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Abstract
We study the problem of routing on disjoint paths in bounded treewidth graphs with both edge
and node capacities. The input consists of a capacitated graph G and a collection of k source-
destination pairsM = {(s1, t1), . . . , (sk, tk)}. The goal is to maximize the number of pairs that
can be routed subject to the capacities in the graph. A routing of a subset M′ of the pairs is
a collection P of paths such that, for each pair (si, ti) ∈ M′, there is a path in P connecting
si to ti. In the Maximum Edge Disjoint Paths (MaxEDP) problem, the graph G has capacities
cap(e) on the edges and a routing P is feasible if each edge e is in at most cap(e) of the paths of
P. The Maximum Node Disjoint Paths (MaxNDP) problem is the node-capacitated counterpart
of MaxEDP.

In this paper we obtain an O(r3) approximation for MaxEDP on graphs of treewidth at most r
and a matching approximation for MaxNDP on graphs of pathwidth at most r. Our results build
on and significantly improve the work by Chekuri et al. [ICALP 2013] who obtained an O(r · 3r)
approximation for MaxEDP.
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1 Introduction

In this paper, we study disjoint paths routing problems on bounded treewidth graphs. In this
setting, we are given an undirected capacitated graph G and a collection of source-destination
pairs M = {(s1, t1), (s2, t2), . . . , (sk, tk)}. The goal is to select a maximum-sized subset
M′ ⊆ M of the pairs that can be routed subject to the capacities in the graph. More
precisely, a routing ofM′ is a collection P of paths such that, for each pair (si, ti) ∈ M′,
there is a path in P connecting si to ti. In the Maximum Edge Disjoint Paths (MaxEDP)
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15:2 On Routing Disjoint Paths in Bounded Treewidth Graphs

problem, the graph G has capacities cap(e) on the edges and a routing P is feasible if each
edge e is in at most cap(e) of the paths of P . The Maximum Node Disjoint Paths (MaxNDP)
problem is the node-capacitated counterpart of MaxEDP.

Disjoint paths problems are fundamental problems with a long history and significant
connections to optimization and structural graph theory. The decision versions of MaxEDP
and MaxNDP ask whether all of the pairs can be routed subject to the capacities. Karp [18]
showed that, when the number of pairs is part of the input, the decision problem is NP-
complete. In undirected graphs, MaxEDP and MaxNDP are solvable in polynomial time when
the number of pairs is constant; this is a deep result of Robertson and Seymour [22] that
builds on several fundamental structural results from their graph minors project.

In this paper, we consider the optimization problems MaxEDP and MaxNDP when the
number of pairs are part of the input. These problems are NP-hard and the main focus
in this paper is on approximation algorithms for these problems in bounded treewidth
graphs. Although they may appear to be quite specialized at first, MaxEDP and MaxNDP on
capacitated graphs of small treewidth capture a surprisingly rich class of problems; in fact,
as shown by Garg, Vazirani, and Yannakakis [16], these problems are quite interesting and
general even on trees.

MaxEDP and MaxNDP have received considerable attention, leading to several break-
throughs both in terms of approximation algorithms and hardness results. MaxEDP is
APX-hard even in edge-capacitated trees [16], whereas the decision problem is trivial on trees;
thus some of the hardness of the problem stems from having to select a subset of the pairs to
route. Moreover, by subdividing the edges, one can easily show that MaxNDP generalizes
MaxEDP in capacitated graphs. However, node capacities pose several additional technical
challenges and extending the results for MaxEDP to MaxNDP is far from immediate even in
restricted graph classes and our understanding of MaxNDP is more limited.

In general graphs, the best approximation for MaxEDP and MaxNDP is an O(
√
n)

approximation [4, 19], where n is the number of nodes, whereas the best hardness for
undirected graphs is only Ω((logn)1/2−ε) [2]. Bridging this gap is a fundamental open
problem that seems quite challenging at the moment. There have been several breakthrough
results on a relaxed version of these problems where congestion is allowed1. This line of
work has culminated with a polylog(n) approximation with congestion 2 for MaxEDP [14]
and congestion 51 for MaxNDP [6]. In addition to the routing results, this work has led to
several significant insights into the structure of graphs with large treewidth and to several
surprising applications [5].

Most of the results for routing on disjoint paths use a natural multi-commodity flow
relaxation as a starting point. A well-known integrality gap instance due to Garg et al. [16]
shows that this relaxation has an integrality gap of Ω(

√
n), and this is the main obstacle for

improving the O(
√
n) approximation in general graphs. The integrality gap example is an

instance on an n× n grid that exploits a topological obstruction in the plane that prevents a
large integral routing (see Fig. 2). Since an n× n grid has treewidth Θ(

√
n), it suggests the

following natural and tantalizing conjecture that was asked by Chekuri et al. [9].

I Conjecture 1 ([9]). The integrality gap of the standard multi-commodity flow relaxation
for MaxEDP/MaxNDP is Θ(r) with congestion 1, where r is the treewidth of the graph.

Recently, Chekuri et al. [10] showed that MaxEDP admits an O(r · 3r) approximation
on graphs of treewidth at most r. This is the first approximation for the problem that is

1 A collection of paths has an edge (resp. node) congestion of c if each edge (resp. node) is in at most
c · cap(e) (resp. c · cap(v)) paths.
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independent of n and k, and the first step towards resolving the conjecture. One of the main
questions left open by the work of Chekuri et al. [10]—that was explicitly asked by them—is
whether the exponential dependency on the treewidth is necessary. In this paper, we address
this question and we make a significant progress towards resolving Conjecture 1.

I Theorem 2. The integrality gap of the multi-commodity flow relaxation is O(r3) for
MaxEDP in edge-capacitated undirected graphs of treewidth at most r. Moreover, there
is a polynomial time algorithm that, given a tree decomposition of G of width at most r
and a fractional solution to the relaxation of value OPT, constructs an integral routing of
size Ω(OPT/r3).

As mentioned above, MaxNDP in node-capacitated graphs is more general than MaxEDP and
it poses several additional technical challenges. In this paper, we give an O(r3) approximation
for MaxNDP on graphs of pathwidth at most r with arbitrary node capacities. This is the
first approximation guarantee for MaxNDP that is independent of n and it improves the
O(r log r logn) approximation of Chekuri et al. [9].

I Theorem 3. The integrality gap of the multi-commodity flow relaxation is O(r3) for
MaxNDP in node-capacitated undirected graphs of pathwidth at most r. Moreover, there
is a polynomial time algorithm that, given a path decomposition of G of width at most r
and a fractional solution to the relaxation of value OPT, constructs an integral routing of
size Ω(OPT/r3).

The study of routing problems in bounded treewidth graphs is motivated not only by the
goal of understanding the integrality gap of the multi-commodity flow relaxation but also by
the broader goal of giving a more refined understanding of the approximability of routing
problems in undirected graphs. Andrews et al. [2] have shown that MaxEDP and MaxNDP in
general graphs cannot be approximated within a factor better than (logn)Ω(1/c) even if we
allow a constant congestion c ≥ 1. Thus in order to obtain constant factor approximations
one needs to use additional structure. However, this seems challenging with our current
techniques and there are only a handful of results in this direction.

One of the main obstacles for obtaining constant factor approximations for disjoint paths
problems is that most approaches rely on a powerful pre-processing step that reduces an
arbitrary instance of MaxEDP/MaxNDP to a much more structured instance in which the
terminals2 are well-linked. This reduction is achieved using the well-linked decomposition
technique of Chekuri, Khanna, and Shepherd [7], which necessarily leads to an Ω(logn) loss
even in very special classes of graphs such as bounded treewidth graphs. Chekuri, Khanna,
and Shepherd [8] showed that the well-linked decomposition framework can be bypassed
in planar graphs, leading to an O(1) approximation for MaxEDP with congestion 4 (the
congestion was later improved by Séguin-Charbonneau and Shepherd [24] from 4 to 2).
This result suggests that it may be possible to obtain constant factor approximations with
constant congestion for much more general classes of graphs. In particular, Chekuri et al. [10]
conjecture that this is the case for the class of all minor-free graphs.

I Conjecture 4 ([10]). Let G be any proper minor-closed family of graphs. Then the
integrality gap of the multi-commodity flow relaxation for MaxEDP is at most a constant cG
when congestion 2 is allowed.

2 The vertices participating in the pairsM are called terminals.
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A natural approach is to attack Conjecture 4 using the structure theorem for minor-free
graphs given by Robertson and Seymour [21, 23] that asserts that every such graph admits a
tree decomposition where the size of every adhesion (the intersection of neighboring bags)
is bounded, and after turning the adhesions into cliques, every bag induces a structurally
simpler graph: one of bounded genus, with potentially a bounded number of apices and
vortices. Thus in some sense, in order to resolve Conjecture 4, one needs to understand the
base graph class (bounded genus graphs with apices and vortices) and how to tackle bounded
width tree decompositions.

The recent work of Chekuri et al. [10] has made a significant progress toward resolving
Conjecture 4 by providing a toolbox for the latter issue, and the only ingredient that is
still missing is an algorithm for planar and bounded genus graphs with a constant number
of vortices (in the disjoint paths setting, apices are very easy to handle). However, one of
the main drawbacks of their approach is that it leads to approximation guarantees that are
exponential in the treewidth. Our work strengthens the approach of Chekuri et al. [10] and
it gives a much more graceful polynomial dependence in the approximation ratio.

I Theorem 5. Let G be a minor-closed class of graphs such that the integrality gap of the
multi-commodity flow relaxation is α with congestion β. Let G` be the class of graphs that
admit a tree decomposition where, after turning all adhesions into cliques, each bag induces a
graph from G, and each adhesion has size at most `. Then the integrality gap of the relaxation
for the class G` is O(`3) · α with congestion β + 3.

We also revisit the well-linked decomposition framework of Chekuri et al. [7] and we
ask whether the Ω(logn) loss is necessary for very structured graph classes. For bounded
treewidth graphs, we give a well-linked decomposition framework that reduces an arbitrary
instance of MaxEDP to node-disjoint instances of MaxEDP that are well-linked. The loss
in the approximation for our decomposition is only O(r3), which improves the guarantee of
O(log r logn) from Chekuri et al. [9] when r is much smaller than n.

It is straightforward to obtain the improved well-linked decomposition from our algorithm
for MaxEDP. Nevertheless, we believe it is beneficial to have such a well-linked decomposition,
given that well-linked decompositions are one of the technical tools at the heart of the
recent algorithms for routing on disjoint paths, integral concurrent flows [3], and flow
and cut sparsifiers [13]. In particular, we hope that such a well-linked decomposition
will have applications to finding flow and cut sparsifiers with Steiner nodes for bounded
treewidth graphs. A sparsifier for a graph G with k source-sink pairs is a significantly
smaller graph H containing the terminals (and potentially other vertices, called Steiner
nodes) that approximately preserves multi-commodity flows or cuts between the terminals.
Such sparsifiers have been extensively studied and several results are known both in general
graphs and in bounded treewidth graphs (see Andoni et al. [1] and references therein).

A different question one could ask for problems in bounded treewidth graphs is whether
additional computational power beyond polynomial-time running time can help with MaxEDP
or MaxNDP. It is a standard exercise to design an nO(r)-time dynamic programming algorithm
(i.e., polynomial for every constant r) for MaxNDP in uncapacitated graphs of treewidth
r, while the aforementioned results on hardness of MaxEDP in capacitated trees [16] rule
out similar results for capacitated variants. Between the world of having r as part of the
input, and having r as a fixed constant, lies the world of parameterized complexity, that asks
for algorithms (called fixed-parameter algorithms) with running time f(r) · nc, where f is
any computable function, and c is a constant independent of the parameter. It is natural to
ask whether allowing such running time can lead to better approximation algorithms. As a
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Figure 1 Notations used for a node t with parent t′ in a tree decomposition (T , β). The shaded
part defines α(t).

first step towards resolving this question, we show a hardness for MaxNDP parameterized by
treedepth, a much more restrictive graph parameter than treewidth (cf. [20]).

I Theorem 6. MaxNDP parameterized by the treedepth of the input graph is W [1]-hard, even
with unit capacities.

Consequently, the existence of an exact fixed-parameter algorithm is highly unlikely. We
remark that our motivation for the choice of treedepth as parameter stems from the observation
that a number of algorithms using the Sherali-Adams hierarchy to approximate a somewhat
related problem of Nonuniform Sparsest Cut in bounded treewidth graphs [12, 17] in fact
implicitly uses a rounding scheme based on treedepth rather than treewidth.

Due to space constraints, we defer the proof of Thereom 6 to the full version of this paper.

2 Preliminaries

Tree and path decompositions. In this paper all tree decompositions are rooted; that is, a
tree decomposition of a graphG is a pair (T , β) where T is a rooted tree and β : V (T )→ 2V (G)

is a mapping such that (i) for every e ∈ E(G) there is a node t ∈ V (T ) with e ⊆ β(t), and
(ii) for every v ∈ V (G) the set {t | v ∈ β(t)} is non-empty and connected in T .

For a node t ∈ V (T ), we call the set β(t) the bag at node t, while for an edge st ∈ E(T ),
the set β(t) ∩ β(s) is called an adhesion. For a non-root node t ∈ V (T ), by parent(t) we
denote the parent of t, and by σ(t) := β(t) ∩ β(parent(t)) the adhesion on the edge to the
parent of t, called henceforth the parent adhesion; for the root node t0 ∈ V (T ) we put
σ(t0) = ∅. For two nodes s, t ∈ V (T ), we denote by s � t if s is a descendant of t, and put
γ(t) :=

⋃
s�t β(s), α(t) := γ(t) \ σ(t), and G(t) := G[γ(t)] \ E(G[σ(t)]).

A torso at node t is a graph obtained from G[β(t)] by turning every adhesion for an edge
incident to t into a clique.

We say that (A,B) is a separation in G if A ∪ B = V (G) and there does not exist an
edge of G with an endpoint in A \B and the other endpoint in B \A. We use the following
well-known property of a tree decomposition.

I Lemma 7 ([15, Lemma 12.3.1]). Let (T , β) be a tree decomposition of a graph G. Then for
each t ∈ V (T ) the pair (γ(t), V (G)\α(t)) is a separation of G, and γ(t)∩(V (G)\α(t)) = σ(t).

A path decomposition is a tree decomposition where T is a path, rooted at one of its
endpoints.

The width of a tree or path decomposition (T , β) is defined as maxt |β(t)| − 1. To ease
the notation, we will always consider decompositions of width less than r, for some integer r,
so that every bag is of size at most r.

SWAT 2016
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(MaxEDP-LP)

max
k∑
i=1

xi

s.t.
∑

p∈P(si,ti)

f(p) = xi ≤ 1, i ∈ [k]

∑
p: e∈p

f(p) ≤ cap(e), e ∈ E(G)

f(p) ≥ 0, p ∈ P .

s1

s2

sk

t1 t2 tk

Figure 2 The multi-commodity flow relaxation for MaxEDP. The instance on the right is the
Ω(
√
n) integrality gap example for MaxEDP with unit edge capacities [16]. Any integral routing

routes at most one pair whereas there is a multi-commodity flow that sends 1/2 units of flow for
each pair (si, ti) along the canonical path from si to ti in the grid.

Problem definitions. The input to MaxEDP is an undirected graph G with edge capacities
cap(e) ∈ Z+ and a collection M = {(s1, t1), . . . , (sk, tk)} of vertex pairs. A routing for a
subset M′ ⊆ M is a collection P of paths in G such that, for each pair (si, ti) ∈ M′, P
contains a path connecting si to ti. The routing is feasible if every edge e is in at most cap(e)
paths. In the Maximum Edge Disjoint Paths problem (MaxEDP), the goal is to maximize the
number of pairs that can be feasibly routed. The Maximum Node Disjoint Paths problem
(MaxNDP) is the node-capacitated variant of MaxEDP in which each node v has a capacity
cap(v) and in a feasible routing each node appears in at most cap(v) paths.

We refer to the vertices participating in the pairsM as terminals. It is convenient to
assume thatM form a matching on the terminals; this can be ensured by making several
copies of a terminal and attaching them as leaves.

Multicommodity flow relaxation. We use the following standard multicommodity flow
relaxation for MaxEDP (there is an analogous relaxation for MaxNDP). We use P(u, v) to
denote the set of all paths in G from u to v, for each pair (u, v) of nodes. Since the pairsM
form a matching, the sets P(si, ti) are pairwise disjoint. Let P =

⋃k
i=1 P(si, ti). The LP

has a variable f(p) for each path p ∈ P representing the amount of flow on p. For each pair
(si, ti) ∈M, the LP has a variable xi denoting the total amount of flow routed for the pair
(in the corresponding IP, xi denotes whether the pair is routed or not). The LP imposes the
constraint that there is a flow from si to ti of value xi. Additionally, the LP has capacity
constraints that ensure that the total amount of flow on paths using a given edge (resp. node
for MaxNDP) is at the capacity of the edge (resp. node).

It is well-known that the relaxation MaxEDP-LP can be solved in polynomial time, since
there is an efficient separation oracle for the dual (alternatively, one can write a compact
relaxation). Let (f,x) denote a feasible solution to MaxEDP-LP for an instance (G,M) of
MaxEDP. For each vertex v, let x(v) denote the marginal value of v in the multi-commodity
flow f ; thus, x(v) is the amount of flow routed for each terminal v.

3 Algorithm for MaxEDP in Bounded Treewidth Graphs

We give a polynomial time algorithm for MaxEDP that achieves an O(r3) approximation for
graphs with treewidth less than r. Our algorithm builds on the work of Chekuri et al. [10],
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and it improves their approximation guarantee from O(r · 3r) to O(r3). We use the following
routing argument as a building block.

I Proposition 8 ([11, Proposition 3.4]). Let (G,M) be an instance of MaxEDP and let (f,x)
be a feasible fractional solution for the instance. If there is a set S ⊆ V (G), a value α ≥ 1
and a flow g that for each v ∈ V (G) routes routes at least x(v)/α units of flow to some vertex
in S, then there is an integral routing of at least

( |f |
36α|S|

)
pairs.

We will later apply Proposition 8 by letting S be a subset of a bag in a tree decomposition
of G.

Our starting point is a tree decomposition (T , β) for G of width less than r and a fractional
solution (f,x) to the multicommodity flow relaxation for MaxEDP given in Section 2, that
is, the flow f routes x(v) units of flow for each vertex v ∈ V . We let |f | denote the total
amount of flow routed by f , i.e., |f | =

(1
2
)∑

v∈V x(v).
The following definitions play a key role in our algorithm.

I Definition 9 (Safe node). A node t ∈ V (T ) is safe with respect to (f,x) if there is a
second multicommodity flow g in G(t) that satisfies the edge capacities of G(t) and, for each
vertex z ∈ γ(t), g routes at least

( 1
4r
)
· x(z) units of flow from z to the adhesion σ(t). The

node t is unsafe if it is not safe.

I Definition 10 (Good node). A node t ∈ V (T ) is good with respect to (f,x) if every flow
path in the support of f that has an endpoint in γ(t) also intersects σ(t); in other words, no
flow path is completely contained in G[α(t)]. A node is bad if it is not good.

I Remark. If a node t is good then it is also safe, as shown by the following multicommodity
flow g in G(t). For each path p in the support of f that originates in γ(t), let p′ be the
smallest prefix of p that ends at a vertex of σ(t) (since p intersects σ(t), there is such a
prefix); we set g(p′) = f(p). The resulting flow g is a feasible multicommodity flow in G(t)
that routes x(z) units of flow from z to σ(t) for each vertex z ∈ γ(t). Therefore, t is safe.

Our approach is an inductive argument based on the maximum size of a parent adhesion
that is bad or unsafe. More precisely, we prove the following:

I Theorem 11. Let (G,M) be an instance of MaxEDP and let (f,x) be a fractional solution
for (G,M), where f is a feasible multicommodity flow in G forM with marginal values x.
Let (T , β) be a tree decomposition for G of width less than r. Let `1 be the maximum size of
a parent adhesion of an unsafe node, and let `2 be the maximum size of a parent adhesion of
a bad node. There is a polynomial time algorithm that constructs an integral routing of size
at least

( 1
144r3

)
·
(
1−

(1
r

))`1+`2 · |f |.

Proof. We start with a bit of preprocessing. If |f | = 0, then we return an empty routing.
Otherwise, the root node of T is always unsafe and bad, and the integers `1 and `2 are
well-defined. By considering every connected component of G independently (with inherited
tree decomposition from (T , β)), we assume that G is connected; note that in this step all
safe or good adhesions remain safe or good for every connected component. Furthermore,
we delete from (T , β) all nodes with empty bags; note that the connectivity of G ensures
that the nodes with non-empty bags induce a connected subtree of T . In this step, the root
of T may have moved to a different node (the topmost node with non-empty bag), but the
parent-children relation in the tree remains unchanged.

Once G is connected and no bag is empty, the only empty parent adhesion is the one for
the root node. We prove Theorem 11 by induction on `1 + `2 + |V (G)|.

SWAT 2016



15:8 On Routing Disjoint Paths in Bounded Treewidth Graphs

Base case. In the base case, we assume that `1 = `2 = 0. Since every parent adhesion of a
non-root node is non-empty, that implies that the only bad node is the root t0, that is, every
flow path in f passes through β(t0), which is of size at most r. By applying Proposition 8
with S = β(t0) and α = 1, we construct an integral routing of size at least 1

36r |f | ≥
1

144r3 |f |.
In the inductive step, we consider two cases, depending on if 0 ≤ `1 < `2 or 0 < `1 = `2.

Inductive step when 0 ≤ `1 < `2. Let {t1, t2, . . . , tp} be the topmost bad nodes of T
with parent adhesions of size `2, that is, it is a minimal set of such bad nodes such that
for every bad node t with parent adhesion of size `2, there exists an i ∈ {1, . . . , p} with
t � ti. For i = 1, . . . , p, let f inside

i be the subflow of f consisting of all paths that are
completely contained in G[α(ti)]. Furthermore, since `1 < `2, the node ti is safe; let gi be
the corresponding flow, i.e., a flow that routes 1

4rx(v) from every v ∈ γ(ti) to σ(ti) in G(ti).
By applying Proposition 8, there is an integral routing Pi in G(ti) that routes at least( 1

144r2

)
|f inside
i | pairs. Since the subgraphs {G(ti) : 1 ≤ i ≤ p} are edge-disjoint, we get an

integral routing P :=
⋃
i Pi of size at least

( 1
144r2

)∑p
i=1 |f inside

i |.
If
∑p
i=1 |f inside

i | > 1
r |f |, then we can return the routing P as the desired solution.

Otherwise, we drop the flows f inside
i , that is, consider a flow f ′ := f −

∑p
i=1 f

inside
i . Clearly,

|f ′| ≥ (1− 1
r )|f |. Furthermore, by definition of f inside

i , every node ti is good with respect to f ′.
Since deleting a flow path cannot turn a good node into a bad one nor a safe node into an
unsafe one, and all descendants of a good node are also good, we infer that every unsafe node
with respect to f ′ has parent adhesion of size at most `1, while every bad node with respect
to f ′ has parent adhesion of size less than `2. Consequently, by the induction hypothesis we
obtain an integral routing of size at least 1

144r3

(
1− 1

r

)`1+`2−1 |f ′| ≥ 1
144r3

(
1− 1

r

)`1+`2 |f |.

Inductive step when 0 < `1 = `2. In this case, we pick a node t◦ to be the lowest node
of T that is unsafe and has parent adhesion of size `1. By the definition of an unsafe node
and Menger’s theorem, there exists a set U ⊆ α(t◦) such that cap(δ(U)) < 1

4rx(U). With a
bit more care, we can extract a set U with one more property:

I Lemma 12. In polynomial time we can find a set U ⊆ α(t◦) for which (i) cap(δ(U)) <
1
4rx(U), and (ii) for every non-root node t, if σ(t) ⊆ U , then γ(t) ⊆ U .

Proof. Consider an auxiliary graph G′, obtained from G[γ(t◦)] by adding a super-source s∗,
linked for every v ∈ γ(t◦) by an arc (s∗, v) of capacity 1

4rx(v), and a super-sink t∗, linked for
every v ∈ σ(t◦) by an arc (v, t∗) of infinite capacity. Let U be such a set that δ(U ∪ {s∗})
is a minimum s∗-t∗ cut in this graph. Clearly, since U is unsafe, cap(δG′(U ∪ {s∗})) <
1
4rx(γ(t◦)) = cap(δG′(s∗)), so U 6= ∅. Also, U ⊆ α(t◦), as each node in σ(t◦) is connected
to t∗ with an infinite-capacity arc.

We claim that U satisfies the desired properties. The first property is immediate:

cap(δG(U)) = cap(δG′(U∪{s∗}))− 1
4rx(γ(t◦)\U) < 1

4r (x(γ(t◦))− x(γ(t◦) \ U)) = 1
4rx(U).

For the second property, pick a non root node t with σ(t) ⊆ U . Since σ(t) ⊆ U ⊆ α(t◦),
we have t � t◦, t 6= t◦, and γ(t) ⊆ α(t◦). Let U ′ := U ∪ γ(t). By Lemma 7, δG(U ′) ⊆ δG(U),
and hence δG′(U ′ ∪ {s∗}) ⊆ δG′(U ∪ {s∗}). However, since δG′(U ∪ {s∗}) is a minimum cut,
we have actually δG(U ′) = δG(U). Since G is connected, this implies that U = U ′, and thus
γ(t) ⊆ U . As the choice of t was arbitrary, U satisfies the second property. J

Using the cut U , we split the graph G and the flow f into two pieces as follows. Let
G1 = G[U ] and G2 = G− U . Let fi be the restriction of f to Gi, i.e., the flow consisting of



A. Ene, M. Mnich, M. Pilipczuk, and A. Risteski 15:9

only flow paths that are contained in Gi. Let xi be the marginals of fi and letMi be the
subset ofM consisting of all pairs (s, t) such that {s, t} ⊆ V (Gi); note that xi(s) = xi(t) for
each pair (s, t) ∈Mi and thus (fi,xi) is a fractional routing for the instance (Gi,Mi). Let
(T , β1) and (T , β2) be the restriction of (T , β) to the vertices of G1 and G2, respectively;
we define mappings σi, γi, and αi naturally. In what follows, we consider separately two
instances Ii := 〈(Gi,Mi), (fi,xi), (T , βi)〉 for i = 1, 2.

An important observation is the following:

I Lemma 13. Every node t ∈ V (T ) that is good in the original instance (i.e., as a node
of T , with respect to (f,x)) is also good in Ii with respect to (fi,xi).

Proof. Note that every flow path in fi is also present in f , and therefore intersects the parent
adhesion of f if t is a good node in the original instance. J

Consequently, every node t ∈ V (T ) with |σ(t)| > `2 is good in the instance Ii, and the
maximum size of a parent adhesion of a bad node in instance Ii is at most `2. Hence,
both I1 and I2 satisfy the assumptions of Theorem 11 with not larger values of `1 and `2.
Furthermore, note that |V (Gi)| < |V (G)| for i = 1, 2.

For I2, the above reasoning allows us to simply just apply inductive step, obtaining an
integral routing P2 of size at least

|P2| ≥
(

1
144r3

)(
1−

(
1
r

))`1+`2

· |f2| . (1)

For I1, we are going to obtain a larger routing via an inductive step with better bounds.

I Lemma 14. The size of the largest parent adhesion of an unsafe node in I1 is less than `1.

Proof. Assume the contrary, let t ∈ V (T ) be an unsafe adhesion with |σ1(t)| ≥ `1. If
|σ(t)| > `1, then t is good in the original instance, and by Lemma 13 it remains good in I1.
Consequently, |σ(t)| = |σ1(t)| = `1; in particular, σ(t) = σ1(t) ⊆ U .

By Lemma 12(ii) we have γ(t) ⊆ U . Consequently, t is safe in the original instance if and
only if it is safe in I1. Since t � t◦, t 6= t◦, but |σ(t)| = `2, by the choice of t◦ it holds that t
is safe in the original instance, a contradiction. J

Lemma 14 allows us to apply the inductive step to I1 and obtain an integral routing P1 of
size at least

|P1| ≥
(

1
144r3

)(
1−

(
1
r

))`1−1+`2

· |f1| . (2)

Let us now estimate the amount of flow lost by the separation into I1 and I2, i.e.,
g = f − f1 − f2. As every flow path in g passes through δ(U), we have |g| ≤ cap(δ(U)) <
1
4rx(U). Since |f1| + |g| ≥ 1

2x(U) (no flow path in f2 originates in U), we have that
|g| ≤ 1

4r · 2 · (|f1|+ |g|) . Hence,

|g| ≤ 1
2r ·

(
1− 1

2r

)−1
|f1| ≤

1
r
|f1| . (3)

By putting up together (1), (2), and (3), we obtain that

|P1|+ |P2| ≥
1

144r3

(
1− 1

r

)`1+`2
(
|f2|+

(
1− 1

r

)−1
|f1|

)

≥ 1
144r3

(
1− 1

r

)`1+`2

(|f2|+ |f1|+ |g|) = 1
144r3

(
1− 1

r

)`1+`2

|f | .
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This concludes the proof of Theorem 11. Since `1, `2 ≤ r, while (1− 1
r )2r = Ω(1), Theorem 11

immediately implies the promised O(r3)-approximation algorithm. J

I Remark. We conclude with observing that the improved approximation ratio of O(r3)
directly translates to the more general setting of k-sums of graph from some minor closed
family G, as discussed by Chekuri et al. [10]. That is, if we are able to α-approximate
MaxEDP with congestion β in graphs from G, we can have O(αr5)-approximation algorithm
with congestion (β + 3) in graphs admitting a tree decomposition of maximum adhesion size
at most r, and the torso of every bag being from the class G.

To see this, observe that the only place when our algorithm uses that the bags are of
bounded size (as opposed to adhesions) is the base case, where all flow paths pass through
the bag β(t0) of the root node t0. However, in this case we can proceed exactly as Chekuri et
al. [10]: using the flow paths, move the terminals to β(t0), replace connected components of
G− β(t0) with their (r2, 2)-sparsifiers, and apply the algorithm for the class G. In addition
to the O(r3) approximation factor of our algorithm, the application of the algorithm for G
incurs an approximation ratio of α and congestion of β, the use of sparsifiers adds a factor
of r2 to the approximation ratio and an additive constant +1 to the congestion, while the
terminal move adds an additional amount of 2 to the final congestion.

4 Algorithm for MaxNDP in Bounded Pathwidth Graphs

In this section we develop an O(r3)-approximation algorithm for MaxNDP in graphs of
pathwidth less than r. We follow the outline of the MaxEDP algorithm from the previous
section, with few essential changes.

Most importantly, we can no longer use Proposition 8, as it refers to edge disjoint paths,
and the proof of its main ingredient by Chekuri et al. [4] relies on a clustering technique that
stops to work for node disjoint paths. We fix this by providing in Sect. 4.1 a node-disjoint
variant of Proposition 8, using the more involved clustering approach of Chekuri et al. [7].

Then, in Sect. 4.2 we revisit step-by-step the arguments for MaxEDP, pointing out
remaining differences. We remark that the use of pathwidth instead of treewidth is only
essential in the inductive step for the case `1 < `2: if we follow the argument for MaxEDP for
bounded-treewidth graphs, the graphs G(ti) may not be node disjoint (but they are edge
disjoint), breaking the argument. Note that for bounded pathwidth graphs, there is only one
such graph considered, and the issue is nonexistent.

4.1 Routing to a small adhesion in a node-disjoint setting

I Proposition 15. Let (G,M) be an instance of MaxNDP and let (f,x) be a feasible fractional
solution for the instance. Suppose that there is also a second (feasible, i.e., respecting node
capacities) flow that routes at least x(v)/α units of flow for each v to some set S ⊆ V , where
α ≥ 1. Then there is an integral routing of Ω(|f |/(α|S|)) pairs.

Proof. Without loss of generality, we may assume that the terminals of M are pairwise
distinct and of degree and capacity one: we can always move a terminal from a vertex t to a
newly-created degree-1 capacity-1 neighbour of t.

Let g be the second flow mentioned in the statement. In what follows, we modify and
simplify the flows f and g in a number of steps. We denote by f1, f2, . . . and g1, g2, . . . flows
after subsequent modification steps; for the flow fi, by xi we denote its marginals.
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Symmetrizing the flow g. In the first step, we construct flows f1 and g1 with the following
property: for every terminal pair (s, t) ∈M, for every v ∈ S, g1 sends the same amount of
flow from s to v as from t to v. To obtain this goal, we first take the flow g/3, and then for
every (s, t) ∈ M redirect the flow originating at s to first go along the commodity for the
pair (s, t) in flow f/(3α) to the vertex t, and then go to S in exactly the same manner as
the flow originating at t does. It is easy to see that g1 consists of three feasible flows scaled
down by at least 1/3, thus it is feasible. Finally, we set f1 := f/3, so that g1 again sends an
amount of x1(v)/α flow from every vertex v to S. Note that |f1| = |f |/3.

Restricting to single vertex of S. To construct flows f2 and g2, pick a vertex u ∈ S that
receives the most flow in g1. Take g2 to be the flow g1, restricted only to flow paths ending
in u. Then, restrict f1 to obtain f2 as follows: for every terminal pair (s, t) ∈ M, reduce
the amount of flow from s to t to α times the total amount of flow sent from s to u by g2;
note that, by the previous step, it is also equal α times the total amount of flow sent from t

to u by g2. By this step, we maintain the invariant that g2 sends x2(v)/α flow from every
v ∈ V (G), and we have |f2| ≥ |f1|/|S| ≥ |f |/(3|S|).

Rounding to a half-integral flow. In the next step, we essentially repeat the integral
rounding procedure by Chekuri et al. [4, Section 3.2]. We use the following operation as a
basic step in the rounding.

I Lemma 16 ([4, Theorem 2.1]). Let G be a directed graph with edge capacities. Given a
flow h in G that goes from set X ⊆ V (G) to a single vertex u ∈ V (G), such that for every
v ∈ X the amount of flow originating in v is z(v), and a vertex v0 ∈ X such that z(v0) is
not an integer, one can in polynomial time compute a flow h′ in G, sending z′(v) amount of
flow from every v ∈ X to u, such that |h′| ≥ |h|, z′(v) = z(v) for every v ∈ X where z(v) is
an integer, and z′(v0) = dz(v0)e.

Since a standard reduction reduces flows in undirected node-capacitated graphs to directed
edge-capacitated ones3, Lemma 16 applies also to undirected graphs with node capacities.

Split g2 into two flows hs and ht: for every terminal pair (s, t) ∈ M, we put the flow
originating in s into hs, and the flow originating in t into ht. We perform a sequence of
modifications to the flows hs and ht, maintaining the invariant that the same amount of flow
originates in s in hs as in t in ht for every (s, t) ∈M. Along the process, both hs and ht are
feasible flows, but hs + ht may not be.

In a single step, we pick a terminal pair (s, t) ∈ M such that the amount of flow in hs
originating in s is not integral (and stop if no such pair exists). We apply Lemma 16
separately to s in hs and to t in ht, obtaining flows h′s and h′t. Finally, if for some terminal
pair (s′, t′), the amount of flow originating in s′ in h′s and in t′ in h′t differ, we restrict one
of the flows so that both route the same amount of flow (being the minimum of the flows
routed by h′s from s′ and by h′t from t′).

Since the rounding algorithm of Lemma 16 never modifies a source that already has an
integral flow, this procedure stops after at most |M| steps. Furthermore, if in one step the
flow from s has been increased from z to dze, the total loss of flow to other pairs is 2(dze− z).

3 Replace every edge with two infinite-capacity arcs in both directions, and then split every vertex into
two vertices, connected by an edge of capacity equal to the capacity of the vertex, with all in-edges
connected to the first copy, and all out-edges connected to the second copy.
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Therefore, if h◦s and h◦t are the final integral flows, we have |h◦s|+ |h◦t | ≥ (|hs|+ |ht|)/2 =
|g2|/2 = |f2|/α ≥ |f |/(3α|S|). We define g3 := (h◦s + h◦t )/2; note that g3 is a feasible flow.

Clustering a node-flow-linked set. Note that for every (s, t) ∈M, the flow g3 routes either
0 or 1/2 flow from both s and t to u. LetM′ be the set of pairs with flow value 1/2, and
let X ′ be the set of terminals inM′. Note that |M′| = |g3|/2 ≥ |f |/(6α|S|).

Using the flow g3, we now find a multicommodity flow that for every (a, b) ∈ X ′ ×X ′
routes 1

4|X′| amount of flow from a to b. First, we use a flow 1
2g3 to send, for every a ∈ X ′,

a tuple of |X ′| portions of 1
4|X′| flow each from a to u. Second, we use a reversed flow 1

2g3

to send, for every b ∈ X ′, a tuple of |X ′| portions of 1
4|X′| flow each from u to b. For every

(a, b) ∈ X ′ ×X ′, we combine one portion sent from a to u with one portion sent from u to b
to obtain the commodity from a to b. We obtain the desired multicommodity flow, and we
infer that X ′ is 1

4 -node-flow-linked. This allows us to apply the following clustering result:

I Lemma 17 ([7, Lemma 2.7]). If X is α-node-flow-linked in a graph G with unit node
capacities, then for any h ≥ 2 there exists a forest F in G of maximum degree O( 1

α log h)
such that every tree in F spans at least h nodes from X.

Since we can assume that no capacity in G exceeds |M|, we can replace every vertex v of
capacity cap(v) with its cap(v) copies. To such unweighted graph G′ we apply Lemma 17 for
X ′, α = 1/4 and h = 3, obtaining a forest F ′; recall that the terminals X ′ are of capacity 1,
thus they are kept unmodified in G′. By standard argument we split the forest F ′ into
node-disjoint trees T ′1, T ′2, . . . , T ′p, such that every tree T ′i contains at least three, and at most
d = O(1) terminals of X ′. By projecting the trees T ′i back onto G, we obtain a sequence of
trees T1, T2, . . . , Tp, such that every vertex v ∈ V (G) is present in at most cap(v) trees Ti.
Furthermore, since terminals are of capacity one, every terminal belongs to at most one tree,
and every tree Ti contains at least three and at most d terminals.

In a greedy fashion, we chose a setM′′ ⊆M′ of size at least |M′|/d2, such that for every
tree Ti, at most one terminal pair ofM′′ has at least one terminal in Ti. A pair (s, t) ∈M′′
is local if both s and t lie in the same tree Ti, and distant otherwise. If at least half of the
pairs ofM′′ are local, we can route them along trees Ti, obtaining a desired routing of size
at least |M′′|/2 ≥ |M′|/(2d2) = Ω(|f |/(α|S|)) and terminate the algorithm. Otherwise, we
obtain a flow g4 as follows: for every terminal t in a distant pair inM′′, we take the tree Ti
it lies on, route 3/5 amount of flow along Ti equidistributed to three arbitrarily chosen
terminals t1, t2, t3 on Ti fromM′ (i.e., every terminal tj receives 1/5 amount of flow), and
then route the flow along the flow 2

5g3 to u. Since every tree Ti routes 3/5 amount of flow,
and g3 is a feasible flow, the flow g4 is a feasible flow that routes 3/5 amount of flow from
every terminal ofM′′ to u. Furthermore, since at least half terminal pairs inM′′ is distant,
we have |g4| ≥ 1

2 · 2|M
′′| = Ω(|f |/(α|S|)).

Final rounding of the flow. Let X ′′ be the set of all terminals ofM′′. Since the flow g4
routes more than 1/2 amount of flow for every terminal in X ′′, we can conclude with simple
rounding the flow g4 in the same manner as it is done by Chekuri et al. [4, Section 3].
Construct an auxiliary graph G′ by adding a super-source s∗ of infinite capacity, adjacent
to all terminals ofM′′. Extend g4 in the natural manner, by routing every flow path first
from s∗ to an appropriate terminal. The extended flow g4 is now a single source single
sink flow from s∗ to u in a graph with integer capacities, thus there exists an integral
flow g5 of no smaller size: |g5| ≥ |g4| = 3

5 |X
′′| = 6

5 |M
′′|. Hence, for at least 1/5 of the

pairs (s, t) ∈M′′, the flow g5 routes a single unit of flow both from s and from t to u. By
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combining these paths into a single path from s to t, we obtain an integral routing of size at
least 1

5 |M
′′| = Ω(|f |/(α|S|)). This finishes the proof of Proposition 15. J

4.2 Details of the algorithm
Equipped with Proposition 15, we can now proceed to the description of the approximation
algorithm. Assume we are given an MaxNDP instance (G,M) and a path decomposition (T , β)
of G of width less than r; recall that T rooted in one of its endpoints. Let (f,x) be a fractional
solution to the multicommodity flow relaxation for MaxNDP, as in Sect. 2.

The definitions of safe and good node, as well as the induction scheme, are analogous.

I Definition 18 (Safe node). A node t ∈ V (T ) is safe with respect to (f,x) if there is a
second multicommodity flow g in G(t) that satisfies the node capacities of G(t) and, for each
vertex z ∈ γ(t), g routes at least

( 1
4r
)
· x(z) units of flow from z to the adhesion σ(t). The

node t is unsafe if it is not safe.

I Definition 19 (Good node). A node t ∈ V (T ) is good with respect to (f,x) if every flow
path in the support of f that has an endpoint in γ(t) also intersects σ(t); in other words, no
flow path is completely contained in G[α(t)]. A node is bad if it is not good.

I Theorem 20. Let (G,M) be an instance of MaxNDP and let (f,x) be a fractional solution
for the instance, where f is a feasible multicommodity flow in G for the pairs M with
marginals x. Let (T , β) be a path decomposition for G of width less than r. Let `1 be the
maximum size of a parent adhesion of an unsafe node, and let `2 be the maximum size of a
parent adhesion of a bad node. There is a constant c and a polynomial time algorithm that
constructs an integral routing of size at least

( 1
cr3

)
·
(
1−

(1
r

))`1+`2 · |f |.

Proof. As in the case of MaxEDP, we can assume that the considered graph G is connected
and that no bag is empty, and thus the only empty adhesion is the parent adhesion of the
root.

Base case. In the base case `1 = `2 = 0 nothing changes compared to MaxEDP: all flow
paths pass through the root bag, and Proposition 15 allows to route integrally Ω(|f |/r) paths.

Inductive step when 0 ≤ `1 < `2. Since we are considering now a path decomposition
(as opposed to tree decomposition in the previous section), there exists a single topmost
bad node t◦ with parent adhesion of size `2. Let f inside be the subflow of f consisting of all
flow paths completely contained in G[α(t◦)]. Since `1 < `2, the node t◦ is safe, and the flow
witnessing it together with Proposition 15 allows to integrally route Ω(|f inside|/r2) terminal
pairs. If |f inside| > |f |/r, then we are done. Otherwise, we drop the flow f inside from f ,
making t◦ and all its descendants good (thus decreasing `2 in the constructed instance),
while losing only 1/r fraction of the flow f , and pass the instance to an inductive step.

Inductive step when 0 < `1 = `2. Here again we take t◦ to be the lowest node of T
that is unsafe and has parent adhesion of size `1. By the definition of an unsafe node and
Menger’s theorem, there exists a set U ⊆ α(t◦) such that cap(N(U)) < 1

4rx(U). Using the
same argument as in the proof of Lemma 12, we can ensure property 12, that is that if U
contains an adhesion σ(t), it contains as well the entire set γ(t).

As in the case of MaxEDP, we split into instances I1 and I2 by taking G1 = G[U ] and
G2 = G−N [U ], with inherited tree decompositions from (T , β). Since all nodes with parent
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adhesions of size larger than `1 = `2 are good, there are also good in instances Ii (i.e.,
Lemma 13 holds here as well) and we can again apply the inductive step to every connected
component of the instance I2 with the same values of `1 and `2, obtaining a routing P2 of
size as in (1) (with 144 replaced by a constant c).

We analyse the instance I1, without breaking it first into connected components. That is,
we argue that in I1 the value of `1 dropped, that is, all nodes t satisfying |σ(t)| = |σ1(t)| = `1
are safe; note that they will remain safe once we consider every connected component
separatedly. However, this fact follows from property 12 of the set U (Lemma 12): if for
some node t we have |σ(t)| = |σ1(t)|, it follows that σ(t) ⊆ U hence γ(t) ⊆ U and the notion
of safeness for t is the same in I1 and in the original instance. However, σ(t) ⊆ U ⊆ α(t◦)
implies t � t◦ and t 6= t◦, hence t is safe in the original instance.

Consequently, an application of inductive step for every connected component of I1 uses
strictly smaller value of `1, and we obtain an integral routing P1 in I1 of size as in (2) (again
with 144 replaced by a constant c). The remainder of the analysis from the previous section
does not change, concluding the proof of Theorem 20. J
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