4 research outputs found

    Adaptive supervisory switching control system design for active noise suppression of duct-like application

    Get PDF
    Active noise suppression for applications where the controlled system response varies with time is a difficult problem, especially for time varying nonlinear systems with large model error. On the basis of adaptive switching supervisory control theory, an adaptive supervisory switching control algorithm is proposed with a new controller switching strategy for active noise suppression of duct-like application. Real time experimental verification tests show that the proposed algorithm is effective with good noise suppression performance

    Multiple Iteration of Weight Updates for Least Mean Square Adaptive Filter in Active Noise Control Application

    Full text link
    The method of least mean square (LMS) is the commonly used algorithm in Adaptive filter due to its simplicity and robustness in implementation. In Active Noise Control application, a filtered reference signal is used prior to LMS algorithm to overcome the constraint on stability and convergence performance of the system due to the existence of the auxiliary path. This is known as Filtered-X LMS algorithm. In conventional Filtered-X LMS algorithm, each filter weight is updated once on every audio sample. This paper proposes the improved version of Filtered-X LMS algorithm with the use of multiple iteration of filter weight on every sample of audio signal. The proposed work uses field programmable gate arrays to realize real-time simulation on hardware for the noise signal of 500 Hz. Results from the real-time hardware simulations have shown much faster error convergence and better adaptation performance for different selections of learning constant μ, as compared with the conventional method

    Designing a new robust on-line secondary path modeling technique for feedforward active noise control systems

    No full text
    Several approaches have been introduced in the literature for active noise control (ANC) systems. Since the filtered-x least-mean-square (FxLMS) algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of the FxLMS algorithm, as a first novelty. In many ANC applications, an on-line secondary path modeling method using white noise as a training signal is required to ensure convergence of the system. As a second novelty, this paper proposes a new approach for on-line secondary path modeling on the basis of a new variable-step-size (VSS) LMS algorithm in feed forward ANC systems. The proposed algorithm is designed so that the noise injection is stopped at the optimum point when the modeling accuracy is sufficient. In this approach, a sudden change in the secondary path during operation makes the algorithm reactivate injection of the white noise to re-adjust the secondary path estimate. Comparative simulation results shown in this paper indicate the effectiveness of the proposed approach in reducing both narrow-band and broad-band noise. In addition, the proposed ANC system is robust against sudden changes of the secondary path model

    Control structures and optimal sensor/actuator allocation: application in active noise control

    Get PDF
    Aquesta tesi presenta treball original i aplicat en l'àrea del control i la col·locació de sensors/actuadors (S/A) en sistemes de Control Actiu de Soroll (ANC). Primer, s'han aplicat tècniques de control i identificació robustes per a aconseguir ANC. La fase d'identificació està basada en una proposta d'identificació robusta orientada al control, considerant descripcions del sistema tant paramètriques com no-paramètriques, així com quantificant la incertesa. El disseny del controlador compara les estructures de control feedback (FB), feedforward (FF) i híbrida (FB/FF). El controlador feedback és sintetitzat i avaluat en el marc del control robust, i s'ha dissenyat utilitzant control òptim H∞ plantejat com un problema de sensibilitats mixtes. El controlador FF és un identificador adaptatiu, basat en l'algorisme σ robustament normalitzat. S'han desenvolupat dues propostes per a decidir quina de les estructures de control és més eficient, aplicades a un conducte de 4 metres amb soroll de banda ampla. A més a més, s'han mostrat de manera explícita els compromisos entre identificació i control, les limitacions inherents a un llaç de control feedback, així com qüestions relatives a la implementació de sistemes ANC. També s'han tractat altres qüestions com la relació entre acompliment, ordre del controlador, models paramètrics/no-paramètrics i implementació en processadors digitals de senyal (DSP), així com s'han comparat resultats teòrics i experimentals en el conducte. Les llacunes que encara resten entre teoria i pràctica en aquest tipus d'aplicacions també s'han resumit. D'altra banda, en aquest treball també es tracta el problema de com quantificar la col·locació de sensors i actuadors, amb la finalitat de controlar un sistema físic determinat. La mesura per a determinar la millor localització de S/A es basa en un criteri de llaç tancat orientat al control, el qual optimitza tant acompliment com qüestions pràctiques d'implementació. Aquesta mesura hauria de calcular-se abans del disseny, implementació i prova del controlador. La utilització d'aquesta mesura minimitza la prova combinatòria de controladors en totes les possibles combinacions de S/A. Per a aconseguir-ho, s'han definit diferents mesures que pesen l'acompliment potencial en llaç tancat, la robustesa, el número de condició de la planta (guanys relatius entrada/sortida (I/O)) així com altres qüestions d'implementació, com l'ordre del controlador. Aquestes poden calcular-se utilitzant software estàndard, tant per a models d'una-entrada-una-sortida (SISO) com per a models de múltiples-entrades-múltiples-sortides (MIMO) i poden aplicar-se a múltiples problemes d'enginyeria, ja siguin mecànics, acústics, aeroespacials, etc. En aquest treball, aquests resultats també s'han il·lustrat amb l'aplicació ANC presentada i validat amb dades experimentals. Com a resultat d'aplicar aquestes mesures, s'obté la localització de S/A que aconsegueix la millor atenuació del soroll en llaç tancat amb el menor ordre possible del controlador.Esta tesis presenta trabajo original y aplicado en el área del control y la colocación de sensores/actuadores (S/A) en sistemas de Control Activo de Ruido (ANC). Primero, se han aplicado técnicas de control e identificación robustas para conseguir ANC. La fase de identificación está basada en una propuesta de identificación robusta orientada al control, considerando descripciones del sistema tanto paramétricas como no-paramétricas, así como cuantificando la incertidumbre. El diseño del controlador compara las estructuras de control feedback (FB), feedforward (FF) e híbrida (FB/FF). El controlador feedback es sintetizado y evaluado en el marco del control robusto, y se ha diseñado utilizando control óptimo H∞ planteado como un problema de sensibilidades mixtas. El controlador FF es un identificador adaptativo, basado en el algoritmo σ robustamente normalizado. Se han desarrollado dos propuestas para decidir cual de las estructuras de control es más eficiente, aplicadas a un conducto de 4 metros con ruido de banda ancha. Además, se han mostrado de manera explícita los compromisos entre identificación y control, las limitaciones inherentes a un lazo feedback, así como cuestiones relativas a la implementación de sistemas ANC. También se han tratado otras cuestiones como la relación entre desempeño, orden del controlador, modelos paramétricos/no-paramétricos e implementación en procesadores digitales de señal (DSP), así como se han comparado resultados teóricos y experimentales en el conducto. Las lagunas que aún quedan entre teoría y práctica en este tipo de aplicaciones también se han resumido. Por otra parte, en este trabajo se trata también el problema de como cuantificar la colocación de sensores y actuadores, con la finalidad de controlar un sistema físico determinado. La medida para determinar la mejor localización de S/A se basa en un criterio de lazo cerrado orientado al control, el cual optimiza tanto desempeño como cuestiones prácticas de implementación. Esta medida debería calcularse antes del diseño, implementación y prueba del controlador. La utilización de esta medida minimiza la prueba combinatoria de controladores en todas las posibles combinaciones de S/A. Para conseguirlo, se han definido distintas medidas que pesan el desempeño potencial en lazo cerrado, la robustez, el número de condición de la planta (ganancias relativas entrada/salida (I/O)) y otras cuestiones de implementación, como el orden del controlador. Éstas pueden calcularse utilizando software estándar, tanto para modelos de una-entrada-una-salida (SISO) como para modelos de múltiples-entradas-múltiples-salidas (MIMO) y pueden aplicarse a múltiples problemas ingenieriles, ya sean mecánicos, acústicos, aeroespaciales, etc. En este trabajo, estos resultados también son ilustrados con la aplicación ANC presentada y validados con datos experimentales. Como resultado de aplicar estas medidas, se obtiene la localización de S/A que consigue la mejor atenuación de ruido en lazo cerrado con el menor orden posible del controlador.This thesis presents novel and applied work in the area of control and sensor/actuator (S/A) allocation in Active Noise Control (ANC) systems. First, robust identification and control techniques to perform ANC have been applied. The identification phase is based on a control-oriented robust identification approach that considers both parametric and nonparametric descriptions of the system, and quantifies the uncertainty. The controller design compares the feedback (FB), feedforward (FF) and hybrid (FB/FF) control structures. The feedback control is synthesized and evaluated in the robust control framework, and it is designed using H∞ optimal control as a mixed-sensitivity problem. The FF controller is an adaptive identifier, based on the robustly normalized σ-algorithm. Two approaches are developed to decide which control structure is more efficient on a 4-m duct example with broadband noise. In addition, the compromises between identification and control, the inherent limitations of feedback and implementation issues in ANC are explicitly pointed out. Relations between performance, controller order, parametric/nonparametric models and digital signal processor (DSP) implementation are discussed. Theoretical and experimental results on the duct are compared. The gaps that still remain between theory and practice in this type of applications, are also outlined. Furthermore, this work considers the problem of quantifying the location of sensors and actuators in order to control a certain physical system. The measure to determine the best S/A location is based on a closed loop control-oriented criteria, which optimizes overall performance and practical implementation issues. In addition, it should be computed before the actual controller is designed, implemented and tested. The use of this measure minimizes the combinatorial controller testing over all possible S/A combinations. To this end, several measures have been defined which weight the potential closed-loop performance, robustness, plant condition number (input/output (I/O) relative gains) and implementation issues, such as the controller order. These may be computed with standard software, either for Single Input Single Output (SISO) models or Multiple Input Multiple Output (MIMO) models, and may be applied to many engineering problems: mechanics, acoustics, aerospace, etc. Here, these results are also illustrated with the prior ANC example and validated against experimental data. The outcome of applying these measures is the selection of the S/A location which achieves the best closed loop noise attenuation with the lowest possible controller order
    corecore