118 research outputs found

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    Security on Medical Wireless Sensor Networks

    Get PDF
    Wireless technology is fast becoming a very important tool for all aspects of communication. An area that lacks a strong implementation for wireless communication is the medical field. Wireless systems could be used by clinicians to be better able to diagnose and monitor patients. The reason behind the lack of adoption in healthcare is due to the need to meet the legislated and perceived requirements of security and privacy when dealing with clinical information. The current methods of wireless authentication are investigated and an existing issue in mobile networks is described and solved with two novel solutions; one solution within GSM and the other within UMTS. Strong authentication protocols are developed based on the existing wireless protocols, while using minimal messages and symmetric operations to limit resource utilization to meet the needs of the healthcare environment. To ensure the quality of the protocol a BAN (Burrows-Abadi-Needham logic) analysis is performed which verifies that the desired goals of the protocols are appropriately met within the results analysis. The developed security protocol is shown to be secure, uses minimal messages to maintain efficiency and meets the legal requirements to be used in medical wireless sensor networks

    Review of technology‐supported multimodal solutions for people with dementia

    Get PDF
    Funding Information: This research was partially funded by FAITH project (H2020?SC1?DTH?2019?875358), CARELINK project (AAL?CALL?2016?049), and Funda??o para a Ci?ncia e Tecnologia through the program UIDB/00066/2020 (CTS?Center of Technology and Systems).Acknowledgments: The authors acknowledge the European Commission for its support and partial funding; the partners of the research project FAITH project (H2020?SC1?DTH?2019?875358); and CARELINK, AAL?CALL?2016?049 funded by AAL JP and co?funded by the European Commission and National Funding Authorities of Ireland, Belgium, Portugal, and Switzerland. Partial support also comes from Funda??o para a Ci?ncia e Tecnologia through the program UIDB/00066/2020 (CTS?Center of Technology and Systems). Funding Information: Acknowledgments: The authors acknowledge the European Commission for its support and partial funding; the partners of the research project FAITH project (H2020‐SC1‐DTH‐2019‐875358); and CARELINK, AAL‐CALL‐2016‐049 funded by AAL JP and co‐funded by the European Commission and National Funding Authorities of Ireland, Belgium, Portugal, and Switzerland. Partial support also comes from Fundação para a Ciência e Tecnologia through the program UIDB/00066/2020 (CTS—Center of Technology and Systems). Funding Information: Funding: This research was partially funded by FAITH project (H2020‐SC1‐DTH‐2019‐875358), CARELINK project (AAL‐CALL‐2016‐049), and Fundação para a Ciência e Tecnologia through the program UIDB/00066/2020 (CTS—Center of Technology and Systems). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.The number of people living with dementia in the world is rising at an unprecedented rate, and no country will be spared. Furthermore, neither decisive treatment nor effective medicines have yet become effective. One potential alternative to this emerging challenge is utilizing supportive technologies and services that not only assist people with dementia to do their daily activities safely and independently, but also reduce the overwhelming pressure on their caregivers. Thus, for this study, a systematic literature review is conducted in an attempt to gain an overview of the latest findings in this field of study and to address some commercially available supportive technologies and services that have potential application for people living with dementia. To this end, 30 potential supportive technologies and 15 active supportive services are identified from the literature and related websites. The technologies and services are classified into different classes and subclasses (according to their functionalities, capabilities, and features) aiming to facilitate their understanding and evaluation. The results of this work are aimed as a base for designing, integrating, developing, adapting, and customizing potential multimodal solutions for the specific needs of vulnerable people of our societies, such as those who suffer from different degrees of dementia.publishersversionpublishe

    A comprehensive review of wireless body area network

    Get PDF
    Recent development and advancement of information and communication technologies facilitate people in different dimensions of life. Most importantly, in the healthcare industry, this has become more and more involved with the information and communication technology-based services. One of the most important services is monitoring of remote patients, that enables the healthcare providers to observe, diagnose and prescribe the patients without being physically present. The advantage of miniaturization of sensor technologies gives the flexibility of installing in, on or off the body of patients, which is capable of forwarding physiological data wirelessly to remote servers. Such technology is named as Wireless Body Area Network (WBAN). In this paper, WBAN architecture, communication technologies for WBAN, challenges and different aspects of WBAN are illustrated. This paper also describes the architectural limitations of existing WBAN communication frameworks. blueFurthermore, implementation requirements are presented based on IEEE 802.15.6 standard. Finally, as a source of motivation towards future development of research incorporating Software Defined Networking (SDN), Energy Harvesting (EH) and Blockchain technology into WBAN are also provided

    Next-generation protocol architectures for heterogeneous wireless sensor networks

    Get PDF

    The Extent and Coverage of Current Knowledge of Connected Health: Systematic Mapping Study

    Get PDF
    Background: This paper examines the development of the Connected Health research landscape with a view on providing a historical perspective on existing Connected Health research. Connected Health has become a rapidly growing research field as our healthcare system is facing pressured to become more proactive and patient centred. Objective: We aimed to identify the extent and coverage of the current body of knowledge in Connected Health. With this, we want to identify which topics have drawn the attention of Connected health researchers, and if there are gaps or interdisciplinary opportunities for further research. Methods: We used a systematic mapping study that combines scientific contributions from research on medicine, business, computer science and engineering. We analyse the papers with seven classification criteria, publication source, publication year, research types, empirical types, contribution types research topic and the condition studied in the paper. Results: Altogether, our search resulted in 208 papers which were analysed by a multidisciplinary group of researchers. Our results indicate a slow start for Connected Health research but a more recent steady upswing since 2013. The majority of papers proposed healthcare solutions (37%) or evaluated Connected Health approaches (23%). Case studies (28%) and experiments (26%) were the most popular forms of scientific validation employed. Diabetes, cancer, multiple sclerosis, and heart conditions are among the most prevalent conditions studied. Conclusions: We conclude that Connected Health research seems to be an established field of research, which has been growing strongly during the last five years. There seems to be more focus on technology driven research with a strong contribution from medicine, but business aspects of Connected health are not as much studied

    無線センサネットワークのための超低消費電力と高感度CMOS RF受信機に関する研究

    Get PDF
    Wireless sensor networks (WSN) have been applied in wide range of applications and proved the more and more important contribution in the modern life. In order to evaluate a WSN, many metrics are considered such as cost, latency, power or quality of service. However, since the sensor nodes are usually deployed in large physical areas and inaccessible locations, the battery change becomes impossible. In this scenario, the power consumption is the most important metric. In a sensor node, the RF receiver is one of the communication devices, which consume a vast majority of power. Therefore, this thesis studies ultra low power RF receivers for the long lifetime of the sensor nodes. Currently, the WSNs use various frequency bands. However, for low power target, the sub-GHz frequency bands are preferred. In this study, ultra-low power 315 MHz and 920 MHz receivers will be proposed for short-range applications and long-range applications of the WSNs respectively. To achieve ultra-low power target, the thesis considers some issues in architecture, circuit design and fabrication technology for suitable choices. After considering different receiver architectures, the RF detection receiver with the On-Off-Keying (OOK) modulation is chosen. Then the thesis proposes solutions to reduce power consumption and concurrently guarantee high sensitivity for the receivers so that they can communicate at adequate distances for both short and long-range applications. First, a 920 MHz OOK receiver is designed for the long-range WSN applications. Typically, the RF amplifiers and local oscillators consume the most of power of RF receivers. In the RF detection receivers, the local oscillators are eliminated, however, the power consumption of the RF amplifiers is still dominant. By reducing the RF gain or removing the RF amplifier, the power consumption of the receivers can be reduced drastically. However, in this case the sensitivity is very limited. In order to overcome the trade-off between power consumption and sensitivity, the switched bias is applied to the RF amplifiers to reduce their power consumption substantially while guaranteeing high RF gain before RF detection. As a result, the receiver consumes only 53 W at 0.6 V supply with -82 dBm sensitivity at 10 kbps data rate. Next, an OOK receiver operating at 315 MHz for the short-range WSN applications with low complexity is proposed. In this receiver, the RF amplifier is controlled to operate intermittently for power reduction. Furthermore, taking advantage of the low carrier frequency, a comparator is used to convert the RF signal to a rail-to-rail stream and then data is demodulated in the digital domain. Therefore, no envelope detector or baseband amplifiers is required. The architecture of the receiver is verified by using discrete RF modules and FPGAs before it is designed on CMOS technology. By simulation with the physical layout, the 315 MHz OOK receiver consumes 27.6 W at 200 kbps and achieves -76.4 dBm sensitivity. Finally, the Synchronized-OOK (S-OOK) modulation scheme is proposed and then an S-OOK receiver operating in the 315 MHz frequency is developed to reduce power consumption more deeply. The S-OOK signal contains not only data but also clock information. By generating a narrow window, the RF front-end is enabled to receive signal only in a short period, therefore, power consumption of the receiver is reduced further. In addition, thank to the clock information contained in the input signal, the data and corresponding clock are demodulated simultaneously without a clock and data recovery circuit. The architecture of the S-OOK receiver is also verified by using discrete RF modules and FPGAs, then VLSI design is carried out. Physical layout simulation shows that the receiver can achieve -76.4 dBm sensitivity, consumes 8.39 W, 4.49 W, 1.36 W at 100 kbps, 50 kbps and 10 kbps respectively. In conclusion, with the objective is to look for solutions to minimize power consumption of receivers for extending the lifetime of sensor nodes while guaranteeing high sensitivity, this study proposed novel receiver architectures, which help reduce power consumption significantly. If using the coin battery CR2032 for power supply, the 920 MHz OOK receiver can work continuously in 1.45 years with communication distance of 259 meters; the 315 MHz OOK receivers can work continuously in 2.8 years with approximately 19 meters communication distance in free space. Whereas, the 315 MHz S-OOK receiver with the minimum power consumption of 1.36 W is suitable for batteryless sensor nodes.電気通信大学201
    corecore