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ABSTRACT

This thesis presents novel and applied work in the area of control and sensor/actuator (S/A)

allocation in Active Noise Control (ANC) systems. First, robust identification and control tech-

niques to perform ANC have been applied. The identification phase is based on a control-

oriented robust identification approach that considers both parametric and nonparametric de-

scriptions of the system, and quantifies the uncertainty. The controller design compares the

feedback (FB), feedforward (FF) and hybrid (FB/FF) control structures. The feedback control

is synthesized and evaluated in the robust control framework, and it is designed usingH∞ op-

timal control as a mixed-sensitivity problem. The FF controller is an adaptive identifier, based

on the robustly normalizedσ-algorithm. Two approaches are developed to decide which con-

trol structure is more efficient on a4-m duct example with broadband noise. In addition, the

compromises between identification and control, the inherent limitations of feedback and imple-

mentation issues in ANC are explicitly pointed out. Relations between performance, controller

order, parametric/nonparametric models and digital signal processor (DSP) implementation are

discussed. Theoretical and experimental results on the duct are compared. The gaps that still

remain between theory and practice in this type of applications, are also outlined. Furthermore,

this work considers the problem of quantifying the location of sensors and actuators in order to

control a certain physical system. The measure to determine the best S/A location is based on

a closed loop control-oriented criteria, which optimizes overall performance and practical im-

plementation issues. In addition, it should be computed before the actual controller is designed,

implemented and tested. The use of this measure minimizes the combinatorial controller test-

ing over all possible S/A combinations. To this end, several measures have been defined which

weight the potential closed-loop performance, robustness, plant condition number (input/output

(I/O) relative gains) and implementation issues, such as the controller order. These may be com-

puted with standard software, either for Single Input Single Output (SISO) models or Multiple

Input Multiple Output (MIMO) models, and may be applied to many engineering problems:

mechanics, acoustics, aerospace, etc. Here, these results are also illustrated with the prior ANC
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example and validated against experimental data. The outcome of applying these measures is

the selection of the S/A location which achieves the best closed loop noise attenuation with the

lowest possible controller order.

Keywords: Active noise control, sensor/actuator allocation,H∞ control, mixed sensitivity,

hybrid (Feedforward/Feedback) controller.



RESUM

Aquesta tesi presenta treball original i aplicat en l’àrea del control i la col·locació de sen-

sors/actuadors (S/A) en sistemes de Control Actiu de Soroll (ANC). Primer, s’han aplicat

tècniques de control i identificació robustes per a aconseguir ANC. La fase d’identificació està

basada en una proposta d’identificació robusta orientada al control, considerant descripcions

del sistema tant paramètriques com no-paramètriques, aixı́ com quantificant la incertesa. El

disseny del controlador compara les estructures de controlfeedback(FB), feedforward(FF) i

hı́brida (FB/FF). El controladorfeedbacḱes sintetitzat i avaluat en el marc del control robust,

i s’ha dissenyat utilitzant control òptimH∞ plantejat com un problema de sensibilitats mixtes.

El controlador FF és un identificador adaptatiu, basat en l’algorismeσ robustament normal-

itzat. S’han desenvolupat dues propostes per a decidir quina de les estructures de control és

més eficient, aplicades a un conducte de 4 metres amb soroll de banda ampla. A més a més,

s’han mostrat de manera expĺıcita els compromisos entre identificació i control, les limitacions

inherents a un llaç de controlfeedback, aixı́ com qüestions relatives a la implementació de sis-

temes ANC. També s’han tractat altres qüestions com la relació entre acompliment, ordre del

controlador, models paramètrics/no-paramètrics i implementació en processadors digitals de

senyal (DSP), aixı́ com s’han comparat resultats teòrics i experimentals en el conducte. Les

llacunes que encara resten entre teoria i pràctica en aquest tipus d’aplicacions també s’han

resumit. D’altra banda, en aquest treball també es tracta el problema de com quantificar la

col·locació de sensors i actuadors, amb la finalitat de controlar un sistema fı́sic determinat. La

mesura per a determinar la millor localització de S/A es basa en un criteri de llaç tancat orien-

tat al control, el qual optimitza tant acompliment com qüestions pràctiques d’implementació.

Aquesta mesura hauria de calcular-se abans del disseny, implementació i prova del controlador.

La utilització d’aquesta mesura minimitza la prova combinatòria de controladors en totes les

possibles combinacions de S/A. Per a aconseguir-ho, s’han definit diferents mesures que pe-

sen l’acompliment potencial en llaç tancat, la robustesa, el número de condició de la planta

(guanys relatius entrada/sortida (I/O)) aixı́ com altres qüestions d’implementació, com l’ordre
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del controlador. Aquestes poden calcular-se utilitzantsoftwareestàndard, tant per a models

d’una-entrada-una-sortida (SISO) com per a models de múltiples-entrades-múltiples-sortides

(MIMO) i poden aplicar-se a múltiples problemes d’enginyeria, ja siguin mecànics, acústics,

aeroespacials, etc. En aquest treball, aquests resultats també s’han il·lustrat amb l’aplicació

ANC presentada i validat amb dades experimentals. Com a resultat d’aplicar aquestes mesures,

s’obté la localització de S/A que aconsegueix la millor atenuació del soroll en llaç tancat amb el

menor ordre possible del controlador.

Paraules clau: Control actiu de soroll, distribució de sensors/actuadors, controlH∞, sensi-

bilitats mixtes, controlador hı́brid (Feedforward/Feedback).



RESUMEN

Esta tesis presenta trabajo original y aplicado en el área del control y la colocación de sen-

sores/actuadores (S/A) en sistemas de Control Activo de Ruido (ANC). Primero, se han aplicado

técnicas de control e identificación robustas para conseguir ANC. La fase de identificación está

basada en una propuesta de identificación robusta orientada al control, considerando descrip-

ciones del sistema tanto paramétricas como no-paramétricas, ası́ como cuantificando la incer-

tidumbre. El diseño del controlador compara las estructuras de controlfeedback(FB), feedfor-

ward (FF) e hı́brida (FB/FF). El controladorfeedbackes sintetizado y evaluado en el marco del

control robusto, y se ha diseñado utilizando control óptimoH∞ planteado como un problema de

sensibilidades mixtas. El controlador FF es un identificador adaptativo, basado en el algoritmo

σ robustamente normalizado. Se han desarrollado dos propuestas para decidir cual de las estruc-

turas de control es más eficiente, aplicadas a un conducto de 4 metros con ruido de banda ancha.

Además, se han mostrado de manera expĺıcita los compromisos entre identificación y control, las

limitaciones inherentes a un lazofeedback, ası́ como cuestiones relativas a la implementación de

sistemas ANC. También se han tratado otras cuestiones como la relación entre desempeño, or-

den del controlador, modelos paramétricos/no-paramétricos e implementación en procesadores

digitales de señal (DSP), ası́ como se han comparado resultados teóricos y experimentales en

el conducto. Las lagunas que aún quedan entre teorı́a y práctica en este tipo de aplicaciones

también se han resumido. Por otra parte, en este trabajo se trata también el problema de como

cuantificar la colocación de sensores y actuadores, con la finalidad de controlar un sistema fı́sico

determinado. La medida para determinar la mejor localización de S/A se basa en un criterio de

lazo cerrado orientado al control, el cual optimiza tanto desempeño como cuestiones prácticas

de implementación. Esta medida deberı́a calcularse antes del diseño, implementación y prueba

del controlador. La utilización de esta medida minimiza la prueba combinatoria de controladores

en todas las posibles combinaciones de S/A. Para conseguirlo, se han definido distintas medidas

que pesan el desempeño potencial en lazo cerrado, la robustez, el número de condición de la

planta (ganancias relativas entrada/salida (I/O)) y otras cuestiones de implementación, como el
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orden del controlador.́Estas pueden calcularse utilizandosoftwareestándar, tanto para modelos

de una-entrada-una-salida (SISO) como para modelos de múltiples-entradas-múltiples-salidas

(MIMO) y pueden aplicarse a múltiples problemas ingenieriles, ya sean mecánicos, acústicos,

aeroespaciales, etc. En este trabajo, estos resultados también son ilustrados con la aplicación

ANC presentada y validados con datos experimentales. Como resultado de aplicar estas medi-

das, se obtiene la localización de S/A que consigue la mejor atenuación de ruido en lazo cerrado

con el menor orden posible del controlador.

Palabras clave:Control activo de ruido, distribución de sensores/actuadores, controlH∞,

sensibilidades mixtas, controlador hı́brido (Feedforward/Feedback).
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NOTATION

The notation used throughout the thesis is presented next:

Fℓ lower linear fractional transform

p filter parameters vector

z performance variable

∆ uncertainty

σ(A) singular values of A

Wp performance weight

Wδ uncertainty weight

Gpri primary circuit transfer function

Gsec secondary circuit transfer function

Go nominal model

K feedback controller

W feedforward controller

G augmented model

G̃ uncertain model

Ĝ estimate of G

G set of uncertain models

Ts sampling time

S sensitivity function

T complementary sensitivity function

Tzw closed loop transfer function

ω frequency

Ω frequency bandwidth

Ωp performance bandwidth

Wc controllability grammian
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Wo observability grammian

κ condition number

ρo controller order measure

ρpd
deterministic performance measure

ρδerror error uncertainty measure

ρΩ bandwidth uncertainty measure

ρm uncertainty weight measure

erel relative (multiplicative) model error

ργmin
potential performance measure

ρκ model condition number measure

ρas general S/A measure

γ robust performance measure

γz RHP zeros robust performance lower limit

ς RHP zero

λ weighted attenuation

S∆ uncertain sensitivity function

S pair selection set

sup supremum

x lower bound onx

x upper bound onx
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ACRONYMS

ANC Active Noise Control

DSP Digital Signal Processor

FB Feedback

FF Feedforward

FFT Fast Fourier Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

FXLMS Filtered X Least Mean Squares

FULMS Filtered U Least Mean Squares

HSV Hankel Singular Values

I/O Input/Output

LFT Linear Fractional Transform

LMI Linear Matrix Inequality

LTI Linear Time Invariant

MIMO Multiple Input Multiple Output

NP Nominal Performance

RHP Right Half Plane

RP Robust Performance

RS Robust Stability

SISO Single Input Single Output

SOS Second Order Sections

SS State Space

S/A Sensor/Actuator

TF Transfer Function

ZP Zero-Pole

xiii



xiv



CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Resum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

1 Introduction 1

1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of the Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Compilation of Related Publications. . . . . . . . . . . . . . . . . . . 6

2 Background and State of the Art 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Adaptive Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

xv



2.3 Sensor/Actuator Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Experimental Setup 15

3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Physical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Feedforward Control Structures 21

4.1 Classical Feedforward Structures. . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Robustness in Adaptive Identification. . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Relation between Robust Adaptive Identification and Classical Feedfor-

ward Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Real Time Stable Identification: A Nehari/SOS Approach. . . . . . . 30

5 Feedback Control Structures 35

5.1 Parametric/Dynamic Robust Identification. . . . . . . . . . . . . . . . . . . . 35

5.2 Robust Controller Analysis and Design. . . . . . . . . . . . . . . . . . . . . 39

5.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Identification preliminaries. . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.2 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Hybrid (Feedforward/Feedback) Structures 49

6.1 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Compromises and Discrepancies between Theory and Practice . . . . . . . . . 51

6.2.1 Practical Compromises and Solutions. . . . . . . . . . . . . . . . . . 51

6.2.2 Discrepancies between Theory and Practice. . . . . . . . . . . . . . . 54

xvi



7 Sensor/Actuator Allocation 61

7.1 Background and Control Problem Motivation. . . . . . . . . . . . . . . . . . 63

7.1.1 Model realizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1.2 Performance limitations. . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1.3 Robust performance computation. . . . . . . . . . . . . . . . . . . . 65

7.1.4 Model uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1.5 I/O relative gains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.6 Recap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 S/A Allocation Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.1 Dependencies between measures. . . . . . . . . . . . . . . . . . . . . 75

7.3 Experimental Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4 Future Research Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Concluding Remarks 83

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.2 Directions for Future Research. . . . . . . . . . . . . . . . . . . . . . . . . . 84

A Robust feedback controller synthesis algorithm 87

Bibliography 90

xvii



xviii



L IST OF TABLES

4.1 Absolute value of poles of a discrete–time system represented in zero–poles

(ZP), state–space (SS) and transfer function (TF).. . . . . . . . . . . . . . . . 32

5.1 Feedback controller performance (attenuation) comparison. . . . . . . . . . . . 46

6.1 Experimental characteristics and attenuation for different control structures. . 50

7.1 S/A measure dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 S/A set measures, the best ones in boldface. . . . . . . . . . . . . . . . . . . 79

7.3 S/Aa posteriorimeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xix



xx



L IST OF FIGURES

2.1 Simplified conceptual adaptive FF system block diagram. . . . . . . . . . . . 12

2.2 Control design structureTzw = Fℓ (G,K). . . . . . . . . . . . . . . . . . . . . 14

3.1 Tube and input noise source (fan). . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Semianechoic room and tube output signal (arrow). . . . . . . . . . . . . . . 17

3.3 Signal-processing instrumentation composed by (a) DSpace system, (b) mixing

console, (c) audio amplifier, (d) signal generator, (e) host PC, plus the oscilloscope17

3.4 Conceptual view of acoustic noise suppression, (a) Feedback scheme (b) Hybrid

scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Naivemodel of the acoustic duct with controller. . . . . . . . . . . . . . . . . 22

4.2 Block diagram of the duct system including the secondary path . . . . . . . . . 22

4.3 Simplified block diagram of the duct system including the secondary path. . . 23

4.4 Standard control scheme of FXLMS. . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Model of the duct with the secondary path and the acoustic feedback. . . . . . 26

4.6 FULMS control structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Secondary circuit: (a) 12th. order experimental data approximation - time re-

sponse. (b) 12th. order experimental data approximation - frequency response.. 33

4.8 40th. order experimental data approximation.. . . . . . . . . . . . . . . . . . 34

xxi



5.1 Feedback (FB) design setup, with primary circuit perturbation (Wp) and sec-

ondary model with multiplicative uncertainty.. . . . . . . . . . . . . . . . . . 36

5.2 Secondary circuit: (a) Kautz bases fitting, (b) interpolation points, (c) paramet-

ric, dynamic and model error, (d) identified model.. . . . . . . . . . . . . . . 38

5.3 (a) Uncertainty weight and multiplicative identification error, (b) frequency re-

sponse of the error microphone output with the fan as the noise source, covered

by the performance weightWp. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Secondary circuit: (a) less Kautz basis, (b) less interpolation points concentrated

in performance region, (c) parametric, dynamic and model error, (d) identified

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 (a) Structured singular value robust performance analysis, (b) practical robust

performance analysis.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6 Sensitivity function and performance weight.. . . . . . . . . . . . . . . . . . 44

5.7 Controlled (triangle) and no control (circle) frequencyresponse: Speaker.. . . 44

5.8 Controlled (full) and no control (dashed) frequency response: real fan.. . . . . 45

6.1 Uncertainty (Wδ), performance (Wp) weights and sensitivity functionS for the

synthetic-fan experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 FF, FB and hybrid controller attenuation in the case of a pure tone atΩ = 105 Hz 56

6.3 FF, FB and hybrid controller attenuation in the case of thesynthetic fanΩ ∈

[95, 115] Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 FF, FB and hybrid controller attenuation in the case of theindustrial fan . . . . 58

6.5 Hybrid controller attenuation with the three different input signals . . . . . . . 59

6.6 Output of the primary path excited by the fan and ideal performance region

(inside the dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.1 γ range selection case example.. . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 γ ranges for all sets.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xxii



A.1 Controller design algorithm main diagram. . . . . . . . . . . . . . . . . . . . 87

xxiii



xxiv



CHAPTER 1

INTRODUCTION

1.1 Motivation

Active noise control has been a very active research area for many years, since the seminal ideas

of [Lue34]. Today, the underlying principles are well established ([NE92, KM95]), but there

are still many practical issues to be solved. The appearance of signal processors,e.g. DSP,

has allowed ANC to become a feasible noise-suppression technology that has progressed from

laboratory research to industrial implementation. A wide variety of applications that include

aircraft engines, automobile interiors, heating, ventilation and air conditioning (HVAC) systems,

as well as household appliances, have been produced. In general, ANC has been proven as a

viable method for noise suppression in low-frequency ranges, where traditional passive noise

control devices become massive, bulky, or less effective.

The ANC applications must deal with uncertain plants with time delays and/or zeros in the

right half plane (RHP), lightly damped and fast dynamics, which need low order controllers

for real time implementation. Uncertainty makes robust control approximations recommended

in order to achieve stable behaviors, as highlighted by Hansen [Han04]. Also as recognized in

[RGL02], robust identification techniques should be used to obtain aset of models which include

uncertainty in case robust control techniques are used for controller design. Furthermore, duct

physical modeling can be used for simulations purposes, but in the end an experimental identi-

fication procedure is needed when control is the final objective, as concluded in [HAV+96].

So far, in ANC using robust techniques, models are obtained using classical parameter

estimation, ARX [HAV+96, BL97, BL98, CA00] or subspace techniques [OWPB00, KF03],

1
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with no systematic way to produce a deterministic worst case uncertainty bound, seee.g.

[BL98, KF03]. To the knowledge of the author, control oriented and/or robust identification

methods as introduced in [HJN91] (see tutorials in [MPG95, CG00] and Chap. 10 of [SS98])

have not been systematically applied to identify and design robust controllers for ANC systems.

Design procedures which take into account the order of the final controller to implement,

without forgetting other important issues like performance and robustness, should be also con-

sidered in the design stage. The selection of inputs and outputs affects the plant model identi-

fied and thus the performance and complexity of the resulting control system. In order to avoid

combinatorial selection procedures, somea priori quantitative indexes considering these items

would be useful to complete the designer experience and skill.

1.2 Thesis Objectives

This thesis will be focused on facing some of the current drawbacks on ANC systems stated

in Section1.1, using robust control strategies. Therefore, the main objectives of this work are

presented next:

1. A practical application of robust (control oriented) identification to an ANC system

(which accommodates the plant and uncertainty representation to the robust controller

design framework) followed by a robust FB controller design for the same application.

The implementation of the controller obtained is also presented in a real ANC example.

2. To explicitly point out the compromises and practical issues which arise in the robust iden-

tification and controller design stages for an ANC system. This will be helpful in some

phases dealing with this application, like the controller design, the S/A allocation choice

and/or the final real-time implementation of the controller in the actual ANC system.

3. To implement a robust FF control structure on an ANC (uncertain) system, in order to

fulfill the stability demands of this kind of applications. This will be also implemented in

an hybrid (FF/FB) fashion in order to compare the results obtained with these structures

and the robust FB controller already implemented.

4. Last but not least, to create a methodology of optimal S/A allocation in order to consider

issues such as controller order, performance and robustness before the controller design
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and implementation. This measure should be general (i.e. usable in other applications)

and give useful criteria to decide the best S/A distribution within a certain given set.

1.3 Outline of the Thesis

This dissertation is organized in several chapters, which can be briefly summarized as follows:

Chapter 2: Background and State of the Art

A state-of-the-art on control structures used in ANC applications is performed in this chapter.

These include:feedback, feedforwardand hybrid designs. Literature review related to S/A

allocation is also presented.

Chapter 3: Experimental Setup

The application used to test the methodology presented in this work, i.e., a laboratory duct

prepared to implement ANC structures, is depicted in greater detail in this chapter.

Chapter 4: Feedforward Control Structures

Extensive research has been performed in the area of adaptiveidentification, as a means of

producingfeedforwardcontrollers. Simple contributions to this area have been presented in

[CSM+05] and in [MC01], where a comparison betweenfeedforwardalgorithms and a DSP

implementation discussion of these structures are performed, respectively. Furthermore, robust

adaptivefeedforwardalgorithms (e.g. [IS96]) consider the convergence problem,i.e. stability,

but are not generally applied to ANC systems (e.g. [DH09], [WL05]). Some results achieved

with this kind of feedforwardrobustly-adaptive algorithms, also presenting performance of the

loop in a real ANC system, are illustrated by the author in [CMS07] and condensed in Chapter6

of this work. In Chapter4, the preliminaries to implement conveniently this robustly-adaptive

feedforwardalgorithms and control structures in an ANC application are stated.
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[CSPn09] M.A. CUGUERÓ AND R.S. ŚANCHEZ PEÑA. Control-Oriented Sensor/Actuator

Location measures.Control Engineering Practice, (submitted), 2009.
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CHAPTER 2

BACKGROUND AND STATE OF THE ART

2.1 Introduction

Control system design involves six well differentiated steps, as indicated in ([vdWdJ01]). First,

control goals have to be considered, as the choice of variables like the exogenous variablew or

the performance variablez. The second choice is the plant modelG selection. In the third step,

the control structure is selected, and in the fourth the controllerK is designed according to the

previous selections. After, in the fifth step, the closed-loop obtained is evaluated to see if the

control goals are reached. Last but not least, in the sixth step the controller and the hardware are

implemented in the real plant to see if the requirements are reached there. This is an iterative

procedure, due to that are some adjustments that must be performed to get the desired behavior

at the end.

Focusing on third and fourth steps, the most widely used approach for ANC in practical ap-

plications is based on the use of adaptive FF algorithms, because they can automatically modify

the model characteristics and do not need a previous identification stage (see details in Sec-

tion 2.2). The FF–ANC efficiency usually depends on how accurately theonline model adjusts

the primary path transfer function, and could suffer from possible instability. As noticed in

[KM95, BL97], this does not preclude the use of feedback or hybrid (feedback/feedforward)

control structures. The feedback control structure of an ANC system was first introduced in

[OM53]. In this scheme, the system only requires the downstream error sensor. Unfortunately,

this configuration provides poor broadband noise attenuation over a limited frequency range

due to the spillover effect. A complete study of the limitations of feedback in ANC has been

presented in [HB98] and corrected and generalized in [FHMT03], mainly based on the classical

9
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limitations of feedback loops ([FL85, SBG97]). However, if a nonacoustical reference signal is

not available and/or the order of the system is small, feedback control should be a feasible ap-

proach ([RE99]). Furthermore, many applications can only deal with noise through a feedback

control loop,e.g. headsets, windows ([RE99, KPM03]). Finally, hybrid control combines both

FF and FB, which could potentially ([WL05]) add up the benefits of both approaches. Never-

theless, it is not always clear if this is so in practice. In this work, two different approaches are

developed that compare hybridversusFF and FB controllers, as well as a systematic way of

anticipating its possible benefits.

Plant uncertainty is one of the major contributing factors that affects performance and sta-

bility, in particular in ANC systems ([BL98]). It may be caused by modeling, computational,

and/or measurement errors, or even perturbations in physical conditions. These factors lead

to deviations of the plant from the nominal model, which should be considered at the control

synthesis stage so that the closed loop is robust. Most robust control design methods dealing

with uncertain models use a worst-case deterministic criterion to describe uncertainty,e.g.IMC

or H∞ optimal control ([BL97, BL98, THC02, KPM03]). Physical modeling can be used for

simulation purposes, but in the end an experimental identification procedure is applied when

control is the final objective, as concluded in [HAV+96]. Usually, models are obtained using

classical parameter-estimation ([BL97]) and there is no systematic way to produce a determin-

istic uncertainty bound ([KPM03]). The area of control-oriented and/or robust identification

([CG00], Chapter 10 of [SS98]) is instrumental in the design of robust controllers for ANC

applications. Further explanations of the methodology used in the identification of the ANC

problem presented in this work are given in Section5.2.

Here, adaptive FF,H∞ FB and hybrid controller structures are systematically analyzed

based upon the identification and controller robustness and performance experimental results,

as suggested in [BL97]. Quantitative results at the identification stage using twodifferent ap-

proaches, indicate if an hybrid controller adds extra benefits to a more standard FF adaptive

one.
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2.2 Adaptive Identification

The term adaptive is usually related in the literature to online control techniques. The term

identification, conversely, is related to offline parameter-estimation techniques. Adaptive Iden-

tification deals with online parameter-estimation techniques and makes use of results from both

areas.

Adaptive identification algorithms have been used in the area of adaptive control systems for

a very long time, both for feedback (FB) and/or feedforward (FF) approaches [GS84, Tao03].

Usually for simplicity and computational speed in real time applications, parametric linear

schemes have been implemented: RLS, NLMS, FXLMS, FULMS, as in the case of Active

noise control [KM95], for example.

The application studied in this work, ANC, does not follow the typical closed-loop control

scheme. Figure2.1 shows a block diagram of the system and its control blocks. It can be

observed that the error signal is located at the output of the system, while the input signal

cannot be altered because it is the noise source. The controller’s main function is to identify the

dynamics of the sound-propagation system and to generate the opposite signal, thus producing

as much silence as possible. Figure2.1also shows that the controller is laid out in a feedforward

fashion. The sound-propagation system, a duct in the present case, suffers from slow dynamics

variations due toe.g. temperature and humidity changes. It also collects sudden external noise

perturbations and pressure variations at its end. In view of this, the main task of an active noise

controller is to adaptively identify the sound-propagation system.

An important difficulty with this kind of control structure is to maintain and assure stability.

One of the main concerns in this work is to deal with stability explicitly. Stability is an important

issue for different reasons. On the one hand, there are physical reasons: the output loudspeaker

is a nonminimum phase system and, as will be seen later in Section4.1, its transfer function

is susceptible to be inverted in some situations; in addition, one of the main characteristics of

this kind of systems is their intrinsic delays, which also need to be accounted for, bringing up

stability considerations. On the other hand, up to the knowledge of the author, the algorithms

and filter structures used for noise cancelation do not consider robust stability criteria in gen-

eral. [DFSVB01] faces the problem of designing robust feedforward control systems for ANC

applications with single tone disturbances in a simulated fashion, based on a LMS-like solu-

tion. Other alternatives to the state-of-the-art algorithms that are intrinsically stable can be seen
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Figure 2.1: Simplified conceptual adaptive FF system block diagram

in [GSPnM07] and are also presented in a real application case in this work(see sections4.2.1

and4.2.2).

2.3 Sensor/Actuator Allocation

Input/Output selection, which is an important part of this work, is involved in the third step of

the methodology explained in [vdWdJ01], that is control structure selection. This determines

the number, place, and the type of actuators and sensors. The choice of inputs and outputs

affects the performance, complexity, and costs of the control system. The selection problem is

combinatorial in nature and hence, quantitative measures are needed to complement the design

engineer’s intuition, insight and experience.

Many works have been generated in this area, particularly for flexible structure testing

([LAKB01], chapter 7 of [Gaw04] and references therein, or more recent ones like [SFN08],

[BK08], [RN08], [Mor08], [SBS+09] and references therein) and process control ([SP96] and

references therein). The definition of the S/A location problem is somewhat different for flexi-

ble structure testing, where theH2,H∞ or Hankel norm needs to be maximized with the least

amount of sensors and actuators [Gaw04], than for control-oriented applications. An excellent

overview of the whole area and many other different applications can be found in [vdWdJ01].

Some recent contributions in the area can be found in [SFN08], where a criteria based on the

controllability Grammian is used to find the optimal placement of a piezoelectric actuator to
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suppress vibrations in a Finite Element model of a cantilevered beam. This is similar to the

results in [SBS+09], where a criteria to place piezoelectric sensor and actuators is applied in or-

der to minimize the magnitude of the natural frequencies on the same element. Also in [BK08],

a study about collocation/non-collocation of actuators and sensors and model truncation has

been performed in order to see how stability is affected, using the S/A placement criteria from

[Gaw97] and [Gaw99]. In [Mor08], optimal placement of actuators is performed to improve

performance of an LQR by means of solving an algebraic Ricatti equation.

For Active Noise Control (ANC) in particular, there are several works to be cited. In

[KTMX95, RF95] actuator placement is studied for active noise control and [DF99] focuses

on the efficiency of manipulation. More recent works as [PP06] or [PP08] have been extended

to uncertain model sets with dynamic uncertainty. In [LAKB01] a magnitude to measure the

optimal S/A locations based on the controllability (Wc) and observability (Wo) grammians is

computed. In [PP06] another measure is added to consider the effect of model uncertainty.

Nevertheless, these grammians depend on the particular state-space realization, therefore any

measure derived from it could be misleading. Furthermore, the sensor and actuator location

problems are treated separately, by means of two different measures, one depending onWc, the

other onWo. This could produce situations where a good location of the sensor (good obser-

vation properties) could interact with a bad location of the actuator (poor control action) and

viceversa.

From a very general point of view, in [vdWdJ01] different S/A allocation methods have

been compared based on eight characteristics: well-founded, efficient, effective, applicability,

rigorous, quantitative, controller independent and direct. There, although the general control

configuration in Figure2.2 was used, the performance limitations for that structure where not

yet available [FHMT03]. This general setting and the previous references indicatethat robust

performance oriented measures have not been computed previously under a controller inde-

pendent constraint. Furthermore, controller complexity (basically controller order) should be

integrated with other relevant issues,e.g. robustness and performance. Finally, several indexes

seem to be necessary and hence a combination of these S/A measures should be applied for prac-

tical purposes. An approach of these indexes measuring controller complexity, robustness and

performance under a controller independent constraint is developed and applied in Chapter7 of

the present work.
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CHAPTER 3

EXPERIMENTAL SETUP

3.1 Description

The application used along this work is illustrated in Figure3.1. It is a square, 4.85 meter

long tube connected to a semianechoic1 room (Figure3.2), the other end connected to a noise

generator, either a speaker or an industrial fan. This (primary) speaker generates noise in a

certain controlled frequency bandwidth by means of a signal generator, and may physically

simulate different noise sources. The advantage is that this noise source setup has a linear time

invariant (LTI) behavior and precise experiments on the duct can be carried out. The industrial

fan, however, is a real noise source with time-varying and nonlinear characteristics.

There is also an error microphone near the control actuator (secondary speaker) and one near

the noise source, known as the reference microphone. The microphones are omnidirectional

BEHRINGER ECM8000 with linear frequency response within a bandwidth of15 Hz to20 kHz

and−60 dB acoustic sensitivity.

The speakers are BEYMA model 5 MP60/N of5”, 50W, with a bandwidth of50Hz to

12kHz.

The secondary acoustic circuit is the one related to the feedback-control section, with the

control speaker as the input and the error microphone as the output (Figure3.4). The path

covered by the perturbation signal which enters the error microphone coming from the acoustic

path, with its origin in the noise source, is usually defined as the primary circuit.

1These rooms have a nonabsorbing floor, hence the sound measurement also depends on the floor reflection. This
is not a problem in this application.

15



16 Chapter 3 : Experimental Setup

Control loops implemented run on a DSpace DSP-based (Texas Instruments TMS320C40

over a DS1003.05) floating-point processor board, as well as with a more recently acquired

PowerPC-based on a IBM PowerPC 750GX. The sampling time for the identification experi-

ments and control implementation isTs = 0.4ms, which is good enough for the real-time com-

putations needed in this kind of application. The complete signal-processing instrumentation is

illustrated in Figure3.3.

The off-line plant identification and FB controller synthesis have been programmed using

standard Matlab, plus the additional functions in the Robust Control Toolbox ([BCPS05]) and

otherad-hocfunction packs as the Robust Identification Toolbox ([MPS04]). The main structure

of the algorithm implemented can be found in AppendixA.

Furthermore, in order to final implement the control loops, the DSpace system comes with

additional software. This includes a Matlab Toolbox allowing the interaction with the hardware

using Simulink programming (which can pick up workspace data as usual) and also some C

programming tools to use C code instead. In this work, both ways of programming have been

used, depending on the specifications of each algorithm.

Figure 3.1: Tube and input noise source (fan)

The control scheme applies the classical method ([Lue34, OM53]) of generating a signal as

close as possible to the real noise but with opposite phase. In this work, this will be performed in



3.1 : Description 17

Figure 3.2: Semianechoic room and tube output signal (arrow)

Figure 3.3: Signal-processing instrumentation composed by (a) DSpace
system, (b) mixing console, (c) audio amplifier, (d) signal
generator, (e) host PC, plus the oscilloscope
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Figure 3.4: Conceptual view of acoustic noise suppression, (a) Feedback
scheme (b) Hybrid scheme

three ways: by fixedH∞ feedback(FB) control, adaptivefeedforward(FF), and also combined

as anhybrid (FB/FF) controller, conceptually illustrated in Figures2.1and3.4.

3.2 Physical Modeling

In this section, the main results on mathematical models for sound fields in rectangular tubes,

such as the one proposed, are presented.

According to [HAV+96] and [BL98], below the cutoff frequency, the sound field in the duct

can be treated as unidimensional with spatial coordinatex ∈ [0, 1]. The control loudspeaker is

located atx = xs, while the feedback microphone is located atx = xm. A state-space model
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of the acoustic duct can be developed from three fundamental equations: the state equation, the

continuity equation and the linearized inviscid force equation. Retainingr modes from such

equations allows the duct state-space model to be derived with the structure in (3.1):

ẋd(t) = Adxd(t) + Bd(t)us(t)

yd(t) = Cdxd(t)
(3.1)

where:

xd(t) =
[

q1(t) q̇1(t) · · · qr(t) q̇r(t)
]T

Ad = block-diag

([

0 1

−ω2
n1 −2ξ1ωn1

]

, · · · ,

[

0 1

−ω2
nr −2ξ1ωnr

])

Bd =
[

0 b1 · · · 0 br

]T
; Cd =

[

V1(xm) 0 · · · Vr(xm) 0
]

This model can be extended even further by including the transfer function from the speaker

voltage inputVs to the speaker baffle accelerationv̇s given by:

svs(s)

Vs(s)
=

Kss
2

s2 + 2ξsωns + ω2
ns

(3.2)

that leads to a state-space vector of ordern = 2r + 2.

However, according to [HAV+96], the parameters of such a state-space model should be

obtained by experimental identification. Therefore, a (control-oriented) identification technique

has been performed in order to fit a nominal model plus a frequency-dependent model uncer-

tainty bound to the (noisy) frequency response with a worst-case criteria (usually the fitting is

in a least-squares sense, see [HAV+96] and [BL98]). Furthermore, the previous mathematical

model supports the fact that the nominal model should have parametric information based on

second-order systems tuned to the modal frequencies of the duct. In this approach, further de-

scribed in Section5.1, this is performedvia a finite set of Kautz orthonormal bases, which also

serves to keep the model order as low as possible ([PSS99]).
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CHAPTER 4

FEEDFORWARD CONTROL

STRUCTURES

Feedforwardadaptive control designs (see [KM95, WP97]) are commonly used in practical

ANC applications, because they offer good performance and plant parameter adaptation, but in

general they lack on robustness. This can be found in the introductory section of chapter 8 in

[CMS07]. In this chapter, these structures applied to ANC and its robustness implications will

be discussed.

4.1 Classical Feedforward Structures

Feedforward ANC systems are implemented using two differentcontrol structures, FXLMS and

FULMS, standing for filtered X and filtered U least mean squared algorithms (see [KM95]).

These control structures stem from different models or interpretations of the system, which will

be explained in the following paragraphs.

The first naive model of the acoustic duct neglects the dynamics of the sensors and the

actuator, and also neglects the propagation of the cancelation signal upstream and downstream of

the duct. In this model, shown in Figure4.1, the output signale = w−y = [Gpri(z) − W (z)] x

becomes zero whenGpri(z) = W (z). This means the controllerW (z) is exactly representing

the dynamics of the duct, with a phase difference of 180 degrees.

21
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Figure 4.1:Naivemodel of the acoustic duct with controller

The most widely used cancelation algorithm is FXLMS, based on the model shown in Fig-

ure4.2. This model includes the secondary path, which is the propagation dynamics that mod-

ifies signaly(n) through the cancelation speaker and the downstream portion of the duct to the

error microphone. Refining slightly the previous model of the system one can distinguish sev-

Figure 4.2: Block diagram of the duct system including the secondary path

eral elements that were ignored. On the one hand, signalsx(n) ande(n) are captured with the

reference and the error microphones, respectively. These signals are then amplified, filtered and

digitalized. On the other hand, signaly(n) is converted to analogical, amplified and delivered



4.1 : Classical Feedforward Structures 23

by a loudspeaker. Then, once signaly(n) is in the duct, it must travel some distance to reach the

error microphone. All these elements are captured in the transfer functions shown in Figure4.2,

but considering that both signalsG′
pri(z)x and G′

sec(z)y pass through the same piece of duct,

modelled byR(z), assuming linear dynamics and using

Gpri(z) = R(z)G′
pri(z)

Gsec(z) = R(z)G′
sec(z)

(4.1)

it is possible to represent the same model in a more convenient way, as shown in Figure4.3.

Figure 4.3: Simplified block diagram of the duct system including the
secondary path

Considering

E(z) = R(z)[G′
pri(z) − G′

sec(z)W (z)]X(z)

and using Equation (4.1), it is easy to see that when the error signale(n) goes to zero, that is

when the filterW (z) has converged, its transfer function is:

W (z) =
Gpri(z)

Gsec(z)
(4.2)

Equation (4.1) reveals two important details of the cancelation filterW (z). First, if the overall

delay of the secondary path is larger than the delay of the primary path, the filter will not be

realizable. This is the limiting causality constraint of FXLMS and FULMS control structures.
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Second, if the secondary-path transfer function is nonminimum phase, thenW (z) becomes

unstable. In fact this is what usually happens, due to loudspeaker’s dynamics. Therefore, to

compensate the undesirable effect of the secondary-path, some modifications need to be done.

There are some ways to perform this, as suggested in [Mor80], like post-filter y(n) by

1/Gsec(z) or implement the FXLMS algorithm instead of the conventional LMS rule. The

FXLMS algorithm is generally the most convenient approach, since an inverse ofGsec(z) does

not necessarily exist.

To understand the derivation of the FXLMS algorithm it is necessary to assume that the

parameters inW (z) are calculated with an LMS-like (or gradient descent) algorithm. In this

case the error to minimize is given by Equation (4.3)

e = w − y′ = w − Gsec(z)W (z)x (4.3)

but considering slow filter parameter variations, or linear dynamics, the position ofW (z) and

Gsec(z) in Equation (4.3) can be swapped over. Gradient descent algorithms need to calculate

the gradient of the error with respect to the parameters,

∇e = −Gsec(z)x (4.4)

According to Equation (4.4), the parameter adaptation algorithm must be fed with a filtered

version of signalx(n). The filter should be the secondary-path transfer function,Gsec(z), which

is not available but can be estimated either online or offline. A more suitable expression of

∇e(n) would be

∇e = −Ĝsec(z)x = −x′

whereĜsec(z) is the estimate ofGsec(z), which could be well computed either off-line, if time-

invariant characteristic is assumed forGsec(z), or on-line, if potential real-time changes on its

dynamics are assumed to be non-negligible. The previous transformations modify the control

structure shown in Figure4.3 leading to the one shown in Figure4.9, whereW (z) is now fed

with x(n) and the adaptation algorithm is fed withx′(n). Of course, there are many important

practical and theoretical considerations related to the accuracy ofĜsec(z), e.g. [SH94, BEN91,

FBL93], but they will not be taken into account here for the sake of brevity.

The FXLMS control structure, although being one of the most widely used, considers an
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Figure 4.4: Standard control scheme of FXLMS

incomplete model of the system. The output signaly(n) is fed into the acoustic duct through

the secondary loudspeaker and is meant to counteract signalGpri(z)x. When a signal is inserted

into the duct, it travels both downstream and upstream. The effects ofy(n) upstream are ignored

by the FXLMS algorithm, but they should be considered in order to avoid its non desirable

effects, such as acoustic feedback on the reference microphone. There are some ways to face this

problem,e.g. use non-acoustic sensing for the reference signal. The FULMS control structure,

which will be presented next, is another possible solution to this problem.

The acoustic feedback, shown in Figure4.5as transfer functionF (z), is the effect of signal

y(n) on signalx(n), as a result of having been captured by the reference microphone. The

transfer functionF (z) models the digital-to-analog conversion of signaly(n) and the upstream

dynamics of the duct until the reference microphone is reached. Neglecting the effects of acous-

tic feedback is not as dangerous as neglecting secondary-path effects, but from Figure4.5 it

may be seen that the transfer function of the cancelation filter in Equation (4.5) could become

unstable if the productW (z)F (z) become larger than the unity at some frequency.

Y (z)

X(z)
= H(z) =

W (z)

1 − W (z)F (z)
(4.5)

The best way to counteract feedback effects is, as suggested previously, to minimize the acoustic

feedback, for instance, using a non-acoustic transducer for the reference signal (like a piezoelec-

tric sensor) instead of a microphone. Unfortunately, this is not always possible, hence it is useful

to include an acoustic feedback cancelation filter in the control structure. This measure makes



26 Chapter 4 : Feedforward Control Structures

Figure 4.5: Model of the duct with the secondary path and the acoustic
feedback

the overall control algorithm more complex, but it adds robustness and performance as compen-

sation.

The FULMS control structure is shown in Figure4.6. Its relation with FXLMS is very

simple: the cancelation filter in FXLMS, an FIR filter, becomes an IIR filter un FULMS,i.e. a

rational transfer function with poles.

From Figure4.6, the transfer function presented in Equation (4.5) can be redefined as

Y (z)

X(z)
=

A(z)

1 − B(z)

which is the usual configuration of an IIR filter, whereA(z) = W (z) andB(z) = D(z)F̂ (z).

The control structure shown in Figure4.6 includes filtersA(z) and B(z), as well as the

estimation of the secondary-path transfer function,Ĝsec(z), needed to eliminate the instability

effects of modeling its inverse. As it can be seen, using this control structure the acoustic

feedbackF (z) is modeled in the feedback functionB(z).

The main drawback of IIR filters with LMS-like adaptation rules is that neither convergence

nor stability of the solution is assured. In fact, many practical situations give evidences that IIR

filter can become unstable quite easily,e.g. [And85].
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Figure 4.6: FULMS control structure

4.2 Robustness in Adaptive Identification

4.2.1 Relation between Robust Adaptive Identification and Classical Feedfor-

ward Structures

As stated earlier, this work is about active noise cancelation, but a fundamental concern is to

ensure the stability of the solution.

Most active noise-control solutions (commercial or not) are based on gradient-descent algo-

rithms. In fact, the most widely used algorithm is LMS, mainly for speed of execution, which

allows a large number of parameters to be used in the cancelation filters. Many of those ap-

plications try to ensure the stability of their solutions by using proven control structures, such

as FXLMS, or by carefully accomplishing physical laws that are known to maximize the effect

of cancelation systems. However, there is little concern with the robustness of the algorithms

employed.

Control researchers became very active in the late 1980s in the area of robust adaptive con-

trol (see [OT89]), showing, for example, that an adaptive scheme designed for a plant model

without disturbances considerations could go unstable in the presence of small disturbances

([IS96]). They also developed a considerable number of robust adaptive laws and proved, in
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each case, their robustness properties against different kinds of unstructured perturbations.

The adaptive algorithm used throughout this work in order to estimate the feedforward filter

parameters is robust. The algorithm is the normalized LMS estimator with theσ-modification,

which will be explained next (see [IS96] for a more detailed description).

The LMS algorithm, developed by Widrow [KD70], or the steepest-descent algorithm, pre-

sented in [KM95], are both examples of gradient-descent-based algorithms.The latter can be

implemented using Equation (4.6)

p(n + 1) = p(n) −
µ

2
∇ξ(n) (4.6)

wherep is the parameter vector,∇ξ(n) is the gradient of the error function with respect top

andµ is a convergence factor. This parameter-update law possesses many interesting statis-

tical properties and is a proven algorithm. Its main problem is that obtaining∇ξ(n) is often

impractical and computationally intensive.

The simplest approximation toξ(n) is to use the instantaneous squared error instead. Then

ξ̂(n) = e2(n)

and the gradient used in the algorithm is

∇ξ̂(n) = 2[∇e(n)]e(n) = −2x(n)e(n) (4.7)

When the estimate of the gradient in Equation (4.7) is substituted in Equation (4.6) the well-

known LMS rule is obtained:

p(n + 1) = p(n) + µx(n)e(n) (4.8)

or, if using the control scheme in Figure4.9and thus the error expression in (4.3), its derivation

to FXLMS

p(n + 1) = p(n) + µx
′(n)e(n) (4.9)

This algorithm, as stated before, is simple, computationally inexpensive and effective. It

is a good quality/price choice. One could argue, nevertheless, that its derivation was carried

out in an ideal environment, with no consideration of model uncertainties or noise of any kind,
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which are necessary to guarantee boundedness properties of the parameters or the errors, or even

convergence of the algorithm. Two modifications were then applied to Equation (4.8), in order

to fulfill this lack of real considerations: robust normalization andσ-modification.

On the one hand, robust normalization is basically used to make the algorithm independent

of signal-power changes. On the other hand,σ-modification guarantees boundedness of the

parameters and its derivatives and boundedness of the estimation error against modeling errors,

and also convergence of the algorithm (zero error) when there is no modeling error.

Robust normalization andσ-modification are summarized in the following equations:

p(n + 1) = (1 − cσ(n))p(n) + cǫ(n)

ǫ(n) = K[y(n) − ŷ(n)]

K =
r(n)

1 + ms(n)

ŷ(n) = p
T (n)r(n)

wherer(n) is the regressors vector,c is related to the convergence rate and is chosen by the

designer from0 < c < 1. The adaptive valueσ(n) plays an important role to avoid parameter

drift, and it is defined as

σ(n) =















0 if ‖p(n)‖ ≤ M
(

‖p(n)‖
M − 1

)

σ0 if M < ‖p(n)‖ ≤ 2M

σ0 if ‖p(n)‖ > 2M

The constantσ0 is a positive value such thatσ0 < (1 − c)/2. The constantM is a bound of

the Euclidean norm of the (unknown) true parameter set.M must be estimated beforehand and

it allows bounding the parameters if their norm grows larger thanM . The normalizing value

ms(n), initialized to zero, is calculated with the following equation

ms(n + 1) = (1 − δ0)ms(n) + x2(n) + y2(n)

whereδ0 is a parameter related to the frequency band, considering bounded uncertainty.

In this work, the parameters of the algorithm were set to the following values throughout all
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the experiments:c = 0.5, σ0 = (1 − c)/4 = 0.125, M = 0.5 andδ0 = 0.1.

4.2.2 Real Time Stable Identification: A Nehari/SOS Approach

Clearly for a FF solution to ANC a stable adaptive identification is needed, which in turn should

be implemented in real-time [Lue34, NE92, KM95]. There, significant noise attenuation can

be achieved through FB and/or FF controllers. As mentioned before, in the first case there

are many well known limitations of the feedback loop that produces a poor performance. These

performance limitations are mainly due to the nonminimum phase nature of the plant (see [FL85,

SBG97], and also [HB98] and its revision in [FHMT03]), which in turn is derived from the time

delay of sound propagation,e.g.acoustic tubes. Instead, a FF filter performs better because it is

not restricted to the loop limitations. In this kind of application, the FF controller acts as a real

time identifier of the acoustic noise signal received by the error microphone at the end of the

tube, in order to cancel it at that point. Usually an adaptive identification scheme is used which

can produce unstable behaviors in many situations. A complete experimental study of an hybrid

– FF/FB controller applied to ANC in a tube can be found in [CMS07].

As a consequence, a convergent adaptive identifier with guaranteed stable behavior and

numerical robustness is very useful in these situations. Such an algorithm is described

in [GSPnM07]. Numerical stability is achieved by the use of Second Order Sections

(SOS) structures, and the stability of each section is guaranteed by a stable Nehari projection

([BGR90]), which provides the nearest (optimal) stable model to a possibly unstable one. Due

to the fact that the objective of this procedure is to implement it in real time situations, the

Nehari projection is developed in analytical form.

Unstable Model Problems

As stated before in this work, the traditional assumptions in adaptive control (lack of perturba-

tions or high frequency uncertain dynamics and minimum phase models) have generated at the

end of the 80’s an intense work in the area of robustness of adaptive laws [Tao03, Nar86, IS96].

These have been extensively studied since then, and an excellent survey in this area can be found

in [OT89].

Still then in adaptive identification, the stability of the resulting IIR model is generally not

guaranteed, causing serious practical problems particularly in FF implementations. There are



4.2 : Robustness in Adaptive Identification 31

methods to convert IIR to FIR like theNehari shuffle([KBG92]) and a recent LMI optimal

version in [YAN02], but the error is usually greater and requires a larger number of parameters

in general. The use of IIR filters instead of FIR structures has the potential to decrease the

identification error due to the fact that they include the poles dynamics. In addition, this class of

filters are more efficient in modeling signals in certain applications and require smaller model

orders ([Rao93]). Therefore an IIR filter that can guarantee a stable behavior and can be used in

real time applications is a necessary tool in practical situations. As described in [GSPnM07],

this can be achieved using the Nehari projection algorithm.

Numerical Problems

On the other hand, numerical problems also arise in real time applications, depending on the

structural representation of the model. Take for example an 11th. order stable filter implemented

with three different model structures: zero–pole (ZP), state space (SS) and transfer function

(TF), the latter in terms of numerator and denominator coefficients, as follows:

(ZP)
m
∏

i=1

(ziz
−1 − 1)

(piz−1 − 1)
, (TF)

∑m
i=0 z−ibi

∑m
i=0 z−iai

(SS)
xk+1 = Axk + Buk

yk = Cxk + Duk

The complexity of each model isO(m2) in the case of SS andO(m) in the other two cases,

therefore from this point of view, the ZP and TF structures are more efficient. Nevertheless, it is

a well known fact that the pole locations in the case of the TF structure, particularly in high order

models, are significantly modified, even producing unstable poles (|pi| > 1), as illustrated in

Table4.1. On the other hand, it is easier to use the TF representation asthe difference equation

which implements the filter in real time, as follows:

yk =
1

a0
[b0 uk + · · · + bm uk−m

−a1 yk−1 − · · · − am yk−m] (4.10)

Therefore, the TF representation has advantages in terms of complexity and implementation, but

serious disadvantages in terms of perturbations of pole locations, at least in high order models.

The solution to this problem is obtained by a series connection of SOS’, which is an adequate



32 Chapter 4 : Feedforward Control Structures

ZP SS TF
0.0034 0.0034 0.0034
0.9975 0.9975 1.0295
0.9975 0.9975 1.0295
0.9949 0.9949 1.0128
0.9949 0.9949 1.0128
0.9607 0.9607 0.9924
0.9608 0.9608 0.9924
0.9802 0.9802 0.9646
0.9995 0.9995 0.9646
0.9995 0.9995 0.9434
0.9961 0.9961 0.9434

Table 4.1: Absolute value of poles of a discrete–time system represented in
zero–poles (ZP), state–space (SS) and transfer function (TF).

way of implementing filters in real time. The SOS structure is numerically more efficient than

the plain TF structure due to the fact that it has 2nd. order numerator and denominator, there-

fore preserving the original pole–zero locations. In addition, cascade-forms of SOS provide

an attractive realization for adaptive IIR filters because the stability of the filter parametriza-

tion is easily monitored, and because filter pole locations are readily obtained from the adapted

parameters with low computational cost ([WAN95]).

In the previous example, the SOS’ pole locations coincides with the ZP and SS structures.

Furthermore it is stillO(m) and each SOS can be implemented as a difference equation con-

nected in series with all other SOS’, as follows:

Y (z)

U(z)
=

m/2
∏

i=1

z−2bi
2 + z−1bi

1 + bi
0

z−2ai
2 + z−1ai

1 + 1
(4.11)

where each SOS correspond to a 2nd. order difference equation of the form

yi
k = bi

0 ui
k + bi

1 ui
k−1 + bi

2 ui
k−2 − ai

1 yi
k−1 − ai

2 yi
k−2

whereai
0 = 1 for simplicity.
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Figure 4.7: Secondary circuit: (a) 12th. order experimental data
approximation - time response. (b) 12th. order experimental
data approximation - frequency response.

Application Examples

Example1. The present and the next practical examples are taken from measurements in an

acoustic duct in an ANC experience. The duct is described in Chapter3. The input signal is

produced by an industrial fan and has been measured by the reference microphone located next

to it. The output signal has been measured by the error microphone at the other end of the tube,

therefore the primary circuit is identified. The identification scheme is based in the Projection

algorithm ([Tao03]) and the initial coefficients of all SOS sections have been computed from an

off-line identification of the complete transfer function based on a parametric- nonparametric

technique ([PSS99]). This is a convenient practical approach so that the algorithm is initiated

from a close enough neighborhood of the actual parameters. The off-line identification pro-

cedure can be anyone which can produce a sufficiently good model of the experimental data,

taking advantage of the fact that it does not need to be implemented in real time. The results are

presented in Figures4.7, which evidence a good fit of the experimental data, both in frequency

and time.

Example2. This example considers experimental data generated by the same duct, but with the

control speaker as the main noise source producing a multi–sinusoidal signal. The output is

again obtained from the error microphone. The system to be identified is now the secondary

circuit based on a high order model (40th). Again, a previous off-line identification has been

made by means of a parametric–nonparametric robust identification algorithm in [PSS99]. The
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Figure 4.8: 40th. order experimental data approximation.

online identification scheme is again based on the Projection algorithm and has considered the

first 500 data points. The remaining1000 data points are used as a validation test. Here the main

objective is to test the algorithm against numerical errors produced in cases where high order

models are used. The fit is good enough and the error is bounded, as shown in Figure4.8.



CHAPTER 5

FEEDBACK CONTROL STRUCTURES

The main objective approached in this chapter is to apply robust (control oriented) identification

to an ANC system, with a deterministic worst-case criteria in order to design a robust controller.

Based on the experimental knowledge of low frequency modes, a parametric/dynamic model

identification method [PSS99, BMS01] is applied. This produces a multiplicative global uncer-

tain set to describe the physical plant, which exactly fits the robust controller design framework.

This is applied to an actual duct using two different noise sources: a speaker and a fan. The-

oretical and experimental results are presented and the resulting experimental performance is

comparable or even better than other robust methods applied to ANC.

5.1 Parametric/Dynamic Robust Identification

Here a systematic procedure that covers the experimental data by a model set is presented.

The data fed to the identification algorithm used to identify the model of the secondary circuit

Gsec(z) and the performance weightWp(z) is as follows (see Figures3.4(a) and5.1):

• Time signal measured at the error microphone which picks up the acoustic signal from

the noise source to identify the primary circuit’s main perturbing frequencies.

• Input a DSP multi–sinusoidal (time) signal commanded to the control speaker, and read

the error microphone signal, to identify the secondary circuit.

35
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Figure 5.1: Feedback (FB) design setup, with primary circuit perturbation
(Wp) and secondary model with multiplicative uncertainty.

The input and output time signals are converted to frequency domain informationvia an

FFT. The frequency response data is obtained by dividing these signals –output over input. The

sampling time isTs = 0.2 ms, and500 Hz is the maximum input frequency to the system.

Therefore above500 Hz this quotient has a large numerical error due to the fact that both signals

are almost zero there, hence it is filtered. The periodicity of the FFT is theoretically1000

samples, and each experimental run has2 ·104 samples,i.e. 20 sets. The average of these sets is

taken as the nominal experimental data and its deviation shows a reasonable short term repeata-

bility. In addition, measurements from one day to another also confirm a repeatable experiment.

The identification procedure can be found in [PSS99, BMS01], and combines both para-

metric and dynamic models using time and/or frequency experimental input data. It is computed

solving a set of LMIs using the Toolbox in [MPS04]. This in turn is based on a general ratio-

nal interpolation theory developed in [BGR90], which combines classical frequency response

(Nevanlinna–Pick) and time response (Carathéodory–Fejér) interpolation results.

It is a fact that the model order in classical interpolation duplicates the number of data

points, in the case of frequency data. Hence, the use of parametric second order models to fit

the most significant frequency peaks corresponding to the different modes appearing in the duct

(see [HAV+96]), drastically reduces the model order. Therefore, the remaining part of the plant

can be suitably interpolated by a nonparametric dynamic model. This is valid not only in this

application but in any other problem where well defined peaks are present in the experimental

data,e.g.mechanical flexible structures, aeroelasticity.
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The class ofa priori models and measurement noise sets considered are in the framework

presented in [PSSI98]. They correspond to exponentially stable systems (finite orinfinite di-

mensional) that satisfy the time domain bound|h(k)| ≤ Kρ−k, defined by parametersK < ∞

andρ > 1. The frequency and time domain noise sets are defined by hard boundsǫf andǫt,

respectively:

Nf =
{

ηf ∈ C
Nf , |ηf

k | ≤ ǫf

}

, Nt =
{

ηt ∈ R
Nt, |ηt

k| ≤ ǫt

}

The experimental data areNf (Nt) samples of the frequency (time) response of the system at

frequency (time) valuesΩk (tk), corrupted by noise realizations belonging to the sets previously

defined. The frequency (time) noise bounds are based on the experimental setup. The parametric

information is fitted by means of a finite set of Kautz orthonormal basisBi(z) tuned to the

experimental information as shown in [BMS01]. This is supported by the modeling results for

these type of applications, as explained in [HAV+96]. The resulting identified model has the

form:

Hid(z) = Hnp(z) +

N
∑

i

piBi(z)

The optimization procedure interpolates, within the error bounds, simultaneously the dy-

namic portionHnp(z) and the parameters{pi, i = 1, . . . ,N}, such that consistency1 is

achieved. It is solvedvia a set of LMI’s, hence it is convex. Figure5.2(a) illustrates the fitting

of the2nd order Kautz bases to the experimental information from a duct. The number of peaks

to be fitted depends on the particular application and is related to the frequency range where

performance should be guaranteed. Figure5.2(b) shows the selected interpolation points,5.2(c)

the parametric and dynamic components and model error of the secondary acoustic circuit, and

in Figure5.2(d) the resulting identified model.

From Figure5.2(c) it seems that the secondary model error could be sufficiently small to

provide a representative nominal model to design a controller. Nevertheless, the significance of

the model error depends on the use it will have, the resulting model order, and the performance

frequency range of interest. This is discussed next:

1A model is consistent if it can reproduce the experimental data within the sets of model and noisea priori
information.
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(a) (b)

(c) (d)

Figure 5.2: Secondary circuit: (a) Kautz bases fitting, (b) interpolation
points, (c) parametric, dynamic and model error, (d) identified
model.

Primary : In a feedback (FB) scheme (see Figures3.4(a) and5.1), the primary model combined

with the frequency response of the noise source provides a perturbation signal at the input of the

error microphone. Here only an approximate weightWp is needed (see Figure5.3(b)), which

emphasizes the main disturbing frequency bands where performance is required. Hence, the

order can be kept small, so that it does not significantly increase the controller order. In any

case, the efficiency of the weight in recovering the important frequency range is verified at the

endvia the robust performance analysis.

Secondary: This model is used in the FB loop, and if the plant is represented by a multiplicative

uncertain set of models, therelative or multiplicative error is important, due to the fact that

both, robust stability and performance depend on the value it takes. This relative error is the



5.2 : Robust Controller Analysis and Design 39

(a) (b)

Figure 5.3: (a) Uncertainty weight and multiplicative identification error,
(b) frequency response of the error microphone output with the
fan as the noise source, covered by the performance weightWp.

(additive) error illustrated in Figure5.2(c) divided by the experimental data in Figure5.2(d),

frequency by frequency, which produces the curve in Figure5.3(a). This can take very high

values at points where the magnitude of the experiment is near zero,e.g. at low frequencies2.

For design purposes, this error is “covered” by a weightWδ, also in Figure5.3(a). The model

order of this weight increases the controller order, therefore it should be limited. Finally, the

fit of the secondary modelGsec in Figure5.2(d) seems good enough, but its order is 96: too

high to design a feedback controller which should run in real time with the available hardware.

Not only real time implementation, but also numerical errors are a potential source of errors.

As a consequence, in this application the identification stage is performed taking these practical

problems into consideration.

5.2 Robust Controller Analysis and Design

This section applies standard results in [DFT92, ZDG96, SS98] to this problem. The control

objective is to minimize at the error microphone output, the effect of the (acoustic noise) dis-

turbances due to the noise source passing through the primary circuit. Therefore, a practical

2Considering additive uncertainty does not help, because the inverse of the nominal model still appears in the
robust stability test:‖Wadd(z)G−1

sec(z)T (z)‖∞ = ‖Wδ(z)T (z)‖∞ < 1.
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approach is to model the disturbance as asetof signalsw(t) in a certain frequency range, rep-

resented by weightWp(s) (see Figure5.1). If the energy of signaly(t) at the error microphone

is to be minimized, the approach from a worst case perspective, is to considerall disturbances

w(t) in the set. In addition, the system is represented by a global dynamic (multiplicative) set of

models:G
△
= {[1 + Wδ(z)∆] Gsec(z), |∆| < 1}, which is a practical description of uncertainty

which does not require structureda priori knowledge of the plant,e.g. model order, and leads

to convex optimization solutions. The final objective is robust performance which solves both

problems simultaneously with the same controller. Necessary and sufficient conditions to meet

nominal performance (NP), robust stability (RS) and robust performance (RP) are, respectively:

NP ⇐⇒ ‖y‖2 ≤ 1, ∀ ‖w‖2 ≤ 1 ⇐⇒ ‖S(z)Wp(z)‖∞ ≤ 1 (5.1)

RS ⇐⇒ ‖T (z)Wδ(z)‖∞ ≤ 1 (5.2)

RP ⇐⇒ |T (z)Wδ(z)| + |S(z)Wp(z)| ≤ 1, ∀z = eΩTs (5.3)

The robust performance condition coincides with theµ (semi-)norm for this SISO problem.

HereS(z) andT (z) are the sensitivity function and its complement, and‖·‖2 represents the

energy of the signal. For practical reasons, instead of usingµ-synthesis, the design is solved as

a mixed sensitivity problem usingH∞ control, because it produces a lower order controller.

min
i.s.K(z)

∥

∥

∥

∥

∥

[

T (z)Wδ(z)

S(z)Wp(z)

]∥

∥

∥

∥

∥

∞

(5.4)

Here i.s. stands for internally stabilizing controllers. Both the performanceWp and the ro-

bustnessWδ weights are related to the performance specifications and identification data of the

problem, respectively. The reasoning behind the weight selection is as follows.

The performance objective is to decrease the sensitivity of the system at the main frequencies

of the signal coming from the primary circuit. The combination of primary circuit’s and noise

source frequency responses have the main peaks in the range[95, 115] Hz, as can be observed

in Figure 5.3(b). Therefore,Wp(z) has been selected such that it increases the performance

at those frequencies as illustrated in the same figure. The robustness weightWδ(z), has been

obtained so that it “covers” the multiplicative error frequency response, particularly in the range

where performance is needed (see Figure5.3(a)).

From a practical standpoint, the robust performance condition (5.3) could be modified by

replacing the uncertainty weightWδ(z) by the actual frequency magnitude of uncertainty (full
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(a) (b)

(c) (d)

Figure 5.4: Secondary circuit: (a) less Kautz basis, (b) less interpolation
points concentrated in performance region, (c) parametric,
dynamic and model error, (d) identified model.

line in Figure5.3(a)). Hence, the design would still use the weightWδ(z), but the analysis

condition would be more realistic by using the actual multiplicative error. Another practical

issue is actuator saturation, which could be considered in the design procedure. Special attention

to this kind of practical issues will be given in Section6.2.
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5.3 Main Results

5.3.1 Identification preliminaries

Due to practical compromises related with model order and performance bandwidth (explained

further in section6.2, in a compendium of practical compromises which arise in the robust

identification and controller design stage for ANC systems, and its solutions) the order of the

nominal model has been decreased by eliminating interpolation points and concentrating them in

the important “performance” bands. The fit of the secondary modelGsec in Figure5.2(d) seems

good enough, but its order is 96: too high to design a feedback controller which should run in

real time with the available hardware. Not only real time implementation, but also numerical

errors are a potential source of errors. As a consequence, in this application the identification

stage is performed taking these practical problems into consideration. The multiplicative iden-

tification error restricts not only RS, but also performance robustness. Therefore, it should be

decreased only in the regions where higher performance is needed, i.e. at the ”performance”

range pointed out previously. This has been solved by adding more interpolation points in this

frequency range, keeping the total number of points as low as possible not to increase the order

(compare Figure5.4(a) with 5.2(a)). This is a way of keeping track of the relation between

robustness and performance as well as the order of the controller at the identification stage,

instead of only reducing the order of the controller at the end of the design. In addition, the

number of Kautz basis have been reduced from five to three, for the same reason. If necessary

at the end, a balanced model order reduction step can be applied to the controller, based upon its

Hankel singular values. According to the previous comments, a new identification iteration was

carried out for the total design. Previously, 44 interpolating points (order 86), plus 5 Kautz basis

(order 10) resulted in a 96th order nominal model (see Figures5.2(a) to5.2(d)). Instead, a new

identification was performed with 3 Kautz basis and only 20 interpolation points (Figures5.4(a)

and 5.4(b)), producing a44th order model (Figures5.4(c) and (d)). Note that this model does

not fit the experimental data as well as the previous one, but now it has a much lower order.

The identification (additive) error in Figure5.2(c) is much lower than the one in Figure5.4(c),

which can also be seen by comparing Figures5.2(d) with 5.4(d). Now, the identification has

been concentrated in the frequency range[95, 115] Hz and as a consequence, the multiplicative

error is better in this “performance” band, as illustrated in Figure5.3(a). Nevertheless, note

that at frequencies above200 Hz the weightWδ does not cover the multiplicative identification

error. To achieve this coverage, a higher order weight could have been considered, which in turn
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(a) (b)

Figure 5.5: (a) Structured singular value robust performance analysis, (b)
practical robust performance analysis.

would have increased the controller order. Instead, weightWδ in figure5.3(a) was used in the

design stage, but the multiplicative identification error in the same figure (dashed) replacedWδ

in condition (5.3), for the robust performance analysis. This provides a more practical analysis

condition.

The controller was designed using the weights in Figure5.3. After a balanced realization

and state truncation, based on its Hankel singular values, the order was reduced to15. The

theoretical and experimental results are compared in the next section.

5.3.2 Experimental Results

In this section, theoretical and experimental results are compared. Two noise disturbance signals

were applied: an industrial fan (see Figure3.1), and a speaker located at the same place as the fan

but excited by a signal generator. The frequency response of the fan through the primary circuit

measured by the error microphone can be seen in Figure5.3(b), and the relevant frequencies

that perturb the output of the tube are around100 and105–110 Hz. The actual fan could have

possible nonlinearities and/or time variations that have not been taken into account in the LTI3

statement of the problem. The speaker is used instead to produce noise in the [95,115] Hz

band and provides a more controllable (as well as ideal) experimental setup, producing similar

3Linear Time Invariant.
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Figure 5.6: Sensitivity function and performance weight.

Figure 5.7: Controlled (triangle) and no control (circle) frequency
response: Speaker.

conditions as the ones in the identification experiments.
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Figure 5.8: Controlled (full) and no control (dashed) frequency response:
real fan.

The theoretical analysis is presented in Figures5.5(a) and (b). In the first one, nominal per-

formance, robust stability and the robust performance test in Equation (5.3) are compared. As

indicated previously, the latter coincides with the optimal measure provided by the structured

singular valueµ in this case, due to the fact that the system is SISO. These are all below unity,

therefore the design guarantees robustness and performance simultaneously. Nevertheless, due

to the fact that the actual uncertainty is not covered at all frequencies by the uncertainty weight

Wδ (Figure5.3(a)), a slightly more practical analysis condition has been considered, as com-

mented in section5.2. In Figure5.5(b), the magnitude response of the actual relative uncertainty

of the model (the multiplicative error in Figure5.3(a)) replaces the weightWδ in the robust per-

formance condition (5.3). This new condition is still below one which provides more practical

guarantees of robust stability and performance.

Note that the robust performance condition could have been pushed near to one, therefore in-

creasing performance. This was attempted as a new design, and performance in the[95, 115] Hz

bandwidth was therefore increased to around18 dB of attenuation. Nevertheless this controller

also produced an excessive amplification atf = 65 Hz, that although outside the region excited

by the speaker and the fan, still produced an audible disturbing noise. This is a clear con-

sequence of thewaterbedeffect, where theory predicts an amplification of frequencies outside

this bandwidth as shown in Figure5.6. Therefore, the previous design was left with the resulting



46 Chapter 5 : Feedback Control Structures

100 Hz 105 Hz 110 Hz [95,115] Hz
Theory 12 dB 13.2 dB 11.5 dB 13.2 dB
Speaker 13.3 dB 13.6 dB 12.15 dB 10.3 dB

Fan 13 dB 14.6 dB (@106 Hz) — 14.3 dB

Table 5.1: Feedback controller performance (attenuation) comparison.

performance presented in Table5.1.

Performance is measured as the controlled (closed loop) over the uncontrolled (open loop)

attenuation. It can be theoretically predicted using the magnitude of the sensitivity function at

the relevant frequencies mentioned previously, as illustrated in Figure5.6. In practice instead,

the performance of the speaker and fan experiments are calculated as the quotient between the

energy of the signals at the error microphone, in closed and open loop, respectively. These

results are presented in Table5.1. The attenuation between controlled and uncontrolled behav-

iors for both experiments are also illustrated in Figures5.7and5.8, which compare magnitudes

instead of dB’s for clarity of presentation.

The Table presents the attenuation at the most relevant peaks, in this case100, 105 and

110 Hz, as well as the attenuation in the whole bandwidth. Note that the theoretical values have

a good match with both experiments. The experiments with the fan were not as “clean” as the

ones with the speaker, due to a slight nonlinear and/or time varying behavior, possibly explained

by a variable rotation speed and/or atmospherical changes (e.g.temperature, humidity). For this

reason, the controller was tuned to perform better in the whole bandwidth[95, 115] Hz, and

not only at the main peaks amplified by the fan:100 and106 Hz. Experiments performed in

different days with the same fan showed a (slow) shift in these peaks, but always inside the

relevant bandwidth. This is also the reason why experiments with a speaker that had a clear LTI

behavior for all experimental outcomes have been performed.

Finally some comments on the overall match between theory and both experiments. Theo-

retical results assume a certain amount of uncertainty in the model, in order to guarantee both

stability and performance forall models in the global dynamic (multiplicative) set,i.e. robust-

ness. Note that the uncertainty weight, particularly in the relevant frequencies, does not cover

tightly enough theactual uncertainty curve (see Figure5.3(a)). The slight conservatism in-

troduced by this coverage was at the expense of not increasing the weight’s order and hence

the controller order. The resulting performance depends on how near the actual plant is to the
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nominal model (higher) or to theworst casemodel (lower). The same happens with the set

of disturbances{Wp(s)w, ‖w‖2 ≤ 1}, where for every element in the set, a different perfor-

mance is obtained. In both cases,H∞ control designs for the worst model and disturbance in

both sets, but the actual result depends onwhatmodel and disturbance really occurs. This is a

partial explanation why the theoretical, fan and speaker overall performances differ from one to

another.

Finally, the overall experimental performance is comparable or even better than other works

in the area. Next steps consider general hybrid (FF/FB) control structures and sensor and ac-

tuator locations as part of the control design problem. Research concerning these areas will be

shown in Chapter6 and Chapter7. Moreover, in Chapter6 the compromises between identifi-

cation and control in a practical ANC situation will be also discussed in detail.
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CHAPTER 6

HYBRID (FEEDFORWARD/FEEDBACK)

STRUCTURES

In this chapter, an hybrid (FF/FB) controller is designed to cancel the acoustic noise in the

duct described in Chapter3. Furthermore, the compromises and practical issues which arise in

the robust identification and controller design stages for an ANC system are explicitly pointed

out. These are mainly derived from the compromises between identification and control, per-

formance and robustness, feedback limitations, model and controller order, and implementation

issues.

The control system has a FULMS control structure as shown in Figure4.6, which has been

explained in greater detail in Section2.2 and Section4.1. This structure avoids the use of

unstable filters for the cancelation of the nonminimum phase zeros of the secondary path, and

compensates the acoustic feedback. The FF controller is based on the robustly normalizedσ-

algorithm and is adaptive in nature (see Section4.2.1), and the FB is anH∞ optimal controller

(see Section5.2). Due to changes in the structure of the experimental plant (Figure 3.1) from

experiments in Chapter5, a complete new process of system identification and design ofthe FB

controller has been performed in this chapter.

6.1 Experimental Results

The controllers have been tested with three input noise sources (see Chapter3):

49
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Figure 6.1: Uncertainty (Wδ), performance (Wp) weights and sensitivity
functionS for the synthetic-fan experiment

Structure Order Single tone Synthetic fan Industrial fan
FF 30 81.25 dB 9.56 dB 7.56 dB
FB 12 3.90 dB 4.15 dB 3.82 dB
Hybrid 30+12 82.36 dB 12.72 dB 10.1 dB

Table 6.1: Experimental characteristics and attenuation for different control
structures

• A speaker-generated single-frequency tone ofΩ = 105 Hz.

• A speaker-generated synthetic fan with bandwidthΩ ∈ [95, 115] Hz.

• The actual industrial fan.

The results are presented in Table6.1. The hybrid design was also tested with the real fan

and shows a good agreement with the synthetic test (see values in the same table). Figures6.2,

6.3and6.4compare the open-loop and closed-loop responses for the three different input noise

sources, respectively. Figure6.5shows the attenuation attained by the hybrid (FF/FB) controller

with the three different input signals. The attenuation values for the actual and the synthetic fan

correspond to the performance bandwidth of interest.
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Some comments on these results are pointed out next. The FF controller performs much

better for a single tone. This seems less demanding for the adaptation algorithm than a set of

different tones, for which the performance decreases significantly. Nevertheless, in this last case

where a finite bandwidth is applied, the results are similar for both the synthetic and industrial

fan.

The FB controller has clear performance limitations, mainly due to the nonminimum phase

zeros, hence it does not perform as well as the FF. It has been designed based on a (conser-

vative) set of models that represents the actual plant. This explains why this robust controller

performs similarly for all inputs. Only with more information on the real fan,i.e. less uncer-

tainty and a smaller model set, could the controller have performed better, probably with the

extra cost of a higher order. Another step to increase performance would be to include the fan’s

nonlinear/time-varying characteristics in the model and uncertainty descriptions, and design a

nonlinear controller.

In the same table, there is a good agreement in the attenuation produced by each controller

separately, and combined together in an hybrid structure for all three inputs,i.e. the sum of

both values add up to approximately the attenuation for the hybrid control. Although this design

approach was tuned to the synthetic signal, it performs very well when applied to the real fan,

as indicated in Table6.1. This result can be justified by the fact that model uncertainty covered

both, synthetic and real fans, in the same set.

6.2 Compromises and Discrepancies between Theory and Practice

6.2.1 Practical Compromises and Solutions

Besides maximizing performance and robustness, it is important to consider several practical

constraints. They generate compromises in the controller design and possible identification

iterations. These compromises arise from different sources: (i) feedback-loop constraints (see

[FL85, SBG97], and in particular for ANC, see [HB98]), (ii) identification and control design

interplay, (iii) implementation issues. These practical problems, which impose constraints in

this application, are enumerated altogether next.
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1. The nominal model of the secondary path has right half-plane zeros that limits perfor-

mance in the FB case.

2. Frequency interpolation is used as an identification tool, therefore the model order is

directly related to the number of interpolation points.

3. The usual robustness/performance compromise is a direct consequence in this case of

Equation (5.3). This, in addition, forces an identification/control compromise, i.e. the

multiplicative identification error should be lower than one in frequencies where noise

attenuation (performance) is needed.

4. An additional problem is added related to the previous point. At certain frequencies where

the magnitude of the model is small, the relative identification error increases; sometimes

above unity.

5. Performance and robustness design weights increase the order of the augmented plant’s

model and therefore, of the controller.

6. The FB controller usually has poles very close to the unit circle in the design stage, which

may lead to instability in the implementation, due to numerical issues.

7. The simplest way to represent the FB transfer function for controller implementation is

numerator/denominator polynomials. This may lead to important pole distortion when it

is implemented, specially with high-order polynomials.

8. Actuator saturation should be taken into account.

9. DSP implementation and sample time impose limitations on FF and FB controller orders.

Next, some solutions adopted in this application for the previous compromises are enumer-

ated.

• Nonminimal phase models restrict performance in a well-known way. In fact they suffer

from thewaterbedeffect, pointed out in [FL85, SBG97], which determines lower bounds

in the size of the peaks of the sensitivity function magnitude
∣

∣S(eΩTs)
∣

∣. It is clear from

here that the lower the sensitivity will be in certain frequency bands, the higher it will

increase in others. Hence, the performance weightWp(z) should reflect a decrease in the

sensitivityonly at frequency bands with the highest peaks of the error microphone output,

i.e. in the range in[95, 115] Hz. This frequency band, also called the “performance”
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range, determines the frequencies in which the sensitivity is below one, as indicated by

Equation (5.1). Thewaterbedeffect can be seen in Figure6.1, where clearly the sensitivity

is below one, and hence there is disturbance attenuation, only in the “performance” range

[95, 115] Hz. Instead, the controller will amplify signals with frequency content outside

this range. This is not a problem when these signals have a small magnitude there, as

illustrated in this case by the fan signal in Figure6.6.

• From Equation (5.3), it is clear that only at frequencies where the multiplicative identifi-

cation error is below one can robust performance be achieved. Therefore,Wδ(z) should

be decreased as much as possible (while still bounding the relative identification error)

only in frequencies where attenuation is needed,i.e. at the “performance” range pointed

out previously. This has been solved by adding more interpolation points in this frequency

range, keeping the total number of points as low as possible to avoid increasing the order.

This is a way of keeping track of the relation between robustness and performance, as

well as the order of the controller at the identification stage, instead of only reducing the

order of the controller at the end of the design.

• The order of the nominal model may also be decreased by eliminating interpolation points

and concentrating them in the important “performance” bands, as similarly done in Chap-

ter5. If necessary at the end, a balanced model order-reduction step can be applied to the

controller, based upon its Hankel singular values.

• The relative identification error applied to the nominal model of the secondary path

Gsec(z) in Figure5.1, could be larger at frequencies where
∣

∣Gsec(e
jΩk)

∣

∣ is small. To

decrease it, either the nominal model can be changed locally or the noise set (and hence

the identification error) can be made frequency dependent. In the latter case, the identifi-

cation error boundǫk
f is weighted to make it directly proportional to

∣

∣Gsec(e
jΩk)

∣

∣.

• The orders of both weights,Wp andWδ, have been kept as low as possible, while taking

into account the performance and robustness features pointed out previously. For exam-

ple, they have been chosen as follows:

Wp(z) = 0.1776
z2 − 1.464z + 0.538

z2 − 1.869z + 0.931
(6.1)

Wδ(z) = 0.978
z2 − 1.914z + 0.9756

z2 − 1.775z + 0.8086
(6.2)

and illustrated in Figure6.1.
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• The FB controller has been finally implemented rescaling the magnitude of the poles clos-

est to the unit circle, to avoid controller fragility. Clearly, this modifies the dynamics of

the controller, therefore the analysis to assure robust performance must be rechecked. The

analysis figures presented in this chapter were obtained using the implemented nonfragile

FB controller.

• The previous controller was implemented using a series connection of SOS, which are

numerically more efficient than the polynomial representation (see Section4.2.2).

• Actuator saturation could be taken into account at the design stage by considering an

extra weight at the controller’s output. In this case, due to the fact that there was no clear

saturation problem, the controller action was evaluated at the analysis and implementation

stages, to avoid increasing the order of the augmented design model, and hence of the

controller. According to the experimental results, the controller action was well within

saturation limits.

6.2.2 Discrepancies between Theory and Practice

As stated before, ANC is an active area of research and many different applications have been

attempted,e.g. industrial and air-conditioning ducts, high-energy transformers, helmets, win-

dows and airport surroundings. The main practical and commercial approaches consider linear

models and adaptive FF solutions. There are clearly still many practical issues to be solved, for

which more applied theory has to be developed. These issues increase when considering 3D

environments like boxes, cabinets or even outdoor situations. A nonexhaustive list of the main

issues that arise in this particular application, is presented next.

• Stability and robustness issues in adaptive FF controllers should be carefully considered.

In practical situations, stability can be a potential (and fundamental) source of problems.

Nonconservative nonlinear analysis tools should be used to solve this problem, so that

stability and performance guarantees could be given.

• Control-oriented identification with a worst-case deterministic error bound that fits robust

design methods can be very conservative in general. In the present case, the robust identi-

fication procedure used a local (experimental) identification error, instead of the global er-

ror. The more detailed the description of the system, the better performance the controller

can obtain. Therefore, structured uncertainty, nonlinear and/or time-varying information
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could improve the system’s description and hence the resulting performance. Very limited

results have been developed for nonlinear and/or time-varying system identification with

a worst-case deterministic error,e.g. [SM03, MS04].

• High relative modeling errors (multiplicative uncertainty) in frequencies where the exper-

imental data has smaller absolute values, clearly limits robust stability and, as a conse-

quence, the achievable robust performance at these frequencies. Control-oriented identi-

fication could consider this problem as part of the procedure to obtain the nominal model,

as a way to minimize the uncertainty in certain frequency bandwidths.

• Controller order has to be limited due to its practical real-time implementation. Model

order-reduction methods, as the ones based on Hankel singular values or using frequency-

band weighting, are applied. At the different stages of the identification and controller

design, there are instances where controller order can be limited,e.g.selection and num-

ber of interpolation points, number of Kautz bases, order reduction of nominal model and

weight-order selection. A clear analysis on how to decide on each instance could be very

practical. In addition, design methods that consider the controller order as part of the

formulation, would decrease the number of design iterations.

• Controller implementation is also an important issue, which could destroy the theoretical

performance and robustness result. Numerical precision problems can arise (see Sec-

tion 4.2.2), which produce a gap between the controller design and its implementation,

derived in an internally fragile controller. Problems such as digital filter poles too close

to the unit circle or pole distortion using numerator/denominator high-order polynomials,

can be solved if they are taken into account at the design stage. To this end, numerically

robust representations,e.g. series connection of SOS, can be used to implement the con-

trollers in the DSP or microcomputer. Tools to take these numerical issues into account

and avoid controller fragility, should be considered.

Sensor and actuator allocation should be part of the identification and controller design,

similarly to what has been done in aircraft design. This could provide a global optimization

design environment and would certainly relieve some of the present limitations. Some work in

this area is presented in Chapter7.
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Figure 6.2: FF, FB and hybrid controller attenuation in the case of a pure
tone atΩ = 105 Hz
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Figure 6.3: FF, FB and hybrid controller attenuation in the case of the
synthetic fanΩ ∈ [95, 115] Hz
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Figure 6.4: FF, FB and hybrid controller attenuation in the case of the
industrial fan
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Figure 6.5: Hybrid controller attenuation with the three different input
signals
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CHAPTER 7

SENSOR/ACTUATOR ALLOCATION

As a consequence of all comments stated in Section2.3, this part of the work is focused in

computing a practical measure for S/A allocation, previous to controller design and implemen-

tation1. The general control configuration in Figure2.2will be used, based on Linear Fractional

Transformations (LFT), which accommodate many practical applications. The basic character-

istics of these type of applications are: a stable uncertain plant with time delays and/or RHP

zeros, lightly damped dynamics and, as with many other applications withfast dynamics, the

need of a low order controller for real time implementation. The measure sought combines rel-

evant issues concerning performance, robustness and implementation. The approach presented

here is focused in computing the optimal S/A combination achieving the best performance and

controller complexity, assuming that a controller exists which can be easily verified in general,

e.g. for mixed sensitivityH∞ control use condition in [DGKF89]. The performance weight

Wp(s) and its corresponding bandwidthΩ where noise attenuation is desired is also a problem

input data.

A part of the S/A location measure considers properties of the model itself as itsnumerical

order, computed by means of the Hankel Singular Values (HSV). Hence it includes simulta-

neouslyWc andWo, and therefore takes into account the controller order (proportional to the

augmented model order), a key issue for real time implementation. Model uncertainty is con-

sidered as global and dynamic, which provides a fairly general way to describe many practical

1Here, equivalent conditions are computed forH∞ optimal controller existence, previous to building, imple-
menting or testing the actual controller. Controller existence can be verified using the three conditions based on
the performance measureγ [DGKF89]. Alternative options in the one and four block problems are also provided
[SS98].

61
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situations without excessive conservativeness. Instead, structured dynamic or parametric uncer-

tainty may lead to higher order and/or suboptimal controllers, as in the case ofµ–synthesis or

non-optimal parametric design procedures. In addition, works focused on performance under

structured uncertainty models [LBMP94] cannot compute an S/A measure previous to controller

design.

Furthermore, the bandwidth and performance limitations imposed by model uncertainty and

nonminimum phase zeros are also taken into account, the latter based on [FHMT03] for the

general setup in Figure2.2. Hence, the performance and uncertainty weights are probleminput

data. The computation of all the measures can be made with standard software either for SISO

or MIMO models. Without loss of generality stable systems are considered, which still cover

many important applications,e.g. vibration and acoustics active control, robotics, large space

structures, etc. Similar tools as the ones presented in this work can be generated in the case of

unstable systems2. With the same approach, some preliminary results have been presented by

the authors in [SPCiE08], and tested on duct simulations based on the model in Section3.2

[HAV+96]. Here instead, an update of the S/A measures and a full experimental testing of the

methodology has been made.

Finally, as mentioned in [JT98] it is unlikely that the methods that solve the S/A selection

problem have polynomial time complexity, since most of the methods are indirect in the sense

that a candidate-by-candidate test should be performed. Nevertheless controller design and im-

plementation are not necessary in order to compute the S/A location measure in this case (see

footnote1), which reduces the time search. Therefore, based on the evaluation characteristics

of S/A location methods, the one presented here is: well-founded, efficient (because it does

not involve controller implementation, although it is not polynomial-time complexity), gener-

ally applicable (it uses the general structure in Figure2.2), rigorous (it considers performance,

robustness and implementation), quantitative, controller independent and indirect.

The chapter is organized as follows: In next section some background material and the

control design setup are presented. In section7.2the main results of this chapter are introduced.

Finally, the real example presented in Chapter3 illustrates the application of these measures in

an acoustic tube used for active noise control (ANC) and is validated against experimental data

in section7.3.

2For example, the limitations due to unstable poles can also be obtained from [FHMT03], the computation of
the HSV can be separated among stable and unstable subsystems, and care must be taken when considering the
set of uncertain models that all have the same number of unstable poles, when describing them as global dynamic
uncertainty.
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7.1 Background and Control Problem Motivation

The control configuration adopted is the general one in Figure2.2, which represents all possible

linear control problems. HereG(s) is the augmented model which includes not only the nominal

plantGyu(s) but also the specification weights,e.g.performance, uncertainty, actuator bounds,

etc.

G(s) =

[

Gzw(s) Gzu(s)

Gyw(s) Gyu(s)

]

, Tzw = Fℓ [G(s),K(s)]

Also w is the disturbance vector,z the vector of signals to be minimized,(u, y) the input and

outputs of the system, andFℓ (·) the lower linear fractional transformation operator. This set-

ting may consider general performance and robustness constraints and applies not only to SISO

but also to MIMO systems. For example, the performance objective may be represented by the

weight Wp(s) on the error signal, which has larger values in the bandwidthΩ where attenua-

tion is desired. Without loss of generality, robust performance quantified by‖Tzw(s)‖∞ could

represent a typical mixed sensitivity problem. Another way of representing the same problem

would be‖Tzw(s, γ)‖∞ < 1, where the minimumγ that weights performance,e.g. 1
γ Wp(s), is

sought.

7.1.1 Model realizations

S/A allocation is an important part of the identification and control problem in most appli-

cations. Nominal model-based measures [LAKB01], or even uncertain model-based criteria

[PP06] which evaluate S/A allocation, are based on the controllability and observability gram-

miansWc and Wo. These measures depend on the state definition and furthermore, sensor

and actuator location problems are treated independently, based on both grammians separately.

Here instead, measures that involve the system as a whole from an input/output perspective, are

needed.

To avoid this, in this work a standard state-space representation of models is used, which has

been extensively employed for model order reduction [Moo81, Glo84]. This is the internally

balanced state-space realization which has the particular advantage that both grammians are
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equal and diagonal, with the (ordered) Hankel singular values in their diagonal,i.e.

Wc = Wo =









σH
1 . . . 0
...

. ..
...

0 . . . σH
n









It provides the optimal balance between controllability and observability and allows a stable and

balanced model order reduction by truncation of the states corresponding to the smallest Hankel

singular values. In addition, a bound on the reduction error can be obtained as a function of these

values. More importantly, balanced realizations provide the minimal condition number of the

observability and controllability grammians [Moo81] over all possible state space realizations,

i.e.

min
T

max [κ(Wo), κ(Wc)] =
σH

1

σH
n

whereκ(W ) = σ̄(W )
σ(W ) is the condition number. This allows a coherent distributionof the states,

so that the “more” (higher Hankel singular values) controllable ones are also the “more” observ-

able ones.

As in any practical case, if accessibility is guaranteed (the states accessible from the inputs,

and the outputs from the states) necessary and sufficient conditions for structural state control-

lability and observability are guaranteed according to [MS80].

7.1.2 Performance limitations

Concerning performance limitations, a recent work has been made for the feedback structure

adopted here (Figure2.2) and in [FHMT03], which generalizes the one in [FL85]. The lim-

itations imposed by RHP poles and zeros have been quantified and they reduce to the usual

limitations for a standard feedback loop [FL85] when det[G] ≡ 0 and then the LFT is said

to bereducibleto a feedback loop. This is the case when the performance output is measured

for feedbackz = y or when the control and disturbance excite the system in the same point,

w = u. As commented previously, without loss of generality the RHP pole limitations will not

be considered here.

In the general case (det[G] 6= 0), the algebraic limitations on robust performance‖Tzw‖∞

are imposed by the RHP zeros(ς1, . . . , ςm) of Gzu or Gyw with multiplicities satisfying
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mzw(ς) < mzu(ς) + myw(ς) and are quantified as follows:

‖Tzw‖∞ ≥ max
j

|Go
zw(ςj)|

△
= γz (7.1)

Gzw(s) = Go
zw(s)Bς(s)

whereBς(s) is the Blaschke product corresponding to all RHP zerosςj, which absorbs them

from Gzw(s) (Corollary IV.2 of [FHMT03]). As a consequence,γz poses a lower limit to

the robust performance measureγ. Usually the RHP zeros of the modelGyu constraint the

sensitivity function, but note here that they only contribute to the performance limitation in the

case reducible to a feedback loop,i.e. det(G) = 0.

Measureγz quantifies the RHP zeros limitation but is just a lower bound onthe closed loop

transfer function performance and may not be representative of the actual performance of the

loop whenγ ≫ γz. Thus, a more realistic value of the optimal performance could be considered

in order not to provide exceedingly conservative results.

7.1.3 Robust performance computation

To this end, the exact value ofγ can be computed beforehand based on the Youla parametrization

approach in order to solve theH∞ problem, see [CDL86, Doy84]. All possible closed loop

models can be represented as:

Tzw = T11 + T12QT21, Q ∈ H∞ (7.2)

assuming the loop is well posed. Since theH∞ norm is invariant under multiplication by unitary

matrices, the problem can be transformed into:

‖Tzw‖∞ = ‖T11 + T12QT21‖∞ (7.3)

=

∥

∥

∥

∥

∥

[

T12,⊥ T12

]∼
(T11 + T12QT21)

[

T21,⊥

T21

]∼∥
∥

∥

∥

∥

∞

(7.4)

=

∥

∥

∥

∥

∥

[

R11 R12

R21 R22 + Q

]
∥

∥

∥

∥

∥

∞

(7.5)
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where

R
△
=

[

R11 R12

R21 R22

]

=
[

T12,⊥ T12

]∼
T11

[

T21,⊥

T21

]∼

(7.6)

HereR is completely anti-stable and can be built from the augmented modelG(s) which in-

cludes the specification weights as well as the nominal model,T⊥ is the orthogonal complement

and A∼(s) = AT (−s) the adjoint operator. TheH∞ controller synthesis can be recast as the

following approximation problem:

γ = inf
Qa

{

‖R + Qa‖∞ : Qa =

[

0 0

0 Q

]

, Q ∈ H∞

}

(7.7)

This is called the four-block problem and can be solved exactly before building the controller in

two cases.

• In the one block problem,e.g.optimal nominal performance, Equation (7.7) can be solved

as a Nehari approximation problem

γ = inf
Q

{‖R + Q‖∞ Q ∈ H∞} = ‖ΓR‖ = ‖R‖H

where‖ΓR‖ is the Hankel operator forR and‖ · ‖H its Hankel norm.

• Using the all-pass embedding [Par78] and based on the procedures in [GLD+91] and

[LKJS88], the equivalence between the one- and four-block problems can be proved (see

also [SS98]). Hence, from Equation (7.7) the optimalγ can be computed exactly by

solving a pair of Ricatti equations and a spectral radius condition, when the following

restriction applies:

γ > max

{

∥

∥

∥

[

R11 R12

]∥

∥

∥

∞
,

∥

∥

∥

∥

∥

[

R11

R21

]
∥

∥

∥

∥

∥

∞

}
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In general and similar to the previous result, the exact value ofγ can be obtained from theH∞

solution proposed in [DGKF89], also known as the DGKF approach. Here‖Tzw‖∞ < γ if and

only if the following conditions are achieved:

i) H∞ ∈ dom(Ric) andX∞
∆
= Ric(H∞) ≥ 0

ii) J∞ ∈ dom(Ric) andY∞
∆
= Ric(J∞) ≥ 0

iii) ρ(X∞Y∞) < γ2

whereH∞ andJ∞ stand for two Hamiltonian matrices:

H∞
△
=

[

A γ−2B1B
T
1 − B2B

T
2

−CT
1 C1 −AT

]

, J∞
△
=

[

AT γ−2CT
1 C1 − CT

2 C2

−B1B
T
1 −A

]

Here the Hamiltonian domain is represented bydom(Ric), which meets all necessary conditions

to have a unique solution of the Ricatti equation,ρ(·) is the spectral radius and the open loop

data of the augmented plant is:

G ≡









A B1 B2

C1 0 D12

C2 D21 0









Hereγ is computed by means of the equivalent conditions i) to iii), but building the con-

troller is not actually needed. It may be argued that building the controller is just at a short step

from this point, but more importantly, controller implementation and test are not needed neither,

and here is where most of the work for the S/A selection is usually done.

Next two bounds forγ which will be used in the sequel, are defined. For RP, the optimal

solution to the worst case model/disturbance problem‖Tzw‖∞ is represented asγ, e.g. in a

mixed sensitivity problem:

∥

∥

∥

∥

∥

S(s)Wp(s)

T (s)Wδ(s)

∥

∥

∥

∥

∥

∞

≤ γ (7.8)
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On the other hand, NP is defined as the worst case performance for thenominal model, the

optimal beingγ. For example, in a tracking error minimization under energy bounded output

weighted byWp(s) disturbances problem, it stands as follows:

NP ⇐⇒ ‖S(s)Wp(s)‖∞ ≤ γ (7.9)

Hereγ can be computed as‖R‖H , due to the fact it is a one-block problem. As a consequence,

the actual plant will have a performance levelγ bounded by

0 < γz ≤ γ ≤ γ ≤ γ (7.10)

7.1.4 Model uncertainty

There are many model uncertainty representations, dynamic,parametric, structured, unstruc-

tured. One of the most used in practice is global dynamic multiplicative uncertainty [DFT92]:

G
△
=

{

G̃ = [I + ∆Wδ(s)]Go(s), σ̄ [∆] < 1
}

(7.11)

This is due to the fact that it accommodates many practical cases which include: high order un-

known dynamics, linearization uncertainty, infinite dimensional models, unknown time delays

all of which apply to mechanics, aerospace, acoustics and many other engineering problems. In

addition, in a simple RS problem with this type of uncertainty and a typical high-pass uncertainty

weightWδ(s), its crossover frequency poses an upper limit for the performance bandwidth or, in

other words, performance can be achieved at those frequencies whereσ̄ [Wδ(ω)] < 1 because:

RS ⇐⇒ σ̄ [Wδ(ω)T (ω)] < 1 ∀ω (7.12)

σ̄ [Wδ(ω)] ≥ erel(ω) = σ̄
{[

G̃(ω) − Go(ω)
]

G−1
o (ω)

}

∈ R (7.13)

As a consequence, the limitations on theperformance bandwidth due to model uncertainty

can be quantified as follows:

Ωp =

{

∑n
i=1(ω

u
i − ωℓ

i ), ∀ω ∈ [ωℓ
1, ω

u
n] ⊆ Ω such that

erel(jω) ≤ 1

}

(7.14)

where clearlyωu
i ≥ ωℓ

i , ∀i = 1, · · · , n. This measures the relative size of the bandwidth with
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respect to the desired one (Ω) for which robust performance should be achieved. It may well be

zero if such conditions are not met,i.e. the relative errorerel(ω) > 1 in Equation (7.13) for all

frequenciesω, hence robust performance cannot be achieved in that case.

On the other hand, the direct limitation on RP due to the size of the uncertainty could be

measured by means of a different parameter. Again, taking the example of the mixed sensitivity

problem described previously, a sufficient condition for robust performance is:

RP ⇐= σ̄ [Wp(s)S(s)] + σ̄ [Wδ(s)T (s)] < 1 (7.15)

Then the relative error size may be directly considered to measure performance limitations as

follows:

ℓerel
= min

{

1,

(

max
ω∈Ω

erel(ω)

)}

(7.16)

Here the fact thatWδ is defined by Equation (7.13) is used. Another index could compareWδ

with the actual relative errorerel to indicate if the uncertainty weight has been chosen correctly,

as will be seen in next section.

Furthermore, some bounds on (7.15) can be stated [Glo84]:

γ̄ ≤ σ̄ [Wp(s)S(s)] + σ̄ [Wδ(s)T (s)] ≤ 2γ̄ (7.17)

RP ⇐= 2γ < 1 (7.18)

7.1.5 I/O relative gains

Another important issue in control problems is the I/O relative gains of the system to be con-

trolled, which may be represented by its condition numberκ [G(s)]. It plays an important role

in many practical situations,e.g. high-purity distillation, see [SMD88], as a factor in the inter-

play between performance and input dynamic uncertainty, clearly only for MIMO systems. For

example in a classical loop-shaping design where the tracking error attenuation is weighted by

Wp(s), a sufficient condition for robust performance is affected by this parameter when global

input actuator dynamic uncertainty weighted byWδ(s) is present [ZDG96, SS98], i.e.

RP ⇐= κ [G(s)] σ̄ [Wp(s)S(s)] + σ̄ [Wδ(s)T (s)] < 1, ∀s = ω (7.19)
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As a consequence, RP decreases at frequencies whereκ [G(ω)] is large.

7.1.6 Recap

As a result of all the above considerations, several quantifiable values can be related with per-

formance, robustness and controller implementation:

• Right half–plane zeros limit performance in the general case (det[G] 6= 0) as indicated in

Equation (7.1). A usual interpretation [DFT92] considers that they pose a similar perfor-

mance limitation as dynamic uncertainty.

• Model errors quantified as global multiplicative dynamic uncertainty, pose a robust per-

formance bandwidth limitation measured byΩp in (7.14) and also quantified byℓerel
in

(7.16).

• The controller order is directly related to thenumerically sensiblemodel order. The latter

is obtained from the set of positive Hankel singular values of the system’s model balanced

realization.

• In the case of MIMO systems, the nominal model condition numberκ(Go) combined

with actuator (input) dynamic uncertainty is also a performance limiting factor.

In the main part of this work which will be presented in next section, the criteria to define

the S/A optimal location takes into account the final goal pursued by any identification and

control methodology: closed loop robust performance and controller implementation. Hence,

all these items will be taken into consideration when defining measures that quantify the S/A

allocation. Furthermore, these S/A measures may be computedbeforethe actual controller is

designed and/or tested, in order to minimize the combinatorial search over all S/A locations.

7.2 S/A Allocation Measure

Several S/A location measures will be defined in a normalized way as follows:

• Their values are between0 and1.
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• Higher values represent better situations from the performance and controller implemen-

tation standpoint,e.g. lower controller order and higher performance increase the values

of the corresponding measures.

• All the measures must be calculated before building or implementing the controller, based

only on the identified model, its corresponding uncertainty and the specification weights.

In addition, and in order to have good numerical properties of the plant’s model for controller

design, an internally balanced realization of the nominal model at each S/A location is defined

asGi(s) = Gyu(s), i = 1, · · · ,N . Here each pair of S/A location is represented by an integer

i, with i = 1, · · · ,N . SetS represents a selected group of these S/A locations pairs.

To consider performance measures, the following values are defined.

γ
min

=

{

min
i

γ
i
, i = 1, · · · ,N

}

(7.20)

γmin =

{

min
i

γi, i = 1, · · · ,N

}

(7.21)

whereγ andγ have been defined in section7.1.3.

Next, the partial measures which quantify robustness, performance and controller imple-

mentation are defined for thei–th S/A location.

Definition 7.1. The influence of the controller order is quantified as follows:

ρo(i)
△
=

{

n + 1
∣

∣ min
n

σH
n [Gi(s)] > ǫr

}−1
(7.22)

HereσH
n are the Hankel singular values,Gi(s) is the augmented model at thei–th S/A

location, andǫr > 0 is a predefined (controllability/observability) safety margin3. The(n + 1)

term takes into consideration the possibility of a constant model,i.e. ordern = 0, otherwise

only n should be considered in the definition.

Definition 7.2. The following defines a deterministic performance S/A location measure.

ρpd
(i)

△
=

{

0 if 2γmin ≤ γ
i

1 if 2γmin > γ
i

, i = 1, · · · ,N (7.23)

3Recall thatσH
n = 0 or numericallynear to zero implies an uncontrollable and/or unobservable state space

representation. Another alternative is to use the subspace identification criteria [OM94, Ver94] to select the model
order.
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The idea behind this measure follows from Equations (7.10) and (7.17). Here, the S/A pairs

that achieveρpd
(i) = 0 will have their full range of performances worse than other pairs,i.e.

their best performanceγ
i

is always higher than the worst performance bound2γmin of other

pairs, hence these locations could be excluded. To illustrate this, consider an example of four

different S/A pairs, as depicted in Figure7.1:

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

1

1.5

2

2.5

3

3.5

4

4.5

γ ranges

P
ai

rs

 

 

γ
2γ

Figure 7.1:γ range selection case example.

Example3. Using the criteria given in (7.23), 2γmin = 0.2 (dashdot line in Figure7.1) so

2γmin ≤ γ
3
. Thus, the dashdot pairi = 3 is excluded, hence the selected set isS = {1, 2, 4}.

In the previous example, there are still three pairs which cannot be deterministically ex-

cluded. Hence, a criteria which complements the previous one should be defined to select among

the remaining pairs. This should consider other characteristics of the performance intervals at

each S/A location.
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Definition 7.3. To measure how uncertainty could potentially limit robust performance the fol-

lowing is defined.

ρδerror(i)
△
= 1 − ℓerel

(i), i = 1, · · · ,N (7.24)

Hereℓerel
is defined in (7.16) andρδerror is therefore related to Equations (7.13) and (7.15).

Note that robust performance is only possible whenℓerel
< 1 and Wδ(s) has been selected

conveniently. Hence,ρδerror measures how severely model uncertainty of a certain S/A location

limits performance. This measure could well be combined or merged with the previous one, due

to the fact that both produce similar effects over robust performance.

Since all the S/A selection measures presented in this section depend on the nominal model

Go(s), high values ofρδerror are needed in order to make the other measures reliable. In ad-

dition, whenρδerror is very low, it may also be useda posteriori in order to decide whether a

better identification could produce a higher performance at certain S/A locations.

Definition 7.4. Uncertainty can also limit the bandwidth where performance should be

achieved, and can be measured as follows.

ρΩ(i)
△
=

Ωp

|Ω|
, i = 1, · · · ,N (7.25)

HereΩp is defined in (7.14) with the nominal modelGo(s) replaced byGi(s) where|Ω| is

the size of the desired performance bandwidth.

Definition 7.5. A measure which defines how adequately has the uncertainty weight been se-

lected, i.e. the match between the relative model errorerel and theWδ, can be defined as

follows.

ρm
△
= 1 − min

{

1,max
ω∈Ω

σ̄ [Wδ(jω) − erel(jω)]

}

(7.26)

A pathological case would be whenρm = 0, that is, when the extra uncertainty added by

a bad fit betweenWδ and the error equals100%. Here, even if the best possible model could

be identified,i.e. ρδerror = 1, no performance could be achieved. As well asρδerror , ρm is

also an important measure, because it modifies the value ofγi in (7.8) and hence ofρpd
in

(7.23). Here again, high values ofρm should be also sought in order to makeρpd
trustable. Note

also that low values ofρm just add conservativeness, but on the other hand it may also beused
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a posteriori in order to decide whether a better uncertainty weight selection could produce a

higher performance at certain S/A locations.

Definition 7.6. To measure the potential performance that can be obtained in each S/A pair, the

following is defined:

ργmin
(i)

△
=

γ
min

γ
i

, i = 1, · · · ,N (7.27)

The closerργmin
is to 1 (accordinglyγ

min
closer toγ

i
), the (potentially) better the per-

formance of pairi might be as compared to all the remaining S/A pairs. Considering again

example3 (Figure7.1), it can be seen how the remaining pairs are arranged according to (7.27).

The locationsi = 1 andi = 2 are the best, because they both have the lowestγ
i

andi = 4 is

the worst because it has the largestγ
i
. Pair i=3 has already been discarded byρpd

.

Alternatively,γzi
may be used instead ofγ

i
to calculate this measure. Consequently,γ

min
in

(7.20) is redefined asγ
min

=

{

min
i

γzi
, i = 1, · · · ,N

}

and alsoργmin
(i)

△
= γ

min
/γzi

. This

would lead to more conservative results, but computation ofγ
i
would be omitted for all pairs.

Definition 7.7. The measure which relates robust performance with the limitation imposed by

the model condition number, useful only for MIMO systems with actuator uncertainty, is defined

as follows:

ρκ(i)
△
=

{

maxω σ̄ [Wp(ω)] κ [Gi(ω)]

maxω σ̄ [Wp(ω)]

}−1

i = 1, · · · ,N (7.28)

All these measures contribute to determine an optimal value for the S/A location, although

they quantify different aspects of robust performance and implementation issues. Measuresρκ

andρδerror are amenable to be combined due to the fact that they are related to the same Equation

(7.19). In any case, the user could take all these issues into consideration by defining a general

weighted combination of all previous values as follows:

Definition 7.8. A general control-oriented S/A measure can be defined as a convex combination

of all the previous ones:

ρas(i) =
∑

ℓ∈S

wℓ ρℓ(i), i = 1, · · · ,N, S = {o,m, pd, κ, δerror,Ω, γmin}

The weightswℓ ∈ [0, 1] with
∑

ℓ∈S wℓ = 1.
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The previous are constant real values which weight the relative importance of performance

and controller implementation, and are supplied by the user. The weightwκ = 0 in cases where

the system is SISO or when sensor instead of actuator uncertainty dominates the global dynamic

model set as inG in Equation (7.11). This measure will therefore be normalized in the interval

[0, 1]. Here the problem is how to select the weights according to practical considerations.

Another alternative is to select a setS with the best S/A locations according to each measure

and intersect them in order to make a pre-selection. In cases where the measures quantify

different aspects of the problem,e.g. ρo andρΩ, there is the possibility that best S/A selection

of each will not coincide,i.e. their intersection is empty. In these cases, one may give more

importance to one aspect over the other and relax the sets until there is intersection between

them. Instead, if the measures quantify a similar aspect like the uncertainty measured byρΩ

andρδerror , it is more likely that their intersection exists. This approach will be attempted in the

example presented in next section.

7.2.1 Dependencies between measures

Some hierarchy between S/A measures can be posed, which is summarized in Table7.2.1.

Measure ρδerror (critical) ρm (conservative)
ρpd

dependent dependent
ργmin

dependent independent
ρΩ dependent independent
ρκ dependent independent
ρo dependent independent

Table 7.1: S/A measure dependencies

Dependencies onρδerror are critical, since it measures the quality of the identified nominal

modelGo within Ω, and thus the reliability of the results derived from the use of this model. A

bad model identification compromises the trust onγi andγ
i

((7.8) and (7.9)) because it is not

known how this model mismatch will affect theγ measures which could increase or decrease

indistinctly. Other measures depending onγ
i

andγi will be similarly affected and hence non-

reliable conclusions could be derived from them,e.g. set of pairs discarded. As shown in

Table7.2.1, all measures depend onρδerror therefore good model identification is compulsory
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in order to obtain a trustworthy selection methodology.

On the other hand, dependencies onρm are not critical because only reliability onγi is

compromised,i.e. γ
i

remains the same ifρm is changed, because it doesn’t depend on the

uncertainty model, as shown in (7.9). Note that low values ofρm always increaseγi, which

means that more uncertainty only adds conservativeness to the results,e.g. less discarded pairs

than would potentially be expected with higher values ofρm. Also note that this can be fixed

a posteriori if desired, without decreasing the set of discarded pairs, in the sense that better

values ofρm can be reached without modifyingGo but onlyWδ. Instead ana posteriorifix of

ρδerror implies a further identification of the system. As a consequence, ρm can be modified

without changingγ
i
, which means that improvingρm is always potentially good in order to

make the decision criteria better,i.e. discarding more pairs. This procedure will be illustrated

in the example presented next.

7.3 Experimental Example

A real application presented in Chapter3 illustrates the usefulness of the S/A allocation mea-

sures derived previously. The proposed active-noise control scheme uses a feedback configu-

ration that requires only one sensor, the error microphone illustrated in the conceptual setup in

Figure3.4(a). With this scheme, some preliminary results have been presented by the authors

in [SPCiE08], and tested on duct simulations based on a model in [HAV+96]. Here instead, an

update of the S/A measures and a full experimental testing of the methodology has been made.

7.3.1 Results

Somea priori specifications and information from the experimental plant have been taken into

account before deciding the grid considered, in order to make the best sensor/actuator location

selection. In this example, a grid of two sensor by four actuator positions in the duct (Figure3.1)

have been considered to evaluate eight different S/A location pairs.

The measures introduced in the previous section will be used to decide the best locations,

based on performance and implementation issues, before the controller design and implementa-

tion. Here in addition, the methodology is validateda posterioriby designing controllers for all

test locations and computing their performance and order. The performance of each controller
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within Ω is measured as follows.

Definition 7.9. Weighted attenuationλ, used to measure the performance weighted byWp, is

defined as follows:

λ(i)
△
=

‖Wp(s)yi∗‖2

‖wi∗‖2

≤ sup
ω 6=0

‖Wp(s)y‖2

‖ω‖2

= ‖Wp · S∆∗
‖∞ , i = 1, · · · ,N (7.29)

whereyi∗ andwi∗ stand for real output and real exogenous perturbation, respectively.

In order to compare robust performance with the previous bounds, note that:

RP ⇐⇒ γRP
△
= sup

∆∈∆∆∆
‖Wp(s)S∆(s)‖∞ < 1 (7.30)

S∆
△
= {I + [I + ∆Wδ(s)]Go(s)K(s)}−1 , σ̄ (∆) < 1 (7.31)

whereS∆ is the uncertain sensitivity function andK(s) is the implemented controller. There-

fore according to Equations (7.10), (7.17) and (7.29), γRP is bounded as follows:

0 < γz ≤ γ ≤ λ ≤ ‖Wp · S∆∗
‖∞ ≤ γRP ≤ 2γ (7.32)

These bounds will be used to validate the experimental results, as illustrated in Figure7.2. The

best locations selected by the measures should at leastincludethe ones produced by the actual

controllers.

The general selection procedure is summarized as follows:

1. Check S/A measures reliability

1.1 Computeρδerror

1.2 Computeρm to measure conservativeness

2. Computeρo to measure controller implementation

3. Compute potential performance of S/A pairs

3.1 Check RP bound on (7.18) for S/A pair containingγmin

3.2 Filter pairs usingρpd
measure

4. Post-filter S/A pairs by other measures
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4.1 Discard non-deciding intervals

4.2 Obtain optimal setSm of S/A pairs for each measure

5. Intersection of previous sets to select the optimal one:∩mSm = Sopt. If necessary, the

selection should be increased until the intersection makes sense.

6. Check Robust Performance before controller implementation, if (7.18) does not hold for

the pair selected, checka posterioriRP with (7.30)

Finally, as commented in definition7.5and section7.2.1, ρm can be used as ana posteriorimea-

sure to increase performance, at the expense of changing the S/A selection. This is performed

by searching for the pair that has the worst fit between model uncertainty andWδ, i.e. lower

ρm, and the best potential performance,i.e. higherργmin
. The argument is clear: reconsider

S/A pairs which have good chances to increase performance (highργmin
) due to the fact that a

poor selection ofWδ has been made in these cases (lowρm). The S/A pair selection is made

by intersecting both sets as in the main selection procedure. The selection procedure and ana

posteriorichange in the final selection are applied to the example in the following paragraphs.

First, ρδerror is computed in order to verify the reliability of all measureswhich depend on

the nominal modelGo. Here, the lowest value ofρδerror is 0.9753 (pair i = 8), which means

that the worst fit between model error and data withinΩ for all pairs is below3%, a reasonably

good fit.

Secondly,ρm is computed and for pairi = 8, ρm = 0.5573, hence the selection ofWδ

adds an extra44.27% of uncertainty to the nominal modelGo and as a consequence more

conservative results. This could be mendeda posteriori without affecting thea priori S/A

selection, just by improving the fit betweenWδ and the relative uncertainty errorerel. Anyhow,

improvingρm means obtaining at least the same number of pairs discarded than before. This

cannot be guaranteed ifρδerror is improved,i.e. with a besta posteriori identification of the

nominal modelGo, as explained in section7.2.1.

Next,ρo is computed which indicates the expected controller order. Here, the model plus the

performance and robustness weight orders,4 and2 respectively, produce coherent values ofρo

with the resulting controller orders. The best values ofρo produce the following S/A selection

setSρo = {3}, which coincides with the lowest controller order57, obtaineda posteriorifrom

the design. For reasons that will come clear at the end of the example, this selection needs to be

expanded to higher values ofρo, so that new S/A pairs will allow a valid intersection with other
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i pair Actuator Sensor Attenuation K order ρo ρpd
ρδerror ρm

1 279cm 415cm 8.4dB 76 0.0141 1 0.9937 0.742
2 279cm 295cm 8.3dB 66 0.0164 1 0.9987 0.5469
3 293cm 415cm 6.4dB 57 0.019 1 0.9953 0.6636
4 293cm 295cm 7.6dB 70 0.0154 1 0.9979 0.5453
5 307cm 415cm 8.1dB 62 0.0175 1 0.9980 0.5462
6 307cm 295cm 6.2dB 64 0.0169 1 0.9954 0.3928
7 322cm 415cm 7.9dB 72 0.0149 1 0.9961 0.5461
8 322cm 295cm 0.9dB 64 0.0169 0 0.9753 0.5573

Table 7.2: S/A set measures, the best ones in boldface

sets, thereforeSρo = {3, 5, 6, 8, 2}.

In addition, the performance measureρpd
is computed which is illustrated in Table7.2, and

filters out one S/A pair obtaining the selectionSρpd
= {1, 2, 3, 4, 5, 6, 7}4.

Finally, other measures are computed in order to produce their respective selection sets,

see Table7.3. In cases where these measures are very close to each other forall S/A pairs,

there is no relevant information that can be produced,i.e. no useful filtering criteria. This is

indeed what happens with values ofρΩ which are equal to one at all S/A locations, meaning

that Ωp = Ω. A similar result holds forρδerror , i.e. maxω∈Ω erel(ω) ≃ 0, which means that

all identifications have been made correctly. After discardingρΩ andρδerror as non-deciding

measures, all other performance measures have been considered (see Tables7.2 and7.3), and

their respective selection sets have been calculated:

Sρm = {1, 3, 2} (7.33)

Sργmin
= {6, 4, 2} (7.34)

As mentioned previously, the set of best locations obtained from performance and imple-

mentation measures do not intersect in general, due to the fact that they treat different issues.

This case is no exception, and for that reason setSρo = {3, 5, 6, 8, 2} has been expanded. As a

4Note from Figure7.2 that some pairs don’t satisfy the robust performance bound in(7.18), which is not critical
from the selection point of view, if at least the pair containingγ

min
does meet (7.18) and thus robust performance

can be guaranteeda priori for this pair. This is because2γ is an upper bound onγRP , see (7.32). Hence, discarding
pairs using2γ instead of usingγRP just adds more conservativeness to the selection. A less conservative filtering
could be achieved usingγRP , but this can only be performeda posterioriof the controller design (7.30).
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i pair ργmin

1 0.3182
2 0.921
3 0.625
4 0.9859
5 0.5512
6 1
7 0.4467
8 0.073

Table 7.3: S/Aa posteriorimeasures

conclusion, the optimal S/A location in this case can be computed as follows:

Sopt = Sρpd
∩ Sρm ∩ Sργmin

∩ Sρo = {2} (7.35)

This pair is also one of the best positions suggested by the controller performance implemented

a posteriori, together withi = 1 as presented in Table7.2. Therefore it experimentally validates

the measures and the methodology. In Figure7.2 the bounds forγi are posed, as well as forγzi

and weighted attenuation (λi) for each pair. Note that, as shown in (7.32), λi is bounded by

γ
i

and2γi which also validates the results. It can also be noted that thedash-dot S/A pair (i.e.

i = 8) is filtered using the criteria given byρpd
.

To be consistent with the theory, full orderH∞ controllers were implemented in real time

using the hardware in our laboratory. Nevertheless from a practical viewpoint, a further con-

troller order reduction using Hankel values (see section7.1) may be used, taking care of not

significantly decreasing the performance obtained previously.

Finally, ana posteriorireconsideration of the best S/A pair is made, as commented in def-

inition 7.5 and section7.2.1. In this case, the lowestρm and the highestργmin
apply to case

i = 6. This indicates that it may potentially produce a better performance than pairi = 2, with

the adequate changes inWδ. In fact, a better fit betweenWδ anderel produced new values for

i = 6: ρm = 0.68 andγ = 0.4, which consequently produced a new set of measures:

Sρm = {1, 6, 3} (7.36)

Sργmin
= {6, 4, 2} (7.37)
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whose intersection results inSopt = {6}. After controller implementation at this S/A location,

λ = 0.334 has been computed and an attenuation of11.8 dB has been obtained. Note that

(7.32) still holds, which also validates the results. Therefore, pair i = 6 has become now

the best position suggested by the controller performance, which experimentally validates the

measures and the methodology again.

After applying the selection methodology presented here, robust performance condition

(7.30) must be checkeda posteriori of the robust controller design, if the bound in (7.18) is

not fulfilled for the pair selected.

7.4 Future Research Issues

Future work needs to be made to improve this measure, considering less conservative mea-

sures for robust performance in controller free conditions, as well as exploring polynomial time
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computation using the ideas of checking subsets (supersets) of nonviable (viable) S/A sets, as

indicated in [vdWdJ01]. The weight determination which combines all measures into a single

one could be very useful, but practical rules to determine the corresponding weights should be

studied. Validation of the measures against experimental model of a 3D cavity, located in the

same laboratory as the duct in Figure3.1, would be also an interesting result.



CHAPTER 8

CONCLUDING REMARKS

In this work, a parametric/dynamic (control oriented) robust identification technique applied

to ANC in a duct has been considered. This identification procedure is well-suited for this

application according to physical modeling, since each mode in the duct has a clear frequency

peak which can be fitted by a second order model. This reduces drastically the model order and,

in turn, the controller order. In addition, the outcome of the identification, a family of models

with dynamic bounded uncertainty, fits exactly theH∞ robust controller design method. Also,

the main compromises, driven by practical issues, that limit the achievable performance have

been discussed. Limitations imposed by nonminimum phase zeros and controller model order

have been pointed out, and explicitly related to performance and robustness. Theoretical and

experimental results were compared, and the overall experimental attenuation is very good, as

compared with other works in the area. General hybrid (FF/FB) control structures have been

also implemented and compared with feedback and feedforward loops separately.

Finally, the S/A allocation has been also considered as part of the whole ANC problem. Sev-

eral measures of S/A location have been defined focused on closed loop performance, robustness

and controller order. These can be computed before building and testing the controller, which

minimizes the combinatorial search to seek the best S/A location. These measures produce sets

which are finally intersected in order to narrow down the search for the best S/A location. An

experimental example based on active noise control in a tube is used to validate the measures

and the methodology.
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8.1 Contributions

In the context described in the last paragraphs, the main general contributions provided by this

work are enumerated next:

• To apply a robust (control oriented) identification to an ANC system, with a determinis-

tic worst-case criteria in order to design a robust controller. In particular, based on the

experimental knowledge of low frequency modes, a parametric/dynamic model identifi-

cation method [PSS99, BMS01] has been applied. This produces a multiplicative global

uncertain set to describe the physical plant, which exactly fits the robust controller design

framework.

• To present a deep analysis of the compromises and practical issues which arise in the

robust identification and controller design stages for an ANC system. These are mainly

derived from the compromises between identification and control, performance and ro-

bustness, feedback limitations, model and controller order, and implementation issues.

• To implement the robustly normalizedσ-modification algorithm in a FF and an hybrid

(FF/FB) ANC fashion, and compare all the resulting structures with relevant practical

performance results.

• To develop a novel and general (i.e. applicable to many practical applications) optimal

S/A allocation measure previous to controller design and implementation, combining rel-

evant issues concerning performance, robustness and implementation, and test it against

ANC system.

8.2 Directions for Future Research

Finally, some issues that could be taken into account by interested researchers in this area are

pointed out next:

• A procedure to decide beforehand whether to use linear or nonlinear hybrid controllers,

based on the desired performance, could be helpful. In some sense this would generalize

the method followed in this work, in the case of hybridversusFF controllers.
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• To test and compare another robust FF algorithms in an ANC application,e.g. the ones

presented in [IS96].

In order to improve the S/A allocation measure, future work could follow next directives:

• To consider less conservative measures for robust performance in controller free condi-

tions.

• To explore polynomial time computation using the ideas of checking subsets (supersets)

of nonviable (viable) S/A sets, as suggested in [vdWdJ01].

• Weight determination to combine all measures presented in Chapter7 into a single one

could be very useful, but practical rules to determine the corresponding weights should

be studied.

• To validate the measures stated in Chapter7 against experimental model of a 3D cav-

ity (located in the same laboratory as the model of the duct used throughout the work

(Figure3.1) would be also an interesting result.
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APPENDIX A

ROBUST FEEDBACK CONTROLLER

SYNTHESIS ALGORITHM

The main structure of the program is as follows:

Main Menu

Data Initialization

Model Identification

Weight Determination

Performance Weight

Uncertainty Weight

Controller Design

Simulation

Figure A.1: Controller design algorithm main diagram

Deeply analyzing each step of the algorithm’s diagram in FigureA.1, the detailed pseudo-

code in AlgorithmA.1 may be defined:
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Algorithm A.1 Robust Controller design algorithm
1: Introduce Main Menu flag

[DataInitialization; ModelIdentification; WeightIntroduction;ControllerDesign; Simulation]

2: if Data Initializationthen

3: Introduce experimental data

4: Select data bandwidthΩ

5: Choose parametric identification frequency pointsωp

6: Choose non-parametric identification frequency pointsωnp

7: end if

8: if Model Identificationthen

9: Adjust Kautz basis

10: while Model not accepteddo

11: Model order reduction

12: Accept/reject model identified by comparison against experimental data

13: end while

14: end if

15: if Weight Introductionthen

16: if Performance WeightWp then

17: IntroduceWp coefficients

18: Compare against exogenous variable (w) spectra

19: Accept/RejectWp

20: end if

21: if Uncertainty WeightWδ then

22: IntroduceWδ coefficients

23: Compare against relative error (erel) spectra

24: Accept/RejectWδ

25: end if

26: end if

27: if Controller Designthen

28: Introduceγ bounds and iteration tolerance ofH∞ problem solver algorithm

29: if Feasible loopthen

30: Controller order reduction

31: if Robust Performance achievedthen

32: Robust ControllerK is obtained

33: Obtain SOS controller model for final implementation

34: end if

35: end if

36: end if

37: if Simulationthen

38: Check Robust ControllerK designed on Step32against Simulink’s duct model

39: end if
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Some extra investments implemented to this code are pointed out next:

• Data introduction front-end forGo identification

• Generalization to different input data fundamental frequency, bandwidth and sample rate

• Arrangement for compatibility with DSpace software data types

• Model error measure inΩp to decide wether rejectGo obtained or not

• Interface to recover data used in previous runs (e.g.weights,γ bounds)

• Poles scaling ofK for fragile loops

• Use ofγ bounds and iteration tolerance in the RiccatiH∞ solver in order to avoid certain

numerical problems

• Implementation ofK using SOS structure in order to prevent numerical perturbations of

pole locations in high order models

• Design of NP controllers for S/A measure computation
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