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Towards a Secure and Resilient Vehicle Design:
Methodologies, Principles and Guidelines

KIM STRANDBERG
Department of Computer Science and Engineering,
Chalmers University of Technology

Abstract

The advent of autonomous and connected vehicles has brought new cyber
security challenges to the automotive industry. It requires vehicles to be
designed to remain dependable in the occurrence of cyber-attacks. A modern
vehicle can contain over 150 computers, over 100 million lines of code, and
various connection interfaces such as USB ports, WiFi, Bluetooth, and 4G/5G.
The continuous technological advancements within the automotive industry
allow safety enhancements due to increased control of, e.g., brakes, steering,
and the engine. Although the technology is beneficial, its complexity has the
side-effect to give rise to a multitude of vulnerabilities that might leverage the
potential for cyber-attacks. Consequently, there is an increase in regulations
that demand compliance with vehicle cyber security and resilience requirements
that state vehicles should be designed to be resilient to cyber-attacks with the
capability to detect and appropriately respond to these attacks. Moreover,
increasing requirements for automotive digital forensic capabilities are beginning
to emerge. Failures in automated driving functions can be caused by hardware
and software failures as well as cyber security issues. It is imperative to
investigate the cause of these failures. However, there is currently no clear
guidance on how to comply with these regulations from a technical perspective.

In this thesis, we propose a methodology to predict and mitigate vulnerabili-
ties in vehicles using a systematic approach for security analysis; a methodology
further used to develop a framework ensuring a resilient and secure vehicle
design concerning a multitude of analyzed vehicle cyber-attacks. Moreover, we
review and analyze scientific literature on resilience techniques, fault tolerance,
and dependability for attack detection, mitigation, recovery, and resilience
endurance. These techniques are then further incorporated into the above-
mentioned framework. Finally, to meet requirements to hastily and securely
patch the increasing number of bugs in vehicle software, we propose a versatile
framework for vehicle software updates.

Keywords: Vehicle Security, Vehicle Resilience, Vehicle Attacks, Vehicle
Software Updates
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Chapter 1

Introduction

1.1 The Changing Automotive Landscape

Figure 1.1 shows the Volvo OV4 (Open Carriage), referred to as Jakob from
the name day the model was ready on 25 July 1926. It was the first car built
by Volvo.

Figure 1.1: The Volvo car model referred to as Jakob [1]

Today, a modern vehicle has moved from merely a transportation vessel
to become a computer on wheels, a complex Cyber-Physical System (CPS)
containing over 150 computers and over 100M lines of software code controlling
various functionalities such as safety-critical steering, brake, and engine control.

A simplification of the principles of a modern vehicle architecture is shown
in Figure 1.2. Vehicle electronics can be broken down into four main categories:
internal and external communication, hardware, software, and data storage [2].
The first category consists of communication busses, such as CAN, FlexRay,
MOST, and LIN. These are used in different network segments in correlation
to their specific characteristics. For example, FlexRay is commonly used for
safety-critical systems, since it is faster and more reliable than, e.g. CAN,
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and MOST is specifically designed for media-oriented data. Each bus has a
main gateway that translates and relays data between the different segments.
Additionally, a vehicle has multiple connection points and communication
interfaces, such as USB ports, WiFi, Bluetooth, and 4G/5G.

The second category consists of Electronic Control Modules (ECUs), sensors,
and actuators. The mechanical linkage is being replaced by Drive-by- Wire
(DbW) systems that use these sensors, actuators, and ECUs to control safety-
critical functions. Sensors give information about, e.g., speed, temperature,
distance, and identification of obstacles such as pedestrians and animals. Sensors
consists of, e.g., laser and ultrasonic devices, and cameras. The actuators turn
input from these sensors (via ECUSs) into actions, such as braking, steering,
and engine control.

The third category includes software installed or running in ECUs, as well
as software update systems, e.g., over-the-air or workshops updates. Finally,
the fourth category consists of various data, such as logs for forensics, fault
codes, reports from software updates, previously executed diagnostics, and
cryptographic keys.

ECU C] Gateways

-7 [ ECU ] [ ECU ] [ ECU ] [ Gateway ] 2
2 W caN
ECU - () mosT
| [ Y
FlexRay
— CAN
v
wv O
® g Ethernet Primary Connectivity
= Gateway Modules
o
- Ethernet -3G/4G/5G

-WiFi
-Bluetooth
-GNSS

Figure 1.2: An example of vehicle architecture (adapted from [1])

The development of Cooperative Intelligent Transport Systems (C-ITS) has
enabled vehicle-to-everything (V2X) communication, such as communication to
other vehicles, cloud, infrastructure as well as other road users (e.g., pedestrians
and cyclists). As shown in Figure 1.3, vehicles will become part of a much larger
system (e.g., smart cities/infrastructure), where a fleet of connected vehicles
will share various information, such as the location for approaching vehicles
and traffic conditions (e.g., traffic jam and accidents). In addition to physical
objects such as traffic lights and road signs, virtual entities (e.g., Road Side
Units (RSUs) and virtual traffic lights) can be used to supply supplementary
information. In this way, e.g., travel routes and vehicle speed can be better
adapted for various situations.
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Figure 1.3: An example of V2X communication (adapted from [1])

1.2 Challenges and motivation

We are moving towards a virtual world that requires various interactions with
physical entities. These advancements give rise to great opportunities but
also many security concerns. For example, none of the aforementioned bus
technologies (cf. Chapter 1.1) have been developed with cyber security in mind;
instead, the emphasis concerning vehicle design have been on comfort, safety,
and reliability. For instance, CAN nodes use broadcasting for communication
with no encryption or authentication of messages, which gives the potential for
malicious devices to record, manipulate and spoof messages (i.e., masquerading
as a trusted entity). Moreover, CAN is priority-based, thus, vulnerable to Denial
of Service (DoS) attacks. Additionally, many of the ECUs used in modern
vehicles have limited performance and cannot use security techniques such as
cryptographic operations. Limited network bandwidth in these protocols is
another issue. Thus, the main challenges are that previous designs have not
been developed with security in mind, and adding security as an afterthought
is cumbersome.

The increased complexity in modern vehicles increases the risk for vul-
nerabilities. Adding the increased connectivity, the attack surface is further
broadened with a higher potential to exploit these vulnerabilities. The associ-
ated cost for more advanced hardware in the new design is another issue. Thus,
securing vehicles is a complex and challenging task.

Nevertheless, as reflected in recent regulations, the trend has begun to shift,
and security and resilience requirements within the automotive cyber-security
are continuously being established [3—6]. Along with these requirements, and
as shown in Figure 1.4, there is a tendency within the automotive industry to
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move towards a more centralized architecture using mainly Ethernet communi-
cation where high-performance core computers have the potential to virtualize
hardware. Consequently, the potential for better use of security techniques
emerges [2,7].
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Figure 1.4: An example of a core vehicle architecture

Technological advancements along with the increased complexity within
the automotive industry call for novel approaches to find, analyze and mitigate
vulnerabilities. Although it is not realistic to find and mitigate all vulnerabilities,
strategies towards a baseline for protection against security threats and attacks
are imperative. However, the unfortunate truth is that cyber-attacks will
occasionally succeed, and cyber-security must be extended with a resilience
approach to ensure a safe operation even in the occurrence of a successful
breach.

According to NIST, cyber-security can be defined as the ability to protect
or defend the use of cyberspace from cyber attacks [8]. Resilience can be defined
as the property of a system with the ability to maintain its intended operation
in a dependable and secure way, possibly with degraded functionality, in the
presence of faults and attacks [7]. Therefore, cyber-security should detect and
prevent cyber-attacks, while cyber-resilience additionally should respond and
recover after attacks have occurred. Consequently, the core research question
and main emphasis in this thesis are:

- How can we ensure a secure and resilient vehicle design?

In the remainder of this thesis, we present an overview of the papers,
research questions, approach, results, conclusions, future work, and finally, we
append the publications.
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1.3 Papers Overview

In this section we provide a summary over the publications included in this
thesis, including research questions and contributions. Figure 1.5 shows an
overview of the included publications as well as planned work.

/" secureand
Resilient
Vehicle

‘\\ Design //

/
!
1
1
\
\

Paper A RS -
Securing the Connected Car:
A Security-Enhancement Methodology

Paper B
REMIND: A Framework for the Resilient
Design of Vehicular Systems

I

Paper C
Resilient Shield: Reinforcing the Resilience
of Vehicles Against Security Threats

|
l I )

Paper D
UniSUF: A Unified Software State of the Artin
Update F Kf i tive Digital A Framework for
ate Framework for utomotive Digita
Ff e . . e . > Automotive Forensic
Vebhicles utilizing Isolation Forensics: A Systematic o
. . . Investigations
Techniques and Trusted Literature Review

Execution Environments

!

A Security Analysis
of UniSUF
Included in Lic. thesis

Planned Work

Figure 1.5: Research publications and planned work
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Paper A. Securing the Connected Car: A Security-
Enhancement Methodology [9]

K. Strandberg. T. Olovsson, E. Jonsson

There is a need for approaches specifically adapted for the automotive
domain concerning cyber-security analysis, such as threat modeling, risk as-
sessment, mitigation, and security testing. However, previous approaches have
been connected to areas other than automotive or limited to certain phases in
a vehicle life. Thus, in this paper we investigate:

- What existing methods and models within the cyber-security area are
applicable for the automotive industry?

- Can these methods and models be adapted and used for vehicles?

The result is a security-enhancing methodology named the Start Predict
Mitigate Test (SPMT) with the purpose to identify and mitigate vulnerabilities
in vehicles during their entire life cycle, from development to market use. The
methodology was developed by first studying various methods and models
in different areas and selecting and adapting relevant parts applicable to the
automotive industry. Second, a theoretical and empirical study of attacks
was conducted to validate that vulnerabilities related to these attacks can be
detected. The SPMT methodology was then developed based on the conclusions
made from these two steps. The core contributions and benefits are:

- An innovative, comprehensive, and systematic methodology, where exist-
ing models and methods have been studied, and components have been
connected and adapted by incorporating new ideas suitable for vehicles.

- High coverage for mitigation is given against high priority threats on an
operational, safety, privacy, and financial aspect by following the proposed
methodology.

- Security as an entirety is considered by performing the analysis both on
a device and system-level aligned with vehicles development, production,
and market phases.

- The proposed methodology is time and cost-effective, and adaptable to
meet different situations by adapting tools and attacks depending on the
evaluated asset. Moreover, it is possible to start in different methodology
phases to align with other development processes within the automotive
industry.

In summary, a security and safety-enhancing methodology is proposed and
achieved through a comprehensive and systematic approach to security analysis,
specifically adapted for vehicles. This methodology covers security analysis
for the entire vehicle life-cycle, which is essential for the automotive industry’s
efforts to improve security and safety.

Statement of contributions. This is a joint work with my supervisor
Tomas Olovsson and Erland Jonsson. I contributed as the lead for the idea, per-
formed the development of the methodology and the writing of the manuscript.

Appeared in: IEEE Vehicular Technology Magazine, 2018



1.3. PAPERS OVERVIEW 7

Paper B. REMIND: A Framework for the Resilient Design
of Automotive Systems [7]

T. Rosenstatter, K. Strandberg, R. Jolak, R. Scandariato, T. Olovsson

A changing automotive landscape with increased complexity and connectiv-
ity aligns with the difficulties of ensuring security in these systems; although,
the automotive journey towards a more centralized architecture facilitates
the realization of security and resilience techniques. Still, it is not realistic
to assume protection against all cyber-security incidents; thus, an additional
approach is required to endure security breaches.

In essence, detection and prevention occur at a first layer, and if this fails,
resilience to endure the breach and an attempt to recover from the breach
is required. For example, switching to a safe operational state with limited
functionality to provide a safe stop of the vehicle. Thus, ensuring resilience for
vehicles is imperative. In this paper, we investigate:

- What work concerning resilience techniques, fault tolerance, and depend-
ability exist in the literature?

- How can these techniques be used to detect, mitigate, recover and endure
cyber-attacks in vehicles?

We perform a literature study on resilience techniques, fault tolerance,
and dependability. The result is the REMIND resilience framework providing
techniques for attack detection, mitigation, recovery, and resilience endurance.
Moreover, we provide guidelines on how the REMIND framework can be used
against common security threats and attacks and further discuss the trade-offs
when applying these guidelines. Thus, the core contributions are:

- A framework for the design of resilient automotive systems.

- Techniques are categorized into four groups: detection, mitigation, recov-
ery, and endurance, representing their purpose.

- Techniques of different categories can be combined to create layers of
security.

- Techniques are mapped to classes of automotive assets, and pros and
cons are provided for each technique to further support design decisions.

In summary, we provide a framework to guide architects on the selection of
appropriate resilience techniques in the design of automotive systems.

Statement of contributions. This is a joint work with the main and
co-authors. Thomas Rosenstatter was the lead for the idea, the literature
review, and the design of the taxonomy for resilient techniques. I have written
and contributed particularly with the attack model, assets identification, and
the associated table. Rodi Jolak was primarily responsible for the REMIND
resilience guidelines.

Appeared in: IEEFE Secure Development, 2020
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Paper C. Resilient Shield: Reinforcing the Resilience of
Vehicles Against Security Threats [2]

K. Strandberg, T. Rosenstatter, R. Jolak, N. Nowdehi, T. Olovsson

Various vehicle cyber-attacks have occurred in the past. To investigate the
risk of these attacks and ensure that future vehicles can withstand these types
of attacks, we have performed a comprehensive threat and risk analysis on
published attacks on vehicles from the past 10 years. Thus, in this work, we
investigate:

- What types of cyber-attacks have been performed on vehicles for the last
10 years?

- How can we achieve security and resilience to mitigate such attacks?

We have performed the SPMT methodology proposed in paper A for the
complete vehicle as produced by the manufacture. In the first phase of the
SPMT, the Start Phase, we define vehicle assets, threat actors, their motivations,
and objectives, which gives rise to a threat model. In the second phase, the
Predict Phase, we study attacks that might impact the defined assets from
the previous phase. We analyze these attacks based on an attack probability
and consequence criteria and appoint a risk value for each attack. Each attack
is further categorized into a category based on the attack type. This phase
gives rise to an attack model. In the next phase, the Mitigate Phase, we define
required security and resilience enhancements against all threats as security
goals. Moreover, we define detailed directives on how to fulfill these security
goals. The resilience techniques defined in paper B are further incorporated
into these detailed directives. The Mitigate Phase gives rise to the Resilient
Shield, a framework for designing resilient automotive systems. Thus, the core
contributions are:

- By applying the SPMT methodology, we performed a comprehensive
threat and risk analysis of 52 published attacks against vehicles from the
past 10 years.

- We have developed a threat model for securing vehicles by identifying vital
vehicle assets and the related potential threat actors, their motivations
and objectives.

- We have developed a comprehensive attack model created from the anal-
ysis of the identified threats and attacks, further filtered and categorized
based on attack type and risk criteria related to the probability and
consequences of the attack.

- We present an exhaustive mapping between asset, attack, threat actor,
threat category and resilience mechanism for each attack.

- We define necessary security and resilience enhancements for vehicles,
which also validates the effectiveness of the SPMT methodology.
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In summary, we propose Resilient Shield, a comprehensive resilience frame-
work that considers actual cyber-attacks against defined automotive assets.
Mitigation techniques are proposed giving rise to a vital baseline of protection
against common security threats and attacks.

Statement of contributions. This is a joint work with the co-authors. I
contributed as the lead for the idea and performed the writing of the manuscript.
I also contributed to the identification of the assets, threat actors and their
motivations and objectives, and the high-level security goals. The identification
of the detailed directives and the work to find and review attacks has been
a joint effort between me and the secondary author. The assignment and
mapping of mitigation techniques, STRIDE categories, automotive assets, and
threat actors have been a collaborative effort between the authors.

Appeared in: IEEE 93rd Vehicular Technology Conference, 2021
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Paper D. UniSUF: a unified software update framework for
vehicles utilizing isolation techniques and trusted execution
environments [10]

K. Strandberg, D.K. Oka, T. Olovsson

A modern vehicle can contain over 100M lines of code, and although
there are different code quality, we can assume there is at least one bug per
1000 lines of code; thus, there will be more than 100k bugs in a modern
vehicle. We can further assume that at least 1% (1k) of these bugs are
exploitable vulnerabilities [11]. The severity can vary from causing a lamp
to blink to affecting safety-critical systems such as braking or steering with
potentially hazardous outcomes. Thus, the ability to hastily and securely patch
vulnerabilities is imperative and a prerequisite when securing modern cars.
However, current solutions lack necessary details for a versatile, unified, and
secure approach covering various update scenarios, e.g., over-the-air, with a
workshop computer, at factory production, or using a diagnostic update tool.
Thus, in this paper, we investigate:

- How can we ensure the ability to hastily and securely patch software
vulnerabilities in vehicle software for various required scenarios within
the automotive domain?

Consequently, one of the stated security goals from paper C is investigated
more in-depth: SG4: Secure Software Techniques. The core contributions are:

- We have investigated several software update use cases and identified
constraints and conditions for a unified and versatile approach.

- Considering these constraints and conditions, we propose an approach for
vehicle software updates, where all data needed for a complete software
update is securely encapsulated into one single file.

- This file can be processed in several update scenarios and executed
without any external connectivity since all data is inherently secured.

- We provide a comprehensive overview for a possible secure implementation
covering the whole software chain from producer to receiver.

- Our approach has been reviewed with automotive software update archi-
tects to ensure that the proposed approach can be practically deployed
and efficiently adopted for vehicle software updates.

In summary, we propose the Unified Software Update Framework for Vehicles
(UniSUF) that utilizes isolation techniques and trusted execution environments
to ensure a secure software update process.

Statement of contributions. This is a joint work with my supervisor
Tomas Olovsson and Dennis Kengo Oka. I contributed as the lead for the idea,
performed the development of the framework and the writing of the manuscript.

Appeared in: 19th escar Furope : The Worlds Leading Automotive Cyber
Security Conference, 2021
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1.4 Summary

The lack of methods and techniques specific to the automotive industry to
ensure a secure and resilient vehicle design is troublesome. We are moving
towards a future where almost all devices, vehicles included, have some sort of
connection to the outside world. The ever-increasing complexity aligned with
increased connectivity gives the potential for malicious actors to compromise
these devices with the risk of hazardous outcomes.

The possibility to detect, prevent, respond and predict potentially malicious
events is imperative to ensure the safety of the vehicle and its passengers.
Detection is required for an informed decision around how to manage events
(i.e., the response), e.g., prevent, allow or limit impact of events. One way
to predict the future is to know the past. Thus, the possibility to securely
trace back previous events is a prerequisite for vehicle safety that enables
fixing the detected vulnerabilities e.g, software bugs, and the potential to find
the origin and differentiate between cyber-attacks and hardware and software
failures. Knowledge of existing and potential future threats aligned with the
corresponding mitigation techniques is required to ensure a vehicle design that
fulfills required security and resilience properties. However, research around
cyber security and resilience for modern vehicles is a relatively new area; thus,
more work is needed.

We have contributed with a systematic methodology to find and mitigate
vulnerabilities in vehicles (paper A). We have shown how the methodology
can be practically used to strengthen and enhance vehicle security, resilience,
and safety (Paper C). We have provided a framework for resilience techniques
(Paper B) and incorporated these techniques practically (Paper C). Finally,
to meet the increasing number of software bugs in vehicles software, we have

provided a framework to hastily and securely deploy vehicle software (Paper
D).

1.5 Conclusion and Future Work

Conclusion. Chapter 2 defines the SPMT methodology further performed in
Chapter 4 to derive the Resilient Shield, a framework for resilient vehicle design.
Chapter 3 defines and categorizes resilience techniques, i.e., the REMIND
framework, from where techniques are incorporated into the detailed directives
in Resilient Shield. Thus, SPMT and REMIND lay the foundation for Resilient
Shield. Resilient Shield defines security goals and detailed directives to ensure
a secure and resilient vehicle design. Resilient Shield further lays the base for
UniSUF as it goes in-depth into SG4: Secure Software Techniques. Upcoming
papers consider the security goals and detailed directives defined in Resilient
Shield as a base towards a secure and resilient vehicle design.

Future work. One of the security goals stated in Resilient Shield is SG8:
Forensics. It is imperative to investigate the root cause of incidents and failures
and be able to differentiate between, e.g., software failures and cyber security
issues. However, not much work has been done within the automotive digital
forensic area. Thus, as a first step and shown in Figure 1.5, we aim to perform
a systematic literature review and identify the current literature on automotive
digital forensics, including research gaps, issues, and challenges. We aim to
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identify surveys, technical solutions, and the type of digital forensics data
relevant to forensics investigations. As a second step, we aim to propose a
framework for the design of automotive digital forensics. Furthermore, we aim
to extend UniSUF with in-depth requirements, a security evaluation, and a
comparison with other approaches.



Chapter 2

Securing the Connected
Car: A Security
Enhancement Methodology

Adapted version that appeared in IEEE Vehicular Technology Magazine 2018

K. Strandberg, T. Olovsson, E. Jonsson

Abstract. A new era is upon us, an era where Internet connectivity is available
everywhere and at all times. Cars have become very complex computer systems
with about 100 million lines of code and more than 100 electronic control units
(ECUs) interconnected to control everything, including steering, acceleration,
brakes, and other safety-critical systems. However, cars were never created with
Internet connectivity in mind, and adding this connectivity as an afterthought
raises many security concerns. As a result, a security-enhancing approach that
considers the entire process from product development to market introduction
is required.

This article suggests using a methodology known as start, predict, mitigate,
and test (SPMT). Its purpose is to predict and mitigate vulnerabilities in
vehicles using a systematic approach for security analysis specifically adapted
for vehicles. The SPMT methodology builds on existing methodologies and
models that are applicable to different phases in a vehicles life cycle as well as
on new ideas. Unlike other methods, however, the SPMT methodology covers
a vehicles entire life cycle, which results in security and safety enhancements,
something that cannot be achieved by existing methodologies.

13






2.1. INTRODUCTION 15

2.1 Introduction

The Internet of Things (IoT) has moved society into a new era where a
growing number of devices have Internet capabilities and are behaving more
like computers (e.g., smart TVs and washing machines). Access possibilities
are provided via USB sticks, Bluetooth devices, or Wi-Fi/cellular connections.
Modern cars can have more than 100 ECUs and contain roughly 100 million
lines of code [12]. Today, a car is not just a car, it is a computer on wheels.
ECUs are responsible for various safety functions such as steering and brakes,
and new functionality is constantly being introduced in the automotive industry,
which calls for an increase in the number of ECUs and the amount of code. As
a result, this increases the likelihood of attacks by hackers. Electrical systems
in vehicles are no longer isolated systems, but, rather, they are vulnerable to
cyber-attacks.

2.1.1 Context

A vehicle is a safety-critical system, which means that vulnerabilities can
potentially lead to life-threatening hazards. Koscher et al. [13] discuss security
implications in vehicles, such as vulnerabilities in the controller area network
(CAN) protocol. CAN nodes communicate with broadcast messages, which
enables the possibilities for malicious devices to detect, manipulate, and inject
messages anywhere on the CAN bus. Furthermore, CAN is a priority-based
protocol with no authenticator field and is therefore vulnerable to both denial
of service (DoS) attacks and spoofed packets. Access control, which enables
firmware updates, is usually performed using obsolete proprietary encryption
algorithms. In many cases, these algorithms are publicly known [13] and use
short cryptographic keys indicating that the access control is vulnerable to
various kinds of attacks (e.g., a bruteforce attack followed by malicious code
injection through a firmware update). Koescher et al. managed to disable CAN
communications and update the firmware while a test subject was driving. They
have also found imperfect network segmentation, thereby using the infotainment
unit in the vehicle as a bridge to attack other vehicle ECUs. Furthermore,
they found that reverse engineering of the firmware is usually not necessary
for attacks, since a relatively small range of CAN packets is valid. This makes
it possible to simply fuzz the network with various packets and observe the
response.

By exploiting these and other vulnerabilities, the commandeering of many
vehicle functions, including safety-critical functions both in driving mode at
high speed and while at a standstill, is an unfortunate reality. Considerable
vulnerability is demonstrated in vehicles when physical access is obtained. How-
ever, the Koscher et al. research was met with resistance from the automotive
industry for not being relevant; the industry argued that, with physical access,
an individual could just as well cut cables or destroy other components in the
vehicle. In response, Checkoway et al. [12] provided evidence that external
attacks are also possible via a wide range of entry points and categorized
these attacks into three groupings: indirect physical access, short-range wireless
access, and long-range wireless access.
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2.1.2 Indirect Physical Access

Indirect physical access can refer to the vehicles media player, since music can
be crafted with malicious content. The media player can also be used to bridge
an attack on other components in the vehicle if it is not adequately isolated
from the vehicles main network. This was demonstrated when a standard
International Organization for Standardization 9660-formatted compact disk
that contained a specific filename was inserted into a vehicles media player,
and the content of the file was automatically used to re-flash the unit [12].
Additionally, since the media player can parse complex files, they managed to
add content to Windows Media audio files, that played normally on a PC, but,
in a vehicle, had the side-effect of also sending arbitrary CAN packets on the
vehicle network.

2.1.3 Short-range Wireless Access

Short-range wireless access refers to Bluetooth devices, remote keyless entry,
and the tire pressure monitor system. Checkoway et al. demonstrated successful
attempts to compromise a vulnerable Bluetooth implementation in a telematics
unit. They planted a Trojan horse in an application for an Android 2.1 operating
system that could be uploaded to the Android market. For example, when
a device that contains this application is paired with the vehicle, it would
exploit a buffer-overflow vulnerability enabling the execution of arbitrary code
in the telematics unit. Checkoway et al. also successfully paired a laptop to
the vehicle with no user interaction.

2.1.4 Long-range Wireless Access

Long-range wireless access refers to global positioning systems, digital audio
broadcasting, and remote telematic systems. Checkoway and his colleagues
used a cellular connection to first exploit an authentication vulnerability, and
then a buffer-overflow vulnerability in the telematics unit. Following this, the
telematic unit was forced to download additional malicious content from the
Internet. Moreover, for each vulnerability they demonstrated, they were able
to obtain complete control over the vehicles systems. Remote attacks received
considerable attention when Charlie Miller and Chris Valasek performed a
successful attack on an automobile by using the Internet to gain control of its
vital systems [14]. Similar to Checkoway et al.s experiments, Miller and Valasek
used a cellular channel in the vehicle as leverage, but, in this case, an open
port (6667) made this attack possible. As a result, 1.4 million vehicles were
recalled by the manufacturer. Another attack occurred when Samy Kamkar
managed to remotely unlock an OnStar-enabled General Motors car [15].

2.1.5 Goal and Approach

The goal of this article is to introduce a practical, security-enhancing method-
ology for identifying and mitigating vulnerabilities in vehicles throughout their
life cycle (i.e., from the product development phase to the market introduction
phase). The approach used for creating the SPMT methodology was divided
into three parts. First, a study of various security methods and models used in
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different areas was conducted, and methods or parts of methods relevant to
the automotive industry were selected. Secondly, a theoretical and empirical
study of attacks against vehicles that have occurred was conducted. The
understanding of how and why attacks are successful is necessary to develop a
methodology capable of finding vulnerabilities related to these attacks, as well
as to help identify other vulnerabilities. Lastly, the methodology was defined
and implemented based on the conclusions from the two previous parts.

2.2 Models, concepts, and tools

The definition of a security model varies depending on the category. Generally,
it specifies how to enforce a security policy and defines how to maintain security
for a system or entity. The following models in particular have been effective
as they pertain to the development of the SPMT methodology.

e Spoofing of user identity tampering repudiation information disclosure
DoS elevation of privilege (STRIDE). A threat model proposed by Mi-
crosoft as a scheme for categorizing and identifying known threats accord-
ing to different vulnerabilities or the malicious intents of the attacker [16].

e Damage reproducibility exploitability affected users discoverability (DREAD).
A model also proposed by Microsoft as the next step after threat modeling.
It is used to evaluate the risk for each threat by quantifying, comparing,
and prioritizing the risk [16].

o FE-safety vehicle intrusion protected applications (EVITA). A European
Union project whose objective was to provide the basis for secure release
of applications based on vehicle-to-infrastructure and vehicle-to-vehicle
communication. EVITA proposed a method for security and safety/risk
analysis for a vehicles network and also proposed a secure architecture
and communication protocol [17].

o Healing vulnerabilities to enhance software security and safety (HEAV-
ENS). A project that was conducted between 2013 and 2016 [18]. The
HEAVENS security model policy is divided into two categories: security
objectives and security attributes. The security objectives are taken
from the EVITA model, and the security attributes are taken from the
STRIDE model. The main workflow from top to bottom for HEAVENS
is shown in Table 2.1.

Table 2.1: The workflow of HEAVENS

TOE Define Target of Evaluation

Threat Analysis Define the possible threats against the TOE
Risk Assessment Grade the severity of those threats

Security Requirements | Define needed mitigations against those threats

o Threat agent risk assessment (TARA): a predictive methodology devel-
oped by Intel to define the security risks that are most likely to occur.
This methodology is based on the presumption that it is too expensive
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and impractical to defend against all possible vulnerabilities; therefore,
by choosing the most important ones, results are maximized and costs
are minimized. TARA identifies all possible threats by assessing different
lists of known threats. Those threats are then filtered so that only the
most serious ones remain [19].

The following concepts and tools are used in this article:

Vulnerability Testing ,/

Penetration Testing

Target of Fvaluation (TOE). This is the product or system that is the
subject of evaluation.

Attack Tree. A diagram visualizing the steps needed for a realized threat
on an asset.

Threat Modelling. The first step when creating a threat model is to
evaluate which assets need protection and how they are threatened.
Known vulnerabilities and attacks (i.e., searching known vulnerability
databases) are then identified.

Risk Assessment. This is a continuation of the previous step when
the risks of the threats are evaluated. The threats are prioritized with
respect to the probability of occurrence and its consequences; these are
weighted against the cost of mitigation. After a threat modeling and a
risk assessment are performed, it is important to evaluate the possible
mitigations.

Attack Attempts. A thorough understanding of attacks related to the
TOE and its corresponding hacker tools is imperative. Hence, studies
of attacks and adaptations of these attacks as tests should be a part of
a security evaluation verifying mitigations. To verify this concept we
performed attacks against the vehicle Wi-Fi network and the Volvo On
Call service in a Volvo XC90 as shown in Figure 2.1 [20].

Fuzz Testing

Defensics /

Negative Testing

Port Scan
OpenVAS

Exploits ‘ -
Kali Linux
OwnStar Attack
Reaver Attack

Pineapple

Brute Force Attack

Figure 2.1: Attack attempts against Volvo XC90
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2.3 The SPMT Methodology

The SPMT methodology is divided into two main stages. First, the procedure
is applied to a specific TOE, i.e., an ECU or other unit. The TOE in question is
then integrated into the vehicle and becomes a part of the vehicles network. The
procedure will then be repeated and adapted to the integration and performed
again. By considering the devices, the integration, and system tests as a whole,
a broad security perspective is achieved.

Figure 2.2, shows the procedures and concepts that have inspired the
development of the SPMT methodology. The start phase defines the TOE,
security policies, and a brief threat modeling based on common security and
safety concepts. The predict phase consists of threat modeling by using the
STRIDE threat model for categorizing vulnerabilities and threats in different
lists. The idea of filtering comes from the TARA methodology (although the
filtering of these lists is based on a qualitative assessment inspired by the
DREAD methodology), the EVITA, and the HEAVENS projects, and by the
establishment and analysis of attack trees.

The mitigate phase is based on brainstorming and further analysis of
countermeasures related to the attack trees from the predict phase, as well
as a quantitative assessment. Hence, a hybrid approach of a qualitative and
quantitative assessment is considered. The test phase consists of practical
security-related tests in conjunction with automated fuzz and vulnerability
scanning tools. Penetration testing inspired by hacker attacks and their tools
results in the creation of tests and tools that are adapted for the TOE. Figure
2.3 shows an illustration of the input and output to each phase.

Threat Modelling

\L STRIDE Start Phase
TARA

Risk Assessment Security Policies l
DREAD Vulnerability Databases
HEAVENS .
EVITA —y Mitigations Predict Phase
TARA Attack Trees
Risk Management Reduction Analysis l
Qualitative Assessment Countermeasures
2&2:&'2?2: AESESSIE Residual Rick Mitigate Phase

Security Testing l
Fuzz Testing

Vulnerability Testing Test Phase
Penetration Testing

Figure 2.2: Illustration of the SPMT phases

2.3.1 Start Phase

The start phase is conducted in a workshop-like manner with discussion and
brainstorming sessions on how to best implement this idea. This phase is
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divided into two stages:

1. The establishment of what needs protection, i.e., what is the TOE? Which
assets are affected? How are those assets interconnected? How can a
compromised asset affect other assets? What are the possible entry points
for threats to the vehicle?

2. Defining security policies, i.e., what does it mean for the system to be

secure/insecure? How are security and safety-related attributes achieved
for the TOE, such as those listed in Table 2.27

Table 2.2: Security and Safety attributes

Confidentiality | Authorization | Privacy Reliability
Integrity Authenticity | Isolation Least privilege
Availability Freshness Maintainability
# Input
Start Phase Mitigate Phase
Output:
Output: SHELt

A document containing
justified risk handling
related to each
vulnerability and threat in
all six STRIDE lists.

A document containing:
1. concept idea (TOE)

2. threat modelling

3. security policies

L Input ‘L Input
Predict Phase Test Phase

Output: Output:

Six filtered STRIDE lists A document verifying

containing vulnerabilities mitigation of

and threats related to the vulnerabilities in the six

TOE STRIDE lists and other
vulnerabilities found in the
Test Phase.

Figure 2.3: Illustration of the input and output to SPMT phases

This phase produces a document containing the concept idea, a brief threat
model for the TOE, and security policies, including high-level directives for the
enforcement of security attributes.
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2.3.2 Predict Phase

This phase consists of predicting threats against potential vulnerabilities in the
TOE and its related assets. This is partly accomplished by searching known
vulnerability databases, e.g., the common vulnerability enumeration (CVE)
database.

Table 2.3: The six STRIDE lists

Spoofing Authenticity /Freshness S-LIST
Tampering Integrity T-LIST
Repudiation Non-Repudiation/Freshness | R-LIST
Information disclosure | Confidentiality /Privacy [-LIST

Denial of Service Availability D-LIST
Elevation of Privilege | Authorization E-LIST

As shown in Table 2.3, this list is filtered by keywords and divided into six
lists based on the STRIDE threat model. It is then managed by applying four
steps:

1. Compose six lists based on the STRIDE model centered on the CVE
identifier.

2. Automate the filtering of these lists based on keywords, i.e., excluding
threats not relevant to the TOE.

3. Evaluate the vulnerabilities in each list, and remove those that are not
relevant (the filtering from the previous step makes possible a more
manually filtered approach).

4. Perform a qualitative assessment of the remaining vulnerabilities based
on the calculated risk value (i.e., risk = probability for a realized threat
X consequences):

e Grade the probability of a realized threat on a scale from 1 to 3 (i.e.,
1 = low, 2 = middle, 3 = high). Base the probability for a realized
threat on how easy it is to exploit a vulnerability in the following
manner:

— Where, when, and in what situation can the attack be carried
out?

— What expertise is required of the attacker? What tools are
needed and how difficult is it to acquire these tools?

— What time is needed to perform the attack?

Based on the answers to these questions, the probability of a realized
threat is graded and the highest value (low, middle, or high) is
chosen.

e Grade the consequences on a scale from 1 to 3 (i.e., 1 = low, 2
= middle, 3 = high). If the attack is successful, what are the
consequences? The consequences of the following four attributes
(the objectives from EVITA) are graded and the highest value (low,
middle, or high) is chosen.
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— Operational (graded on a scale from 1 to 3): Are any operational
factors affected?

— Safety (graded on a scale from 1 to 3): Is safety affected?

— Privacy (graded on a scale from 1 to 3): Is any personal infor-
mation compromised?

— Financial (graded on a scale from 1 to 3): How are financial
factors affected?

e (Calculate the risk by multiplying the result from the probability for
a realized threat with its corresponding consequences, as shown in
Figure 2.4. These values determine the risk severity graded on a
scale from 1 to 9.

Risk =y * x Risk

S .
2 4 2,3,4 Middle
3

y = probability for 1 2
a realized threat

1 Low

>
B

X = consequences

Figure 2.4: Visualizing the risk calculation process

e Remove all vulnerabilities that result in a risk = 1 from the list
(acceptable risk).

e Add other relevant threats which are missing from each category
by brainstorming. Consider both inside and outside threats, i.e.,
employees with privileges and attackers without privileges.

e Sort the remaining threats in the lists based on risk value, with the
highest value first.

o Create attack trees for the threats with a risk value of 6 or 9
(prioritized threats) to connect the vulnerability with the threat,
i.e., the conditions (leaf nodes) that need to be met for a successful
attack (i.e., an attacker traverses from a leaf node to the root of the
tree).

e Assess these vulnerabilities and threats in the next phase.

This phase produces a document containing six filtered STRIDE lists containing
vulnerabilities and threats to the TOE. Note that each TOE needs its own
set of lists. This requires considerable effort initially, but, once it is done, it
only needs to be assessed when new potential vulnerabilities or threats are
discovered.

2.3.3 Mitigate Phase

The filtered STRIDE lists are assessed from the previous phase in a workshop-
like manner through brainstorming. The vulnerabilities with the highest
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risk are considered first, and mitigation techniques that prevent attacks are
discussed and implemented if possible. This is done by analyzing the conditions
(leaf nodes) in the attack trees from the predict phase, e.g., by placing a
countermeasure at each leaf node. The closer to the root a countermeasure is
situated, the more leaf nodes are covered. Some leaf nodes can be attained
by more than one attack; hence, a countermeasure can mitigate more than
one attack. Figure 2.5 shows an example of an attack tree visualizing different
attacks affecting the brakes in a vehicle. Countermeasures at the node labeled
Tamper with the ECU software provide protection against all three attacks in
the attack tree. We can also see that we need other countermeasures relating
to the node labeled DoS attack. Finding these commonalities is termed a
reduction analysis and can be very effective.

Turn off brakes

[

\
Tamper with the ECU

DoS attack
software
Physicall Man in
Brute M Y
replace the
force .
flash middle
attack
memory attack

Figure 2.5: A simplified example of an attack tree

In this process, the cost for mitigation versus the value of the asset (TOE) is
considered (since this enables cost-efficient mechanisms). This value is estimated
by a quantitative assessment calculation, i.e., Annualized Loss Expectancy
(ALE) = Annual Rate of Occurrence (ARO) x Single Loss Expectancy (SLE).
In turn, the SLE is the product of the asset value (AV) and the exposure factor
(EF). The exposure factor describes the monetary asset loss for a realized threat
expressed in a percentage [21].

For example, if AV equals 1,000 units and EF equals 25% and the probability
of the realized threat (ARO) is once in every ten years, the calculation is
expressed as ALE = ARO x SLE = ARO x AV x EF = 0.1 x (1,000 x 0.25) =
25. Hence, the mitigation cost per year should not exceed the ALE value of 25
units. However, this is a very rough estimation since it might be difficult to
estimate the costs for potential damage. Still, it is not feasible if mitigation
costs are higher than the monetary value of the asset that is being protected;
and it should not exceed the financial loss for a realized threat.

The residual risk, i.e., the remaining risk after a countermeasure has been
applied, must also be considered. It could be acceptable to decrease the
mitigation cost by increasing the risk. However, risk management is usually
determined by the mitigation, transference, avoidance, or acceptance of the
risk. Transferring the risk to an insurance company is also an option. Avoiding
risk can be done by terminating the activity, which introduces the risk or by



CHAPTER 2. SECURING THE CONNECTED CAR: A SECURITY ENHANCEMENT
24 METHODOLOGY

accepting that the risk might be necessary if mitigation is not feasible. This
phase produces a document that contains justified risk handling related to each
vulnerability and threat in all six STRIDE lists.

2.3.4 Test Phase

This phase consists of practical security testing and verifying the output from
the predict and mitigate phases (i.e., the filtered STRIDE list and mitigations
therein). These tests could also reveal more vulnerability. When possible, the
use of automated software and hardware tools is recommended. The following
three tests are used: fuzz testing, vulnerability testing, and penetration testing.

Fuzz testing considers mostly negative testing, i.e., testing inputs that
are unexpected. Positive testing (valid, expected output testing) is assumed
to be a part of normal function testing and not necessarily part of security
testing; however, security and normal function testing should be integrated.
The difference between vulnerability testing and penetration testing is subtle,
and in many cases they overlap. Vulnerability testing is defined more as an
automated approach with scanning tools used to find vulnerabilities, whereas
penetration testing is a manual approach wherein vulnerabilities that are diffi-
cult to automate (e.g., TOE-adapted attacks as tests) are tested. Penetration
testing considers both black- and white-box testing. Also considered for tests
are internal and external perspectives. An example of white-box testing against
a vehicles wireless local area network (WLAN) router as a TOE can be a
vulnerability scan of the private internet protocol (IP) address (i.e., test access
via the vehicles internal Wi-Fi network). An example of black-box testing of
the TOE might instead be a vulnerability scan of the official IP address (i.e., to
test access from the Internet). An example of an operating system specialized
in penetration testing is Kali Linux, which contains many useful tools [22]. An
example of a hardware tool, applicable for evaluation of an access point, is
Pineapple [23]. The output from this phase results in a document verifying
mitigations toward vulnerabilities found in this phase and the six STRIDE
lists.

2.4 Integration into the vehicle

At this point, the test phase has mainly considered the testing of a device (e.g.,
a single ECU). As previously mentioned, it is important to consider how the
TOE affects, and is affected by, other assets (e.g., ECUs) in the vehicle. The
TOE is not changed in this step; rather, the focus shifts toward a broadening of
the scope to consider the complete vehicle relative to the TOE. Hence, when the
test phase passes the device tests, the focus shifts and turns once more toward
the integration tests. A compromised ECU (e.g., the vehicle infotainment
system) might be used as a platform to send critical CAN messages to other
safety-critical ECUs, if not correctly isolated or if the communication is not
filtered. An example of tests that could be performed against the vehicle
network as a whole (including the TOE) is an attack that exploits the error
handling at the CAN bus by injecting messages, eventually forcing one or many
ECUs to shut down [24]. A test such as this can be automated with scripting
languages (e.g., Python or Communication Access Programming Language).
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Scripting and tools are typically adapted to the TOE; an example of an effective
analysis tool for the total vehicle network is CANoe from Vector [25].

variable initialization

int choice = 1
bool INTEGRATED = false
bool FAIL = true if choice == if choice == if choice == 3
Start Phase Fuzz Testing Vulnerability Testing Penetration Testing

FAIL
choice choice

l

Predict Phase

l if choice ==
et .. &&FAIL==false
Mitigate Phase |<#——————— FAIL==true :;':Response?_'_’js
l choice FAIL == false
Test Phase ‘ true
INTEGRATED?
if choice != 3 do: choice +=1
false\L
Integrate In Car Release!
Adapt Test Phase for e o
integration tests! INTEGRATED = true;
choice =1

Figure 2.6: Flowchart of SPMT phases

2.5 Flowchart and Pseudocode for the whole
process

In this section, all phases are visualized in a complete manner by combining
stated diagrams, as shown in Figure 2.6, with the pseudocode shown in Figure
2.7. In the pseudocode, the usability of the SPMT methodology is displayed
with the vehicles WLAN router as a TOE; it is assumed that the start and
predict phases have been completed. It is also assumed that the tools used in
the test phase are Defensics, OpenVAS, and Kali Linux together with certain
hardware tools. Hence, at row 1, the mitigate phase is entered. All identified
vulnerabilities are corrected at row 2. The test phase is presented at row 3,
with the variable choice set to fuzz testing (the first test to be performed). At
rows 4 and 5, fuzz testing is entered. At row 6, the TOE is scanned with the
Defensics tool. At rows 7-11, the response is handled. If the test fails, the
mitigate phase is re-assessed, the vulnerabilities are addressed, and fuzz testing
is performed again. If the fuzz testing is successful (row 11), the vulnerability
testing (row 12) can begin. The vulnerability testing (rows 12-18) works in
the same manner as the fuzz testing, except that the OpenVAS tool is used.
Penetration testing, the last test, differs from the others because, if this test
is successful, integration of the TOE to the car is performed (row 25); this
can only be done once (row 24). At row 27, all tests are repeated once more
(although they are adapted for integration testing) after the TOE is integrated
into the vehicle. If all tests are successful, the product can be released to
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1: Mitigate Phase(choice):

2 do: mitigate vulnerabilities for choice;

33 goto: Test Phase (choice);

4: Test Phase(choice):

55 155 //***Fuzz Testing**x//

6: do: scan TOE (use: Defensics)

TE Response?

82 CASE (FAIL) :

9 True ? goto: Mitigate Phase(l);

10: else

11: goto: Test Phase(2);

12: 24 //***Vulnerability Testing***//

15 do: scan TOE (use: OpenVAS)

14: Response?

15 CASE (FAIL) :

16 True ? goto: Mitigate Phase(2);

17: else

18: goto: Test Phase(3);

19: 3 //***Penetration Testing***//

203 do: attacks against TOE (use: Kali Linux
hw Tools)

21 Response?

223 CASE (FAIL) :

284 True ? goto: Mitigate Phase(3);

24: else if !INTEGRATED

2.5 do: Integrate In Car and

INTEGRATED = true;

26: //***Repeat all tests***//

27: goto: Test Phase(l);

28: else

29: do: Release;

Figure 2.7: Pseudo code to exemplify the usability for the SPMT Methodology

market (row 29). Within the industry, components are ordered by external
suppliers in a more-or-less developed status. In these cases, it is possible to
enter an appropriate phase, e.g., the last phase (test phase) to begin practical
tests.

Considering a released product, it is possible to assess SPMT as shown in
Figure 2.8 by continuously monitoring for new threats or system changes.

For the former, new threats need to be assessed and placed into the ap-
propriate list (predict phase), and, for the latter, system changes need to be
reassessed with practical tests (test phase). Hence, the SPMT is adaptable
and can meet the requirements to cover both development and after-market
security analysis.

2.6 Discussion and Contributions

In this chapter we highlight and discuss some of the advantages and benefits of
the proposed methodology.



2.7. CONCLUSION 27

FAIL == false
System I
changes? Test Phase ~ — > Response?:
Release! l/FAIL == true
New Predict Phase ——> Mitigate Phase —
threats?

Figure 2.8: Possible scenarios after product is released to market

o Innovative and important. The SPMT methodology shows how compo-
nents of existing models and methods of security can be applied success-
fully when securing connected cars. This approach is both innovative
and important for the automotive industry.

o Comprehensive and systematic. SPMT methodology offers a compre-
hensive systematic approach to security analysis specifically adapted for
vehicles.

e High coverage. By following the SPMT methodology, comprehensive
threat lists with mitigations are created for high-priority threats. High
coverage is given for mitigations against threats with evaluated and
prioritized risks considering the operational, safety, privacy, and financial
factors that relate to vehicles. However, it still remains to be seen how
large the coverage is in quantitative terms.

o Security as entirety. The SPMT methodology considers both the TOE
from a device perspective and when the device has been integrated into
the vehicle as a whole.

e Cost and time effective. The SPMT methodology simplifies the process
of reassessing security after system changes and new threats. This is
done by making use of existing documentation from earlier assessments
and conducting practical tests concerning the changes in the test phase.
Therefore, the SPMT methodology is both cost- and time-effective.

o Adaptable. The SPMT methodology is applicable for adaptation to
different situations by selecting different tools and adapted attacks for
different TOEs. It is possible to start the adaptation in different phases
depending on the situation, as shown in Figure 2.8. Integrating the
SPMT methodology to current development processes for the automotive
industry is a straightforward approach, as exemplified in the Software
V-model in Figure 2.9.

2.7 Conclusion

This article defines a security-enhancing, and thus safety-enhancing, methodol-
ogy that identifies and mitigates vulnerabilities in vehicles. This is achieved



CHAPTER 2. SECURING THE CONNECTED CAR: A SECURITY ENHANCEMENT
28 METHODOLOGY

Concept of Operation Operation/Maintenance

Start Phase Test Phase
Requirements/Architecture System Verification/Validation
Predict Phase Test Phase

Detailed Design Integration/Verification

Mitigate Phase Test Phase

Implementation
Mitigate Phase Project Test &

Integration

Project
Definition

Time

Figure 2.9: The SPMT methodology integrated into the software V-model
process

through a comprehensive, systematic approach to security analysis, specifically
adapted for vehicles. This methodology covers security analysis for the entire
process, from product development to market introduction, by adapting and
integrating relevant parts of existing security methods and models and by in-
corporating new ideas suitable for vehicular domain. This methodology, named
SPMT, is essential for the automotive industrys efforts to improve security and
safety.
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REMIND: A Framework for
the Resilient Design of
Automotive Systems

Adapted version that appeared in IEEE Secure Development 2020

T. Rosenstatter, K. Strandberg, R. Jolak, R. Scandariato, T.
Olovsson

Abstract. In the past years, great effort has been spent on enhancing the
security and safety of vehicular systems. Current advances in information and
communication technology have increased the complexity of these systems and
lead to extended functionalities towards self-driving and more connectivity.
Unfortunately, these advances open the door for diverse and newly emerging
attacks that hamper the security and, thus, the safety of vehicular systems.
In this paper, we contribute to supporting the design of resilient automotive
systems. We review and analyze scientific literature on resilience techniques,
fault tolerance, and dependability. As a result, we present the REMIND
resilience framework providing techniques for attack detection, mitigation,
recovery, and resilience endurance. Moreover, we provide guidelines on how the
REMIND framework can be used against common security threats and attacks
and further discuss the trade-offs when applying these guidelines.
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3.1 Introduction

In the past years great effort has been spent in publishing guidelines and
standards for security frameworks specific to their domains and in identifying
security principles. Examples range from the NIST guideline for cybersecurity
in smart grids [26], the cybersecurity guideline for ships [27], cybersecurity
guidelines for the automotive domain [28-30] and the upcoming ISO/SAE
standard for cybersecurity engineering for road vehicles, namely ISO 21434 [5].

Resilience is the next step towards reliable, dependable and secure vehicular
systems. Vehicles need to be able to mitigate faults, errors, attacks and
intrusions that would ultimately result in failures in order to withstand safety
and security threats from their environment. We define automotive resilience as
the “property of a system with the ability to maintain its intended operation in a
dependable and secure way, possibly with degraded functionality, in the presence
of faults and attacks.” This definition is inspired by Laprie’s definition [31] and
the definition of network resilience by Sterbenz et al. [32]; however, the chosen
definition highlights that faults or changes, e.g., functional and environmental
(see [31]), can also be originated by an attacker whose aim is to disrupt the
system.

Resilience can be obtained in many different ways and on different levels,
i.e., hardware, software or (sub)-system level. Today’s internal architecture
of vehicles is quite complex and can be distributed over more than hundred
so-called Electronic Control Units (ECUs). However, we are currently in
a transition towards a more centralized architecture where functions will be
concentrated on much fewer and more powerful ECUs [33]. These central ECUs
are connected to sensors, actuators, external communication media and to some
extent to smaller legacy subsystems. Such a centralized architecture enables
vehicle OEMs not only to perform more resource intensive operations needed for
autonomous driving, but also allows to introduce new designs and technologies
needed to secure and protect these highly connected and autonomous vehicles.
Virtualization is seen as one key technology enabling the isolation of vehicle
functions from each other along with the possibility to dynamically assign
hardware resources. Introducing resilience to such a centralized automotive
system requires the deployment of techniques and principles in all layers and
components of the system, ranging from the vehicle itself, the connected IT
infrastructure, road infrastructure and the communication to other vehicles.

Motivation. The increasing complexity towards autonomous driving
combined with the interconnectedness of vehicles, e. g., vehicle-to-vehicle and
vehicle-to-infrastructure communication, and the continuous development of
functions require vehicles to react and adapt to changes and attacks indepen-
dently. The automotive domain is distinct from other domains as it is a safety
and real-time critical system operated by millions of individuals each day. Fur-
thermore, security and safety techniques need to be aligned and extended with
resilience techniques in order to strengthen vehicles’ capabilities to withstand
impending threats.

Contributions. This paper provides a framework to design resilient auto-
motive systems. First, we systematically identify relevant automotive resilience
techniques proposed in the literature with the goal to provide a full picture
of available tools and techniques. We also organize these techniques into a
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taxonomy, which comprises the categories of Detection, Mitigation, Recovery,
and Endurance (REMIND). These categories represent high-level strategies
that can help designers understand the purpose of each technique. Further,
it can be beneficial to combine techniques from different strategies to achieve
multiple layers of security. The selection of the right technique for the task at
hand is further supported by associating the resilience techniques to the classes
of automotive assets they are appropriate for. Additionally, we elaborate on the
trade-offs (i.e., pros and cons) that are associated with each of the techniques,
e.g., with respect to performance and other qualities. In summary, we provide
a multi-dimensional decision support framework (built in a bottom-up fashion
from the analysis of the literature) that can lead designers to the informed and
optimal selection of a suitable set of resilience techniques to be implemented in
an automotive system.

3.2 Methodology

By means of a systematic literature survey, we identify research papers that
discuss techniques that are suitable to provide automotive resilience. We
consider existing work related to resilience, fault tolerance and dependability.
We also analyze the papers describing each technique to understand (i) the
assets that can benefit from the technique, (ii) the risks that are mentioned as
being mitigated by the techniques, and (iii) any pros/cons associated with the
use of such technique.

We identified relevant research papers by searching the Scopus database !. A
search string was intended to find relevant publications that carried out a review
of suitable techniques. Therefore, we formulated the search string to include
survey or literature review, and relevant topics, such as resilience, survivability,
attack recovery, error handling or fault tolerance, as well as the keywords
software, system or network. We excluded the keywords FPGA, memory,
wireless, SDN and hardware to limit the search result to publications focusing
on system architecture, software design or physical networks. Furthermore, we
considered only publications written in English and published after 2010 in the
areas of computer science and engineering. We manually screened the 200 most
relevant publications returned by Scopus and found eight additional research
publications, which were added to our result set. Ultimately, we retained and
analyzed 12 publications which are shown in Table 3.1.

3.3 Attack Model and Assets

The four strategies in the REMIND framework are, as shown in Figure 3.1,
further refined in patterns and techniques. A collection of these techniques
specific for automotive systems is described in Section 3.4 and has been identified
based on existing research in other domains and areas (see Table 3.1). We
additionally describe the trade-offs of these techniques in Appendix 3.7 and
point to relevant publications in Appendix 3.8. In the remainder of this section
we describe the assets, security threats and attacks of automotive systems.

Thttps://www.scopus.com/
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Table 3.1: Publications that provide an overview or collection of relevant
techniques.

Discipline Existing Work Domain
Chang2015 [34] Fog Computing
Hukerikar2017 [35] High Performance Computing
Resilience NIST 800-160v2 [36]  Systems Engineering

Ratasich2019 [37] Cyber-Physical Systems
Sterbenz2010 [32,38] Networks
Security Segovia2019 [39] SCADA systems

Dependability ~ Bakhshi2019 [40] Fog Computing
Egwutuoha2013 [41]  High Performance Computing
Kumari2018 [42] Cloud Computing

Fault Tolerance Mukwevho2018 [43]  Cloud Computing
Sltten2013 [44] Software Engineering
Wanner2012 [45] Vehicle Controller

We consider four asset types, namely Hardware, Software,
Network/Commaunication and Data Storage. The attacker aims to compromise
these assets via various attack vectors, whereas the defender, i.e. the vehicle,
aims to cope with these attacks via resilience techniques. We consider skilled
attackers as well as novice hackers (e. g., script kiddies) and further give exam-
ples from an asset, threat and attacker perspective.

Hardware. Can be broken down to ECUs, Sensors and Actuators. An ECU
can vary in complexity depending on its objective, from a specific limited
task to a multitude of tasks. The former can relate to the processing of a
sensor signal and the latter an infotainment-system with lots of applications.
Sensors can give information about speed, temperature and obstacle distance
and identification where the Actuators turn input from these sensors (via an
ECU) into actions, such as braking, steering and engine control.

Attack example. Tampering with existing hardware or installing malicious
hardware into the vehicle can act as mediators to gain complete vehicle control.
Input signals from sensors may be manipulated to cause an unwanted behavior.
Software. Can be in transit, at rest or running. In transit can relate to
software provisioning systems, such as over-the-air or workshop updates and
the latter two to software installed or running in ECUs.

Attack example. Software vulnerabilities might be exploited, e. g., via a privilege
escalation attack which enables ECUs to be re-programmed with additional
functionalities, such as adding remote access to the system.
Network/Communication. Can be broken down to internal and external
communication. Examples for internal communication are CAN, FlexRay,
LIN, MOST and Automotive Ethernet and for external communication Wi-Fi,
Bluetooth, and V2X as well as external interfaces such as OBD-II, debug ports
(e.g., JTAG) and CD player.

Attack example. The attacker can try to inject malicious data, through a
device connected to an in-vehicle bus affecting the internal communication.
Furthermore, modification of V2X data from other vehicles as well as malicious
roadside units (e. g., vehicle positioning or traffic condition data) could affect
system functions.
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Data Storage. Can potentially be sensitive data, such as cryptographic
keys, forensics logs, system information (e. g., from software libraries, OS and
applications) and reports about the vehicle and the driver.
Attack example. The attacker can exploit secret keys used for sensitive di-
agnostics to disable firewalls. Logs and report data might be manipulated
or removed to hide forensic evidence of the crime. Furthermore, information
about the system can reveal vulnerabilities which might be exploited. Attackers
typically exploit the above-mentioned assets in any order to achieve their goal,
e.g., uploading malicious software to the vehicle by first compromising the
cryptographic keys to get access to the memory and consequently upload a
modified firmware containing malicious code. This can give elevated privileges
and extended functionality which could cause inconsistencies or disruption of
the system.

More examples of assets and related security threats and attacks can be
found in Table 3.2.
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3.4 REMIND Automotive Resilience Frame-
work

We have developed the REMIND framework shown in Figure 3.1 to provide
system designers and developers with a categorization of suitable resilience
mechanisms including the identification of the assets they protect. The structure
of the layers is chosen similarly to the work in Hukerikar et al. [35], where the
bottom layer is divided into strategies and the mid layer is split into patterns
that provide more details about the way the strategies can be realized. We
refer to relevant solutions for automotive systems in the top layer and further
link to the survey papers and reviews that identify specific techniques for their
domain in the description listed below.

The four REMIND strategies for providing resilience for vehicular systems
are:

e Detection. Faults, attacks and other anomalies need to be detected by
the system in order to take reactive measures to avoid a failure.

e Mitigation. Once an anomaly is detected and located, mitigation
techniques need to be triggered to keep the system operational. These
techniques may result in a non-optimal system state.

e Recovery. Transitioning back to the desired, i.e., optimum state, is the
aim of recovery.

e Endurance. The focus is set on lasting resilience in contrast to recovery
& mitigation strategies which aim at taking immediate measures.

The remaining part of this section details the strategies and describes the
patterns and corresponding techniques.
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Patterns Techniques and Solutions
‘Signature—based Detection

Strategies

‘Runtime Verification (e. g., [46,47])

‘Falsiﬁcationfbased Analysis
‘Veriﬁcation of Safety-Properties

‘Speciﬁcation—based Anomaly Detection (e. g., [48])
‘Statistical Techniques (e. g., [49])
‘Machine Learning/Data Mining (e. g., [50])

‘Information—theoretic Detection (e.g., [51])

Localization (e.g., [52])
Attack Prediction in Cyber Security (e. g., [53])

‘HW/SW redundancy (e. g., [54])

‘Sensor/ Data Fusion (e.g., [55])

‘Agreement/\/oting (e.g., [54])

‘Replax:ement of Cold/Hot spares

‘N—version Design (e. g., [56])
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‘Retry
‘Model—based Response (e. g., [67,68])

‘State Estimation (e.g., [68])

‘ Safety Guard [66]

[Reinitialization

‘Reparameterization (e.g., [59])

‘Gra,ceful Degradation / Limp Mode (e. g., [60-62])

‘ Isolation

‘Restructure (e.g., Software Reflection [39])

‘Dyna.mic Deployment of Policies (e. g., [63])

‘Rescue Workflow

‘Relocation/ Migration (e.g., [64,65])

‘Preemptive Migration

‘ Re-instantiation/Restart

‘ Checkpoint Recovery

‘ Software Rejuvenation
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3.4.1 Detection

The monitoring and detection capabilities of a system can be limited due to
various factors, such as computational resources, energy consumption, and
the complexity of functions and network architecture. The move to a more
centralized architecture, however, paves the way for more extensive monitoring.

Specification-based Detection. Malicious or abnormal behavior is
detected using a specification that describes the behavior of signals or commu-
nication patterns. Domain knowledge is needed to create the specifications.

- Signature-based Detection [37]. Signatures are constructed to describe known
attack behavior. By design, these techniques suffer from detecting new attacks
and zero-day vulnerabilities. However, they typically achieve a low false positive
rate [48].

— Runtime Verification [37,44]. A monitor observes the system at runtime to
verify the correctness of the execution. Formal specification languages, e. g.,
Signal Temporal Logic (STL) [82], have been developed to describe the normal
system behavior which is matched against a trace during execution.

— Falsification-based Analysis [37]. Tt extends STL by including a quantitative
semantics allowing the return of real values rather than Boolean values.

— Verification of Safety-Properties [37]. The formal verification of safety proper-
ties has become increasingly complex due to the added functionality in modern
vehicles. Exhaustive verification techniques, as listed and argued by Ratasich
et al. [37], are currently limited to small scale models.

— Specification-based Anomaly Detection. Normal behavior, according to a set
of rules, is defined using this technique. An alert is sent when a violation of
these rules is detected [48].

Anomaly-based Detection. Anomaly- or behavior-based detection tech-
niques are based on comparing behavior with a model of normal behavior.
Alerts are raised when a deviation is detected [83].

— Statistical Techniques [37]. A statistical model describing the system or a
specific process is designed in order to detect anomalies. Events are considered
anomalies when the probability of their occurrence is below a certain threshold
according to the model.

— Machine Learning/Data Mining [37]. These techniques typically do not require
domain knowledge. A model, such as Bayesian networks, neural networks
and support vector machines, learns through training data how to classify
observations in normal and abnormal classes.

— Information-theoretic Detection [37]. The entropy of information can be used
to detect anomalies, as a change of the entropy above a certain threshold may
be caused by an attack, e. g., masquerading attack [37,51].

— Localization. Finding the source of the attack may be required to take
appropriate actions. Network-based Intrusion Detection Systems (IDSs) can
be used to limit the location to a specific subnet, however, solutions identifying
the particular ECU are needed (e. g., [52]).

Prediction of Faults and Attacks. First, the system needs to identify
the presence of an attacker. The next actions are attack projection and attack
intention recognition which aim at identifying the next steps and the ultimate
goal of the attacker. Attack or intrusion prediction can be used to foresee when
and where an attack will take place [53].
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Adversaries mounting simpler attacks on a single vehicle, such as DoS
attacks on the CAN bus, may be difficult to predict as the attack consists of
fewer steps. However, large-scale attacks requiring the attacker to go through
several stages may be predicted by this technique.

Redundancy. Redundancy is twofold, as it can support both detection and
mitigation. It is important to highlight that purely redundant systems suffer
from the same design faults and vulnerabilities. Thus, diversity is combined
with redundancy to overcome this issue.

- HW/SW Redundancy [35-87, 39, 41-44]. Redundancy combined with a voter
allows to mask system failures. The voter compares the results of a number
of independently executed software and/or hardware modules and selects, for
instance, the majority [54]. Repeating the computation n times on the same
hardware can be used to detect random faults.

- Sensor/Data Fusion [37]. Data from different origins may be fused to compen-
sate inaccuracies or temporary sensor failures. Sensor fusion, e. g., extended
Kalman filter [84] and particle filter [55], can be used to describe the non-linear
relationship between sensors. For example, the motion of a vehicle can be
described with measurements from the wheel speed sensor, GPS location and
data received from other vehicles.

— Agreement/Voting [35, 37, 41, 44]. Redundant components are required for
this technique. Voting can be realized in two ways, i.e., exact voting and
inexact voting, where the latter allows a variation of the result within a certain
range [54].

— N-version Design [35-87, 41, 43]. N versions of a software with the same
requirements are developed by N independent teams resulting in a diverse set of
functionally equivalent software components that fulfill the same specification.
These versions are executed concurrently and a voter decides based on the
majority or calculates, for instance, the median or average of the results [56].
— Recovery Blocks [35,483,44]. Similar to n-version design, n versions of a software
component exist; however, only one version is executed at a time. After the
active version is executed, a common acceptance test decides whether the result
is accepted. In case the result is rejected, the subsequent version is executed
and evaluated [56,57].

— N self-checking [41]. This technique is a combination of n-version design
and recovery blocks. It requires at least two diverse versions with their own
acceptance test. When the active component fails its acceptance test, the
subsequent component takes over [57].

— N-variant Systems. Multi-variant execution automatically diversifies soft-
ware and monitors the output of at least two variants to detect and mitigate
attacks [58].

— Replacement of Cold/Hot Spares [37]. Concurrent and sequential execution
of redundant software components is costly in terms of energy consumption
and computational resources. Therefore, the introduction of cold or hot spares,
such as in N self-checking, have been found to be a viable alternative [37].

3.4.2 Mitigation

After detecting an attack or anomaly, the system needs to react to reduce the
impact of the attack. Some mitigation techniques may require the transition
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to a non-optimal state.

Adaptive Response. We focus on techniques that adapt the response of
a function or sub-system in order to maintain its intended functionality.

— Retry [42, 43]. Performing the same computation with new measurements
if the first computation resulted in an undesired system state or in an error.
Retry can mitigate a replay attack.

— Model-based Response and State Estimation [39,45]. System models, e. g.,
Kalman filter for state estimation [84,85], or parameter estimation techniques,
like regression analysis, are not only a temporary solution to mitigate attacks,
such as replay and masquerading attacks, they can also be used to alert the
system and log important information for forensics [68].

Runtime Enforcement. Runtime enforcement is an extension of runtime
verification where the system also reacts to violations [46].

Reconfiguration and Reparameterization. The system protects itself
by adapting parameters when an attack is detected. We distinguish between
reconfiguration and migration in the way that migration focuses on relocating
functionality whereas reconfiguration changes system or application parameters.
— Reinitialization [85]. Temporary faults and attacks can be addressed with this
technique. However, permanent faults or reoccurring attacks cannot be miti-
gated by restoring the system or a function to its initial state. Reinitialization
can be seen as checkpoint recovery with the checkpoint being the initial state
of the system or function.

— Reparameterization [37]. Is similar to reinitialization, however, the system
configuration is dynamically adjusted to the situation. As Ratasich et al. [37]
point out, reparameterization typically results in a non-optimal state.

— Graceful Degradation / Limp Mode [37, 39]. Given the extended automated
driving functions of future vehicles, it is of utmost importance to implement
more sophisticated solutions that ensure the passengers safety when key compo-
nents in the vehicle fail or are subject to attacks. These techniques are similar
to reparameterization, but focus on safety and should be seen as a last resort.
Modern vehicles already have a so-called limp mode implemented, which is
triggered when the vehicle detects major technical problems [86].

— Isolation [35,387]. Restricting access or completely isolating system components
in the presence of an error or intrusion can limit the impact on the entire
system and its performance.

— Restructure [35]. Restructuring components within a sub-system aims at
providing resilience through reconfiguration of affected components. Segovia et
al. [39] explore software reflection as means to mitigate attacks.

— Dynamic Deployment of Policies [39]. Security or other policies can be applied
dynamically based on the type of attack, e.g., DoS or masquerading, that is
detected.

— Rescue Workflow [42,43]. A workflow can be used to describe tasks with their
dependencies to each other. The idea behind rescue workflows is to dynamically
adjust the structure of the workflow when an error or intrusion affects a specific
task. Existing cloud solutions may need to be adapted for automotive systems.

3.4.3 Recovery

Recovery techniques intend to bring the system back to an optimal state.
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Migration. These techniques are mainly originating from high performance
computing and cloud systems. As future automotive systems move towards a
centralized architecture, virtualization and service-oriented architectures are
becoming more relevant.

— Relocation/Migration [37,43]. Virtualization such as hypervisor and container-
based solutions allow a fast migration and relocalization to other nodes in the
vehicular network.

— Preemptive Migration [42, 43]. Continuous monitoring and analysis of the
system can be used to relocate software functions or services before a fault
occurs.

Checkpointing & Rollback. A checkpoint or snapshot describes the
system state at a specific point in time. By design, recovery does not prevent
the same attacks from happening again.

— Re-instantiation/Restart [35, 87, 41, 48]. When an intrusion is detected,
the affected component can be re-instantiated or restarted to recover to a
known, error and attack free, state. This technique can be combined with
reparameterization to avoid the same anomaly to happen again [37].

— Checkpoint Recovery [35, 41-44]. Snapshots can be created in two ways:
checkpoint-based and log-based. Egwutuoha et al. [41] highlight the complexity
of taking checkpoints in a distributed system, as these checkpoints need to be
consistent.

- Software Rejuvenation [35,43]. This technique carries out periodic restarts or
reinitializations of the system to maintain a known, error-free state.

Rollforward actions. These techniques aim at bringing the system to a
stable state immediately before the error or attack was detected. As in rollback,
the recovery is based on using checkpoint-based or log-based recovery [35].

— Exception Handling [35]. From a model-driven engineering view, Rollforward
can be performed using exception handling. Sltten et al. [44] highlight that
this solution can be only applied to anticipated events.

3.4.4 Endurance

Resilience needs to be ensured over the entire lifetime of a vehicle. The preceding
techniques center around providing immediate response when anomalies are
detected.

Self-*. Self-* or self-X techniques cover solutions and research directions
focusing on how to introduce autonomy into the system. This pattern is
especially important for future vehicles as the environment is and will change
frequently, new vulnerabilities will be found, new attempts to attack vehicles
and their infrastructure will be developed, and new technologies will appear.
Also, considering the lifetime of cars, which is around 10-15 years, it is evident
that automotive systems need to adapt to a certain extent autonomously.

Verification and Validation. Due to the increasing functionality and
interconnectedness of modern vehicles it is required to update software compo-
nents via over-the-air updates in order to fix vulnerabilities and bugs or upgrade
vehicle functions. This is especially challenging as each vehicle model can be
further configured, resulting in a manifold of possible vehicle configurations.

Robustness. Artificial intelligence, especially machine learning, is a key
technology for autonomous driving and decision making, as the system needs
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to be able to handle previously unseen situations [37].

Forensics. Providing evidence of intrusions even after a crash is important
for taking appropriate countermeasures.
— Secure Logging. Hoppe et al. [76] express the need for forensic solutions in
vehicles. Non-safety-critical events, such as updates, component failures and
other malfunctions, need to be logged and stored securely for a prospective
analysis. The authors also discuss in great detail which information and how
this information can be stored in vehicles.
— Attack Analysis. Nilsson and Larson [79] specify requirements for forensic anal-
yses of the in-vehicle network. It is also important to analyze attacks disclosed
by researchers, such as Checkoway et al. [87] and Miller and Valasek [88], as
well as attacks logged by the vehicle manufacturers in order to take appropriate
actions.

3.5 Related Work

Making vehicles safe and secure has traditionally been the main focus in research.
For instance, methods to combine safety and security [89] and how to assess
an automotive system and/or derive security requirements and mechanisms
have been proposed [18,90,91]. Le et al. [92] provide a survey on security
and privacy in automotive systems and further provide an overview of suitable
security mechanisms.

One of the first structured collections of principles for cyber resilience is
the Cyber Resiliency Engineering Framework [93] by MITRE in 2011 which
got further incorporated in NIST SP 800-160v2 [36]. Other work describing
principles for resilience have been either concentrating on other domains, i.e.,
high performance computing, cyber-physical systems, or networks, or they
focused particularly on dependability or fault tolerance. Table 3.1 provides an
overview of relevant publications, which provide a comprehensive overview or
collection of techniques, and categorizes them according to their discipline and
the area they are focusing on.

The reviewed publications classify the identified techniques in different ways.
Hukerikar et al. [35] divide them into strategies, i.e., fault treatment, recovery,
and compensation, whereas Ratasich et al. [37] organize them according to their
ability, i.e., detection and diagnosis, recovery or mitigation, and long-term
dependability and security. Work focusing on fault tolerance either split the
identified techniques in reactive and proactive measures [42,43] or classify them
according to their ability, e.g., error handling and recovery [41,44].

With the developed REMIND framework, we contribute to supporting
the resilience of automotive systems by: (i) identifying techniques for attack
detection, mitigation, recovery, and resilience endurance; (ii) organizing the
techniques into a taxonomy to guide designers when selecting resilience tech-
niques; (iii) providing guidelines on how the REMIND framework can be used
against common security threats and attacks; and (iv) discussing the trade-offs
when applying the techniques that are highlighted in this framework.

In addition to the identified techniques in Figure 3.1, we point to imple-
mentations relevant for or specific to the automotive domain in Appendix 3.8.
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3.6 Conclusion

The reviewed work shows the current research efforts towards making systems
resilient to attacks and faults in related domains. We present a novel structure
for categorizing resilience techniques in the form of the REMIND framework
with the aim to lead designers in making informed decisions when choosing
resilience techniques. We build upon the existing work and set the focus on
the limitations of automotive systems and their challenges. The REMIND
techniques have been chosen considering automotive assets and related attacks
which are described in Section 3.3 and further linked to the guidelines and
trade-off analysis in Appendix 3.7.

Future work includes the validation of the REMIND framework in regard
to studying its applicability in industry in more depth. Furthermore, specific
solutions for the identified techniques that consider the unique properties of
automotive vehicles can be explored. Especially, the role of software-defined
networking and its contribution to resilience can be investigated.
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3.7 REMIND Resilience Guidelines

In this section, we report in Table 3.3 resilience techniques that can be used
against common security threats and attacks. We also describe the trade-offs
when implementing these techniques.

Table 3.3: REMIND Resilience Guidelines

Asset
Hardware

Attack
Fault Injection

Resilience Strategy/
Technique

Trade-off

Pros

Cons

DETECTION

« Statistical Techniques [37]
Machine Learning/Data

Mining [37]

« Localization (e.g., [52])
Sensor/Data Fusion [37]

e Less computation is re-
quired.

No domain knowledge is
needed. It handles multi-
variate and non-linear data.
o Identifies the exclusive
part causing the fault or at-
tack.

Calculates a value of trust
of the data sources derived
from the normalization fac-
tor.

« Very sensitive to outliers,
imprecise detection, and in-
creased complexity when
modelling non-linear data.

Requires training. Impre-

cise prediction: false pos-
itives and false negatives.
Time penalty and resource
consumption (power, pro-
cessing, and storage).
o Often applied offline. The
precision of the localization
is dependent on both, the
number of observed parame-
ters and the set frequency
for probing monitored re-
sources.

Imprecise detection: false
positives and negatives. It
also introduces time penalty
(increase in execution time)
and space penalty (increase
in resource usage).

MITIGATION
« Hardware Redundancy [35—
37,39,41-44]

« Enables offsetting the ef-
fects of faults and attacks,
and allows the progress of
the system without loss of
functionality.

o Time penalty (increase
in execution time) and
resource consumption (in-
crease in required resources).
Hardware costs independent
of whether attacks occur.
Also, the design and verifica-
tion of replicas requires an
effort.

RECOVERY
« Relocation/Migration [37,
43]

o Maintain system function-
ality in an operational state
as it was before the fault or
attack.

o May cause a degraded sys-
tem, with less functionality,
resources, and performance.

Table 3.3 — Continued on next page
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Resilience Strategy/
Technique

Trade-off

Pros

Cons

ENDURANCE
o Self-aware Fault Toler-
ance [70]

« Enables systems to adapt
their behavior when a fault
or attack occurs in their
environment, thus allowing
a continuous operation of
these systems.

« Complexity and resource
consumption.

Asset Attack
Software Malware/Manipulated Software
DETECTION o A precisely calibrated sig- o Does not work when

e Signature-based  De-
tection [37]

Runtime Verification [37,
44]

nature effectively identifies
abnormal events during soft-
ware execution.
Well-established and effi-
cient technique to verify the
correctness of software exe-
cution and monitor the be-
havior of the system.

designers and 3rd party
suppliers (e.g., intellectual
property providers) are not
trusted. It cannot han-
dle zero-day attacks and,
thus, often used in combi-
nation with anomaly-based
techniques leading to an in-
creased resource consump-
tion and time penalty.
Limited coverage. The
used monitoring algorithms
usually handle a single exe-
cution trace which limits the
scope of the verification.

Table 3.3 — Continued on next page
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Resilience Strategy/
Technique

Trade-off

Pros

Cons

MITIGATION
« Software Redundancy [35—
37,39, 41-44]

N-Version Design [35-37,
41,43)
« Agreement/Voting [35,37,
41,44]

Recovery Blocks [35,43,44]
o N self-checking [41]

e Helps to contain and
exclude malicious behavior
(i.e., reduces likelihood of
harm). Enable restoration
in case of disruption. En-
hances the availability of
critical capabilities.

Helps to mitigate the im-

pact of failures when a risk
is introduced to system de-
sign or configuration.
o Typically combined with
redundancy. Can be used to
select, for instance, the aver-
age or median of the results
provided by the redundant
sources.

Uses different implemen-

tations of the same design
specification to provide tol-
erance of design faults.
« Provides mitigation by cre-
ating N versions of the same
software, each with its own
acceptance test. The ver-
sion that passes its own
acceptance test is selected
through an acceptance vot-
ing system.

« Resource consumption. It
demands the protection of
redundant resources. It can
degrade over time as con-
figurations are updated or
connectivity changes. It is
often applied with diversity
techniques which increases
complexity and leads to scal-
ability issues.

Requires much effort for
designing, implementation,
testing, and validation of
the N independent versions.
« Attackers may exploit the
voting process in order to
force the system to a de-
graded mode.

Requires extra verifica-
tion and validation effort
and, thus, more resource
consumption. It might be
difficult to create alterna-
tive software implementa-
tions without any correla-
tion between the various ver-
sions.

« Causes an increase in re-
quired resources and execu-
tion time.

Table 3.3 — Continued on next page
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Resilience Strategy/
Technique

Trade-off

Pros

Cons

RECOVERY
« Preemptive Migration [42,
43|

Checkpoint Recovery [35,
41-44]
« Software Rejuvenation [35,
43]

o Prevents failures from im-
pacting running parallel ap-
plications by enabling the
migration of running soft-
ware from one virtual ma-
chine to another in real
time.

Helps the system to re-

sume its operation in a state
free of the effects of the fault
or attack. Frequent check-
pointing reduces the amount
of lost work.
« Helps avoiding the costs of
failures from software degra-
dation, as periodic (grace-
ful) restarts of the software
component allow the release
and re-allocation of memory,
thus, operation in a clean
state.

« Lack of standardized met-
rics for measuring and eval-
uating the health and inter-
faces between system com-
ponents.

Overhead in relation to

the size and frequency of
created checkpoints. Cre-
ating a checkpoint, for in-
stance, requires interrupting
the normal operation of a
system to record the check-
point. Moreover, it requires
storage resources to store
the checkpoint. The cre-
ated checkpoints might po-
tentially contain an error
or intrusion that has not
been detected yet. Glob-
ally consistent checkpoints
are not trivial to obtain in
a distributed system, due to
e.g., variation of the local
clock, parallel computation
and possible different sys-
tem states.
« Requires shutting the soft-
ware down and restarting
it periodically which causes
the software to be unavail-
able for the duration of the
restart. It is often a slow
process requiring an extra
overhead.

Table 3.3 — Continued on next page



CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE

SYSTEMS

Resilience Strategy/
Technique

Trade-off

Table 3.3 — Continued from previous page

Pros

Cons

ENDURANCE
« Platform-centric Self-
aware-ness [69]

Secure Logging (e. g.,
[76-78])

o Enables systems to rec-
ognize their own state and
to continuously adapt to
change, evolution, system
interference, environment
dynamics, and uncertainty.
It optimizes resilience, qual-
ity of service, and supports
system dynamics and open-
ness. It also helps to reduce
uncertainties and identify in-
consistencies.

Prevents modifying the
logs by using e.g., chained
hashes. It enables storing
security-related events con-
taining information about
e.g., flash operations, exter-
nal interactions, and power
downtime. This information
helps to reconstruct events,
detect intrusions and iden-
tify problems.

o Automatically maintain-
ing coherent specifications
that capture and monitor se-
curity is a challenging task.
Complexity, scalability, and
difficulty in dealing with un-
certainties and inaccuracies.
The determination of rele-
vant dependencies in a com-
plex system is also challeng-
ing.

Resource consumption and
time penalty.  Moreover,
missing authentication and
lack of cryptographic means
to ensure data integrity can
limit the potential of the log-

ging.

Table 3.3 — Continued on next page
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Resilience Strategy/

Technique Trade-off

Pros Cons
Asset Attack
Network/Communication Fabrication/Jamming

DETECTION
« Specification-based
Anomaly Detection
(e.g., [48])

Localization (e.g., [52])
« Verification of Safety-
Proper-ties [37]

« Helps detecting anomalies
in the system’s behavior by
reporting the specific devia-
tion that has been observed.
Identifies the exclusive
part causing the fault or at-
tack.
o Ensures that the system
does not evolve in unsafe
state starting from some ini-
tial conditions.

« Needs of resources for de-
tection and processing of
collected information (e.g.,
costly intelligent sensors).
Domain knowledge is re-
quired to specify normal be-
havior. Specifications need
to be adapted for each spe-
cific vehicle configuration
otherwise risk of high false
positives or negatives.
Requires additional re-
sources.
o It is limited to small scale
systems.

MITIGATION
« Isolation [35,37]
Restructure [35]

o It provides a remedy to
enable the system to con-
tinue its operation by offset-
ting the effect of the attack.
Also, it prevents loss of func-
tionality.

Helps to mitigate incor-
rectness in the interactions
between the components or
subsystems by excluding the
affected part from interact-
ing with the rest of the sys-
tem, and maintaining sys-
tem functionality.

o Introduces a time penalty
and an increase in required
resources (e.g., replica mod-
ules that are used to com-
pensate for isolating the af-
fected component of the sys-
tem).

May cause an operation
of the system in a degraded
condition which influences
its performance and incurs
additional time overhead to
the system.

Table

3.3 — Continued on next page
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Resilience Strategy/
Technique

Trade-off

Pros

Cons

RECOVERY
« Relocation/Migration [37,
43|

Re-
instantiation/Restart 35,
37,41,43]

« Maintain system function-
ality in an operational state
as it was before the fault or
attack.

Helps to restore the sys-
tem to its initial state when
the impact of the attack can
not be handled in another
manner. It guarantees that
the impact of the attack is
completely removed.

o« May cause a degradation
in the operation of the sys-
tem which influences the
performance and function-
ality thereof.

Restoring the system to its
initial state causes lost data,
such as privacy related data
(e.g., location, speed, driv-
ing behavior) and workshop
data (e.g., vehicle health,
engine data and emissions).
The impact of the lost data
depends on the type of
data and the current need
for it. In addition, the
re-instantiation of safety-
critical functions may re-
quire the vehicle to be in
standstill.

ENDURANCE
« Self-adaptation [71,72]

o Ensures a secure, reliable,
and predictable communica-
tion between system com-
ponents and between the
system and its environment.
Supports and maintains an
acceptable level of service
despite the occurrence of
faults and other factors
that affect normal opera-
tions. Seamlessly adapts to
different network loads and
reacts to security threats
and other disturbances in
the environment.

« Complexity and resource
consumption.

Table 3.3 — Continued on next page
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Resilience Strategy/

Technique Trade-off
Pros Cons
Asset Attack

Network/Communication

Masquerading/Spoofing/Collision

DETECTION

« Information-theoretic

Detection [37]
Falsification-based Analy-

sis [37]

« Helps to detect anomalies
by analyzing available audit
logs and records (e.g., en-
tropy measures) and com-
paring these records with
defined normal behaviors.
More records enhance the
precision of the detection.

Provides an indication
(i.e., a robustness degree) to
what extent temporal logic
properties are from satisfy-
ing or violating a specifica-
tion.

o Time penalty for process-
ing audit records. More
records at disposal increases
the processing time and
complexity. On the other
hand, a low number of
records leads to an impre-
cise detection with more
false positives and false neg-
atives.

Imprecise detection: false
positives and false negatives

MITIGATION
« Rescue Workflow [42, 43]
(adaptation may be neces-
sary)

Dynamic Deployment of
Policies [39]

« Enables the system to con-
tinue operation after the fail-
ure of the task until it is
unable to proceed without
amending the fault or at-
tack. Already finished tasks
do not need re-execution,
thus saving time and re-
sources.

Takes the dynamic and
changing nature of attacks
into account. Deploys differ-
ent defense policies depend-
ing on the attack, for exam-
ple, it can modify the exe-
cuted actions while the at-
tack is going on.

« It may lead to a decrease in
the quality of service. Time
penalty might be caused by
recomputing and migrating
the tasks which cause the

problem.
Leads to performance over-
head. Moreover, it al-

ways requires runtime per-
missions which may not be
present when running nor-
mally. Complexity.

Table

3.3 — Continued on next page
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Resilience Strategy/
Technique

Trade-off

Pros

Cons

RECOVERY
o Checkpoint Recovery [35,
41-44]

Re-
instantiation/Restart 35,
37,41,43]

o Helps the system to re-
sume its operation in a state
free of the effects of the fault
or attack. Frequent check-
pointing reduces the amount
of lost work.

Helps to restore the sys-
tem to its initial state when
the impact of the attack can
not be handled in another
manner. It guarantees that
the impact of the attack is
completely removed.

o Overhead in relation to
the size and frequency of
created checkpoints. Cre-
ating a checkpoint, for in-
stance, requires interrupting
the normal operation of a
system to record the check-
point. Moreover, it requires
storage resources to store
the checkpoint. The cre-
ated checkpoints might po-
tentially contain an error
or intrusion that has not
been detected yet. Glob-
ally consistent checkpoints
are not trivial to obtain in
a distributed system, due to
e.g., variation of the local
clock, parallel computation
and possible different sys-
tem states.

Restoring the system to its
initial state causes lost data,
such as privacy related data
(e.g., location, speed, driv-
ing behavior) and workshop
data (e.g., vehicle health,
engine data and emissions).
The impact of the lost data
depends on the type of
data and the current need
for it. In addition, the
re-instantiation of safety-
critical functions may re-
quire the vehicle to be in
standstill.

ENDURANCE
« Secure Logging (e.g., [76—
78))

e Prevents modifying the
logs by using e.g., chained
hashes. It enables storing
security-related events con-
taining information about
e.g., flash operations, exter-
nal interactions, and power
downtime. This information
helps to reconstruct events,
detect intrusions and iden-
tify problems.

« Resource consumption and
time penalty. Moreover, it
requires authentication and
cryptographic means to en-
sure data integrity and con-
fidentiality.

Table 3.3 — Continued on next page
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Resilience Strategy/

Technique Trade-off
Pros Cons
Asset Attack

Network/Communication

Hijacking/Replay/Suspension/DoS

DETECTION
o Signature-based Detec-
tion [37]

Verification of Safety-
Proper-ties [37]

o A precisely calibrated sig-
nature effectively identifies
abnormal events during soft-
ware execution.

Ensures that the system
does not evolve in unsafe
state starting from some ini-
tial conditions.

e Does not work when
designers and intellectual
property providers are not
trusted. It cannot handle
zero-day attacks and, thus,
often used with Anomaly-
based techniques leading to
a increased resource con-
sumption and time penalty.

It is limited to small scale
systems.

MITIGATION

« Reparameterization [37]
Isolation [35,37]

o Graceful Degradation [37,

39]

e« Enables adaptation by
switching the configuration
parameters of the compro-
mised component to another
configuration.

It provides a remedy to

enable the system to con-
tinue its operation by offset-
ting the effect of the attack.
Also, it prevents loss of func-
tionality.
e« Prevents a catastrophic
failure of the system. It en-
ables a system to continue
functioning even after parts
of the system have been
compromised. It shuts down
less critical functions to al-
locate the resources to more
critical functions to main-
tain availability.

o Decreases the quality of
service.

Introduces a time penalty

and an increase in required
resources (e.g., replica mod-
ules that are used to com-
pensate for isolating the af-
fected component of the sys-
tem).
o Causes a degradation in
the performance of the op-
erations and services of the
system.

Table 3.3 — Continued on next page
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Resilience Strategy/
Technique

Trade-off

Pros

Cons

RECOVERY
« Relocation/Migration [37,
43|
Software Rejuvena-
tion [35,43]
« Reinitialization [35]

« Maintain system function-
ality in an operational state
as it was before the fault or
attack.

Helps avoiding the costs of

failures from software degra-
dation, as periodic (grace-
ful) restarts of the software
component allow the release
and re-allocation of memory,
thus, operation in a clean
state.
e« Applied in conditions
in which the mitigation is
deemed impossible. Re-
stores or pristine resets the
system to its initial state.

« May cause an operation
of the system in a degraded
condition which influences
its performance.

Requires shutting the soft-
ware down and restarting
it periodically which causes
the software to be unavail-
able for the duration of the
restart. It is often a slow
process requiring an extra
overhead.

o Causes loss of work, and
accordingly leads to a waste
of resources.

ENDURANCE
« Attack Analysis / Recon-
struction (e. g., [79,80])

« Helps to enhance resilience
by systematically and em-
pirically analyzing attacks
as well as used technologies
(potential entry point, e.g.,
Bluetooth and WiFi) that
interact with the external
environment.

« Resource consumption and
analysis effort.

Table 3.3 — Continued on next page
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Resilience Strategy/

Technique Trade-off
Pros Cons
Asset Attack

Data Storage

Unauthorized Read/Manipulation

DETECTION
Signature-based Detec-

tion [37]

. Specification-based

Anomaly Detection

(e.g., [48])

A precisely calibrated sig-
nature effectively identifies
abnormal events during soft-
ware execution.

« Helps detecting anomalies
in the system’s behavior by
reporting the specific devia-
tion that has been observed.

Does not work when
designers and intellectual
property providers are not
trusted. It cannot handle
zero-day attacks and, thus,
often used with Anomaly-
based techniques leading to
a increased resource con-
sumption and time penalty.
« Needs of resources for de-
tection and processing of
collected information (e.g.,
costly intelligent sensors).
Domain knowledge is re-
quired to specify normal be-
havior. Specifications need
to be adapted for each spe-
cific vehicle configuration
otherwise risk of high false
positives or negatives.

MITIGATION
« Redundancy [35-37,39,41—
44]

Isolation [35,37]

« [t enables data backup and
restore by replicating infor-
mation and data sources.

It provides a remedy to
enable the system to con-
tinue its operation by offset-
ting the effect of the attack.
Also, it prevents loss of func-
tionality.

« Requires extra resources
for data storage.

Introduces a time penalty
and an increase in required
resources (e.g., replica mod-
ules that are used to com-
pensate for isolating the af-
fected component of the sys-
tem).

RECOVERY
e Dynamic Deployment of
Policies [39]

e Takes the dynamic and
changing nature of attacks
into account. Deploys differ-
ent defense policies depend-
ing on the attack, for exam-
ple, it can modify the exe-
cuted actions while the at-
tack is going on.

o Leads to performance over-
head. Requires runtime per-
missions which may not be
present when running nor-
mally. Complexity.

Table

3.3 — Continued on next page
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Resilience Strategy/
Technique

Trade-off

Pros

Cons

ENDURANCE

« Secure Logging (e. g., [76])
Attack Analysis / Recon-

struction (e. g., [79,80])

o Prevents modifying the
logs by using e.g., chained
hashes. It enables storing
security-related events con-
taining information about
e.g., flash operations, exter-
nal interactions, and power
downtime. This information
helps to reconstruct events,
detect intrusions and iden-
tify problems.

Helps to enhance resilience
by systematically and em-
pirically analyzing attacks
as well as used technologies
(potential entry point, e.g.,
Bluetooth and WiFi) that
interact with the external
environment.

« Resource consumption and
time penalty. Moreover,
missing authentication and
lack of cryptographic means
to ensure data integrity can
limit the potential of the log-
ging.

resource consumption and
analysis effort.

3.8 Proposed Automotive Solutions

In Table 3.4 we provide a description of the solutions referred to in Figure 3.1.
This overview of specific solutions should be considered as a starting point for
interested readers and is by no means complete.

Table 3.4: TECHNIQUES AND SOLUTIONS RELEVANT FOR THE AUTOMOTIVE

DOMAIN.

DETECTION
Pattern Technique Solution
Specification- Runtime Verification Heffernan et al. [47] use the automotive func-
based tional safety standard ISO 26262 as a guide

to derive logical formulae. They demonstrate
the feasibility of their proposed runtime veri-
fication monitor with an automotive gearbox
control system as use case.

Specification-based
Anomaly Detection

Miiter et al. [48] describe eight detection sen-
sors that are applicable for the internal network

of automotive systems. Six of these sensors are
specification-based, e. g., the frequency of spe-
cific message types and the range of transmitted

values like speed.

Table 3.4 — Continued on next page
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Technique

Solution

Anomaly-
Based

Statistical Techniques

Nowdehi et al. [49] propose an IDS that learns
about the automotive system by learning from
samples of normal traffic without requiring a
model definition.

Machine Learning

Hanselmann et al. [50] propose CANet an un-
supervised IDS for the automotive CAN bus.
The anomaly score is calculated using the error
between the reconstructed signal and the true
signal value.

Information-theoretic

Miiter et al. [51] design an entropy-based IDSs
for automotive systems with experimental re-
sults using data from a vehicle’s CAN-Body
network.

Localization

Cho and Shin [52] present a scheme identify-
ing the attacking ECU based on fingerprinting
the voltage measurements on the CAN bus
for each ECU. We see great opportunities in
the localization of attacks when considering a
centralized vehicle architecture combined with
virtualisation techniques. This allows us to
get detailed performance metrics of virtualized
vehicle functions.

Predicting
Faults and
Attacks

Attack Prediction

Husk et al [53] perform a survey about current
attack projection and prediction techniques in
cybersecurity.

Redundancy

MITIGATION

Diversity Techniques

Baudry and Monperrus provide in their sur-
vey [94] an overview of different software diver-
sity techniques.

Adaptive Software Di-
versity

Holler et al. [59] introduce an adaptive dy-
namic software diversity method. The diversi-
fication control receives error information from
the decision mechanism and randomizes specific
parameters during execution. Their experimen-
tal use cases demonstrate the dynamic recon-
figuration of ASLR parameters, respectively,
random memory gaps.

Adaptive
Response

Model-based Response

Coémbita et al. provide a survey on re-
sponse and reconfiguration techniques for cyber-
physical control systems. Controllers or other
systems that can be modelled as a control loop
can be, for instance, adjusted to have another
module in the feedback loop that compares
the actual feedback from the control loop with
a simulated/modelled response of what is ex-
pected.

Runtime En-
forcement

Safety Guard

Wu et al. [66] show how so-called safety guards
can be applied to safety-critical Cyber-Physical
Systems (CPSs).

Table 3.4 — Continued on next page
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Pattern Technique

Solution

Reconfiguration = Graceful Degradation
and

Reparametrisa-

tion

Dagan et al. [60] provide an architectural design
on how to extend limp modes so that they can
be additionally used in a cyber security context.
A safe-mode manager sends out triggering mes-
sages that cause the ECUs to transition to a
limp mode when cyber-breaches are detected.

Ishigooka et al. [61] propose a graceful degra-
dation design process for autonomous vehicles
with focus on safety.

Reschkka et al. [62] explore how skills and abil-
ity graphs can be used for modelling, on-line
monitoring and supporting decision making of
driving functions.

Restructure

Segovia et al. [39] set the focus of their survey
on software reflection as mitigation technique
for SCADA systems. Software reflection en-
ables the system itself to examine and change
its execution behaviour at runtime, which al-
lows, for instance, the system to take actions
when an attack is detected. The drawbacks
currently seen in software reflection are the
performance overhead, the increased execution
time and the extended permissions required by
software reflection.

Dynamic Deployment
of Policies

RECOVERY

Rubio-Hernan et al. [63] propose an architec-
ture for CPS that combines feedback control
loops with programmable networking in order
to mitigate attacks by re-routing traffic or ap-
plying security rules.

Migration Relocation/Migration

Jiang et al. [64] propose a hypervisor that meets
real-time requirements.

Other relocation techniques are microser-
vices [95]. Pekka and Mattila [65] propose
a service-oriented architecture for real-time
CPSs.

Pre-emptive Migration

Engelmann et al. [96] describe a pre-emptive
migration technique which uses a feedback-loop
for observing health parameters to detect be-
haviour indicating a fault. This solution was de-
veloped for high performance computing and its
applicability for the automotive domain needs
to be further investigated.

Checkpointing Software Rejuvenation
and Rollback

Romangnoli et al. [97] describe a method to
decide when it is safe to reload the software of
a CPS.

Table 3.4 — Continued on next page
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Table 3.4 — Continued from previous page

Pattern Technique Solution
ENDURANCE
Self-* Continuous Change Mostl et al. [69] identify in their work the chal-

lenges of continuous change and evolution of
CPS and propose two frameworks for self-aware
systems centring around self-modelling, self-
configuration and self-monitoring. The con-
trolling concurrent change (CCC) framework is
concerned with how to deal with changes in soft-
ware components during the lifetime of a CPS.
The authors highlight that the well-established
V-model currently used is not designed for con-
tinuous change and therefore parts of the in-
tegration testing and system validation and
verification need to be moved to the system
itself. The proposed framework includes an
automated integration process for new or up-
dated functions that addresses safety, security,
availability and real-time requirements. The
structure and workflow of the proposed frame-
work is further described using an automotive
use case. The second framework concentrates
on optimising performance, power consumption
and resilience of CPS by using self-organisation
and self-awareness techniques.

Verificaton &

Challenges in V&V

De Lemos [75] discuss research challenges of

Validation verification and validation for self-adaptive sys-
tems at runtime.
Robustness Adversarial Attacks on  Yuan et al. [81] give an overview of current
DNN adversarial attack and defence techniques for
deep learning.
Forensics Secure Logging Lee et al. [77] describe T-Box a secure logging

solution for automotive systems that makes use
of the trusted execution environment in ARM
TrustZone.

Mansor et al. [78] propose a framework to log
vehicle data, such as diagnostic transmission
codes, via the mobile phone and store it on a
secure cloud storage.

Attack Analysis / Re-
construction

Nilsson and Larson [79] discuss the require-
ments for conducting forensic investigations on
the in-vehicle network.

Bortles et al. [80] present which types of data
may be retained from current infotainment and
telematic systems.
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Chapter 4

Resilient Shield:
Reinforcing the Resilience

of Vehicles Against Security
Threats

Adapted version that appeared in IEEE 93rd Vehicular Technology Conference
2021

K. Strandberg, T. Rosenstatter, R. Jolak, N. Nowdehi, T. Olovsson

Abstract. Vehicles have become complex computer systems with multiple com-
munication interfaces. In the future, vehicles will have even more connections
to e.g., infrastructure, pedestrian smartphones, cloud, road-side-units and the
Internet. External and physical interfaces, as well as internal communication
buses have shown to have potential to be exploited for attack purposes. As
a consequence, there is an increase in regulations which demand compliance
with vehicle cyber resilience requirements. However, there is currently no clear
guidance on how to comply with these regulations from a technical perspective.
To address this issue, we have performed a comprehensive threat and risk anal-
ysis based on published attacks against vehicles from the past 10 years, from
which we further derive necessary security and resilience techniques. The work
is done using the SPMT methodology where we identify vital vehicle assets,
threat actors, their motivations and objectives, and develop a comprehensive
threat model. Moreover, we develop a comprehensive attack model by analyzing
the identified threats and attacks. These attacks are filtered and categorized
based on attack type, probability, and consequence criteria. Additionally, we
perform an exhaustive mapping between asset, attack, threat actor, threat
category, and required mitigation mechanism for each attack, resulting in a
presentation of a secure and resilient vehicle design. Ultimately, we present
the Resilient Shield a novel and imperative framework to justify and ensure
security and resilience within the automotive domain.
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4.1 Introduction

The complexity of vehicles is increasing. Consequently, vulnerabilities which
might be exploited increase as well. Attacks to vehicular systems can be realized:
(i) indirectly via compromised devices e.g., phones, dongles, or workshop
computers connected to vehicle interfaces; (ii) directly via physical interfaces
e.g., debug ports and the OBD-II connector; and (iii) remotely via various
malicious sources, such as rogue access points and compromised servers. It has
been demonstrated that vehicle cyber-attacks e.g., physical attacks [12] and
remote attacks [13] are potential threats that have to be taken seriously. As
a case in point, Miller and Valasek [98] performed a successful remote attack
on a Jeep Cherokee via the Internet taking control of its primary functions by
exploiting an open port via a cellular channel, an attack that led to a recall of
1.4 million vehicles. In [99], researchers managed to get remote access to the
CAN bus of a BMW by compromising its infotainment system, allowing them
to execute arbitrary diagnostic requests. Vulnerabilities in phone applications
paired to vehicles have been exploited by adversaries to track vehicles, unlock
the doors and to start their ignitions [100-102].

Motivation. Securing a vehicle as an afterthought is cumbersome, considering
both the complexity which constantly increases and the existing dependencies
on current architectural design. Hence, it is imperative to consider security
during the vehicle’s complete life cycle from idea to cessation.

There are increased requirements towards ensuring a resilient vehicle design,
in a way that a vehicle should be able to withstand various types of cyber-
attacks, malfunctioning units, and other external disturbances. Consequently,
the resilient design should be able to prevent, detect, and respond to cyber-
attacks, something which is also in line with the UNECE regulation [4] and the
upcoming standard for automotive cyber security ISO 21434 [103]. In short,
prevention is accomplished with security controls, detection by identifying faults
and attacks, and response are mechanisms related to handling the detected
anomalies with the ability to restore and maintain operation. However, there is
currently no clear guidance how to comply with the aforementioned regulations
and standards from a technical perspective. The start, predict, mitigate, and
test (SPMT) is a systematic approach for identification and mitigation of
vulnerabilities in vehicles [9]. The aim of SPMT is to ultimately enhance the
security of vehicles through their entire life cycle. In this paper, we use and
extend the SPMT methodology to establish an in-depth resilient design model
with imperative mitigation mechanisms.

Contributions. By applying the SPMT methodology, we performed a com-
prehensive threat and risk analysis of 52 published attacks against vehicles
from the past 10 years. 37 of these attacks were considered significant due to
their high risk and were thus further mitigated with imperative security and
resilience techniques. In this process, we have developed a threat model for
securing vehicles by identifying vital vehicle assets and the related potential
threat actors, their motivations and objectives. Moreover, we have developed a
comprehensive attack model created from the analysis of the identified threats
and attacks, further filtered and categorized based on attack type and risk
criteria related to the probability and consequences of the attack. We present
a comprehensive summary of the result from applying the SPMT methodology,
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an exhaustive mapping between asset, attack, threat actor, threat category and
resilience mechanism for each attack. Ultimately, we define necessary security
and resilience enhancements for vehicles, the Resilient Shield, which also vali-
dates the effectiveness of the methodology. To the best of our knowledge, our
result is both novel and imperative to justify and ensure security and resilience
within the automotive domain.

4.2 Related Work

Good practices for security of smart cars [104], Cyber security and Resilience
of smart cars [105], and The Cyber security guidebook for cyber physical ve-
hicle systems, SAE J3061 [106], provide guidelines regarding threat and risk
assessment. EVITA [107] proposed a method for security, safety, and risk
analysis of in-vehicle networks, whereas HEAVENS [108] proposed a security
model based on security objectives from EVITA and security attributes from
Microsoft STRIDE [109]. Rosenstatter et al. [110] continue with the result
from an analysis such as HEAVENS and map the identified security demands
to security mechanisms. However, this mapping focuses only on securing the
in-vehicle network.

The SPMT methodology builds on existing methods, models and security
principles that are applicable to different phases in a vehicles life cycle. By
adapting and incorporating relevant parts suitable for the vehicular domain,
a comprehensive security and safety enhancement is achieved. Consequently,
the SPMT methodology covers the vehicles entire life cycle, something which
cannot be achieved with existing methodologies [9]. SPMT adopts Microsoft’s
STRIDE categorization [109] which enables a mapping of attacks to a cate-
gory with associated security attributes. Thus, mitigation mechanisms can be
considered for the attribute and consequently mitigate more than one attack.
Additionally in SPMT, a reduction analysis is performed for critical threats
by creating attack trees to connect the vulnerability with the threat, i.e., an
attacker wanders from a leaf node (condition) to the root of the tree (attacker
objective). Consequently, the closer to the root a countermeasure is placed,
the more conditions are mitigated. Moreover, some conditions can be attained
by more than one attack, hence a countermeasure can mitigate several attacks.
The REMIND framework [7] for vehicular systems provides a taxonomy for
resilience techniques identified from a review of existing work. In this paper we
take advantage of previous knowledge and new results by applying the SPMT
methodology. In the next sections we present the detailed approach followed
by the results.

4.3 Approach

We use the aforementioned SPMT model to perform a comprehensive threat
modelling and risk assessment of published attacks to further map these threats
and attacks to imperative security and resilience mechanisms.

The SPMT methodology has 4 phases: Start, Predict, Mitigate and Test.
In this paper, we perform the first three phases on a Target Of Evaluation
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(ToE) and analyze security threats and attacks as well as provide mechanisms
for the mitigation thereof (see Figure 4.1).

vInput v Input

Start Phase (Sec. IV) Predict Phase (Sec. V) Mitigate Phase (Sec. VI)
Output: Output: Output:
A document containing: Six filtered lists (STRIDE) A document containing
1. concept idea (ToE) containing vulnerabilities mitigations against each
2. threat risk modelling relating to threats against vulnerability in all six lists.
3. defined security policies the ToE

\ |

Figure 4.1: The first three phases of the SPMT methodology

In the Start Phase, we address the following questions. What are the threats
requiring a resilient design? What are the entry points to the vehicle? Who are
the actors, their motivators, and their objectives? The outcome of the Start
Phase is a threat model and high-level goals for the enforcement of security
and safety attributes.

In the Predict Phase, we address the following question. What are the
potential attacks? The outcome of the Predict Phase is an attack model which
contains relevant attacks categorized and filtered according to a stated criteria.

In the Mitigate Phase, we address the following question. What are the
needed mechanisms to ensure a resilient design? The outcome of the Mitigate
Phase is a resilient design framework i.e., the Resilient Shield, which provides
mechanisms and goals for detecting, preventing, and responding to security
threats and attacks.

The Test Phase includes the implementation of the mitigation mechanisms
followed by an execution of different security tests, such as fuzz, vulnerability,
and penetration testing. In this paper, we do not perform the Test Phase;
however, we plan to test the identified mitigation mechanisms within an
industrial context in the future.

In the following sections, we perform and provide the outcomes of the first
three phases of the SPMT methodology (see Figure 4.1) that are used to
establish the Resilient Shield.

4.4 Threat Model

A threat model is created by considering: (i) the target of evaluation (ToE),
and (ii) attackers as well as their motivators and objectives. First, our ToE is
stated as the complete vehicle provided by the manufacturer, where we propose
to include the following assets. As shown in Table 4.1, the relevance of these
assets is verified by the mapping to attacks.

Internal and external communication: Automotive Bus technologies, e.g.,
CAN, FlexRay, LIN, MOST and Ethernet. Connection interfaces, e.g., OBD-II,
USB, debug ports, Wi-Fi and Bluetooth.

Hardware: ECUs, e.g., sensor signal processing. Sensors, related to speed,
position, temperature, airbag and object detection. Actuators, translate signals
from ECUs into actions, e.g., braking, steering and engine control.
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Software in transit, rest or running: Software update systems, e.g., over-
the-air or workshop updates. Software installed or running in ECUs.

Data Storage: Sensitive data, e.g., cryptographic keys, forensics logs and
reports.

Second, we propose a simplification of threat actors (i.e., attackers) in-

spired by the work of Karahasanovic et al. [111] in relation to motivators and
objectives.
Actors and Motivators. The Financial Actor is driven by financial gain in
relation to a company (intellectual property), organization or individual. This
actor can be the owner who wants to make unauthorised modifications (e.g.,
chip tuning) or criminals who install ransomware. The Foreign Country is
driven by power through cyber warfare, with the intent to disable viable assets
within infrastructure (e.g., transportation). The Cyber Terrorist is driven
by ideological, political or religious objectives. The Insider is motivated by
retaliation or other personal gains, has knowledge of sensitive information
and may plant malicious code into the vehicle. The Hacktivist is driven by
publicity or adrenaline (i.e., the rush) and can have an agenda for political or
social change. The Script Kiddie has usually no clear objective, possess limited
knowledge and is often using already available tools and scripts. However, the
reality is usually a combinations of the mentioned categories and objectives, and
actors can be black hat, gray hat, or white hat hackers in relation to society’s
interpretations of the hackers’ intentions. White hat, are assumed to be the
good guys, black hats are the bad guys, and grey hat are somewhere in the
middle.

Furthermore, in Section 4.6 we adopt the security and safety attributes
used in SPMT. These attributes are imperative to uphold to ensure a secure
and resilient vehicle. On the other hand, the actors are driven by stated
motivators (e.g., financial, ideological, publicity) with the goal of compromising
these attributes. A discussion and a brainstorming about fulfilment of these
attributes is part of the Start Phase, however we have chosen to include it in
Section 4.6 to have all considerations for mitigation in one section. Stated
assets and actors are applied to Table 4.1 and used in the following section.

4.5 Attack Model

We perform a qualitative risk assessment of published attacks covered in news
media and research publications by estimating (i) the probability and (ii)
the consequences of the attacks based on the following criteria. As shown in
Table 4.1, the affected assets, the threat actors and the STRIDE categories for
each attack are considered during this assessment.

Attack Probability. The first step in this phase is to define attack probability
where the three following estimates should be used:

E1: Where, when, and in what situation can the attack be carried out?

E2: What expertise is required of the attacker?

E3: How much time does it take to perform the attack?

The resulting probability is on a scale of 1 to 3, where 3 indicates that an
attack is more probable to take place. The highest value in E1-E3 is chosen.
Attack Consequence. In the second step, the consequences are defined
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by assessing the effect of the attack on the operational, safety, privacy, and
financial aspects. The resulting consequence is on a scale from 1 to 3, where 3
indicates that the consequence is more severe. The highest value is chosen.
Risk Assessment. Once we get the estimates of the attack probability and
consequences, we estimate the overall risk by calculating the product of the
probability and the consequence, which gives a risk value between 1 and 9
(see Figure 4.2). To achieve a realistic balance between the financial cost
for mitigation and its related complexity versus the risk and asset value, we
consider only the most significant threats. These threats have a risk value of 6
or 9, which is in line with ISO 26262 and ASIL [112] and corresponds to high
and critical risk.

g Risk =y * x Risk
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Figure 4.2: Adapted table for the risk calculation from the SPMT methodology.

4.5.1 Disclosed Attacks

To create the attack model, we follow the SPMT recommendation for search
criteria and query scopus®' and Google scholar for academic work, and common
vulnerability databases (NVD, CVE) with keywords related to vehicle, attack
and STRIDE categories (e.g., spoofing) or related terms (e.g., mitm). Moreover,
we do query the Google search engine for media reports on attacks. Next,
we classify the attacks according to STRIDE categories, followed by some
examples. Attacks are considered and analyzed with respect to probability,
consequence and risk within their respective category. Out of a total of 52
published attacks, we have identified 37 high and critical risk attacks which
are further considered in this work.

1) Spoofing Attacks - Authenticity, Freshness [100,113-130]. The goal of the
attacker is to intercept, hijack, manipulate or replay the communication with a
potential remote access persistence. Security flaws in mobile software, such as
demonstrated in the OwnStar attack [100]. OwnStar intercepts communication
after the OnStar user opens the application, whereas the OwnStar device gains
the user’s credentials. Relay attacks, as in compromise of remote keyless entry
systems as well as breaking poor authentication mechanisms [113-115]. GNSS
spoofing considers broadcasting fake signals over authentic in order to to trick a
receiver, with the intention to get a vehicle off course [116]. In-vehicle protocol
spoofing, can affect safety critical actuators, such as brake, steering and engine
control. Protocols themselves might lack inherent mechanisms for security

Ihttps://www.scopus.com/
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which makes active attacks possible such as malicious drop, modify, spoof,
flood and replay of messages.

2) Tampering Attacks - Integrity [13,99,128,130-133]. Vulnerable USB/OBD-
IT dongles or compromised in-vehicle devices can potentially enable a hacker to
control the communication. Devices can be compromised in various ways e.g.,
vulnerabilities in proprietary authentication mechanisms can enable the right to
run sensitive diagnostics commands. Brute-force attacks can be used to retrieve
cryptographic keys, with potential to upload exploits to ECUs. Physical tam-
pering of ECUs or other connected devices. Manipulated firmware in current
ECUs, such as malicious code injection via firmware update. Replacement of
ECUs or new devices to eavesdrop/inject messages or to manipulate software,
modify or compromise vehicle functions. Vulnerable connected devices such as
OBD and USB dongles can potentially provide remote access to individual cars
and vehicle fleets [132]. Moreover, in [13] firmware was extracted and reverse
engineered, manipulated and injected directly into ECU firmware facilitating
persistent and bridging capabilities for attacks.

3) Repudiation Attacks - Non-repudiation, Freshness. An attacker manip-
ulates or removes forensic in-vehicle data, such as GPS coordinates, speed,
acceleration and brake patterns, with the intention to hide traces of the attack.
Despite our best effort, we did not find attacks which can be clearly mapped
to this category; however, this type of attacks will likely be more frequent
in the future due to both increased number of attacks and digital forensic
investigations.

4) Information Disclosure Attacks - Confidentiality, Privacy [102, 130,
131,134-137]. An attacker may be able to exploit cryptographic keys and
consequently decrypt sensitive data by e.g., reverse engineering software with
hard-coded keys. Bad routines for handling of replaced unit led to leaked
sensitive data such as owners home and work address, calendar and call entries
and Wi-Fi passwords [134]. A mobile application for vehicle control contained
hard-coded credentials, thus an attacker may be able to retrieve sensitive data
remotely by recovering the key from the application [102]. A vulnerability in an
OBD-II dongle exposed all transferred data to the public [135]. Vulnerabilities
in automotive bus technologies make various attacks possible, such as sniffing
of CAN traffic due to its broadcast transmission and lack of encryption [136].

5) Denial of Service (DoS) Attacks - Availability [126-129,138-141]. Many
attacks focus on the in-vehicle network that uses CAN as this technology
suffers from fundamental vulnerabilities with respect to security (e.g., broadcast
communication, lack of encryption/authentication). Other attacks range from
sending an indefinite amount of data to ECUs to make them unresponsive or
crash, exploiting error handling mechanisms, or flooding the network with high
priority messages in order to block lower priority messages. A vulnerability
in the Bluetooth functionality supported unrestricted pairing without a PIN,
thus enabled the potential for sending remote CAN commands affecting safety
critical assets [140]. The Bus-off attack made ECUs unresponsive or crash [141].
Murvay et al. [139] managed to disable FlexRay nodes by exploitation of the bus
guardian, power saving functionality and by causing loss of synchronization.

6) Elevation of Privilege Attacks - Authorization [98,102,128,130,131,133,
142-144]. In [128] two Bluetooth vulnerabilities allowed remote code execution
with root privileges. Moreover, manipulation of the firmware of the infotainment
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unit enabled injection of arbitrary CAN messages. In [142], they were able
to release the airbag by message injection due to a vulnerable authentication
mechanism. Lack of authentication in the NissanConnect app allowed to retrieve
personal data by entering an URL with the vehicle identification number [144].
The outcome of this phase is applied to Table 4.1 and used in the next phase
in the following section.

4.6 Resilient Shield

In this section we present the Resilient Shield which consists of high-level
security goals emphasizing the overall design requirements resulting from an
analysis of the threat model (Section 4.4). We further provide in Section 4.6.2
detailed directives for fulfilling the high-level security goals for resilient vehicles
which are based on these goals and the attack model (Section 4.5). Table 4.1
summarizes the Resilient Shield. We list automotive assets, associate them with
high risk attacks, potential threat actors and STRIDE threat categories, and
link these to suitable security and resilience techniques to show how Resilient
Shield can be used to mitigate these attacks.

4.6.1 High-level Security Goals (SGs)

The following high-level goals are the result of an analysis of the threat model
detailed in Section 4.4. Each SG is associated with the relevant safety and
security attributes they enforce.

SG.1 Secure Communication. Integrity, authenticity and, in specific cases,
confidentiality need to be ensured for communication. Integrity and authenticity
allow to verify the origin of the message and protect the message from being
altered during transmission. Confidentiality can be achieved through encryption
of the message to prevent unauthorized read access. Freshness, e.g., via counters
or timestamps, can be used to mitigate replay attacks.

SG.2 Readiness. Awailability to authorized entities under normal circum-
stances as well as disturbances. Even if an adversary tries to disrupt the
information flow, the integrity and availability of correct information needs to
be guaranteed.

SG.3 Separation of Duties is needed to limit access to resources for autho-
rized entities only. Authorization should be combined with the principle of
least privilege to limit the number of entities having access to a resource to the
minimum.

SG.4 Secure Software Techniques need to provide security features to en-
sure that the executed software has not been modified by an unauthorized entity
(authenticity) and that the software does not contain disclosed vulnerabilities.
SG.5 Separation/Segmentation on an architectural or process level is
necessary in order to limit access and reduce the severity in case of an intrusion
(availability). Isolation techniques, e.g., process isolation, should be considered
where possible.

SG.6 Attack Detection and Mitigation is of utmost importance to enable
the system to react and ideally prevent further damage to the system.

SG.7 State Awareness should be ensured with the ability to switch between
various operational states, thus providing reliability and maintainability.
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SG.8 Forensics is necessary for post analysis of detected malicious events and
accordingly updating access control policies and other preventive measures.
Physical security, such as vehicle locks, alarm system, and protecting infrastruc-
ture server rooms should be considered. Components must be extensively tested
against requirements separately and when integrated into the vehicle, such as
stated in the SPMT Test Phase. SPMT suggests to use both a qualitative
and quantitative assessment; however, we focus on the qualitative assessment
as the aim of Resilient Shield is to guide the resilient design of automotive
systems. Moreover, a reduction analysis of attack trees is suggested to find
commonalities in countermeasures; however this is not considered and is thus
left as future work.

4.6.2 Detailed Directives

In this section, we list detailed techniques and patterns that contribute to the
security and resilience of automotive systems based on the identified security
goals, threat and attack model presented in this paper. First, we incorporate
the identified patterns from the REMIND framework [7] in Resilient Shield
and further extend them with security techniques to provide a comprehensive
collection of both, security and resilience techniques for automotive systems.
Second, we further discuss the security aspects of the identified resilience
techniques. Next, we detail these techniques.

Authentication: Message authentication can be achieved through Message
Authentication Codes (MACs) or signatures which ensure that the message:
(i) is created by the claimed source and (ii) has not been altered during
transmission. The authentication of devices can verify that the hardware, e.g.,
the head unit or a diagnostic device, is legit.

Encryption: Encryption of data ensures the protection of intellectual property,
makes it more difficult to reverse engineer software, protects cryptographic
material and the privacy of users and forensics data.
Redundancy/Diversity: A voting mechanism is used when comparing the
output of two or more redundant systems or software functions. Redundancy
increases the resilience against anomalies; however, from a security perspective
it must be ensured that the voting process cannot be exploited by an attacker
to perform DoS or spoofing attacks.

Access Control: Gateways with firewall capabilities allow filtering of messages
between different networks in the vehicle. In addition, host-based firewalls on
the ECUs can limit the exposure of open communication ports. Securing phys-
ical debug ports is vital to protect against unauthorized exploitation. Access
control to resources such as files, computation, and diagnostic commands can be
provided by the operating system or by e.g., challenge-response authentication.
Runtime Enforcement: Runtime verification is combined with reactive
measures when safety properties are violated [7,66].

Secure Storage: Cryptographic material needs to be protected against unau-
thorized modifications and read access. Data can be either stored encrypted in
the regular file system or in a protected memory partition.

Secure Boot: A validation of the authenticity and integrity of the firmware
to be loaded during the boot process [145].

Secure Programming: Secure programming guidelines such as MISRA
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C [146] are important to avoid common programming errors. Additionally,
trusted execution environments may be necessary for isolating and securing
applications.

Secure Software Update: The ability to update software is not only a
necessity to improve and extend functionality, it is also essential for security,
e.g., to mitigate vulnerabilities. In addition, the update process itself needs to
be secure [147], during the distribution and installation process.
Verification & Validation: The Test Phase in SPMT focuses on the need
for security testing and verification of each asset by doing fuzz, vulnerability
and penetration testing. In addition to security testing, the verification and
validation of functionality and safety is required [7,9].

Separation: Architectural separation can be achieved through physical sepa-
ration into smaller networks or through virtualization techniques allowing to
allocate resources to specific functions or systems.

Specification-based Detection: Knowledge about abnormal behavior is
used to detect anomalies and attempts to exploit known vulnerabilities. It also
requires domain knowledge and needs to be updated regularly [7,148].
Anomaly-based Detection: Is based on defining normal behavior and
deviations trigger alerts and has the potential to detect unknown attacks.
Anomaly-based detection can be categorized in statistical, information-theoretic,
machine learning and localization techniques [7,148].

Prediction of Faults/Attacks: Predicting the next step or the ultimate goal
of an ongoing attack.

Adaptive Response: The function response may be temporarily adapted,
e.g., through a model, while under attack [7].

Reconfiguration: Graceful degradation can be used to limit the impact of an
attack when preventive measures failed.

Migration: The ability to migrate services to other nodes in order to maintain
system functions when under attack [7].

Checkpoint & Rollback: Used to recover the system to a desired state.
The state needs to be secured, e.g., through secure logging, to defend against
possible attacks that aim at modifying a saved system state [7].
Rollforward Actions: Upon detecting an anomaly or error the system
transitions back to the state immediately before the event happened. Similarly
to rollback it needs to be ensured that this mechanism cannot be exploited [7].
Self-X: The system needs to be aware of its state and able to switch to other
states when anomalies occur [7,149].

Robustness: Employed mechanisms and functions need to be robust against
anomalies [7].

Forensics: Secure logging is used to record events, e.g., detection of an
ongoing attack, use of specific services or diagnostics. In addition, events with
non-repudiation claims can be used as evidence of a crime.

Table 4.1 presents the Resilient Shield. Assets with high or critical risk
threats are associated with appropriate security and resilience techniques
demonstrating the ability of Resilient Shield to defend against these threats.
For example, hacktivists and insiders are the main threat actors for commu-
nication:external:debugport, such as JTAG, and needs to be protected with
authentication mechanisms combined with access control or, if not possible
otherwise, with physical protection (e.g., deactivation).
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Table 4.1: Resilient Shield. A mapping from automotive assets to identified attacks, potential threat actors, STRIDE threat categories
and ultimately to appropriate security and resilience techniques, and Security Goals (SGs).
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crypto:certificates [133] FC, CT, HA 1 . 7 . o | e
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4.7 Conclusion

We have performed a comprehensive threat and risk analysis of published attacks
against vehicles and derived imperative security and resilience mechanisms by
applying the SPMT methodology. A threat model with vital vehicle assets and
related potential threat actors, their motivations and objectives was developed.
By an extensive analysis of threats and attacks, further filtered and categorized
based on attack type, probability and consequence criteria, an attack model was
developed based on the remaining high risk attacks. Based on the developed
models, a comprehensive mapping between asset, attack, threat actor, threat
category, and defense mechanisms was performed for all attacks and is presented
in Table 4.1. Table 4.1 summarizes the outcomes by applying SPMT, i.e. the
Resilient Shield, a novel framework both justifying and defining imperative
security and resilient mechanisms needed in a modern vehicle. Consequently,
the Resilient Shield can be used as a vital baseline for protection against
common security threats and attacks.

We believe our work is imperative for facilitating and guiding the design of
resilient automotive systems; however, it still remains to be seen how large the
coverage is in relation to future attacks. Moreover, testing and validation of
the Resilient Shield within an industrial context is left as a future work.
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Chapter 5

UniSUF': a unified software
update framework for
vehicles utilizing isolation
techniques

Adapted version that appeared in 19th escar FEurope 2021

K. Strandberg, D.K. Oka, T. Olovsson

Abstract. Today’s vehicles depend more and more on software, and can
contain over 100M lines of code controlling many safety-critical functions, such
as steering and brakes. Increased complexity in software inherently increases
the number of bugs affecting vehicle safety-critical functions. Consequently,
software updates need to be applied regularly. Current research around vehicle
software update solutions is lacking necessary details for a versatile, unified and
secure approach that covers various update scenarios, e.g., over-the-air, with a
workshop computer, at factory production or using a diagnostic update tool.
We propose UniSUF, a Unified Software Update Framework for Vehicles, well
aligned with automotive industry stakeholders. All data needed for a complete
software update is securely encapsulated into one single file. This vehicle unique
file can be processed in multitudes of update scenarios and executed without
any external connectivity since all data is inherently secured. To the best of
our knowledge, this comprehensive, versatile and unified approach cannot be
found in previous research and is a contribution to an essential requirement
within the industry for handling the increasing complexity related to vehicle
software updates.
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5.1 Introduction

A vehicle can contain more than 150 ECUs (Electronic Control Units) and over
100M lines of code. The complexity of software within the automotive domain
is increasing and with it the risk for vulnerabilities. To address this, there are
ongoing activities for vehicle software updates, such as ISO/CD 24089 [6] and
UN Regulation No. 156 regarding vehicle software update requirements [3].
The latter states, among other, requirements for vehicle manufactures to have a
secure software update process. While standards and regulations typically focus
on high-level requirements, technical design and implementation requirements
are left up to the automotive organizations. There is a risk that if the software
update process is vulnerable, it can be exploited by attackers who could
potentially introduce malicious code at some stage into the software update
process that finally reaches in-vehicle systems causing life-threatening hazards
such as manipulated brakes, steering, or engine control.

A secure software update framework that can support numerous different
update scenarios, such as over-the-air, in workshops, and in factories, with
or without Internet access, is required for automotive organizations in order
to apply software updates to address vulnerabilities in a timely and regular
manner. Our approach is to provide a cost-effective, open architecture, with
increased security through isolation and separation of duties that is compre-
hensive to support numerous use cases. Thus, we propose UniSUF, a versatile
and unified approach for secure vehicle software updates. By using multiple
signing and encryption keys, all data needed for a complete software update is
securely encapsulated into one single file, the Vehicle Unique Update Package
(VUUP). This vehicle unique file can be processed by a vehicle ECU, using a
workshop computer, at factory production or with a diagnostic update tool,
hence considerably simplifying software management processes. At the receiv-
ing vehicle side, this file is decapsulated and validated layer by layer, where
cryptographic material and sensitive operations are isolated within a trusted
execution environment to ensure both the integrity and the confidentiality of
the data. The main contributions of this paper are:

e We have analyzed and reviewed several software update use cases in the
automotive industry and as a result, defined a number of constraints and
conditions for a unified and versatile approach.

e Considering these constraints and conditions, we suggest an approach for
vehicle software updates, well aligned with automotive industry stake-
holders. In-depth details give a comprehensive overview for a possible
secure implementation covering the whole software chain from producer
to receiver.

e We have reviewed the suggested approach with automotive software
update architects to ensure that the proposed approach can be practically
deployed and efficiently adopted for vehicle software updates.
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5.2 Problem Statement

Considering the different existing use cases for vehicle software updates, such
as over-the-air, using a workshop computer, at factory production, or with a
diagnostic update tool, each use case typically has its own approach which
causes complexity. Moreover, new use cases for software updates need to be
considered with future demands to support 3rd party component updates
( [150], [151]). Therefore, to simplify, reduce costs, allow flexibility, and to
make the update process manageable, all while considering security aspects,
we propose a unified and versatile approach to handle all the use cases.

After reviewing the above-mentioned use cases, the following constraints
and conditions are defined for a unified software update framework:

e Support for online updates (software update files and/or cryptographic
credentials/operations require online access).

e Support for offline updates (software update files and cryptographic
credentials/operations are accessible offline).

e Should not rely on additional input for cryptographic keys or installation
instructions, e.g., from a diagnostic update tool (i.e., all data needed for
a complete software update is securely encapsulated into one single file
and no additional input is required).

e No dependency on the data distribution model (i.e., software update files
can be provided through different means and it does not matter how they
are distributed to the vehicle).

e No dependency on software update storage location (i.e., software update
files should be independently protected regardless of where they are
stored).

e Flexible and modular to support 3rd party component updates.

We have taken these constraints and conditions into consideration when
designing a software update framework to allow for a unified and versatile ap-
proach to support different use cases. Our proposed software update framework
is described in the next section.

5.3 UniSUF: A Unified Software Update Frame-
work

In this section, we present the Unified Software Update Framework (UniSUF).
First, an overview of the involved entities in the framework is presented, followed
by a brief explanation on how to secure data distribution and data execution,
and finally, the procedure for preparing software update files is given.

5.3.1 Entities

There are three main entities involved in the software update process: the
producer, the consumer, and the repository. The producer is responsible for
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producing the software. The consumer is responsible for the download and
installation process of the software, and the repository is a storage point for
software preferably located in various cloud sources, enabling both proximity
and redundancy for data in relation to the vehicle.

An overview of the data distribution in the backend handled by the Pro-
ducer Agent (PA) is shown in Figure 5.1. The main entities it contains
are:

e Producer Security Agent (PSA) facilitates functionalities for secure
key generation using Secure Key Generator (SKG), secure storage
for cryptographic material using Cryptographic Material Storage
(CMS) and signing of data using Producer Signing Service (PSS).

e Version Control Manager (VCM) has control over available software
versions w.r.t. current vehicle status to create both download instructions
using Producer Download Agent (PDA ) and installation instructions
using the Producer Installation Agent (PIA).

On the receiving side, Figure 5.4 shows the Consumer Agent (CA)
handling data distribution to the vehicle. The main entities it contains are:

e Consumer Download Agent (CDA) downloads required data, e.g.,
instructions and software files, verifies the authenticity of the data and
initiates installation using the Consumer Installation Agent (CIA).

e CDA and CIA uses the Consumer Security Agent (CSA) which
requires a Trusted Execution Environment (TEE) in order to support
secure operations and store cryptographic keys securely.

By using isolation mechanisms and implementing each entity as a module
according to the principles of least privilege and separation of duties a potentially
compromised entity cause the least possible harm to the complete system. These
modules can be secured either locally or in the cloud.

5.3.2 Securing Data Distribution and Data Execution

To be able to secure the data distribution and data execution, we propose
using signed asymmetric and symmetric keys in conjunction with key wrapping
mechanisms. Symmetric session keys are used to encrypt sensitive cryptographic
material needed for the update processes, such as keys for unlocking ECUs
and keys for decryption of software. The symmetric session keys are encrypted
with a public vehicle unique asymmetric key, ensuring the secure storage and
transfer of key material. Using an asymmetric key for key wrapping ensures that
only the vehicle with the corresponding private key can decrypt the encrypted
session keys.

Policies dictate rules for each individual encrypted session key, where policies
and keys in conjunction are signed i.e., giving rise to a Key Manifest (KM). KMs
are securely processed at the receiving side, where session keys are appointed to
certain trusted applications according to the stated policies. The functionality
of trusted applications can be decryption of software files, unlock ECUs for
software updates, and signing of installation reports and logs.
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5.3.3 Preparation of Software Update Files

The individual files that contain the actual software need to be secured, en-
suring both confidentiality and authenticity. Considering the entities in the
framework the procedure to secure software files is as follows.

1. The producer of software signs software files with a supplier specific signing
certificate to provide authenticity. If supported, this signature is later validated
by end receivers (e.g., ECUs) before installation. Software files are uploaded to
the Producer Local Secure Storage, shown in Figure 5.1.

2. VCM receives the software files and validates the software supplier’s signa-
ture.

3. VCM requests a symmetric encryption key (hereafter called sw_key) from
PSA and encrypts the software file with this key to provide confidentiality.

4. VCOM requests a signature of the hash of the encrypted software file from PSS.
The signature is added to the encrypted file metadata to provide authenticity.
5. VCM performs mutual authentication towards the cloud software repository
and uploads the signed encrypted file to the cloud and stores the url to this
file in a database.

6. VCM securely stores the symmetric encryption key (i.e., the corresponding
sw_key) in CMS to be retrieved later, and encrypted and included into a Secure
Key Array (SKA) for a future software update (cf. Step 6. in Section 4.1).
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5.4 The Software Update Process

In this section, we dive into the details of the complete software update process
in UniSUF. Explanations of the abbreviations used can be found in Table 5.1.

Table 5.1: Abbreviations

Abbreviations

Vehicle Identification Number (VIN)

The VIN number is a vehicle unique fingerprint, and
is composed of 17 characters.

Parent entity consisting of many children entities
covering backend requirements.

Responsible for handling cryptographic material in
the backend systems.

Executes signing requests i.e., returns signatures of
hash values requested by authenticated entities.
Responsible for managing software requests from con-
sumers.

PSA uses this module for the secure generation of
key material.

An array that PSA creates with cryptographic mate-
rial related to a VIN unique software package.
Responsible for management of software versions re-
Version Control Manager (VCM) lated to unique vehicles and for repackaging of data
into the final VUUP file.

Creates the instructions for the download of software
for a certain VIN.

Creates the diagnostic instructions for installation

Producer Agent (PA)

Producer Security Agent (PSA)

Producer Signing Service (PSS)

Order Agent (OA)

Secure Key Generator (SKG)

Secure Key Array (SKA)

Producer Download Agent (PDA)

Producer Installation Agent (PTA) of software for a certain VIN, including retrieving
necessary cryptographic material.

VIN Database (VD) Stores VIN unique data related to software.

Cryptographic Material Storage (CMS) Secure storage of cryptographic material.

The manifest that contains the DKM session key with
the policy for decryption of the download instruction.
Contains the IKM session key with policy for decryp-
tion of the installation instruction.

Contains MKM session keys with policies for decryp-
tion of cryptographic data.

The update package that includes information to
perform a complete vehicle software update, e.g., soft-
ware download instructions, installation instructions
and cryptographic material.

The parent entity to the children entities covering
vehicle requirements for the software installation pro-
Consumer Agent (CA) cess. The localization for children entities can be
adapted to accommodate various use cases, e.g., OTA,
workshop, and factory.

Executes download instructions and retrieves required
software files to local storage.

A diagnostic client responsible for the execution of
Consumer Installation Agent (CIA) installation instructions and requests to CSA for the
execution of cryptographic material.

A trusted execution environment (TEE), with pre-

stored certificates between vehicle manufacture and

Download Key Manifest (DKM)

Installation Instruction Key Manifest (IKM)

Master Key Manifest (MKM)

Vehicle Unique Update Package (VUUP)

Consumer Download Agent (CDA)

Consumer Security Agent (CSA) CSA; which enables secure transfer and execution
of cryptographic material from the backend to the
vehicle.

The process of encrypting one key with the use of

Key Wrapping (KW) another symmetric or asymmetric key, to securely

store or transmit it over an untrusted channel.

Used to define policies and relations for certain keys.
Key Manifest (KM) Keys are secured with KW, where encrypted keys

and policies are signed, giving rise to a KM.
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Figure 5.2: Data distribution in the backend in relation to cryptographic
material

5.4.1 Encapsulating Data into a VUUP file

Producer Agent (PA): data distribution in backend. Figures 5.1, 5.2
and 5.3 describe the process of creating a complete VUUP file. The 11 steps
described below are indicated by numbers where relevant in the Figures 5.1,
5.2 and 5.3.

1. Order request. The Consumer Agent (CA) in the vehicle, local workshop,
or any other consumer, places a signed order on behalf of a Vehicle Identification
Number (VIN) (i.e., a Vehicle Signed Order (VSO)). A VSO should contain a
complete vehicle readout and be signed by the entity which creates the order.
VSOs are placed in the Order Cloud Service queue. Output: VSO_n.signed;
2. Initiate VCM with VSO file. The Order Agent (OA) pulls VSOs from
the Order Cloud Service queue, verifies the CA signature of the VSO, and
requests initiation by VCM with this VSO.

3. VCM creates an SL file with VIN unique software information.
VCM receives a VSO from OA for a certain VIN. VCM validates the signature
of the VSO and retrieves the latest available software versions and VIN vehicle
data from the VIN Database (VD). VIN data in VD is compared with actual
vehicle software readout in the VSO. Software deviations are handled, and a
signed Software List (SL) is created from information in the VSO and VD and
is sent to PDA, PIA, and PSA. Output: SL.signed;

4. PDA creates download instructions. PDA verifies the SL and creates
download instructions (list of software urls) for all ECUs based on the SL. PDA
requests a DKM (Download Instruction Key Manifest) session key from PSA
and encrypts the download instructions with this key. Next, this key is en-
crypted with a vehicle unique public certificate retrieved from CMS, where the
certificate is validated for authenticity towards the Root CA and OCSP (Ounline
Certificate Status Protocol). The encrypted DKM session key and a policy
that dictates the association to the download instructions give rise to the DKM.
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A hash is calculated of the encrypted download instructions and the DKM
separately, and signature requests are sent to PSS on behalf of PDA, which
replies with two separate signatures. Output: download_instruction.signed;
DKM.signed; PDA_cert;

5. PIA creates installation instructions. PIA verifies the signature of
the SL and creates installation instructions for all ECUs based on the SL.
Output: installation_instruction;

6. PSA requests cryptographic material. PSA verifies the SL and retrieves
the required cryptographic material for software related to the received SL
from CMS, such as keys for unlocking ECUs, privileged diagnostic requests,
and software decryption keys. For each category of cryptographic material,
PSA generates an MKM (Master Key Manifest) session key, where each key is
associated with that specific category policy. MKM keys are in turn encrypted
separately with a vehicle unique public certificate retrieved from CMS (same
certificate as in Step 4), where the vehicle unique certificate from CMS is
validated for authenticity towards Root CA and OCSP. The encrypted MKM
keys with each respective category policy give rise to the MKM. A key array
named SKA is created, which includes a sub-array for each category with
separately encrypted key data, encrypted with the MKM key which belongs to
that specific category. For example, SKA can include an array of encrypted
symmetric keys used to encrypt/decrypt the relevant software update files, so
called sw_keys (cf. Section 5.3.3), and an array of encrypted security access
keys used for unlocking relevant ECUs. A hash is calculated of the SKA and
MKM, where after signature requests are sent to PSS which replies with two
separate signatures. Output: MKM.signed; SKA.signed;

7. PIA retrieves the signed MKM and SKA from the PSA, and
encrypts/signs the installation instruction. PIA request the signed MKM
and the signed SKA from PSA. MKM and SKA signatures are validated where
after MKM and SKA are included as part of the installation instructions. PIA
requests an IKM (Installation Instruction Key Manifest) session key from PSA
and encrypts the installation instructions with this key. The IKM session key
is then encrypted with a vehicle unique public certificate retrieved from CMS
(same certificate as in Step 4.), where the certificate is validated for authenticity
towards the Root CA and OCSP. The encrypted IKM session key and a policy
that dictates the association to the installation instructions give rise to the
IKM. A hash is calculated of the encrypted installation instructions and the
IKM separately, and signature requests are sent to PSS on behalf of PIA,
which replies with two separate signatures.

Output: installation_instruction.signed; IKM.signed; PIA_cert;

8. VCM creates the VUUP file.

Input: download_instruction.signed; DKM.signed; installation_instruction.signed;
IKM.signed; PDA_cert; PIA_cert;

VCM retrieves the generated data from PDA and PIA. Certificates are fetched
from CMS and validated for authenticity towards the Root CA and OCSP,
signatures are validated with the respective certificate and all the data is
repackaged into VUUP content. A hash is calculated of the VUUP content,
and a signature request is sent to PSS on behalf of VCM, which replies with a
signature. The signed VUUP is uploaded to the Vehicle Cloud Service together
with its VCM certificate. Output: VUPP_n.signed; VCM_cert;
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9. VCM notifies OA. VCM notifies OA, that the order is ready and supplies
a signed URL to the VUUP file. Qutput: VUUP_1..n_url.signed;

10. OA adds the url to the VIN unique VUUP in the Order Cloud
Service. The OA validates the signature of url and thereafter adds the url in
the Order Cloud Service.

11. CDA requests status. The CDA pulls status from the Order Cloud
Service (via the CA) to indicate that updates are available for download via
the signed VUUP_n_url. If no updates yet are available, the signed url will be
empty.
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Figure 5.3: Data distribution in the backend in relation to signing
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5.4.2 Decapsulating the VUUP file

Consumer Agent (CA): data distribution to vehicle. For the CA, the
process can be considered as the PA process reversed. The 17 steps described
below are indicated by numbers where relevant in the Figures 5.4, 5.5 and 5.6.
1. The CDA requests software updates.

Input: VUUP_n_url.signed; VCM_cert;

If there are updates available, the CDA receives a signed VUUP_n_url and
VCM _cert, where the certificate is validated for authenticity towards the Root
CA and OCSP, where after the signature of VUUP_n_url is validated using the
received VCM _cert.

2. Download of VUUP. Mutual authentication is performed towards the
Vehicle Cloud Service and the signed VUUP_n is downloaded to Consumer
Local Storage. Output: VUPP_n.signed;

3. Validate VUUP. The signature of VUUP_n is validated with VCM _cert,
and VUUP_n is decapsulated to produce the signed contents of download
instructions, DKM, installation instructions, IKM as well as the included
PDA _cert and PIA _cert. Qutput:

download_instruction.signed; DKM.signed; installation_instruction.signed;
IKM.signed; PDA_cert; PIA_cert;

4. Validate data within VUPP. Certificates are fetched for online cases or
retrieved from the VUUP file for offline cases. The signatures for the download
instructions and the DKM are validated with the PDA _cert, and the signatures
for the installation instructions and the IKM are validated with the PIA _cert.
5. DKM Key manifest initiation. The CDA requests the CSA to initialize
the DKM, by providing the DKM.signed and PDA _cert.

Output: DKM.signed; PDA _cert;

6. CSA associates DKM with TEE application. The signature of
DKM is validated with PDA _cert. The DKM session key is decrypted with
the pre-stored vehicle unique private certificate and associated with the TEE
application according to the policy in the DKM manifest, i.e., for decrypting
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download instructions.

7. Request decryption of download instruction. The CDA provides the
signed download instructions to the CSA and requests decryption.

Output: download_instruction.signed;

8. Perform decryption of download instruction. The CSA validates
signature of the download instruction with PDA _cert, decrypts with the DKM
session key from the DKM in accordance with policy (i.e., decrypting download
instructions) and returns the decrypted download instructions to the CDA.
Output: download_instruction;

9. Download of software files. The CDA performs mutual authentication
towards various software repository sources and downloads encrypted signed
software files to Consumer Local Storage using the download instructions. The
CDA validates signatures of all encrypted software files with the VCM _cert.
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Figure 5.6: Data distribution to the vehicle in relation to validation

Consumer Agent (CA): data execution in vehicle. After data distri-
bution to the vehicle has been completed, the following steps describe the
installation of the software update through data execution in the vehicle. These
steps can be performed completely offline.

10. Initiation of pre-state phase. The CDA requests to start installation
of software by sending the signed installation instructions, signed IKM, and
the PIA cert to the CIA.

Output: installation_instruction.signed; IKM.signed; PIA_cert;

11. Reboot to secure state. The CIA validates the PIA cert for authenticity
towards Root CA and OCSP. The signatures of the installation instructions
and IKM are then validated with the PIA _cert. CIA then reboots to an offline
secure state; ready for pre-state installation processes. PIA cert is validated
again after reboot, against Root CA and an offline CRL list; and the signa-
ture of IKM is validated with PIA _cert, where after the CIA requests IKM
initialization by sending the signed IKM and PIA cert to the CSA. Output:
IKM.signed; PIA_cert;

12. IKM key manifest initiation. The CSA validates the PIA cert for
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authenticity towards Root CA and an offline CRL. The CSA then validates the
IKM signature with PIA cert, where after the IKM session key within IKM is
decrypted with the pre-stored private asymmetric unique key and associated
according to policy in the IKM, i.e., to be used for decrypting installation
instructions.

13. Request of decryption of installation instruction. The CIA provides
the signed installation instructions to the CSA and requests decryption.
Output: installation_instruction.signed;

14. Decryption of installation instruction. The CSA validates the sig-
nature of the installation instructions with PIA _cert, decrypts with the IKM
session key from the IKM in accordance with policy (i.e., decrypting installation
instructions) and returns the decrypted installation instructions to the CIA.
Output: installation_instruction;

15. Request MKM key manifest initiation. The CIA retrieves the encap-
sulated signed MKM and SKA, and PSA _cert from the decrypted installation
instructions. The CIA validates the PSA cert for authenticity towards Root
CA and an offline CRL, and verifies signatures of the MKM and the SKA with
the PSA _cert. CIA then requests MKM initialization by sending the signed
MKM and PSA _cert to the CSA. Output: MKM.signed; PSA_cert;

16. MKM key manifest initiation. The CSA validates the MKM signature
with the PSA _cert. MKM session keys within the MKM are decrypted with the
pre-stored private asymmetric unique key and are associated with applications
according to policy in the MKM.

17. Secure CIA - CSA interface established. Peri-state. The CIA -
CSA communication interface is now initialized. The CIA can request decryp-
tion of software from the CSA by sending the encrypted file (or path/link)
together with the corresponding encrypted sw_key retrieved from the SKA.
Before decryption can start, the CSA validates the authenticity of software
files with the VCM _cert and aborts the decryption request from the CIA if
this fails. On the other hand, if it is successful, the CSA then decrypts the
encrypted sw_key with the MKM session key for software files from the MKM
and uses the sw_key to decrypt the software file. This interface is also used
for unlocking ECUs using, e.g., security access to authorize the update. In
this case, the challenge from the ECU is sent to the CSA together with the
corresponding encrypted security access key from the array in SKA. CSA
decrypts the encrypted security access key and processes the challenge from
the ECU and can provide the results to the CIA. This approach allows the
CIA to perform ECU unlock without exposing the security access key outside
of CSA. The CIA is after this step ready to stream out software to the ECU.

5.4.3 Post-State Activities

CSA needs to have the possibility to sign post-state installation data, such as
installation reports and logs potentially affecting upcoming software updates.
A unique session signing key can be transported via MKM to CSA which
can handle signing requests within a trusted application isolated within the
TEE. The corresponding validation key can be stored in CMS. Part of post-
state is to perform a complete vehicle software version request (readout). To
provide authenticity, the readout can be signed by supported ECUs (e.g., if
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they contain pre-stored private keys) and validated by CSA with the help of
the corresponding validation keys attached to the SKA. These responses are
then attached to the installation report. To provide confidentiality, CSA can
encrypt installation reports and logs by using keys in SKA.

5.5 Implementation Considerations

The CA (all consumer entities) can as shown in Figure 5.4 be located in an ECU
in the vehicle used for over-the-air updates or in a client workshop computer
with a separated CSA. CSA in this case can be implemented in a hardware
security device such as a Yubico key [152] or a smart card, with a pre-stored
encryption/decryption certificate and a pre-stored Root CA acting as a trust
anchor for validating certificates. Vehicle manufacturers can provide these
hardware security devices to workshops, and also have full control to manage
and revoke them. Depending on both security and performance requirements
CSA can also be placed in a workshop HSM or even located in the cloud.
Because of the proposed entity separation (implemented as modules), other
approaches are also possible, such as integrating CDA and CIA in an update
tool with CSA integrated in hardware or separated. It is also possible to use
CDA separately (outside the vehicle) and securely push the update package to
the in-vehicle CIA (e.g., via mutually authenticated communication). CIA then
validates and executes the installation instructions and uses the ECU-internal
CSA to perform secure transfer and execution of cryptographic operations.
The different entities can be securely containerized out in the cloud or kept
within vehicle manufacture premises. This solution fulfills the constraints
and conditions stated in Section 5.2 and is therefore highly adaptable to
accommodate various scenarios within the automotive industry.

5.6 Related Work

Samuel et al. suggest using a layered approach with the use of different roles
and keys called The Update Framework (TUF) to ensure the integrity of the
downloaded data, however, this approach does not consider the installation of
these updates and is not adapted for vehicles [153]. In [147] T. Kuppusamy,
propose an implementation and adaption of the TUF framework named Uptane
for vehicle over-the-air updates, where the authors add more metadata to
improve its resilience. Another approach proposed by Idress et al. [154] suggests
deploying a new architecture where all in-vehicle ECUs use HSMs for over-the-
air updates. In [155] Mahmud et al. propose an architecture that relies on
sending multiple copies to secure the software update, an approach which we
believe is not realistic due to infrastructure constraints. M. Steger et al. propose
a framework named SecUp which uses handheld devices to wirelessly connect
and update vehicles over an IEEE 802.11s mesh network for local environments
(i.e. factory and workshop) [156]. In [157] Nilsson et al. present an approach for
securing firmware updates over-the-air by combining encryption, hashing, and
signing of firmware by chaining fragments. In [158] Nilsson et al. continue their
work on hash-chain verification and suggest an over-the-air update framework
that validates firmware after it is flashed to the ECUs, however, this requires all
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in-vehicle ECUs to be adapted to this approach and that integrity verification
of the download is solved by other means.

However, the aforementioned solutions lack necessary details for a unified
and wversatile approach that supports updates over-the-air; from a workshop
computer; at the factory production; use of diagnostic update tools; and third-
party vehicle platform users e.g., using the vehicle as a base controlled by
other autonomous systems. As a case in point, Uber is using the Volvo Cars
platform in their fleet of cars [150]; a scenario which most likely will become
more prevalent in the future due to increased sustainability requirements. Thus,
solutions such as ride-sharing will probably be more common where collective
fleets of cars require integrating 3rd party hardware and software which are
dependent on a unified software update framework. UniSUF supports 3rd
party components by appending its related data to the VUUP file i.e., adding
additional instructions and at the same time keeping the VUUP file intact.
Moreover, other details are missing in current solutions such as required instal-
lation instructions including handling of necessary pre-, peri- and post-state
phases and secure transport and secure execution of ECU-specific cryptographic
keys. UniSUF considers all these three states, and ensures a secure transport to
a trusted execution environment, following a secure execution for all sensitive
data. Many existing solutions also consider changes to all ECUs which usually
is not possible; something which is not required by UniSUF. The mentioned
versatility of UniSUF can keep required adaptions of the vehicle as well as the
required cost to a minimum.

5.7 Future Work and Conclusion

We have contributed with a comprehensive and novel unified software update
framework named UniSUF, well aligned with industry stakeholders. As part of
future work, we have already begun defining an attacker model and started a
security analysis of our proposed solution. We aim to perform a more detailed
evaluation of UniSUF, including a discussion on the fulfilled requirements as
well as a comparison to other approaches, in a future paper.

UniSUF is made to accommodate various scenarios for the automotive
domain by encapsulating needed data into one single file, a Vehicle Unique
Update Package (VUUP). This vehicle unique file can be processed within
a vehicle ECU, using a workshop computer, at factory production, with a
diagnostic update tool, or in other compositions. Moreover, the complete update
process can be performed without any external communication dependencies,
since all files are inherently secured. A continuous secure software update
process is a prerequisite for facilitating vehicle resilience towards cyber attacks
in a rapidly changing environment. We believe our contributions in this paper
can facilitate further research in this area, towards securing the connected car.
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