7 research outputs found

    Designing Gabor windows using convex optimization

    Full text link
    Redundant Gabor frames admit an infinite number of dual frames, yet only the canonical dual Gabor system, constructed from the minimal l2-norm dual window, is widely used. This window function however, might lack desirable properties, e.g. good time-frequency concentration, small support or smoothness. We employ convex optimization methods to design dual windows satisfying the Wexler-Raz equations and optimizing various constraints. Numerical experiments suggest that alternate dual windows with considerably improved features can be found

    Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing

    Get PDF
    For the solution of operator equations, Stevenson introduced a definition of frames, where a Hilbert space and its dual are {\em not} identified. This means that the Riesz isomorphism is not used as an identification, which, for example, does not make sense for the Sobolev spaces H01(Ω)H_0^1(\Omega) and H−1(Ω)H^{-1}(\Omega). In this article, we are going to revisit the concept of Stevenson frames and introduce it for Banach spaces. This is equivalent to ℓ2\ell^2-Banach frames. It is known that, if such a system exists, by defining a new inner product and using the Riesz isomorphism, the Banach space is isomorphic to a Hilbert space. In this article, we deal with the contrasting setting, where H\mathcal H and Hâ€Č\mathcal H' are not identified, and equivalent norms are distinguished, and show that in this setting the investigation of ℓ2\ell^2-Banach frames make sense.Comment: 23 pages; accepted for publication in 'Numerical Functional Analysis and Optimization

    Beyond Moore-Penrose Part II: The Sparse Pseudoinverse

    Get PDF
    This is the second part of a two-paper series on generalized inverses that minimize matrix norms. In Part II we focus on generalized inverses that are minimizers of entrywise p norms whose main representative is the sparse pseudoinverse for p=1p = 1. We are motivated by the idea to replace the Moore-Penrose pseudoinverse by a sparser generalized inverse which is in some sense well-behaved. Sparsity implies that it is faster to apply the resulting matrix; well-behavedness would imply that we do not lose much in stability with respect to the least-squares performance of the MPP. We first address questions of uniqueness and non-zero count of (putative) sparse pseu-doinverses. We show that a sparse pseudoinverse is generically unique, and that it indeed reaches optimal sparsity for almost all matrices. We then turn to proving our main stability result: finite-size concentration bounds for the Frobenius norm of p-minimal inverses for 11 \lep p \le2 2. Our proof is based on tools from convex analysis and random matrix theory, in particular the recently developed convex Gaussian min-max theorem. Along the way we prove several results about sparse representations and convex programming that were known folklore, but of which we could find no proof

    Concentration of the Frobenius norm of generalized matrix inverses

    Get PDF
    Revised/condensed/renamed version of preprint "Beyond Moore-Penrose Part II: The Sparse Pseudoinverse"International audienceIn many applications it is useful to replace the Moore-Penrose pseudoinverse (MPP) by a different generalized inverse with more favorable properties. We may want, for example, to have many zero entries, but without giving up too much of the stability of the MPP. One way to quantify stability is by how much the Frobenius norm of a generalized inverse exceeds that of the MPP. In this paper we derive finite-size concentration bounds for the Frobenius norm of ℓp\ell^p-minimal general inverses of iid Gaussian matrices, with 1≀p≀21 \leq p \leq 2. For p=1p = 1 we prove exponential concentration of the Frobenius norm of the sparse pseudoinverse; for p=2p = 2, we get a similar concentration bound for the MPP. Our proof is based on the convex Gaussian min-max theorem, but unlike previous applications which give asymptotic results, we derive finite-size bounds

    Unsupervised Machine Learning Algorithms to Characterize Single-Cell Heterogeneity and Perturbation Response

    Get PDF
    Recent advances in microfluidic technologies facilitate the measurement of gene expression, DNA accessibility, protein content, or genomic mutations at unprecedented scale. The challenges imposed by the scale of these datasets are further exacerbated by non-linearity in molecular effects, complex interdependencies between features, and a lack of understanding of both data generating processes and sources of technical and biological noise. As a result, analysis of modern single-cell data requires the development of specialized computational tools. One solution to these problems is the use of manifold learning, a sub-field of unsupervised machine learning that seeks to model data geometry using a simplifying assumption that the underlying system is continuous and locally Euclidean. In this dissertation, I show how manifold learning is naturally suited for single-cell analysis and introduce three related algorithms for characterization of single-cell heterogeneity and perturbation response. I first describe Vertex Frequency Clustering, an algorithm that identifies groups of cells with similar responses to an experiment perturbation by analyzing the spectral representation of condition labels expressed as signals over a cell similarity graph. Next, I introduce MELD, an algorithm that expands on these ideas to estimate the density of each experimental sample over the graph to quantify the effect of an experimental perturbation at single cell resolution. Finally, I describe a neural network for archetypal analysis that represents the data as continuously distributed between a set of extrema. Each of these algorithms are demonstrated on a combination of real and synthetic datasets and are benchmarked against state-of-the-art algorithms

    Listening to Distances and Hearing Shapes:Inverse Problems in Room Acoustics and Beyond

    Get PDF
    A central theme of this thesis is using echoes to achieve useful, interesting, and sometimes surprising results. One should have no doubts about the echoes' constructive potential; it is, after all, demonstrated masterfully by Nature. Just think about the bat's intriguing ability to navigate in unknown spaces and hunt for insects by listening to echoes of its calls, or about similar (albeit less well-known) abilities of toothed whales, some birds, shrews, and ultimately people. We show that, perhaps contrary to conventional wisdom, multipath propagation resulting from echoes is our friend. When we think about it the right way, it reveals essential geometric information about the sources--channel--receivers system. The key idea is to think of echoes as being more than just delayed and attenuated peaks in 1D impulse responses; they are actually additional sources with their corresponding 3D locations. This transformation allows us to forget about the abstract \emph{room}, and to replace it by more familiar \emph{point sets}. We can then engage the powerful machinery of Euclidean distance geometry. A problem that always arises is that we do not know \emph{a priori} the matching between the peaks and the points in space, and solving the inverse problem is achieved by \emph{echo sorting}---a tool we developed for learning correct labelings of echoes. This has applications beyond acoustics, whenever one deals with waves and reflections, or more generally, time-of-flight measurements. Equipped with this perspective, we first address the ``Can one hear the shape of a room?'' question, and we answer it with a qualified ``yes''. Even a single impulse response uniquely describes a convex polyhedral room, whereas a more practical algorithm to reconstruct the room's geometry uses only first-order echoes and a few microphones. Next, we show how different problems of localization benefit from echoes. The first one is multiple indoor sound source localization. Assuming the room is known, we show that discretizing the Helmholtz equation yields a system of sparse reconstruction problems linked by the common sparsity pattern. By exploiting the full bandwidth of the sources, we show that it is possible to localize multiple unknown sound sources using only a single microphone. We then look at indoor localization with known pulses from the geometric echo perspective introduced previously. Echo sorting enables localization in non-convex rooms without a line-of-sight path, and localization with a single omni-directional sensor, which is impossible without echoes. A closely related problem is microphone position calibration; we show that echoes can help even without assuming that the room is known. Using echoes, we can localize arbitrary numbers of microphones at unknown locations in an unknown room using only one source at an unknown location---for example a finger snap---and get the room's geometry as a byproduct. Our study of source localization outgrew the initial form factor when we looked at source localization with spherical microphone arrays. Spherical signals appear well beyond spherical microphone arrays; for example, any signal defined on Earth's surface lives on a sphere. This resulted in the first slight departure from the main theme: We develop the theory and algorithms for sampling sparse signals on the sphere using finite rate-of-innovation principles and apply it to various signal processing problems on the sphere
    corecore