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1. Introduction     

Neonatal monitoring refers to the monitoring of vital physiological parameters of premature 
infants, full term infants that are critically ill, and a combination thereof. Babies that are born 
after a pregnancy lasting 37 weeks or less are typically considered premature. Critically ill 
neonates are a special group of patients that consist of premature infants who may suffer 
from diseases that are mainly caused by immaturity of their organs, and full term infants, 
who become severely ill during or immediately after birth. In particular, these premature 
infants can weigh as little as 500g with a size of a palm and are highly vulnerable to external 
disturbances. Critically ill newborn infants are normally admitted to a Neonatal Intensive 
Care Unit (NICU) for treatment by neonatologists and specialized nurses.  
Continuous health monitoring for the neonates provides crucial parameters for early 
detection of in adverted events (such as cessation of breathing, heart rhythm disturbances 
and drop in blood oxygen saturation), and possible complications (such as seizures). 
Immediate action based on this detection increases survival rates and positively supports 
further development of the neonates. Advances in medical treatments over the last decades 
resulted in a significant increase of survival. As a result, neonates born after 25 weeks of 
pregnancy can survive with adequate medical care and appropriate medical care in NICU 
(Costeloe et al., 2000). Encouraged by this success NICUs are populated by a large 
proportion of infants, born after very short gestational age. Survival and long-term health 
prospects strongly depend on medical care and reliable and comfortable health-status 
monitoring systems. 
In the last decades several important treatment modalities emerged that had a substantial 
impact on the mortality of prematurely born infants. However there is a concomitant 
increase of neurobehavioral problems on long-term follow-up (Perlman, 2001; Hack & 
Fanaroff, 1999; Chapieski & Evankovitch, 1997). Follow-up studies indicate that preterm 
infants show more developmental delay compared to their full-term peers. More than 50% 
of them show deficits in their further development, such as visual-motor integration 
problems, motor impairments, speech and language delay, behavioral, attention, and 
learning problems (Marlow et al. 2007). Medical conditions including chronic lung disease, 
apnea and bradycardia, transient thyroid dysfunction, jaundice and nutritional deficiencies, 
are potential contributing factors. In addition infants in a busy NICU are often exposed to 
stressful environmental conditions. Examples are the attachment to multiple monitoring 

Source: Intelligent and Biosensors, Book edited by: Vernon S. Somerset,  
 ISBN 978-953-7619-58-9, pp. 386, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Intelligent and Biosensors 

 

2 

devices and intravenous lines, high noise levels and bright light (Perlman, 2003).  A concept 
of interactions in the developing neonatal brain with maternal separation and exposure to 
pain and stress is illustrated in Fig. 1, according to Anand and Scalzo (Anand & Scalzo, 
2000). These negative stimuli can interfere with the normal growth and development of the 
neonates and hamper the parent-child interaction (Als et al., 2003). Thus, it is essential to 
develop comfortable care solutions for NICU and follow-up.   

 

Fig. 1. Schematic diagram of the effects of neonatal pain and maternal separation in the 
neonate on brain plasticity and long term effects on subsequent brain development and 
behaviour 

Vital parameters of clinical relevance for neonatal monitoring include body temperature, 
electrocardiogram (ECG), respiration, and blood oxygen saturation (Als, 1986; Polin & Fox, 
1992). Presently, body temperature is monitored with adhesive thermistors; ECG and 
respiration are obtained by adhesive skin electrodes. The oxygen saturation of the blood is 
monitored by a pulse oximeter with the sensor applied on the foot or palm of the neonate 
(Murković et al. 2003). Placement of these adhesive sensors and the presence of all the wires 
lead to discomfort and even painful stimuli when the electrodes have to be removed. 
Preterm infants, in particular the ones with an immature central nervous system, are highly 
sensitive for external stimuli such as noise, bright light, and pain. As the survival rate of 
neonates has increased significantly in the last decades (de Kleine et al., 2007), the quality of 
life of NICU graduates becomes an important issue as well. Alternative, non-invasive 
monitoring of vital physiological functions is a pressing need to provide convenient care 
and hence, may lead to improved developmental outcome of the neonates. 
Recent advances in sensor technologies (Yang, 2006; Van Langenhove, 2007; Murković et al., 
2003) and wireless communication technologies (Goldsmith, 2005) enable the creation of a 
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new generation of healthcare monitoring systems with wearable electronics and photonics 
(Tao, 2005; Aarts & Encarnação, 2006). 
The Eindhoven University of Technology (TU/e) in the Netherlands has started a 10-year 
project on non-invasive perinatal monitoring in cooperation with the Máxima Medical 
Centre (MMC) in Veldhoven, the Netherlands. The goal of this collaboration is to improve 
the healthcare of the pregnant woman, and her child before, during, and after delivery. In 
the work on neonatal monitoring, we aim to integrate a multidisciplinary network of sensor 
technology, medical clinics and signal processing into revolutionary neonatal monitoring 
solutions (Chen et al., 2010b). The design skills needed range from medical science, human 
factors, material knowledge, smart textiles and form-giving to circuit design, user research, 
power management, signal processing and software engineering. Some intelligent designs 
have been developed covering different aspects of  on non-invasive neonatal monitoring 
with wearable sensors, such as vital signs monitoring (Bouwstra et al, 2009; Chen, et al., 
2010a; Chen, et al., 2010c), data transmission (Chen et al, 2009a), and power supply (Chen et 
al, 2008; Chen et al, 2009b). In this chapter, we present the design work of a smart jacket 
integrated with textile sensors and a power supply based on contactless energy transfer for 
neonatal monitoring.  
The chapter is structured as follows. Section 2 explains the design process and design 
requirements. Section 3 describes the smart jacket design. Section 4 presents the wireless 
power supply design. Both section 3 and section 4 consist of the design concept, prototype 
implementation, and clinical testing or experimental results. Section 5 concludes the chapter. 

2. Design process and design requirements 

 

 

Fig. 2. Design process model 

Methodologies from the field of Industrial Design are applied in the design process, which 
involves a unique integration of knowledge from medical science, design, and sensor 
technology. Fig. 2 shows the design process. The iterative process begins with an 
information search that includes user research involving doctors and nurses at MMC in 
Veldhoven and gathering of information on neonatal monitoring, smart textiles, power 
supply, etc.. Requirements were derived from the information search, forming a base for 
brainstorm sessions which resulted in ideas about technological challenges, functionality 
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issues within NICU as well as form and senses. The ideas are then placed in a 
morphological diagram and combined to several initial concepts. Design choices are made 
through an iterative process in which proof of technology and user feedbacks provide clues 
for further development. The three aspects ‘Technology, User Focus and Design’, are 
strongly interwoven along the process. 
With consideration of both user aspects and technical functions, the design should meet the 
following requirements: 

• support the vital health monitoring functions 

• be safe to use in the NICU environment 

• be scalable to include more monitoring functions and local signal processing 

• support continuous monitoring when the baby is inside the incubator or during 
Kangaroo mother care 

• gain the feeling of trust by the parents and the medical staff through an attractive 
design 

• be non-intrusive and avoid disturbance of the baby and avoid causes of stress 
• provide appropriate feedback which is also interpretable for parents and hospital staff 

on whether the system’s components are correctly functioning 
• non-washable parts must be easy to remove 
• look friendly, playful and familiar  

3. Smart jacket design for neonatal monitoring  

3.1 Design concept 
The vision of the Neonatal Smart Jacket is a wearable unobtrusive continuous monitoring 
system realized by sensor networks and wireless communication, suitable for monitoring 
neonates inside the incubator and outside the incubator during Kangaroo mother care. The 
Neonatal Smart Jacket aims for providing reliable health monitoring as well as a 
comfortable clinical environment for neonatal care and parent-child interaction. The first 
step towards the Smart Jacket is the design of a jacket that: 
1. contains the integration of conductive textiles for ECG monitoring, 
2. forms a platform for future research, in which wireless communication, power supply 

and sensors are developed, 
3. obtains a sense of trust by parents. 
The concept of Diversity Textile Electrode Measurement (DTEM) is applied for the smart 
jacket design. The neonate wears a baby jacket that contains six conductive patches that 
sense biopotential signals at different positions to perform diversity measurements. 
Depending on the way the baby lies or is held, there are always patches that are in close 
contact with the skin because of pressure. When one sensor becomes loose from the skin, 
another sensor can provide a better signal. The system continuously measures which leads 
of the suit have superior contact and chooses the strongest signal for further processing. The 
concept offers a solution for skin contact, without jeopardizing comfort by tightness. It 
might also solve the problem of searching optimal electrode positions in the jacket, which 
varies per baby. 

3.2 Prototype 
A prototype jacket as shown in Fig. 3 was built according to the design requirements. The 
jacket is open at the front and has an open structure fabric on the back and hat, with the 
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purpose of skin-on-skin contact, phototherapy and medical observation. The hat contains 
eye-protection and leaves room for future sensors. The aesthetics are designed to appear as 
regular baby clothing. The color combination of white and green with colorful happy animal 
heads is chosen because it is unisex while looking cheerful and clean. 
 

 

Fig. 3. Prototype smart jacket 

The prototype is designed to have a stress-less dressing process as shown in Fig. 4: (1) the 
baby is laid down on the open jacket, (2) the lower belt is closed, (3) the hat is put on, and (4) 
finally the chest straps are closed. 
 

 

Fig. 4. Stress-less dressing process 

Fig. 5 demonstrates the test patches with different versions of silver and gold textile 
electrodes and a blanket with large silver electrodes. The silver textile electrodes consist of 
silver plated nylons produced by Shieldex®. Construction details can be seen in Fig. 6. Three 
layers (1) of cotton are used and on the middle layer (2) the circuit is sewn with Shieldex® 
silver plated yarn. On the first layer the electrode is sewn, stitching through the circuit on 
the middle layer (3). The electrode’s connection to the monitor is realized by carbon wires 
obtained from regular disposable gel electrodes: the end of the carbon wires are stripped 
and sewn onto the circuit on the middle layer (4). (Carbon wire is a good alternative to metal 
buttons which are often applied, because it avoids the less stable soft-hard connection). 
Finally the third cotton layer for isolation is sewn to the others (5). 
The gold printed electrodes consist of a thin smooth fiber with a metal print developed by 

TNO at Eindhoven, the Netherlands. The gold test patches are created in a similar way to 

the silver test patches, however in future application the circuit and electrode can be printed 

in one piece. 
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Fig. 5. Test patches and blanket 

 

Fig. 6. Construction of textile electrodes 

3.3 Clinical testing 
Several experiments were carried out, ranging from experiments on adults as alternative 
subjects to neonates in the NICU at the MMC Veldhoven, the Netherlands. The goals are 
comparisons between the various textile electrodes, verification of their functioning on a 
neonate and verification of the DTEM concept. Finally, a wearability test of the jacket was 
performed.  
An analysis of risks was performed before applying the prototypes to the NICU. Together 
with clinical physicists, a hospital hygiene and infection expert, and a neonatologist, the 
safety of the monitoring system and hygiene and allergy risks were analyzed. Precautions 
such as disinfection and allergy tests were taken. The ethical commission of the MMC 
Veldhoven approved the experiments. 
First, we tested the quality of the ECG signals obtained by textile electrodes varying in 
material and size and gel electrodes (3M™ 2282E) are qualitatively compared. Fig. 7 shows 
the test setup. The electrodes were tested with two subjects: one neonate of 30 weeks and 5 
days and one of 31 weeks and 6 days, both admitted in the NICU Veldhoven. The ECG is 
sensed by three textile electrodes in regular configuration and the data is acquired with a GE 
Heathcare Solar® 8000M. The unprocessed digital data of derivation II was obtained from a 
network and imported and filtered in MATLAB. A notch, high pass and low pass filter are 
applied to remove the 50 Hz and higher harmonics, DC (direct current) component and high 
frequency noise. 
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Fig. 7. Test setup 

From Fig. 8 we can see that the quality of ECG obtained by the golden printed textile 
electrodes is good and the QRS complex can be seen clearly. The ECG curve in Fig. 8 is 
representative for the ECG quality by gold electrodes when the baby lies still. 
 

 

Fig. 8. Gold printed electrodes D=15mm 

Secondly, we carried out tests to find out whether the concept of DTEM (Diversity Textile 

Electrode Measurement, see section 3.1) can improve the signal quality. The ECG obtained 

by large silver textile electrodes in a blanket where the neonate lies on, is compared to the 

ECG obtained by large silver patches held on the back. By this way, the effect of pressure by 

body weight can be investigated. From Fig. 9 we can see that the quality of ECG obtained by 

the silver textile electrodes is good and the QRS complex can be seen clearly as well. The 

shape of the ECG complex looks different from Fig. 8, because the heart is monitored from 

another angle. 

Apart from reliable technology, the success of the Smart Jacket largely depends on the 
wearable comfort of the jacket. Tightness is desirable for sensor contact, although it might be 
in conflict with wearable comfort. Therefore, extra caution is taken by performing a  
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Fig. 9. Silver Shieldex®, 50mmx60mm, blanket 

wearability test in an early design stage. Fig. 10 shows a stable neonate of 34 weeks being 

dressed in the first prototype of the Smart Jacket while being filmed. Compared to the stress 

that was caused when undressing the regular premature baby clothing, the dressing process 

of the Smart Jacket was very calm. The dressing time is about one minute. The model needs 

to be more adjustable in size due to large variations in proportions and range of dimensions: 

in the NICU neonates can grow from 500g to 2000g and body proportions vary especially 

when caused by medical conditions. The straps need to be improved for comfort in the next 

design iteration. 
 

 

Fig. 10. Wearability test with the first prototype 

3.4 Discussion and improvements 
Due to the nature of conductive textiles, the quality of the ECG signal obtained with textile 

electrodes cannot exceed the gel electrodes: they are ‘dry’ electrodes with relatively loose 

skin contact and have a flexible structure that causes artifacts. However, the specific 

application of ECG monitoring neonates offers new design opportunities: 

• A premature has smoother skin, which results in better skin contact 

• The premature moves relatively little, which results in less movement artifacts 

• The premature always lies or is being held, which offers continuous pressure, which 
leads to better skin contact 
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Two textile electrode designs turn out very promising: (1) large (±D=40mm) silver plated 
textile electrodes and (2) small (±D=15mm) gold printed electrodes. Both have different 
strengths and weaknesses. Large silver electrodes offer a stable ECG signal with low noise 
under the condition that pressure is applied. The silver seems hypoallergenic and does not 
change properties considerably after a few washing cycles.  
The small gold printed electrodes, obtain a stable ECG signal with low noise, under the 

condition that pressure is applied in the beginning; once skin contact is established, little 

pressure is required. The gold print however is not hypoallergenic and looses conductivity 

after washing, due to corrosion of the metal layer beneath the gold. Although the silver 

electrodes could be applied without much adjustment, the gold prints are worth further 

development. They require less space due to higher conductivity, have a smoother surface 

that leads to better skin contact, are less flexible which leads to less artifacts and are 

seamless which leads to more comfort. 

The monitoring of a neonate’s ECG by diversity measurements realized by textile electrodes 

in the jacket definitely is a useful idea. Through experimental verification it is found that the 

quality of the ECG signal improves significantly due to a neonate’s own body weight and is 

comparable to the quality of ECG signal obtained by gel electrodes. 

Based on interviews with parents and medical staff, the conclusion can be drawn that the 

user groups are positive about the first results. They especially appreciate the freedom of 

movement, the aesthetic design, stress-less dressing process and integrated eye-protection. 

Improvements has been made on the design and a new version of the smart jacket has been 

developed as shown in Fig. 11.  
 

 

Fig. 11. New version of the smart jacket 

The new version contains an extremely stretchable fabric that likely ensures adjustability to 

different sizes and proportions. The hat is kept separate for the same reasons. Furthermore, 

the straps are designed to prevent tightness around the neck. Large silver textile electrodes 

are applied in the new version. They are connected only on one of the four sides, in order to 

allow stretch of the jacket without stretch of the electrode itself. The medical staff and 

parents embrace the latest version of the smart jacket. At present this prototype is ready for 

further clinical testing within the MMC Veldhoven. The development of the Smart Jacket 

will be continued, initially by further development of the ECG sensors, wireless 

transmission and an adjustable size for different patients which enable clinical reliability 

tests. 
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4. Power supply design for neonatal monitoring 

4.1 Design concept 
A key question for health monitoring with wearable sensors is how to obtain reliable 
electrical power for the sensors, signal amplifiers, filters and transmitters. The deployment 
of new sensing and monitoring devices for non-invasive healthcare and clinical applications 
requires design of the new power supplies. The power supply should be either long lasting 
or easy to recharge during usage (Tao, 2005) to perform near-real-time continuous 
monitoring. The need to minimize maintenance and replacement costs of batteries drives the 
development of innovative power solutions, encompassing energy scavenging (i.e. energy 
harvesting) technologies that exploit renewable and ambient sources of energy, such as solar 
energy, energy harvested from body heat and movement (Paradiso, 2005; Qin, 2008), and 
wireless power supplies (Catrysse, 2004; Ma, 2007). 
Fundamental physiological parameters that should be continuously monitored during 
neonatal care are electrocardiogram (ECG), respiration, oxygen saturation of the blood (O2-
Sat), and body temperature. The amount of power required by different health monitoring 
sensors and processors is important for designing the power supply. We summarize the 
power consumption of monitoring and processing in Table 1. Based on the information of 
power consumption, our power supply should be able to deliver 150-200 mW for the health 
monitoring functions and more power is needed when charging batteries. 
 

Function Power Consumption 

Data transmission about 50 mW 

ECG Read-out amplifier 
for textile sensors 

about 1 mW 

body temperature 
sensors 

50 mW 

SpO2 sensors 45 mW 

Respiration sensors below 1mW 

Table 1. Power consumption for monitoring and processing 

With the above design requirements in mind, we come up with a technical solution and the 
concept of “PowerBoy”, which uses contactless power and a rechargeable battery embedded 
in a plush toy for neonatal care. We propose to apply inductive energy transfer for the power 
supply due to its wireless feature and scalability. Inductive energy transfer will be employed 
for continuous power supply and for charging the battery when a neonate is lying inside the 
incubator. The rechargeable battery is used for energy storage and continuous power supply 
when the neonate is outside of incubator during Kangaroo mother care. 
Fig. 12 shows an overview of the proposed system. In the system, a primary rectangular 
spiral winding, labelled SA, is placed underneath a 60 mm thick incubator mattress. The 
primary winding forms part of a series resonant circuit driven by a half-bridge inverter and 
a power supply. The PowerBoy plush toy is equipped with, amongst other things, a 
secondary hexagon spiral winding, denoted SB. 
When the PowerBoy toy is placed on the mattress above the primary winding, the magnetic 
field is “picked-up” and an inductive link is formed. Power is then transferred from the 
primary winding to the secondary winding through their mutual inductance. A rectifier 
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Fig. 12. An overview of the PowerBoy system 

circuit and power converter charges a battery inside the toy, and supplies the monitoring 
equipment with power via a power cable, inside the toy’s fluffy tail. When the baby and the 
PowerBoy toy are lifted up from the incubator, the inductive link is broken. The circuitry 
inside the toy detects this, and switches on the battery for powering the monitoring 
equipment. As the baby is laying down in the incubator again, and the PowerBoy toy placed 
in its correct position, inductive power is again restored and used for monitoring health 
parameters as well as charging the battery. 
The power supply design focuses on the contactless energy transfer system as well as the 
primary and secondary windings that generate the magnetic fields. Afterwards, the mutual 
inductances are calculated and the power transfer equations solved to transfer the required 
amount of power. The magnetic field intensities are also estimated and discussed, as well as 
the battery charging circuitry. 

4.2 System design 
4.2.1 Principle of contactless energy transfer 
Contactless Energy Transfer (CET) is the process in which elec¬trical energy is transferred 
between two or more electrical devices through inductive coupling as opposed to energy 
supply through conventional “plug and socket” connectors. The main method through 
which energy is transferred in the system is by magnetic fields and the mutual inductance 
between their primary and secondary coils (Sonntag, 2008). The CET system employs 
primary and secondary series resonance. This increases the efficiency. Fig. 13 shows a 
simplified schematic diagram of the CET circuit, which consists of two coils, forming a 
loosely coupled transformer. The primary coil generates a magnetic field, which is partly 
picked up by the secondary coil. The primary circuit and secondary circuit are separated by 
an air gap (incubator mattress). 
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Fig. 13. Principle of inductive contactless energy transfer 
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In this way, power can be transferred wirelessly. Assuming steady-state sinusoidal voltages 
and currents, the inductive link from Fig. 13 can be described mathematically by the 
following formulae: 

 /A A A A A A A AB BV j L i i j C R i j M iω ω ω= + + − ,                          (1) 

 /AB A B B B B B B L Bj M i j L i i j C R i Z iω ω ω= + + + .                        (2) 

Here, ω is the radial frequency of the current. VA and iA are the primary voltage and current, 
respectively. The secondary current is given as iB, and the induced secondary winding 
voltage is VB. RA and LA, and RB and LB are the internal resistances and self inductances of 
the primary and secondary windings, SA and SB, respectively. The mutual inductance 
between the primary and secondary winding is denoted as MAB. CA and CB are the primary 
and secondary resonance capacitors, respectively. ZL represents the secondary equivalent 
load impedance and VL the voltage over the load. 

4.2.2 Primary and secondary windings 
The primary and secondary CET windings play a vital role in determining the power 
transfer capability of the system. The size of the secondary winding is chosen so that it can 
fit into the bottom of the PowerBoy toy. A two layer hexagon spiral winding with a radius 
of 40 mm is used. The primary coil is a rectangular spiral winding with 120 mm length and 
100 mm width. The primary and secondary windings are shown in Fig. 14 (a) and (b). Table 
2 summarizes their physical dimensions and electrical properties. 
 

 

 
(a) 

 

 
(b) 

Fig. 14. (a) Primary rectangular spiral winding, and (b) secondary hexagon spiral winding 

4.2.3 Mutual inductance values & calculated power transfer 
The mutual inductance between the primary and secondary windings, as shown in 
equations (1) and (2), is vital in calculating the secondary windings’ induced voltage and the 
power transfer capability of the system. Using finite element analysis software (Maxwell 3D 
version 11, Ansoft Corporation) the primary and secondary windings are simulated using a 
three-dimensional environment. The mutual inductance between the windings is estimated 
using the magneto-static solution type. Fig. 15 shows a three-dimensional image of the 
mutual inductance results. The results show a maximum mutual inductance of 1.32 μH 
when the secondary winding is centred directly above the primary winding, i.e. the best- 
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Parameter 
Primary Winding 

Value 
Secondary Winding 

Value 

Dimensions 100 mm x 120 mm 40 mm radius 

Turns per layer 10 turns 19 turns 

Layers 1 2 

Thickness 100 μm 100 μm 

Track width 1 mm 1 mm 

Track spacing 1 mm 0.5 mm 

Inductance 17.5 μH 34.56 μH 

Resistance (DC) 2.48 Ω 3.34 Ω 

Resistance (2.5 MHz) 3.47 Ω 8.80 Ω 

Table 2. Physical dimensions & electrical properties of the primary and secondary windings 
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Fig. 15. A three-dimensional image of the mutual inductance results 

case secondary winding and the preferred PowerBoy toy placement. The worst-case mutual 

inductance occurs when the secondary winding is placed close to the corners of the primary 

winding. At these positions, the mutual inductance is approximately 0.75 μH. This is the 

furthest distance the PowerBoy toy may be placed from the primary winding, to still operate 

normally. 

The CET system should be able to power a 840 mW equivalent load impedance. This takes 

into account the 200 mW for the health monitoring systems, and 500 mW (100 mA @ 5 V) for 

charging the battery. An extra 20 % is added to compensate for any unforeseen losses. The 

power transfer equations are solved in equation (1) and (2) by making sure that the system 

can power the maximum load at the worst-case winding placement, so that it will guarantee 

normal operation and transfer of power for the system, at any toy position within the 

primary winding area. Table 3 shows the calculated primary currents, secondary currents 

and load voltages, for the worst-case and best-case toy placements, for three different power 

transfer scenarios. Firstly, for a fully charged battery, only 200 mW load power is required 

for the health monitoring systems. Secondly, for a partially charged battery, 450 mW is 

required (i.e. 200 mW health monitoring system + 250 mW for half the battery charging 

power). Thirdly, for a completely discharged battery, the full 700 mW is transferred. From 
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Table 3, it can be seen that for a certain load power, the best-case PowerBoy toy placement 

has a higher induced voltage than the worst-case placement. 

 

Load power 
value 

Best PowerBoy toy 
placement 

Worst PowerBoy 
toy placement 

200 mW 
iA = 1.53 A (peak) 
iB =  13 mA (peak) 
VL =  31.1 V (peak) 

iA =  1.53 A (peak) 
iB =  23 mA (peak) 
VL =  17.5 V (peak) 

450 mW 
iA =  1.42 A (peak) 
iB =  31 mA (peak) 
VL =  29 V (peak) 

iA =  1.42 A (peak) 
iB =  57 mA (peak) 
VL = 16 V (peak) 

700 mW 
iA =  1.29 A (peak) 
iB =  54 mA (peak) 
VL =  25.9V (peak) 

iA = 1.27 A (peak) 
iB = 100 mA (peak) 
VL = 13.8 V (peak) 

Table 3. Power transfer results for different winding placements and load power 

4.2.4 Magnetic field values 
The magnetic fields created by the currents circulating in the primary and secondary 

windings are estimated using finite element analysis software (Maxwell 3D version 11, 

Ansoft Corporation) and solving the fields using the magneto-static solution type. 

According to (ICNRP, 1998), the exposure to time-varying magnetic field values at a 

frequency of 2.4576 MHz (the optimum operating frequency for the proposed system) is safe 

for general public exposure, at approximately 0.3 A/m (RMS) and less. The results from the 

magnetic field estimation show that the magnetic field produced by the primary winding 

has a maximum value of 4.2 A/m on the surface of the mattress. The magnetic field 

intensity reaches a value of 0.3 A/m at a radius of approximately 155 mm from the centre of 

the winding. The magnetic field from the secondary winding is mostly contained inside the 

PowerBoy toy and is negligible outside the toy. Thus, for safety reasons, it is advisable to 

place the baby at least 155 mm away from the centre of the primary winding. 

4.2.5 Battery charging circuit 
The battery charging circuit comprises of a rechargeable 2400 mAh 3.6 V NiMH battery and 

a battery charging circuit. The battery charging current is limited 100 mA. A fully 

discharged battery will thus take approximately 24 hours to charge. The battery has the 

ability to power the 200 mW health monitoring circuits for approximately 40 hours. 

4.3 Prototype 
A prototype was built to demonstrate the performance of the proposed power supply. The 

users of the power supply will be hospital staff (e.g. doctors, nurses and technicians) 

working at NICUs in hospitals, as well as parents and the neonates under monitoring. 

Therefore, we take the aspects of aesthetics and user friendliness into our design. The 

PowerBoy power supply system consists of a PowerBoy toy, a PowerBoy house and a soft 

sheet as shown in Fig. 16. In this subsection, the details of the electronics in the prototype 

are presented.  
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The prototype is implemented modularly, and contains eight major sub-systems as shown 

in the block diagram in Fig. 17. Here the black arrows indicate the flow of power, while the 

grey arrows show magnetic fields. 

 
 

 

Fig. 16. The PowerBoy system, consisting of a toy, a house and a soft sheet 

 

 

Fig. 17. Block diagram of CET power supply 

Firstly, integrated into the PowerBoy house, is the circuitry used to generate the required 

voltages and signals used in the contactless energy transfer system. This includes three AC-

to-DC power converters, for converting the 230 V, 50 Hz mains voltage into +9V, -9V and 

24V (DC), respectively. Additionally, it contains a DC-to-DC converter which generated a 

3.3 V (DC), a 2.4576 MHz oscillator (XO53B-2.4576M) a half-bridge inverter (using two 

IRF510 N-channel MOSFETS) and a high-frequency MOSFET driver, based on the designs in 

(Sonntag, 2008). This house encloses the PCBs of the drive circuit and the power supply box. 

Fig. 18 gives a top view of the drive circuits in the PowerBoy housing. In this manner the 

system can become portable. 
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oscillator

half-bridge inverter, and driver

DC:DC converters

 

Fig. 18. Top view of the drive circuit in the PowerBoy house 

Secondly, is the PowerBoy toy as shown in Fig. 19 (a): Integrated into the toy is the 

secondary winding (on the bottom). Additionally, it contains the rectifier circuit, a voltage 

converter and the battery charging circuits. The PowerBoy is designed to be a friendly 

companion for the neonates and is made from soft materials which are stitched together, to 

make a spherical-shaped toy. A process of participatory de-sign was followed for the 

formgiving and material choosing. On the chest of the toy are two LEDs which indi-cate the 

status of the power supply and the battery. When CET power is available, the left LED next 

to the power-plug icon lights up. When the PowerBoy is picked up and the battery is used, 

the right side LED next to the battery icon lights up. The battery charg-ing circuitry as 

shown in Fig. 19 (b) is based on the design given in (Hayles, 2008) and consists of a 

programmed PIC17C711 microprocessor and a controlled current source using a LM317 

voltage regulator and a BC548 transistor. 

 

      

                                         (a)                                                                     (b) 

Fig. 19. (a) PowerBoy toy and (b) battery charging circuit 

Thirdly, the primary winding is integrated into a soft material pocket called the soft sheet. 

This sheet softens the hard edges of the PCB containing the primary winding. It does not 

come in to contact with the baby but it feels and looks friendlier when inter-acting with it. 

This sheet is positioned underneath the mattress. 
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Instead of an additional technical device in the incubator, PowerBoy is an attractive 

alternative with its baby-friendly appearance. Parents will appreciate this design, and may 

experience some relief of tension. 

4.4 Experimental results 
To verify the power transfer calculations and results, several power transfer experiments are 

preformed. Fig. 20 draws the implemented circuits for the prototype and experiments. Here, 

T1 and T2 are the two MOSFETS used in the half-bridge inverter, and VAA is its input 

voltage. The final output voltage- and current to the neonatal health monitoring system is 

VO  and IO, respectively. 
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Fig. 20. The implemented (a) primary circuit, (b) the secondary test circuit with only a 
resistor as load, and (c) the rectifier, DC:DC converter and resistor as load. 

The measurements are preformed by placing the centre of the secondary winding at discrete 

positions above the primary winding, at a height of z = 65 mm. Due to the symmetry in the 

primary winding, only nine positions, as shown in Fig. 21, are measured. 
 

 

Fig. 21. The measurement positions above the primary winding 
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Firstly, the system is implemented with the primary circuit (a) and secondary circuit (b) as 

shown in Fig. 20. The peak secondary load voltage, VL, is measured for a no-load situation 

( LZ →∞ ). The primary current of 1.28 A (peak) is achieved by driving the half-bridge 

inverted with a voltage of, VAA = 23.5 V. Fig. 22 illustrates a graph with a clear peak at the 

centre. This confirms the mutual inductance maximum at this point. The maximum 

secondary induced voltage is 26.5 V (peak) and the minimum is 13.78 V (peak). 
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Fig. 22. The peak induced voltage 

Secondly, the primary current, secondary current, and load voltage is measured using a load 

resistance of ZL = 85.8 Ω. This corresponds to an 840 mW power transfer at the worst-case 

secondary winding placement (P33 on Fig. 21). With VAA = 23.5 V, the results are shown in 

Table 4. From Table 4, we can see that at the worst-case secondary winding placement, the 

system is capable of transferring the needed 840 mW at approximately 12 V (peak). 

 

Secondary
winding 
position 

Primary 
winding 
current 

iA (peak) 

Secondary
winding 
current 

iB  (peak) 

Load 
voltage 

VL 

(peak) 

Load 
power 

PL 

P11 1.08 A 185 mA 16.55 V 1.53 W 

P12 1.08 A 184 mA 16.0 V 1.47 W 

P13 1.25 A 156 mA 13.7 V 1.07 W 

P21 1.10 A 185 mA 16.0 V 1.48 W 

P22 1.15 A 177 mA 15.5 V 1.37 W 

P23 1.25 A 176 mA 13.5 V 1.19 W 

P31 1.22 A 180 mA 14.0 V 1.26 W 

P32 1.22 A 180 mA 13.5 V 1.22 W 

P33 1.16 A 150 mA 11.7 V 878 mW 

Table 4. Experimental results of 840 mW power transfer 
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Thirdly, experiments are conducted with the implementation of the secondary circuit (c) as 
shown in Fig. 20. Simulating a fully charged battery (a battery charger is not drawing any 
current), a load power of 200 mW is required. With an expected load voltage, VO = 5 V (DC), 
an equivalent load resistance of 125 Ω (126 Ω implemented) is used. The expected load current 
is IO = 39.7 mA. With VAA = 23.5 V, the primary and secondary winding currents, the rectifier 
voltage, VDC, and the load voltage VO, are measured. Table 5 shows that the load voltage of 5 
V, and consequently 200 mW load power, was maintained at all the measuring positions. 
 

Secondary
winding 
position 

Primary 
winding 
current 

iA  (peak) 

Secondary
winding 
current 

iB  (peak) 

Rectifier 
Voltage 

VDC 
(DC) 

Load 
Voltage 

VO 
(DC) 

P11 1.30 A 48 mA 17.6 V 5 V 

P12 1.32 A 48 mA 16.7 V 5 V 

P13 1.26 A 55 mA 12.5 V 5 V 

P21 1.28 A 50 mA 16 V 5 V 

P22 1.26 A 50 mA 15 V 5 V 

P23 1.28 A 58 mA 11.7 V 5 V 

P31 1.28 A 52 mA 13.3 V 5 V 

P32 1.28 A 50 mA 12.5 V 5V 

P33 1.30 A 59 mA 9.6 V 5 V 

Table 5. Experimental results of power transfer under the condition of fully charged battery 

Fourthly, simulating a completely drained battery, a load power of 700 mW is required (200 
mW for the health monitoring circuits and 500 mW for the battery charging). The equivalent 
load resistor of 35.7 Ω (36.1 Ω implemented) is used. The expected load current is IO = 139 
mA). With VAA = 23.5 V, the primary and secondary winding currents, the rectifier voltage, 
VDC, and the load voltage VO, are measured. Table 6 shows the results. 
 

Secondary
winding 
position 

Primary 
winding 
current 

iA  (peak) 

Secondary
winding 
current 

iB  (peak) 

Rectifier 
Voltage 

VDC 
(DC) 

Load 
Voltage 

VO 
(DC) 

P11 1.10 A 158 mA 14 V 5 V 

P12 1.13 A 160 mA 13.5 V 5 V 

P13 1.17 A 184 mA 9.9 V 5 V 

P21 1.14 A 170 mA 12.2 V 5 V 

P22 1.14 A 170 mA 12.2 V 5 V 

P23 1.18 A 194 mA 8.8 V 5 V 

P31 1.17 A 182 mA 10.4 V 5 V 

P32 1.18 A 190 mA 10 V 5 V 

P33 1.18 A 200 mA 6.7 V 5 V 

Table 6. Experimental Results Of Power Transfer under the condition of completely drained 
battery 
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These results show that the load voltage of 5 V, and consequently 700 mW load power, was 

maintained at all the measuring positions. The system is thus capable of charging a 

completely discharged battery, while providing 200 mW of power to the neonatal health 

monitoring circuit, and still maintaining a 5 V (DC) output voltage. 

4.5 Discussion 
The proposed power supply satisfies the requirements of neonatal monitoring and provides 

continuous power when the neonate is inside the incubator or during Kangaroo mother 

care. The PowerBoy prototype was designed and implemented to demonstrate the 

performance of the power supply and the possibilities for aesthetic features. Experimental 

results showed that the prototype transfers approximately 840 mW of power. To evaluate 

the PowerBoy concept with user feedback, we had meetings with the group leader of the 

NICU at MMC, Prof. dr. Sidarto Bambang Oetomo and the head of the NICU nurses, Astrid 

Osagiator. They were enthusiastic about the concept and prototype. Further improvements 

and clinical verification will be conducted at MMC to integrate the power supply into the 

non-invasive neonatal monitoring systems.  

New development of CET has the potential to enable automatic location detection and 

power switching, consequently, automatic power management with less magnetic fields can 

be foreseen for neonatal monitoring when the baby is at different locations inside the 

incubator. 

Due to the amount of energy consumption of current sensor technologies, it is not yet 

feasible to harvest enough power from the NICU environment. Further development on 

sensors and components with low power consumption could bring opportunities for energy 

harvesting technologies to support neonatal monitoring. 

5. Conclusion 

In this chapter we presented the design of a smart jacket and the design of a power supply 
for neonatal monitoring with wearable sensors. These are examples of what can be done 
now, in the first decade of the new millennium. In this section we put these examples in a 
larger perspective, from both a technological and a societal viewpoint.  
The technology demonstrated in this chapter shows how it is possible to improve the 

comfort and quality of life for the child by elimination of the adhesive electrodes and by the 

elimination of wires. In fact, the elimination of wires goes in steps, the first of which is the 

decision to transfer signals via radio rather than by wired transmission. In order to make 

this happen, the amplifiers and filters must move from the remote monitoring area into the 

body area which introduces the need for energy to power the amplifiers, filters and radio 

transmitters. This, in turn, introduces the need for local energy, either through new wires, 

batteries or by wireless energy transmission. Therefore the second step is to eliminate this 

local energy problem, which is precisely what the PowerBoy system does. Bringing the 

amplifiers and the filters closer to the body will give an additional advantage, which is not 

fully exploited yet in the current version of the smart jacket. The advantage will be that all 

the electric interference picked up by the traditional long leads is strongly reduced.  Still, 

precautions will be needed to prevent the newly introduced power-supply and radio-

transmission carriers from inducing new artifacts, notably in the pre-amplifier stages. For 
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the time being, some care is thus needed with pulse and amplitude based modulation 

techniques. On the long term, ultra-low power transmission techniques will take care of this 

potential problem. Another concern is the question whether the newly introduced high-

frequency fields could be harmful for the child.  It is advisable to stay on the safe side, which 

is why the PowerBoy is a separate toy and the child is outside of the field. This is a good 

solution now. In ten years from now, low power radio and low power 

photoplethysmography (PPG) sensors could well be available, allowing for full integration 

of all electronics into the jacket itself. The introduction of textile electrodes is another 

technological step, which has introduced a new problem. The problem is the signal quality, 

since the signal is weaker and more sensitive to movement artifacts. An alternative 

technology would be capacitive electrodes, but these have similar problems. Of course 

proper placement of the electrodes helps, as shown in the smart jacket design for neonatal 

monitoring. Multi-modal signal processing will be the way ahead. For example, combining 

movement sensors, ECG sensors and PPG sensors gives extra information which can be 

used to automatically distinguish artifacts from genuine heart rate abnormalities.  

Taking a societal viewpoint, the smart jacket and power system fit into the ambient 

intelligence approach. The sensors could become invisible and important monitoring tasks 

taken over by computers which could become invisible as well. In general, the societal 

debate about ambient intelligence in health care has hardly begun. In the Netherlands, the 

report issued by the Rathenau Institute (Schuurman et al., 2007) is one of the examples of the 

beginning debate. A European perspective can be found in the paper by Duquenoy and 

Whitehouse (Duquenoy & Whitehouse, 2006) who explain ambient intelligence as 

combining developments in information and communication technologies with notions of 

'pervasive' and 'ubiquitous' computing, and describing an intelligent environment operating 

in the background in an invisible and non-intrusive way. Several communities have 

different views, but doubtlessly problems such as information overload and conflict of 

governmental and/or commercial interests with private interests will arise. For prematurely 

born infants, monitoring of vital functions while raising the comfort level is a medical 

necessity. Gradually it will become possible, however, to transfer the solutions developed 

for critically ill children towards the larger potential buyer groups (parents of the healthy 

newborns). These solutions could become modern versions of the old FM audio baby 

monitors and the present-day baby cams. But is it necessary that parents are reading more 

and more bodily parameters of their child? Is it wise to collect such data in computers with 

the possibility that more and more parties get hold of the data? These are not technological 

questions, but topics for political, social, organizational, economic, legal, regulatory, and 

ethical debate. 
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