743 research outputs found

    A New Concept of Digital Twin Supporting Optimization and Resilience of Factories of the Future

    Get PDF
    In the context of Industry 4.0, a growing use is being made of simulation-based decision-support tools commonly named Digital Twins. Digital Twins are replicas of the physical manufacturing assets, providing means for the monitoring and control of individual assets. Although extensive research on Digital Twins and their applications has been carried out, the majority of existing approaches are asset specific. Little consideration is made of human factors and interdependencies between different production assets are commonly ignored. In this paper, we address those limitations and propose innovations for cognitive modeling and co-simulation which may unleash novel uses of Digital Twins in Factories of the Future. We introduce a holistic Digital Twin approach, in which the factory is not represented by a set of separated Digital Twins but by a comprehensive modeling and simulation capacity embracing the full manufacturing process including external network dependencies. Furthermore, we introduce novel approaches for integrating models of human behavior and capacities for security testing with Digital Twins and show how the holistic Digital Twin can enable new services for the optimization and resilience of Factories of the Future. To illustrate this approach, we introduce a specific use-case implemented in field of Aerospace System Manufacturing.The present work was developed under the EUREKA–ITEA3 Project CyberFactory#1 (ITEA-17032), co-funded by Project CyberFactory#1PT (ANI|P2020 40124), from FEDER Funds through NORTE2020 program and from National Funds through FCT under the project UID/EEA/00760/2019 and by the Federal Ministry of Education and Research (BMBF, Germany, funding No. 01IS18061C).info:eu-repo/semantics/publishedVersio

    A framework for Model-Driven Engineering of resilient software-controlled systems

    Get PDF
    AbstractEmergent paradigms of Industry 4.0 and Industrial Internet of Things expect cyber-physical systems to reliably provide services overcoming disruptions in operative conditions and adapting to changes in architectural and functional requirements. In this paper, we describe a hardware/software framework supporting operation and maintenance of software-controlled systems enhancing resilience by promoting a Model-Driven Engineering (MDE) process to automatically derive structural configurations and failure models from reliability artifacts. Specifically, a reflective architecture developed around digital twins enables representation and control of system Configuration Items properly derived from SysML Block Definition Diagrams, providing support for variation. Besides, a plurality of distributed analytic agents for qualitative evaluation over executable failure models empowers the system with runtime self-assessment and dynamic adaptation capabilities. We describe the framework architecture outlining roles and responsibilities in a System of Systems perspective, providing salient design traits about digital twins and data analytic agents for failure propagation modeling and analysis. We discuss a prototype implementation following the MDE approach, highlighting self-recovery and self-adaptation properties on a real cyber-physical system for vehicle access control to Limited Traffic Zones

    Towards a Secure and Resilient Vehicle Design: Methodologies, Principles and Guidelines

    Get PDF
    The advent of autonomous and connected vehicles has brought new cyber security challenges to the automotive industry. It requires vehicles to be designed to remain dependable in the occurrence of cyber-attacks. A modern vehicle can contain over 150 computers, over 100 million lines of code, and various connection interfaces such as USB ports, WiFi, Bluetooth, and 4G/5G. The continuous technological advancements within the automotive industry allow safety enhancements due to increased control of, e.g., brakes, steering, and the engine. Although the technology is beneficial, its complexity has the side-effect to give rise to a multitude of vulnerabilities that might leverage the potential for cyber-attacks. Consequently, there is an increase in regulations that demand compliance with vehicle cyber security and resilience requirements that state vehicles should be designed to be resilient to cyber-attacks with the capability to detect and appropriately respond to these attacks. Moreover, increasing requirements for automotive digital forensic capabilities are beginning to emerge. Failures in automated driving functions can be caused by hardware and software failures as well as cyber security issues. It is imperative to investigate the cause of these failures. However, there is currently no clear guidance on how to comply with these regulations from a technical perspective.In this thesis, we propose a methodology to predict and mitigate vulnerabilities in vehicles using a systematic approach for security analysis; a methodology further used to develop a framework ensuring a resilient and secure vehicle design concerning a multitude of analyzed vehicle cyber-attacks. Moreover, we review and analyze scientific literature on resilience techniques, fault tolerance, and dependability for attack detection, mitigation, recovery, and resilience endurance. These techniques are then further incorporated into the above-mentioned framework. Finally, to meet requirements to hastily and securely patch the increasing number of bugs in vehicle software, we propose a versatile framework for vehicle software updates

    CPPS-3D: a methodology to support cyber physical production systems design, development and deployment

    Get PDF
    Master’s dissertation in Production EngineeringCyber-Physical Production Systems are widely recognized as the key to unlock the full potential benefits of the Industry 4.0 paradigm. Cyber-Physical Production Systems Design, Development and Deployment methodology is a systematic approach in assessing necessities, identifying gaps and then designing, developing and deploying solutions to fill such gaps. It aims to support and drive enterprise’s evolution to the new working environment promoted by the availability of Industry 4.0 paradigms and technologies while challenged by the need to increment a continuous improvement culture. The proposed methodology considers the different dimensions within enterprises related with their levels of organization, competencies and technology. It is a two-phased sequentially-stepped process to enable discussion, reflection/reasoning, decision-making and action-taking towards evolution. The first phase assesses an enterprise across its Organizational, Technological and Human dimensions. The second phase establishes sequential tasks to successfully deploy solutions. Is was applied to a production section at a Portuguese enterprise with the development of a new visual management system to enable shop floor management. This development is presented as an example of Industry 4.0 technology and it promotes a faster decision-making, better production management, improved data availability as well as fosters more dynamic workplaces with enhanced reactivity to problems

    A critical review of cyber-physical security for building automation systems

    Full text link
    Modern Building Automation Systems (BASs), as the brain that enables the smartness of a smart building, often require increased connectivity both among system components as well as with outside entities, such as optimized automation via outsourced cloud analytics and increased building-grid integrations. However, increased connectivity and accessibility come with increased cyber security threats. BASs were historically developed as closed environments with limited cyber-security considerations. As a result, BASs in many buildings are vulnerable to cyber-attacks that may cause adverse consequences, such as occupant discomfort, excessive energy usage, and unexpected equipment downtime. Therefore, there is a strong need to advance the state-of-the-art in cyber-physical security for BASs and provide practical solutions for attack mitigation in buildings. However, an inclusive and systematic review of BAS vulnerabilities, potential cyber-attacks with impact assessment, detection & defense approaches, and cyber-secure resilient control strategies is currently lacking in the literature. This review paper fills the gap by providing a comprehensive up-to-date review of cyber-physical security for BASs at three levels in commercial buildings: management level, automation level, and field level. The general BASs vulnerabilities and protocol-specific vulnerabilities for the four dominant BAS protocols are reviewed, followed by a discussion on four attack targets and seven potential attack scenarios. The impact of cyber-attacks on BASs is summarized as signal corruption, signal delaying, and signal blocking. The typical cyber-attack detection and defense approaches are identified at the three levels. Cyber-secure resilient control strategies for BASs under attack are categorized into passive and active resilient control schemes. Open challenges and future opportunities are finally discussed.Comment: 38 pages, 7 figures, 6 tables, submitted to Annual Reviews in Contro

    Classifying resilience approaches for protecting smart grids against cyber threats

    Get PDF
    Smart grids (SG) draw the attention of cyber attackers due to their vulnerabilities, which are caused by the usage of heterogeneous communication technologies and their distributed nature. While preventing or detecting cyber attacks is a well-studied field of research, making SG more resilient against such threats is a challenging task. This paper provides a classification of the proposed cyber resilience methods against cyber attacks for SG. This classification includes a set of studies that propose cyber-resilient approaches to protect SG and related cyber-physical systems against unforeseen anomalies or deliberate attacks. Each study is briefly analyzed and is associated with the proper cyber resilience technique which is given by the National Institute of Standards and Technology in the Special Publication 800-160. These techniques are also linked to the different states of the typical resilience curve. Consequently, this paper highlights the most critical challenges for achieving cyber resilience, reveals significant cyber resilience aspects that have not been sufficiently considered yet and, finally, proposes scientific areas that should be further researched in order to enhance the cyber resilience of SG.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBUA

    Service-based Fault Tolerance for Cyber-Physical Systems: A Systems Engineering Approach

    Get PDF
    Cyber-physical systems (CPSs) comprise networked computing units that monitor and control physical processes in feedback loops. CPSs have potential to change the ways people and computers interact with the physical world by enabling new ways to control and optimize systems through improved connectivity and computing capabilities. Compared to classical control theory, these systems involve greater unpredictability which may affect the stability and dynamics of the physical subsystems. Further uncertainty is introduced by the dynamic and open computing environments with rapidly changing connections and system configurations. However, due to interactions with the physical world, the dependable operation and tolerance of failures in both cyber and physical components are essential requirements for these systems.The problem of achieving dependable operations for open and networked control systems is approached using a systems engineering process to gain an understanding of the problem domain, since fault tolerance cannot be solved only as a software problem due to the nature of CPSs, which includes close coordination among hardware, software and physical objects. The research methodology consists of developing a concept design, implementing prototypes, and empirically testing the prototypes. Even though modularity has been acknowledged as a key element of fault tolerance, the fault tolerance of highly modular service-oriented architectures (SOAs) has been sparsely researched, especially in distributed real-time systems. This thesis proposes and implements an approach based on using loosely coupled real-time SOA to implement fault tolerance for a teleoperation system.Based on empirical experiments, modularity on a service level can be used to support fault tolerance (i.e., the isolation and recovery of faults). Fault recovery can be achieved for certain categories of faults (i.e., non-deterministic and aging-related) based on loose coupling and diverse operation modes. The proposed architecture also supports the straightforward integration of fault tolerance patterns, such as FAIL-SAFE, HEARTBEAT, ESCALATION and SERVICE MANAGER, which are used in the prototype systems to support dependability requirements. For service failures, systems rely on fail-safe behaviours, diverse modes of operation and fault escalation to backup services. Instead of using time-bounded reconfiguration, services operate in best-effort capabilities, providing resilience for the system. This enables, for example, on-the-fly service changes, smooth recoveries from service failures and adaptations to new computing environments, which are essential requirements for CPSs.The results are combined into a systems engineering approach to dependability, which includes an analysis of the role of safety-critical requirements for control system software architecture design, architectural design, a dependability-case development approach for CPSs and domain-specific fault taxonomies, which support dependability case development and system reliability analyses. Other contributions of this work include three new patterns for fault tolerance in CPSs: DATA-CENTRIC ARCHITECTURE, LET IT CRASH and SERVICE MANAGER. These are presented together with a pattern language that shows how they relate to other patterns available for the domain

    Smart Agents in Industrial Cyber–Physical Systems

    Full text link
    • …
    corecore