synthesised attributes. 

5.5 The Editor in Operation 

I begin the presentation of the operational aspects of-Stick-Wright-by returning-to - 

the TallyUnit introduced earlier (Figure 5-3) and showing some editing actions 

being performed with it. Figure 5-9 shows the system configuration, with the 

TallyUnit as the currently selected cell. 

The graphics cursor (the cross) in Figure 5-9 has been invoked by the major 

graphics interaction command of Stick-Wright, SelectTile, Figure 5-10 shows 

the system configuration after clicking the mouse at the position selected in 

Figure 5-9. SelectTile converts the window-coordinates provided by the mouse 

into tile-coordinate- The tilecoordinate.system,has. its origin. at.. the bottom- 

right, so the coordinate corresponding to the tile selected in in Figure 5-9 is 

(3, 3), the lowest rbc is (2, 1) and the other rbc is (6, 2). These coordinates 

are is used to drive tree traversals on the Abut phrase in the TallyUnit parse 

tree; the new text cursor position is found by descending down the number of 

AbutBlock phrases given by the y coordinate, and then down the number of 

Row phrases given by the x coordinate. Figure 5-11 shows the moves taken to 

arrive at the second g" of the second AbutBlock from the top (which is the third 

AbutBlock down in the Abut phrase). 

Relating device coordinates to particular entities in a graphics data-structure 

(an activity known as hit detection) is significantly simplified when the graphics 

screen has been segmented into non-overlapping regions, as in the tiling of Stick- 

Wright. In a data-structure without the tiling property, e.g. Pict-Wright, objects 

relating to points provided by a cursor position can be found by traversing the 

data-structure, searching for hits within a small area around this point. The 
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Figure 5-10: A new cursor position in TallyUnit 
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Wright generated editors have an added advantage that this traversal/evaluation 

can be restricted to only those parts of the tree whose attributes have been 

altered. 

Now that this primitive cell has been selected,,the port type-checking attribu- 

tion rules can be exercised by the insertion of an incorrect wire. The command 

ReplaceSubTree is given at this new position, and the g" is replaced by the 

primitive r (see Figure 5-12). Only the new tile needs to be drawn, the correct 

scaling and positioning being determined from the tile's origin attribute. This 

replacement causes the following attribution errors to be signalled: 

I ports clash 31 g1 and r[01 
I port clash 41r[01 and gbx 

port clash 6 I blank [3] and 6 I gte2 [4] 

port clash 1"61 gte2 [5] and 61 gc3 [4] 
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The I character indicates horizontal abutment, the " character indicates 

vertical abutment. The first two errors are caused by the lack of ports for the 

diffusion wires on either side of the new cell, while the bottom two errors are 

caused by the extra red wires on the top and bottom of the new cell. The 

error messages are not as clear as they might be - interpret the first message as 

horizontal port clash between the row which has 3 tiles abutted to a green wire at 

orientation 1 and a red wire (with no added orientation) which has no ports. The 

major obfuscation here is determining which ports the error applies to, however, 

this is not a major problem since the system knows where the semantic error 

occurs in both the textual-un-parsing and the screen image (and it is also obvious 
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that it was the last sub-tree replacement that introduced the error). The quality 

of the error messages becomes more important with larger sub-tree replacements, 

and more sophisticated actions are called for. Although not implemented in the 

current version of Wright, the obvious thing to do is to highlight the areas on 

the screen and graphics display which correspond to attribution errors occurring 

in the attributed parse tree. 

To illustrate the iteration and horizontal grouping language features a 4 in- 

put Tally cell is given in Figure 5-13, and the corresponding picture is given 

in Figure 5-14. Iterated cells are only shown once, with the remaining area 

overlayed by an iteration tile which indicates the number of repeated cells with 

an appropriate number of dots. The user can interactively control the amount 

of detail that is shown in the picture by altering the depth of cell instantiation. 

Figure 5-15 shows a fully instantiated 4 input tally cell. 

In this example the cell headers for routeS, route and Tally do not contain 

port names, the external port appearance is taken to be that of their respective 

AbutBlock. Figure 5-16 shows how a pad placement stage could be specified 

using Stick-Wright. The text at the start of the screen is the end of the Cor 

(corner cell) definition. 

The pad placement example shows how a quite complex arrangement of cells 

can be specified in a succinct manner. The use of implicit port connection leads 

to this, while the type checking attributes help prevent un-intended connec- 

tions. The main reason for adopting abutment over explicit port connection 

(c.f. Sticks&Stones [13]) is that it leads to shorter descriptions, and is hence 

easier to write- anti mo ify.- The- explicit-connection- strat-egy-may-prevent-some- 

un-intended connections being made which are let through by the Stick-Wright 

scheme (i.e. legal syntactic connections, but not what the user meant), how- 

ever, the added complication in the explicit connection description may lead to 

mistakes in the specification itself. The added responsibility of dealing with ge- 

ometric transformations for the user in Stick-Wright has not proven to be too 

burdensome, and is in keeping with the notion that circuit structures should be 

conceived with the planarity of the design space firmly in mind. 
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Cell TallyUnit (inl:d; 

Xbar:m, out2:d, X:m; 

out1:d; 

X:m, in2:d, Xbar:m 
Abut gc", gbx, g", gc""", , b, ; 

gt, gbx, <rs"", pass, r>, g", g", gbx.gt""; 
rs", rbc, rc""", gc <rs"", 

pass, r>, gbx, gc"""; 
, b, , g, rc, rbc, rs""" 

Cell routeS (; 

= Abut , b. , , , b. ; 

g", gbx, g g", g",gbx. g"; 
. b. . . . b. ; 

b, , gs"", , b, 

Cell route (; 

= Abut , b. , , , b. ; 
g". gbx, g", g". g",gbx. g"; 

b. . . . b, 
b, , , , b, 

Cell Tally (; 

= Abut (, b, , , , b, )[31, (, b, , gs"", , b, 
route [2] , routeS, TallyUnit ; 

route, routeS. TallyUnit[2]; 
routeS, TallyUnit[3]; 

TallyUnit [4] ; 

TallyUnit[4] 

Figure 5-13: 4 input Tally (program) 

5.6 Extended Stick-Wright 

The implementation of Stick-Wright presented in the last section can always 

directly derive a picture (or more accurately, the information needed to draw 

a picture) from any Cell definition. When parameterisation is added to the 

language this is no longer the case; what does a Tally {n} look like ? Presently, 
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most graphics systems address this problem by delaying any drawing until all 

the parameters have been evaluated, and so a particular instantiation is drawn. 

The introduction of variable expressions would also demand changes in the 

current implementation scheme; values of expressions could not be stored as 

attributes in the parse tree since cell definitions can be used many times with 

different sets of values. Variables would have to be represented as address ref- 

erences to a data-stack, and hence expression evaluation would be delayed until 

the cell was to be instantiated. The attribute evaluation stage would therefore 

act like a programming language compiler, with the attributed syntax tree corre- 

sponding to the generated machine code, and the tree-walking picture generation 

stage corresponding to the machine interpretation of that code. Parse tree inter= 

pretation is a technique which has successfully been used in other systems, e.g. 

the OCCAM interpreter implemented by Marshall [52] derives its interpretation 

data-structure directly from the parse tree constructed by an APG [531 parser. 

Although full picture instantiation is often desirable, there is an intermediate 

notational stage available to answer the question what does Tally {n} look like 



C
D

 p C
D

 0 U
) 

C
D

 n C
D

 

' 

p D
i 

ci
- w
 

0 C
) 

1 
1 

C
D

 

•c
l 

C
D

 

U
) 0 0 -3

 
C

l) 
—

S
 

n I C
D

 
U

) n —
. 

as
 

C
D

 

—
 S 

C
D

 

U
) 

C
D

 n —
 S 0 p C

D
 

0 n 0 —
S

 

—
. 

0 p C
D

 
U

) 

•c
l p —
' S p as
 

C
D

 U
) p C
D

 

B
 

C
D

 

—
 S

 

U
) 

C
D

 p C
D

 

—
 a 

C
D

 

—
 S

 

C
D

 p C
D

 n C
D

 

C
D

 

p •c
l p —
 S p C

D
 

C
D

 

—
 S

 

U
) 

I-
I 

C
D

 

I-
I 

C
D

 
U

) 
C

D
 

C
D

 0 C
D

 

—
. 

U
) p n C
D

 0 

C
D

 

C
D

 p —
S

 
0 0 

p '1
 0 ct
 

C
D

 

C
D

 

C
D

 

—
 S

 

C
D

 

01
 

I P
 

C
D

 

C
D

 
U

) 
C

D
 

—
 

C
D

 

B
 

C
D

 p 0 

C
D

 

n 0 E
 0 U

) 
—

 S
 

—
 S 0 U

) 
'I.

 as
 

—
 

C
D

 

C
D

 p —
 S

 

0 P
 

C
D

 

C
D

 
U

) 
C

D
 p —
 S

 

0 P
 H
 

—
 S

 

U
) 

—
 S n C

D
 

n 0 

as
 

U
) 

C
D

 
U

) as
 

C
D

 
—

 S 

as
 

C
D

 
—

 S I' 

—
 S

 

U
) 

I-
I 

C
D

 

C
D

 
U

) 
C

D
 p —
 S 0 U
) 

—
 S 

I-
I 

C
D

 

01
 

I 0 p C
D

 

(0
 

P
 

C
 

—
 S

 

C
D

 

'1
 

C
D

 

C
R

 

I C
R

 a —
 S 

—
 S

 

U
) p —
 S

 

p —
 S

 

0 

S
 

I 
•4

i0
 

' 
I 

4 
• 

H
 

# 
3d

 

n C
D

 
n 

p 
as

 

-:
: 

U
) D
i 

i::
 

ct
 

w
 

U
) 

C
D

 

C
D

 

p U
) —

 

U
) n p —

 
C

D
 

C
D

 

U
) 

C
D

 

'a
 p 

C
D

 
S

 

0 C
) 

'I.
 

0 —
 S 

1-
-(

 

C
D

 

C
D

 

—
 S 

U
) 

C
D

 p 1-
-(

 

C
D

 p —
 S 0 as
 

C
D

 n C
D

 

U
) -3
 

'S
I C
 

S
t 

'1
 0 ct
 

C
D

 

C
,)

 

U
) 

0 —
 S 

U
) 

—
 S 

U
) p —
 S 

—
 S p n C

D
 

—
 S 

H
 

C
D

 

n 0 —
. 

—
S

 
0 p 

C
D

 

-3
 

n C
D

 

n p as
 

C
D

 

•c
l 

—
 S

 

C
D

 

C
D

 

Ic
j . I I 

I I. 
I .5
_ 

a 
S

 

a 

I S
 

S
 

p C
D

 0 0 

U
 

I 

I 

a1
 a

 

p 
•a

 

I 
I 

a 

I I I a 

C
 

C
D

 
—

 

C
D

 p C
D

 

U
) 

C
D

 

I 
W

I 

sa
 

a 
. 

'I IL
.J

I 
. a

 a
 

V
 

p S
 

I 
U

 

I 
U

 
U

 

._
__

.IJ
j 

S
 

I. 
I 

I 
—

 a
 

e 
le

a 
a 

a 
a 

a 
a 

a 
a 

I a
 a

4 
a 

a 
a 

't a
w

r 
uu

 
I 

I 
I 

I 
I 

I 
I 

I 
U

 
U

 
t 

t 
I 

I_
I 

I. 
I 

I 
I 

I 
I 

•a
 

U
 

.t.
 

U
 

I 
I 

I 
I 

I 
I 

I I 
U

 
I 

I 
4 
a 

a 
ta

 
a 

a 
—

 
a 

a 
a 

a 
a 

a 
a 

a 
aa

 DS
 a

 t 
a 

a 
a 

. 
.i 

. 
. 

'i 

p.
 

I 
I 

I 
I 

t I 
a 0 ¶1

 
U

 
a 

S
 a 

a 
na

 a
 a

 —
: 

. 
- 

I 

It 

0 C
D

 
U

) 0 U
) 0 —
 S 

U
) 

a 
a 

I 4 

. 
a 

is
 

C
l) 

—
 S n 

I 

p 0 

I 
• 

I 
I 

Ie
I 

I 
a 

S
 

a 

0 

a 

I 
aa

 r I 
I 

I a 
hi

 

I 
Is

 
a 

a 
a 

a 
S

 

I I a
 a

 a
 

—
 S

' a
 a

 

a 

I I 
U

 
a 

IF
 

II 
II I 

as
 

a 

a 
a 

a 
U

 t I 
I 

II I 

S
 —

 S
 a

 a
 

II 
Ii-

' 
. 

a 
a2

a 

I 

U
 
a I te
l 

S
I 

S
 

Ii 

I r . U
 

—
jt 

•I
 

a!
e 

1 
a 

a 'ri
' 

IL
 

II 
. 
a 

a—
, I 

C
D

 

a 
a 

a 
a 

a 

a 
a 

S
 —

 
a 

I I S I-
 

a!
 I 

F
aa

 a
s 

p.
 

-I
s a 

I. 
a 

e 

U
 'I I S
 I I 

S
 

S
 a

 

I 

I 

a 
a 

0 C
D

 

'-3
 

'S
I 

C
) 

C
D

 

j-J
 

I—
 

n U
) 

C
D

 
U

) 

a 
a 

—
 

a 
a 

I 
a 

C
D

 

C
D

 

n C
D

 

S
 a

 

S
 

—
, 
a 

S
 I . a
 

.
s
S
a
 
•
1
 

I 

U
 I a 
a 

a 

n C
D

 

C
D

 

C
D

 
I 

'I II 

a 

a 
a 

a 
- U
 

•S
'a

'Q
 

4.
 

I 
I 

S
 

I 

a 
a 

a 

I 

a 
a 

a 
a 

i 

I 
a 

a 
a 

a 
a 

a 
a 

I 
I 

S
 

I I 
a 

a 
s.

 
S

b'
 

—
 

'iM
IS

 

I, 



chapter 5. Stick- Wright 

-------- - - - - --------- 
I 

I 

' cor !; ;! 
I cor I 

I: 
L ------------- 

' 
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. , 

Graphics 

-Stic 

r 
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. 

Stock LJ1 ............... --------- --------- --------- 

I I ! cor ! ! C or ! 

! I 

gnd:m, vdd:a ) _ Abut be""", b', b'; 

b, ; 

b be 

Call Block (in:d[8]; 
vdd:a. (sn:p, ont:p, in:a)[8]; 
ont:p r8 -r; 

gnd:a Abut (bs, (bs, re. rs) [8]) , 

Call Chip 

.s. 

_ 1bnt cor, (vdd. 
<in"" [81>. 

inont[8]), cor"; 
Block. <ont"[8]>; 

cor__ gnd cor" 

VDU 

1>> 

Figure 5-16: Pad-Placement Example 
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Cell Col {i, n }(; 

= Abut [i=n -> (bs"", gs"", bs"")I(bs"", bs")]; 
<[i<n-1 -> route[n-i-1]I(b, g, b)]>; 
[i<n -> routeSl(b, g, b)]; 
<TallyUnit [1]> 

Cell Tally {n}(; 

) = Abut Coli+1, n+1[i := 1 .. n]. 

Figure 5-17: Tally {n} (program) 

implementation of Stick-Wright, and hence only port constraints generated by 

the primitive cells are available for use in composition checking (they are the 

layer names m, d and p. In an implementation of Extended Stick-Wright the 

cell exterior would be obtainable directly from the cell header. The presence 

of parameters in any of the port expressions for that cell would require evalua- 

tion, but the cell itself would not have to be constructed to provide the exterior 

profile. This does, however, make the assumption that the cell's header is an 

accurate statement of what the implementing AbutBlock will provide for any set 

of parameters. With the proposed scheme either the user's specification has to 

be trusted, or else every cell instantiation has to be fully expanded (this would 

happen in any case, when the final design is expanded prior to being passed 

on to further processing stages). An other alternative would be to heavily con- 

strain the use of parameters in the AbutBlock implementation, making the port 

exterior statically derivable (directly from attribution rules). 

Ports can be labelled with lists of conditions which all have to be present in 

both ports during a port connection, e.g. a port vdd:m:VDD could connect to a 

port vddl:m:VDD but not to a port vddl:m, since the latter port does not have 

the constraint name VDD. Static Stick-Wright uses only layer constraint names, 

as generated by the primitive cells, but the mechanism for multiple constraint 
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Chapter 6 

Results, Conclusions and Extensions 

6.1 The Wright System 

The major piece of work undertaken for this thesis was the design and imple- 

mentation of the Wright generator for language-based graphical editors. The 

primary motivation behind the development of the Wright system was the desire 

to provide a formal basis for the development of text/graphic tools. The syn- 

tax and semantic analysis stages of this system owe much to work reported by 

other researchers in programming environments, however, the graphical interface 

and the use of an attributed-syntax-tree as a graphical-data-structure are novel 

contributions in this area. 

The system was developed from scratch, for the simple reason that no other 

tools were available at the outset, however, this provided the opportunity for 

making the integration of text and graphics the primary design consideration. 

In comparison with other systems, notably the Cornell Synthesizer Generator, 

the attribute evaluation algorithm and attribute storage strategies are rather 

inefficient. However, they have proved adequate for the purposes of this thesis 

and are repairable deficiencies. Wright has succeeded in demonstrating the effi- 

cacy of attribute-grammar specification techniques to the text/graphic problem 

domain, and has developed into a useful tool for the production of working sys- 

tems. The syntax and lexical analysis components of the Wright system have 

also successfully been used in a number of other research projects, including an 

OCCAM compiler and a PLA based silicon compiler. 

126 
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The use of compiler-compiler systems for generating graphical tools was sug- 

gested as long ago as 1967 by Kulsrud [41]. While improvements in hardware 

since then have been quite dramatic, the development of such compiler-compiler 

technology has been decidedly less so, and very few systems see much use outside 

universities. Perhaps the major reason for this is that very few systems undergo 

the code refinement necessary to meet production quality standards, and that 

it is generally perceived to be easier to hand-craft one-off systems, rather than 

invest the effort in a more general approach. 

For a compiler-compiler to be a product, its output must also be of production 

quality. This implies greater attention to issues like efficient storage schemes, 

and space/time tradeoffs in table compaction. For such a refinement process 

to be undertaken in a commercial setting, the compiler-compiler must be seen 

to be in demand. Reasons for wanting formally specified, automatically gener- 

ated systems were outlined in the first chapter. Briefly restated, they provide 

ease of implementation (assuming the user is familiar with the formalism being 

used), security (less bugs) and flexibility. The generated systems themselves, 

the structure editors and incremental compilers, open up new possibilities in de- 

sign exploration and verification, as well as spurring on the trend towards more 

user-friendly, interactive systems. The Wright system allows the relatively fast 

generation of prototypes as a new system evolves. The generic modules, such 

as the display and parsing modules, relieve the tool-builder from the necessity 

of continualy having to re-invest effort in implementing front-ends from scratch. 

As a new tool develops, even partial implementations can be tested using the 

editing modules. 

The limitations of the approach taken in this thesis must also be recognised, 

formalisms have a habit of breaking down every now and then when applied to 

real problems. For example, the formalism of regular-expressions does not cope 

with every lexical item one might like to define, while attribute grammars in 

their standard form only allow the declaration of local relationships in the parse 

tree. The response to these kinds of problems is usually to tack on extensions to 

the formalism which increase the class of candidate problems, e.g. the regular- 
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expression basis of LEX [20] has added operators for detecting ends of lines and 

files, and a backtracking operator for re-reading the input. The trouble with 

extensions is that they can over-complicate the system, and may also remove 

properties of the formalism that lead to automatic implementation and the ap- 

plication of verification techniques. In the area of lexical analysis and syntactic 

analysis, the usual tricks to increase the utility of the systems do not seriously 

impact on either the elegance-- or- security - of- tire-- generated- systems-; however, 

more care is needed in the area of semantic functions. 

In the Wright system the semantic functions in the attribute grammar are 

left entirely to the the user as an exercise in normal HLL programming, with the 

system only responsible for controlling the order of application of the functions, 

within the context of an interactive editing session. Because the user is allowed 

the freedom of an unconstrained procedural programming language, there is 

nothing to prevent the semantic functions being written in a style which makes 

use of side-effects and shared resources. While this is necessary for improving 

the storage demands of attributes, it does involve a departure from the strict 

application of the formalism. This situation can be partially avoided by providing 

a library of standard semantic functions, e.g. constructors for list structures, and 

constraining the user to only using predefined operators and structures in the 

attribute occurrences (this is effectively achieved in the Cornell system by the 

inclusion of such functions and structures in the grammar specification language 

itself). 

The attribute grammar is a useful descriptive tool, but it is limited in its 

range of application, e.g. context-sensitive syntax checking (e.g. type-checking) 

and simple translation and construction processes (e.g. the construction of a 

graphical data-structure). As such it can play a crucial role in the front-ends of 

a wide range of design-tools. 
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6.2 Stick-Wright 

The Stick-Wright editor serves two purposes; it is a working demonstration of a 

Wright generated programming environment, and it also contributes some new 

ideas to the area of VLSI design tools. The essential feature of the system is 

that the major data-structure of the editor, the attributed syntax tree, is used 

to represent both a textual and a pictorial representation of the object being 

designed (in this case, an IC stick-diagram). This close coupling between text 

and graphics is crucial to the provision of an interactive design environment in 

which the user can control the development of a design using a variety of editing 

techniques. 

The first method of graphical interaction demonstrated in this thesis was 

the graphics text macros developed for Pict-Wright. These macros allow the 

editor designer to structure graphical actions (e.g. mouse movements, menu se- 

lections etc.) by associating them with editor keys (which initiate the graphical 

command) and also with textual insertions into the program text. This pro- 

vides a way for developing graphics commands which modify the design using 

the language interface (and hence guarantee a correct internal representation). 

The second type of graphical action does not necessarily cause text insertions 

(although it could initiate them), but provides a way for graphical interactions 

to cause changes in the status of the current edit, e.g. changing the current tree 

position, or repainting parts of the tree. 

The use of syntactic and semantic constraints to enforce a design methodology 

has great potential for controlling the complexity of a VLSI design [70]. Stick- 

Wright demonstrates an effective implementation technique for applying such- 

design strategies. 

Graphical notations for dealing with programming language features have 

been presented; iteration of cells within a cell composition is implemented by 

the iteration tile in Stick-Wright and conventions for dealing with conditions 
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and parameters, without recourse to full instantiation, are suggested in Extended 

Stick-Wright. 

Stick-Wright, although a small system with a compact specification, has many 

powerful features and is a significant step towards a VLSI programming envi- 

ronment that fully supports design exploration and verification. 

6.3 Extensions 

6.3.1 Structure Editing 

The generic editor module in the Wright system provides a basic selection from 

the tree and text editing commands commonly found in such systems, and could 

easily be extended to include a wider range. The graphical editing commands 

tend to be more application specific, although common techniques could be 

shared between systems (e.g. the geometrical transformation attributes of Stick- 

Wright could be adapted to implement a variety of graphical data-structures). 

A major component of the Wright system's text editing module is the pretty- 

printer which displays the textual version of the attributed syntax tree. At the 

moment the pretty-printer produces a flattened version of the current position 

and surrounding text, thus partially loosing the hierarchy implicit in the original 

tree, although the tree structure is indicated by the highlighting of the current 

sub-tree. It would be desirable to have more complicated schemes available 

which were more selective of what they displayed, e.g. reducing detail (e.g. pro- 

cedure bodies) when displaying text outside the the current area of interest. The 

attribute grammar presents a direct means for allowing the grammar designer 

to control such activities, if appropriate printing primitives are provided. By 

viewing a program text as both a hierarchical and dynamic structure, it should 

be possible to maintain a view of the design which keeps the user fully briefed 

on currently salient features, thus speeding up the design process. Just how 

such views can be provided, and whether the attribute grammar is the best way 
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to specify their automatic generation, remain an interesting problem. Related 

work in the area of pretty-printing by Rose and Welsh [74] and also Woodman 

[96], are folding and indentation algorithms for displaying the text in a fully flat- 

tened form. These algorithms are more adaptive than the simple fixed parameter 

approach taken in Wright and could either be applied'to the text structures gen- 

erated by the attribution stage, or even integrated into the semantic functions 

themselves. 

The use of parsing tables for the auto-completion of tokens and phrases (as 

described in Chapter 3) is another area where the editing modules of Wright 

could be extended; the information for performing such activities is freely avail- 

able to the generic modules. A working auto-completion module was written for 

ASG (the lexical analyser), but has not yet been adapted for inclusion into the 

Wright system. 

6.3.2 Physical Design 

In Stick-Wright the attribute grammar specification is mostly concerned with 

the decoration of the parse tree for graphical display and the syntactic checking 

of port compositions. Both these areas are extremely important to any CAD 

system, and are certainly candidates for further development. The standard 

symbol-table, expression compilation and pretty-printing attribution techniques 

can apply to a wide range of input-languages, and present the opportunity for a 

range of related design tools to share implementation modules. In this and the 

following sections I consider wider areas of application for the AG specification 

technique. 

Stick-Wright is only one possible approach to a symbolic layout system. Its 

tiling/abutment strategy could be replaced by an explicit port-matching/wiring 

approach (as in Sticks&Stones), indeed, a mixture of these techniques was origi- 

nally considered for Stick-Wright. Further developments to the dedicated editing 

functions could be made, e.g. program transformations which alter the external 

appearance of a cell to conform to some new positional context (possibly by the 
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automatic recursive re-arrangement of cell interiors (as suggested by Cardelli 

[12]), or by the addition of routing channels. A graphical representation of dy- 

namic language features is suggested in Extended Stick-Wright, but has yet to 

be tested in a full implementation. 

The graphical data-structure supported by the Stick-Wright suggests a foun- 

dation for the implementation of many other graphical tools, e.g. the schematic 

entry system described in section 2.2.5. In schematic entry the physical po- 

sitioning of the symbols in the schematic is not meant to suggest a specific 

placement in the generated layout, but it is important- that- the symbols. and. 

the connecting wiring do have a clear and understandable layout in the actual 

schematic. Although algorithms have been developed which generate pleasing 

wiring patterns and component placements (and those algorithms will continue 

to be important), the user can significantly contribute to a good schematic layout 

by judicious graphical placement with a pointing device. By providing an ap- 

propriate set of graphical primitives the system could allow the user to enter an 

entire design without even being aware of the text version, however, the presence 

of the textual interface may also encourage the use of programming features like 

parameterisation and conditional evaluation, perhaps using the graphical-nota- 

tional devices suggested in the previous chapter. The close coupling between 

graphics and language should also aid in the maintenance of any such system, 

since the implementation is effectively driven from one single specification, the 

attribute grammar. 

6.3.3 Silicon Compilation 

Perhaps the greatest demand for the automatic generation of language proces- 

sors (at least in the area of VLSI) will come in the emerging field of silicon 

compilation. The reasons for this are simply that it is unlikely that any particu- 

lar hardware description language (HDL) will dominate for some time to come, 

and that many attempts at finding the best way to specify hardware systems 

will have to be made. Not only are the specifications of such systems a mov- 
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ing target, the underlying technologies are also continually evolving. The quick 

production of prototype systems offered by systems such as Wright may be an 

answer to these problems. 

Many current attempts at HDLs (e.g. VHDL [47]) beox strong resemblances 

to either Pascal or ADA, with added keywords like Signal and After. If this 

continues to be a trend then the attribute grammar specification work on such 

procedural languages [89] will prove useful in generating appropriate program- 

ming environments for such systems. Other types of programming language, in- 

cluding applicative and object-oriented, can also benefit from the AG approach, 

and may also be explored as candidates for implementing HDLs. 

6.3.4 Verification and Simulation 

Stick-Wright demonstrates a syntactic method for restricting the domain of al- 

lowable circuit structures. This approach can be extended to deal with further 

physical, structural and behavioural properties, e.g. Milne's calculus for cir- 

cuit descriptions, Circal [58], could be implemented using an AG, and program 

transformations and editing commands could be developed for manipulating the 

Circal expressions. A major problem in the formal language approach to VLSI 

verification has been the size of the expressions which represent relatively sim- 

ple structures, and the difficulty in performing equivalence proofs on such ex- 

pressions. Proof editing has been the subject of investigation for a number of 

AG projects, and is an active area of research. Machine assistance will be of 

paramount importance in the completion of any large scale verification. 

An appealing design system which would make full use of the graphical facil- 

ities provided by the Wright system is an interactive simulator using a hardware 

description language and circuit model [60] to animate a design specification on 

a graphics screen. The structure editor and graphics commands could be used 

for editing not only the circuit description, but also the driving simulation script. 

The techniques developed in this thesis provide a means for building just such 

an interactive design environment. 



Bibliography 

[1] A.V. Aho and J.D. Ullman. Principles of Compiler Design. Addison- 
Wesley, Reading, Mass., 1979. 

[2] F. Anceau. LSI-processor architecture. 1984. Presented at the NATO 
Advanced Study Institute on Microarchitecture of VLSI Computers, Urbino, 
Italy. 

[3] F. Anceau. Statistical properties and layout strategies for NMOS and 
CMOS layout. 1984. Presented at the NATO Advanced Study Institute 
on Microarchitecture of VLSI Computers, Urbino, Italy. 

[4] H.G. Barrow. Proving the correctness of digital hardware designs. VLSI 
Design, 5(7):64-77, July 1984. 

[5] N. Bergmann. Idiomatic Integrated Circuit Design. PhD thesis, University 
of Edinburgh, August 1984. 

[6] G.H. Birtwistle, O.J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA begin. 
Auerbach Publishers Inc., Philadelphia, 1973. 

[7] G. Brebner and D. Buchanan. On compiling structural descriptions to floor- 
plans. In International Conference on Computer Aided Design, pages 6-7, 
1983. 

[8] D. Buchanan. personal communication, 1985. 

[9] I. Buchanan. Modelling and Verification in Structured Integrated Circuit 
Design. PhD thesis, University of Edinburgh, 1980. 

[10] M. Burich. SDL compiler compiler - the design of module generators. July 
1986. Presented at the NATO Advanced Study Institute on Logic Synthesis 

and Silicon Compilation for VLSI Design. 

[11] R.H. Campbell and P.A. Kirslis. The SAGA project: a system for software 
development. ACM SIGPLAN Notices, 19(5):73-80, May 1984. 

134 



Bibliography 135 

[12] L. Cardelli. An Algebraic Approach to Hardware Description and Verifica- 
tion. PhD thesis, University of Edinburgh, 1982. 

[13] L. Cardelli. Sticks and Stones: An Applicative VLSI Design Language. 
Technical Report CSR-85-81, University of Edinburgh Department of Com- 
puter Science, June 1981. 

[14] L. Cardelli. Two-Dimensional Syntax for Functional Languages. Techni- 
cal Report CSR-115-82, University of Edinburgh Department of Computer 
Science, May 1982. 

[15] J. Cherry, H. Shrobe, N. Mayle, C. Baker, H. Minsky, K. Reti, and N. 
Weste. Ns: an integrated design system. In E. Horbst, editor, VLSI 85, 

pages 325-334, August 1985. 

[16] P.B. Denyer, D.A. Renshaw, and N. Bergmann. A silicon compiler for VLSI 
signal processors. In Digest of Technical Papers, pages 215-218, ESSCIRC, 
1982. 

[17] V. Donzeau-Gouge, G. Huet, G. Kaha, and B. Lang. Programming En- 
vironments based on structured editors: the Mentor experience. Technical 
Report, INRIA, France, May 1980. 

[18] A.E. Dunlop. Slim - the translation of symbolic layouts into mask data. 
In ACM IEEE 17th Design Automation Conference, pages 595-602, 1980. 

[19] EDIF: Electronic Design Interchange Format, Version 1.0.0. Electronic 
Design Interchange Format Steering Committee, 1985. 

[20] Lesk E.M. and Schmidt E. Lex: A Lexical Analyser Generator. Bell Labo- 
ratories, 1978. UNIX Programmer's Manual. 

[21] C.N. Fischer and et al. The POE language-based editor project. ACM 
SIGPLAN Notices, 19(5):21-29, May 1984. 

[22] J.D. Foley and A. Van Dam. Fundamentals of Interactive Computer Graph- 
ics. Addison-Wesley, Reading, Mass., 1982. 

[23] J.G. Gay, R. Richter, and B.J. Berne. Component placement in VLSI cir- 
cuits using a constant pressure monte carlo method. Integration, the VLSI 
Journal, 3(4):271-282, 1985. 

[24] A. Goldberg and D. Robson. SMALLTALK-80. Addison-Wesley, Reading, 
Mass., 1983. 

[25] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF. Volume 78 of 
Lecture Notes in Computer Science, Springer-Verlag, New York, 1979. 



Bibliography 136 

[26] J.P. Gray, I. Buchanan, and P.S. Robertson. Designing gate arrays using 
a silicon compiler. In ACM IEEE 19th Design Automation Conference, 
pages 377-383, 1982. 

[27] Brown H., Tong C., and Foyster G. Palladio: an exploratory environment 
for circuit design. Computer, 16(12):41-56, December 1983. 

[28] W.R. Heller, Sorkin G., and K. Maling. The planar package planner for 
system designers. In ACM IEEE 19th Design Automation Conference, 
pages 253-260, 1982. 

[29] J.G. Hughes. The Edwin User's Guide (Fourth Edition). Technical Re- 
port CSR-74-81, University of Edinburgh Department of Computer Sci- 
ence, August 1981. 

[30] J.G. Hughes. The ILAP library. VLSI Design Tools Volume 1, University 
of Edinburgh Department of Computer Science. 

[31] F. Jalili. A general incremental evaluator for attribute grammars. Moore 
School of Electrical Engineering, Philadelphia, March 1983. 

[32] F. Jalili. A general linear-time evaluator for attribute grammars. ACM 
SIGPLAN Notices, 18(9):35-44, 1983. 

[33] G.F. Johnson and C.N. Fischer. Non-syntactic attribute flow in language 
based editors. In 9nth Annual ACM SIGACT-SIGPLAN Symposium on 
Principles of Programming Languages, pages 185-195, 1982. 

[34] S.C. Johnson. Yacc: Yet Another Compiler-Compiler. Bell Laboratories, 
1978. UNIX Programmer's Manual. 

[35] S.G. Johnston. Graphical Display of a Concurrent Device Simulation using 
CIRCAL. Technical Report CSR-204-86, University of Edinburgh, Depart- 
ment of Computer Science, August 1986. 

[36] L.G. Jones and J. Simon. Hierarchical VLSI design sytems based on at- 
tribute grammars. In 14th Annual ACM SIGACT-SIGPLAN Symposium 

on Principles of Programming Languages, 1986. 

[37] R.K. Jullig and F. DeRemer. Regular right-part attribute grammars. In 
ACM SIGPLAN Symposium on Compiler Construction, pages 171-178, 
June 1984. SIGPLAN Notices Vol. 19, No. 6. 

[38] D.E. Knuth. On the translation of languages form left to right. Information 
and Control, 8(6):607-639, 1965. 



Bibliography 137 

[39] D.E. Knuth. Semantics of context-free languages. Mathematical Systems 
Theory, 2(2):127-145, 1968. correction in vol.5,1, p.95-96, 1971. 

[40] P.W. Kollaritsch and N.H.E. Weste. A rule-based symbolic layout expert. 
VLSI Design, 5(8):34-42, August 1984. 

[41] H. E. Kulsrud. A general purpose graphic language. Communications of 
the ACM, 11(4):247-254, April 1968. 

[42] F. Lakin. Computing with text-graphic forms. In LISP Conference, Stan- 
ford, pages 100-106, 1980. 

[43] R.P. Larsen. Computer-aided preliminary layout design of customized MOS 
arrays. IEEE Transactions on Computers, C-20(5):512-523, May 1971. 

[44] Chipsmith, a random logic compiler for gate arrays, optimised arrays and 
standard cells. Lattice Logic Ltd., 9 Wemyss Place, Edinburgh EH3 6DH, 
1985. 

[45] H.S. Law and G. Wood. A mixed-media approach to module generator 
design. July 1986. Presented at the NATO Advanced Study Institute on 
Logic Synthesis and Silicon Compilation for VLSI Design. 

[46] T. Lenguaer and K. Mehlhorn. The HILL system: a design environment for 
the hierarchical specification, compaction, and simulation of integrated cir- 
cuit layouts. In P. Penfield, Jnr., editor, Conference On Advanced Research 
in VLSI, pages 139-149, Massachusetts Institute of Technology, 1984. 

[47] R. Lipsett, E. Marschner, and M. Shahdad. VHDL - the language. IEEE 
Design & Test, 3(2):28-41, April 1986. 

[48] R.J. Lipton, J. Valdes, G. Vijayan, S.C. North, and R. Sedgewick. VLSI 
layout as programming. ACM Transactions on Programming Languages 

and Systems, 5(3):405-421, July 1983. 

[49] B. Locanthi. A simula package for IC layout. Caltech Display File #1862, 
1978. 

[50] B. Lorho, editor. Methods and Tools for Compiler Construction. Cambridge 
University Press, 1984. 

[51] K. Maling, S. Mueller, and W.R. Heller. On finding most optimal rectan- 
gular package plans. In ACM IEEE 19th Design Automation Conference, 

pages 663-670, 1982. 



Bibliography 138 

[52] R.M. Marshall. Automatic generation of controller systems from control 
software. To appear at the International Conference on Computer Aided 
Design, November 1986. 

[53] G.A. McCaskill. APG: An Automatic Parser Generator. University of 
Edinburgh Department of Computer Science, 1985. 

[54] G.A. McCaskill. Interactive ILAP. Technical Report CSR-147-83, Univer- 
sity of Edinburgh, Department of Computer Science, October 1983. 

[55] C.A. Mead. VLSI and technological innovations. In J.P. Gray, editor, VLSI 
81, pages 3-11, August 1981. 

[56] C.A. Mead and L.A. Conway. Introduction to VLSI Systems. Addison- 
Wesley, Reading, Mass., 1980. 

[57] R. Medina-Mora and P.H. Feiler. An incremental programming envi- 
ronment. IEEE Transactions on Software Engineering, SE-7(5:472-482, 
September 1981. 

[58] G.J. Milne. Circal: a calculus for circuit description. Integration, the VLSI 
Journal, 1(2,3):121-160, 1983. 

[59] G.J. Milne. The Correctness of a Simple Silicon Compiler. Internal Re- 
port CSR-127-83, University of Edinburgh, Department of Computer Sci- 
ence, January 1983. 

[60] G.J. Milne. A model for hardware description and verification. In ACM 
IEEE 21st Design Automation Conference, pages 251-257, IEEE, June 1984. 

[61] W.M. Newman and R.F. Sproull. Principles of Interactive Computer Graph- 
ics. McGraw-Hill, New York, 1973. 

[62] A.R. Newton. Symbolic layout and procedural design. July 1986: Presented" 
at the NATO Advanced Study Institute on Logic Synthesis and Silicon 
Compilation for VLSI Design. 

[63] T. Ng and S.L. Johnsson. Generation of layouts from mos circuit schemat- 
ics: a graph theoretic approach. In ACM IEEE 22nd Design Automation 
Conference, pages 39-45, IEEE, June 1985. 

[64] I.M. Nixon. Chip churn: a PLA based silicon compiler. To appear at 
the International Conference on Custom and Semi-Custom ICs, November 
1986. 

[65] D.C. Oppen. Prettyprinting. ACM Transactions on Programming Lan- 
guages and Systems, 2(4):466-483, October 1980. 



Bibliography 139 

[66] R.H.J.M. Otten. Automatic floorplan design. In ACM IEEE 19th Design 
Automation Conference, pages 261-267, 1982. 

[67] J.K. Ousterhout, G.T. Hamachi, R.N. Mayo, W.S. Scott, and G.S. Taylor. 
Magic: a VLSI layout system. In ACM IEEE 21st Design Automation 
Conference, pages 152-159, IEEE, June 1984. 

[68] C. Piguet, E. Dijkstra, and G. Berweiler. Automatic generation of CMOS 
layout cells from a hardware description language. In K. Waldschmidt and 
B. Myhrhaug, editors, Euromicro 85, pages 477-486, September 1985. 

[69] M. Rem. The VLSI challenge: complexity bridling. In J.P. Gray, editor, 
VLSI 81, pages 65-73, August 1981. 

[70] M. Rem and C.A. Mead. A notation for designing restoring logic circuitry 
in CMOS. In Charles L. Seitz, editor, Proceedings of the Second Caltech 
Conference on Very Large Scale Integration, pages 399-411, January 1981. 

[71] T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent 
analysis for language-based editors. ACM Transactions on Programming 
Languages and Systems, 5(3):449-477, July 1983. 

[72] M.C. Revett and P. Ivey. Astra - a CAD system to support a structured 
approach to IC design. In F. Anceau and A.J. Aas, editors, VLSI 83, 

pages 413-422, August 1983. 

[73] P.S. Robertson. The IMP77 Language. Technical Report CSR-19-77, Uni- 
versity of Edinburgh Department of Computer Science, November 1980. 

[74] G.A. Rose and J. Welsh. Formatted programming languages. Software - 
Practice and Experience, 11(7):651-669, July 1981. 

[75] J.B. Rosenberg. Chip assembly techniques for custom IC design in a sym- 
bolic virtual-grid environment. In P. Penfield, Jnr., editor, Conference 

On Advanced Research in VLSI, pages 213-225, Massachusetts Institute 
of Technology, 1984. 

[76] A. Sangiovanni-Vincentelli. Placement and routing in a synthesis environ- 
ment. July 1986. Presented at the NATO Advanced Study Institute on 
Logic Synthesis and Silicon Compilation for VLSI Design. 

[77] S. Sastry and S. Klein. Plates: a metric free VLSI layout language. 

In P. Penfield, Jnr., editor, Conference On Advanced Research in VLSI, 
pages 165-174, Massachusetts Institute of Technology, 1982. 



Bibliography 140 

[78] M. Schlag, Y.Z. Liao, and C.K. Wong. An algorithm for optimal two- 
dimensional compaction of VLSI layout. In International Conference on 
Computer Aided Design, pages 88-89, 1983. 

[79] R. Schmid and U.G. Baitinger. The Role of Floor Plan Tools in the 
VLSI Design Process. Technical Report, Institut Fur Technik der Infor- 
mationsverarbeitung, Universitat Karlsruhe, 1984. 

[80] J. Schoellkopf. Lubrick: a silicon assembler and its application to data-path 
design for fisc. In F. Anceau and A.J. Aas, editors, VLSI 83, pages 435-455, 
August 1983. 

[81] M.J. Siskind, Southard J.R., and Crouch K.W. Generating custom high 
performance VLSI designs from algorithmic descriptions. In P. Penfield, 
Jnr., editor, Conference On Advanced Research in VLSI, pages 28-39, Mas- 
sachusetts Institute of Technology, 1982. 

[82] J.R. Southard. Macpitts: an approach to silicon compilation. Computer, 
6-12:74-82, December 1983. 

[83] S. Taylor. Symbolic layout. VLSI Design, 5(4):34-42, March 1984. 

[84] Whitney T.E. and Mead C. An integer based hierarchical representation 
for VLSI. In C.E. Leiserson, editor, Conference On Advanced Research in 
VLSI, pages 241-257, Massachusetts Institute of Technology, 1986. 

[85] T. Teitelbaum, T. Reps, and S. Horowitz. The Cornell program synthesizer: 
a syntax-directed programming environment. Communications of the ACM, 
24(9):563-573, September 1981. 

[86] R.D. Tennent. Language design methods based on semantic principles. Acta 
Informatica, 8:97-112, 1977. 

[87] N. Traub. A - Lisp-Based- Circal-Environment; Interrral-Report- CSR-152- 
83, University of Edinburgh, Department of Computer Science, November 
1983. 

[88] S. Trimberger. Combining graphics and a layout language in a single interac- 
tive system. In ACM IEEE 18th Design Automation Conference, pages 234- 
239, 1981. 

[89] J. Uhl, S. Drossopoulo, G. Persch, G. Goos, D. Dausmann, G. Winterstein, 
and W. Kirchgassner. An Attribute Grammar for the Semantic Analysis of 
ADA. Volume 139 of Lecture Notes in Computer Science, Springer-Verlag, 

New York, 1982. 



Bibliography 141 

[90] W.M. vanCleemput. Hierarchical design for VLSI: problems and advan- 
tages. In Charles L. Seitz, editor, Proceedings of the First Caltech Confer- 
ence on Very Large Scale Integration, pages 259-274, January 1979. 

[91] W.M. Waite and G. Goos. Compiler Construction. Texts and Monographs 
in Computer Science, Springer-Verlag, New York, 1984. 

[92] N.H.E. Weste and B. Ackland. A pragmatic approach to topological sym- 
bolic IC design. In J.P. Gray, editor, VLSI 81, pages 117-129, August 1981. 

[93] T.E. Whitney. Hierarchical Composition of VLSI Circuits. PhD thesis, 
California Institute of Technology, 1985. 

[94] T.E. Whitney. A hierarchical design-rule checking algorithm. Lambda, 
2(1):40-43, First Quarter 1981. 

[95] J.D. Williams. A graphical compiler for high level lsi design. In AFIPS 
Conference Proceedings, pages 289-295, 1978. 

[96] M. Woodman. Formatted syntaxes and modula-2. Software - Practice and 
Experience, 16(7):605-626, July 1986. 



Appendix A 

Wright Reference Manual 

A.1 Editor Commands 

A.1.1 Introduction 

This section contains a brief introduction to the editing commands available in 

the two editors presented in this thesis. The editor commands are assigned to 

the keypad and cursor keys of the VDU's keyboard. Here is the keypad layout 

for the VT100 terminal: 

PF1 PF2 PF3 PF4 

7 

4 

1 

8 

5 

2 

9 

6 

3 

7 

Enter 

0 

In the explanation of the editor commands the keyboard key-name is given 

before the editor command name. In addition to the keypad names above, most 

keyboards also have cursor-keys and function keys (F1 ... F13). 
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A.1.2 Generic-Commands 

These commands are found in all Wright generated editors: 

cursor-UP - MoveToFather 

less at top of tree). 

move to the father of the current tree node (un- 

I 
- MoveToSon move to first son of current tree node. 

cursor-RIGHT - MoveToRight move to parent and then down to next son. 

If the current node is a terminal node and there is no next sibling then 

traverse the tree up and then down to the next terminal. If the current 

node is not a terminal and there is not a rightmost sibling, then wrap 

round to the first sibling. 

I cursor-LEFT - MoveToLeft 

0 - MoveToLeftSibling 

same as above, but in the other direction. 

Same as MovetoLeft, but always wrap round at left- 

most position to the right-most position. 

. - MoveToRightSibling Same as MovetoRight, but always wrap round at 

right-most position to the left-most position. 

1 - NextTerminal 

14 - DeleteSubTree 

Descend down the tree until a terminal is reached. 

Replace the current node with the first child which matches 

the current production. 

6 - Diagnostics 

values). 

Print out information on the current node (e.g. attribute 

7 - InsertSubTree Push down current node into parse stack and invoke 

parser (this command enables list structures to grow). 

8 - ReplaceSubTree Delete current node and invoke parser to read in re- 

placement. 
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, - DoPDFaction This command calls the user supplied routine which should 

save the current text and picture to files. 

Enter - ToggleGraphics This command switches between the graphics win- 

dow and the text window view on the graphics monitor. 

Home - TopOf Tree 

F3 - APGDebug 

F4 - LexDebug 

Move to root of tree, and also re-evaluate the whole tree. 

Switch on/off diagnostics for the parser. 

Switch on/off diagnostics for the lexical analyser. 

When the parser is invoked the Command window prompts for user input. 

While in program-entry mode the user can invoke any lexical macros which have 

been defined in the procedure do user macro. Macros can be bound to any 

keypad key. 

The window-manager for the system can be invoked using Ctrl-W. Com- 

mands for the window manger are: 

Cursor Keys 

Home-Key 

move the current window/device about. 

selects current option (which is displayed in window). 

U execute shell command. 

0 dump current window to file. 

A.1.3 Pict-Wright 

Pict-Wright has no special editing commands, but defines the following lexical 

insertion macros which can be invoked during program-entry mode. 

Enter insert mouse provided x, y coordinate pair. 

0 1 insert mouse provided x coordinate. 
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0 insert mouse provided y coordinate. 

H insert a statement line{x1, y1} (x2, y2) provided by two mouse positions. 

A.1.4 Stick-Wright 

Stick-Wright has no lexical insertion macro, but defines the editor commands: 

- - MoveToTile select a tile in the current graphics image with the mouse. 

The command then moves the text-cursor to the matching position. 

12 - MoveToCall move to the Ident phrase of the Design phrase. This node 

defines which picture is displayed on the graphics monitor. 

3 - SetDepth 

fault=1). 

select the depth to which cell calls should be printed (de- 

Shifted 3 - SetBounding 

9 - Refresh 

Switch bounding boxes on/off. 

re-evaluate and re-draw graphics display. 

A.2 Wright Input Language 

A.2.1 Introduction 

This section contains the ASG (scanner generator) and APG (parser generator) 

specifications of the Wright Input Language, as used for the description of Pict- 

Wright and Stic-Wright in Chapters four and five. 

A.2.2 Lexical Definition 

Lexical definition WRT is 

Ranges 
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@L is 'a' .. 'z' + 'A' .. 'Z'; 
ON is '0' .. '9'; 
@B is 0 .. 32; 
@C is 0 .. 127 - 
@D is 0 .. 127 - 
@A is 0 .. 127 - '>' - @L 

end of ranges 

macros 
#case is $$; 
#p is $($)*; 

#0 is ($1) 

end of macros 

expressions 

#case; 

_grammar -> \grammar; 
_is -> \is; 
_lex -> \lexicals; 
_code -> \code; 
_synth -> \synthesised; 
_inher -> \inherited; 
_prod -> \productions; 
_prior -> \priorities; 
_assoc -> \associativities; 
_end -> \end; 
_of -> \of; 
right -> \right; 

_left -> \left; 
_start -> \start; 

_arrow -> \->; 
_comma -> \.; 
_semi -> \;; 
_bar -> \I; 
_plus -> \+; 
_star -> \*; 
_opt -> \?; 
_lb -> \(; 

_rb -> \); 
_user -> \ [@D*\] ; 

_att -> \<\ * #p[ @L\ * 7 \$'@N I @N* \ * \_ 
#p[ 

@A* #o[ #p[@L\ *1 #o[\$ ON ! @N* 11 

] \> ; 

_form -> @B@B*; 
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_comm 

_name 
-> \{@C*\}; 
-> (@LI_)(@LI@NI_)* 

end of expressions 

end of lexical-definition 

A.2.3 Grammar 

Grammar Wright is 

Code [{}] 

Lexicals _grammar, _is, _lex, _code, _synth. _inher, _prod, _prior, 
_assoc, _end. _of, _right, _left, name, _start, _arrow, 
_comma, _semi. _bar, _plus. _star, _opt, _lb, 
_rb, _att, _user; 

Productions 

-> _grammar name _is 
iCode 
Lexs 
Synth 
Inher 
Prods 
Priors 
Ass 

_end _of _grammar; 

iCode -> _code imp-code I _error 

Lexs -> _lex Name-list _semi 

Synth -> _synth Def_list _semi I; 

Inher -> _inher Def_list _semi I; 

Def_list -> Def_list _comma Def I Def 

Def -> name _lb Name-list _rb ; 

Name-list -> Name-list _comma Name-code 

Name_code; 

Name-code -> _name imp-code; 
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Prods -> _prod 
Prod-list 

_end _of _prod; 
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Prod-list -> Prod_list Prod I Prod ; 

Prod -> Startl NT _arrow RHS_list _semi I 

_error ; 

Startl -> _start I; 

NT -> _name ; 

RHS_list -> RHS_list bar Alt I 

Alt; 

Alt -> RHS imp_code; 

RHS -> element RHS I 

element -> _name I 

LB RHS_list RB op; 

LB _lb 
RB -> _rb ; 

op -> _plus I 

_star I 

_opt I 

imp-code -> imp_code pCode I ; 

pCode -> user I _att ; 

Priors -> _prior PP _semi 
PP -> PP PPO I PPO; 

PPO -> LB Name-list RB Name-list; 

Ass -> _assoc Ass-list _semi I ; 

Ass-list -> Ass-list _comma Ass-spec I Ass-spec 

Ass-spec -> name _is _left I 

_name _is _right 

end of productions 

end of grammar 
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Attribute Grammar for Pict-Wright 

B.1 The Auxiliary Definition File "Pict. src" 

This section contains an abridged extract from the auxiliary definition file (which 

is too long to include in its entirety), and is provided to give an impression as 

to the implementation of Pict-Wright's semantic functions. 

! ---------------- 
! Lexical Actions 

%routine lex integer 
! takes current token character string and evaluates an 
! integer value from it. This value is stored in the parse tree 

%end 

i ------------------------------------------------ 
1 Lexical Insertion routines 

%external %routine %spec REQUEST %alias "EDWIN ___F REQ" - 
(%integer %name but, x, y) 

! finds the current display device cursor position 

%routine do user macro (%integer i) 

these are the user-supplied graphical interaction routines 

%integer but,x,y,x2,y2 

request(but,x,y) {find position on screen} 

%if i = Keypad Enter %start {coord pair} 
give to scanner(coordinate pair(x, y)) 

%else %if i = Keypad 0 {x coord} 
give to scanner(single coordinate(x)) 

149 
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%else %if i = Keypad Dot 
give to scanner(single coordinate(y)) 

%else %if i = Keypad Minus 
request(but,x2,y2) 

{y coord} 

draw a line from (x,y) to (x2.y2) 

give to scanner(line statement(x,y,x2,y2)) 
%f ini sh 

%end 

%routine do user editor action (%integer i) 
! none for Pict-Wright 

%end 

!------------------------------------------------ 
Pretty Printing Attribution routines 

%constant %integer default = 30 {maximum size in X-direction} 

%record %format text box fm (%short x, y, last x, 
%byte folds, extra, auto, indent) 

%integer %function cO (%integer size, extra, auto, indent) 
! make new text box 

%end 

%integer %function c (%integer boxi, size, extra, auto, indent) 
! make new text box 

%end 

%integer %function c2 (%integer boxi, box2, size, extra, auto, indent) 

I make new text box 
%end 

---------------------- 
! Arithmetic Operations 

%constant %integer max int = 1000000 
{values > max int => string address} 

%integer %function do negate (%integer a) 
attribution error("type error, expected integer") %if a > max int 

%result = -a 

%end 

%integer %function do times (%integer a, b) 
attribution error("type error, expected integer") %if a > max int 
attribution error("type error, expected integer") %if b > max int 
%result = a*b 

%end 
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%integer %function do divide (%integer a, b) 
attribution error("type error, expected integer") %if a > max int 
attribution error("type error, expected integer") %if b > max int 
%result = a // b 

%end 

%integer %function do plus (%integer a, b) 
%if a > max int %start 

%if b < max int %start 
attribution error("type error, adding string and integer") 

%f ini sh 
%result = concatenate(a, b) 

%else 
%if b > max int %start 

attribution error("type error, adding string and integer") - 
%finish 
%result = a + b 

%f ini sh 
%end 

%integer %function do minus (%integer a, b) 
attribution error("type error, expected integer") %if a > max int 
attribution error("type error, expected integer") %if b > max int 
%result = a - b 

%end 

%integer %function do int 
%result = integer at first son of current production 

%end 

%integer %function do string 
%result = address of string at first son of current production 

%end 

------------------------------------------- 
Environment Handling (ident -> type,value) 

%record %format env fm (%integer val, 
%string(*)%name id, 
%record(env fm)%name split, next) 

%integer %function defadd (%integer a, b) 
%result = add definition lists a and b 

%end 

%integer %function do binding (%integer a) 
%result = new binding of current _id to value a 

%end 

%integer %function envadd (%integer a, b) 
%result = addition of environments a and b 
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%end 

%integer %function def and bind (%integer def) 
%result = create symbol table entry for current _id and 

link with def 
%end 

%integer %function do bind 
%result = create symbol table entry for current _id 

%end 

%integer %function initial environment 
%result = the null symbol table 

%end 

%integer %function do name ref (%integer env) 
%if can find current _id in symbol table env %start 

%result = its value 
%else 

attribution error("identifier _id not declared") 
%f ini sh 

%end 

%integer %function do length (%integer s) 
! discover length of string drawing (at current scaling) 

%end- 

---------------------------- 
Graphic Data Structure 

%record %format pos fm (%integer x, y) 

%record %format arg fm (%integer arg, %record(arg fm)%name next) 

%integer %function copy origin (%integer i) 
%result = current value of procedure call origin 

%end 

%integer %function new origin 
%result = zero origin 

%end 

%integer %function do colour (%integer argi, origin) 
! set colour to argi 
%result = origin 

%end 

%integer %function do colour (%integer argi, origin) 
! set colour to argi 
%result = origin 

%end 
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%integer %function do size (%integer argi, origin) 
! set font size to argi 
%result = origin 

%end 

%integer %function do font (%integer argi, origin) 
! set font to argi 
%result = origin 

%end 

%integer % ctzan- do- prove- (%i tteger- argl-, arg2; origizr) - 
! change current position 

%if- argi- = 0- %st-art" 
new position = origin + arg2 {where + is pairwise} 

{addition of coords} 
%else 

new position = origin from parent Command List + 

argi + arg2 
%f inish 
%result = new position 

%end 

%integer %function do line (%integer argi, arg2, origin) 
! similar to move, but also draws line 

%end 

%integer %function do text (%integer argi, arg2, origin) 
! similar to move, but also draws text. 
! arg2 is a string, the length of which is used as a 
! x-translation, thus leaving the cursor at the end 

%end 

%integer %function do call (%integer a, argi, arg2, origin) 

%if id not found in symbol table(a) %start 
attribution error("procedure ".id." not declared") 

%else 

insert parameters into symbol table(proc, arg2) 
I gives attribution error if too many parameters, or too few. 

move origin(proc, argi) 
zero tree(proc found for id) 

evaluate tree(proc, Command List Pos) {call evaluator} 

%result = final position after call 

%f ini sh 
%result = origin 



Appendix B. Attribute Grammar for Pict- Wright 154 

%end 

---------------------------------------- 
Argument List 

%integer %function add vals (%integer a. %integer b) 
! build arg list 

%end 

%integer %function add val (%integer a) 
! initial arg list 

%end 

%integer %function command ref (%integer definitions) 
%result = address of CommandList 

%end 

%routine initialise user globals 
! called by parser to initialise user variables 

%end 

%routine do user eval actions 
chance for user to supply graphics commands 
prior to tree evaluation (e.g. erasing the display) 

%end 

%routine do user post eval actions 
! chance for user to supply commands 
! after evaluation (e.g. printing of attribute values) 

%end 

%routine do user move actions 
! chance for user to supply commands 
! after a cursor move (like calling the pretty--printer 

%end 

%routine do user pdf action 
user supplied routine for preparing hard copy 
of the current graphics display 

%end 

------------------ 
External Interface 

%external %routine Pict parse (%string(255) file) 

! application program calls this 

parse(file.".pct") {the generic parser} 
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%end 

%end %of %file 

B.2- The- Grammar- 

Grammar Pict is 

Code [%include "pict.src"] 

Lexicals _id,_clb,_crb,_slb,_srb,_comma,_ass, 
-define, 
-line, 

-colour, 

-size, 
-font, 
-text, 

-move, 

_lb,_rb, minus,_times, 
-length, 

_div,_plus,_int [lex integer],-string; 

Synthesised 
Design (box, def, pos), 
CommandList (box, def, pos), 
Command (box, def, pos), 
Argi (box,vals), 
Arg2 (box,vals), 
ArgL (box,def), 
NL (box,def), 
List (box,vals), 
Defn (box,val), 
Item (box,val); 

Inherited 
CommandList (env,origin), 
Command (env,origin), 
Argi (env), 
Arg2 (env), 
NL (env), 
List (env), 
Defn (env,origin), 
Item (env); 

Productions 

Design -> CommandList 
<box$O = c(box$1, default, 0, 0, 0)> 
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<pos$0 = pos$1 > 

<def$O = def$1 > 

<env$l = initial environment > 

<origin$l = new origin >; 

CommandList -> CommandList Command 

<box$O = c2(box$1, box$2, 0, 0, 0, 0)> 
<pos$0 = pos$2> 
<def$0 = defadd(def$1, def$2 )> 
<env$l = env$0 > 

<env$2 - envadd(def$1, env$0 )> 
<origin$l = origin$O > 

<origin$2 = pos$1 > I 

Command <box$O = c(box$1, 0, 0, 0, 0)> 
<pos$0 = pos$1 > 

<def$O = def$1 > 

<env$l = env$0 > 

<origin$l = origin$0 >; 

Command -> _define _id ArgL Defn 
<box$0 = c2(box$3,box$4, 80, 2_1100, 2_0001, 2_O011)> 

<env$4 = envadd(def $3, env$0 )> 

<origin$4 = origin$0 > 

<pos$0 = origin$0 > 

<def$0 = do binding( val$4 )> 

_id Argi Arg2 
<box$0 = c2(box$2, box$3, 80, 

2100, 
0, 
2_011)> 

<env$2 = env$O > 

<env$3 = env$O > 

<pos$0 = do call(env$O, vals$2, vals$3, 
origin$O )> 

<def$0 = 0 {vals$2 vals$3 } > I 

_line Argi Arg2 
<box$O = c2(box$2, box$3, 80, 2_100,0,0)> 
<pos$O = do line(vals$2, vals$3, origin$O )> 
<env$2 = env$O > 

<env$3 = env$O > 

<def$0 = 0 {vals$2 vals$3 }> I 

_colour Arg2 
<box$O = c(box$2, 80, 2_10,0,0)> 
<pos$0 = do colour(vals$2, origin$O )> 
<env$2 = env$O > 

<def$0 = 0 {vals$2 }> I 

_size Arg2 
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<box$O = c(box$2, 80, 2_10,0,0)> 
<pos$0 = do size(vals$2, origin$0 )> 
<env$2 = env$O > 

<def$0 = 0 {vals$2 }> I 

-font Arg2 
<box$0 = c(box$2, 80, 2_10,0,0)> 
<pos$O = do font(vals$2, origin$0 )> 
<env$2 = env$0 > 

<def$0 = 0 {vals$2 }> I 

move Argi Arg2 
<box$0 = c2(box$2, box$3, 80, 2_100,0,0)> 
<pos$O = do move(vals$2, vals$3, 

origin$0 )> 
<env$2 = env$0 > 

<env$3 = env$0 > 

<def$0 = 0 {vals$2 vals$3 }> I 

_text Argi Arg2 
<box$0 = c2(box$2, box$3, 80, 2_100,0,0)> 
<pos$O = do text( vals$2, vals$3, 

origin$0 )> 
<def $0 = 0 {vals$2 vals$3 }> 
<env$2 = env$0 > 

<env$3 = env$0 >; 

Argi -> _clb List _crb 

<box$0 = c(box$2, 50, 0,0,0)> 
<vals$0 = vals$2 > 

<env$2 = env$0 > I 

<vals$0 = 0> 

<box$0 = cO(default,0,0,0)>; 

Arg2 -> _lb List _rb 
<box$0 c(box$2, 50, 0,0,0)> 
<vals$0 = vals$2 > 

<env$2 = env$0 > I 

<vals$0 = 0 > 

<box$0 = cO(default,0,0,0)>; 

ArgL -> _lb NL _rb 
<box$0 = c(box$2, 50, 0,0,0)> 
<def$0 = def$2 > I 

<def$0 = 0> 
<box$0 = cO(def ault,O,0,0)>; 

NL -> NL _comma _id 
<box$0 = c(box$1, 30, 2_010,0,0)> 
<def$0 = def and bind(def$1 )> I 

_id 
<box$0 cO(default, O,Q,Q)>-.- 
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<def$0 = do bind>; 

List -> List _comma Item 
<box$0 =c2(box$1, box$3, 30, 2_010,0,0)> 
<vals$0 = addvals(vals$1, val$3 )> 
<env$1 = env$0 > 
<env$3 = env$0 > I 

Item 
<box$0 =c(box$1, default, 0,0,0)> 
<vals$0 = addval(val$1 )> 
<env$1 = env$0 >; 

Defn -> _ass _slb CommandList _srb 
<box$0 =c(box$3, 60, 2_1000,0,0)> 
<val$0 = command ref(def$3 )> 
<origin$3 = copy origin(origin$0 )> 
<env$3 = env$0 > I 

_ass Item 
<box$0 =c(box$2, default, 2_10,0,0)> 
<env$2 = env$0 > 
<val$0 = val$2 >; 

Item -> _lb Item _rb 
<box$0 =c(box$2, default, 0,0,0)> 
<val$0 = val$2 > 
<env$2 = env$0 >1 

_minus Item 
<box$0 =c(box$2, default, 0,0,0)> 
<val$0 = do negate(val$2 )> 
<env$2 = env$0 > I 

Item _times Item 
<box$0 =c2(box$1, box$3, default, 0,0,0)> 
<val$0 = do times(val$1, val$3 )> 
<env$1 = env$0 > 
<env$3 = env$0 >1 

Item _div Item 
<box$0 =c2(box$1, box$3, default, 0,0,0)> 
<val$0 = do divide( val$1, val$3 )> 
<env$1 = env$0 > 
<env$3 = env$0 > I 

Item _plus Item 
<box$0 =c2(box$1, box$3, default, 0,0,0)> 
<val$0 = do plus( val$1, val$3 )> 
<env$1 = env$0 > 
<env$3 = env$0 > I 
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Item _minus Item 
<box$0 =c2(box$1, box$3, default, 0,0,0)> 
<val$0 = do minus( val$1, val$3 )> 
<env$1 = env$0 > 

<env$3 = env$0 > I 

_id 
<box$0 =cO(default, 0,0,0)> 
<val$0 = do name ref(env$0 )>I 

_int 
<box$0 =c0(default, 0,0,0)> 
<val$0 = do int>I 

_length Item 
<box$O = c(box$2, def ault,2_10,0,0)> 
<env$2 = env$0 > 

<val$0 = do length(val$2 )> I 

_string 
<box$0 = cO(def cult, 0,0,0)> 
<val$0 = do string>; 

End of Productions 

Priorities (_times, _div) (_plus, minus); 

End of Grammar 
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Attribute Grammar for Stick-Wright 

Grammar Stic is 

Code [%include "stic.src"] 

Lexicals _cell, _abut, _equs, _ass, _lb, _rb, _slb, _srb, _clb, _crb, 
_1t, _gt, _arrow, _choice, _tilda, _hat, _comma, _colon, 
_semi, _stop, _dots, _minus, _plus, _times, _divide, 

_identifier, _integer [lex int], 
_true, _false, _and, _or, _not, 

_b, _g, _r, bs, _gs. _rs. _bc, _gc, _rc, _gbx, _rbx, 

_pass, _dep, _enh, bt, _gte, _rt, 

_rbc, _gbc, _rgcs, _rgcc; 

Synthesised 
Design (box, ports), 
CellList (box, dei), 
Cell (box, def), 
Params (box), 
IList (box), 
PortSpec (box), 
OPorts (box), 
OList (box), 
List (box), 
Id (box), 
Ident (box, ports), 
QualS (box), 
ODir (box), 
Abut (box, ports, x, y). 
AbutBlock (box, ports, x, y), 
Row (box, ports, x), 
VRow (box, ports, y), 
Item (box, ports, x), 
OPar (box), 
Pars (box). 
Olter (box, x), 
Iter (box, x), 

160 
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Cond (box, ports), 
Syms (box, rot, mir), 
Sym (box, rot, mir), 
Range (box, x), 
OBar (box, ports, x), 
Expression (box, val), 
Condition (box, bool); 

Inherited 
Design (env), 
CellList (env), 
Cell (env), 
Params (env), 
IList (env), 
PortSpec (env), 
OPorts (env), 
OList (env), 
List (env), 
Id (env), 
Ident (env, origin), 
QualS (env), 
ODir (env), 
Abut (env), 
AbutBlock (env, origin), 
Row (env, origin), 
VRow (env, origin), 
Item (env, origin, dir). 
OPar (env), 
Pars (env), 
Olter (env), 
Iter (env), 
Cond (env, origin), 
Syms (env), 
Sym (env), 
Range (env), 
OBar (env, origin), 
Expression (env), 
Condition (env); 

Productions 

Design -> CellList Ident 
<env$1 = 0> 
<env$2 = def$1> 
<ports$0 = ports$2> 
<origin$2 = top origin> 
<box$0 = c2(box$1, box$2. 0, 0, 0, 0)>; 

CellList -> CellList Cell 
<env$1 = env$0> 
<env$2 = def$1> 
<def$0 = add def (def$1, def$2)> 

161 
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Cell -> 

<box$0 = c2(box$1, box$2, 0, 0, 0, 0)> I 

Cell 
<def$0 = def$1> 
<env$1 = 0> 
<box$0 = c(box$1, 0, 0, 0, 0)>; 

<env$6 = 
<box$0 = 

_-cell _identifier Params PortSpec _equs Abut _stop 
<def$0 = do binding( x$6, y$6, ports$6)> 

env$0> 
c3(box$3, box$4, box$6, default, 

2_1101100, 
2_0000001, 
2_0011010)>; 

Params -> _clb Mist -crb 
<box$0 = c(box$2, default, 0, 0, 0)> I 

<box$0 = cO(default, 0, 0, 0)>; 

IList -> IList _comma _identifier 
<box$0 = c(box$1, default, 2010, 0, 0)> I 

_identifier 
<box$0 = cO(default, 0, 0, 0)>; 

PortSpec -> _lb OPorts _rb 
<box$0 = c(box$2, default, 0, 0, 0)>; 

OPorts -> OList _semi OList _semi OList _semi OList 
<box$0 = c4(box$1, box$3, box$5, box$7, 

default, 0, 2_0101010, 0)>I 
<box$0 = cO(default, 0, 0, 0)>; 

OList -> List 
<box$0 = c(box$1, 0, 0, 0, 0)>I 
<box$0 = cO(def ault, 0, 0, 0)>; 

List -> List _comma Id 
<box$0 = c2(box$1, box$3, default, 2010, 0, 0)> I 

Id 
<box$0 = c(box$1, default, 0, 0, 0)>; 

Id -> _lb List _rb QualS Olter 
<box$0 = c3(box$2, box$4, box$5, default, 0, 0, 0)> I 

_identifier QualS Olter 
<box$0 = c2(box$2, box$3, default, 0, 0, 0)>; 

QualS -> QualS _colon ODir _identifier 
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I 
<box$0 = cO(default, 0, 0, 0)>; 
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ODir -> _gt 
<box$0 = cO(def ault, 0, 0, 0)>I 

_lt 
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<box$O = cO(default, 0, 0, 0)>I 
<box$0 = c0(default, 0, 0, 0)>; 

Abut -> _abut AbutBlock 
<ports$0 = ports$2> 
<x$0 = x$2> <y$0 = y$2> 
<env$2 = env$0> 
<origin$2 = new origin(x$2, y$2)> 
<box$0 = c(box$2, default, 2_10, 0, 0)>; 

AbutBlock -> AbutBlock _semi Row 
<ports$0 = do Abut compose(ports$1, ports$3, y$1)> 
<x$0 = check length(x$1, x$3)> 
<y$0 = y$1 + 1> 

<origin$3 = do origin(origin$0, 0, y$1)> 
<origin$1 = origin$0> 
<env$1 = env$0> 
<env$3 = env$0> 
<box$0 = c2(box$1, box$3, default, 0, 2_010, 0)>I 

Row 
<origin$1 = origin$0> 
<ports$0 = ports$1> 
<env$1 = env$0> 
<x$0 = x$1> <y$0 = 1> 

<box$0 = c(box$1, default, 0, 0, 0)>; 

Row -> Row _comma Item 
<ports$0 = do Row compose(ports$1, ports$3, x$1)> 
<origin$1 = origin$0> 
<origin$3 - do origin(origin$0, x$1, 0)> 
<env$1 - env$0> 
<env$3 - env$0> 
Cdir$3 = 0> 
:x$0 = x$1 + x$3> 
:box$0 = c2(box$1, box$3, default, 2_010, 0, 0)>I 
;em 

torigin$1 = origin$0> 

<x$0 = x$1> 
<dir$1 = 0> 

<ports$0 = ports$1> 

<env$1 = env$0> 

<box$0 = c(box$1, default, 0, 0, 0)> 

VRow -> VRow _c- mma- Item-- 
<ports$0 = do Abut compose(ports$1, ports$3, y$1)> 
<origin$1 = origin$0> 
<origin$3 = do origin(origin$0, 0, y$1)> 

<env$1 = env$0> 
<env$3 = env$0> 
<dir$3 - 1> 
<y$0 = y$1 + x$3> 

<box$0 - c2(box$1, box$3, default, 2_010, 0, 0)>I 
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Item 
<origin$1 = origin$O> 
<y$O = x$1> 
<ports$O = ports$1> 
<env$1 = env$O> 
<dir$1 = 1> 
<box$O = c(box$1, default, 0, 0, 0)> 

Item -> Ident Syms Olter 
<x$0 = x$3> 
<ports$0 = do port trans(ports$1, mir$2, rot$2, 

x$3, dir$0)> 
<origin$1 = do transforms(origin$O, mir$2, rot$2)> 
<env$1 = env$0> 
<env$3 = env$0> 
<box$0 = c3(box$1, box$2, box$3, default, 0, 0, 0)>; 

Ident -> _lb Row _rb 
<origin$2 = do hor trans(origin$O, x$2)> 
<ports$O = ports$2> 
<env$2 = env$0> 
<box$0 = c(box$2, default, 0, 0, 0)>I 

_lt VRow _gt 
<ports$O = ports$2> 
<origin$2 = do ver trans(origin$O, y$2)> 
<env$2 = env$0> 
<box$0 = c(box$2, default, 0, 0, 0)>I 

_slb Cond _srb 
<ports$O = ports$2> 
<env$2 = env$0> 
<origin$2 = origin$O> 
<box$0 = c(box$2, default, 0, 0, 0)>I 

_identifier OPar 
<ports$0 = do call( env$0, origin$0)> 
<box$0 = c(box$2, default, 0, 0, 0)> I 

_b 

<ports$O = do b(origin$0)> 
<box$0 = cO(default, 0, 0, 0)> I 

_g 
<ports$O = do g(origin$O)> 
<box$0 = cO(default, 0, 0, 0)> I 

all the other primitives follow the above form 

_rgcc 
<ports$0 = do rgcc(origin$0)> 
<box$0 = cO(default, 0, 0, 0)> I 

{null cell} 
<ports$0 = do blank(origin$0)> 

<box$0 = cO(default, 0, 0, 0)>; 

OPar -> _clb Pars _crb 
<box$0 = c(box$2, default, 0, 0, 0)>I 
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<box$O = cO(default, 0, 0, 0)>; 

Pars -> Pars _comma Expression 
<box$O = c2(box$1, box$3, default, 2010, 0. " -1 

Expression 
<box$O = c(box$1, default, 0, 0, 0)>; 

Olter -> _slb Iter _srb 
<env$2 = env$0> 
<x$0 = x$2> 
<box$O = c(box$2, default, 0, 0, 0)>I 
<x$0 = 1> 

<box$O = cO(default, 0, 0, 0)>; 

Iter -> _identifier _ass Range 
<box$O = c(box$3, default, 2_110, 0, 0)> 
<x$0 = x$3>I 

Range 
<env$1 = env$O> 

<x$0 = x$1> 

<box$O = c(box$1, default, 0, 0, 0)>; 

Cond -> Condition _arrow Item OBar 
<origin$3 = origin$O> 
<origin$4 = origin$O> 
<env$1 = env$O> 
<env$3 = env$O> 
<env$4 = env$O> 
<dir$3 = 0> 
<ports$0 = do condition(bool$1, ports$3, ports$4, 

x$3, x$4)> 
<box$O = c3(box$1, box$3, box$4, default, 2_1100, 0, 0)>; 

Syms -> Syms Sym 

<box$O = c2(box$1, box$2, default, 0, 0, 0)> 
<rot$O = 

<mir$O = 

rot$1 + rot$2> 
mir$1 + mir$2> 

<mir$O = 0> 

<rot$O = 0> 
<box$O = cO(default, 0, 0, 0)>; 

Sym -> _tilda 
<mir$O = 1> 

<rot$O = 0> 
<box$O = cO(default, 0, 0, 0)>I 
hat 

<rot$O = 1> 

<mir$O = 0> 
<box$O = cO(default, 0, 0, 0)>; 

Range -> Expression _dots Expression 
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<env$1 = env$O> <env$3 = env$O> 
<x$O = I val$3 - val$1 

I + 1> 
<box$O = c2(box$1, box$3, default, 2110, 0, 0)>I 

Expression 
<x$O = val$1> 
<env$1 = env$O> 
<box$O = c(box$1, default, 0, 0, 0)>; 

OBar -> choice Item 
<ports$O = ports$2> 
<env$2 = env$O> 
<dir$2 = 0> 
<x$O = x$2> 
<origin$2 = origin$O> 
<box$O = c(box$2, default, 0, 0, 0)>I 
<ports$O = do blank(origin$O)> 
<box$O = cO(default, 210, 0, 0)>; 

Expression -> -minus Expression 
<env$2 = env$O> 
<val$O = -val$2> 
<box$O = c(box$2, default, 0, 0, 0)>I 

_lb Expression _rb 
<env$2 = 
<val$O = 

<box$O = 

env$O> 
val$2> 
c(box$2, default, 0, 0, 0)>I 

Expression _times Expression 
<env$1 = env$O> <env$3 = env$O> 
<val$O = val$1 * val$3> 
<box$O = c2(box$1, box$3, default, 0, 0, 0)>I 

Expression _divide Expression 
<env$1 = env$O> <env$3 = env$O> 
<val$O = val$1 // val$3> 
<box$O = c2(box$1, box$3, default, 0, , )>I 

Expression _plus Expression 
<env$1 = env$O> <env$3 = env$O> 
<val$O = val$1 + val$3> 
<box$O = c2(box$1, box$3, default, 0, 0, 0)>I 

E xpression _minus Expression 
<env$1 = env$O> <env$3 = env$O> 
<val$O = val$1 - val$3> 
<box$O = c2(box$1, box$3, default, 0, , )>I 

-identifier 
<val$O = do name ref(env$O)> 
<box$O = cO(default, 0, 0, 0)>I 

-integer 
<val$O = do integer> 
<box$O = cO(default, 0, 0, 0)>; 

Condition -> _lb Condition _rb 
<env$2 = env$O> 
<bool$O = bool$2> 
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<box$O = c(box$2, default, 0, 0, 0)>I 
_not Condition 

<env$2 = env$0> 
<bool$O = \bool$2> 
<box$0 = c(box$2, default, 0, 0, 0)>I 

Condition ..and Condition 
<env$1 = env$0> <env$3 = env$0> 
<bool$0 = bool$1 & bool$3> 
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I 

Condition _or Condition 
<env$1 = env$0> <env$3 = env$0> 
<bool$0 = bool$1 ! bool$3> 
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I 

Expression _equs Expression 
<env$1 = env$0> <env$3 = env$0> 
<bool$0 = do equs(val$1, val$3)> 
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I 

Expression _lt Expression 
<env$1 = env$0> <env$3 = env$0> 
<bool$0 = do lt(val$1, val$3)> 
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I 

Expression _gt Expression 
<env$1 = env$0> <env$3 = env$0> 
<bool$0 = do gt(val$1, val$3)> 
<box$0 = c2(box$1, box$3, default, 0, 0, 0)>I 

_true 
<bool$0 = -1> 
<box$0 = cO(default, 0, 0, 0)>I 

_false 
<bool$0 = 0> 
<box$0 = cO(default, 0, 0, 0)>; 

End of Productions 

Priorities (_times, _divide) (_plus, _minus); 

End of Grammar 
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