760 research outputs found

    An Evaluation of Input Controls for In-Car Interactions

    Get PDF
    The way drivers operate in-car systems is rapidly changing as traditional physical controls, such as buttons and dials, are being replaced by touchscreens and touch-sensing surfaces. This has the potential to increase driver distraction and error as controls may be harder to find and use. This paper presents an in-car, on the road driving study which examined three key types of input controls to investigate their effects: a physical dial, pressure-based input on a touch surface and touch input on a touchscreen. The physical dial and pressure-based input were also evaluated with and without haptic feedback. The study was conducted with users performing a list-based targeting task using the different controls while driving on public roads. Eye-gaze was recorded to measure distraction from the primary task of driving. The results showed that target accuracy was high across all input methods (greater than 94%). Pressure-based targeting was the slowest while directly tapping on the targets was the faster selection method. Pressure-based input also caused the largest number of glances towards to the touchscreen but the duration of each glance was shorter than directly touching the screen. Our study will enable designers to make more appropriate design choices for future in-car interactions

    Interaction techniques for older adults using touchscreen devices : a literature review

    Get PDF
    International audienceSeveral studies investigated different interaction techniques and input devices for older adults using touchscreen. This literature review analyses the population involved, the kind of tasks that were executed, the apparatus, the input techniques, the provided feedback, the collected data and author's findings and their recommendations. As conclusion, this review shows that age-related changes, previous experience with technologies, characteristics of handheld devices and use situations need to be studied

    An Evaluation of Touch and Pressure-Based Scrolling and Haptic Feedback for In-car Touchscreens

    Get PDF
    An in-car study was conducted to examine different input techniques for list-based scrolling tasks and the effectiveness of haptic feedback for in-car touchscreens. The use of physical switchgear on centre consoles is decreasing which allows designers to develop new ways to interact with in-car applications. However, these new methods need to be evaluated to ensure they are usable. Therefore, three input techniques were tested: direct scrolling, pressure-based scrolling and scrolling using onscreen buttons on a touchscreen. The results showed that direct scrolling was less accurate than using onscreen buttons and pressure input, but took almost half the time when compared to the onscreen buttons and was almost three times quicker than pressure input. Vibrotactile feedback did not improve input performance but was preferred by the users. Understanding the speed vs. accuracy trade-off between these input techniques will allow better decisions when designing safer in-car interfaces for scrolling applications

    The cockpit for the 21st century

    Get PDF
    Interactive surfaces are a growing trend in many domains. As one possible manifestation of Mark Weiser’s vision of ubiquitous and disappearing computers in everywhere objects, we see touchsensitive screens in many kinds of devices, such as smartphones, tablet computers and interactive tabletops. More advanced concepts of these have been an active research topic for many years. This has also influenced automotive cockpit development: concept cars and recent market releases show integrated touchscreens, growing in size. To meet the increasing information and interaction needs, interactive surfaces offer context-dependent functionality in combination with a direct input paradigm. However, interfaces in the car need to be operable while driving. Distraction, especially visual distraction from the driving task, can lead to critical situations if the sum of attentional demand emerging from both primary and secondary task overextends the available resources. So far, a touchscreen requires a lot of visual attention since its flat surface does not provide any haptic feedback. There have been approaches to make direct touch interaction accessible while driving for simple tasks. Outside the automotive domain, for example in office environments, concepts for sophisticated handling of large displays have already been introduced. Moreover, technological advances lead to new characteristics for interactive surfaces by enabling arbitrary surface shapes. In cars, two main characteristics for upcoming interactive surfaces are largeness and shape. On the one hand, spatial extension is not only increasing through larger displays, but also by taking objects in the surrounding into account for interaction. On the other hand, the flatness inherent in current screens can be overcome by upcoming technologies, and interactive surfaces can therefore provide haptically distinguishable surfaces. This thesis describes the systematic exploration of large and shaped interactive surfaces and analyzes their potential for interaction while driving. Therefore, different prototypes for each characteristic have been developed and evaluated in test settings suitable for their maturity level. Those prototypes were used to obtain subjective user feedback and objective data, to investigate effects on driving and glance behavior as well as usability and user experience. As a contribution, this thesis provides an analysis of the development of interactive surfaces in the car. Two characteristics, largeness and shape, are identified that can improve the interaction compared to conventional touchscreens. The presented studies show that large interactive surfaces can provide new and improved ways of interaction both in driver-only and driver-passenger situations. Furthermore, studies indicate a positive effect on visual distraction when additional static haptic feedback is provided by shaped interactive surfaces. Overall, various, non-exclusively applicable, interaction concepts prove the potential of interactive surfaces for the use in automotive cockpits, which is expected to be beneficial also in further environments where visual attention needs to be focused on additional tasks.Der Einsatz von interaktiven OberflĂ€chen weitet sich mehr und mehr auf die unterschiedlichsten Lebensbereiche aus. Damit sind sie eine mögliche AusprĂ€gung von Mark Weisers Vision der allgegenwĂ€rtigen Computer, die aus unserer direkten Wahrnehmung verschwinden. Bei einer Vielzahl von technischen GerĂ€ten des tĂ€glichen Lebens, wie Smartphones, Tablets oder interaktiven Tischen, sind berĂŒhrungsempfindliche OberflĂ€chen bereits heute in Benutzung. Schon seit vielen Jahren arbeiten Forscher an einer Weiterentwicklung der Technik, um ihre Vorteile auch in anderen Bereichen, wie beispielsweise der Interaktion zwischen Mensch und Automobil, nutzbar zu machen. Und das mit Erfolg: Interaktive BenutzeroberflĂ€chen werden mittlerweile serienmĂ€ĂŸig in vielen Fahrzeugen eingesetzt. Der Einbau von immer grĂ¶ĂŸeren, in das Cockpit integrierten Touchscreens in Konzeptfahrzeuge zeigt, dass sich diese Entwicklung weiter in vollem Gange befindet. Interaktive OberflĂ€chen ermöglichen das flexible Anzeigen von kontextsensitiven Inhalten und machen eine direkte Interaktion mit den Bildschirminhalten möglich. Auf diese Weise erfĂŒllen sie die sich wandelnden Informations- und InteraktionsbedĂŒrfnisse in besonderem Maße. Beim Einsatz von Bedienschnittstellen im Fahrzeug ist die gefahrlose Benutzbarkeit wĂ€hrend der Fahrt von besonderer Bedeutung. Insbesondere visuelle Ablenkung von der Fahraufgabe kann zu kritischen Situationen fĂŒhren, wenn PrimĂ€r- und SekundĂ€raufgaben mehr als die insgesamt verfĂŒgbare Aufmerksamkeit des Fahrers beanspruchen. Herkömmliche Touchscreens stellen dem Fahrer bisher lediglich eine flache OberflĂ€che bereit, die keinerlei haptische RĂŒckmeldung bietet, weshalb deren Bedienung besonders viel visuelle Aufmerksamkeit erfordert. Verschiedene AnsĂ€tze ermöglichen dem Fahrer, direkte Touchinteraktion fĂŒr einfache Aufgaben wĂ€hrend der Fahrt zu nutzen. Außerhalb der Automobilindustrie, zum Beispiel fĂŒr BĂŒroarbeitsplĂ€tze, wurden bereits verschiedene Konzepte fĂŒr eine komplexere Bedienung großer Bildschirme vorgestellt. DarĂŒber hinaus fĂŒhrt der technologische Fortschritt zu neuen möglichen AusprĂ€gungen interaktiver OberflĂ€chen und erlaubt, diese beliebig zu formen. FĂŒr die nĂ€chste Generation von interaktiven OberflĂ€chen im Fahrzeug wird vor allem an der Modifikation der Kategorien GrĂ¶ĂŸe und Form gearbeitet. Die Bedienschnittstelle wird nicht nur durch grĂ¶ĂŸere Bildschirme erweitert, sondern auch dadurch, dass Objekte wie Dekorleisten in die Interaktion einbezogen werden können. Andererseits heben aktuelle Technologieentwicklungen die Restriktion auf flache OberflĂ€chen auf, so dass Touchscreens kĂŒnftig ertastbare Strukturen aufweisen können. Diese Dissertation beschreibt die systematische Untersuchung großer und nicht-flacher interaktiver OberflĂ€chen und analysiert ihr Potential fĂŒr die Interaktion wĂ€hrend der Fahrt. Dazu wurden fĂŒr jede Charakteristik verschiedene Prototypen entwickelt und in Testumgebungen entsprechend ihres Reifegrads evaluiert. Auf diese Weise konnten subjektives Nutzerfeedback und objektive Daten erhoben, und die Effekte auf Fahr- und Blickverhalten sowie Nutzbarkeit untersucht werden. Diese Dissertation leistet den Beitrag einer Analyse der Entwicklung von interaktiven OberflĂ€chen im Automobilbereich. Weiterhin werden die Aspekte GrĂ¶ĂŸe und Form untersucht, um mit ihrer Hilfe die Interaktion im Vergleich zu herkömmlichen Touchscreens zu verbessern. Die durchgefĂŒhrten Studien belegen, dass große FlĂ€chen neue und verbesserte Bedienmöglichkeiten bieten können. Außerdem zeigt sich ein positiver Effekt auf die visuelle Ablenkung, wenn zusĂ€tzliches statisches, haptisches Feedback durch nicht-flache OberflĂ€chen bereitgestellt wird. Zusammenfassend zeigen verschiedene, untereinander kombinierbare Interaktionskonzepte das Potential interaktiver OberflĂ€chen fĂŒr den automotiven Einsatz. Zudem können die Ergebnisse auch in anderen Bereichen Anwendung finden, in denen visuelle Aufmerksamkeit fĂŒr andere Aufgaben benötigt wird

    Making Spatial Information Accessible on Touchscreens for Users who are Blind and Visually Impaired

    Get PDF
    Touchscreens have become a de facto standard of input for mobile devices as they most optimally use the limited input and output space that is imposed by their form factor. In recent years, people who are blind and visually impaired have been increasing their usage of smartphones and touchscreens. Although basic access is available, there are still many accessibility issues left to deal with in order to bring full inclusion to this population. One of the important challenges lies in accessing and creating of spatial information on touchscreens. The work presented here provides three new techniques, using three different modalities, for accessing spatial information on touchscreens. The first system makes geometry and diagram creation accessible on a touchscreen through the use of text-to-speech and gestural input. This first study is informed by a qualitative study of how people who are blind and visually impaired currently access and create graphs and diagrams. The second system makes directions through maps accessible using multiple vibration sensors without any sound or visual output. The third system investigates the use of binaural sound on a touchscreen to make various types of applications accessible such as physics simulations, astronomy, and video games

    Press-n-Paste : Copy-and-Paste Operations with Pressure-sensitive Caret Navigation for Miniaturized Surface in Mobile Augmented Reality

    Get PDF
    Publisher Copyright: © 2021 ACM.Copy-and-paste operations are the most popular features on computing devices such as desktop computers, smartphones and tablets. However, the copy-and-paste operations are not sufficiently addressed on the Augmented Reality (AR) smartglasses designated for real-time interaction with texts in physical environments. This paper proposes two system solutions, namely Granularity Scrolling (GS) and Two Ends (TE), for the copy-and-paste operations on AR smartglasses. By leveraging a thumb-size button on a touch-sensitive and pressure-sensitive surface, both the multi-step solutions can capture the target texts through indirect manipulation and subsequently enables the copy-and-paste operations. Based on the system solutions, we implemented an experimental prototype named Press-n-Paste (PnP). After the eight-session evaluation capturing 1,296 copy-and-paste operations, 18 participants with GS and TE achieve the peak performance of 17,574 ms and 13,951 ms per copy-and-paste operation, with 93.21% and 98.15% accuracy rates respectively, which are as good as the commercial solutions using direct manipulation on touchscreen devices. The user footprints also show that PnP has a distinctive feature of miniaturized interaction area within 12.65 mm∗14.48 mm. PnP not only proves the feasibility of copy-and-paste operations with the flexibility of various granularities on AR smartglasses, but also gives significant implications to the design space of pressure widgets as well as the input design on smart wearables.Peer reviewe

    Creating mobile gesture-based interaction design patterns for older adults : a study of tap and swipe gestures with portuguese seniors

    Get PDF
    Tese de mestrado. Multimédia. Faculdade de Engenharia. Universidade do Porto. 201

    Evaluation of the Accessibility of Touchscreens for Individuals who are Blind or have Low Vision: Where to go from here

    Get PDF
    Touchscreen devices are well integrated into daily life and can be found in both personal and public spaces, but the inclusion of accessible features and interfaces continues to lag behind technology’s exponential advancement. This thesis aims to explore the experiences of individuals who are blind or have low vision (BLV) while interacting with non-tactile touchscreens, such as smartphones, tablets, smartwatches, coffee machines, smart home devices, kiosks, ATM machines, and more. The goal of this research is to create a set of recommended guidelines that can be used in designing and developing either personal devices or shared public technologies with accessible touchscreens. This study consists of three phases, the first being an exploration of existing research related to accessibility of non-tactile touchscreens, followed by semi-structured interviews of 20 BLV individuals to address accessibility gaps in previous work, and finally a survey in order to get a better understanding of the experiences, thoughts, and barriers for BLV individuals while interacting with touchscreen devices. Some of the common themes found include: loss of independence, lack or uncertainty of accessibility features, and the need and desire for improvements. Common approaches for interaction were: the use of high markings, asking for sighted assistance, and avoiding touchscreen devices. These findings were used to create a set of recommended guidelines which include a universal feature setup, the setup of accessibility settings, universal headphone jack position, tactile feedback, ask for help button, situational lighting, and the consideration of time
    • 

    corecore