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ABSTRACT

This thesis presents novel and applied work in the area of control and sensor/actuator (S/A)
allocation in Active Noise Control (ANC) systems. First, robust identification and control tech-
niques to perform ANC have been applied. The identification phase is based on a control-
oriented robust identification approach that considers both parametric and nonparametric de-
scriptions of the system, and quantifies the uncertainty. The controller design compares the
feedback (FB), feedforward (FF) and hybrid (FB/FF) control structures. The feedback control
is synthesized and evaluated in the robust control framework, and it is designed.sing-

timal control as a mixed-sensitivity problem. The FF controller is an adaptive identifier, based
on the robustly normalizee-algorithm. Two approaches are developed to decide which con-
trol structure is more efficient on4m duct example with broadband noise. In addition, the
compromises between identification and control, the inherent limitations of feedback and imple-
mentation issues in ANC are explicitly pointed out. Relations between performance, controller
order, parametric/nonparametric models and digital signal processor (DSP) implementation are
discussed. Theoretical and experimental results on the duct are compared. The gaps that still
remain between theory and practice in this type of applications, are also outlined. Furthermore,
this work considers the problem of quantifying the location of sensors and actuators in order to
control a certain physical system. The measure to determine the best S/A location is based on
a closed loop control-oriented criteria, which optimizes overall performance and practical im-
plementation issues. In addition, it should be computed before the actual controller is designed,
implemented and tested. The use of this measure minimizes the combinatorial controller test-
ing over all possible S/A combinations. To this end, several measures have been defined which
weight the potential closed-loop performance, robustness, plant condition number (input/output
(I/O) relative gains) and implementation issues, such as the controller order. These may be com-
puted with standard software, either for Single Input Single Output (SISO) models or Multiple
Input Multiple Output (MIMO) models, and may be applied to many engineering problems:
mechanics, acoustics, aerospace, etc. Here, these results are also illustrated with the prior ANC



example and validated against experimental data. The outcome of applying these measures is
the selection of the S/A location which achieves the best closed loop noise attenuation with the
lowest possible controller order.

Keywords: Active noise control, sensor/actuator allocatibf,, control, mixed sensitivity,
hybrid (Feedforward/Feedback) controller.



RESUM

Aquesta tesi presenta treball original i aplicat en I'area del control i ldocakid de sen-
sors/actuadors (S/A) en sistemes de Control Actiu de Soroll (ANC). Primer, s’han aplicat
tecniques de control i identificacio robustes per a aconseguir ANC. La fase d'identificaci6 esta
basada en una proposta d'identificacié robusta orientada al control, considerant descripcions
del sistema tant paramétrigues com no-paramétriques, aixi com gquantificant la incertesa. El
disseny del controlador compara les estructures de cdieedback(FB), feedforward(FF) i

hibrida (FB/FF). El controladoieedbackés sintetitzat i avaluat en el marc del control robust,

i s’ha dissenyat utilitzant control optif ., plantejat com un problema de sensibilitats mixtes.

El controlador FF és un identificador adaptatiu, basat en I'algorismebustament normal-

itzat. S’han desenvolupat dues propostes per a decidir quina de les estructures de control és
més eficient, aplicades a un conducte de 4 metres amb soroll de banda ampla. A més a més,
s’han mostrat de manera explicita els compromisos entre identificacio i control, les limitacions
inherents a un lla¢ de contridedbackaixi com questions relatives a la implementaci6 de sis-
temes ANC. També s’han tractat altres gliestions com la relacidé entre acompliment, ordre del
controlador, models parameétrics/no-parametrics i implementacié en processadors digitals de
senyal (DSP), aixi com s’han comparat resultats teorics i experimentals en el conducte. Les
llacunes que encara resten entre teoria i practica en aquest tipus d'aplicacions també s’han
resumit. D’altra banda, en aquest treball també es tracta el problema de com quantificar la
col-locaci6 de sensors i actuadors, amb la finalitat de controlar un sistema fisic determinat. La
mesura per a determinar la millor localitzacio de S/A es basa en un criteri de lla¢ tancat orien-
tat al control, el qual optimitza tant acompliment com giestions practiques d'implementacio.
Aquesta mesura hauria de calcular-se abans del disseny, implementaci6 i prova del controlador.
La utilitzacio d’aguesta mesura minimitza la prova combinatoria de controladors en totes les
possibles combinacions de S/A. Per a aconseguir-ho, s’han definit diferents mesures que pe-
sen I'acompliment potencial en lla¢ tancat, la robustesa, el nimero de condicid de la planta
(guanys relatius entrada/sortida (1/0O)) aixi com altres qliestions d'implementacio, com I'ordre



del controlador. Aquestes poden calcular-se utilitzoftwareestandard, tant per a models
d’'una-entrada-una-sortida (SISO) com per a models de mltiples-entrades-multiples-sortides
(MIMO) i poden aplicar-se a mltiples problemes d’enginyeria, ja siguin mecanics, aclstics,
aeroespacials, etc. En aquest treball, aquests resultats també dilstratilamb I'aplicacio

ANC presentada i validat amb dades experimentals. Com a resultat d’aplicar aquestes mesures,
s’obté la localitzacio de S/A que aconsegueix la millor atenuaci6 del soroll en llag tancat amb el
menor ordre possible del controlador.

Paraules clau Control actiu de soroll, distribucid de sensors/actuadors, cortglsensi-
bilitats mixtes, controlador hibrid (Feedforward/Feedback).



RESUMEN

Esta tesis presenta trabajo original y aplicado en el area del control y la colocacién de sen-
sores/actuadores (S/A) en sistemas de Control Activo de Ruido (ANC). Primero, se han aplicado
técnicas de control e identificacion robustas para conseguir ANC. La fase de identificacion esta
basada en una propuesta de identificacibn robusta orientada al control, considerando descrip-
ciones del sistema tanto paramétricas como no-paramétricas, asi como cuantificando la incer-
tidumbre. El disefio del controlador compara las estructuras de céedadack(FB), feedfor-

ward (FF) e hibrida (FB/FF). El controladéeedbaclkes sintetizado y evaluado en el marco del
control robusto, y se ha disefiado utilizando control opthfag planteado como un problema de
sensibilidades mixtas. El controlador FF es un identificador adaptativo, basado en el algoritmo
o robustamente normalizado. Se han desarrollado dos propuestas para decidir cual de las estruc-
turas de control es mas eficiente, aplicadas a un conducto de 4 metros con ruido de banda ancha.
Ademas, se han mostrado de manera explicita los compromisos entre identificacion y control, las
limitaciones inherentes a un laf@medbackasi como cuestiones relativas a la implementacion de
sistemas ANC. También se han tratado otras cuestiones como la relacion entre desempefio, or-
den del controlador, modelos paramétricos/no-paramétricos e implementacion en procesadores
digitales de sefial (DSP), asi como se han comparado resultados tebricos y experimentales en
el conducto. Las lagunas que alin quedan entre teoria y practica en este tipo de aplicaciones
también se han resumido. Por otra parte, en este trabajo se trata también el problema de como
cuantificar la colocacion de sensores y actuadores, con la finalidad de controlar un sistema fisico
determinado. La medida para determinar la mejor localizacién de S/A se basa en un criterio de
lazo cerrado orientado al control, el cual optimiza tanto desempefio como cuestiones practicas
de implementacién. Esta medida deberia calcularse antes del disefio, implementacion y prueba
del controlador. La utilizacion de esta medida minimiza la prueba combinatoria de controladores
en todas las posibles combinaciones de S/A. Para conseguirlo, se han definido distintas medidas
gue pesan el desempefio potencial en lazo cerrado, la robustez, el nUmero de condicion de la
planta (ganancias relativas entrada/salida (1/O)) y otras cuestiones de implementacion, como el

vii



orden del controladoEstas pueden calcularse utilizarstftwareestandar, tanto para modelos

de una-entrada-una-salida (SISO) como para modelos de multiples-entradas-multiples-salidas
(MIMO) y pueden aplicarse a miltiples problemas ingenieriles, ya sean mecanicos, aclsticos,
aeroespaciales, etc. En este trabajo, estos resultados también son ilustrados con la aplicacion
ANC presentada y validados con datos experimentales. Como resultado de aplicar estas medi-
das, se obtiene la localizacion de S/A que consigue la mejor atenuacion de ruido en lazo cerrado
con el menor orden posible del controlador.

Palabras clave: Control activo de ruido, distribucion de sensores/actuadores, cGitrol
sensibilidades mixtas, controlador hibrido (Feedforward/Feedback).
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NOTATION

The notation used throughout the thesis is presented next:

F lower linear fractional transform

P filter parameters vector

z performance variable

A uncertainty

a(A) singular values of A

W, performance weight

Ws uncertainty weight

Gpri primary circuit transfer function
Gee secondary circuit transfer function

nominal model

feedback controller
feedforward controller
augmented model

uncertain model

estimate of G

set of uncertain models
sampling time

sensitivity function
complementary sensitivity function
closed loop transfer function
frequency

frequency bandwidth
performance bandwidth

SPPENNLNOQAQ S XA
o g S

controllability grammian

Xi



W
K

Po
Ppa
Péerror
pQ
Pm
€rel
PYumin
Pr
Pas

Yz

Sa

sup

1=

5]

observability grammian

condition number

controller order measure
deterministic performance measure
error uncertainty measure
bandwidth uncertainty measure
uncertainty weight measure

relative (multiplicative) model error
potential performance measure
model condition number measure
general S/A measure

robust performance measure

RHP zeros robust performance lower limit
RHP zero

weighted attenuation

uncertain sensitivity function

pair selection set

supremum

lower bound one

upper bound om
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ACRONYMS

ANC
DSP
FB

FF
FFT
FIR
IR
FXLMS
FULMS
HSV
/0
LFT
LMI
LTI
MIMO
NP
RHP
RP
RS
SISO
Sos
sS
SIA
TF

zP

Active Noise Control

Digital Signal Processor
Feedback

Feedforward

Fast Fourier Transform

Finite Impulse Response
Infinite Impulse Response
Filtered X Least Mean Squares
Filtered U Least Mean Squares
Hankel Singular Values
Input/Output

Linear Fractional Transform
Linear Matrix Inequality
Linear Time Invariant
Multiple Input Multiple Output
Nominal Performance

Right Half Plane

Robust Performance

Robust Stability

Single Input Single Output
Second Order Sections
State Space
Sensor/Actuator

Transfer Function

Zero-Pole
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Active noise control has been a very active research areadny iyears, since the seminal ideas

of [Lue34. Today, the underlying principles are well establishadHp2 KM95]), but there

are still many practical issues to be solved. The appearance of signal procesgoiBSP,

has allowed ANC to become a feasible noise-suppression technology that has progressed from
laboratory research to industrial implementation. A wide variety of applications that include
aircraft engines, automobile interiors, heating, ventilation and air conditioning (HVAC) systems,

as well as household appliances, have been produced. In general, ANC has been proven as a
viable method for noise suppression in low-frequency ranges, where traditional passive noise
control devices become massive, bulky, or less effective.

The ANC applications must deal with uncertain plants with time delays and/or zeros in the
right half plane (RHP), lightly damped and fast dynamics, which need low order controllers
for real time implementation. Uncertainty makes robust control approximations recommended
in order to achieve stable behaviors, as highlighted by Hartdan(4. Also as recognized in
[RGLOZ, robust identification techniques should be used to obtaet af models which include
uncertainty in case robust control technigues are used for controller design. Furthermore, duct
physical modeling can be used for simulations purposes, but in the end an experimental identi-
fication procedure is needed when control is the final objective, as concluddd\ino6].

So far, in ANC using robust technigues, models are obtained using classical parameter
estimation, ARX HAV 796, BL97, BL98, CA0Q] or subspace technique©yWPB0Q KF03],



2 Chapter 1 : Introduction

with no systematic way to produce a deterministic worst case uncertainty bound,gsee
[BL98, KF03]. To the knowledge of the author, control oriented and/ousbbdentification
methods as introduced irHJN91]] (see tutorials in MPG95 CGO0J and Chap. 10 of $S99§)

have not been systematically applied to identify and design robust controllers for ANC systems.

Design procedures which take into account the order of the final controller to implement,
without forgetting other important issues like performance and robustness, should be also con-
sidered in the design stage. The selection of inputs and outputs affects the plant model identi-
fied and thus the performance and complexity of the resulting control system. In order to avoid
combinatorial selection procedures, soapriori quantitative indexes considering these items
would be useful to complete the designer experience and skill.

1.2 Thesis Objectives

This thesis will be focused on facing some of the current desskb on ANC systems stated
in Sectionl.l, using robust control strategies. Therefore, the main tibgscof this work are
presented next:

1. A practical application of robust (control oriented) identification to an ANC system
(which accommodates the plant and uncertainty representation to the robust controller
design framework) followed by a robust FB controller design for the same application.
The implementation of the controller obtained is also presented in a real ANC example.

2. To explicitly point out the compromises and practical issues which arise in the robust iden-
tification and controller design stages for an ANC system. This will be helpful in some
phases dealing with this application, like the controller design, the S/A allocation choice
and/or the final real-time implementation of the controller in the actual ANC system.

3. To implement a robust FF control structure on an ANC (uncertain) system, in order to
fulfill the stability demands of this kind of applications. This will be also implemented in
an hybrid (FF/FB) fashion in order to compare the results obtained with these structures
and the robust FB controller already implemented.

4. Last but not least, to create a methodology of optimal S/A allocation in order to consider
issues such as controller order, performance and robustness before the controller design



1.3 : Outline of the Thesis

and implementation. This measure should be genegmlsable in other applications)
and give useful criteria to decide the best S/A distribution within a certain given set.

1.3 Outline of the Thesis

This dissertation is organized in several chapters, whiarbegbriefly summarized as follows:

Chapter 2: Background and State of the Art
A state-of-the-art on control structures used in ANC applbce is performed in this chapter.

These include:feedback feedforwardand hybrid designs. Literature review related to S/A
allocation is also presented.

Chapter 3: Experimental Setup

The application used to test the methodology presented snwbrk, i.e., a laboratory duct
prepared to implement ANC structures, is depicted in greater detail in this chapter.

Chapter 4: Feedforward Control Structures

Extensive research has been performed in the area of adagiwtfication, as a means of

producingfeedforwardcontrollers. Simple contributions to this area have been presented in

[CSMT05] and in MCO01], where a comparison betwedeedforwardalgorithms and a DSP

implementation discussion of these structures are performed, respectively. Furthermore, robust

adaptivefeedforwardalgorithms €.g. [1S96)) consider the convergence problene. stability,
but are not generally applied to ANC systemnasy( [DHO9], [WLO05]). Some results achieved

with this kind offeedforwardrobustly-adaptive algorithms, also presenting performance of the

loop in areal ANC system, are illustrated by the authoKdM[S07 and condensed in Chaptér
of this work. In Chapted, the preliminaries to implement conveniently this robusttiaptive
feedforwardalgorithms and control structures in an ANC application are stated.
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CHAPTER 2

BACKGROUND AND STATE OF THE ART

2.1 Introduction

Control system design involves six well differentiated stexs indicated in fdWdJ01). First,

control goals have to be considered, as the choice of variables like the exogenous vawable

the performance variable The second choice is the plant modételection. In the third step,

the control structure is selected, and in the fourth the contréllés designed according to the
previous selections. After, in the fifth step, the closed-loop obtained is evaluated to see if the
control goals are reached. Last but not least, in the sixth step the controller and the hardware are
implemented in the real plant to see if the requirements are reached there. This is an iterative
procedure, due to that are some adjustments that must be performed to get the desired behavior
at the end.

Focusing on third and fourth steps, the most widely used approach for ANC in practical ap-
plications is based on the use of adaptive FF algorithms, because they can automatically modify
the model characteristics and do not need a previous identification stage (see details in Sec-
tion 2.2). The FF-ANC efficiency usually depends on how accuratelythime model adjusts
the primary path transfer function, and could suffer from possible instability. As noticed in
[KM95, BL97], this does not preclude the use of feedback or hybrid (feddfmedforward)
control structures. The feedback control structure of an ANC system was first introduced in
[OMS53]. In this scheme, the system only requires the downstreaon sensor. Unfortunately,
this configuration provides poor broadband noise attenuation over a limited frequency range
due to the spillover effect. A complete study of the limitations of feedback in ANC has been
presented inHIB98] and corrected and generalized FHMTO03], mainly based on the classical
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limitations of feedback loops L85, SBG97). However, if a nonacoustical reference signal is

not available and/or the order of the system is small, feedback control should be a feasible ap-
proach (RE99). Furthermore, many applications can only deal with ndseugh a feedback
control loop,e.g. headsets, windowsRE99 KPMO03)). Finally, hybrid control combines both

FF and FB, which could potentially }LO5]) add up the benefits of both approaches. Never-
theless, it is not always clear if this is so in practice. In this work, two different approaches are
developed that compare hybnersusFF and FB controllers, as well as a systematic way of
anticipating its possible benefits.

Plant uncertainty is one of the major contributing factors that affects performance and sta-
bility, in particular in ANC systems BL98]). It may be caused by modeling, computational,
and/or measurement errors, or even perturbations in physical conditions. These factors lead
to deviations of the plant from the nominal model, which should be considered at the control
synthesis stage so that the closed loop is robust. Most robust control design methods dealing
with uncertain models use a worst-case deterministic criterion to describe uncegajntylC
or H, optimal control (BL97, BL98, THC02 KPMO03]). Physical modeling can be used for
simulation purposes, but in the end an experimental identification procedure is applied when
control is the final objective, as concluded KAV *96]. Usually, models are obtained using
classical parameter-estimatiorB({97]) and there is no systematic way to produce a determin-
istic uncertainty bound K[PMO03]). The area of control-oriented and/or robust identifiaatio
([CGO0Q, Chapter 10 of $S99§) is instrumental in the design of robust controllers for ANC
applications. Further explanations of the methodology used in the identification of the ANC
problem presented in this work are given in Secto.

Here, adaptive FFH., FB and hybrid controller structures are systematically yaeal
based upon the identification and controller robustness and performance experimental results,
as suggested irBL97]. Quantitative results at the identification stage using tifferent ap-
proaches, indicate if an hybrid controller adds extra benefits to a more standard FF adaptive
one.
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2.2 Adaptive Identification

The term adaptive is usually related in the literature torenicontrol techniques. The term
identification, conversely, is related to offline parameter-estimation techniques. Adaptive Iden-
tification deals with online parameter-estimation techniques and makes use of results from both
areas.

Adaptive identification algorithms have been used in the area of adaptive control systems for
a very long time, both for feedback (FB) and/or feedforward (FF) approa&®84 Tao03.
Usually for simplicity and computational speed in real time applications, parametric linear
schemes have been implemented: RLS, NLMS, FXLMS, FULMS, as in the case of Active
noise control KM95], for example.

The application studied in this work, ANC, does not follow the typical closed-loop control
scheme. Figure.1l shows a block diagram of the system and its control blocks.at loe
observed that the error signal is located at the output of the system, while the input signal
cannot be altered because it is the noise source. The controller's main function is to identify the
dynamics of the sound-propagation system and to generate the opposite signal, thus producing
as much silence as possible. Fig@r&also shows that the controller is laid out in a feedforward
fashion. The sound-propagation system, a duct in the present case, suffers from slow dynamics
variations due te.g.temperature and humidity changes. It also collects sudden external noise
perturbations and pressure variations at its end. In view of this, the main task of an active noise
controller is to adaptively identify the sound-propagation system.

An important difficulty with this kind of control structure is to maintain and assure stability.
One of the main concerns in this work is to deal with stability explicitly. Stability is an important
issue for different reasons. On the one hand, there are physical reasons: the output loudspeaker
is a nonminimum phase system and, as will be seen later in Sektfipits transfer function
is susceptible to be inverted in some situations; in addition, one of the main characteristics of
this kind of systems is their intrinsic delays, which also need to be accounted for, bringing up
stability considerations. On the other hand, up to the knowledge of the author, the algorithms
and filter structures used for noise cancelation do not consider robust stability criteria in gen-
eral. DFSVBO0] faces the problem of designing robust feedforward contystesns for ANC
applications with single tone disturbances in a simulated fashion, based on a LMS-like solu-
tion. Other alternatives to the state-of-the-art algorithms that are intrinsically stable can be seen
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Figure 2.1: Simplified conceptual adaptive FF system block diagram

in [GSPnMOT and are also presented in a real application case in this (8egksectiond.2.1
and4.2.2.

2.3 Sensor/Actuator Allocation

Input/Output selection, which is an important part of thisrkyas involved in the third step of

the methodology explained iwvdWdJ01, that is control structure selection. This determines

the number, place, and the type of actuators and sensors. The choice of inputs and outputs
affects the performance, complexity, and costs of the control system. The selection problem is
combinatorial in nature and hence, quantitative measures are needed to complement the design
engineer’s intuition, insight and experience.

Many works have been generated in this area, particularly for flexible structure testing
([LAKBO1], chapter 7 of Gaw04 and references therein, or more recent ones I#€NO04,
[BKOS8], [RNO§], [Mor08], [SBS™09] and references therein) and process conti®Pg§g and
references therein). The definition of the S/A location problem is somewhat different for flexi-
ble structure testing, where tfié,, H,, or Hankel norm needs to be maximized with the least
amount of sensors and actuato€zgw04, than for control-oriented applications. An excellent
overview of the whole area and many other different applications can be found\idJO1.

Some recent contributions in the area can be foundsirN0g, where a criteria based on the
controllability Grammian is used to find the optimal placement of a piezoelectric actuator to
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suppress vibrations in a Finite Element model of a cantilevered beam. This is similar to the
results in BBST09], where a criteria to place piezoelectric sensor and aatsi&@pplied in or-

der to minimize the magnitude of the natural frequencies on the same element. AbOBI,[

a study about collocation/non-collocation of actuators and sensors and model truncation has
been performed in order to see how stability is affected, using the S/A placement criteria from
[Gaw97 and [Gaw99. In [Mor08], optimal placement of actuators is performed to improve
performance of an LQR by means of solving an algebraic Ricatti equation.

For Active Noise Control (ANC) in particular, there are several works to be cited. In
[KTMX95, RF93 actuator placement is studied for active noise control aeOF focuses
on the efficiency of manipulation. More recent works B®D§ or [PP0§ have been extended
to uncertain model sets with dynamic uncertainty. LAKBO1] a magnitude to measure the
optimal S/A locations based on the controllabilityy’f) and observability If/,) grammians is
computed. In PP0§ another measure is added to consider the effect of modelrtaitty.
Nevertheless, these grammians depend on the particular state-space realization, therefore any
measure derived from it could be misleading. Furthermore, the sensor and actuator location
problems are treated separately, by means of two different measures, one dependiinghen
other onW,. This could produce situations where a good location of tmsae(good obser-
vation properties) could interact with a bad location of the actuator (poor control action) and
viceversa.

From a very general point of view, irvWdJO0] different S/A allocation methods have
been compared based on eight characteristics: well-founded, efficient, effective, applicability,
rigorous, quantitative, controller independent and direct. There, although the general control
configuration in Figur€.2 was used, the performance limitations for that structurere/inet
yet available FHMTO3]. This general setting and the previous references inditatierobust
performance oriented measures have not been computed previously under a controller inde-
pendent constraint. Furthermore, controller complexity (basically controller order) should be
integrated with other relevant issuesg. robustness and performance. Finally, several indexes
seem to be necessary and hence a combination of these S/A measures should be applied for prac-
tical purposes. An approach of these indexes measuring controller complexity, robustness and
performance under a controller independent constraint is developed and applied in Cludipter
the present work.
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CHAPTER 3

EXPERIMENTAL SETUP

3.1 Description

The application used along this work is illustrated in FigGr& It is a square, 4.85 meter

long tube connected to a semianechaimom (Figure3.2), the other end connected to a noise
generator, either a speaker or an industrial fan. This (primary) speaker generates noise in a
certain controlled frequency bandwidth by means of a signal generator, and may physically
simulate different noise sources. The advantage is that this noise source setup has a linear time
invariant (LTI) behavior and precise experiments on the duct can be carried out. The industrial
fan, however, is a real noise source with time-varying and nonlinear characteristics.

There is also an error microphone near the control actuator (secondary speaker) and one near
the noise source, known as the reference microphone. The microphones are omnidirectional
BEHRINGER ECMB8000 with linear frequency response within a bandwidil éfz to 20 kHz
and—60 dB acoustic sensitivity.

The speakers are BEYMA model 5 MP60/N ®f, 50W, with a bandwidth of50Hz to
12kHz.

The secondary acoustic circuit is the one related to the feedback-control section, with the
control speaker as the input and the error microphone as the output (BigiwreThe path
covered by the perturbation signal which enters the error microphone coming from the acoustic
path, with its origin in the noise source, is usually defined as the primary circuit.

These rooms have a nonabsorbing floor, hence the sound measurement also depends on the floor reflection. This
is not a problem in this application.

15
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Control loops implemented run on a DSpace DSP-based (Texas Instruments TMS320C40
over a DS1003.05) floating-point processor board, as well as with a more recently acquired
PowerPC-based on a IBM PowerPC 750GX. The sampling time for the identification experi-
ments and control implementationd$ = 0.4ms, which is good enough for the real-time com-
putations needed in this kind of application. The complete signal-processing instrumentation is
illustrated in Figure3.3.

The off-line plant identification and FB controller synthesis have been programmed using
standard Matlab, plus the additional functions in the Robust Control ToollBXRE0%) and
otherad-hocfunction packs as the Robust Identification Toolbd{S04). The main structure
of the algorithm implemented can be found in Appendix

Furthermore, in order to final implement the control loops, the DSpace system comes with
additional software. This includes a Matlab Toolbox allowing the interaction with the hardware
using Simulink programming (which can pick up workspace data as usual) and also some C
programming tools to use C code instead. In this work, both ways of programming have been
used, depending on the specifications of each algorithm.

Figure 3.1: Tube and input noise source (fan)

The control scheme applies the classical methbddB4 OM53]) of generating a signal as
close as possible to the real noise but with opposite phase. In this work, this will be performed in
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Figure 3.2: Semianechoic room and tube output signal (arrow)

Figure 3.3: Signal-processing instrumentation composed by (a) DSpace
system, (b) mixing console, (c) audio amplifier, (d) signal
generator, (e) host PC, plus the oscilloscope
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Figure 3.4: Conceptual view of acoustic noise suppression, (a) Feedback

scheme (b) Hybrid scheme

three ways: by fixed{, feedbackFB) control, adaptivéeedforward(FF), and also combined

as anmybrid (FB/FF) controller, conceptually illustrated in Figur24 and3.4.

3.2 Physical Modeling

In this section, the main results on mathematical modelsdaond fields in rectangular tubes,

such as the one proposed, are presented.

According to HAV 796] and [BL98], below the cutoff frequency, the sound field in the duct
can be treated as unidimensional with spatial coordimat¢e|0, 1]. The control loudspeaker is

located atr = x5, while the feedback microphone is locatedrat x,,. A state-space model
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of the acoustic duct can be developed from three fundamental equations: the state equation, the
continuity equation and the linearized inviscid force equation. Retaininmgpdes from such
equations allows the duct state-space model to be derived with the struct8r&)in (

(id(t) = Adwd(t) + Bd(t)’u,s(t)

3.1
yd(t) = ded(t) ( )

where:

T
2 = | a®) @) - gl @0 |

0 1 0 1
A; = block-diag ) S )
—Wn1 _2£1wn1 —Wnyr _2£1wnr

By = [0 by -+ 0 b ]T§ Cd:[Vl(fﬂm) 0 - Vi(wm) 0]

This model can be extended even further by including the transfer function from the speaker
voltage inputV; to the speaker baffle accelerationgiven by:

svs(s) K,s?
Vi(s) 82+ 2&swns + w2

(3.2)

that leads to a state-space vector of onder 21 + 2.

However, according toHAV *96], the parameters of such a state-space model should be
obtained by experimental identification. Therefore, a (control-oriented) identification technique
has been performed in order to fit a nominal model plus a frequency-dependent model uncer-
tainty bound to the (noisy) frequency response with a worst-case criteria (usually the fitting is
in a least-squares sense, seldY 796] and [BL98]). Furthermore, the previous mathematical
model supports the fact that the nominal model should have parametric information based on
second-order systems tuned to the modal frequencies of the duct. In this approach, further de-
scribed in Sectio®. 1, this is performedia a finite set of Kautz orthonormal bases, which also
serves to keep the model order as low as possiBIS$R9.
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CHAPTER4

FEEDFORWARD CONTROL
STRUCTURES

Feedforwardadaptive control designs (sekNI95, WP97) are commonly used in practical

ANC applications, because they offer good performance and plant parameter adaptation, but in
general they lack on robustness. This can be found in the introductory section of chapter 8 in
[CMSO07. In this chapter, these structures applied to ANC and itsisbiess implications will

be discussed.

4.1 Classical Feedforward Structures

Feedforward ANC systems are implemented using two differentrol structures, FXLMS and
FULMS, standing for filtered X and filtered U least mean squared algorithms K3é85]).
These control structures stem from different models or interpretations of the system, which will
be explained in the following paragraphs.

The first naive model of the acoustic duct neglects the dynamics of the sensors and the
actuator, and also neglects the propagation of the cancelation signal upstream and downstream of
the duct. In this model, shown in Figudel, the output signat = w—y = [Gpri(z) — W (z)] x
becomes zero whef,,;(z) = W (z). This means the controllé#’ (=) is exactly representing
the dynamics of the duct, with a phase difference of 180 degrees.

21
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x(n) w(n) e(n)

W(2) y(n)

[

Adaptation
algorithm

Figure 4.1:Naivemodel of the acoustic duct with controller

The most widely used cancelation algorithm is FXLMS, based on the model shown in Fig-
ure4.2 This model includes the secondary path, which is the prdmagedynamics that mod-
ifies signaly(n) through the cancelation speaker and the downstream portion of the duct to the
error microphone. Refining slightly the previous model of the system one can distinguish sev-

+ e(n)

AY4 G\ (2) -C[/\ R(2)
+
g |

G

'ec(?

x(n) /
W) 41 ¥(n)

Adaptation
algorithm

Figure 4.2: Block diagram of the duct system including the secondary path

eral elements that were ignored. On the one hand, sigrtalsande(n) are captured with the
reference and the error microphones, respectively. These signals are then amplified, filtered and
digitalized. On the other hand, signaln) is converted to analogical, amplified and delivered
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by a loudspeaker. Then, once sigpét) is in the duct, it must travel some distance to reach the
error microphone. All these elements are captured in the transfer functions shown in&Ryure
but considering that both signafs,,;(z)z and G|

Sec

(z)y pass through the same piece of duct,
modelled byR(z), assuming linear dynamics and using

Gpri(2) = R(2) ;/m"i(z)

4.1
GSEC(Z) = R(Z)G;GC(Z) ( )

it is possible to represent the same model in a more convenient way, as shown ind=&yure

x(n) w(n) e(n)
o)

.\ﬁ"'(u)

(1'\“( z)

/

W(z) y(n)

[

Adaptation
algorithm

Figure 4.3: Simplified block diagram of the duct system including the
secondary path

Considering

E(z) = R(2)[G)i(2) - G,

P sec

(2)W(2)]X ()

and using Equation4(l), it is easy to see that when the error siga@l) goes to zero, that is
when the filte¥/ (z) has converged, its transfer function is:

Gpri(2)

W(Z) - Gsec(z)

(4.2)
Equation 4.1) reveals two important details of the cancelation filié(z). First, if the overall
delay of the secondary path is larger than the delay of the primary path, the filter will not be
realizable. This is the limiting causality constraint of FXLMS and FULMS control structures.
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Second, if the secondary-path transfer function is nonminimum phase Jiten becomes
unstable. In fact this is what usually happens, due to loudspeaker's dynamics. Therefore, to
compensate the undesirable effect of the secondary-path, some modifications need to be done.

There are some ways to perform this, as suggestedlord0], like post-filter y(n) by
1/Gsec(2z) or implement the FXLMS algorithm instead of the conventional LMS rule. The
FXLMS algorithm is generally the most convenient approach, since an invefsg 4f) does
not necessarily exist.

To understand the derivation of the FXLMS algorithm it is necessary to assume that the
parameters iV (z) are calculated with an LMS-like (or gradient descent) algorithm. In this
case the error to minimize is given by Equatidn3j

e = w—y =w— Gee(2)W(2)x (4.3)

but considering slow filter parameter variations, or linear dynamics, the posititii(ef and
Gsec(z) in Equation 4.3) can be swapped over. Gradient descent algorithms needcdatal
the gradient of the error with respect to the parameters,

Ve = _Gsec(z)x (4.4)

According to Equation4.4), the parameter adaptation algorithm must be fed with a diter
version of signak(n). The filter should be the secondary-path transfer functig,(z), which

is not available but can be estimated either online or offline. A more suitable expression of
Ve(n) would be

~

Ve = —Gsee(2)r = —2

where@sec(z) is the estimate offs..(z), which could be well computed either off-line, if time-
invariant characteristic is assumed f@g..(z), or on-line, if potential real-time changes on its
dynamics are assumed to be non-negligible. The previous transformations modify the control
structure shown in Figuré.3leading to the one shown in Figude9, whereW (z) is now fed

with z(n) and the adaptation algorithm is fed with(n). Of course, there are many important
practical and theoretical considerations related to the accura(éyeg)(z), e.g. [SH94 BEN9],
FBL93], but they will not be taken into account here for the sake ef/iy.

The FXLMS control structure, although being one of the most widely used, considers an
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Figure 4.4: Standard control scheme of FXLMS

incomplete model of the system. The output sigi@l) is fed into the acoustic duct through

the secondary loudspeaker and is meant to counteract gigndk)x. When a signal is inserted

into the duct, it travels both downstream and upstream. The effegt{s.ptipstream are ignored

by the FXLMS algorithm, but they should be considered in order to avoid its non desirable
effects, such as acoustic feedback on the reference microphone. There are some ways to face this
problem,e.g. use non-acoustic sensing for the reference signal. The FULMS control structure,
which will be presented next, is another possible solution to this problem.

The acoustic feedback, shown in Figdré as transfer functiot'(z), is the effect of signal
y(n) on signalz(n), as a result of having been captured by the reference microphone. The
transfer function”’(z) models the digital-to-analog conversion of signat) and the upstream
dynamics of the duct until the reference microphone is reached. Neglecting the effects of acous-
tic feedback is not as dangerous as neglecting secondary-path effects, but from4igtire
may be seen that the transfer function of the cancelation filter in Equatinhdould become
unstable if the produclV (z) F'(z) become larger than the unity at some frequency.

Y(z) W(z)

X 1O =TT Fe (4.5)

The best way to counteract feedback effects is, as suggested previously, to minimize the acoustic
feedback, for instance, using a non-acoustic transducer for the reference signal (like a piezoelec-
tric sensor) instead of a microphone. Unfortunately, this is not always possible, hence it is useful

to include an acoustic feedback cancelation filter in the control structure. This measure makes
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Figure 4.5: Model of the duct with the secondary path and the acoustic
feedback

the overall control algorithm more complex, but it adds robustness and performance as compen-
sation.

The FULMS control structure is shown in Figude6. Its relation with FXLMS is very
simple: the cancelation filter in FXLMS, an FIR filter, becomes an IIR filter un FULMS a
rational transfer function with poles.

From Figured.6, the transfer function presented in Equatidtbf can be redefined as

Y(z) _ A()
X(z)  1-B(z)

which is the usual configuration of an IIR filter, whedéz) = W (z) andB(z) = D(z)F(=).

The control structure shown in Figu#e6 includes filtersA(z) and B(z), as well as the
estimation of the secondary-path transfer funct'@agc(z), needed to eliminate the instability
effects of modeling its inverse. As it can be seen, using this control structure the acoustic
feedbackF'(z) is modeled in the feedback functids(z).

The main drawback of IIR filters with LMS-like adaptation rules is that neither convergence
nor stability of the solution is assured. In fact, many practical situations give evidences that IIR
filter can become unstable quite easdyy.[And85|.
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Figure 4.6: FULMS control structure

4.2 Robustness in Adaptive Identification

4.2.1 Relation between Robust Adaptive Identification and Classical Feedfor-
ward Structures

As stated earlier, this work is about active noise cancelatiot a fundamental concern is to
ensure the stability of the solution.

Most active noise-control solutions (commercial or not) are based on gradient-descent algo-
rithms. In fact, the most widely used algorithm is LMS, mainly for speed of execution, which
allows a large number of parameters to be used in the cancelation filters. Many of those ap-
plications try to ensure the stability of their solutions by using proven control structures, such
as FXLMS, or by carefully accomplishing physical laws that are known to maximize the effect
of cancelation systems. However, there is little concern with the robustness of the algorithms
employed.

Control researchers became very active in the late 1980s in the area of robust adaptive con-
trol (see PT89), showing, for example, that an adaptive scheme designed fdant model
without disturbances considerations could go unstable in the presence of small disturbances
([1S9€)). They also developed a considerable number of robust mdajpivs and proved, in
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each case, their robustness properties against different kinds of unstructured perturbations.

The adaptive algorithm used throughout this work in order to estimate the feedforward filter
parameters is robust. The algorithm is the normalized LMS estimator with-thedification,
which will be explained next (se¢996€] for a more detailed description).

The LMS algorithm, developed by WidrowP70], or the steepest-descent algorithm, pre-
sented in KM95], are both examples of gradient-descent-based algoritfiine.latter can be
implemented using Equatiod.©)

p(n+1) = p(n) - £VEMm) (4.6)

wherep is the parameter vecto¥/¢(n) is the gradient of the error function with respectpto

and . is a convergence factor. This parameter-update law possesses many interesting statis-
tical properties and is a proven algorithm. Its main problem is that obtai¥iigig:) is often
impractical and computationally intensive.

The simplest approximation t{n) is to use the instantaneous squared error instead. Then
£(n) = ¢*(n)

and the gradient used in the algorithm is

Vén) = 2[Ve(n)le(n) = —2x(n)e(n) (4.7)

When the estimate of the gradient in Equatidni/) is substituted in Equatiord(6) the well-
known LMS rule is obtained:

p(n+1) = p(n) + px(n)e(n) (4.8)

or, if using the control scheme in Figu4ed and thus the error expression #h3), its derivation
to FXLMS

p(n+1) = p(n) + ux'(n)e(n) (4.9)

This algorithm, as stated before, is simple, computationally inexpensive and effective. It
is a good quality/price choice. One could argue, nevertheless, that its derivation was carried
out in an ideal environment, with no consideration of model uncertainties or noise of any kind,
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which are necessary to guarantee boundedness properties of the parameters or the errors, or even
convergence of the algorithm. Two modifications were then applied to Equdti®nit order
to fulfill this lack of real considerations: robust normalization andhodification.

On the one hand, robust nhormalization is basically used to make the algorithm independent
of signal-power changes. On the other hamemodification guarantees boundedness of the
parameters and its derivatives and boundedness of the estimation error against modeling errors,
and also convergence of the algorithm (zero error) when there is no modeling error.

Robust normalization ang-modification are summarized in the following equations:

p(n+1) = (L—co(n))p(n)+ce(n)
e(n) = Kly(n)—g(n)]
__r(n)
K = 1+ mg(n)
g(n) = p'(n)r(n)

wherer(n) is the regressors vectat,is related to the convergence rate and is chosen by the
designer fronD < ¢ < 1. The adaptive value(n) plays an important role to avoid parameter
drift, and it is defined as

0 if lp(n)| < M
o(n) = (W—l)% it M < |p0)] < 2M
0 if p(n)| > 2M

The constant is a positive value such thay < (1 — ¢)/2. The constani\/ is a bound of
the Euclidean norm of the (unknown) true parameter &&tnust be estimated beforehand and
it allows bounding the parameters if their norm grows larger thanThe normalizing value
ms(n), initialized to zero, is calculated with the following equation

ms(n+1) = (1—d)ms(n) +2*(n) +y*(n)

wheredy is a parameter related to the frequency band, consideringdeoluncertainty.

In this work, the parameters of the algorithm were set to the following values throughout all
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the experiments: = 0.5, op = (1 — ¢)/4 = 0.125, M = 0.5 andjp = 0.1.

4.2.2 Real Time Stable Identification: A Nehari/SOS Approach

Clearly for a FF solution to ANC a stable adaptive identifizatis needed, which in turn should

be implemented in real-timd_{ie34 NE92 KM95]. There, significant noise attenuation can

be achieved through FB and/or FF controllers. As mentioned before, in the first case there
are many well known limitations of the feedback loop that produces a poor performance. These
performance limitations are mainly due to the nonminimum phase nature of the plaril(8&g [
SBG97, and also HB9§] and its revision in FHMTO03J]), which in turn is derived from the time
delay of sound propagatior,g.acoustic tubes. Instead, a FF filter performs better because it is
not restricted to the loop limitations. In this kind of application, the FF controller acts as a real
time identifier of the acoustic noise signal received by the error microphone at the end of the
tube, in order to cancel it at that point. Usually an adaptive identification scheme is used which
can produce unstable behaviors in many situations. A complete experimental study of an hybrid
— FF/FB controller applied to ANC in a tube can be found@Ms07.

As a consequence, a convergent adaptive identifier with guaranteed stable behavior and
numerical robustness is very useful in these situations. Such an algorithm is described
in [GSPnNMOT. Numerical stability is achieved by the use of Second OrdectiBns
(SOS) structures, and the stability of each section is guaranteed by a stable Nehari projection
([BGR9Q), which provides the nearest (optimal) stable model to aipbsunstable one. Due
to the fact that the objective of this procedure is to implement it in real time situations, the
Nehari projection is developed in analytical form.

Unstable Model Problems

As stated before in this work, the traditional assumptions in adaptive control (lack of perturba-
tions or high frequency uncertain dynamics and minimum phase models) have generated at the
end of the 80’s an intense work in the area of robustness of adaptiveTaa@3 Nar86 1S96].

These have been extensively studied since then, and an excellent survey in this area can be found
in [OT89.

Still then in adaptive identification, the stability of the resulting IIR model is generally not
guaranteed, causing serious practical problems particularly in FF implementations. There are
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methods to convert IIR to FIR like thRehari shuffle([KBG92]) and a recent LMI optimal
version in [YANO2], but the error is usually greater and requires a larger numwtygarameters

in general. The use of IIR filters instead of FIR structures has the potential to decrease the
identification error due to the fact that they include the poles dynamics. In addition, this class of
filters are more efficient in modeling signals in certain applications and require smaller model
orders (Ra093). Therefore an IIR filter that can guarantee a stable behawid can be used in

real time applications is a necessary tool in practical situations. As describgadSRPnMOT,

this can be achieved using the Nehari projection algorithm.

Numerical Problems

On the other hand, numerical problems also arise in real time applications, depending on the
structural representation of the model. Take for example an 11th. order stable filter implemented
with three different model structures: zero—pole (ZP), state space (SS) and transfer function
(TF), the latter in terms of numerator and denominator coefficients, as follows:

@) U Y anZoi

Woe=1y VT
=A B
(SS) Th+1 T + Duy
Yk = Czp + Duy,

The complexity of each model 8(m?) in the case of SS ar@(m) in the other two cases,
therefore from this point of view, the ZP and TF structures are more efficient. Nevertheless, it is
a well known fact that the pole locations in the case of the TF structure, particularly in high order
models, are significantly modified, even producing unstable paigls % 1), as illustrated in
Table4.1 On the other hand, it is easier to use the TF representatitire alifference equation
which implements the filter in real time, as follows:

1
yp=—  [boup+ -+ bm Up—m
ap

—a1 Yg—1 = — Qm Yk—m) (4.10)

Therefore, the TF representation has advantages in terms of complexity and implementation, but
serious disadvantages in terms of perturbations of pole locations, at least in high order models.

The solution to this problem is obtained by a series connection of SOS’, which is an adequate
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ZP SS TF
0.0034 0.0034 0.0034
0.9975 0.9975 1.0295
0.9975 0.9975 1.0295
0.9949 0.9949 1.0128
0.9949 0.9949 1.0128
0.9607 0.9607 0.9924
0.9608 0.9608 0.9924
0.9802 0.9802 0.9646
0.9995 0.9995 0.9646
0.9995 0.9995 0.9434
0.9961 0.9961 0.9434

Table 4.1: Absolute value of poles of a discrete—time system represented in
zero—poles (ZP), state—space (SS) and transfer function (TF).

way of implementing filters in real time. The SOS structure is numerically more efficient than
the plain TF structure due to the fact that it has 2nd. order numerator and denominator, there-
fore preserving the original pole—zero locations. In addition, cascade-forms of SOS provide
an attractive realization for adaptive IIR filters because the stability of the filter parametriza-
tion is easily monitored, and because filter pole locations are readily obtained from the adapted
parameters with low computational coStMAN95]).

In the previous example, the SOS’ pole locations coincides with the ZP and SS structures.
Furthermore it is stillO(m) and each SOS can be implemented as a difference equation con-
nected in series with all other SOS’, as follows:

V() "ﬁz 220+ 2 b+ b
N z72ab 4+ 2z 1al +1

(4.11)
=1

where each SOS correspond to a 2nd. order difference equation of the form

Y = boup+b1up_q+byup_o—aj yp_q —as Yp_o

wherea), = 1 for simplicity.
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Figure 4.7: Secondary circuit: (a) 12th. order experimental data
approximation - time response. (b) 12th. order experimental
data approximation - frequency response.

Application Examples

Examplel. The present and the next practical examples are taken from measurements in an
acoustic duct in an ANC experience. The duct is described in Chaptéhe input signal is
produced by an industrial fan and has been measured by the reference microphone located next
to it. The output signal has been measured by the error microphone at the other end of the tube,
therefore the primary circuit is identified. The identification scheme is based in the Projection
algorithm ([Tao03) and the initial coefficients of all SOS sections have beanmmated from an

off-line identification of the complete transfer function based on a parametric- nonparametric
technique (PSS99. This is a convenient practical approach so that the dlyoriis initiated

from a close enough neighborhood of the actual parameters. The off-line identification pro-
cedure can be anyone which can produce a sufficiently good model of the experimental data,
taking advantage of the fact that it does not need to be implemented in real time. The results are
presented in Figures.7, which evidence a good fit of the experimental data, both igueacy

and time.

Example2. This example considers experimental data generated by the same duct, but with the
control speaker as the main noise source producing a multi-sinusoidal signal. The output is
again obtained from the error microphone. The system to be identified is now the secondary
circuit based on a high order model (40th). Again, a previous off-line identification has been
made by means of a parametric—-nonparametric robust identification algorittR8 8. The
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Figure 4.8: 40th. order experimental data approximation.

online identification scheme is again based on the Projection algorithm and has considered the
first 500 data points. The remaining00 data points are used as a validation test. Here the main
objective is to test the algorithm against numerical errors produced in cases where high order
models are used. The fit is good enough and the error is bounded, as shown iME8gure



CHAPTERDS

FEEDBACK CONTROL STRUCTURES

The main objective approached in this chapter is to apply robust (control oriented) identification
to an ANC system, with a deterministic worst-case criteria in order to design a robust controller.
Based on the experimental knowledge of low frequency modes, a parametric/dynamic model
identification methodPSS99BMSO0]] is applied. This produces a multiplicative global uncer-

tain set to describe the physical plant, which exactly fits the robust controller design framework.
This is applied to an actual duct using two different noise sources: a speaker and a fan. The-
oretical and experimental results are presented and the resulting experimental performance is
comparable or even better than other robust methods applied to ANC.

5.1 Parametric/Dynamic Robust Identification

Here a systematic procedure that covers the experimentallyat model set is presented.
The data fed to the identification algorithm used to identify the model of the secondary circuit
Gsec(z) and the performance weighit’,(z) is as follows (see Figureés4(a) ands.1):

e Time signal measured at the error microphone which picks up the acoustic signal from
the noise source to identify the primary circuit’'s main perturbing frequencies.

e Input a DSP multi-sinusoidal (time) signal commanded to the control speaker, and read
the error microphone signal, to identify the secondary circuit.

35
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Figure 5.1: Feedback (FB) design setup, with primary circuit perturbation
(W),) and secondary model with multiplicative uncertainty.

The input and output time signals are converted to frequency domain informaianm
FFT. The frequency response data is obtained by dividing these signals —output over input. The
sampling time isT; = 0.2 ms, and500 Hz is the maximum input frequency to the system.
Therefore abov600 Hz this quotient has a large numerical error due to the fact that both signals
are almost zero there, hence it is filtered. The periodicity of the FFT is theoretit@lly
samples, and each experimental run‘hag)* samplesi.e. 20 sets. The average of these sets is
taken as the nominal experimental data and its deviation shows a reasonable short term repeata-
bility. In addition, measurements from one day to another also confirm a repeatable experiment.

The identification procedure can be found iRgS99 BMS01], and combines both para-
metric and dynamic models using time and/or frequency experimental input data. It is computed
solving a set of LMIs using the Toolbox inMPS04. This in turn is based on a general ratio-
nal interpolation theory developed iBGR9Q, which combines classical frequency response
(Nevanlinna—Pick) and time response (Carathéodory—Fejér) interpolation results.

It is a fact that the model order in classical interpolation duplicates the number of data
points, in the case of frequency data. Hence, the use of parametric second order models to fit
the most significant frequency peaks corresponding to the different modes appearing in the duct
(see HAV 196)), drastically reduces the model order. Therefore, the igimg part of the plant
can be suitably interpolated by a nonparametric dynamic model. This is valid not only in this
application but in any other problem where well defined peaks are present in the experimental
data,e.g.mechanical flexible structures, aeroelasticity.
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The class of priori models and measurement noise sets considered are in the framework
presented in PSSI98. They correspond to exponentially stable systems (finitmfimite di-
mensional) that satisfy the time domain bouh@k)| < Kp~*, defined by parametets < oo
andp > 1. The frequency and time domain noise sets are defined by hard bepiagsl ¢,
respectively:

Ny = e, mli<e}, No={neRY, il <al}

The experimental data arg; (N;) samples of the frequency (time) response of the system at
frequency (time) valueQ;, (i), corrupted by noise realizations belonging to the setsiqusly

defined. The frequency (time) noise bounds are based on the experimental setup. The parametric
information is fitted by means of a finite set of Kautz orthonormal basis) tuned to the
experimental information as shown iBYIS01]. This is supported by the modeling results for
these type of applications, as explained iHAY 796]. The resulting identified model has the

form:

N
Hig(z) = an<z>+2piBi<z>

The optimization procedure interpolates, within the error bounds, simultaneously the dy-
namic portion H,,(z) and the parametergp;, i = 1,...,N}, such that consistentyis
achieved. It is solvediia a set of LMI's, hence it is convex. Figue2(a) illustrates the fitting
of the 2nd order Kautz bases to the experimental information from a duct. The number of peaks
to be fitted depends on the particular application and is related to the frequency range where
performance should be guaranteed. Figugb) shows the selected interpolation poiri(c)
the parametric and dynamic components and model error of the secondary acoustic circuit, and
in Figure5.2(d) the resulting identified model.

From Figure5.2(c) it seems that the secondary model error could be suffigisntall to
provide a representative nominal model to design a controller. Nevertheless, the significance of
the model error depends on the use it will have, the resulting model order, and the performance
frequency range of interest. This is discussed next:

*A model is consistent if it can reproduce the experimental data within the sets of model anch nise
information.
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Figure 5.2: Secondary circuit: (a) Kautz bases fitting, (b) interpolation
points, (c) parametric, dynamic and model error, (d) identified
model.

Primary : In a feedback (FB) scheme (see FiguBefa) and5.1), the primary model combined

with the frequency response of the noise source provides a perturbation signal at the input of the
error microphone. Here only an approximate weighy is needed (see Figu&3(b)), which
emphasizes the main disturbing frequency bands where performance is required. Hence, the
order can be kept small, so that it does not significantly increase the controller order. In any
case, the efficiency of the weight in recovering the important frequency range is verified at the
endvia the robust performance analysis.

Secondary This model is used in the FB loop, and if the plant is represented by a multiplicative
uncertain set of models, thelative or multiplicative error is important, due to the fact that
both, robust stability and performance depend on the value it takes. This relative error is the
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Figure 5.3: (a) Uncertainty weight and multiplicative identification error,
(b) frequency response of the error microphone output with the
fan as the noise source, covered by the performance wiight

(additive) error illustrated in Figurs.2(c) divided by the experimental data in FiguseX(d),
frequency by frequency, which produces the curve in FiguB&). This can take very high
values at points where the magnitude of the experiment is neareer@t low frequencies

For design purposes, this error is “covered” by a weight also in Figures.3(a). The model

order of this weight increases the controller order, therefore it should be limited. Finally, the
fit of the secondary mode¥ .. in Figure5.2d) seems good enough, but its order is 96: too
high to design a feedback controller which should run in real time with the available hardware.
Not only real time implementation, but also humerical errors are a potential source of errors.
As a consequence, in this application the identification stage is performed taking these practical
problems into consideration.

5.2 Robust Controller Analysis and Design

This section applies standard results IDF[T92 ZDG96 SS9§ to this problem. The control
objective is to minimize at the error microphone output, the effect of the (acoustic noise) dis-
turbances due to the noise source passing through the primary circuit. Therefore, a practical

2Considering additive uncertainty does not help, because the inverse of the nominal model still appears in the
robust stability test}|W,a4(2)G sex (2)T(2) ||co = [|Ws(2)T(2)]|0o < 1.
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approach is to model the disturbance agtof signalsw(t) in a certain frequency range, rep-
resented by weightl’,(s) (see Figuré.1). If the energy of signaj(t) at the error microphone

is to be minimized, the approach from a worst case perspective, is to coallidesturbances

w(t) in the set. In addition, the system is represented by a global dynamic (multiplicative) set of
models:G 2 {[1 + Ws(2)A] Gsee(2), |A| < 1}, which is a practical description of uncertainty
which does not require structuredpriori knowledge of the plani.g. model order, and leads

to convex optimization solutions. The final objective is robust performance which solves both
problems simultaneously with the same controller. Necessary and sufficient conditions to meet
nominal performance (NP), robust stability (RS) and robust performance (RP) are, respectively:

NP — |yl <1, Viwll, 1= [ISEW(2)], <1 (5.1
RS < |IT(z)Ws(2)[ <1 (5.2)
RP «— |T(2)Ws(2)| +|S()W,(2)| <1, Vz=eT (5.3)

The robust performance condition coincides with thgemi-)norm for this SISO problem.
Here S(z) andT'(z) are the sensitivity function and its complement, dngl, represents the
energy of the signal. For practical reasons, instead of ugisgnthesis, the design is solved as
a mixed sensitivity problem usintf,, control, because it produces a lower order controller.

(5.4)

min
i.5.K(2)

T<z>W5<z>]
S(2)Wp(2)

o0

Herei.s. stands for internally stabilizing controllers. Both the performabiceand the ro-
bustnesd¥s weights are related to the performance specifications amdifidation data of the
problem, respectively. The reasoning behind the weight selection is as follows.

The performance objective is to decrease the sensitivity of the system at the main frequencies
of the signal coming from the primary circuit. The combination of primary circuit's and noise
source frequency responses have the main peaks in the [ginde5] Hz, as can be observed
in Figure5.3(b). Therefore,IW,(z) has been selected such that it increases the performance
at those frequencies as illustrated in the same figure. The robustness Wgight has been
obtained so that it “covers” the multiplicative error frequency response, particularly in the range
where performance is needed (see FiguBa)).

From a practical standpoint, the robust performance condita8) €ould be modified by
replacing the uncertainty weight’s(z) by the actual frequency magnitude of uncertainty (full
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Figure 5.4: Secondary circuit: (a) less Kautz basis, (b) less interpolation
points concentrated in performance region, (c) parametric,
dynamic and model error, (d) identified model.

line in Figure5.3@)). Hence, the design would still use the weidk§(z), but the analysis
condition would be more realistic by using the actual multiplicative error. Another practical
issue is actuator saturation, which could be considered in the design procedure. Special attention
to this kind of practical issues will be given in Sectier2.
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5.3 Main Results

5.3.1 Identification preliminaries

Due to practical compromises related with model order anfbpaance bandwidth (explained
further in section6.2, in a compendium of practical compromises which arise in timist
identification and controller design stage for ANC systems, and its solutions) the order of the
nominal model has been decreased by eliminating interpolation points and concentrating them in
the important “performance” bands. The fit of the secondary m@dglin Figure5.2d) seems

good enough, but its order is 96: too high to design a feedback controller which should run in
real time with the available hardware. Not only real time implementation, but also numerical
errors are a potential source of errors. As a consequence, in this application the identification
stage is performed taking these practical problems into consideration. The multiplicative iden-
tification error restricts not only RS, but also performance robustness. Therefore, it should be
decreased only in the regions where higher performance is needed, i.e. at the "performance”
range pointed out previously. This has been solved by adding more interpolation points in this
frequency range, keeping the total number of points as low as possible not to increase the order
(compare Figureés.4(a) with 5.2(a)). This is a way of keeping track of the relation between
robustness and performance as well as the order of the controller at the identification stage,
instead of only reducing the order of the controller at the end of the design. In addition, the
number of Kautz basis have been reduced from five to three, for the same reason. If necessary
at the end, a balanced model order reduction step can be applied to the controller, based upon its
Hankel singular values. According to the previous comments, a new identification iteration was
carried out for the total design. Previously, 44 interpolating points (order 86), plus 5 Kautz basis
(order 10) resulted in a 96th order nominal model (see Figbi&a) to5.2(d)). Instead, a new
identification was performed with 3 Kautz basis and only 20 interpolation points (Figue3

and 5.4(b)), producing at4th order model (Figure5.4(c) and (d)). Note that this model does

not fit the experimental data as well as the previous one, but now it has a much lower order.
The identification (additive) error in Figu&2(c) is much lower than the one in Figuse4(c),

which can also be seen by comparing FiguseZd) with 5.4(d). Now, the identification has

been concentrated in the frequency rafffe 115] Hz and as a consequence, the multiplicative
error is better in this “performance” band, as illustrated in Fidghi#a). Nevertheless, note

that at frequencies abo280 Hz the weighti¥s does not cover the multiplicative identification

error. To achieve this coverage, a higher order weight could have been considered, which in turn
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Figure 5.5: (@) Structured singular value robust performance analysis, (b)
practical robust performance analysis.

would have increased the controller order. Instead, wéightn figure 5.3(a) was used in the
design stage, but the multiplicative identification error in the same figure (dashed) replaced
in condition 6.3), for the robust performance analysis. This provides a maetigal analysis
condition.

The controller was designed using the weights in FiguBe After a balanced realization
and state truncation, based on its Hankel singular values, the order was reduiced The
theoretical and experimental results are compared in the next section.

5.3.2 Experimental Results

In this section, theoretical and experimental results angoemed. Two noise disturbance signals
were applied: an industrial fan (see Fig@t#), and a speaker located at the same place as the fan
but excited by a signal generator. The frequency response of the fan through the primary circuit
measured by the error microphone can be seen in Figub), and the relevant frequencies
that perturb the output of the tube are aroufd and105-110 Hz. The actual fan could have
possible nonlinearities and/or time variations that have not been taken into account inthe LTI
statement of the problem. The speaker is used instead to geathise in the [95,115] Hz
band and provides a more controllable (as well as ideal) experimental setup, producing similar

3Linear Time Invariant.
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conditions as the ones in the identification experiments.
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The theoretical analysis is presented in Figuréga) and (b). In the first one, nominal per-
formance, robust stability and the robust performance test in Equ&ti§na¢e compared. As
indicated previously, the latter coincides with the optimal measure provided by the structured
singular values in this case, due to the fact that the system is SISO. These are all below unity,
therefore the design guarantees robustness and performance simultaneously. Nevertheless, due
to the fact that the actual uncertainty is not covered at all frequencies by the uncertainty weight
Ws (Figure5.3(a)), a slightly more practical analysis condition has beamsilered, as com-
mented in sectiob.2 In Figure5.5b), the magnitude response of the actual relative uncéytain
of the model (the multiplicative error in FiguBe3(a)) replaces the weight’s in the robust per-
formance conditionH.3). This new condition is still below one which provides moragiical
guarantees of robust stability and performance.

Note that the robust performance condition could have been pushed near to one, therefore in-
creasing performance. This was attempted as a new design, and performandefinithig Hz
bandwidth was therefore increased to aroli®diB of attenuation. Nevertheless this controller
also produced an excessive amplificatiorf at 65 Hz, that although outside the region excited
by the speaker and the fan, still produced an audible disturbing noise. This is a clear con-
sequence of thevaterbedeffect, where theory predicts an amplification of frequencies outside
this bandwidth as shown in Figute6. Therefore, the previous design was left with the resulting



46 Chapter 5 : Feedback Control Structures

100 Hz 105 Hz 110 Hz [95,115] Hz
Theory 12 dB 13.2dB 11.5dB 13.2dB
Speaker 13.3dB 13.6 dB 12.15dB 10.3dB
Fan 13dB 14.6 dB (@106 Hz) — 14.3 dB

Table 5.1: Feedback controller performance (attenuation) comparison.

performance presented in Taldel

Performance is measured as the controlled (closed loop) over the uncontrolled (open loop)
attenuation. It can be theoretically predicted using the magnitude of the sensitivity function at
the relevant frequencies mentioned previously, as illustrated in Fig@rdn practice instead,
the performance of the speaker and fan experiments are calculated as the quotient between the
energy of the signals at the error microphone, in closed and open loop, respectively. These
results are presented in Tallel. The attenuation between controlled and uncontrolled behav
iors for both experiments are also illustrated in Figlse&and5.8, which compare magnitudes
instead of dB'’s for clarity of presentation.

The Table presents the attenuation at the most relevant peaks, in thit06a$e5 and
110 Hz, as well as the attenuation in the whole bandwidth. Note that the theoretical values have
a good match with both experiments. The experiments with the fan were not as “clean” as the
ones with the speaker, due to a slight nonlinear and/or time varying behavior, possibly explained
by a variable rotation speed and/or atmospherical chamggsdmperature, humidity). For this
reason, the controller was tuned to perform better in the whole band@igtihl5] Hz, and
not only at the main peaks amplified by the fai®0 and 106 Hz. Experiments performed in
different days with the same fan showed a (slow) shift in these peaks, but always inside the
relevant bandwidth. This is also the reason why experiments with a speaker that had a clear LTI
behavior for all experimental outcomes have been performed.

Finally some comments on the overall match between theory and both experiments. Theo-
retical results assume a certain amount of uncertainty in the model, in order to guarantee both
stability and performance fall models in the global dynamic (multiplicative) seg. robust-
ness. Note that the uncertainty weight, particularly in the relevant frequencies, does not cover
tightly enough theactual uncertainty curve (see Figu&3@)). The slight conservatism in-
troduced by this coverage was at the expense of not increasing the weight's order and hence
the controller order. The resulting performance depends on how near the actual plant is to the
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nominal model (higher) or to thevorst casemodel (lower). The same happens with the set

of disturbanceq W, (s)w, ||w|l2 < 1}, where for every element in the set, a different perfor-
mance is obtained. In both casés,, control designs for the worst model and disturbance in
both sets, but the actual result dependsarat model and disturbance really occurs. This is a
partial explanation why the theoretical, fan and speaker overall performances differ from one to
another.

Finally, the overall experimental performance is comparable or even better than other works
in the area. Next steps consider general hybrid (FF/FB) control structures and sensor and ac-
tuator locations as part of the control design problem. Research concerning these areas will be
shown in Chapte6 and Chapteir. Moreover, in Chapted the compromises between identifi-
cation and control in a practical ANC situation will be also discussed in detalil.



48

Chapter 5 : Feedback Control Structures




CHAPTER 6

HYBRID (FEEDFORWARD FEEDBACK)
STRUCTURES

In this chapter, an hybrid (FF/FB) controller is designed to cancel the acoustic noise in the

duct described in Chapt& Furthermore, the compromises and practical issues whisé iar

the robust identification and controller design stages for an ANC system are explicitly pointed

out. These are mainly derived from the compromises between identification and control, per-
formance and robustness, feedback limitations, model and controller order, and implementation

issues.

The control system has a FULMS control structure as shown in Figg@revhich has been
explained in greater detail in Sectidh2 and Sectiod.l This structure avoids the use of
unstable filters for the cancelation of the nonminimum phase zeros of the secondary path, and
compensates the acoustic feedback. The FF controller is based on the robustly noremalized
algorithm and is adaptive in nature (see Sectidhl), and the FB is arfit., optimal controller
(see Sectiorb.2). Due to changes in the structure of the experimental plagu(g 3.1) from
experiments in Chaptes, a complete new process of system identification and desitiredtB
controller has been performed in this chapter.

6.1 Experimental Results

The controllers have been tested with three input noise sssee Chapte):

49
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function.S for the synthetic-fan experiment

Structure Order Single tone Synthetic fan Industrial fan

FF 30 81.25 dB 9.56 dB 7.56 dB
FB 12 3.90 dB 4.15 dB 3.82dB
Hybrid 30+12 82.36 dB 12.72 dB 10.1 dB

Table 6.1: Experimental characteristics and attenuation for different control
structures

o A speaker-generated single-frequency ton@ef 105 Hz.

e A speaker-generated synthetic fan with bandwidtk [95, 115] Hz.

e The actual industrial fan.

The results are presented in Tabld. The hybrid design was also tested with the real fan
and shows a good agreement with the synthetic test (see values in the same table).@Rjures
6.3and6.4 compare the open-loop and closed-loop responses for theedifferent input noise
sources, respectively. FiguBebshows the attenuation attained by the hybrid (FF/FB) cdetrol
with the three different input signals. The attenuation values for the actual and the synthetic fan
correspond to the performance bandwidth of interest.
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Some comments on these results are pointed out next. The FF controller performs much
better for a single tone. This seems less demanding for the adaptation algorithm than a set of
different tones, for which the performance decreases significantly. Nevertheless, in this last case
where a finite bandwidth is applied, the results are similar for both the synthetic and industrial
fan.

The FB controller has clear performance limitations, mainly due to the nonminimum phase
zeros, hence it does not perform as well as the FF. It has been designed based on a (conser-
vative) set of models that represents the actual plant. This explains why this robust controller
performs similarly for all inputs. Only with more information on the real fae, less uncer-
tainty and a smaller model set, could the controller have performed better, probably with the
extra cost of a higher order. Another step to increase performance would be to include the fan’s
nonlinear/time-varying characteristics in the model and uncertainty descriptions, and design a
nonlinear controller.

In the same table, there is a good agreement in the attenuation produced by each controller
separately, and combined together in an hybrid structure for all three inmutshe sum of
both values add up to approximately the attenuation for the hybrid control. Although this design
approach was tuned to the synthetic signal, it performs very well when applied to the real fan,
as indicated in Tablé.1 This result can be justified by the fact that model uncenasovered
both, synthetic and real fans, in the same set.

6.2 Compromises and Discrepancies between Theory and Prao#

6.2.1 Practical Compromises and Solutions

Besides maximizing performance and robustness, it is irapbkb consider several practical
constraints. They generate compromises in the controller design and possible identification
iterations. These compromises arise from different sources: (i) feedback-loop constraints (see
[FL85, SBG97, and in particular for ANC, seeHB98)), (ii) identification and control design
interplay, (iii) implementation issues. These practical problems, which impose constraints in
this application, are enumerated altogether next.
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©

The nominal model of the secondary path has right half-plane zeros that limits perfor-
mance in the FB case.

Frequency interpolation is used as an identification tool, therefore the model order is
directly related to the number of interpolation points.

The usual robustness/performance compromise is a direct consequence in this case of
Equation 6.3). This, in addition, forces an identification/control commprise,i.e. the
multiplicative identification error should be lower than one in frequencies where noise
attenuation (performance) is needed.

An additional problem is added related to the previous point. At certain frequencies where
the magnitude of the model is small, the relative identification error increases; sometimes
above unity.

Performance and robustness design weights increase the order of the augmented plant’s
model and therefore, of the controller.

. The FB controller usually has poles very close to the unit circle in the design stage, which
may lead to instability in the implementation, due to numerical issues.

The simplest way to represent the FB transfer function for controller implementation is
numerator/denominator polynomials. This may lead to important pole distortion when it
is implemented, specially with high-order polynomials.

. Actuator saturation should be taken into account.

. DSP implementation and sample time impose limitations on FF and FB controller orders.

Next, some solutions adopted in this application for the previous compromises are enumer-

ated.

e Nonminimal phase models restrict performance in a well-known way. In fact they suffer

from thewaterbedeffect, pointed out infL85, SBG97, which determines lower bounds

in the size of the peaks of the sensitivity function magnit|ie’7*)|. Itis clear from

here that the lower the sensitivity will be in certain frequency bands, the higher it will
increase in others. Hence, the performance wdightz) should reflect a decrease in the
sensitivityonly at frequency bands with the highest peaks of the error microphone output,
i.e. in the range in[95,115] Hz. This frequency band, also called the “performance”
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range, determines the frequencies in which the sensitivity is below one, as indicated by
Equation 6.1). Thewaterbedeffect can be seen in Figuéel, where clearly the sensitivity

is below one, and hence there is disturbance attenuation, only in the “performance” range
[95,115] Hz. Instead, the controller will amplify signals with frequency content outside
this range. This is not a problem when these signals have a small magnitude there, as
illustrated in this case by the fan signal in Figéré.

e From Equation %.3), it is clear that only at frequencies where the multiplieatidentifi-
cation error is below one can robust performance be achieved. Theréfgfe) should
be decreased as much as possible (while still bounding the relative identification error)
only in frequencies where attenuation is needes,at the “performance” range pointed
out previously. This has been solved by adding more interpolation points in this frequency
range, keeping the total number of points as low as possible to avoid increasing the order.
This is a way of keeping track of the relation between robustness and performance, as
well as the order of the controller at the identification stage, instead of only reducing the
order of the controller at the end of the design.

e The order of the nominal model may also be decreased by eliminating interpolation points
and concentrating them in the important “performance” bands, as similarly done in Chap-
ter5. If necessary at the end, a balanced model order-reductprcan be applied to the
controller, based upon its Hankel singular values.

e The relative identification error applied to the nominal model of the secondary path
Giec(2) in Figure5.1, could be larger at frequencies Whe@,..(e?**)| is small. To
decrease it, either the nominal model can be changed locally or the noise set (and hence
the identification error) can be made frequency dependent. In the latter case, the identifi-
cation error bound is weighted to make it directly proportional {6, (7).

e The orders of both weight$},, andWs, have been kept as low as possible, while taking
into account the performance and robustness features pointed out previously. For exam-
ple, they have been chosen as follows:

2% — 1.464z + 0.538
W = 0.177 6.1
»(2) 01776 3692 + 0.931 ©-

22 —1.914z + 0.9756
W, — 0978 6.2
5(2) 22— 1.7752 + 0.8086 (6.2)

and illustrated in Figuré.1
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e The FB controller has been finally implemented rescaling the magnitude of the poles clos-
est to the unit circle, to avoid controller fragility. Clearly, this modifies the dynamics of
the controller, therefore the analysis to assure robust performance must be rechecked. The
analysis figures presented in this chapter were obtained using the implemented nonfragile
FB controller.

e The previous controller was implemented using a series connection of SOS, which are
numerically more efficient than the polynomial representation (see Setad.

e Actuator saturation could be taken into account at the design stage by considering an
extra weight at the controller’s output. In this case, due to the fact that there was no clear
saturation problem, the controller action was evaluated at the analysis and implementation
stages, to avoid increasing the order of the augmented design model, and hence of the
controller. According to the experimental results, the controller action was well within
saturation limits.

6.2.2 Discrepancies between Theory and Practice

As stated before, ANC is an active area of research and mdieyatif applications have been
attemptede.qg. industrial and air-conditioning ducts, high-energy transformers, helmets, win-
dows and airport surroundings. The main practical and commercial approaches consider linear
models and adaptive FF solutions. There are clearly still many practical issues to be solved, for
which more applied theory has to be developed. These issues increase when considering 3D
environments like boxes, cabinets or even outdoor situations. A nonexhaustive list of the main
issues that arise in this particular application, is presented next.

e Stability and robustness issues in adaptive FF controllers should be carefully considered.
In practical situations, stability can be a potential (and fundamental) source of problems.
Nonconservative nonlinear analysis tools should be used to solve this problem, so that
stability and performance guarantees could be given.

e Control-oriented identification with a worst-case deterministic error bound that fits robust
design methods can be very conservative in general. In the present case, the robust identi-
fication procedure used a local (experimental) identification error, instead of the global er-
ror. The more detailed the description of the system, the better performance the controller
can obtain. Therefore, structured uncertainty, nonlinear and/or time-varying information
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could improve the system’s description and hence the resulting performance. Very limited
results have been developed for nonlinear and/or time-varying system identification with
a worst-case deterministic erre.g.[SM03 MS04].

e High relative modeling errors (multiplicative uncertainty) in frequencies where the exper-
imental data has smaller absolute values, clearly limits robust stability and, as a conse-
guence, the achievable robust performance at these frequencies. Control-oriented identi-
fication could consider this problem as part of the procedure to obtain the nominal model,
as a way to minimize the uncertainty in certain frequency bandwidths.

e Controller order has to be limited due to its practical real-time implementation. Model
order-reduction methods, as the ones based on Hankel singular values or using frequency-
band weighting, are applied. At the different stages of the identification and controller
design, there are instances where controller order can be lireitgdelection and num-
ber of interpolation points, number of Kautz bases, order reduction of nominal model and
weight-order selection. A clear analysis on how to decide on each instance could be very
practical. In addition, design methods that consider the controller order as part of the
formulation, would decrease the number of design iterations.

e Controller implementation is also an important issue, which could destroy the theoretical
performance and robustness result. Numerical precision problems can arise (see Sec-
tion 4.2.2, which produce a gap between the controller design and ideimentation,
derived in an internally fragile controller. Problems such as digital filter poles too close
to the unit circle or pole distortion using numerator/denominator high-order polynomials,
can be solved if they are taken into account at the design stage. To this end, numerically
robust representations,g. series connection of SOS, can be used to implement the con-
trollers in the DSP or microcomputer. Tools to take these numerical issues into account
and avoid controller fragility, should be considered.

Sensor and actuator allocation should be part of the identification and controller design,
similarly to what has been done in aircraft design. This could provide a global optimization
design environment and would certainly relieve some of the present limitations. Some work in
this area is presented in Chapter
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CHAPTER 7/

SENSOR/ACTUATOR ALLOCATION

As a consequence of all comments stated in Se@i@nthis part of the work is focused in
computing a practical measure for S/A allocation, previous to controller design and implemen-
tationt. The general control configuration in Figuze will be used, based on Linear Fractional
Transformations (LFT), which accommodate many practical applications. The basic character-
istics of these type of applications are: a stable uncertain plant with time delays and/or RHP
zeros, lightly damped dynamics and, as with many other applicationsfagtlllynamics, the

need of a low order controller for real time implementation. The measure sought combines rel-
evant issues concerning performance, robustness and implementation. The approach presented
here is focused in computing the optimal S/A combination achieving the best performance and
controller complexity, assuming that a controller exists which can be easily verified in general,
e.g. for mixed sensitivityH., control use condition inGKF89. The performance weight

W, (s) and its corresponding bandwidth where noise attenuation is desired is also a problem
input data.

A part of the S/A location measure considers properties of the model itselfrasiisrical
order, computed by means of the Hankel Singular Values (HSV). Hence it includes simulta-
neouslyW. andW,, and therefore takes into account the controller order @mamal to the
augmented model order), a key issue for real time implementation. Model uncertainty is con-
sidered as global and dynamic, which provides a fairly general way to describe many practical

'Here, equivalent conditions are computed téx, optimal controller existence, previous to building, imple-
menting or testing the actual controller. Controller existence can be verified using the three conditions based on
the performance measuse[DGKF89. Alternative options in the one and four block problems dse grovided
[SS98.

61
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situations without excessive conservativeness. Instead, structured dynamic or parametric uncer-
tainty may lead to higher order and/or suboptimal controllers, as in the casesgfithesis or
non-optimal parametric design procedures. In addition, works focused on performance under
structured uncertainty modelsBMP94] cannot compute an S/A measure previous to controller
design.

Furthermore, the bandwidth and performance limitations imposed by model uncertainty and
nonminimum phase zeros are also taken into account, the latter bas&tHbiT Q3] for the
general setup in Figure.2 Hence, the performance and uncertainty weights are proiolpat
data. The computation of all the measures can be made with standard software either for SISO
or MIMO models. Without loss of generality stable systems are considered, which still cover
many important application®.g. vibration and acoustics active control, robotics, large space
structures, etc. Similar tools as the ones presented in this work can be generated in the case of
unstable systems With the same approach, some preliminary results have besemqted by
the authors in $PCIE0§, and tested on duct simulations based on the model in Segtibn
[HAV T96]. Here instead, an update of the S/A measures and a full expetal testing of the
methodology has been made.

Finally, as mentioned inJ[T99 it is unlikely that the methods that solve the S/A selection
problem have polynomial time complexity, since most of the methods are indirect in the sense
that a candidate-by-candidate test should be performed. Nevertheless controller design and im-
plementation are not necessary in order to compute the S/A location measure in this case (see
footnote 1), which reduces the time search. Therefore, based on theatal characteristics
of S/A location methods, the one presented here is: well-founded, efficient (because it does
not involve controller implementation, although it is not polynomial-time complexity), gener-
ally applicable (it uses the general structure in FigRitd, rigorous (it considers performance,
robustness and implementation), quantitative, controller independent and indirect.

The chapter is organized as follows: In next section some background material and the
control design setup are presented. In secli@the main results of this chapter are introduced.
Finally, the real example presented in Cha@dtustrates the application of these measures in
an acoustic tube used for active noise control (ANC) and is validated against experimental data
in section7.3.

2For example, the limitations due to unstable poles can also be obtained Fi¢MT03], the computation of
the HSV can be separated among stable and unstable subsystems, and care must be taken when considering the
set of uncertain models that all have the same number of unstable poles, when describing them as global dynamic
uncertainty.
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7.1 Background and Control Problem Motivation

The control configuration adopted is the general one in Figuavhich represents all possible
linear control problems. Her&(s) is the augmented model which includes not only the nominal
plantG,,(s) but also the specification weights,g. performance, uncertainty, actuator bounds,
etc.

G(s) = Gow(s) gZU(S)

Gyw(s)

Also w is the disturbance vectot, the vector of signals to be minimize@y, y) the input and
outputs of the system, ani, (-) the lower linear fractional transformation operator. This set-

ting may consider general performance and robustness constraints and applies not only to SISO
but also to MIMO systems. For example, the performance objective may be represented by the
weight 1V, (s) on the error signal, which has larger values in the bandwitltthere attenua-

tion is desired. Without loss of generality, robust performance quantifigdby(s)|| ., could
represent a typical mixed sensitivity problem. Another way of representing the same problem

would be||T%,(s,v)| < 1, where the minimumy that weights performance,g. %Wp(s), is

oo

sought.

7.1.1 Model realizations

S/A allocation is an important part of the identification arahitol problem in most appli-
cations. Nominal model-based measure8KBO01], or even uncertain model-based criteria
[PPOg which evaluate S/A allocation, are based on the contrditgldind observability gram-

mians W, and W,. These measures depend on the state definition and furtrersemsor

and actuator location problems are treated independently, based on both grammians separately.
Here instead, measures that involve the system as a whole from an input/output perspective, are
needed.

To avoid this, in this work a standard state-space representation of models is used, which has
been extensively employed for model order reductigod81, Glo84]. This is the internally
balanced state-space realization which has the particular advantage that both grammians are
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equal and diagonal, with the (ordered) Hankel singular values in their diag@nal,

It provides the optimal balance between controllability and observability and allows a stable and
balanced model order reduction by truncation of the states corresponding to the smallest Hankel
singular values. In addition, a bound on the reduction error can be obtained as a function of these
values. More importantly, balanced realizations provide the minimal condition number of the
observability and controllability grammian®po81] over all possible state space realizations,

i.e.
mjin max [k(W,), k(W) = —

wherex (W) = i%; is the condition number. This allows a coherent distributbthe states,

so that the “more” (higher Hankel singular values) controllable ones are also the “more” observ-

able ones.

As in any practical case, if accessibility is guaranteed (the states accessible from the inputs,
and the outputs from the states) necessary and sufficient conditions for structural state control-
lability and observability are guaranteed according\i&B(J.

7.1.2 Performance limitations

Concerning performance limitations, a recent work has beadenfor the feedback structure
adopted here (Figur2.2) and in FHMTO3], which generalizes the one i[[85]. The lim-

itations imposed by RHP poles and zeros have been quantified and they reduce to the usual
limitations for a standard feedback looBL[85] when det[G] = 0 and then the LFT is said

to bereducibleto a feedback loop. This is the case when the performance output is measured
for feedbackz = y or when the control and disturbance excite the system in the same point,
w = u. As commented previously, without loss of generality the RHP pole limitations will not

be considered here.

In the general caselt[G] # 0), the algebraic limitations on robust performan@g., ||
are imposed by the RHP zerds;,...,s,) of G, or G, with multiplicities satisfying
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M (S) < Mau(S) + myw(s) and are quantified as follows:

o AN
HTZU}”oo > Hl]c“iX ’sz(gj)‘ =7z (71)
G.w(s) = G2,(5)B(s)

where B.(s) is the Blaschke product corresponding to all RHP zerpsvhich absorbs them
from G (s) (Corollary IV.2 of [FHMTO03]). As a consequencey. poses a lower limit to

the robust performance measuye Usually the RHP zeros of the modél,,, constraint the
sensitivity function, but note here that they only contribute to the performance limitation in the
case reducible to a feedback lodp, det(G) = 0.

Measurey, quantifies the RHP zeros limitation but is just a lower boundhenclosed loop
transfer function performance and may not be representative of the actual performance of the
loop wheny > ~,. Thus, a more realistic value of the optimal performanceatbalconsidered
in order not to provide exceedingly conservative results.

7.1.3 Robust performance computation

To this end, the exact value gfcan be computed beforehand based on the Youla parametrization
approach in order to solve tie, problem, see@DL86, Doy84]. All possible closed loop
models can be represented as:

T,w = T+ T12QT5, Q€ Hoo (7.2)

assuming the loop is well posed. Since tHg, norm is invariant under multiplication by unitary
matrices, the problem can be transformed into:

1Towllee = [1T11 + T12QT21]| o (7.3)
~ Ty 1~
= |:T12’J_ le] (T11 + T12QTon) | 20 (7.4)
Tn
R R
_ 11 12 (75)
Ry1 Ryp +QJf_
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where

Ri1 Rio
Ra1 Roo

4

= [T12,J_ T12}NT11
T

Tz“] (7.6)

Here R is completely anti-stable and can be built from the augmented n@gel which in-
cludes the specification weights as well as the nominal mé@deis the orthogonal complement
and A~(s) = AT (—s) the adjoint operator. Th#(,, controller synthesis can be recast as the
following approximation problem:

0 0
v = iélaf{”R—i—Qa”oo:Qa:[O Q],QGHOO} (7.7)

This is called the four-block problem and can be solved exactly before building the controller in
two cases.

¢ Inthe one block problene.g.optimal nominal performance, EquationT) can be solved
as a Nehari approximation problem

7 = BH{IR+Qllc Q € Hoo} = ITrll = IRy

where||I'g|| is the Hankel operator faR and|| - || i its Hankel norm.

e Using the all-pass embeddin®4r7§ and based on the procedures ®LD91] and
[LKJIS88, the equivalence between the one- and four-block problende proved (see
also [5S9§). Hence, from Equation7(7) the optimal~y can be computed exactly by
solving a pair of Ricatti equations and a spectral radius condition, when the following

J

restriction applies:

Rip
Roy

vo> maX{H[Rll 312”‘00,
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In general and similar to the previous result, the exact valugaain be obtained from th¥ .,
solution proposed indGKF8Y, also known as the DGKF approach. HfE || < 7 if and
only if the following conditions are achieved:

i) Heo € dom(Ric) andXo 2 Ric(Hs) > 0

i) Jo € dom(Ric) andYs, 2 Ric(J) > 0

i) p(XooYao) < 72

whereH ., andJ,, stand for two Hamiltonian matrices:

AT ,.Y—2C1T01 — CQTCQ
—BBY —A

A A ’y_zBle — BQB%
—cTo AT

H.. 2

Y [e.e]

Here the Hamiltonian domain is representediby:( Ric), which meets all necessary conditions
to have a unique solution of the Ricatti equatip(,) is the spectral radius and the open loop
data of the augmented plant is:

Al B B
G=|Ci| 0 Dy

Here~ is computed by means of the equivalent conditions i) to iii), but building the con-
troller is not actually needed. It may be argued that building the controller is just at a short step
from this point, but more importantly, controller implementation and test are not needed neither,
and here is where most of the work for the S/A selection is usually done.

Next two bounds fory which will be used in the sequel, are defined. For RP, the optimal
solution to the worst case model/disturbance prob]ém, |« is represented &g, e.g. in a
mixed sensitivity problem:

<7 (7.8)
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On the other hand, NP is defined as the worst case performance foothieal model, the
optimal beingy. For example, in a tracking error minimization under energy bounded output
weighted byiV,(s) disturbances problem, it stands as follows:

NP <= [[S(s)Wp(s)llo <7 (7.9)

Herey can be computed ds?||;, due to the fact it is a one-block problem. As a consequence,
the actual plant will have a performance leydbounded by

0<y, <y<~v<7H (7.10)

7.1.4 Model uncertainty

There are many model uncertainty representations, dyngraremetric, structured, unstruc-
tured. One of the most used in practice is global dynamic multiplicative uncert&ify92:

G £ {G=T+AWs(s)Gols), 7(a] <1} (7.11)

This is due to the fact that it accommodates many practical cases which include: high order un-
known dynamics, linearization uncertainty, infinite dimensional models, unknown time delays
all of which apply to mechanics, aerospace, acoustics and many other engineering problems. In
addition, in a simple RS problem with this type of uncertainty and a typical high-pass uncertainty
weightW;(s), its crossover frequency poses an upper limit for the performance bandwidth or, in
other words, performance can be achieved at those frequencies afi€§€)w)] < 1 because:

RS — o [Ws(w)T(w)] <1 Vw (7.12)
g[Ws(pw)] >  eqlw)=a { [é(]w) — Go(jw)] G;l(jw)} eR (7.13)

As a consequence, the limitations on geformance bandwidth due to model uncertainty
can be quantified as follows:

0, - { S (W — W), Yw € [w,w] C Q such that} (7.14)

€rel (]w) S 1

where clearlyw? > wf, Vi = 1,--- ,n. This measures the relative size of the bandwidth with
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respect to the desired on@)(for which robust performance should be achieved. It may well be
zero if such conditions are not meég. the relative erroe,..;(yw) > 1 in Equation {.13 for all
frequenciesv, hence robust performance cannot be achieved in that case.

On the other hand, the direct limitation on RP due to the size of the uncertainty could be
measured by means of a different parameter. Again, taking the example of the mixed sensitivity
problem described previously, a sufficient condition for robust performance is:

RP <= a[Wy(s)S(s)]+a[Ws(s)T(s)] <1 (7.15)

Then the relative error size may be directly considered to measure performance limitations as
follows:

eer'el = mmn {17 <I$1€aé( €rel (]w)> } (716)

Here the fact thatVs is defined by Equation7(13 is used. Another index could compdaré;
with the actual relative errat,.; to indicate if the uncertainty weight has been chosen cdyrect
as will be seen in next section.

Furthermore, some bounds oh15 can be stated3lo84]:

¥ o< g [Wp(s)S(s)] +a [Ws(s)T'(s)] <27 (7.17)
RP «— 2v<1 (7.18)

7.1.5 1/O relative gains

Another important issue in control problems is the I/O relagains of the system to be con-
trolled, which may be represented by its condition numbgF(s)]. It plays an important role

in many practical situationg.g. high-purity distillation, see$MD88, as a factor in the inter-

play between performance and input dynamic uncertainty, clearly only for MIMO systems. For
example in a classical loop-shaping design where the tracking error attenuation is weighted by
W,(s), a sufficient condition for robust performance is affected by this parameter when global
input actuator dynamic uncertainty weighted B (s) is presentZDG96 SS9§, i.e.

RP <= k[G(9)]a[Wp(s)S(s)]+a[Ws(s)T(s)] <1, Vs=jw (7.19)
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As a consequence, RP decreases at frequencies wl@tew)] is large.

7.1.6 Recap

As a result of all the above considerations, several qudpigfiealues can be related with per-
formance, robustness and controller implementation:

¢ Right half—plane zeros limit performance in the general cdsg@] # 0) as indicated in
Equation 7.1). A usual interpretationFT9Z considers that they pose a similar perfor-
mance limitation as dynamic uncertainty.

e Model errors quantified as global multiplicative dynamic uncertainty, pose a robust per-
formance bandwidth limitation measured 9y in (7.14) and also quantified by, __, in

(7.16.

e The controller order is directly related to themerically sensiblenodel order. The latter
is obtained from the set of positive Hankel singular values of the system’s model balanced

realization.

¢ In the case of MIMO systems, the nominal model condition nuni{€f,) combined
with actuator (input) dynamic uncertainty is also a performance limiting factor.

In the main part of this work which will be presented in next section, the criteria to define
the S/A optimal location takes into account the final goal pursued by any identification and
control methodology: closed loop robust performance and controller implementation. Hence,
all these items will be taken into consideration when defining measures that quantify the S/A
allocation. Furthermore, these S/A measures may be compefedethe actual controller is
designed and/or tested, in order to minimize the combinatorial search over all S/A locations.

7.2 S/A Allocation Measure

Several S/A location measures will be defined in a normalizag as follows:

e Their values are betwednand1.
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e Higher values represent better situations from the performance and controller implemen-
tation standpointe.g. lower controller order and higher performance increase the values

of the corresponding measures.

e Allthe measures must be calculated before building or implementing the controller, based
only on the identified model, its corresponding uncertainty and the specification weights.

In addition, and in order to have good numerical properties of the plant’s model for controller
design, an internally balanced realization of the nominal model at each S/A location is defined
asG,(s) = Gyu(s), i =1,--- ,N. Here each pair of S/A location is represented by an integer
i,withi =1,--- | N. SetS represents a selected group of these S/A locations pairs.

To consider performance measures, the following values are defined.

~min

~ = {minli, 1=1,--- ,N} (7.20)
Ymin = {m1n727 =1, 7N} (721)
wherey and¥y have been defined in sectiginl.3

Next, the partial measures which quantify robustness, performance and controller imple-
mentation are defined for thieth S/A location.

Definition 7.1. The influence of the controller order is quantified as follows:

Po(7) 2 {n—i— 1| mgn ol (Gy(s)] > er}_l (7.22)

Here ol are the Hankel singular value&;;(s) is the augmented model at tiieth S/A
location, and, > 0 is a predefined (controllability/observability) safety mafgifihe (n + 1)
term takes into consideration the possibility of a constant maogelpordern = 0, otherwise
only n should be considered in the definition.

Definition 7.2. The following defines a deterministic performance S/A location measure.

. i=1,--- N (7.23)

RVAN 0 if 27min§'74
ppd(l) = -

1if 2 > 7,

3Recall thate! = 0 or numericallynear to zero implies an uncontrollable and/or unobservable state space
representation. Another alternative is to use the subspace identification c&t] Ver94 to select the model
order.
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The idea behind this measure follows from Equatioh4@ and (7.17). Here, the S/A pairs
that achievep,, (i) = 0 will have their full range of performances worse than other paies,
their best performancz. is always higher than the worst performance boafg;, of other
pairs, hence these locations could be excluded. To illustrate this, consider an example of four
different S/A pairs, as depicted in Figurel

4.5

3.5

25}

Pairs

151

0.5 | i I I 1
0 0.1 0.2 0.3 0.4 0.5 0.6

y ranges

Figure 7.1:y range selection case example.

Example3. Using the criteria given in7.23, 27,;, = 0.2 (dashdot line in Figur&.1l) so
2Ymin < 75 Thus, the dashdot pair= 3 is excluded, hence the selected sefis: {1,2,4}.

In the previous example, there are still three pairs which cannot be deterministically ex-
cluded. Hence, a criteria which complements the previous one should be defined to select among
the remaining pairs. This should consider other characteristics of the performance intervals at
each S/A location.
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Definition 7.3. To measure how uncertainty could potentially limit robust performance the fol-
lowing is defined.

pfser"r‘()'r‘ (Z) = 1 - gerel (’L)7 Z = 17 U 7N (724)

Herel,, , is defined in .16 andps is therefore related to Equations {3 and (7.15.

Note that robust performance is only possible wiign, < 1 and W;(s) has been selected

error

conveniently. Henceys measures how severely model uncertainty of a certain S/Aitota

error

limits performance. This measure could well be combined or merged with the previous one, due
to the fact that both produce similar effects over robust performance.

Since all the S/A selection measures presented in this section depend on the nominal model
G,(s), high values ofps are needed in order to make the other measures reliable. In ad-

error

dition, whenpg is very low, it may also be usea posterioriin order to decide whether a

error

better identification could produce a higher performance at certain S/A locations.

Definition 7.4. Uncertainty can also limit the bandwidth where performance should be
achieved, and can be measured as follows.
QP

L 4=1,---,N (7.25)
|€2]

1>

pa(i)

Here(, is defined in .14 with the nominal modef,(s) replaced byG;(s) where|Q| is
the size of the desired performance bandwidth.

Definition 7.5. A measure which defines how adequately has the uncertainty weight been se-
lected,i.e. the match between the relative model erepy and thelWy, can be defined as
follows.

o 2 1= min { Lo (93) — enati)] (7.26)

A pathological case would be wher, = 0, that is, when the extra uncertainty added by
a bad fit betweeV; and the error equals00%. Here, even if the best possible model could

be identified,i.e. p;s = 1, no performance could be achieved. As well@s. ..., pm IS

aso an important measure, because it modifies the valug of (7.8) and hence op,, in
(7.23. Here again, high values pf,, should be also sought in order to makg trustable. Note

aso that low values op,,, just add conservativeness, but on the other hand it may alasdik
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a posterioriin order to decide whether a better uncertainty weight selection could produce a
higher performance at certain S/A locations.

Definition 7.6. To measure the potential performance that can be obtained in each S/A pair, the
following is defined:

@) 2 AN (7.27)

The closerp,, . istol (accordinglylmin closer toli), the (potentially) better the per-
formance of pair might be as compared to all the remaining S/A pairs. Considering again
example3 (Figure7.1), it can be seen how the remaining pairs are arranged acgal(.27).

The locationss = 1 andi = 2 are the best, because they both have the Iowleandz’ =4is
the worst because it has the largestPair i=3 has already been discardedby.

Alternatively,v,, may be used instead gg to calculate this measure. Consequerltl%n in
, , . . N A :
(7.20 is redefined ag . = miny, = 1,---,N ¢ and alsop,,,, (i) = v _. /7z- This

would lead to more conservative results, but computatio_ni @fould be omitted for all pairs.

Definition 7.7. The measure which relates robust performance with the limitation imposed by
the model condition number, useful only for MIMO systems with actuator uncertainty, is defined
as follows:

oo fmax,o (W) k(G
p,{(l) - { maxwé'[Wp(jw)] } = N (7:28)

All these measures contribute to determine an optimal value for the S/A location, although
they quantify different aspects of robust performance and implementation issues. Measures

andps are amenable to be combined due to the fact that they aredéteifee same Equation

error

(7.19. In any case, the user could take all these issues into @yasigh by defining a general
weighted combination of all previous values as follows:

Definition 7.8. A general control-oriented S/A measure can be defined as a convex combination
of all the previous ones:

pas(i) = wa PZ(Z)7 1= 17 e aNa S - {Oamapd7 ’%7567“7“07‘7 Q7’szn}
leS

The weightsw, € [0, 1] with >, s wy = 1.
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The previous are constant real values which weight the relative importance of performance
and controller implementation, and are supplied by the user. The wejght 0 in cases where
the system is SISO or when sensor instead of actuator uncertainty dominates the global dynamic
model set as il in Equation {.11). This measure will therefore be normalized in the interval
[0, 1]. Here the problem is how to select the weights according to practical considerations.

Another alternative is to select a setvith the best S/A locations according to each measure
and intersect them in order to make a pre-selection. In cases where the measures quantify
different aspects of the problera,g. p, andpq, there is the possibility that best S/A selection
of each will not coincidej.e. their intersection is empty. In these cases, one may give more
importance to one aspect over the other and relax the sets until there is intersection between
them. Instead, if the measures quantify a similar aspect like the uncertainty measurgd by

andpg it is more likely that their intersection exists. This apgeb will be attempted in the

error?

example presented in next section.

7.2.1 Dependencies between measures

Some hierarchy between S/A measures can be posed, whichrisagired in Table’.2.1

Measure ps (critical)  pn, (conservative)

error

Ppy dependent dependent
Prymin dependent independent
PO dependent independent
Pr dependent independent
Po dependent independent

Table 7.1: S/A measure dependencies

Dependencies opy are critical, since it measures the quality of the identifiechimal

model G, within 2, and thus the reliability of the results derived from the use of this model. A
bad model identification compromises the trustﬁqmndzi ((7.8 and (7.9)) because it is not
known how this model mismatch will affect themeasures which could increase or decrease
indistinctly. Other measures dependingﬂ_pl.randil- will be similarly affected and hence non-
reliable conclusions could be derived from theeng. set of pairs discarded. As shown in

Table7.2.1, all measures depend @g

error

therefore good model identification is compulsory
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in order to obtain a trustworthy selection methodology.

On the other hand, dependencies ©n are not critical because only reliability oy is
compromised,i.e. 7, remains the same i, is changed, because it doesn’'t depend on the
uncertainty model, as shown i7.9). Note that low values op,, always increase&;, which
means that more uncertainty only adds conservativeness to the resgltess discarded pairs
than would potentially be expected with higher valueggf Also note that this can be fixed
a posteriori if desired, without decreasing the set of discarded pairs, in the sense that better
values ofp,,, can be reached without modifyin@, but only W;. Instead ara posteriorifix of
Ps...o, iIMplies a further identification of the system. As a consegagep,, can be modified
without changingli, which means that improving,, is always potentially good in order to
make the decision criteria bettere. discarding more pairs. This procedure will be illustrated
in the example presented next.

7.3 Experimental Example

A real application presented in Chap@illustrates the usefulness of the S/A allocation mea-
sures derived previously. The proposed active-noise control scheme uses a feedback configu-
ration that requires only one sensor, the error microphone illustrated in the conceptual setup in
Figure3.4(a). With this scheme, some preliminary results have beesepted by the authors

in [SPCIEO0$, and tested on duct simulations based on a modeHAV["96]. Here instead, an
update of the S/A measures and a full experimental testing of the methodology has been made.

7.3.1 Results

Somea priori specifications and information from the experimental plant have been taken into
account before deciding the grid considered, in order to make the best sensor/actuator location
selection. In this example, a grid of two sensor by four actuator positions in the duct (Bifure

have been considered to evaluate eight different S/A location pairs.

The measures introduced in the previous section will be used to decide the best locations,
based on performance and implementation issues, before the controller design and implementa-
tion. Here in addition, the methodology is validategosterioriby designing controllers for all
test locations and computing their performance and order. The performance of each controller
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e

within 2 is measured as follows.

Definition 7.9. Weighted attenuation, used to measure the performance weightediby is
defined as follows:

L HWp(S)yz’* 9 < sup HWp(s)yH2

= [|[W} - Sa.,
[|wi, []5 wto  Jlwlls P

i=1,---,N  (7.29)

(i)

oo’

wherey;, andw;, stand for real output and real exogenous perturbation, cégely.

In order to compare robust performance with the previous bounds, note that:

RP = qrp S sup [Wy(s)Sa (sl < 1 (7.30)
Sa = {I+ 14 AWs(8)] Go(s)K(s)} 1,5 (A) < 1 (7.31)

whereSa is the uncertain sensitivity function arfd(s) is the implemented controller. There-

fore according to Equationg (10, (7.17) and (7.29, yrp is bounded as follows:
0<7 <y<AL|W,-Sa.ll, <vrP <27 (7.32)

These bounds will be used to validate the experimental results, as illustrated in Figurée

best locations selected by the measures should atitedstethe ones produced by the actual

controllers.

The general selection procedure is summarized as follows:

1. Check S/A measures reliability

1.1 Computeps

error

1.2 Computey,,, to measure conservativeness
2. Computep, to measure controller implementation
3. Compute potential performance of S/A pairs

3.1 Check RP bound or7 (18 for S/A pair containingy,,;,

3.2 Filter pairs using,,, measure

4. Post-filter S/A pairs by other measures
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4.1 Discard non-deciding intervals

4.2 Obtain optimal sef,,, of S/A pairs for each measure

5. Intersection of previous sets to select the optimal angsS,, = S,,¢. If necessary, the
selection should be increased until the intersection makes sense.

6. Check Robust Performance before controller implementatioid, iB(does not hold for
the pair selected, cheekposterioriRP with (7.30

Finally, as commented in definitich5and sectior?.2.], p,,, can be used as aposteriorimea-

sure to increase performance, at the expense of changing the S/A selection. This is performed
by searching for the pair that has the worst fit between model uncertaintyiande. lower

pm, and the best potential performances. higherp, . . The argument is clear: reconsider

S/A pairs which have good chances to increase performance fhigh) due to the fact that a

poor selection ofi¥s has been made in these cases (o). The S/A pair selection is made

by intersecting both sets as in the main selection procedure. The selection procedureaand an
posteriorichange in the final selection are applied to the example in the following paragraphs.

First, ps is computed in order to verify the reliability of all measumeich depend on
is 0.9753 (pairi = 8), which means

that the worst fit between model error and data wiffifor all pairs is below3%, a reasonably

error

the nominal mode(z,. Here, the lowest value ¢f

error

good fit.

Secondly,p,, is computed and for pair = 8, p,,, = 0.5573, hence the selection d¥s
adds an extral4.27% of uncertainty to the nominal modéf, and as a consequence more
conservative results. This could be mendegosteriori without affecting thea priori S/A
selection, just by improving the fit betwe&W; and the relative uncertainty errey.;. Anyhow,
improving p,,, means obtaining at least the same number of pairs discardacbdfore. This

cannot be guaranteed gf; is improved,i.e. with a besta posterioriidentification of the

error

nominal model=,, as explained in section2.1

Next, p,, is computed which indicates the expected controller ordereHhe model plus the
performance and robustness weight ordémand2 respectively, produce coherent valuesof
with the resulting controller orders. The best valuegppproduce the following S/A selection
setS,, = {3}, which coincides with the lowest controller ord&f, obtaineda posteriorifrom
the design. For reasons that will come clear at the end of the example, this selection needs to be
expanded to higher values pf, so that new S/A pairs will allow a valid intersection with eth
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¢ pair Actuator Sensor Attenuation K order Po Ppy  Péerror  Pm

1 279cm  415cm 8.4dB 76 0.0141 1 0.9937 0.742

2 279cm  295cm 8.3dB 66 0.0164 1  0.9987 0.5469

3 293cm  415cm 6.4dB 57 0.019 1 0.9953 0.6636

4 293cm  295cm 7.6dB 70 0.0154 1  0.9979 0.5453

5 307cm  415cm 8.1dB 62 0.0175 1 0.9980 0.5462

6 307cm  295cm 6.2dB 64 0.0169 1  0.9954 0.3928

7 322cm  415cm 7.9dB 72 0.0149 1  0.9961 0.5461

8 322cm  295cm 0.9dB 64 0.0169 O 0.9753 0.5573

Table 7.2: S/A set measures, the best ones in boldface

sets, therefore,, = {3,5,6,8,2}.

In addition, the performance measuig is computed which is illustrated in Tabfe2, and
filters out one S/A pair obtaining the selectip), = {1,2,3,4,5,6,7}4.

Finally, other measures are computed in order to produce their respective selection sets,
see Tabler.3 In cases where these measures are very close to each otladr $8A pairs,
there is no relevant information that can be produced,no useful filtering criteria. This is
indeed what happens with values mf which are equal to one at all S/A locations, meaning
that 2, = . A similar result holds forps,,.,., i.e. max,cq e, (Jw) ~ 0, which means that

all identifications have been made correctly. After discargingand ps as non-deciding

error

measures, all other performance measures have been considered (se& Paiey.3), and
their respective selection sets have been calculated:

S, =1{1,3,2} (7.33)
= {6,4,2} (7.34)

PYmin

As mentioned previously, the set of best locations obtained from performance and imple-
mentation measures do not intersect in general, due to the fact that they treat different issues.
This case is no exception, and for that reasorSset= {3, 5, 6, 8,2} has been expanded. As a

“Note from Figure7.2that some pairs don't satisfy the robust performance bouid. I8, which is not critical
from the selection point of view, if at least the pair contairif)g, does meetq.18 and thus robust performance
can be guaranteeal priori for this pair. This is becausky is an upper bound ofirp, see {.32. Hence, discarding
pairs using27y instead of usingyrp just adds more conservativeness to the selection. A less conservative filtering
could be achieved usingz p, but this can only be performedposterioriof the controller design7(30.
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ipar  py o
1 0.3182
2 0.921

3 0.625

4 0.9859
5 0.5512
6

7

8

1
0.4467
0.073

Table 7.3: S/Aa posteriorimeasures

conclusion, the optimal S/A location in this case can be computed as follows:

Sopt = Sp,, NSp,, NSp, NSy, ={2} (7.35)

Ymin

This pair is also one of the best positions suggested by the controller performance implemented
a posteriori, together withi = 1 as presented in Table2 Therefore it experimentally validates

the measures and the methodology. In Figu&the bounds fory; are posed, as well as for,

and weighted attenuation\f) for each pair. Note that, as shown in.32, )\; is bounded by

7, and27, which also validates the results. It can also be noted thaddlsb-dot S/A pairife.

i = 8) is filtered using the criteria given ky,,.

To be consistent with the theory, full ordef,, controllers were implemented in real time
using the hardware in our laboratory. Nevertheless from a practical viewpoint, a further con-
troller order reduction using Hankel values (see seciidy) may be used, taking care of not
significantly decreasing the performance obtained previously.

Finally, ana posteriorireconsideration of the best S/A pair is made, as commented in def-
inition 7.5 and section7.2.1 In this case, the lowegt,, and the highesp, . apply to case
1 = 6. This indicates that it may potentially produce a better performance than gair; with
the adequate changeslifi;. In fact, a better fit betweeWs ande,.; produced new values for
i =6: p,, = 0.68 and¥y = 0.4, which consequently produced a new set of measures:

Spr = {1,6,3} (7.36)
= {6,4,2} (7.37)

P¥min
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whose intersection results 8),,; = {6}. After controller implementation at this S/A location,

A = 0.334 has been computed and an attenuatiorilof dB has been obtained. Note that
(7.32 still holds, which also validates the results. Thereforair p = 6 has become now

the best position suggested by the controller performance, which experimentally validates the
measures and the methodology again.

After applying the selection methodology presented here, robust performance condition
(7.30 must be checked posteriori of the robust controller design, if the bound in19 is
not fulfilled for the pair selected.

7.4 Future Research Issues

Future work needs to be made to improve this measure, coimgjdieiss conservative mea-
sures for robust performance in controller free conditions, as well as exploring polynomial time
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computation using the ideas of checking subsets (supersets) of nonviable (viable) S/A sets, as
indicated in [vdWdJO01]. The weight determination which combines all measures into a single
one could be very useful, but practical rules to determine the corresponding weights should be
studied. Validation of the measures against experimental model of a 3D cavity, located in the
same laboratory as the duct in Figid, would be also an interesting result.



CHAPTER 8

CONCLUDING REMARKS

In this work, a parametric/dynamic (control oriented) robust identification technique applied
to ANC in a duct has been considered. This identification procedure is well-suited for this
application according to physical modeling, since each mode in the duct has a clear frequency
peak which can be fitted by a second order model. This reduces drastically the model order and,
in turn, the controller order. In addition, the outcome of the identification, a family of models
with dynamic bounded uncertainty, fits exactly tHg, robust controller design method. Also,

the main compromises, driven by practical issues, that limit the achievable performance have
been discussed. Limitations imposed by nonminimum phase zeros and controller model order
have been pointed out, and explicitly related to performance and robustness. Theoretical and
experimental results were compared, and the overall experimental attenuation is very good, as
compared with other works in the area. General hybrid (FF/FB) control structures have been
also implemented and compared with feedback and feedforward loops separately.

Finally, the S/A allocation has been also considered as part of the whole ANC problem. Sev-
eral measures of S/A location have been defined focused on closed loop performance, robustness
and controller order. These can be computed before building and testing the controller, which
minimizes the combinatorial search to seek the best S/A location. These measures produce sets
which are finally intersected in order to narrow down the search for the best S/A location. An
experimental example based on active noise control in a tube is used to validate the measures
and the methodology.

83
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8.1 Contributions

In the context described in the last paragraphs, the mairrgiec@ntributions provided by this
work are enumerated next:

e To apply a robust (control oriented) identification to an ANC system, with a determinis-
tic worst-case criteria in order to design a robust controller. In particular, based on the
experimental knowledge of low frequency modes, a parametric/dynamic model identifi-
cation method PSS99BMSO01] has been applied. This produces a multiplicative global
uncertain set to describe the physical plant, which exactly fits the robust controller design
framework.

e To present a deep analysis of the compromises and practical issues which arise in the
robust identification and controller design stages for an ANC system. These are mainly
derived from the compromises between identification and control, performance and ro-
bustness, feedback limitations, model and controller order, and implementation issues.

e To implement the robustly normalized-modification algorithm in a FF and an hybrid
(FF/FB) ANC fashion, and compare all the resulting structures with relevant practical
performance results.

e To develop a novel and generale( applicable to many practical applications) optimal
S/A allocation measure previous to controller design and implementation, combining rel-
evant issues concerning performance, robustness and implementation, and test it against
ANC system.

8.2 Directions for Future Research

Finally, some issues that could be taken into account byeasted researchers in this area are
pointed out next:

e A procedure to decide beforehand whether to use linear or nonlinear hybrid controllers,
based on the desired performance, could be helpful. In some sense this would generalize
the method followed in this work, in the case of hybviersusFF controllers.
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To test and compare another robust FF algorithms in an ANC applicaignthe ones
presented inl596.

In order to improve the S/A allocation measure, future work could follow next directives:

To consider less conservative measures for robust performance in controller free condi-
tions.

To explore polynomial time computation using the ideas of checking subsets (supersets)
of nonviable (viable) S/A sets, as suggested in [vdWdJO1].

Weight determination to combine all measures presented in Chajptés a single one
could be very useful, but practical rules to determine the corresponding weights should
be studied.

To validate the measures stated in Chaftaigainst experimental model of a 3D cav-
ity (located in the same laboratory as the model of the duct used throughout the work
(Figure3.1) would be also an interesting result.
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APPENDIX A

ROBUST FEEDBACK CONTROLLER
SYNTHESIS ALGORITHM

The main structure of the program is as follows:

Data Initialization

!

Model Identification
/ | _— Performance Weight
— Weight Determination

\ ! T Uncertainty Weight
Controller Design
|

Figure A.1: Controller design algorithm main diagram

|
0

0

Deeply analyzing each step of the algorithm’s diagram in Figude the detailed pseudo-
code in AlgorithmA.1 may be defined:
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Al

gorithm A.1 Robust Controller design algorithm

1

W W W wWwwWwwowwNRNNNNNNNNNERRERRRERERR PR R
NS O R ®NMNRE O O®NODORMRO®NREOOONOTORWDNRO

38:

© XN O R wDd

. Introduce Main Menu flag
[Datalnitialization; Modelldentification; W eightIntroduction; Controller Design; Simulation]
. if Data Initializationthen

Introduce experimental data

Select data bandwidt

Choose parametric identification frequency poings

Choose non-parametric identification frequency paints
end if

. if Model Identificationthen

Adjust Kautz basis
while Model not acceptedo
Model order reduction
Accept/reject model identified by comparison against experimental data
end while
: end if
: if Weight Introductiorthen
if Performance Weight/,, then
IntroducelV,, coefficients
Compare against exogenous varialhe gpectra
Accept/Rejectv,,
end if
if Uncertainty Weight¥s then
IntroducelVs coefficients
Compare against relative errer.{;) spectra
Accept/RejectVs
end if
: end if
. if Controller Desigrthen
Introducey bounds and iteration tolerance &f.. problem solver algorithm
if Feasible looghen
Controller order reduction
if Robust Performance achievidn
Robust Controllerk is obtained
Obtain SOS controller model for final implementation
end if
end if
: end if
. if Simulationthen
Check Robust Controllgk” designed on Step2 against Simulink’s duct model

39: end if

Appendix A : Robust feedback controller synthesis algorithm
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Some extra investments implemented to this code are pointed out next:

e Data introduction front-end fat,, identification

e Generalization to different input data fundamental frequency, bandwidth and sample rate
e Arrangement for compatibility with DSpace software data types

e Model error measure ifY, to decide wether reject, obtained or not

e Interface to recover data used in previous rumg.{veights,y bounds)

e Poles scaling of for fragile loops

e Use ofy bounds and iteration tolerance in the Ricddti, solver in order to avoid certain
numerical problems

e Implementation of using SOS structure in order to prevent numerical perturbations of
pole locations in high order models

e Design of NP controllers for S/A measure computation
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Appendix A : Robust feedback controller synthesis algorithm
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