26,185 research outputs found

    Designing Multi-Commodity Flow Trees

    Full text link
    The traditional multi-commodity flow problem assumes a given flow network in which multiple commodities are to be maximally routed in response to given demands. This paper considers the multi-commodity flow network-design problem: given a set of multi-commodity flow demands, find a network subject to certain constraints such that the commodities can be maximally routed. This paper focuses on the case when the network is required to be a tree. The main result is an approximation algorithm for the case when the tree is required to be of constant degree. The algorithm reduces the problem to the minimum-weight balanced-separator problem; the performance guarantee of the algorithm is within a factor of 4 of the performance guarantee of the balanced-separator procedure. If Leighton and Rao's balanced-separator procedure is used, the performance guarantee is O(log n). This improves the O(log^2 n) approximation factor that is trivial to obtain by a direct application of the balanced-separator method.Comment: Conference version in WADS'9

    Distributed Averaging via Lifted Markov Chains

    Full text link
    Motivated by applications of distributed linear estimation, distributed control and distributed optimization, we consider the question of designing linear iterative algorithms for computing the average of numbers in a network. Specifically, our interest is in designing such an algorithm with the fastest rate of convergence given the topological constraints of the network. As the main result of this paper, we design an algorithm with the fastest possible rate of convergence using a non-reversible Markov chain on the given network graph. We construct such a Markov chain by transforming the standard Markov chain, which is obtained using the Metropolis-Hastings method. We call this novel transformation pseudo-lifting. We apply our method to graphs with geometry, or graphs with doubling dimension. Specifically, the convergence time of our algorithm (equivalently, the mixing time of our Markov chain) is proportional to the diameter of the network graph and hence optimal. As a byproduct, our result provides the fastest mixing Markov chain given the network topological constraints, and should naturally find their applications in the context of distributed optimization, estimation and control

    On Routing Disjoint Paths in Bounded Treewidth Graphs

    Get PDF
    We study the problem of routing on disjoint paths in bounded treewidth graphs with both edge and node capacities. The input consists of a capacitated graph GG and a collection of kk source-destination pairs M={(s1,t1),…,(sk,tk)}\mathcal{M} = \{(s_1, t_1), \dots, (s_k, t_k)\}. The goal is to maximize the number of pairs that can be routed subject to the capacities in the graph. A routing of a subset M′\mathcal{M}' of the pairs is a collection P\mathcal{P} of paths such that, for each pair (si,ti)∈M′(s_i, t_i) \in \mathcal{M}', there is a path in P\mathcal{P} connecting sis_i to tit_i. In the Maximum Edge Disjoint Paths (MaxEDP) problem, the graph GG has capacities cap(e)\mathrm{cap}(e) on the edges and a routing P\mathcal{P} is feasible if each edge ee is in at most cap(e)\mathrm{cap}(e) of the paths of P\mathcal{P}. The Maximum Node Disjoint Paths (MaxNDP) problem is the node-capacitated counterpart of MaxEDP. In this paper we obtain an O(r3)O(r^3) approximation for MaxEDP on graphs of treewidth at most rr and a matching approximation for MaxNDP on graphs of pathwidth at most rr. Our results build on and significantly improve the work by Chekuri et al. [ICALP 2013] who obtained an O(r⋅3r)O(r \cdot 3^r) approximation for MaxEDP

    Optimization of Free Space Optical Wireless Network for Cellular Backhauling

    Full text link
    With densification of nodes in cellular networks, free space optic (FSO) connections are becoming an appealing low cost and high rate alternative to copper and fiber as the backhaul solution for wireless communication systems. To ensure a reliable cellular backhaul, provisions for redundant, disjoint paths between the nodes must be made in the design phase. This paper aims at finding a cost-effective solution to upgrade the cellular backhaul with pre-deployed optical fibers using FSO links and mirror components. Since the quality of the FSO links depends on several factors, such as transmission distance, power, and weather conditions, we adopt an elaborate formulation to calculate link reliability. We present a novel integer linear programming model to approach optimal FSO backhaul design, guaranteeing KK-disjoint paths connecting each node pair. Next, we derive a column generation method to a path-oriented mathematical formulation. Applying the method in a sequential manner enables high computational scalability. We use realistic scenarios to demonstrate our approaches efficiently provide optimal or near-optimal solutions, and thereby allow for accurately dealing with the trade-off between cost and reliability

    The Capacity of Smartphone Peer-To-Peer Networks

    Get PDF
    We study three capacity problems in the mobile telephone model, a network abstraction that models the peer-to-peer communication capabilities implemented in most commodity smartphone operating systems. The capacity of a network expresses how much sustained throughput can be maintained for a set of communication demands, and is therefore a fundamental bound on the usefulness of a network. Because of this importance, wireless network capacity has been active area of research for the last two decades. The three capacity problems that we study differ in the structure of the communication demands. The first problem is pairwise capacity, where the demands are (source, destination) pairs. Pairwise capacity is one of the most classical definitions, as it was analyzed in the seminal paper of Gupta and Kumar on wireless network capacity. The second problem we study is broadcast capacity, in which a single source must deliver packets to all other nodes in the network. Finally, we turn our attention to all-to-all capacity, in which all nodes must deliver packets to all other nodes. In all three of these problems we characterize the optimal achievable throughput for any given network, and design algorithms which asymptotically match this performance. We also study these problems in networks generated randomly by a process introduced by Gupta and Kumar, and fully characterize their achievable throughput. Interestingly, the techniques that we develop for all-to-all capacity also allow us to design a one-shot gossip algorithm that runs within a polylogarithmic factor of optimal in every graph. This largely resolves an open question from previous work on the one-shot gossip problem in this model
    • …
    corecore