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Abstract

A central theme of this thesis is using echoes to achieve useful, interesting, and sometimes
surprising results. One should have no doubts about the echoes’ constructive potential; it is,
after all, demonstrated masterfully by Nature. Just think about the bat’s intriguing ability to
navigate in unknown spaces and hunt for insects by listening to echoes of its calls, or about
similar (albeit less well-known) abilities of toothed whales, some birds, shrews, and ultimately
people.

We show that, perhaps contrary to conventional wisdom, multipath propagation resulting
from echoes is our friend. When we think about it the right way, it reveals essential geometric
information about the sources–channel–receivers system. The key idea is to think of echoes as
being more than just delayed and attenuated peaks in 1D impulse responses; they are actually
additional sources with their corresponding 3D locations. This transformation allows us to forget
about the abstract room, and to replace it by more familiar point sets. We can then engage the
powerful machinery of Euclidean distance geometry. A problem that always arises is that we
do not know a priori the matching between the peaks and the points in space, and solving the
inverse problem is achieved by echo sorting—a tool we developed for learning correct labelings of
echoes. This has applications beyond acoustics, whenever one deals with waves and reflections,
or more generally, time-of-flight measurements.

Equipped with this perspective, we first address the “Can one hear the shape of a room?”
question, and we answer it with a qualified “yes”. Even a single impulse response uniquely
describes a convex polyhedral room, whereas a more practical algorithm to reconstruct the
room’s geometry uses only first-order echoes and a few microphones.

Next, we show how different problems of localization benefit from echoes. The first one is
multiple indoor sound source localization. Assuming the room is known, we show that discretizing
the Helmholtz equation yields a system of sparse reconstruction problems linked by the common
sparsity pattern. By exploiting the full bandwidth of the sources, we show that it is possible to
localize multiple unknown sound sources using only a single microphone. We then look at indoor
localization with known pulses from the geometric echo perspective introduced previously. Echo
sorting enables localization in non-convex rooms without a line-of-sight path, and localization
with a single omni-directional sensor, which is impossible without echoes.

A closely related problem is microphone position calibration; we show that echoes can help
even without assuming that the room is known. Using echoes, we can localize arbitrary numbers
of microphones at unknown locations in an unknown room using only one source at an unknown
location—for example a finger snap—and get the room’s geometry as a byproduct.

Our study of source localization outgrew the initial form factor when we looked at source
localization with spherical microphone arrays. Spherical signals appear well beyond spherical
microphone arrays; for example, any signal defined on Earth’s surface lives on a sphere. This
resulted in the first slight departure from the main theme: We develop the theory and algorithms
for sampling sparse signals on the sphere using finite rate-of-innovation principles and apply it
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vi Abstract

to various signal processing problems on the sphere.
One way our brain uses echoes to improve speech communication is by integrating them

with the direct path to increase the effective useful signal power. We take inspiration from this
human ability, and propose acoustic rake receivers (ARRs) for speech—microphone beamformers
that listen to echoes. We show that by beamforming towards echoes, ARRs improve not only
the signal-to-interference-and-noise ratio (SINR), but also the perceptual evaluation of speech
quality (PESQ).

The final chapter is motivated by yet another localization problem, this time a tomographic
inversion that must be performed extremely fast on computation- and storage-constrained hard-
ware. We initially proposed the sparse pseudoinverse as a solution, and this led us to the
second slight departure from the main theme: an investigation of the properties of various norm-
minimizing generalized inverses. We categorize matrix norms according to whether or not their
minimization yields the MPP, and show that norm-minimizing generalized inverses have inter-
esting properties. For example, the worst-case and average-case `p-norm blowup is minimized
by generalized inverses minimizing certain induced and mixed matrix norms; we call this a poor
man’s `p minimization.

Keywords: Echoes, Euclidean distance geometry, Euclidean distances matrices, multipath, room
impulse response, inverse problems, acoustics, room geometry reconstruction, sound source local-
ization, indoor localization, sparsity, sphere, finite rate of innovation, sampling, shot noise, acous-
tic rake receiver, perceptual evaluation of speech quality (PESQ), beamforming, Moore-Penrose
pseudoinverse, alternative generalized inverse, alternative dual frame, sparse pseudoinverse



Résumé

Un thème central de cette thèse est l’utilisation d’échos pour obtenir des résultats utiles,
intéressants, et parfois surprenants. Le potentiel constructif des échos ne devrait surprendre
personne; la Nature, aprè tout, les utilise avec mâıtrise. Il suffit de penser aux chauves-souris,
dont l’intrigante capacité à se déplacer dans des environnements inconnus et chasser des insectes
repose uniquement sur l’écoute de l’écho de ses cris, ou aux exemples similaires (même si moins
bien connus) des cétacés, de certains oiseaux, musaraignes, et, finalement, d’êtres humains.

Nous montrons que la présence de multiples échos est, peut-être contrairement aux idées
reçues, notre ami. En y pensant de la bonne manière, il révèle des informations géométriques es-
sentielles au sujet des systèmes sources-canaux-récepteurs. L’idée clé est de considérer les échos
comme étant plus que des pics retardés et atténués dans des réponses impulsionnelles unidi-
mensionnelles; ils sont en fait des sources additionnelles, avec leurs positions tridimensionnelles
correspondantes. Cette transformation nous permet d’oublier la pièce abstraite, et de la replacer
par un ensemble de points plus familier. Nous pouvons ensuite mettre en route la puissante
machinerie de la géométrie des distances Euclidiennes. Un problème qui survient toujours est
que l’on ne connâıt pas à priori la correspondance entre les pics et les points dans l’espace. La
solution de ce problème inverse est obtenue grâce au tri des échos—un outil que nous avons
développé pour apprendre à identifier les échos correctement. Ceci a des applications au-delà
de l’acoustique, dès que l’on a affaire à des ondes et des reflections, ou, plus généralement, des
mesures du temps de vol.

Equipés de cette perspective, nous abordons d’abord la question “Peut-on entendre la forme
d’une pièce?”, et y répondons par un “oui” qualifié. Même une seule réponse impulsionnelle
décrit une pièce polyédrique convexe de manière unique, alors qu’un algorithme plus pratique
pour reconstruire la géométrie de la pièce n’utilise que les échos de premier ordre et quelques
microphones.

Ensuite, nous montrons comment différents problèmes de localisation bénéficient des échos.
Le premier est la localisation de multiples sources sonores intérieures. Supposant que la pièce
est connue, nous montrons que la discrétisation des équations de Helmholtz donne un système
de problèmes de reconstruction parcimonieux, liés par une structure parcimonieuse commune.
En exploitant toute la largeur de bande des sources, nous montrons qu’il est possible de localiser
plusieurs sources sonores inconnues en n’utilisant qu’un seul microphone. Nous nous intéressons
ensuite à la localisation intérieure à partir d’impulsions connues, vu sous la perspective des échos
géométriques introduite précédemment. Le tri des échos permet la localisation dans une pièce
non-convexe et sans chemin en ligne de vue, et la localisation avec un seul senseur omnidirec-
tionnel, ce qui est impossible sans échos.

Un problème intimement lié est la calibration du positionnement de microphones; nous mon-
trons que les échos peuvent aider, même sans supposer que la forme de la pièce est connue.
Grâce aux échos, nous pouvons localiser un nombre arbitraire de microphones, à des positions
inconnues, en utilisant une seule source elle-même à une position inconnue—par exemple un
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viii Résumé

claquement de doigts—et obtenir la géométrie de la pièce comme résultat annexe. Notre étude
de la localisation des sources a dépassé son cadre initial lorsque nous nous sommes intéressés à
la localisation d’une source avec un ensemble sphérique de microphones. Les signaux sphériques
apparaissent bien au-delà des ensembles sphériques de microphones; par exemple, tout signal
défini sur la surface de la Terre réside sur une sphère. En marge du thème principale de la thèse,
nous avons développé la théorie et les algorithmes pour échantillonner des signaux parcimonieux
sur la sphère, en utilisant les principes du taux d’innovation fini, et les avons appliqués à divers
problèmes de traitement du signal sur la sphère.

Une manière dont notre cerveau utilise les échos pour améliorer les communications orales est
en les intégrant avec le chemin direct pour augmenter la puissance du signal effectif. Nous nous
inspirons de cette capacité humaine, et proposons les récepteurs acoustiques en râteau (RARs)
pour la parole—des microphones formant des faisceaux qui écoutent les échos. Nous montrons
qu’en formant des faisceaux vers les échos, les ARRs améliorent non seulement le rapport signal
sur bruit plus interférence, mais aussi la qualité vocale perçue.

Le chapitre final a été motivé par un autre problème de localisation—cette fois une inversion
tomographique qui doit être effectuée extrêmement rapidement sur du matériel à la puissance
et au stockage limités. Nous avons proposé comme solution la pseudo-inverse parcimonieuse
et ceci nous a mené à notre second léger écart du thème principal: une étude des propriétés de
différentes inverses généralisées minimisant une norme particulière. Nous catégorisons les normes
matricielles selon si leur minimisation retourne la pseudo-inverse de Moore-Penrose ou non, et
montrons que les inverses généralisées minimisant une norme ont des propriétés intéressantes.
Par exemple, dans le pire cas et en moyenne, l’augmentation de la norme `p est minimisée par les
inverses généralisées minimisant certaines normes matricielles induites et mixées; nous appelons
cette méthode de la minimisation la minimisation `p du pauvre.

Mots-clès: Echos, géométrie des distances Euclidiennes, matrices des distances Euclidiennes,
trajets multiples, réponse impulsionnelle d’une chambre, problèmes inverses, acoustique, recon-
struction de la forme d’une pièce, localisation des sources sonores, localisation à l’intérieure, parci-
monie, sphère, finite rate of innovation, échantillonnage, shot noise, récepteurs acoustiques en
râteau, “perceptual evaluation of speech quality (PESQ)”, formation de faisceau, pseudo-inverse
de Moore-Penrose, inverses généralisées alternatives, “alternative dual frame”, pseudo-inverse
parcimonieuse
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Résumé vii

1 Introduction 1
1.1 Inverse Problems in Room Acoustics and Beyond . . . . . . . . . . . . . . . . . . . 2

1.1.1 Inverse Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Room Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Outline and Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 On Echoes and Distances 11
2.1 Undulating Particles: The Wave Mechanics of Sound and Radio . . . . . . . . . . . 11

2.1.1 Mass on a Spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Vibrating String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Wave Equation of Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Plane-wave Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Origin of Echoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Boundary Conditions in Wave Equations . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Reflections of Ropes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Reflections of Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Room Acoustics and Echo Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Image Source Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Need for Geometrical Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Image Source Model in Rooms . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Distances and Euclidean Distance Matrices: From Points to EDMs and Back . . . . 30

2.4.1 Essential Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Reconstructing the Point Set From Distances . . . . . . . . . . . . . . . . . 33

2.4.3 Orthogonal Procrustes Problem . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.4 Counting the Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 EDMs as a Practical Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Exploiting the Rank Property . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Multidimensional Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ix



x Contents

2.5.3 Semidefinite Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.4 Performance Comparison of Algorithms . . . . . . . . . . . . . . . . . . . . 43

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Can One Hear the Shape of a Room? 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Can One Hear the Shape of a Drum? . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Historical Notes and Kac’s Paper . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Counterexamples: Isospectral Drums . . . . . . . . . . . . . . . . . . . . . 52

3.3 Unlabeled Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Hearing the Shape of a Room with One Microphone . . . . . . . . . . . . . . . . . 56

3.5.1 Characterization of RIRs from Image Source Patterns . . . . . . . . . . . . . 57

3.6 Room Geometry Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 The Shape of a Polygonal Room Using Matrix Analysis . . . . . . . . . . . . 58

3.6.2 Uniqueness of RIR: An Assignment Problem . . . . . . . . . . . . . . . . . . 59

3.6.3 Indoor Localization as a Byproduct . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.4 A Generational Issue: An Unexpected EDM . . . . . . . . . . . . . . . . . . 61

3.7 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Hearing the Room With More Than One Microphone . . . . . . . . . . . . . . . . . 64

3.8.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8.2 Labeling the Echoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8.3 EDM-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8.4 Subspace-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8.5 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8.6 Practical Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8.7 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.A Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.B Room Reconstruction Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Localization and Position Calibration 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Sound Source Localization with Finite Elements and Wideband Diversity . . . . . . . 81

4.2.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Discretizing the Wave Equation with the Finite Element Method . . . . . . . 82

4.2.3 Sparsity and Wideband Diversity . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.4 Using Only One Microphone . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Distance-Based Approaches (or a Tale of Two Applications of Echo Sorting) . . . . . 89

4.3.1 Multilateration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.2 Single-Channel Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.3 Echo Labeling and Almost Sure Uniqueness . . . . . . . . . . . . . . . . . . 92

4.3.4 Experimental Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.5 The Non-Convex Case: Inverse Method of Images . . . . . . . . . . . . . . . 94

4.3.6 Reflecting Localized Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 95



Contents xi

4.3.7 Estimating the Source Position . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.8 Optimizing the Position Estimate . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.9 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.10 Numerical Simulations for Non-Convex Localization . . . . . . . . . . . . . . 97

4.4 Position Calibration of Microphone Arrays . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Microphone Calibration and Multidimensional Unfolding . . . . . . . . . . . . . . . . 100

4.5.1 Unfolding as Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.2 Integrating Prior Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 How to Localize Ten Microphones in a Finger Snap (With a Little Help From Echoes) 104

4.6.1 Anechoic Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6.2 Zero-Knowledge Indoor Calibration . . . . . . . . . . . . . . . . . . . . . . . 105

4.6.3 Minimal Infrastructure for Calibration . . . . . . . . . . . . . . . . . . . . . 106

4.6.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.5 Numerical Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.A Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Sampling Sparse Signals on the Sphere 111
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1.2 Outline and Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Harmonic Analysis on the Sphere and Problem Formulation . . . . . . . . . . . . . . 113

5.2.1 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.2 Rotations and Convolutions on the Sphere . . . . . . . . . . . . . . . . . . . 114

5.2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Sampling Spherical FRI Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 From Samples to the Fourier Transform . . . . . . . . . . . . . . . . . . . . 117

5.3.2 The Data Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.3 Reconstruction by Generalized Annihilating Filtering . . . . . . . . . . . . . . 119

5.3.4 Sampling Efficiency and Relation to Prior Work . . . . . . . . . . . . . . . . 122

5.3.5 Denoising Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.6 Cramér-Rao Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4.1 Sampling Diffusion Processes on the Sphere . . . . . . . . . . . . . . . . . . 125

5.4.2 Shot Noise Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.3 Sound Source Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.A Annihilating Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.B Computation of the Cramér-Rao Lower Bound . . . . . . . . . . . . . . . . . . . . . 134

5.C Rank of the annihilating matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Acoustic Rake Receiver 139
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1.1 Wireless vs Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.1.3 Main Contributions and Limitations . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



xii Contents

6.3 Beamforming Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3.1 Delay-and-Sum Beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3.2 Maximum Signal-to-Interference-and-Noise Ratio Beamformer . . . . . . . . 146

6.4 Acoustic Rake Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.1 Delay-and-Sum Raking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.2 One-Forcing Raking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4.3 Max-SINR Raking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4.4 Max-UDR Raking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4.5 SINR Gain from Raking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 Comments on Finding and Tracking the Echoes . . . . . . . . . . . . . . . . . . . . 151

6.5.1 Known Room Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5.2 Acoustic Image Source Localization . . . . . . . . . . . . . . . . . . . . . . 152

6.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.7 Time-Domain Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.7.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.7.2 Time-Domain Rake Beamformers . . . . . . . . . . . . . . . . . . . . . . . . 159

6.7.3 Numerical Results for TD Beamformers . . . . . . . . . . . . . . . . . . . . 161

6.8 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.A Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Norm-Minimizing Generalized Inverses 165
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.1.1 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.1.2 Contributions and the Chapter Outline . . . . . . . . . . . . . . . . . . . . . 168

7.2 Definitions and Known Results (Preliminaries) . . . . . . . . . . . . . . . . . . . . . 169

7.2.1 Generalized Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2.2 Correspondence Between Generalized Inverses and Dual Frames . . . . . . . 169

7.2.3 Characterization with the Singular Value Decomposition (SVD) . . . . . . . 170

7.2.4 The Moore-Penrose Pseudoinverse (MPP) . . . . . . . . . . . . . . . . . . . 170

7.2.5 Generalized Inverses Minimizing Matrix Norms . . . . . . . . . . . . . . . . . 172

7.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.3.1 Summary and Visualization of Matrix Norms . . . . . . . . . . . . . . . . . . 175

7.4 Classes of Norms Yielding the Moore-Penrose Pseudoinverse . . . . . . . . . . . . . 175

7.4.1 Unitarily invariant norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.4.2 Left unitarily invariant norms . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.4.3 Left unitarily invariant norms on the product operator . . . . . . . . . . . . . 179

7.4.4 Classical norms leading to the MPP . . . . . . . . . . . . . . . . . . . . . . 179

7.5 Norms that Almost Never Yield the MPP . . . . . . . . . . . . . . . . . . . . . . . 180

7.5.1 Sparse Pseudoinverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.5.2 Unbiasedness of Generalized Inverses . . . . . . . . . . . . . . . . . . . . . . 184

7.5.3 Poor man’s `p minimization revisited . . . . . . . . . . . . . . . . . . . . . . 189

7.6 Matrices Having the Same Inverse for Many Norms . . . . . . . . . . . . . . . . . . 190

7.6.1 Matrices which MPP has Entries on the Unit Circle . . . . . . . . . . . . . . 190

7.6.2 Matrices with a highly sparse generalized inverse . . . . . . . . . . . . . . . 193

7.7 Computation of Norm-Minimizing Generalized Inverses . . . . . . . . . . . . . . . . 193



Contents xiii

7.7.1 Norms that Reduce to the Vector Case . . . . . . . . . . . . . . . . . . . . . 194
7.7.2 ADMM for Norms that do not (Easily) Reduce to the Vector Case . . . . . . 194
7.7.3 Alternating Direction Method of Multipliers . . . . . . . . . . . . . . . . . . 194
7.7.4 Generic ADMM for matrix norm minimization . . . . . . . . . . . . . . . . . 196

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.A Proof of Corollary 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Conclusion 201

Bibliography 205

Curriculum Vitae 218





Chapter 1

Introduction

There’s nothing you can do that can’t be done.

The Beatles

How does one hear a shape? Ask a bat: they learn about their surroundings by listening to

echoes. People are fascinated by the bat’s ability—just think about the pop culture icons like

Daredevil and Batman. In the 2008 Hollywood blockbuster Batman: The Dark Knight, Batman

and his accomplices use cellphones of unsuspecting citizens to see the spaces on the other side

of the line.

This is far fetched, but not that far. One of the central questions in this thesis is “Can one

hear the shape of a room?”, and we show that what happens in The Dark Knight may have

crossed the line between fantasy and reality. The trick is to listen to distances.

So how does one listen to a distance? Here is one way: when I was a kid, my dad taught

me to figure out how far the lightning had struck by counting the seconds between the lightning

and the thunder. Another way is to listen for the echoes of your footsteps from a nearby wall; if

you ever did that, you must have noticed how the gap between the footstep and its echo closes

as you approach the wall.

In both these examples, we convert time to distance. We can do it because we know the

speed of sound. It should not seem impossible that if we replaced ears and back-of-the-envelope

computations with microphones connected to a computer and sophisticated algorithms, we could

answer much more complicated questions than how far the lightning had struck. We could for

example reconstruct shapes of objects or rooms from echoes, very much like in the The Dark

Knight, or we could navigate a flying robot by sound only.

We listen to distances by listening to echoes, and it allows us to reason about the geometry

of our environment (just like the bats do!). The good news is that there are plenty of echoes to

go around. We spend a lot of time in rooms, and rooms serve many purposes; but one “purpose”

often goes unnoticed: a well designed room makes having a conversation easier. This is because

1
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in rooms we have echoes, and our brain can integrate the early echoes with the direct sound,

thus increasing the effective signal-to-noise ratio (in fact, we will show that computers can do

very much the same). This thesis is about taking inspiration from people, bats and the Dark

Knight, to harness the potential of echoes in solving interesting problems.

1.1 Inverse Problems in Room Acoustics and Beyond

The kind of problems we address is indicated in the subtitle of the thesis. There are three parts

in the phrase “Inverse problems in room acoustics and beyond” that deserve an explanation:

inverse problems, room acoustics, and beyond.

1.1.1 Inverse Problems

A different name for inverse problems could be simply problems. The qualifier inverse is added

to point out that there is a related problem, perhaps better known and more thoroughly studied,

to which the one that we study is somehow opposite. This other problem is then called the

forward problem. Sometimes, it is arbitrary which is called forward and which is called inverse.

Often what we measure is from the forward problem, and we try to invert it to learn something

about the mechanism that produced the measurements.

A good rule of thumb for designating problems as forward or inverse is that the forward role

is typically played by a physical process (more generally, by Nature). The Big Bang left behind a

trail of ripples in the background radiation of the Universe. To go from the big bang to the ripples

was Nature’s job. To solve the forward problem would then mean to devise the computational

machinery that can simulate the measurements of any parameter of interest, given the conditions

of the big bang (this one is conceptually simple and, for the time being, practically impossible).

The inverse problem could be learning about the parameters of the Universe right after the big

bang from the measurement of these residual cosmic ripples [2].

To get a better idea of what we mean by inverse problems, consider the following list of

forward-inverse problem pairs:

(i) Given Earth’s gravity acceleration g, and the initial speed of a projectile, compute its

trajectory; given the measurements of the projectile’s position at k distinct (but known)

times, compute g (to make it harder, change known to unknown);

(ii) Given the room geometry and the properties of walls, as well as the source or sound,

compute the sound field for all times at all points in the region; given the measurements

of the sound pressure at three points, compute the location of the sound source (with or

without knowing the boundary conditions);

(iii) Given the geometry of the ultrasonic transducer array placed around a female breast, and

the density distribution of the breast tissue, compute the waveforms transducers record

when each of them fires a pulse; given the array geometry and the waveforms, compute the

density distribution in the breast;

(iv) Given the shape of a drumhead (a membrane), compute its resonant frequencies; given the

set of resonant frequencies of a drum, find its shape;
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(v) Given details about a guitar-amplifier setup and geometry, compute the feedback waveform;

given the studio recording of “I feel fine” by The Beatles, reconstruct the distance of

Lennon’s Gibson J-160E from the amplifier’s speaker over time.1

We typically think of an inverse problem as being more difficult than the forward one, but this

is not necessarily the case. For example, the forward problem could be: Given the coefficients

of a univariate polynomial, find its roots. Then the inverse problem—given the roots, find the

polynomial—is much simpler.

Although it may seem banal, this example illustrates the concept of well-posedness—one

of the major concepts related to inverse problems. Without further qualification, the problem

of finding the polynomial given its roots is not well-posed, because it does not have a unique

solution. It is easy to find a solution; but if we have a particular polynomial in mind that

generates the given set of roots, it is hopeless to expect that we will find it, as any rescaling of

the coefficients leaves the roots intact.

The concept of well-posedness was formalized by Hadamard [89] who called ill-posed any

problem that fails to meet any of the following requirements:

Existence of a solution,

Uniqueness,

Stability with respect to data,

Hadamard had strong reservations about ill-posed problems (he thought that they bear no

physical significance). But the field has progressed tremendously, and nowadays most (if not all)

interesting inverse problems are, in fact, ill-posed.

1.1.2 Room Acoustics

Room acoustics is a sub-field of acoustics that deals with how the sound spreads in rooms. In

itself, it addresses two very different questions. The first one is about the physics: What are

the wave mechanics of sound generation and propagation in enclosures? This includes studying

specular and diffuse reflections, edge diffraction, scattering by various structures, and influence

of a range of other parameters.

The second one is perceptual: How pleasing do we find the acoustics of a particular space?

It could also be about how conducive acoustics of a space are to specific purposes: listening to

a concert of classical music, listening to a jazz concert, listening to a lecture, or perhaps just

chatting in a café. It uses what we know about sound propagation from the first question and

combines this knowledge with psychoacoustics and ergonomy.

In this thesis, we are mainly interested in the physical aspect of the room-acoustical universe.

We aim to use the properties of wave propagation to solve interesting inverse problems. We

restrict ourselves even further to deal only with early reflections. The models that we use are

models that are very common in room acoustics, but that have little to do with perception (as

my colleagues from the hi-fi end of the spectrum rarely fail to observe).

1For an idea, take a look at http://nbviewer.ipython.org/github/LCAV/SignalsOfTheDay/blob/master/I_

feel_fine/I%20feel%20fine.ipynb, created by Paolo Prandoni.

http://nbviewer.ipython.org/github/LCAV/SignalsOfTheDay/blob/master/I_feel_fine/I%20feel%20fine.ipynb
http://nbviewer.ipython.org/github/LCAV/SignalsOfTheDay/blob/master/I_feel_fine/I%20feel%20fine.ipynb
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1.1.3 Beyond

So far we talked about echoes of sound in rooms. But what we really exploit is the distance

geometry of reflections which is common for all wave phenomena. In particular, our results are

applicable to multipath propagation of radio waves.

The geometric framework that we develop is useful whenever we deal with sets of distances

without labels. Straightforward examples are in sensor network calibration, but an exciting

insight is that the same kind of problems appear in crystallography.

Two chapters of the thesis deal with inverse problems that depart from the echo-distance

framework. The first one grew out of thinking about sound source localization with spherical

microphone arrays. That led us to the development of spherical finite-rate-of-innovation sampling

theory for sampling sparse signals on the sphere. The second part grew out of thinking about

a tomographic approach to touch displays. We proposed the sparse pseudoinverse to deal with

very limited computation and storage budget on embedded hardware. This led us to a deeper

study of norm-minimizing generalized inverses.

1.2 Thesis Outline and Main Contributions

Chapter 2: On Echoes and Distances To make the thesis complete and self-contained, we

start from the basic physical principles. In the first part of Chapter 2, we explain how echoes are

created by waves and how we model them. This sets the stage for the introduction of a key tool:

the image source model. We introduce it first as an exact tool to solve PDEs on a few particular

domains, and then as a tool in geometric acoustics that can handle any geometry. The second

part of the chapter talks about Euclidean distance geometry (EDG); in fact, it mostly deals with

a particular tool that we find useful over and over: Euclidean distance matrices (EDM). In the

remaining chapters we use the conjunction of the image source model and EDG as a powerful

device for extracting geometric information in rooms. Chapter 2 can serve either as a reminder,

or as a primer on these matters for an uninitiated reader.

Summary of Contributions in Chapter 2
It is certainly unusual to claim contributions in a chapter that reviews the background

material, but we would like to point one out: the perspective on EDM completion by

counting the degrees of freedom seems novel.

Chapter 3: Can One Hear the Shape of a Room? In 1966, Mark Kac asked “Can one hear

the shape of drum?”. What he actually wanted to elucidate is whether the problem of computing

a drum’s shape from its resonant frequencies is well-posed.

The central part of this thesis treats a transposition of Kac’s question to rooms. Imagine

that you are blindfolded inside an unknown room; you snap your fingers and listen to the room’s

response. Can you hear the shape of the room? Some people can do it naturally, but can we

design computer algorithms that hear rooms? Unlike Kac, when we ask “Can one hear the shape

of a room?”, we want to know if one could find the shape of a room from room impulse responses

(RIRs), not from its resonant frequencies. But instead of approaching the question by tools from

functional analysis, we argue that a more useful and practical perspective is through echoes and

image sources, with a strong flavor of geometrical acoustics.
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We first present an algorithm that reconstructs the geometry of a convex polyhedral room

from a single room impulse response, that is, using a single microphone. We show that the sets

of first- and second-order echoes uniquely describe the room’s geometry. Our algorithm relies on

strong geometric connections between the first two generations of image sources, and between

the corresponding echo arrival times. As we only use a single microphone, we require more than

just the first-order echoes. Single-microphone room reconstruction is a surprising result, and a

proper time-domain dual to the question of Kac.

Obtaining higher-order echoes from RIRs is challenging. That is why our second algorithm

uses only first-order echoes and a few microphones to compute the shape of a room. Furthermore,

we show that under mild conditions these first-order echoes provide a unique description of convex

polyhedral rooms. The key step is echo sorting : assigning echoes to correct walls. In contrast to

earlier methods, the proposed algorithm reconstructs the full three-dimensional geometry of the

room from a single sound emission, and with an arbitrary geometry of the microphone array; as

long as the microphones can hear the echoes, we can position them as we want. Besides answering

a basic question about the inverse problem of room acoustics, our results find applications in

areas such as architectural acoustics, indoor localization, virtual reality and audio forensics.

Summary of Contributions in Chapter 3
We design an algorithm that can reconstruct the geometry of a convex polyhedral room

from a single RIR. We show that the room is uniquely described by the sets of first- and

second-order echoes.

We design an algorithm that reconstructs the geometry of a convex polyhedral room

using only first-order echoes recorded by four or more microphones and prove the almost-

sure uniqueness of this description. The algorithm has been verified experimentally in

a classroom at EPFL and in an alcove of the Lausanne cathedral.

In the process, we introduce echo sorting—an algorithm that finds the correct echo

assignment, useful beyond hearing room shapes.

Chapter 4: Localization and Calibration Source localization is a classic inverse problem. Many

methods work well in free space, but are challenged by echoes in rooms. We propose a framework

in which the room actually helps.

Before addressing echoes geometrically, we first consider them only implicitly: we approach

the multiple indoor source localization problem by discretizing the Helmholtz equation. We make

an assumption that the room is known and then show how a particular discretization scheme—the

finite element method (FEM)—simultaneously solves the PDE and provides us with a sparsifying

dictionary, so that the source localization can be addressed using sparse recovery methods. The

second important ingredient is what we call the wideband advantage. One Helmholtz equation

models what happens at one frequency, but for wideband sources we can write the Helmholtz

equation at many frequencies. The key is that the sparsity pattern in the source vector remains

constant over frequencies. Perhaps surprisingly, this observation enables us to localize multiple

sources with arbitrary wideband spectra using only a single microphone.

We continue by showing how echo sorting introduced in Chapter 3 helps extract information

in a known room. We apply it to indoor localization using only a single omnidirectional sensor

(which is impossible in free space), and how to localize in non-convex spaces. We assume that

the source emits a pulse whose time of arrival can be measured at the receiver side.
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Performing tasks with microphones usually requires knowing their positions. In other words,

we need to know the geometry of the microphone array. A compelling method to calibrate the

array geometry is to use sources at unknown locations. Interestingly, it is possible to reconstruct

the locations of both the sources and the receivers if their number is larger than some prescribed

minimum; this was recognized recently in a number of works. The problem itself is an instance

of multidimensional unfolding, and we propose to solve it using EDM completion, thus obtain-

ing a formulation that, unlike earlier works, easily handles missing distances and various prior

information about the array.

Next, we show that in rooms we can considerably reduce the number of sources required for

array calibration even when the room is unknown; the key observation is that echoes correspond

to virtual sources that we get “for free”. This enables endeavors such as calibrating the array

using only a single source, for example a finger snap. With our technique we can also compute

the absolute position of the microphone array in the room. This is in contrast to only knowing

it up to a rigid transformation or reflection, which is ensured by other methods. What is more,

as a byproduct we get the room’s geometry!

Summary of Contributions in Chapter 4
We show how localization of multiple wideband sound sources in a known room can be

framed as a system of sparse reconstruction problems with different system matrices

and a common sparsity pattern, and propose algorithms to solve it.

We show that the room helps and that bandwidth helps; in a room we can localize more

sources than in free space. We show through numerical experimentation that the convex

relaxation allows us to localize multiple sources with only a single microphone.

We apply echo sorting to two indoor localization problems from TOA measurements:

1) indoor localization using a single sensor, 2) indoor localization in non-convex rooms.

We propose to solve the second one using the inverse method of images.

We exhibit a microphone position calibration method that can integrate prior uncertain

knowledge about the array geometry and handle missing pairwise distances. Next, we

address the zero-knowledge calibration problem. Consider an unknown microphone array

in an unknown room. We show that the geometry of both can be learned from a single

finger snap at an unknown location.

Chapter 5: Sampling Sparse Signals on the Sphere Answering questions about sound source

localization with spherical microphone arrays spilled over into a comprehensive theory for sam-

pling sparse collections of spikes on the sphere, which we present in Chapter 5.

We develop a sampling theorem and corresponding algorithms that can perfectly reconstruct

a collection of spikes on the sphere from samples of their lowpass-filtered observations. Central

to our algorithm is a generalization of the annihilating filter method, a tool widely used in array

signal processing and finite-rate-of-innovation (FRI) sampling. The proposed algorithm can

reconstruct K spikes from pK `
?
Kq2 spherical samples; this sampling requirement improves

over previously known FRI sampling schemes on the sphere by a factor of four for large K.

We showcase the versatility of the proposed algorithm by applying it to three different prob-

lems: 1) sampling diffusion processes induced by localized sources on the sphere, 2) shot noise

removal, and 3) sound source localization (SSL) by a spherical microphone array.

In the shot noise removal application, some of the sensors give corrupted readings of the
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underlying bandlimited function; we show theoretically and experimentally that our sparse sam-

pling algorithm can be applied to detect and correct the malfunctioning sensors. In the SSL

application we show how Green’s functions induced on the sphere by point sources can be ap-

proximated as having a constant shape over source positions. We then use deconvolution to

reduce this scenario to a collection of angular spikes.

Summary of Contributions in Chapter 5
We develop the theory and algorithms for sampling collections of spikes on the sphere,

requiring one-fourth the number of samples required by the best previous FRI sampling

scheme on the sphere.

Our algorithms can be applied to remove shot noise from the measurements on the sphere

(i.e., to detect malfunctioning sensors). We develop a shot noise removal algorithm based

on FRI sampling, and compute exact bounds on the number of detectable malfunctioning

sensors.

We demonstrate in detail how our sampling theory can be used to localize sound sources

with spherical microphone arrays.

Chapter 6: Raking the Cocktail Party This chapter is about imitating how people use echoes.

It is well established that the echoes improve speech intelligibility [24, 25, 127]. In fact, adding

energy in the form of early echoes (approximately within the first 50 ms of the room impulse

response (RIR)) is equivalent to adding the same energy to the direct sound [25]. This observation

suggests new designs for indoor beamformers, with different choices of performance measures and

reference signals.

We present the concept of an acoustic rake receiver—a microphone beamformer that uses

echoes to improve the noise and interference suppression. The rake idea is well-known in wireless

communications; it involves constructively combining different multipath components that arrive

at the receiver antennas. Unlike spread-spectrum signals used in wireless communications, speech

signals are not (near-)orthogonal to their shifts or to other speech signals. Therefore, we focus on

the spatial, rather than temporal structure. Instead of explicitly estimating the channel, we create

correspondences between early echoes in time and image sources in space. These multiple sources

of the desired and the interfering signal offer additional spatial diversity that we can exploit in

the beamformer design. We present several “intuitive” and optimal formulations of acoustic rake

receivers both in the frequency domain and in the time domain, and show theoretically and

numerically that the rake formulation of the maximum signal-to-interference-and-noise (Rake-

MaxSINR) beamformer offers significant performance boosts in terms of noise and interference

suppression. Beyond SINR, we observe gains in terms of the perceptual evaluation of speech

quality (PESQ) metric for the speech quality.

Summary of Contributions in Chapter 6
We propose the concept of an acoustic rake receiver (ARR) for speech—an echo-aware

microphone beamformer. This is inspired by the spatial component of a well-known

receiver design in wireless communications.

We show theoretically and numerically that the Rake-Max-SINR formulation achieves

large gains not only in terms of noise cancellation and interferer suppression as measured

by the SINR, but also in terms of the PESQ metric, which means that our formulation
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produces results that are perceptually superior to standard beamformers. This is cor-

roborated by informal listening tests.

We show that ARRs can separate the desired source from the interferer in situations

where conventional beamformers are bound to fail; for example, if a strong interferer is

occluding the direct path of the desired signal, an ARR will ignore the direct path and

listen only to echoes.

Chapter 7: Alternative Generalized Inverses Similarly to Chapter 5, the final chapter of this

thesis departs slightly from the central theme. It grew out of an effort to speed up certain

overdetermined tomographic inversions related to a new touch display technology. The first

approach was to use the Moore-Penrose pseudoinverse (MPP) of the system matrix in order to

compute the reconstruction. But the demand on the frame rate was so stringent that applying the

MPP was far too expensive in terms of computation time. The solution was to use an alternative

generalized inverse with many zeros—the sparse pseudoinverse—obtained as the generalized

inverse with the smallest entrywise `1-norm. Intrigued by the implications of this finding, we

studied the concept of a norm-minimizing alternative generalized inverse in much more depth,

and Chapter 7 describes this study.

A particular norm-minimizing generalized inverse is the MPP. It has the smallest Frobenius

norm among all generalized inverses of a matrix. While the MPP is optimal well beyond the

Frobenius norm, freeing up the degrees-of-freedom associated with the square-norm optimality

enables us to enforce other useful properties. We first generalize the results of Ziȩtak [224] by

showing that the MPP minimizes several norms beyond unitarily invariant norms, thus further

establishing its robustness as the correct choice in most situations.

We then concentrate on some norms which are not minimized by the MPP, but whose min-

imization is relevant for linear inverse problems and sparse representations. In particular, we

look at the entrywise `1-norm and the induced `p Ñ `q norms. For example, we show how to

compute generalized inverses that achieve a poor man’s `p minimization, in the sense that they

minimize the average-case or the worst-case `p-norm blowup. Furthermore, instead of norms, we

concentrate on matrices with interesting behaviors. We exhibit a class of matrices for which the

MPP minimizes norms that it generically does not minimize, and a class for which many norm-

minimizing generalized inverses coincide, but not with the MPP. Finally, we discuss efficient

computation of the generalized inverses associated to various norms.

Summary of Contributions in Chapter 6
Motivated by the sparse pseudoinverse as an attractive alternative to the MPP from

the point of view of computational efficiency, we propose a general notion of a norm-

minimizing generalized inverse.

We give a categorization of matrix norms with respect to whether they are minimized

by the MPP, or they are generically not minimized by the MPP (further establishing

the optimality of the MPP in various cases). We then exhibit several classes of matrices

that behave irregularly; e.g., matrices whose MPP minimizes norms that it generically

does not minimize, or matrices for which many generalized inverses coincide, but not

with the MPP.

We show that all norm-minimizing generalized inverses are unbiased in the sense that

the corresponding projection operator is on average a scaled identity over common ran-

dom matrix ensembles. We also show that their Frobenius norm is well-behaved—an
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important property for noise stability.

We compute norm-minimizing generalized inverses that act as poor man’s `p minimizers

in the sense that they minimize the worst-case or the average-case `p-norm blowup.

Conclusion Within the conclusion, we embed a research proposal. Our toolbox for working

with distances under noise, erasures, and unknown permutations is useful beyond room acous-

tics. Potential applications are in MIMO communications, autonomous robotic navigation and

mapping, and depth imaging to mention a few. Perhaps the most exciting connection is that it

could unlock various ab initio reconstruction methods in crystallography.

The wideband advantage could be used to design a new generation of scattering microphones

that would specifically enhance source localization and blind source separation.





Chapter 2

On Echoes and Distances*

The term echo is often used to refer to reflections of sound waves. We use it generically to refer

to reflections of any kind of wave, although in applications we discuss only sound and radio. To

understand how echoes arise from propagating sound waves and how to model them, we start

by a short account of the wave mechanics of sound. We then introduce the image source model :

This model replaces walls (reflectors) by points, thereby simplifying the discussion from that of

wave propagation in complex geometries, to that of points and distances.

This naturally brings us to the second key ingredient: Euclidean distance geometry. We

exploit the geometry of the sets of points corresponding to acoustic sources, receivers and echoes

by using the toolbox of the Euclidean distance matrices (EDMs). These simple tables of squared

distances have surprisingly useful properties which we capitalize upon repeatedly.

There is a noticeable discontinuity between the first part on waves, and the second part on

EDMs. In the first part we aim primarily at developing intuitions about the physics of waves

and their reflections; this leads to a less dense discussion than that of the second part, in which

(in addition to intuition) we develop concrete algorithms that we will use elsewhere in the thesis.

The material on waves is digested from classic texts on acoustics, room acoustics and PDEs:

Morse and Ingard’s Theoretical Acoustics [154], Kuttruff’s Room Acoustics [117], Duffy’s Green’s

Functions with Applications [67], Farlow’s Partial Differential Equations for Scientists and En-

gineers [73] and Ihlenburg’s Finite Element Analysis of Acoustic Scattering [94], and sprinkled

with our observation and interpretations.

2.1 Undulating Particles: The Wave Mechanics of Sound and

Radio

2.1.1 Mass on a Spring

It seems like a good idea to begin the study of echoes by studying simple oscillations. What

is the connection between echoes and masses on springs? Echoes are reflections of waves, and

waves consist of elementary oscillations. In the case of acoustic waves, particles of air oscillate

around their equilibrium positions, causing the pressure to oscillate around its resting value—the

atmospheric pressure.

*The material on distances in the second half of this chapter is part of our tutorial paper on EDMs [55]—a
joint work with Reza Parhizkar, Juri Ranieri and Martin Vetterli.
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Figure 2.1: Examples of oscillating systems. The spring oscillates to counter stretching or compress-
ing; the pendulum oscillates trying to return to equilibrium; the current (and the voltage) in a simple
circuit oscillate.

Figure 2.1 shows three different oscillatory systems. Although they appear distinct, the

equations that govern their behavior have the same form (linear second-order partial differential

equation). We will go through the mechanics of the mass on a spring.

There are two prerequisites for oscillations: inertia and stiffness. Once the system is set in

motion, inertia supports the motion past the equilibrium point and stiffness works to return the

system back into the equilibrium. The two demands are balanced out by oscillatory motion, and

a different kind of equilibrium: conservation of energy. In Figure 2.1, the stiffness component is

provided by the spring that resists stretching, by the gravitational force that resists the pendulum

moving up, and by the coil that resists the change of current (if we look at the oscillating current

as opposed to the oscillating voltage). For the mass on the spring and the pendulum, inertia

(first Newton’s law) is provided by the mass that has maximal speed in what would otherwise

be an equilibrium point, and by the capacitor which is fully charged when the current through

the coil is zero, so it keeps pushing the current.

When a moving mass stretches the spring beyond its resting length, the kinetic energy of the

mass is converted into the potential energy stored in the stretched spring. Once the mass runs

out of kinetic energy, the motion is reversed and the spring gives the stored potential energy

back to the mass. Without heat losses in the air or in the spring, the sum of the kinetic and the

potential energy remains constant over time.

The spring is described by its stiffness, in our case a scalar k that tells us with how much

force the spring will resist stretching by some unit length. The basic law of the spring—Hooke’s

law—is linear, so the force with which the spring resists stretching or compressing equals

Fs “ ´kx, (2.1)

where x is the displacement from the equilibrium position, with reference to Figure 2.2. The

negative sign indicates that the force acts in the direction opposite to the deformation.

We already mentioned that the law of the spring supplies the stiffness part of the stifness-

inertia couple. The inertia part is played by the mass and Newton’s first law, which says that

an object in motion stays in motion with the same speed and direction as long as the total force

on the object vanishes. When the spring is at its resting length, there are no forces acting on

the mass, but it has a non-zero speed (in fact, the speed is maximal at this point), so it keeps

moving. We can predict how the mass will move by invoking Newton’s second law which says

that the total force acting on a rigid body of mass m is proportional to the acceleration of the
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Figure 2.2: Oscillating mass on a spring.

body,

F “ ma “ m
d2x

dt2
. (2.2)

In our case, the only force is the recoil force in the spring (for simplicity, we do not consider the

gravitational force), so by combining (2.1) and (2.2), we get a differential equation that governs

the motion of the mass—a second-order linear PDE with constant coefficients,

m
d2x

dt2
“ ´kx. (2.3)

The solution to (2.3) is harmonic motion. It is easy to verify that the two linearly independent

solutions are

x1ptq “ A sin

˜

c

k

m
t

¸

and x2ptq “ B cos

˜

c

k

m
t

¸

. (2.4)

Any solution can be expressed as a linear combination of these two, and any linear combination

is a solution.

Example 2.1

Assume that at t “ 0, the displacement of the mass is xp0q “ x0, and its velocity is vp0q “ v0.

We want to compute the motion of the mass xptq for all t. The general solution to the

mass-on-a-spring equation is

xptq “ A sinpω0tq `B cospω0tq,

for some value of the coefficientsA andB, with ω0
def
“

a

k{m being the frequency of oscillations

in rad/s. We can find A and B using the initial conditions. We have that xp0q “ A sinp0q `

B cosp0q “ B “ x0, and x1p0q “ Aω0 cosp0q ´Bω0 sinp0q “ Aω0 “ v0. Finally we obtain

xptq “
v0

ω0
sin pω0tq ` x0 cos pω0tq “

«

ˆ

v0

ω0

˙2

` x2
0

ff1{2

sin

„

ω0t` arctan

ˆ

x0ω0

v0

˙

,

for the motion of the mass.
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Figure 2.3: Forces on a segment of a vibrating string.

2.1.2 Vibrating String

The same laws and reasoning as for the harmonic oscillator are at play for a vibrating string.

In fact, we could study the string as a system of coupled oscillators—masses connected with

springs—but that would obfuscate an important analysis principle: we should be seeing the

string as a whole, having a definite shape at any given time instant. As Morse and Ingard [154]

put it, ”The motion of the string at any instant will depend on the shape of the string, and the

subsequent shape will depend on the motion; what we must do is to find the relation between the

shape and the motion”. This relation for the vibrating string is a consequence of Newton’s laws.

Conveniently, the same principle applies for vibrations of a membrane and vibrations of air.

Consider an infinitely long string pulled taut by a tension force T . Let us concentrate on the

segment between x and x `∆x as illustrated in Figure 2.3, and write out the forces acting on

the segment. The wave equation will simply be Newton’s equation of motion applied to all such

segments at once.

Waves on a string are transversal. That is, for oscillations of small amplitude, the velocity of a

fixed segment of the string has no component parallel with the string. We are therefore interested

in forces that act in the direction perpendicular to the string. With reference to Figure 2.3, the

principal force that governs the string’s behavior is the tension force. The net tension force in

the transverse direction is

Tv “ T sin θ2 ´ T sin θ1 « T

ˆ

Bu

Bt

ˇ

ˇ

x`∆x,t
´
Bu

Bt

ˇ

ˇ

x,t

˙

, (2.5)

where the approximation is valid as long as θ1 and θ2 are small (this is true when the oscillations

are small). We can anticipate that the tension force will contribute the B
2u
Bx2 term to the putative

wave equation. Other forces include the external driving force F px, tq (for example the gravity

mg, or impulses on the string). Another important force is friction, for example against the

medium (air), equal to ´β Bu
Bt . We could add more forces making the model more and more

realistic, but this is not necessary to understand the principles.
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Assume that the linear density of the string is %. Then by applying Newton’s equation of

motion (second law, F “ ma) to the segment, we get

%∆x
B2upx, tq

Bt2
“ T

«

Bu

Bx

ˇ

ˇ

ˇ

ˇ

px`∆x,tq

´
Bu

Bx

ˇ

ˇ

ˇ

ˇ

px,tq

ff

`∆xF px, tq ´∆xβ
Bupx, tq

Bt
. (2.6)

Dividing both sides by ∆x, and taking the limit as ∆x goes to zero, we get the wave equation

with damping (the telephone equation).

B2u

Bt2
“ α2 B

2u

Bx2
´
β

%

Bu

Bt
`

1

%
F px, tq. (2.7)

Let us now take a closer look at the simple wave equation without friction and sources,

B2u

Bt2
“ α2 B

2u

Bx2
. (2.8)

Intuitive Solution We know from experience that waves on strings and ropes can travel. If we

rapidly pull one end of a rope up and down, the disturbance will travel along it until it reaches

the other end (where it may reflect, but more on that later). The shape of this disturbance

remains almost constant as it travels. Imagine that the shape of the string at t “ 0 is u1pxq, and

that it represents a wave traveling to the right. After a time t, it will have moved to the right

by a distance ct, where c is the speed of the wave, so the new shape will be u1px´ ctq. Similarly,

for a perfect motion of the wave to the left, the shape of the wave should be u2px` ctq at time

t, given that it is u2pxq at time zero. The equation of motion is linear, so the general expression

for a perfect wave motion is the sum (actually a linear combination) of the two waves,

upx, tq “ u1px´ ctq ` u2px` ctq. (2.9)

To check if (2.9) is really a solution, we can take partial derivatives of u. The partial derivative

Bu{Bx represents the slope of the curved string at a given time and position; the time derivative

Bu{Bt is the velocity in the transverse direction. For a right traveling wave, we see from (2.9)

that the two partial derivatives are related as

Bu

Bt
“ ´c

Bu1

Bt

ˇ

ˇ

ˇ

ˇ

x´ct

“ ´c
Bu

Bx
. (2.10)

Similarly, for the left traveling wave the relation is Bu
Bt “ c Bu

Bx . We can differentiate (2.10) to see

that both the left and the right traveling wave satisfy the second-order equation

B2u

Bt2
“ c2

B2u

Bx2
. (2.11)

But this is exactly the wave equation (2.8) with α “ c. Thus we have identified the physical

meaning of the coefficient α.

The above derivation shows that (2.9) is definitely a solution to (2.11). In fact, it can be

shown that the solution of the form (2.9) implies the wave equation (2.11) and vice versa, so

(2.11) can indeed be called the wave equation, and any solution has the form (2.9).
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Canonical Coordinates A more formal approach to solve (2.11) is to introduce (now aided by

hindsight) the canonical coordinates pξ, ηq as

ξ “ x` ct

η “ x´ ct.

It is not difficult to see that (2.11) in the canonical coordinates becomes

B2u

Bξ Bη
“ 0. (2.12)

Integration with respect to ξ and then with respect to η gives

upξ, ηq “ φpηq ` ψpξq, (2.13)

where φpηq is an arbitrary function of η, and ψpξq an arbitrary function of ξ. Transforming back

to the original coordinates, we get

upx, tq “ φpx´ ctq ` ψpx` ctq. (2.14)

Both derivations show that in any solution of the wave equation on a string, time and space

appear laced up together as x ´ ct or x ` ct. It may not be explicit in a particular expression,

but there must be an equivalent expression where it is. It is interesting that a sum of any

two traveling waves—one traveling right, the other one traveling left—is a solution of the wave

equation on a string.

Example 2.2

All of the following functions are solutions of the wave equation on a string (2.11) (by tripxq

we denote the unit triangle pulse):

(a) u1px, tq “ tripx´ ctq,

(b) u2px, tq “ rectpx´ ctq ´ tripx` ctq,

(c) u3px, tq “ sinpxq cospctq “ 1
2 sinpx´ ctq ` 1

2 sinpx` ctq,

(d) u4px, tq “ trip2px´ ctq ` 6.6q ´ 1
2

“

1` cosp2πpx` ct´ 3.3q
‰

rectpx` ct´ 3.3q.

Figure 2.4 shows the development of u4px, tq over time.

2.1.3 Wave Equation of Sound

Oscillations of air particles around their equilibrium positions create small pressure changes

around the atmospheric pressure which are then propagated as a wave. We call this wave sound,

in particular when we can hear it.

As we will see, a major difference between the sound waves and the waves on a string or on a

membrane is that the sound waves are longitudinal, not transversal. This means that the particles

of air oscillate along the direction of wave propagation, not transversally to it, as illustrated in

Figure 2.5. A membrane oscillates up and down about the equilibrium plane; in air we have

compressions and rarefactions.

We start by writing out the linearized equations for various quantities associated with com-

pressible fluids, and then combine them using Newton’s law of motion into the acoustic wave

equation.
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Figure 2.4: Example of traveling waves on a string.

Conservation of Mass Consider a fluid whose state is described by pressure P px , tq, density

ρpx , tq, and particle velocity vpx , tq. Conservation of mass means that the only way the mass

of the fluid inside a volume V can change is through a net inflow or outflow of the fluid into V

through the boundary BV (Figure 2.6),

´
B

Bt

ż

V

% dV “

¿

BV

% xv ,ny dS. (2.15)

The left hand side of (2.15) equals the temporal change of the total mass inside V ; the right

hand side equals the net flow of the mass throught the boundary BV . The two terms must

match. Using the Green-Gauss-Ostrogradski divergence theorem , we transform the integral on

the right-hand side into a volume integral,
¿

BV

% xv ,ny dS “

ż

V

∇p%vq dV, (2.16)

yielding finally
ż

V

ˆ

B%

Bt
`∇p%vq

˙

dV “ 0. (2.17)

As this must hold no matter how we choose the volume V , it follows that

B%

Bt
`∇p%vq “ 0. (2.18)

Equation of Motion The net force on the volume of air V resulting from the pressure ppx , tq is

F “ ´

¿

BV

pn dS.

Same as in the case of an oscillator or a vibrating string, we now use Newton’s second law,

obtaining

´

¿

BV

pn dS “

ż

V

%
dv

dt
dV. (2.19)
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A

B

Figure 2.5: Illustration of transversal (A) and longitudinal (B) waves.

The total differential dv{dt “ Bv{Bt`xv ,∇y v is linearized by neglecting the second-order term,

because in acoustics, and especially in room acoustics, we assume that the oscillations are small

(i.e., the elementary oscillators operate in the linear regime). With another application of the

Green-Gauss-Ostrogradski theorem we get the equation of motion, known as Euler’s equation or

the law of conservation of momentum [117, 154],

%
Bv

Bt
“ ´∇p. (2.20)

The equation of conservation of momentum (2.20) reveals an important fact: The air particles

oscillate only along the direction of the pressure gradient, which is incidentally also the direction

of wave propagation. This confirms what we mentioned earlier—the sound waves are longitudinal,

in contrast to waves on strings and membranes.

The particle velocity v is the time derivative of the particle position (displacement) u , so we

can rewrite Euler’s equation as

%
B2u

Bt2
“ ´∇p. (2.21)

Combining into Wave Equation Similarly as with the simple oscillator, we assume a linear

material law,

p “ c2%. (2.22)

In words, the denser the air, the higher the pressure. The square root of the proportionality

constant, c, is the speed of sound. Instead of simply anticipating it, we could have deduced it

from the final wave equation similarly to how we did it for the string.
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Figure 2.6: Volume element for reference in the wave equation derivation.

Combining with (2.18) and (2.20), we get

B2p

Bt2
“ c2

B2%

Bt2
“ ´c2%0∇

Bv

Bt
“ c2∇p∇pq, (2.23)

where we first linearized the density ρ around the equilibrium value ρ0 and neglected the higher

order terms. Rearranging we finally obtain the wave equation,

∆p´
1

c2
B2p

Bt2
“ 0. (2.24)

The wave equation of sound (2.24) is completely analogous to the wave equation on a string

(2.11). The only difference is that the second partial derivative with respect to the spatial

variable is replaced by the sum of the partial derivatives with respect to all three (or two) spatial

variables—the Laplacian ∆.

If we assume that the waves are time-harmonic, that is, ppx , tq “ pppx qe jωt, we get the

Helmholtz equation,

∆pp` k2
pp “ 0, (2.25)

where k
def
“ ω{c is the wavenumber (the number of waves in 1 m). Note that the Helmholtz

equation can also be obtained by taking the continuous-time Fourier transform of the wave

equation (2.24).

2.1.4 Plane-wave Solution

We can obtain a solution to the wave equation of sound similar to the solution for waves on a

string (2.14) by assuming that the pressure changes only along one direction (the direction of the

velocity vector c) not only locally, but in the whole space. This results in plane waves, defined

as the waves whose wavefronts—surfaces of constant phase—are parallel planes, normal to the

direction of the wave propagation. Note that on a string, there are only two directions in which

any wave can travel: x and ´x; in air, there are infinitely many directions.

We can guess the general expression for a plane wave ppx , tq with the velocity c by considering

the following two requirements:

(i) For a fixed time t0 the pressure at all the points in any plane perpendicular to c must be

equal;

(ii) At time t0 ` t, the plane containing the point x must have moved to x ` tc.
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The first requirement is satisfied by functions of the form φpxx , pcyq, where by pc we denote

the unit vector corresponding to c, c{‖c‖. The second requirement suggest that we must find α

so that

xpc,x ` cy ` ατ “ xpc,x y ,

where c “ ‖c‖. It follows that α “ ´c, so that the plane wave solution has the form

ppx , tq “ φpxx , pcy ´ ctq. (2.26)

It is straightforward to verify that this function satisfies the acoustic wave equation.

Planar wavefronts can be seen as an approximation of spherical wavefronts far away from the

point source that generated the spherical wave. Indeed, in situations where point sources are

far enough, the exact spherical solution is commonly replaced by plane waves; we say that the

sources are in the far field.

It is much more common to define plane waves for the time-harmonic case. If we choose

φpξq “ e jωξ{c, we get

ppx , tq “ e jpxk ,xy´ωcq. (2.27)

That is, the time-harmonic plane waves are also space-harmonic.

2.2 Origin of Echoes

2.2.1 Boundary Conditions in Wave Equations

For the wave equation to have a unique solution, we need to impose certain boundary conditions.

In rooms, the boundary conditions describe the reflective properties of the walls; in free space,

the boundary conditions are a limiting process—they describe the wave’s behavior far away from

the sources.

Here, we are only interested in boundary conditions that correspond to actual boundaries,

typically to walls. There are two natural extremes and the corresponding logic is different for

waves on a string and for waves in air. If one end of the string is attached to a rigid support,

then the boundary condition is that this end of the string cannot move, so that the displacement

at this end is zero.

In air, we usually write the wave equation for the pressure, not for the displacement. But it

is clear that the pressure variation at the wall cannot be zero. We will see that a quantity that

does vanish at the wall is the pressure gradient in the normal direction.

The first kind of boundary condition where the function itself is zero at the boundary is

called Dirichlet (or soft wall, pressure does not vary at the wall). The second kind of boundary

condition where the derivative is zero is called Neumann (or hard wall, pressure gradient vanishes

at the wall).

2.2.2 Reflections of Ropes

Let us take a closer look on how reflections are formed on a string. For simplicity, we assume

that the end of the string corresponding to x “ 0 is fastened down for a perfectly rigid support.

The boundary condition is then simply that this end cannot move,

up0, tq “ 0. (2.28)
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Figure 2.7: Reflections on a string. The non-phyiscal part of the string that carries the inverted
wave is shown dashed.

The idea is to find the correct left- and right-traveling waves so that (2.28) is always true. It is

easy to see that taking only u1px ´ ctq or u2px ` ctq will not make the cut, as these waves will

at some point pass the point x “ 0, and they will displace the string there. But the following

simple combination works:

upx, tq “ ´fpx´ c tq ` fp´x´ c tq, (2.29)

for at x “ 0, and for all t we have

up0, tq “ ´fp´c tq ` fp´c tq “ 0. (2.30)

The form of the solution (2.29) has for a consequence the familiar behavior of the phase of

waves on a string or on a rope; that is, the reflected wave is inverted.

A valid and important question is whether we have exploited all solutions this way. The

answer is yes: A Dirichlet problem that we just described is known to have a unique solution.

Since we have already found one, we need not search further.
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Example 2.3

An example of a wave on a string reflected from a rigid support is given in Figure 2.7. The

waveform of the pulse is approximately equal to

φpxq “
d2

dx2
expp´25x2q

when the pulse is far enough from the support (due to the fast decay of the function). The

exact waveform on the string (for a support located at x “ 0) is

upx, tq “ φpx´ cpt´ τqq ´ φp´x´ cpt´ τqq,

where τ is the time offset.

Typically, we would start from the initial conditions, upx, 0q and Bu
Bt

ˇ

ˇ

t“0
, and work to

compute u for every x and t. One way to do it for traveling waves would be to identify the

wave velocity c.

2.2.3 Reflections of Sound

Let us go through a phenomenological explanation of sound wave reflections [117, 154], and

then verify that the solution obtained by this observation is also compatible with the requested

boundary conditions.

A plane wave incident at a flat wall of infinite extent reflects from the wall. The wall is

characterized by its reflection factor R that determines how the amplitude and the phase of the

reflected wave are altered relative to the incident wave,

R “ |R|e jχ. (2.31)

The intensity of the incident wave is proportional to the square of its amplitude, so we can also

define the wall’s absorption factor α,

α “ 1´ |R|
2
. (2.32)

Both R “ `1 and R “ ´1 yield α “ 0, that is, no energy is absorbed by the wall. But these two

extreme cases define physically very different scenarios. When R “ `1, the reflected wave is in

phase with the incident wave, and the wall is said to be sound-hard. By hard, it is meant that

it does not yield to the oscillating pressure at it. On the other hand, R “ ´1 characterizes a

sound-soft wall. Loosely speaking, soft walls move in sync with the oscillating particles, so that

they feel no pressure.

A quantity related to the reflection factor is the wall impedance. It is defined as the ratio of

the pressure and the normal component of the particle velocity at the wall,

Z “

ˆ

p

vn

˙

@surface

. (2.33)

The wall impedance plays the same role for the pressure and the particle velocity as the electric

impedance plays for the voltage and the current. It is usually defined for sound waves of a

particular frequency, when they are expressed as phasors (i.e., not as sines and cosines, but as

complex exponentials). It is therefore a complex quantity.
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Normal Incidence For simplicity, we start with a plane wave that arrives at the wall at a normal

incidence. The wall is assumed to correspond to the x “ 0 coordinate plane. We also make a

simplifying assumption that the wave is time-harmonic,

pipx, tq “ p0 e jpωt´kxq. (2.34)

Then the velocity of the oscillating particles is also time-harmonic (cf. conservation of momentum

law (2.20))

vi “
p0

%0c
e jpωt´kxq. (2.35)

The amplitude and the phase of the reflected wave are modified according to the magnitude

and the phase of R. Reasons of symmetry suggest that the reflected wave will travel in the

direction opposite from the incident wave. The change in the direction of travel means that we

must change the sign of k. We thus obtain

prpx, tq “ Rp0e jpωt`kxq (2.36)

vrpx, tq “ ´R
p0

%0c
e jpωt`kxq. (2.37)

This reflected wave is superposed to the incident wave, and they interfere. The total sound

pressure and particle velocity in the wall plane are

pp0, tq “ p0p1`Rqe
jωt (2.38)

vp0, tq “
p0

%c
p1´Rqe jωt. (2.39)

To compute the wall impedance, we divide the pressure by the normal component of the particle

velocity at the wall. Since the wave is arriving perpendicularly at the wall and the sound waves

are longitudinal, the particle velocity only has the normal component so that the impedance is

Z “ %0c
1`R

1´R
. (2.40)

Note that there is a satisfying parallelism between the electric and the acoustic impedances. A

rigid wall with R “ 1 always has zero velocity regardless of the pressure of particles around it;

its impedance is thus Z “ 8. Current through an open circuit is always 0, regardless of the

voltage across it—its electric impedance is 8. For a soft wall with R “ ´1 (short circuit), the

impedance vanishes. For a wall that perfectly absorbs the acoustic energy, the impedance equals

the impedance of the air (matching). Interestingly both Z “ 0 and Z “ 8 generate reflections

(of opposite phase), but a wall with Z “ %0c does not generate a reflection. This situation is

analogous to impedance matching on transmission lines, where a load of matching impedance

does not generate a reflection, but both open and short circuit do.

Oblique Incidence If the wave is arriving at an angle θ with respect to the wall normal, as in

Figure 2.8, it is traveling in the direction n “ rcos θ, sin θsJ. The plane wave phasor (without

the time-dependent part) is given as

pi “ p0e´jkxx ,ny “ p0e´jkpx cos θ`y sin θq. (2.41)

Let us compute the wall impedance. The normal component of the particle velocity is given for

the time-harmonic wave as

vx “ ´
1

jw%0

Bp

Bx
, (2.42)
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θ

θ

x = 0

incident wave

reflected wave

planar wavefronts

Figure 2.8: Illustration of the reflected wave at an oblique incidence.

so for the incident wave (2.41), we get

pviqx “
p0

%0c
cospθqe´jkpx cos θ`y sin θq. (2.43)

Due to the way we set up the coordinate system, for the reflected wave we must reverse the sign

of the x component of n , or equivalently, of the wave vector k . Pressure and particle velocity of

the reflected wave are then

pr “ Rp0e´jkp´x cos θ`y sin θq (2.44)

pvrqx “ ´R
p0

%0c
cospθqe´jkp´x cos θ`y sin θq. (2.45)

After computing the total pressure and particle velocity (incident + reflected), we get the wall

impedance

Z “
%0c

cos θ

1`R

1´R
. (2.46)

We can see that the wall impedance changes with the angle of incidence θ.

2.3 Room Acoustics and Echo Modeling

2.3.1 Green’s Function

Green’s function is one of the central tools in analysis of linear ODEs and PDEs. It is a natural

generalization of the impulse response from signals and systems. Consider a linear differential

equation
#

Dfpx , tq “ spx , tq

Boundary conditions,
(2.47)
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where spx , tq is the source term. Then the Green’s function is the solution of (2.47) when the

source is a perfect instantaneous point source,

spx , tq “ δpx ´ x sqδpt´ tsq,

where δ is an adequately defined Dirac delta distribution.

The solution for any source term with arbitrary spatial and temporal dependency is then

computed as a convolution of the source term with the Green’s function,

fpx , tq “
x

gpx , t | ξ, τqspξ, τqdξ dτ. (2.48)

The Green’s function is a complete description of a linear physical system, in the same way

the impulse response is a complete description of a linear system. Impulse response is typically

defined for time-invariant linear systems, but there is no problem with defining for time-variant

systems as well. Green’s functions that we will work with are time-invariant too, but they are

spatially varying. Therefore, the convolution over time in (2.48) will be the “ordinary” time-

invariant convolution

Green’s Function for the Wave Equation Because the final result is so well-known and com-

monly used, we now go through the details of the computation of the Green’s function for the

wave equation in free space. We follow the derivation of Duffy [67]. The problem to solve is

∆g ´
1

c2
B2g

Bt2
“ δpx ´ ξqδpt´ τq, (2.49)

with the initial condition

gpx , 0 | ξ, τq “ gtpx , 0 | ξ, τq. (2.50)

We first take the Laplace transform of (2.49) (with respect to time),

∆G´
s2

c2
G “ ´δpx ´ ξqe´sτ , (2.51)

and then introduce the inverse 3D CFT over space/wave vector,

Gpx , s | ξ, τq “
1

p2πq3

y

R3

pGpk , s | ξ, τqe jxk ,xy dk . (2.52)

Substituting (2.52) into (2.51), we get

pGpk , s | ξ, τq “
c2

s2 ` c2κ2
e´jxk ,ξy´sτ . (2.53)

Finally,

Gpx , s | ξ, τq “
e´sτ

p2πq3

y

R3

e jxk ,x´ξy

κ2 ` s2{c2
dk . (2.54)

To solve (2.54), we set up a spherical coordinate system pr, θ, φq so that x ´ ξ “ r0, 0, rsJ. We

obtain that

Gpx , s | ξ, τq “
e´spr{c´τq

4πr
. (2.55)
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Taking the inverse Laplace transform we get

gpx , t | ξ, τq “
δpt´ τ ´ r{cq

4πr
. (2.56)

This is the famous solution for the point source. You can imagine that sound exists only

within an infinitesimally thin spherical shell whose radius is growing at the speed of sound. A

listener at a distance r from the sound source will hear the pulse after r{c, and then never again.

It is interesting to contrast this with the solution for the 2D wave equation in the plane that can

be obtained by a similar procedure,

g2Dpx , t | ξ, τq “
1

2π

µpt´ τ ´ r{cq
a

pt´ τq2 ´ pr{cq2
, (2.57)

where µ is the Heaviside step function. In the flatland, the sound intensity decays, but the sound

never really goes away.

2.3.2 Image Source Method

The image sources (IS) method is a very well-known tool in acoustics. It belongs in the category of

geometrical acoustics, and in many texts it is introduced phenomenologically. Allen and Berkley

wrote a paper in 1979 [5] that became the reference on the IS method, and it was extended to

polyhedral geometries beyond shoe-box by Borish [19]. But the method itself was known well

before; it is a standard technique to solve PDEs on certain domains. The best way to see how

that works is by using Green’s functions.

The free-space Green’s function is a particular solution of any Green’s function problem.

For this reason, it is sometimes called the fundamental solution. When we introduce boundary

conditions1 into the problem, the fundamental solution still satisfies the PDE everywhere except

at the boundaries, as it does not “know” about the boundary conditions. That is why when

solving a PDE we also search for a homogeneous solution such that the sum of the particular

and the homogeneous solution does satisfy the boundary conditions.

x

z
y

Wall

ξ ξv

z = 0

Figure 2.9: Construction of the Green’s function for the Helmholtz equation in a halfspace.

1Other than the so-called radiation condition which specifies the wave’s behavior at infinity.
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Green’s Function in a Halfspace Let us find the Green’s function for the Helmholtz equation

in a 3D halfspace z ą 0, as illustrated in Figure 2.9. We will need the fundamental solution for

the Helmholtz equation, given as [67]

g0px | ξq “
e jk‖x´ξ‖

4π‖x ´ ξ‖ . (2.58)

Note that we can obtain this solution by taking the Fourier transform of the Green’s function

for the wave equation (2.56).

We assume that the infinite wall Z at z “ 0 is perfectly reflective. The problem that we have

to solve is then

´∆g ´ k2g “ δpx ´ ξq

x∇gpx | ξq,nzy “ 0 for x P Z,
(2.59)

where nz “ r0, 0, 1sJ is the boundary (wall) normal, equivalent to the hard wall boundary in

the wave equation. For the free-space Green’s function g0, the value of the gradient’s normal

component at the wall is not zero; we have to make it so. We do it in two steps.

First, we recall that because of the linearity of the Helmholtz equation and the properties

of the fundamental solution, the equation (2.59) is satisfied by any linear combination of funda-

mental solutions
řn
i“1 g0px | ξiq everywhere except at the boundary, and at the points ξi.

The second step is to place another, virtual source so that the boundary condition be satisfied.

This turns out to be an easy task: Symmetry suggests that a virtual source at the symmetric

position of ξ will create the same pressure on the wall from the opposite side, so that the gradient

of the pressure will be zero (the pressure itself will double, and we know that this is the correct

behavior). We can verify this analytically,

gpx | ξq “ g0px | ξq ` g0px | ξvq “
e jk0

?
pz´ζq2`%2

4π
a

pz ´ ζq2 ` %2
`

e jk0
?
pz`ζq2`%2

4π
a

pz ` ζq2 ` %2
, (2.60)

where x “ rx, y, zsJ, ξ “ rξ, η, ζsJ, %2 “ px´ ξq2 ` py ´ ηq2, and

ξv “ ξ ` 2 xξ,nzynz

is the mirror image of ξ in the plane z “ 0. The first term in (2.60) is the free-space Green’s

function g0, so it satisfies the Helmholtz equation with the source term δpx ´ ξq. The second

term is the fundamental solution for a virtual mirror source. Plugging in z “ 0, we see that

we get twice the pressure that would be there without the wall. Furthermore, it satisfies the

homogeneous equation.

To verify that the normal pressure gradient at the wall is zero, we only need to look at the

partial derivative with respect to the z coordinate:

Bg0

Bz
“ pz ´ ζq

e jk0
?
pz´ζq2`%2

!

1´
“

pz ´ ζq2 ` %2
‰´1{2

)

4π
“

pz ´ ζq2 ` %2
‰ .

For z “ 0, this derivative is an odd function of ζ, so the sum of the two terms satisfies the

boundary condition.

Finally, there is no problem with the PDE (2.59) not being satisfied at ξv because ξv is in

the virtual space behind the wall; the solution makes physical sense only in the halfspace z ą 0.
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ξ ξA

ξB ξC

z = 0

x = 0

Figure 2.10: Construction of the Green’s function for the Helmholtz equation in the intersection of
two halfspaces.

Green’s Function in a Quarter-Space Before discussing the scope of the IS method, let us work

out one more simple example. Consider the hard wall boundary as in Figure 2.10 defining the

region
 

x “ rx, y, zsJ
ˇ

ˇ z ą 0, x ą 0
(

. We would like to find the Green’s function in this setting

by imitating what we did for the halfspace.

We can start by placing a virtual source at ξA, to make the pressure gradient zero at Wall 1.

But this virtual source can only fix the solution at Wall 1, so we need to add another one at ξB
to fix it at Wall 2. Alas, when we add them both, the one at ξA changes the gradient at Wall 2,

and the one at ξB changes the gradient at Wall 1, making them both non-zero.

Intuition suggests that the original source produces pressure at Wall 1 which is matched by

the pressure coming from ξA, resulting in the zero gradient at Wall 1. But ξB helps the original

source from the same side, so A will be too weak to balance it out; similar reasoning holds

for the other source. Everything can be balanced out by adding a third virtual source at ξC
that helps both ξA and ξB from their sides, making everything click together. But ξC can be

seen as a second-order image source, a mirror image of a mirror image. That is, noting that

ξA “ ξ ` 2 xp1 ´ ξ,nzynz we can see that ξC “ ξA ` 2 xp2 ´ ξA,nxynx.

In summary, we have that

gpx | ξq “ g0px | ξq ` g0px | ξAq ` g0px | ξBq ` g0px | ξCq. (2.61)

It is straightforward to verify that this function satisfies both the free-space PDE and the bound-

ary conditions.

Scope of the Image Source Method Even though the IS method is used generously in compu-

tational acoustics, it is usually justified phenomenologically, by invoking geometrical arguments.

When the method is applied inside an enclosure (inside a room), successive reflections of virtual

sources generate a sum of fundamental solutions as a candidate for the Green’s function. This

sum has a finite number of terms only for a limited number of domains, illustrated in Figure

2.11. In any other domain, we obtain an infinite sum.

One should examine the convergence of this sum in some reasonable sense: It may not be

convergent, or it may converge conditionally. Keller [102] provided a list of all regions in 2D and
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Figure 2.11: Admissible regions for the image method in 2D (exhaustive list).

3D that are admissible for the application of the IS method. He showed that for the method to

yield a reasonable solution, all the involved lines (or planes in 3D) must meet at sharp angles

that are integer fractions of π.

2.3.3 Need for Geometrical Acoustics

We have seen that the IS method is rigorously valid in a very limited number of domains. Yet, it

is used in thousands of research papers to simulate the room acoustics (often in conjunction with

much involved stochastic methods for modeling diffuse sound energy distribution, and methods to

model edge diffraction). There are highly cited papers extending the IS method to more complex

geometries, such as Borish’s 1984 “Extension of the Image Method to Arbitrary Polyhedra” [19].

The answer to this conundrum is that the IS method is truly wrong in arbitrary geometries,

but it still accurately predicts the behavior or early reflections. To simulate room impulse

responses that are perceptually pleasing, and that faithfully model the measured responses,

the auralization community developed a host of sophisticated methods to model the energy

distribution in the room over time. But the early part is still modeled by the IS model.

As we are primarily interested in early reflections, the IS model is the ideal tool. Using it

as an approximation of reality corresponds to geometrical acoustics—an acoustical analogy to

geometrical optics. In geometrical acoustics, we assume that sound can be treated as a collection

of rays emanating from, say, a point source. This is of course only an approximation because of

a number of wave effects, diffuse reflections, diffractions and so on.

Modeling all these effects exactly is computationally prohibitive, and in fact not necessary.

Modern software for simulating the room acoustics produces results that are perceptually in-

distinguishable from real measurements. At its core are the principles of geometrical acoustics,

extended beyond simple reflections to geometric diffraction theory [103], and aided by various

stochastic methods.

2.3.4 Image Source Model in Rooms

We complete our account of waves and echoes by giving more details about the IS model. We

will use this model throughout the thesis, as it allows us to replace simple rooms by point sets.

According to the IS model, we can replace reflections by virtual sources. As illustrated

in Figure 2.12, virtual sources are mirror images of the true sources across the corresponding

reflecting walls. From the figure, the image si of the source s with respect to the ith wall is

computed as

si “ s ` 2 xpi ´ s,n iyn i, (2.62)
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si
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nj

sij

Figure 2.12: Illustration of the image source model for first- and second-order echoes. Vector n i is
the outward-pointing unit normal associated with the ith wall. Stars denote the image sources, and
rsij is the image source corresponding to the second-order echo. Sound rays corresponding to first
reflections are shown in purple, and the ray corresponding to the second-order reflection is shown in
green.

where n i is the unit normal, and pi any point belonging to the ith wall. The time of arrival

(TOA) of the echo from the ith wall is ti “ ‖si´r‖{c, where c is the speed of sound. Higher-order

image sources corresponding to higher-order echoes are obtained similarly as mirror images of

mirror images—we can express them in terms of lower order image sources. For example (again

with reference to Figure 2.12) the second-order image source corresponding to walls i and j is

given as

sij “ si ` 2 xpi ´ si,njynj . (2.63)

Beyond computing the locations of the image sources, we have to take care of their visibility

and validity (details can be found in [19]). As soon as the room has any obtuse angles, some of the

image source may not be visible to the receiver, depending on the source-receiver configuration;

this indicates the geometric flavor of the method.

2.4 Distances and Euclidean Distance Matrices: From Points

to EDMs and Back

We have seen in the previous section that the image source model allows us the model a room

by a set of points. When sound is emitted in the room, we can measure the time of arrival of the

sound at the microphones, both for the direct sound and for the echoes. Thus what we measure

is related to distances; when microphones and sources are synchronized, the TOAs correspond

to distances directly.

The principal EDM-related task is to reconstruct the original point set. This task is an

inverse problem to the simpler forward problem of finding the EDM given the points. Thus it
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is desirable to have an analytic expression for the EDM in terms of the point matrix. Beyond

convenience, we can expect such an expression to provide interesting structural insights.

Consider a collection of n points in a d-dimensional Euclidean space, ascribed to the columns

of matrix X P Rdˆn, X “ rx 1, x 2, ¨ ¨ ¨ , xns, x i P Rd. Then the squared distance between x i
and x j is given as

dij “ ‖x i ´ x j‖2, (2.64)

where ‖ ¨ ‖ denotes the Euclidean norm. Expanding the norm yields

dij “ px i ´ x jq
Jpx i ´ x jq “ xJi x i ´ 2xJi x j ` xJj x j . (2.65)

From here, we can read out the matrix equation for D “ rdijs,

EDMpX q
def
“ 1 diagpXJX qJ ´ 2XJX ` diagpXJX q1J, (2.66)

where 1 denotes the column vector of all ones and diagpAq is a column vector of the diagonal

entries of A. We see that EDMpX q is in fact a function of XJX . For later reference, it is

convenient to define an operator KpGq similar to EDMpX q, that operates directly on the Gram

matrix G “ XJX ,

KpGq def
“ diagpGq1J ´ 2G ` 1 diagpGqJ. (2.67)

The EDM assembly formula (2.66) or (2.67) reveals an important property: Because the rank

of X is at most d (it has d rows), then the rank of XJX is also at most d. The remaining two

summands in (2.66) have rank one. By rank inequalities, the rank of a sum of matrices cannot

exceed the sum of the ranks of the summands. With this observation, we proved one of the most

notable facts about EDMs:

Theorem 2.1 (Rank of EDMs)

Rank of an EDM corresponding to points in Rd is at most d` 2.

This is a powerful theorem: it states that the rank of an EDM is independent of the number of

points that generate it. In many applications, d is three or less, while n can be in the thousands.

According to Theorem 2.1, rank of such practical matrices is at most five. The proof of this

theorem is simple, but to appreciate that the property is not obvious, you may try to compute

the rank of the matrix of non-squared distances.

What really matters in Theorem 2.1 is the affine dimension of the point set—the dimension

of the smallest affine subspace that contains the points, denoted by affdimpX q. For example, if

the points lie on a plane (but not on a line or a circle) in R3, rank of the corresponding EDM

is four, not five. This will be clear from a different perspective in the next subsection, as any

affine subspace is just a translation of a linear subspace. An illustration for a 1D subspace of

R2 is provided in Figure 2.13: Subtracting any point in the affine subspace from all its points

translates it to the parallel linear subspace that contains the zero vector.

2.4.1 Essential Uniqueness

When solving an inverse problem, we need to understand what is recoverable and what is forever

lost in the forward problem. Representing sets of points by distances usually increases the size

of the representation. For most interesting n and d, the number of pairwise distances is larger

than the size of the coordinate description,
`

n
2

˘

ą nd, so an EDM holds more scalars than the

list of point coordinates. Nevertheless, some information is lost in this encoding, namely the
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BA
Figure 2.13: Illustration of the relationship between an affine subspace and its parallel linear subspace.
The points X “ rx 1, . . . ,x 4s live in an affine subspace—a line in R2 that does not contain the
origin. In (A), the vector x 1 is subtracted from all the points, and the new point list is X 1 “
r0 ,x 2 ´ x 1,x 3 ´ x 1,x 4 ´ x 1s. While the columns of X span R2, the columns of X 1 only span the
1D subspace of R2—the line through the origin. In (B), we subtract a different vector from all points:
the centroid 1

4X1 . The translated vectors X 2 “ rx 2
1, . . . ,x

2
4s again span the same 1D subspace.

information about the absolute position and orientation of the point set. Intuitively, it is clear

that rigid transformations (including reflections) do not change distances between the fixed points

in a point set. This intuitive fact is easily deduced from the EDM assembly formula (2.66). We

have seen in (2.66) and (2.67) that EDMpX q is in fact a function of the Gram matrix XJX .

This makes it easy to show algebraically that rotations and reflections do not alter the dis-

tances. Any rotation/reflection can be represented by an orthogonal matrix Q P Rdˆd acting on

the points x i. Thus for the rotated point set X r “ QX we can write

XJ
r X r “ pQX qJpQX q “ XJQJQX “ XJX , (2.68)

where we invoked the orthogonality of the rotation/reflection matrix, QJQ “ I .

Translation by a vector b P Rd can be expressed as

X t “ X ` b1J. (2.69)

Using diagpXJ
t X tq “ diagpXJX q ` 2XJb ` ‖b‖21 , one can directly verify that this transfor-

mation leaves (2.66) intact. In summary,

EDMpQX q “ EDMpX ` b1Jq “ EDMpX q. (2.70)

The consequence of this invariance is that we will never be able to reconstruct the absolute

orientation of the point set using only the distances, and the corresponding degrees of freedom

will be chosen freely. Different reconstruction procedures will lead to different realizations of the

point set, all of them being rigid transformations of each other. Figure 2.14 illustrates a point

set under a rigid transformation. It is clear that the distances between the points are the same

for all three shapes.
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Figure 2.14: Illustration of a rigid transformation in 2D. Here the points set is transformed as
RX `b1J, but the corresponding EDM does not change. Rotation matrix R “ r 0 1

´1 0s, corresponds
to a counterclockwise rotation of 90˝. The translation vector is b “ r3, 1sJ. The shape is drawn for
visual reference.

2.4.2 Reconstructing the Point Set From Distances

The EDM equation (2.66) hints at a procedure to compute the point set starting from the

distance matrix. Consider the following choice: let the first point x 1 be at the origin. Then the

first column of D contains the squared norms of the point vectors,

di1 “ ‖x i ´ x 1‖2 “ ‖x i ´ 0‖2 “ ‖x i‖2. (2.71)

Consequently, we can immediately construct the term 1 diagpXJX q and its transpose in (2.66),

as the diagonal of XJX contains exactly the norms squared ‖x i‖2. Concretely,
1 diagpXJX q “ 1dJ

1 , (2.72)

where d1 “ De1 is the first column of D . We thus obtain the Gram matrix from (2.66) as

G “ XJX “ ´1

2
pD ´ 1dJ

1 ´ d11
Jq. (2.73)

The point set can be found by an eigenvalue decomposition (EVD), G “ UΛU J, where

Λ “ diagpλ1, . . . , λnq with all eigenvalues λi non-negative, and U orthonormal, as G is a sym-

metric positive semidefinite matrix. Throughout the chapter we assume that the eigenvalues

are sorted in the order of decreasing magnitude, |λ1| ě |λ2| ě ¨ ¨ ¨ ě |λn|. We can now set
xX

def“
“

diag
`?

λ1, . . . ,
?
λd

˘

, 0 dˆpn´dq
‰

U J. Note that we could have simply taken Λ1{2U J as

the reconstructed point set, but if the Gram matrix really describes a d-dimensional point set,

the trailing eigenvalues will be zeros, so we choose to truncate the corresponding rows.

It is straightforward to verify that the reconstructed point set xX generates the original

EDM, D “ EDMpX q; as we have learned, xX and X are related by a rigid transformation.

The described procedure is called the classical MDS, with a particular choice of the coordinate

system: x 1 is fixed at the origin.

In (2.73) we subtract a structured rank-2 matrix p1dJ
1 `d11

Jq from D . A more systematic

approach to the classical MDS is to use a generalization of (2.73) by Gower [83]. Any such

subtraction that makes the right hand side of (2.73) positive semidefinite (PSD), i.e., that makes

G a Gram matrix, can also be modeled by multiplying D from both sides by a particular matrix.

This is substantiated in the following result.
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Algorithm 2.1 Classical MDS

1: function ClassicalMDS(D , d)

2: J Ð I ´ 1
n11J Ź Geometric centering matrix

3: G Ð ´ 1
2JDJ Ź Compute the Gram matrix

4: U , rλi s
n
i“1 Ð EVDpGq

5: return
“

diag
`?
λ1, . . . ,

?
λd

˘

, 0 dˆpn´dq
‰

UJ

6: end function

Theorem 2.2 (Gower [83])

D is an EDM if and only if

´
1

2
pI ´ 1sJqDpI ´ s1Jq (2.74)

is PSD for any s such that sJ1 “ 1 and sJD ‰ 0 .

In fact, if (2.74) is PSD for one such s, then it is PSD for all of them. In particular, define the

geometric centering matrix as

J
def
“ I ´

1

n
11J. (2.75)

Then ´ 1
2JDJ being positive semidefinite is equivalent to D being an EDM. Different choices

of s correspond to different translations of the point set.

The classical MDS algorithm with the geometric centering matrix is spelled out in Algorithm

2.1. Whereas so far we have assumed that the distance measurements are noiseless, Algorithm

2.1 can handle noisy distances too, as it discards all but the d largest eigenvalues.

It is straightforward to verify that (2.73) corresponds to s “ e1. Think about what this means

in terms of the point set: X e1 selects the first point in the list, x 1. Then X 0 “ X pI ´ e11Jq

translates the points so that x 1 is translated to the origin. Multiplying the definition (2.66) from

the right by pI ´ e11Jq and from the left by pI ´ 1eJ1 q will annihilate the two rank-1 matrices,

diagpGq1J and 1 diagpGqJ. We see that the remaining term has the form ´2XJ
0 X 0, and the

reconstructed point set will have the first point at the origin!

On the other hand, setting s “ 1
n1 places the centroid of the point set at the origin of the

coordinate system. For this reason, the matrix J “ I ´ 1
n11J is called the centering matrix.

To better understand why, consider how we normally center a set of points given in X .

First, we compute the centroid as the mean of all the points

x c “
1

n

n
ÿ

i“1

x i “
1

n
X 1 . (2.76)

Second, we subtract this vector from all the points in the set,

X c “ X ´ x c1
J “ X ´

1

n
X 11J “ X pI ´

1

n
11Jq. (2.77)

In complete analogy with the reasoning for s “ e1, we can see that the reconstructed point set

will be centered at the origin.
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2.4.3 Orthogonal Procrustes Problem

Since the absolute position and orientation of the points are lost when going over to distances,

we need a method to align the reconstructed point set with a set of anchors—points whose

coordinates are fixed and known.

This can be achieved in two steps, sometimes called Procrustes analysis. Ascribe the anchors

to the columns of Y , and suppose that we want to align the point set X with the columns of

Y . Let X a denote the submatrix (a selection of columns) of X that should be aligned with

the anchors. We note that the number of anchors—columns in X a—is typically small compared

with the total number of points—columns in X .

In the first step, we remove the means yc and xa,c from matrices Y and X a, obtaining the

matrices Y and X a. In the second step, termed orthogonal Procrustes analysis, we are searching

for the rotation and reflection that best maps X a onto Y ,

R “ arg min
Q:QQJ“I

‖QX a ´Y ‖2
F . (2.78)

The Frobenius norm ‖ ¨ ‖F is simply the `2-norm of the matrix entries, ‖A‖2
F

def
“

ř

a 2
ij “

tracepAJAq.

The solution to (2.78)—found by Schönemann in his PhD thesis [185]—is given by the singular

value decomposition (SVD). Let X aY
J
“ U ΣV J; then we can continue computing (2.78) as

follows

R “ arg min
Q:QQJ“I

‖QX a‖2
F ` ‖Y ‖2

F ´ tracepY JQX aq

“ arg max
rQ: rQ rQ

J
“I

tracep rQ Σq, (2.79)

where rQ
def
“ V JQU , and we used the orthogonal invariance of the Frobenius norm and the cyclic

invariance of the trace. The last trace expression in (2.79) is equal to
řn
i“1 σirqii. Noting that

rQ is also an orthogonal matrix, its diagonal entries cannot exceed 1. Therefore, the maximum

is achieved when rqii “ 1 for all i, meaning that the optimal rQ is an identity matrix. It follows

that R “ V UJ.

Once the optimal rigid transformation has been found, the alignment can be applied to the

entire point set as

RpX ´ xa,c1
Jq ` yc1

J. (2.80)

2.4.4 Counting the Degrees of Freedom

It is interesting to count how many degrees of freedom there are in different EDM related objects.

Clearly, for n points in Rd we have

#X “ nˆ d (2.81)

degrees of freedom: If we describe the point set by the list of coordinates, the size of the descrip-

tion matches the number of degrees of freedom. Going from the points to the EDM (usually)

increases the description size to 1
2npn´ 1q, as the EDM lists the distances between all the pairs

of points. By Theorem 2.1 we know that the EDM has rank at most d` 2.
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Let us imagine for a moment that we do not know any other EDM-specific properties of our

matrix, except that it is symmetric, positive, zero-diagonal (or hollow), and that it has rank

d ` 2. The purpose of this exercise is to count the degrees of freedom associated with such a

matrix, and to see if their number matches the intrinsic number of the degrees of freedom of the

point set, #X . If it did, then these properties would completely characterize an EDM. We can

already anticipate from Theorem 2.2 that we need more properties: a certain matrix related to

the EDM—as given in (2.74)—must be PSD. Still, we want to see how many degrees of freedom

we miss.

We can do the counting by looking at the EVD of a symmetric matrix, D “ U ΛUJ. The

diagonal matrix Λ is specified by d` 2 degrees of freedom, because D has rank d` 2. The first

eigenvector of length n takes up n ´ 1 degrees of freedom due to the normalization; the second

one takes up n´2, as it is in addition orthogonal to the first one; for the last eigenvector, number

pd` 2q, we need n´pd` 2q degrees of freedom. We do not need to count the other eigenvectors,

because they correspond to zero eigenvalues. The total number is then

#DOF “ pd` 2q
loomoon

Eigenvalues

`pn´ 1q ` ¨ ¨ ¨ ` rn´ pd` 2qs
looooooooooooooooomooooooooooooooooon

Eigenvectors

´ n
loomoon

Hollowness

“ nˆ pd` 1q ´
pd` 1q ˆ pd` 2q

2

For large n and fixed d, it follows that

#DOF

#X
„
d` 1

d
. (2.82)

Therefore, even though the rank property is useful and we will show efficient algorithms that

exploit it, it is still not a tight property (symmetry and hollowness included). For d “ 3, the

ratio (2.82) is 4
3 , so, loosely speaking, the rank property has 30% determining scalars too many,

which we need to set consistently. Put differently, we need 30% more data in order to exploit

the rank property than we need to exploit the full EDM structure. Again loosely phrased, we

can assert that for the same amount of data, the algorithms perform at least «30% worse if we

only exploit the rank property, without EDMness.

The one-third gap accounts for various geometrical constraints that must be satisfied. The

redundancy in the EDM representation is what makes denoising and completion algorithms

possible, and thinking in terms of degrees of freedom gives us a fundamental understanding

of what is achievable. Interestingly, the above discussion suggests that for large n and large

d “ opnq, little is lost by only considering rank.

Finally, in the above discussion, for the sake of simplicity, we ignored the degrees of freedom

related to the absolute orientation. These degrees of freedom, not present in the EDM, do not

affect the large-n behavior.

2.5 EDMs as a Practical Tool

We rarely have a perfect EDM. Not only are the entries of the measured matrix plagued by

errors, but often we can measure just a subset. There are various sources of error in distance



2.5. EDMs as a Practical Tool 37

measurements: we already know that in NMR spectroscopy, instead of exact distances we get

intervals. Measuring distance using received powers or TOAs is subject to noise, sampling errors

and model mismatch.

Missing entries arise because of the limited radio range, or because of the nature of the

spectrometer. Sometimes the nodes in the problem at hand are asymmetric by definition; in

microphone calibration we have two types: microphones and calibration sources. This results in

a particular block structure of the missing entries (we will come back to this in Chapter 4, but

you can fast-forward to Figure 4.11 for an illustration).

It is convenient to have a single statement for both EDM approximation and EDM completion,

as the algorithms described in this section handle them at once.

Problem 2.1

Let D “ EDMpX q. We are given a noisy observation of the distances between p ď
`

n
2

˘

pairs

of points from X . That is, we have a noisy measurement of 2p entries in D ,

rdij “ dij ` εij , (2.83)

for pi, jq P E, where E is some index set, and εij absorbs all errors. The goal is to reconstruct

the point set xX in the given embedding dimension, so that the entries of EDMpxX q are close

in some metric to the observed entries rdij .

To concisely write down completion problems, we define the mask matrix W as follows,

wij
def
“

#

1, pi, jq P E

0, otherwise.
(2.84)

This matrix then selects elements of an EDM through a Hadamard (entrywise) product. For

example, to compute the norm of the difference between the observed entries in A and B , we

write ‖W ˝ pA´Bq‖. Furthermore, we define the indexing AW to mean the restriction of A to

those entries where W is non-zero. The meaning of BW Ð AW is that we assign the observed

part of A to the observed part of B .

2.5.1 Exploiting the Rank Property

Perhaps the most notable fact about EDMs is the rank property established in Theorem 2.1:

The rank of an EDM for points living in Rd is at most d ` 2. This leads to conceptually

simple algorithms for EDM completion and denoising. Interestingly, these algorithms exploit

only the rank of the EDM. There is no explicit Euclidean geometry involved, at least not before

reconstructing the point set.

We have two pieces of information: a subset of potentially noisy distances, and the desired

embedding dimension of the point configuration. The latter implies the rank property of the

EDM that we aim to exploit. We may try to alternate between enforcing these two properties,

and hope that the algorithm produces a sequence of matrices that converges to an EDM. If it

does, we have a solution. Alternatively, it may happen that we converge to a matrix with the

correct rank that is not an EDM, or that the algorithm never converges. The pseudocode is

listed in Algorithm 2.2.

A different, more powerful approach is to leverage algorithms for low rank matrix completion

developed by the compressed sensing community. For example, OptSpace [104] is an algorithm for
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Algorithm 2.2 Alternating Rank-Based EDM Completion

1: function RankCompleteEDM(W , rD , d)

2: DW Ð rDW Ź Initialize observed entries

3: D11J´W Ð µ Ź Initialize unobserved entries

4: repeat

5: D Ð EVThresholdpD , d` 2q

6: DW Ð rDW Ź Enforce known entries

7: DI Ð 0 Ź Set the diagonal to zero

8: D Ð pDq` Ź Zero the negative entries

9: until Convergence or MaxIter

10: return D

11: end function

12: function EVThreshold(D , r)

13: U , rλis
n
i“1 Ð EVDpDq

14: Σ Ð diag
`

λ1, . . . , λr, 0, . . . , 0
loomoon

n´r times

˘

15: D Ð U ΣUJ

16: return D

17: end function

recovering a low-rank matrix from noisy, incomplete data. Let us take a look at how OptSpace

works. Denote by M P Rmˆn the rank-r matrix that we seek to recover, by Z P Rmˆn the

measurement noise, and by W P Rmˆn the mask corresponding to the measured entries; for

simplicity we choose m ď n. The measured noisy and incomplete matrix is then given as

ĂM “ W ˝ pM ` Z q. (2.85)

Effectively, this sets the missing (non-observed) entries of the matrix to zero. OptSpace aims to

minimize the following cost function,

F pA,S ,Bq
def
“

1

2
‖W ˝ pĂM ´ASBJ

q‖2
F , (2.86)

where S P Rrˆr, A P Rmˆr, and B P Rnˆr such that AJA “ BJB “ I . Note that S need not

be diagonal.

The cost function (2.86) is not convex, and minimizing it is a priori difficult [105] due to many

local minima. Nevertheless, Keshavan, Montanari and Oh [104] show that using the gradient

descent method to solve (2.86) yields the global optimum with high probability, provided that

the descent is correctly initialized.

Let ĂM “
řm
i“1 σia ib

J
i be the SVD of ĂM . Then we define the scaled rank-r projection of ĂM

as ĂM r
def
“ α´1

řr
i“1 σia ib

J
i . The fraction of observed entries is denoted by α, so that the scaling

factor compensates the smaller average magnitude of the entries in ĂM in comparison with M .

The SVD of ĂM r is then used to initialize the gradient descent, as detailed in Algorithm 2.3.

Two additional remarks are due in the description of OptSpace. First, it can be shown that

the performance is improved by zeroing the over-represented rows and columns. A row (resp.

column) is over-represented if it contains more than twice the average number of observed entries

per row (resp. column). These heavy rows and columns bias the corresponding singular vectors
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Algorithm 2.3 OptSpace [104]

1: function OptSpace(ĂM , r)

2: ĂM Ð TrimpĂM q

3: rA, rΣ , rB Ð SVDpα´1
ĂM q

4: A0 Ð First r columns of rA

5: B0 Ð First r columns of rB

6: S0 Ð arg min
SPRrˆr

F pA0,S ,B0q Ź Eq. (2.86)

7: A,B Ð arg min
AJA“BJB“I

F pA,S0,Bq Ź See the note below

8: return AS0BJ

9: end function

� Line 7: gradient descent starting at A0,B0

and singular values, so (perhaps surprisingly) it is better to throw them away. We call this step

“Trim” in Algorithm 2.3.

Second, the minimization of (2.86) does not have to be performed for all variables at once. In

[104], the authors first solve the easier, convex minimization for S , and then with the optimizer

S fixed, they find the matrices A and B using the gradient descent. These steps correspond to

lines 6 and 7 of Algorithm 2.3.

2.5.2 Multidimensional Scaling

Multidimensional scaling refers to a group of techniques that, given a set of noisy distances,

find the best fitting point conformation. It was originally proposed in psychometrics [114, 206]

to visualize the (dis-)similarities between objects. Initially, MDS was defined as the problem of

representing distance data, but now the term is commonly used to refer to methods for solving

the problem [18].

Various cost functions were proposed for solving MDS. In Section 2.4.2, we already encoun-

tered one method: the classical MDS. This method minimizes the Frobenius norm of the dif-

ference between the input matrix and the Gram matrix of the points in the target embedding

dimension.

The Gram matrix contains inner products, but it is better to directly work with the distances.

A typical cost function represents the dissimilarity of the observed distances and the distances

between the estimated point locations. An essential observation is that the feasible set for these

optimizations is not convex (EDMs with embedding dimensions smaller than n ´ 1 lie on the

boundary of a cone [44], which is a non-convex set).

A popular dissimilarity measure is raw stress [114], defined as the value of

minimize
XPRdˆn

ÿ

pi,jqPE

ˆ

b

EDMpX qij ´

b

rdij

˙2

, (2.87)

where E defines the set of revealed elements of the distance matrix D . The objective function

can be concisely written as
›

›W ˝
`
a

EDMpX q ´
a

rD
˘
›

›

2

F
; a drawback of this cost function is

that it is not globally differentiable.

Another well-known cost function, first studied by Takane, Young and De Leeuw [198], is
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s-stress,

minimize
XPRdˆn

ÿ

pi,jqPE

´

EDMpX qij ´ rdij

¯2

. (2.88)

Again, we write the objective concisely as
›

›W ˝
`

EDMpX q ´ rD
˘
›

›

2

F
. Conveniently, the s-stress

objective is everywhere differentiable, but at a disadvantage that it puts more weight on errors

in larger distances. Gaffke and Mathar [76] propose an algorithm to find the global minimum of

the s-stress function for embedding dimension d “ n´ 1. EDMs with this embedding dimension

exceptionally constitute a convex set [44], but we are typically interested in embedding dimensions

much smaller than n. The s-stress minimization in (2.88) is not convex for d ă n ´ 1. It

was analytically shown to have saddle points [162], but interestingly, no analytical non-global

minimizer has been found [162].

Browne proposed a method for computing s-stress based on Newton-Raphson root finding

[26]. Glunt reports that the method by Browne converges to the global minimum of (2.88) in

90% of the test cases in his dataset2 [78].

The cost function in (2.88) is separable across points i and across coordinates k, which is

convenient for distributed implementations. Parhizkar [162] proposed an alternating coordinate

descent method that leverages this separability, by updating a single coordinate of a particular

point at a time. The s-stress function restricted to the kth coordinate of the ith point is a

fourth-order polynomial,

fpx;αpi,kqq “
4
ÿ

`“0

α
pi,kq
` x`, (2.89)

where αpi,kq lists the polynomial coefficients for ith point and kth coordinate. For example,

α
pi,kq
0 “ 4

ř

j wij , that is, four times the number of points connected to point i. Expressions for

the remaining coefficients are given in [162]; in the pseudocode (Algorithm 2.4), we assume that

these coefficients are returned by the function “GetQuadricCoeffs”, given the noisy incomplete

matrix rD , the observation mask W and the dimensionality d. The global minimizer of (2.89)

can be found analytically by calculating the roots of its derivative (a cubic). The process is

then repeated over all coordinates k, and points i, until convergence. The resulting algorithm

is remarkably simple, yet empirically converges fast. It naturally lends itself to a distributed

implementation. We spell it out in Algorithm 2.4.

When applied to a large dataset of random, noiseless and complete distance matrices, Algo-

rithm 2.4 converges to the global minimum of (2.88) in more than 99% of the cases [162].

2.5.3 Semidefinite Programming

Recall the characterization of EDMs (2.74) in Theorem 2.2. It states that D is an EDM if and

only if the corresponding geometrically centered Gram matrix ´ 1
2JDJ is positive-semidefinite.

Thus, it establishes a one-to-one correspondence between the cone of EDMs, denoted by EDMn,

and the intersection of the symmetric positive-semidefinite cone Sn` with the geometrically cen-

tered cone Snc . The latter is defined as the set of all symmetric matrices whose column sum

vanishes,

Snc “
!

G P Rnˆn | G “ GJ, G1 “ 0
)

. (2.90)

2While the experimental setup of Glunt [78] is not detailed, it was mentioned that the EDMs were produced
randomly.



2.5. EDMs as a Practical Tool 41

Algorithm 2.4 Alternating Descent [162]

1: function AlternatingDescent( rD ,W , d)

2: X P Rdˆn Ð X 0 “ 0 Ź Initialize the point set

3: repeat

4: for i P t1, ¨ ¨ ¨ , nu do Ź Points

5: for k P t1, ¨ ¨ ¨ , du do Ź Coordinates

6: αpi,kq Ð GetQuadricCoeffspW , rD , dq

7: xi,k Ð arg minx fpx;αpi,kqq Ź Eq. (2.89)

8: end for

9: end for

10: until Convergence or MaxIter

11: return X

12: end function

We can use this correspondence to cast EDM completion and approximation as semidefinite

programs. While (2.74) describes an EDM of an n-point configuration in any dimension, we are

often interested in situations where d ! n. It is easy to adjust for this case by requiring that the

rank of the centered Gram matrix be bounded. One can verify that

D “ EDMpX q

affdimpX q ď d

+

ðñ

#

´ 1
2JDJ ľ 0

rankpJDJ q ď d,
(2.91)

when n ě d. That is, EDMs with a particular embedding dimension d are completely character-

ized by the rank and definiteness of JDJ .

Now we can write the following rank-constrained semidefinite program for solving Problem

2.1,

minimize
G

‖W ˝

´

rD ´KpGq
¯

‖2
F

subject to rankpGq ď d

G P Sn` X Snc .

(2.92)

The second constraint is just a shorthand for writing G ľ 0, G1 “ 0 . We note that this is

equivalent to MDS with the s-stress cost function, thanks to the rank characterization (2.91).

Unfortunately, the rank property makes the feasible set in (2.92) non-convex, and solving it

exactly becomes difficult. This makes sense, as we know that s-stress is not convex. Nevertheless,

we may relax the hard problem, by simply omitting the rank constraint, and hope to obtain a

solution with the correct dimensionality,

minimize
G

‖W ˝

´

rD ´KpGq
¯

‖2
F

subject to G P Sn` X Snc .
(2.93)

We call (2.93) a semidefinite relaxation (SDR) of the rank-constrained program (2.92).

The constraint G P Snc , or equivalently, G1 “ 0 , means that there are no strictly positive

definite solutions (G has a nullspace, so at least one eigenvalue must be zero). In other words,

there exist no strictly feasible points [113]. This may pose a numerical problem, especially for

various interior point methods. The idea is then to reduce the size of the Gram matrix through
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an invertible transformation, somehow removing the part of it responsible for the nullspace. In

what follows, we describe how to construct this smaller Gram matrix.

A different, equivalent way to phrase the multiplicative characterization (2.74) is the following

statement: a symmetric hollow matrix D is an EDM if and only if it is negative semidefinite

on t1u
K

(on all vectors t such that tJ1 “ 0). Let us construct an orthonormal basis for this

orthogonal complement—a subspace of dimension pn ´ 1q—and arrange it in the columns of

matrix V P Rnˆpn´1q. We demand

V J1 “ 0

V JV “ I .
(2.94)

There are many possible choices for V , but all of them obey that V V J
“ I ´ 1

n11J “ J . The

following choice is given in [4],

V “

»

—

—

—

—

—

–

p p ¨ ¨ ¨ p

1` q q ¨ ¨ ¨ q

q 1` q ¨ ¨ ¨ q
... ¨ ¨ ¨

. . .
...

q q ¨ ¨ ¨ 1` q

fi

ffi

ffi

ffi

ffi

ffi

fl

, (2.95)

where p “ ´1{pn`
?
nq and q “ ´1{

?
n.

With the help of the matrix V , we can now construct the sought Gramian with reduced

dimensions. For an EDM D P Rnˆn,

GpDq def
“ ´

1

2
V JDV (2.96)

is an pn ´ 1q ˆ pn ´ 1q PSD matrix. This can be verified by substituting (2.96) in (2.67).

Additionally, we have that

KpV GpDqV J
q “ D . (2.97)

Indeed, H ÞÑ KpV H V J
q is an invertible mapping from Sn´1

` to EDMn whose inverse is ex-

actly G. Using these notations we can write down an equivalent optimization program that is

numerically more stable than (2.93) [4]:

minimize
H

‖W ˝

´

rD ´KpV H V J
q

¯

‖2
F

subject to H P Sn´1
` .

(2.98)

On the one hand, with the above transformation the constraint G1 “ 0 became implicit in

the objective, as V H V J1 ” 0 by (2.94); on the other hand, the feasible set is now the full

semidefinite cone Sn´1
` .

Still, as Krislock & Wolkowicz mention [113], by omitting the rank constraint we allow the

points to move about in a larger space, so we may end up with a higher-dimensional solution

even if there is a completion in dimension d.

There exist various heuristics for promoting lower rank. One such heuristic involves the trace

norm—the convex envelope of rank. The trace or nuclear norm is studied extensively by the

compressed sensing community. In contrast to the common wisdom in compressed sensing, the

trick here is to maximize the trace norm, not to minimize it. The mechanics are as follows:

maximizing the sum of squared distances between the points will stretch the configuration as
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Algorithm 2.5 Semidefinite Relaxation (Matlab/CVX)

1 function [EDM, X] = sdr complete edm(D, W, lambda)
2

3 n = size(D, 1);
4 x = -1/(n + sqrt(n));
5 y = -1/sqrt(n);
6 V = [y*ones(1, n-1); x*ones(n-1) + eye(n-1)];
7 e = ones(n, 1);
8

9 cvx begin sdp
10 variable G(n-1, n-1) symmetric;
11 B = V*G*V';
12 E = diag(B)*e' + e*diag(B)' - 2*B;
13 maximize trace(G) ...
14 - lambda * norm(W .* (E - D), 'fro');
15 subject to
16 G >= 0;
17 cvx end
18

19 [U, S, V] = svd(B);
20 EDM = diag(B)*e' + e*diag(B)' - 2*B;
21 X = sqrt(S)*V';

much as possible, subject to available constraints. But stretching favors smaller affine dimensions

(imagine pulling out a roll of paper, or stretching a bent string). Maximizing the sum of squared

distances can be rewritten as maximizing the sum of norms in a centered point configuration—

but that is exactly the trace of the Gram matrix G “ ´1
2JDJ [220]. This idea has been

successfully put to work by Weinberger and Saul [220] in manifold learning, and by Biswas et al.

in SNL [17].

Noting that tracepH q “ tracepGq because tracepJDJ q “ tracepV JDV q, we write the

following SDR,

maximize
H

tracepH q ´ λ‖W ˝
`

rD ´KpV H V J
q
˘

‖F
subject to H P Sn´1

` . (2.99)

Here we opted to include the data fidelity term in the Lagrangian form, as proposed by Biswas

[17], but it could also be moved to constraints. Finally, in all of the above relaxations, it

is straightforward to include upper and lower bounds on the distances. Because the bounds

are linear constraints, the resulting programs remain convex; this is particularly useful in the

molecular conformation problem. A Matlab/CVX [85, 84] implementation of the SDR (2.99) is

given in Algorithm 2.5.

2.5.4 Performance Comparison of Algorithms

We compare the described algorithms on the task of EDM completion. The entries to delete are

chosen uniformly at random. In Figure 2.15, we assume that the observed entries are known

exactly, and we plot the success rate (percentage of accurate EDM reconstructions) against the

number of deletions. Accurate reconstruction is defined in terms of the relative error. Let D be

the true, and pD the estimated EDM. The relative error is then } pD ´D}F {}D}F , and we declare

success if this error is below 1%.
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Figure 2.15: Comparison of different algorithms applied to completing an EDM with random dele-
tions. For every number of deletions, we generated 2000 realizations of 20 points uniformly at random
in a unit square. Distances to delete were chosen uniformly at random among the resulting
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“ 190

pairs; 20 deletions correspond to « 10% of the number of distance pairs and to 5% of the number of
matrix entries; 150 deletions correspond to « 80% of the distance pairs and to « 38% of the number
of matrix entries. Success was declared if the Frobenius norm of the error between the estimated
matrix and the true EDM was less than 1% of the Frobenius norm of the true EDM.

To generate Figure 2.16 we varied the amount of random, uniformly distributed jitter added

to the distances, and for each jitter level we plotted the relative error. The exact values of

intermediate curves are less important than the curves for the smallest and the largest jitter,

and the overall shape of the ensemble.

A number of observations can be made about the performance of algorithms. Notably,

OptSpace (Algorithm 2.3) does not perform well for randomly deleted entries when n “ 20;

it was designed for larger matrices. For this matrix size, the mean relative reconstruction error

achieved by OptSpace is the worst of all algorithms (Figure 2.16). In fact, the relative error in

the noiseless case was rarely below the success threshold (set to 1%) so we omitted the corre-

sponding near-zero curve from Figure 2.15. To fully exploit OptSpace, n should be much larger,

in the thousands or tens of thousands.

SDR (Algorithm 2.5) performs well in all scenarios. For both the random deletions and

the MDU, it has the highest success rate, and it behaves well with respect to noise. Alternating

coordinate descent (Algorithm 2.4) performs slightly better in noise for small number of deletions

and large number of calibration events, but Figure 2.15 indicates that for certain realizations

of the point set it gives large errors. If the worst-case performance is critical, SDR is a better

choice. We note that in the experiments involving the SDR, we have set the multiplier λ in

(2.99) to the square root of the number of missing entries. This choice was empirically found to

perform well; performance could be improved by a more careful choice (in particular, by making

it a function of the noise level).

The main drawback of SDR is speed; it is the slowest among the tested algorithms. To solve

the semidefinite program we used CVX [85, 84], a Matlab interface to various interior point

methods. For larger matrices (e.g., n “ 1000), CVX runs out of memory on a desktop computer,

and essentially never finishes. Matlab implementations of alternating coordinate descent, rank

alternation (Algorithm 2.2), and OptSpace are all much faster.
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Figure 2.16: Comparison of different algorithms applied to completing an EDM with random deletions
and noisy distances. For every number of deletions, we generated 1000 realizations of 20 points
uniformly at random in a unit square. In addition to the number of deletions, we varied the amount
of jitter added to the distances. Jitter was drawn from a centered uniform distribution, with the level
increasing in the direction of the arrow, from Ur0, 0s (no jitter) for the darkest curve at the bottom,
to Ur´0.15, 0.15s for the lightest curve at the top, in 11 increments. For every jitter level, we plotted
the mean relative error } pD ´D}F {}D}F for all algorithms.

To summarize, for smaller matrices the SDR seems to be the best overall choice. For large

matrices the SDR becomes too slow and one should turn to alternating coordinate descent, rank

alternation or OptSpace. Rank alternation is the simplest algorithm, but alternating coordi-

nate descent performs better. For very large matrices (n on the order of thousands or tens of

thousands), OptSpace becomes the most attractive solution. We note that we deliberately re-

frained from making detailed running time comparisons, due to the diverse implementations of

the algorithms.

2.6 Conclusion

Two key concepts introduced in this chapter are the image source model and Euclidean distance

geometry. We will see in the following chapters how, when appropriately combined, they give rise

to conceptually simple and robust algorithms for solving various geometric inverse problems in

room acoustics (and beyond). This chapter has laid out the material and properties we will need

to do so effectively, such as the results on rank and essential uniqueness of EDMs, and algorithms

to reconstruct point configurations from noisy, incomplete sets of distances. The trick will always

be the same: Use the Euclidean distance geometry to lift the distance information extracted from

1D room impulse responses to 3D points that are the image sources.





Chapter 3

Can One Hear the Shape of a
Room?*

What do you see when you turn out the light?

I can’t tell you, but I know it’s mine.

The Beatles

3.1 Introduction

In a famous paper [99], Mark Kac asks the catchy question “Can one hear the shape of a drum?”.

More concretely, he asks whether two membranes of different shapes necessarily resonate at

different frequencies.1 This problem is related to a question in astrophysics [80], and the answer

turns out to be negative: Using tools from group representation theory, Gordon, Webb and

Wolpert [81, 82] presented several elegantly constructed counterexamples, including the two

polygonal drum shapes shown in Figure 3.1. Although geometrically distinct, the two drums

have the same resonant frequencies.

We ask a similar question about rooms. Assume you are blindfolded inside a room; you

snap your fingers and listen to echoes. Can you hear the shape of the room? Intuitively, and for

simple room shapes, we know that this is possible. A shoebox room, for example, has well-defined

modes, from which we can derive its size. But the question is challenging in more general cases,

even if we presume that the room impulse response (RIR) contains an arbitrarily long sequence of

echoes (with an ideal, noiseless measurement) that should ultimately specify the room geometry.

1Resonant frequencies correspond to the square root of the eigenvalues of the Laplacian on a 2D domain.

*This chapter describes results from joint works with Reza Parhizkar, Andreas Walther, Yue M. Lu, and Martin
Vetterli [54, 56].

47
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It might appear that Kac’s problem and the question we pose are equivalent. This is not the

case, for the sound of a drum depends on more than its set of resonant frequencies (eigenvalues)—

it also depends on its resonant modes (eigenvectors). In the paper “Drums that sound the same”

[34], Chapman explains how to construct drums of different shapes with matching resonant

frequencies. Still, these drums would hardly sound the same if hit with a drumstick. They share

the resonant frequencies, but the impulse responses are different, and we want to hear rooms

from impulse responses. Even a single drum struck at different points sounds differently. This is

shown clearly in Figure 1.

Another difference is that we are not interested in the uniqueness for all instances. We only

want to show that, generically, most of the rooms that satisfy our modeling assumptions can be

heard ; if rooms or microphone locations are chosen at random, we want the uniqueness to be

almost sure. Differently from Kac, we are more interested in algorithms that reconstruct rooms

from echoes.

Certain animals can indeed “hear” their environment. Bats, dolphins and some birds probe

the environment by emitting sounds and then use echoes to navigate. Remarkably, there are

people that can do the same, or better. Daniel Kish produces clicks with his mouth, and uses

echoes to learn the shape, distance and density of objects around him [179]. The main cues for

human echolocators are the early reflections; our computer algorithms also use early reflections

to calculate shapes of rooms.

Many applications benefit from knowing the room geometry. Indoor sound source localization

is usually considered difficult, because the reflections are difficult to predict and they masquerade

as sources. Yet, somewhat surprisingly, in rooms one can do localization more accurately than

in free-field if the room geometry is known [8, 175, 177, 61]. In teleconferencing, auralization

and virtual reality, one often needs to compensate the room influence or create an illusion of a

specific room. The success of these tasks largely depends on the accurate modeling of the early

reflections [128], which in turn requires the knowledge of where the walls are.

All but a few works (which appeared after our paper written in 2010 and presented at ICASSP

2011 [54]) employ array processing methods to reconstruct the shape of a room. The few works

that attempt to do it from a single RIR restrict themselves to simple scenarios. Marković et al.

[138] discuss the estimation of the geometry of rectangular and L-shaped rooms from a single

impulse response. They use a genetic algorithm to address the global optimization problem with

many local minima; this approach does not allow them to analyze the problem theoretically or

to provide guarantees about the uniqueness of the solution. Furthermore, it is not possible to

guarantee that the estimated solution is the correct one, even in the noiseless case.

Moore, Brookes, and Naylor [152] propose to estimate the geometry of a 2D rectangular room

from one impulse response using the regularities in the times of arrivals of echoes. For a simple

rectangular room, these have simple expressions that are functions of the lengths of the room

sides, which is leveraged by their least-squares algorithm.

In this chapter, we first discuss room estimation from a single measured RIR, that is, by

only using a single static microphone. This part of the discussion is primarily theoretical; our

goal is to show that a single room impulse response is sufficient to reconstruct convex polyhedral

rooms in theory, although it presents certain challenges in practice. We first assume that we

receive echoes from all the first-order and second-order image sources, and then show how this

assumption can be relaxed.

Next, we show how to reconstruct a convex polyhedral room from a few impulse responses.

When using more than one microphone, many of the assignment challenges from the single-

microphone case disappear, mostly because we can restrict ourselves to first-order echoes. Our



3.2. Can One Hear the Shape of a Drum? 49

method relies on learning from which wall a particular echo originates. There are two challenges

with this approach: First, it is difficult to extract echoes from RIRs; and second, the microphones

receive echoes from walls in different orders. The main novelty in our approach is an algorithm

that selects the “correct” combinations of echoes, specifically those that actually correspond to

walls. The need for assigning echoes to walls arises from the omnidirectionality of the source and

the receivers. The assignment problem is combinatorial (though of a small size) in the general

case of noisy distances. For small noise, however, we show that it can be solved in polynomial

time.

There have been several attempts to estimate the room geometry from RIRs. In [7], the

problem is formulated in 2D, and the authors take advantage of multiple source locations to

estimate the geometry. In [176] the authors address the problem by `1-regularized template

matching with a measured dictionary of impulse responses. Their approach requires measuring

a very large matrix of impulse responses for a fixed source-receiver geometry. The authors in

[200] propose a 3D room reconstruction method by assuming that the array is small enough so

that there is no need to assign echoes to walls. They use sparse RIRs obtained by directing the

loudspeaker to many orientations and processing the obtained responses. In contrast, our method

works with arbitrary measurement geometries. Furthermore, we prove that the first-order echoes

provide a unique description of the room for almost all setups. A subspace-based formulation

allows us to use the minimal number of microphones (4 microphones in 3D). It is impossible to

further reduce the number of microphones, unless we consider higher-order echoes, as attempted

in [54]. However, the arrival times of higher-order echoes are often challenging to obtain and

delicate to use, both for theoretical and for practical reasons. Therefore, in the proposed method,

we choose to use more than one microphone, thus avoiding the need for higher-order echoes.

In addition to theoretical analysis, we validate the results experimentally by “hearing” rooms

on EPFL campus. Moreover, by running it in an alcove of the Lausanne cathedral, we show that

the algorithm still gives a useful output even when the room thoroughly violates the assumptions

of it being a convex polyhedron.

3.2 Can One Hear the Shape of a Drum?

Kac’s 1966 question is a question about well-posedness of the “shape from resonant frequencies”

inverse problem. More concretely, it is a question about uniqueness of the solution: Are there

geometrically distinct drums with the same infinity of resonant frequencies? If there were none,

it would imply drum hearability provided that we have a good algorithm or a very powerful

computer that could solve the inverse spectral problem.

Let us state Kac’s question more precisely. It is known that the oscillations of a membrane

of shape Ω are governed by the wave equation,

∆u´
1

c2
B2u

Bt2
“ 0 inside Ω

u “ 0 on BΩ.

(3.1)

We can try to solve (3.1) by separating the spatial and the temporal variables,

upx , tq “ νpx qψptq. (3.2)
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Nodal line: a drum hit here 
will not ring this mode

Anti-node: a drum hit here 
will ring strongly with 

Figure 3.1: Figure shows two isospectral drums [66]. Although geometrically distinct, these drums
have the same resonant frequencies. The standing wave corresponding to the eigenvalue λ6 is shown
for both drums. It is clear that this mode will be excited with different amplitudes, depending on
where we hit the drum. Extremes are nodes and anti-nodes.

Plugging this into (3.1), we can group together the spatial and the temporal parts,

∆νpx q

νpx q
“

1

c2
B2ψptq

Bt2

N

ψptq. (3.3)

The left-hand side does not change with t, so the right-hand side must be a constant. Similarly,

the left-hand side must be a constant too, so the two sides must equal the same constant. Calling

this constant λ, we get for the spatial part an eigenvalue problem that

∆νpx q “ λνpx q inside Ω

νpx q “ 0 on BΩ,
(3.4)

which has a solution only for specific values of λ—the Dirichlet eigenvalues of the Laplacian on

Ω. In fact, for compact Ω, it is known that there is a discrete set of eigenvalues for which (3.4)

admits a solution, and this set is called the spectrum of the Laplacian ∆ on Ω.

Kac’s question can then be asked precisely as follows. Let Ω1 and Ω2 be two (open) plane

regions bounded by curves BΩ1 and BΩ2. Consider the two eigenvalue problems

∆νpx q “ λνpx q for x P Ω1 ∆µpx q “ κµpx q for x P Ω2 (3.5)

νpx q “ 0 for x P BΩ1 µpx q “ 0 for x P BΩ2 (3.6)

and assume that for each n, the sorted eigenvalue λn for Ω1 equals the sorted eigenvalue κn for

Ω2. Does it imply that Ω1 and Ω2 are congruent in the sense of Euclidean geometry?



3.2. Can One Hear the Shape of a Drum? 51

3.2.1 Historical Notes and Kac’s Paper

In his paper, Kac attributes the catchy phrasing of the question to Lipman Bers, and the ques-

tion itself to Salomon Bochner. We mentioned in the introduction to this chapter that this

problem is related to a problem in astrophysics; in fact the astrophysics reference predates the

Kac/Bers/Bochner question about drums by many decades.

Sir Arthur Schuster (1851–1934) is credited with being one of the founding fathers of astro-

physics. He coined the term spectroscopy, and he is believed to be the first one to put forward

the idea of solving inverse problems of atomic and molecular structure using spectroscopy. At

the time, molecular spectra were used only to infer the chemical composition of, for example,

the Sun. But he coined the term spectroscopy to refer exactly to the problem of learning about

the structure of atoms and molecules from spectra they can generate. In his 1882 report to the

British Association, entitled “The Genesis of Spectra”, Schuster wrote

“We know a great deal more about the forces which produce the vibrations of sound

than about those which produce the vibrations of light. To find out the different

tunes sent out by a vibrating system is a problem which may or may not be solvable

in certain special cases, but it would baffle the most skillful mathematician to solve

the inverse problem and to find out the shape of a bell by means of the sounds which

it is capable of sending out. And this is the problem which ultimately spectroscopy

hopes to solve in the case of light. In the meantime we must welcome with delight

even the smallest step in the desired direction.”

So Schuster posed a question about bells very similar to the more famous question about drums

already in 1882!

There is an interesting anecdote related to Schuster’s question. The famous French philoso-

pher Auguste Comte (1798–1857) wrote in his magnum opus “Cours de la Philosophie Positive”

in 1835 [39, 40] that

“It is easy to describe clearly the character of astronomical science, from its being

thoroughly separated, in our time, from all theological and metaphysical influence.

Looking at the simple facts of the case, it is evident that though three of our senses

take cognizance of distant objects, only one of the three perceives the stars. The

blind could know nothing of them; and we who see, after all our preparation, know

nothing of stars hidden by distance, except by induction. Of all objects, the planets

are those which appear to us under the least varied aspect. We see how we may

determine their forms, their distances, their bulk, and their motions, but we can never

know anything of their chemical or mineralogical structure; and, much less, that of

organized beings living on their surface. We may obtain positive knowledge of their

geometrical and mechanical phenomena; but all physical, chemical, physiological, and

social researches, for which our powers fit us on our own earth, are out of the question

in regard to the planets. Whatever knowledge is obtainable by means of the sense of

Sight, we may hope to attain with regard to the stars, whether we at present see the

method or not; and whatever knowledge requires the aid of other senses, we must at

once exclude from our expectations, in spite of any appearances to the contrary.”2

2“...il est indispensable, en sortant des définitions vagues qu’on en donne encore habituellement, de com-
mencer par circonscrire avec exactitude le véritable champ des connaissances positives que nous pouvons acquérir
à l’égard des astres. ... Toute recherche qui n’est point finalement réductible à de simples observations visuelles
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Only two years after Comte’s death in 1857, Gustav Kirchoff and Robert Bunsen discovered (in

Bunsen’s own words unexpectedly) the cause of the dark lines in the solar spectra, and set out

to determine the chemical composition of the Sun.

Curiously, there is another bad prediction related to Kac’s question, made by a scholar of

equal stature as Comte. While discussing what we can hear from the spectrum, Kac mentions

that one can hear the area of a drum (or in general, the volume of a region). This is the subject of

a conjecture by Hendrik Lorentz which he posed while lecturing at the end of 1910 in Göttingen.

It was known at the time that the result holds in many particular cases, and Lorentz correctly

believed that it holds in general. David Hilbert predicted that it would not be proved during his

lifetime, but only two years later, his student Hermann Weyl proved it using the tools of integral

equations which were developed precisely by Hilbert several years earlier.

3.2.2 Counterexamples: Isospectral Drums

Kac’s question was answered in 1992 by Gordon, Webb and Wollpert, in an announcement in the

Bulletin of the American mathematical society appropriately titled “One Cannot Hear the Shape

of a Drum” [82] and the accompanying full paper [81]. They exhibited isospectral drums with

the same set of resonant frequencies, or spectrum. We note that the actual resonant frequency

is equal to the square root of the eigenvalue λ in (3.4).

The reader might be interested by the construction of a counterexample. Here, we explain

one given by Gordon & Webb in [80]. The beauty of these counterexamples is that they can be

understood by elementary means; but how to systematically arrive at such constructions is more

involved and requires tools from group representation theory [81].

To understand the counterexample we will use two properties of the solutions to the eigenvalue

problem (3.4) (which is actually a Helmholtz equation):

(i) Linearity: Linear combination of solutions is again a solution,

(ii) Reflection principle: If we have a solution on a domain bounded by a straight line segment

with the clamped (Dirichlet) boundary condition, we can extend the domain and the solu-

tion by mirroring it over the line segment and changing the sign. This procedure ensures

that the solution continues smoothly into the mirrored domain.

Now consider the two drumheads in Figure 3.2 (of the same shape as in Figure 3.1). The

drums are segmented and annotated as in [80]. Let the vibrations of D1 be described by a

function ϕ supported on the drum. The function ϕ satisfies both the equation and the boundary

condition for a given λ. Let A,B, . . . , G denote the restrictions of ϕ to corresponding triangular

segments as indicated in the figure.

There happens to be a way to “transplant” the waveform from D1 to D2, so that the resulting

waveform on D2 still satisfies the equation and the boundary condition. This transplantation is

effected by placing linear combinations of A,B, . . . , G on D2, as indicated in Figure 3.2, while

observing the edge colors to ensure proper orientations.

nous est donc nécessairement interdite au sujet des astres, qui sont ainsi de tous les êtres naturels ceux que nous
pouvons connâıtre sous les rapports les moins variés. Nous concevons la possibilité de déterminer leurs formes,
leurs distances, leurs grandeurs et leurs mouvemens; tandis que nous ne saurions jamais étudier par aucun moyen
leur composition chimique, ou leur structure minéralogique, et, à plus forte raison, la nature des corps organisés
qui vivent à leur surface, etc. En un mot, pour employer immédiatement les expressions scientifiques les plus
précises, nos connaissances positives par rapport aux astres sont nécessairement limitées à leurs seuls phénomènes
géométriques et mécaniques, sans pouvoir nullement embrasser les autres recherches physiques, chimiques, phys-
iologiques, et même sociales, que comportent les êtres accessibles à tous nos divers moyens d’observation.”
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Figure 3.2: Isospectral drums with annotations as in [80].

We can check that the transplanted waveform indeed satisfies both the equation and the

boundary condition. Consider for example triangles A ` C ` E and ´A ` D ` F on D2. We

require that the corresponding waveforms combine smoothly over the green edge. Triangles C

and D share the green edge on D1. The same holds for triangles E and F . This means that

they combine smoothly on D1 so C ` E and D ` F will combine smoothly on D2 as well. Now

observe that the green edge of A on D1 is the boundary edge, so A vanishes along the green

edge. By reflection principle we can continue A smoothly over the green edge by mirroring it and

multiplying by ´1. Finally, this implies that A` C ` E and ´A`D ` F will stitch smoothly.

In order to check that the boundary conditions are satisfied, consider for example the triangle

´A`B `G and its purple boundary edge. Triangles A and B share the purple edge in D1, so

they necessarily have the same value on the purple edge. Thus ´A`B is zero over the edge. In

triangle G, the purple edge is the boundary edge, so G is zero on that edge, and ´A`B`G must

be zero on the boundary edge. This check can be effected for all triangles in D2. We finally note

that the equation is satisfied simply because linear combinations of solutions are again solutions.

We showed that the equation (3.4) holds with the same λ for both drums. Therefore every

resonant mode of D1 is also a resonant mode of D2. As we can also do a reverse transplantation

procedure, every resonant mode of D2 is a resonant mode of D1, thus the two sets coincide, and

the drums are isospectral.

3.3 Unlabeled Distances

Gordon, Webb and Wollpert have shown that a drum cannot be heard by listening to its res-

onances. When we ask “Can One Hear the Shape of a Room?”, we want to know whether it

is possible to reconstruct the room’s shape from impulse responses. It turns out that to do it,

we need to know how to create correspondences between the distances (peaks in the impulse

responses) and the image sources (points in space). In other words, we must label the distances.

There are a number of applications in which we can measure the distances between the points,

but we do not know the correct labeling. That is, we know all the entries of an EDM, but we
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Figure 3.3: Illustration of the uniqueness of EDMs for unlabeled distances. A set of unlabeled
distance (A) is distributed in two different ways in a tentative EDM with embedding dimension 2 (B
and C). The correct assignment yields the matrix with the expected rank (C), and the point set is
easily realized in the plane (E). On the contrary, swapping just two distances (hatched squares in (B)
and (C)) makes it impossible to realize the point set in the plane (D). Triangles that do not coincide
with the swapped edges can still be placed, but in the end we are left with a hanging orange stick
that cannot attach itself to any of the five nodes.

do not know how to arrange them in the matrix. As illustrated in Figure 3.3, we can imagine

having a set of sticks of various lengths. The task is to work out the correct way to connect the

ends of the sticks so that no stick is left hanging open-ended.

It is interesting to note that in many cases, distance labeling is not essential: For most

point configurations, there is no other set of points that can generate the corresponding set of

distances, up to a rigid transformation. The labeling information is somehow implicit in the

point set (Figure 3.3 illustrates exactly this point). If we assume a wrong labeling, things will

not click together.

Localization from unlabeled distances is relevant in various calibration scenarios where we

cannot tell apart the distance measurements belonging to different points in space. This can

occur when we measure the times of arrivals of echoes, which correspond to distances between

microphones and image sources [51, 56]. Somewhat surprisingly, the same problem of unlabeled

distances appears in sparse phase retrieval.

No efficient algorithm currently exists for localization from unlabeled distances in the general

case of noisy distances. We should mention, however, a recent polynomial-time algorithm (albeit

of a high degree) by Gujarathi and et al. [87], that can reconstruct relatively large point sets

from unordered, noiseless distance data.
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At any rate, the number of assignments to test is sometimes sufficiently small so that an

exhaustive search does not present a problem. We can then use EDMs to find the best labeling.

The key to the unknown permutation problem is the following fact:

Theorem 3.1

Draw x 1,x 2, ¨ ¨ ¨ ,xn P Rd from some absolutely continuous probability distribution (e.g.

uniformly at random) on Ω Ď Rd. Then with probability 1, the obtained point configuration

is the unique (up to a rigid transformation) point configuration in Ω that generates the set

of distances t‖x i ´ x j‖, 1 ď i ă j ď nu.

This fact is a simple consequence of a result by Boutin and Kemper [23] who give a detailed

characterization of point sets reconstructible from unlabeled distances. They show that the point

sets that cannot be reconstructed from unordered distances (i.e., those that generate distances

that are also generated by other point sets) live on the zero set of a certain polynomial.

Figures 3.3B and 3.3C show two possible arrangements of a set of distances in a tentative

EDM; the only difference is that the two hatched entries are swapped. But this simple swap

is not harmless, as there is no way to attach the last stick in Figure 3.3D, while keeping the

remaining triangles consistent. We could do it in a higher embedding dimension, but we insist

on realizing it in the plane.

What Theorem 3.1 does not tell us is how to identify the correct labeling. But we know that

for most sets of distances, only one (correct!) permutation can be realized in the given embedding

dimension. Of course, if all the labelings are unknown and we have no good heuristics to trim

the solution space, finding the correct labeling is difficult. Yet there are interesting situations

where this search is feasible because we can augment the EDM point by point (see Section 3.8).

3.4 Modeling

Sound propagation in a room is described by a family of RIRs. An RIR models the channel

between a fixed source and a fixed receiver. It contains the direct path and the reflections.

Ideally, it is a train of pulses, each corresponding to an echo. For a fixed source and receiver

positions it is given as

hptq “
ÿ

i

αiδpt´ τiq, (3.7)

and it changes with their positions.

A microphone hears the convolution of the emitted sound with the corresponding RIR, y “

x ˚ h “
ş

xpsqhp¨ ´ sq ds. By measuring the impulse responses we access the propagation times

τi, and these can be linked to the room geometry by the image source (IS) model discussed in

Chapter 2. According to the IS model, we can replace reflections by virtual sources. Recall that

virtual sources are simply mirror images of the true sources across the corresponding reflecting

walls, and that the image rsi of the source s with respect to the ith wall is computed as

rsi “ s ` 2 xpi ´ s,n iyn i, (3.8)

where n i is the unit normal corresponding to the ith wall, and pi any point belonging to the ith

wall. The time of arrival (TOA) of the echo from the ith wall is ti “ ‖rsi ´ r‖{c, where c is the

speed of sound.



56 Chapter 3.

A B C

Figure 3.4: Image source patterns for different rooms. (A) equilateral triangle (regular pattern),
(B) regular hexagon (regular pattern), (C) random triangle with 25 generations of virtual sources
(irregular pattern). Since the patterns in (A) and (B) have constant density, the time density of the
corresponding echoes scales as „ t.

We should mention that measuring RIRs is an important topic in room acoustics, but we do

not address it in this thesis. For details on how the experiments in this chapter were performed,

please see the Supporting Information (SI) of [56].

3.5 Hearing the Shape of a Room with One Microphone

We first consider a setup that consists of one sound source and one colocated microphone, both

omnidirectional. Assume that an omnidirectional pulse is emitted from somewhere inside the

room, and that the room response is recorded at the same point. From the recorded RIR and

the knowledge of the emitted pulse, we can extract the set of echo delays tτiu.

For the purpose of this section, a room is a convex planar K-sided polygon represented by

a 2 ˆK vertex matrix P “ rp1, ¨ ¨ ¨ ,pKs. For simplicity we operate in 2D, but it will be clear

that the extension to 3D is straightforward. We assume that the vertices are specified in a

counterclockwise direction and define the ith side of the room as the line segment joining pi
and pi`1. Without loss of generality we place the source at the origin and require that the

room contains the origin. It is not possible to discriminate rotated and reflected versions of a

room about the source; therefore, we think of these as being the same room. We can resolve

this ambiguity by choosing (fixing) some degrees of freedom; e.g., if the ith side is closest to the

source, we set it to be vertical and choose that the closer of the adjacent sides follows in the

CCW direction.

With the ith side of the room we associate an outward pointing unit normal n i, and we define

the matrix of normals as N
def
“ rn1, . . . ,nKs P R2ˆK . We denote by q i the image source location

with respect to the ith side. The set tq iu1ďiďK then contains the first-order (or first-generation)

image sources. Analogously, the image of the virtual source q i with respect to the wall j is

denoted q ij so that
 

q ij
(

1ďi‰jďK
is the set of second-order image sources.

By observing the impulse response we have access to G1 “ t‖q i‖u and to G2 “
 

‖q ij‖
(

—sets

of times of arrivals of first- and second-order echoes. We assume everywhere that the speed of

sound is c “ 1 so that (numerically) distances equal times.
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B

A

Figure 3.5: A room impulse response recorded in a classroom at EPFL (BC329). The early part (50
ms) with clearly distinguishable echoes is shown in (A). Early echoes together with the first part of
the late reverberation (0.5 s) are shown in (B).

3.5.1 Characterization of RIRs from Image Source Patterns

Figure 3.4 shows the image source patterns for different rooms. From the generated image source

patterns we can deduce certain known facts in room acoustics. One can observe a difference in

the behavior of regular and irregular rooms.

For rectangular rooms the pattern of image sources corresponds to a union of four lattices in

R2. A lattice ΛM P R2 generated by matrix M P R2ˆ2 is defined as ΛM “
 

x |x “ M n ,n P Z2
(

.

From Figure 3.4A and Figure 3.4B we can observe that other regular polygons also generate

regular image source patterns that correspond to unions of lattices. In contrast, Figure 3.4C

shows that the image source pattern generated by a random triangle is not regular at all. An

interesting effect is observed—as we move away from the original source, the density of the virtual

sources increases. From these patterns we observe an interesting scaling law for regular rooms.

The density of echoes in the RIR is growing with time as td´1 where d is the dimensionality of

the ambient space, e.g., constant for 1D rooms, „ t in 2D rooms and „ t2 in 3D rooms. For

a 2D room, this means that the number of image sources inside the annulus of constant width

grows linearly with the radius of the annulus. If we consider the irregular triangle in Figure 3.4C

it becomes clear that the same scaling statement does not hold.

We can distinguish between the sources corresponding to discrete early reflections, and the

far sources that will generate the late reverberation—a known behavior from room acoustics.

Early echoes and late reverberation are illustrated in Figure 3.5.

These examples suggest a very strong link between the room geometry—what we want to

know—and the corresponding impulse response—what we hear. We show that under right con-

ditions this link is an invertible mapping.
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pi+1

pi wall

source/receiver

image source

qi

ci
n i

qij = qi,i+1

Figure 3.6: Setup with colocated source and receiver. Source is assumed to be at the origin. pi and
pi`1 are endpoints of ith wall, n i is its unit, outward pointing normal, ci is the center of the line
segment pipi`1, and q i is the first generation image source. Its image with respect to the pi` 1qst
wall is q ij .

3.6 Room Geometry Estimation

In this section we derive the mapping between the room geometry and the RIR. We also discuss

its uniqueness, and give an algorithm to retrieve the room geometry from the measured RIR.

3.6.1 The Shape of a Polygonal Room Using Matrix Analysis

It is not possible to reconstruct the room geometry using only the delays of the first-order echoes

in G1. To see this, consider a triangle with the corresponding set of first generation delays. Now

choose one side and tilt it so that you change the shape of the triangle; this can only change one

delay in G1. But now we can translate this side keeping all the angles fixed until we match this

changed delay with the old one, ending up with two rooms with the same G1.

We claim, however, that G1 and G2 delays are sufficient to recover the room in a large number

of cases. First we set up the link between the geometry of the room and the measured RIR (G1

and G2). We assume that a genie labeled the echoes as belonging to either G1 or G2. In reality,

we will have to do the labeling ourselves; this is discussed in Section 3.6.4.

Lemma 3.1

Let the room vertices be given in P . Associate with this room a matrix A “ diagpa1, . . . , aKq

where ai
def
“ ‖q i‖ is the ith diagonal entry, and a matrix D

def
“ p‖q ij‖2q, having the second-

order delays as its elements. Furthermore, let E “ 11J be a K ˆK matrix of ones, and N

be a matrix of wall normals corresponding to P . Then the following holds,

NJN “ A´1
pA2E `EA2

´DqA´1
{2. (3.9)
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Proof : From Figure 3.6 we obtain that

q i “ 2 xpi,n iyn i. (3.10)

In the second generation we consider each of the K first-generation virtual sources as the new

source and using the same logic as above compute the second-generation virtual sources. Since

in (3.10) we assumed the source to be at the origin, now we move the origin to q i,

q ij “ q i ` 2
@

pj ´ q i,nj
D

nj

“ q i ` q j ´ 2 xq i,njynj . (3.11)

Let ai
def
“ 2 xpi,n iy “ ‖q i‖ and nij

def
“ xn i,njy. Then using (3.10) and (3.11) we obtain

‖q ij‖
2
“ a2

i ` a
2
j ´ 2aiajnij . (3.12)

This gives us the delays from G2 in terms of the delays from G1 and inner products between the

corresponding normals. A particular consequence of (3.12) is that ‖q ij‖ “ ‖q ji‖. This means

that in the second generation we can resolve at most KpK ´ 1q{2 distinct pulses in the impulse

response.

The equation (3.12) can be stated in a matrix form as

D “ A2E ` EA2
´ 2ANJN A. (3.13)

Now the claim of the lemma follows directly.

Thus we get a simple expression that links the room geometry with delay times in the impulse

response. Notice that ai is the ith first generation delay, so by measuring the RIR we get access

to both A and D . This means that we can easily solve for NJN . By taking the matrix

square root, we get N , the matrix of normals, up to a rotation about the origin. But A and

N completely determine the room shape, so estimating the room geometry becomes equivalent

to an eigen-decomposition. There is a catch though: even if we know G1 and G2, we do not

know how to order them in A and D , so we end up with an assignment problem. To solve this

problem we will use the properties of D ; we begin by a useful consequence of Lemma 3.1.

We can recognize D—the matrix of distances to second-order image sources—as an EDM

corresponding to the first-order image sources. This may come as a surprise, as a priori there is

no reason to expect that the distances to second-order image sources equal the distances between

the first-order image sources. We summarize it in a corollary:

Corollary 3.1

If D is defined as in the statement of Lemma 3.1, then D “ EDMpq1, . . . , qKq. Moreover,

rank D ď 4.

Proof : That D is an EDM of rq1, . . . , qKs is immediate from the equation (3.13). We will give an

alternative, visual proof in Section 3.6.4. The rank property follows directly from the fact that

D is an EDM of points in R2 and applying Theorem 2.1.

3.6.2 Uniqueness of RIR: An Assignment Problem

In this section, we show that under the right circumstances it is possible to correctly assign the

G1 and G2 delays to matrices A and D , and therefore recover the room using (3.9).
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Assumption 3.1

We assume that the listener at the origin hears K echoes in G1 and KpK ´ 1q{2 echoes in

G2, when an omnidirectional pulse is emitted from the origin.

We remark that this assumption can hold only in simple rooms, e.g., triangles or rectangles.

However, we will for now assume that we can always get these echoes, and discuss what to do

about the missing ones later.

To prepare the ground for the main result, we put forward some properties of the involved

matrices. Consider a K-sided room with vertices P and corresponding wall normals N . Let A

and D be the matrices that correspond to the room P with the correct labeling. Furthermore,

let π be a permutation operator that acts on matrices in such a way that if R is some matrix

related to the room P then πpRq is the matrix that we would get if we relabeled the vertices in

P according to π. Then the following lemma holds.

Lemma 3.2

Let Aπ “ πpAq,Dπ “ πpDq and NJ
πN π “ πpNJN q. Then NJ

πN π “ A´1
π pA

2
πE `EA2

π´

DπqA
´1
π {2.

In words, we do not have to search for an absolutely correct arrangement of delays. We only

have to match the permutation of D and A. If we plug these into (3.9) we obtain the permuted

matrix of normals N π. The room can be easily constructed by knowing the wall normals n i and

the distances of walls from the origin ai{2. Notice that rankpNJ
πN πq “ 2.

Now we need a way to tell if a relative arrangement between A and D is wrong. It is important

to note that we are distributing KpK ´ 1q{2 elements in D , and only K elements in A, so the

number of possible assignments is much larger in D . In particular, any relabeling of A can be

matched by D , so we only need to look at permutations in D . The results that follow will be

of the almost surely type with respect to the room, so we need to assume a certain probability

distribution on the set of all convex polygonal rooms. However, there is no need to specify it

explicitly. All we ask is that the probability density function fP and the induced distribution on

the distances pa1, . . . aKq be absolutely continuous; most of the reasonable generative models for

rooms satisfy this requirement. This discussion is formalized in the following lemma:

Lemma 3.3 (Detectability)

Assume that the room P is drawn according to fP , and consider the EDM D induced by the

first-order images of the origin. Then with probability 1, the only permutations of elements

in D such that the new matrix is in EDM2 correspond to relabelings of the points; that is,

they are of the form Π DΠJ, where Π is a permutation matrix.

Proof : By Corollary 3.1 we know that D is an EDM of a set of points Q “ rq1, . . . , qKs. Because

of the absolute continuity of fP , we known by Theorem 3.1 that with probability 1, tq1, . . . , qKu

is the only point set in R2 (up to a rigid transformation) that generates the set of distances in
?

D . We can fix any labeling of the points, and any permutation of this labeling will lead to a

distance matrix of the form Π DΠJ. If we rearrange the elements of D in a way that cannot

be modeled as Π DΠJ, then the resulting matrix cannot be in EDM2 as this would violate the

uniqueness of tq1, . . . , qKu.

This means that we have a tool for detecting a wrong arrangement: First find the correct

D , then find the permutation of A so that NJN in (3.9) have correct rank. Collecting these

results, we are in a position to state the following:
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Theorem 3.2

Draw a room P at random from fP . Then almost surely the (unlabeled) set of measurements

pG1, G2q cannot be generated by any other room. The unique room P can be retrieved by

Algorithm 3.1.

Algorithm 3.1 along with the above lemmas gives a constructive proof of the recovery of the

unique room (up to a rotation and a reflection) from G1 and G2. While it involves a combinatorial

search, it is of modest size, and various rules and heuristics can be employed to trim down the

search space considerably; the most straightforward one is the triangle inequality.

3.6.3 Indoor Localization as a Byproduct

We propose several methods for indoor localization in Chapter 4. Nevertheless, we decided

to mention an indoor localization method here that is an immediate byproduct of the room

reconstruction algorithm.

How can we use the results of the previous section to localize a source inside a known or

unknown room? The geometry estimation algorithm outputs the receiver location as a byproduct

and we should clarify what is different if we know the room geometry in advance. Knowledge of

the room geometry implies that each wall has an a priori label so the location can be given in

terms of these labels (e.g., 3 meters from wall A, 4 meters from wall B, and so on). This fixed

labeling forces the ordering of elements in the involved matrices.

By knowing the room geometry, we know N . Furthermore, we observe G1 and G2. By the

results of the previous section, if we plug NJN and A into (3.13) we should get D with the

observed G2 delays. But if we use the wrong permutation of A we end up with a wrong D .

This leads to Algorithm 3.2 for indoor localization. We do not completely avoid the com-

binatorial search but we might be able to run this search only once in a while if we consider a

scenario where the location is being updated in regular intervals. This should be possible if the

displacement between two runs of the localization algorithm is not large, so that the assignment

does not change between two measurements. It is easy to detect that the assignment changed,

and only then we should rerun the combinatorial search.

3.6.4 A Generational Issue: An Unexpected EDM

The drawback of the mentioned algorithms is that they require the full set of echoes from G1

and G2. We now discuss a method that allows us to obviate this requirement.

Algorithm 3.1 Room recovery

(i) Combine the delays from G2 in the putative D until D P EDM2,

(ii) Rearrange the diagonal of Aπ until it is matched with computed D , i.e., rankpA2
πE `

EA2
π ´Dq “ 2. If this happens for no Aπ, repeat from (i),

(iii) Find N π as a matrix square root of NJ
πN π “ A´1

π pA
2
πE `EA2

π ´DπqA
´1
π {2,

(iv) From the computed normals and distances to walls, reconstruct the convex polygonal room

P .
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Algorithm 3.2 Localize and update

(i) Rearrange A until A2E`EA2
´2ANJN A matches the observed G2 (in a noisy scenario,

we look for A minimizing the `2 distance between the delays in G2 and D),

(ii) To update the location, use the arrangement of A from (i) until the resulting D becomes

corrupted. Additionally, since the source speed is finite we can discard all As that yield an

overly large displacement,

(iii) When D becomes corrupted, repeat (i) (start by trying to swap two sides, as the displace-

ment is still small).

We are already familiar with the setup in Figure 3.7 from Figure 3.6. We have added two lines

to the figure that reveal a very useful property. Recall that we assume that the source and the

receiver are collocated at the origin s “ 0 . Denote by di the distance of the ith first-order image

source to the origin (corresponding to its norm), and by dij the distance of the second-order

image source to the origin.

First, notice the trapeze ps, q i, q ij , q jq. The two diagonals of this trapeze must have the

same length, that is,

‖q i ´ q j‖ “ ‖q ij ´ 0‖. (3.14)

In other words, the distance between the origin and the second-order image sources equals the

distance between the corresponding first-order image sources,

dij
def
“ ‖q ij‖ “ ‖q i ´ q j‖, (3.15)

which has been anticipated by the notation, and proves Theorem 3.1 visually.

The second key observation is that we can use this trapeze to construct an EDM with a

special structure, whose elements are the distances to first- and second- order image sources. For

example, if K “ 4, then this EDM is given as the entrywise square of the following matrix

D12 “

¨

˚

˚

˚

˚

˝

s q1 q2 q4 q4

s 0 d1 d2 d3 d4

q1 d1 0 d12 d13 d14

q2 d2 d12 0 d23 d24

q3 d3 d13 d23 0 d34

q4 d4 d14 d24 d34 0

˛

‹

‹

‹

‹

‚

. (3.16)

That this construction is correct follows from the definitions of di and dij .

The EDM D12 is useful because we can use matrix completion if some entries are not observed.

Therefore, we do not need all second-order (or first-order) echoes, but only enough of them to

determine D12 uniquely.

This addresses the echo unavailability problem, but D12 also helps with assigning echoes to

the correct generation. This can again be achieved combinatorially by distributing the delays

in D12 without knowing a priori to which generation they belong, and choosing the assignment

that makes the putative D12 an EDM. We conjecture, but do not prove, that such an assignment

is unique with probability one in the noiseless case. A limited number of numerical tests indicate

the validity of this conjecture. The search space for the assignment can be reduced by using
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Figure 3.7: A visual proof of Corollary 3.1.

triangle inequalities such as dij ă di ` dj , and the fact that dij ą di and dij ą dj (i.e. the

smallest number in each row or column must appear at the beginning).

In a K-sided room P , the EDM D12 is uniquely determined by 2K ´ 1 scalars (we need to

find K points in R2, but we can choose the rotation of the configuration about the origin). To

populate D12 we need K ` 1
2KpK ´ 1q delays, so the largest number of unobserved echoes is

pK´1qpK´2q
2 .

3.7 Numerical simulations

We validate the theoretical results on hearing the room by a single microphone by numerical

simulation. We assume that the assignment of the full set of echoes to G1 and G2 is received

as an input to the algorithm. To simulate the uncertainties in the timing estimation, we add

Gaussian noise to the simulated delay times and feed them into the proposed algorithms.

Figure 3.8A shows geometry estimation for a quadrilateral room. The green line shows the

estimated room in noiseless conditions and is identical to the actual room to within numerical

precision. Three estimates (with different noise realizations) at a smaller jitter are plotted in red.

These are barely distinguishable from the actual room shape. At a moderate jitter we observe a

considerably larger deviation from the true geometry (there is one particular outlier).

A localization experiment is depicted in Figure 3.8B. The source was moving along a lemnis-

cate with the parametric equation

px, yq “

ˆ

1`
2 cos t

1` sin2 t
,

3 cos t sin t

1` sin2 t

˙

,

with ∆t “ 0.1 between localizations. As before, the green line shows the noiseless trajectory
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A B

Figure 3.8: Numerical simulations with noisy delays (SNRs are indicated for the jitter added to the
delays, not for the RIR signal itself). (A) Room geometry estimation, time delay SNR = 65 dB (blue),
SNR = 85 dB (red) and SNR = Inf (green); (B) Source tracking: 300 realizations at SNR = 30 dB
(blue), 300 realizations at SNR = 40 dB (red), noiseless (green).

tracking and is identical to the true trajectory. Estimated trajectories at two different levels of

jitter are shown in red and blue.

3.8 Hearing the Room With More Than One Microphone

Combinatorial issues in separating generations of echoes from a single impulse response motivate

the search for simpler and more robust solutions. In this section we discuss how to use an

arbitrary microphone array in order to resolve the challenges of using only one microphone.

3.8.1 Modeling

We consider the room to be a K-faced convex polyhedron. We work in 3D, but the results extend

to arbitrary dimensionalities (2D is interesting for some applications).

Same as in the case of a single microphone, we assume that the source emits a pulse and the

microphones receive echoes of this pulse from which the distances between the microphones and

the image sources can be computed.

In a convex room with a known source, knowing the image sources is equivalent to knowing

the walls. This means that instead of searching for walls, we can search for a particular set of

points. The challenge is that the distances are unlabeled: It might happen that the kth peak in

the RIR from microphone 1 and the kth peak in the RIR from microphone 2 come from different

walls, as illustrated in Figure 3 and Figure 4. Thus, we have to address the problem of echo

labeling. The loudspeaker position need not be known; we can estimate it from the direct sound

using either TOA measurements, or differences of TOAs if the loudspeaker is not synchronized

with the microphones [12, 190, 119].

In practice, having a method to find good combinations of echoes is far more important

than only sorting correctly selected echoes (correctly detected peaks). Impulse responses contain

peaks that do not correspond to any wall. These spurious peaks can be introduced by noise,

nonlinearities and other imperfections in the measurement system. We find that a good strategy
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is to select a number of peaks greater than the number of walls and then to prune the selection.

Furthermore, some second-order echoes might arrive before some first-order ones. The image

sources corresponding to second-order or higher-order echoes (see Figure 2 for an example) will

be estimated as any other image source. But because we can express a second-order image source

in terms of the first-order ones as

rsij “ rsi ` 2
@

pj ´ rsi,nj

D

nj , (3.17)

and the corresponding distances as

‖s ´ rsij‖ “ ‖rsi ´ rsj‖, (3.18)

we can eliminate it during post-processing by testing the above two expressions (see Appendix

3.B.

3.8.2 Labeling the Echoes

The purpose of echo labeling is two-fold. First, it serves to remove the “ghost” echoes (that do

not correspond to walls) detected at the peak-picking stage. Second, it determines the correct

assignment between the remaining echoes and the walls. We propose two methods for recognizing

correct echo combinations. The first one is based on the properties of Euclidean distance matrices

(EDM), and the second one on a simple linear subspace condition.

3.8.3 EDM-based approach

We start by describing an approach based on EDMs to address the problem of unlabeled echoes

with multiple microphones. While simpler methods can be devised to solve the problem in the

noiseless case, EDMs will be the key ingredient in the noisy case.

Consider a room with a loudspeaker and an array of M microphones positioned so that they

hear the first-order echoes (we typically use M “ 5). Denote the receiver positions by r1, . . . , rM ,

rm P R3 and the source position by s P R3. The described setup is illustrated in Figure 2.12.

We explain the EDM-based echo sorting with reference to this figure. Ascribe the receiver

positions to the columns of R “ rr1, . . . , rM s and let D P RMˆM be an EDM corresponding to

the microphone setup, D “ EDMpRq.

If the loudspeaker emits a sound, each microphone receives the direct sound and K first-order

echoes corresponding to the K walls. The arrival times of the received echoes are proportional

to the distances between the image sources and the microphones. As already discussed, we face

a labeling problem because we do not know which wall generated which echo. This problem is

illustrated in Figure 3.9 for two walls and in Figure 3.10 for the whole room. Simple heuristics,

such as grouping the closest pulses or using the ordinal number of a pulse, have limited applica-

bility, especially with larger distances between microphones. That these criteria fail is evident

from the two figures.

We propose a solution based on the properties of EDMs. The loudspeaker and the micro-

phones are—to a good approximation—points in space, so their pairwise distances form an EDM.

We can exploit the rank property from Theorem 2.1: An EDM corresponding to a point set in

Rn has rank at most pn ` 2q. Thus in 3D, its rank is at most 5. We start from a known point

set—the microphones, and attempt to add another point—an image source. This requires adding

to D a row and a column which list squared distances between the microphones and the image
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Figure 3.9: Illustration of echo swapping. Microphone 1 hears the echo from the red wall before
hearing the echo from the blue wall, since path A is shorter than path B. The opposite happens for
Microphone 2.

source. We extract the list of candidate distances from the RIRs, but some of them might not

correspond to an image source; and for those that do correspond, we do not know to which one.

Consider again the setup in Figure 5. Microphone 1 hears echoes from all the walls, and we

augment D by choosing different echo combinations. Two different augmentations are shown:

Daug,1 is a plausible augmentation of D because all the distances correspond to a single image

source, and they appear in the correct order. This matrix passes the rank test, or more specifi-

cally, it is an EDM. The second matrix, Daug,2, is a result of an incorrect echo assignment, as it

contains entries coming from different walls. A priori, we cannot tell whether the red echo comes

from Wall 1 or from Wall 2. It is simply an unlabeled peak in the RIR recorded by microphone

1. However, the augmented matrix Daug,2 does not pass the rank test, so we conclude that the

corresponding combination of echoes is not correct.

To summarize, wrong assignments lead to augmentations of D that are not EDMs. In

particular, these augmentations do not have correct rank. As it is very unlikely (as will be made

precise later in Theorem 3.3) for incorrect combinations of echoes to form an EDM, we have

designed a tool to detect correct echo combinations.

More formally, let Tm be the set of candidate distances computed from the RIR recorded

by the mth microphone. We proceed by augmenting the matrix D with a combination of M

unlabeled squared distances d to get Daug,

Daugpdq “

„

D d

dJ 0



. (3.19)

The column vector d is constructed as

d “ rt21, . . . , t
2
M s

J, (3.20)

where tm P Tm.

In words, we construct a candidate combination of echoes d by selecting one echo from each

microphone. We interpret Daug as an object encoding a particular selection of echoes d .

One might think of an EDM as a mold. It is very much like Cinderella’s notorious glass

slipper: If you can snugly fit a tuple of echoes in it, then they must be the right echoes. This

is the key observation: If rankpDaugq ă 6 or more specifically Daug verifies the EDM property,

then the selected combination of echoes corresponds to an image source, or equivalently to a wall.
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Figure 3.10: Actual room impulses responses acquired in a room sketched on the left side (see
experiments for more details). First peak corresponds to direct propagation. Detected echoes are
highlighted in green. Annotations above the peaks indicate the ordinal number of the peak, and the
wall to which it corresponds (south, north, east, west, floor, ceiling). We can see that the ordinal
number of the W-peak changes from one impulse response to another (similarly for E and S). For
larger microphone arrays this effect becomes more dramatic. We also see that some peaks do not
correspond to walls. Our algorithm successfully groups peaks corresponding to the same wall, and
disregards irrelevant peaks.

Even if this approach requires testing all the echo combinations, in practical cases the number

of combinations is small enough that this does not present a problem.

3.8.4 Subspace-based approach

An alternative method to obtain correct echo combinations is based on a simple linear condition.

Note that we can always choose the origin of the coordinate system so that

M
ÿ

m“1

rm “ 0 . (3.21)

Let rsk be the location vector of the image source with respect to wall k. Then, up to a permu-

tation, we receive at the mth microphone the squared distance information,

yk,m
def
“ ‖rsk ´ rm‖2 “ ‖rsk‖2 ´ 2 rsJk rm ` ‖rm‖2. (3.22)

Define further ryk,m
def
“ ´1

2

`

yk,m ´ ‖rm‖2
˘

“ rJmrsk ´
1
2‖rsk‖2. We have in vector form

»

—

—

—

–

ryk,1
ryk,2

...

ryk,M

fi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

rJ1 ´ 1
2

rJ2 ´ 1
2

...
...

rJM ´ 1
2

fi

ffi

ffi

ffi

ffi

fl

„

rsk
‖rsk‖2



, or ryk “ Rruk. (3.23)



68 Chapter 3.

1

23

45

Wall 1

W
al

l 2

(Microphone distances)

Figure 3.11: Illustration of EDM-based echo sorting. Microphones receive the echoes from all the
walls, and we aim to identify echoes coming from a single wall. We select one echo from each
microphone and use these echoes to augment the EDM of the microphone setup, D . If all the
selected echoes come from the same wall, the augmented matrix is an EDM as well. In the figure,
Daug,1 is an EDM since it contains the distances to a single point rs1. Daug,2 contains a wrong
distance (shown in red) for microphone 1, so it is not an EDM. For aesthetic reasons the distances
are specified to a single decimal place. Full precision entries are given in the SI Appendix.

Thanks to the condition (3.21), we have that

1Jryk “ ´
M

2
‖rsk‖2 or ‖rsk‖2 “ ´

2

M

M
ÿ

m“1

ryk,m. (3.24)

The image source is found as
rsk “ S ryk, (3.25)

where S is a matrix satisfying

SR “

»

–

1 0 0 0

0 1 0 0

0 0 1 0

fi

fl . (3.26)

These two conditions completely characterize the distance information. In practice, it is

sufficient to verify the linear constraint

ryk P rangepRq, (3.27)

where rangepRq is a proper subspace when M ě 5. But note that we can use the non-linear

condition (3.24) or the condition that the matrix be in EDM3 even if M “ 4.

3.8.5 Uniqueness

Can we guarantee that only one room corresponds to the collected first-order echoes? To answer

this, we first define the set of “good” rooms in which our algorithm can be applied. The algorithm

relies on the knowledge of first-order echoes, so we require that the microphones hear them. This

defines a “good” room, which is in fact a combination of the room geometry and the location of

the microphone array and the loudspeaker.
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Definition 3.1 (Feasibility)

Given a room R and a loudspeaker position s, we say that the point x P R is feasible if a

microphone placed at x receives all the first-order echoes of a pulse emitted from s.

Our argument is probabilistic: The set of vectors d such that rank Daug “ 5 has measure

zero in R5. Analogously, in the subspace formulation, rangepRq is a proper subspace of R5 thus

having measure zero. To use four microphones, observe for example that the same is true for

the set of vectors satisfying (3.24) in R4. These observations, along with some technical details,

enable us to state the following uniqueness result:

Theorem 3.3

Consider a room with a loudspeaker and M ě 4 microphones placed uniformly at random

inside the feasible region. Then the unlabeled set of first-order echoes uniquely specifies the

room with probability 1.

The proof of the theorem is given in Appendix 3.A.

This means that we can reconstruct any convex polyhedral room if the microphones are in

the feasible region. A similar result could be stated by randomizing the room instead of the

microphone setup, but that would require us to go through the inconvenience of generating a

random convex room. In the following, we concentrate on the EDM criterion, as it performs

better in experiments.

3.8.6 Practical Algorithm

In practice, we face different sources of uncertainty. One such source is the way we measure the

distances between microphones. We can try to reduce this error by calibrating the array, but we

find the proposed schemes to be very stable with respect to uncertainties in array calibration.

Additional sources of error are the finite sampling rate and the limited precision of peak-picking

algorithms. These are partly caused by unknown loudspeaker and microphone impulse responses,

and general imperfections in RIR measurement. They can be mitigated with higher sampling

frequencies and more sophisticated time-of-arrival estimation algorithms. At any rate, testing

the rank of Daug is not a way to go in the presence of measurement uncertainties. The solution

is to measure how close Daug is to an EDM. We can consider different constructions:

(i) heuristics based on the singular values of Daug,

(ii) distance of ryk from rangepRq (equation (3.27)),

(iii) non-linear norm condition (3.24),

(iv) distance between Daug and the closest EDM.

The approach based on the singular values of Daug captures only the rank requirement on the ma-

trix. But the requirement that Daug be an EDM brings in many additional subtle dependencies

between its elements. For instance, from (2.2) we have that

Daug P EDMô pI ´ 1
M`111JqDaugpI ´

1
M`111Jq ĺ 0. (3.28)

Unfortunately, (3.28) does not allow us to specify the ambient dimension of the point set. Im-

posing this constraint leads to even more dependencies between the matrix elements, and the

resulting set of matrices is no longer a cone (it is actually not convex anymore). Nevertheless, as
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discussed in Chapter 2, we can apply the family of algorithms used in multi-dimensional scaling

(MDS) [206] to find the closest EDM between the points in a fixed ambient dimension.

In particular, we use the s-stress cost function (2.88) to evaluate how far the augmented

“EDM” is from an actual EDM. Recall that s-stress is defined as the value of

minimize ‖Daug ´ rDaug‖2
F subject to Daug P EDM3. (3.29)

By EDM3 we denote the set of EDMs generated by point sets in R3. We say that s-stress is

the score of the matrix rDaug, and use it to assess the likelihood that a combination of echoes

corresponds to a wall.

Reconstruction algorithm Combining the described ingredients, we design an algorithm for

estimating the shape of a room. The algorithm takes as input the arrival times of echoes at

different microphones (computed from RIRs). For every combination of echoes, it computes the

score using the criterion of choice. We specialize to constructing the matrix Daug as in (3.19) and

computing the s-stress score. For the highest ranking combinations of echoes (with the smallest

s-stress), it computes the image source locations. We employ an additional step to eliminate

ghost echoes, higher-order image sources and other impossible solutions. Note that we do not

discuss peak picking (computing the delays of the echoes).

Algorithm 3.3 summarizes the echo sorting procedure. It finds the echoes in T2, . . . TM that

should be combined with a particular delay t1 received by the first microphone. The complete

room shape estimation procedure can then be summarized as follows:

(i) For every echo delay t1 P T1 run Algorithm 3.3,

(ii) Compute the image source locations,

(iii) Remove image sources that do not correspond to walls (higher-order by using (3.17), “ghost”

sources by heuristics),

(iv) Reconstruct the room.

Algorithm 3.3 Echo Sorting [56]

1: function EchoSort(R, t1, . . . , Tm)

2: D Ð EDMpRq

3: sbest Ð `Inf

4: for all t “ rt2, . . . , tms, such that ti P Ti do

5: d Ð c ¨ rt1, tJsJ Ź c is the sound speed

6: Daug Ð

„

D d

dJ 0



7: if s´stresspDaugq ă sbest then

8: sbest Ð s´stresspDaugq

9: dbest Ð d

10: end if

11: end for

12: return dbest

13: end function
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Figure 3.12: Illustration of the noiseless echo-sorting process.

Step iii) is described in more detail in Appendix 3.B. It is not necessary to test all echo

combinations. An echo from a fixed wall will arrive at all the microphones within the time

given by the largest inter-microphone distance. Therefore, it suffices to combine echoes within a

temporal window corresponding to the array diameter. This substantially reduces the running

time of the algorithm. Consequently, we can be less conservative in the peak-picking stage.

To get a ballpark idea of the number of combinations to test in the general case, suppose that

we detect 20 echoes per microphone3, and that the diameter of the five-microphone array is 1 m.

Thus for every peak time ti P T1 we have to look for peaks in the remaining four microphones

that arrived within a window around t1 of length 2 ˆ 1 m
343 m/s , where 343 m/s is the speed of

sound. This is approximately 6 ms, and in a typical room we can expect about five early echoes

within a window of that duration. Thus we have to compute the s-stress for 20 ˆ 54 “ 12500

matrices of size 6ˆ 6, which can be done in a matter of seconds on a desktop computer. In fact,

once we assign an echo to an image source, we can exclude it from further testing, so the number

of combinations can be further reduced.

3.8.7 Computational Complexity

By employing various heuristics (based for example on the finite size of the microphone array),

the described combinatorial search is reduced to a modest size. Nevertheless, we show that in

the noiseless case, or with small noise, echo sorting can be performed in polynomial time.

Theorem 3.4

Assume that we have M microphones and pick K echoes per microphone. Then we can sort

the echoes by testing OpK3q combinations in 2D and OpK4q combinations in 3D.

3We do not need to look beyond early echoes corresponding to at most three bounces. This is convenient, as
echoes of higher orders are challenging or impossible to isolate.
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Figure 3.13: Illustration of the experiments in BC329. (A) Drawing of the room used in the
experiment with a movable wall. (B, C) Two reconstruction results. Real values are indicated in red,
and the estimated values are indicated in black.

Proof : We prove the theorem constructively by exhibiting an algorithm with the sought complexity.

We do it in 2D, but the reasoning is identical in 3D.

Echo sorting can be described by the pictorial in Figure 3.12. It is not necessary to work with

more than 3 microphones. Consider the following procedure: Pick an echo from microphone 1;

it defines a circle (blue) of possible image source locations. This echo must be combined with an

echo from microphone 2 and with an echo from microphone 3.

Now for every echo from microphone 2, intersect the circles from microphones 1 and 2

(subfigure B); this results in at most two intersection points. The distance from microphone

3 to one of the intersection points must appear on the list of delays for microphone 3 if we

grouped echoes from microphones 1 and 2 correctly. If it does not appear on the list, we

choose the next echo from microphone 3. The total number of combinations to test is then

K2
` pK ´ 1q2 ` ¨ ¨ ¨ ` 1 “ KpK ` 1qp2K ` 1q{6 “ OpK3

q.

Thus, without noise, or with small noise, we can run echo sorting in a time that is polynomial

in the number of echoes.

3.8.8 Experiments

We ran experiments in two distinctly different environments. One set was conducted in a lecture

room at EPFL, where our modeling assumptions are approximately satisfied. Another exper-
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Figure 3.14: Illustration of the experiments in the Lausanne cathedral. (A) Panoramic photo of
the portal of the Lausanne cathedral. (B) A close up of the microphone array used in cathedral
experiments. (C) Floor plan of the portal (from [116]) with indicated measured dimensions.

iment was conducted in a portal of the Lausanne cathedral. The portal is non-convex, with

numerous non-planar reflecting objects. It essentially violates the modeling assumptions, and

the objective was to see whether the algorithm still gives useful information. In all experiments,

microphones were arranged in an arbitrary geometry, and we measured the distances between

the microphones approximately with a tape measure. We did not use any specialized equipment

or microphone arrays. Nevertheless, the obtained results are remarkably accurate and robust.

The lecture room is depicted in Figure 3.13A. Two walls are glass windows, and two are

gypsum-board partitions. The room is equipped with a perforated metal plate ceiling suspended

below a concrete ceiling. To make the geometry of the room more interesting, we replaced one wall

by tables, thus creating a movable wall. Results are shown for two positions of the table wall and

two different source types. We used an off-the-shelf directional loudspeaker, an omni-directional

loudspeaker and five non-matched omni-directional microphones. RIRs were estimated by the

sine sweep technique [72]. In the first experiment, we used an omni-directional loudspeaker to

excite the room, and the algorithm reconstructed all six walls correctly, as shown in Figure 3.13B.

Note that the floor and the ceiling are estimated near-perfectly. In the second experiment, we

used a directional loudspeaker. As the power radiated to the rear by this loudspeaker is small,

we placed it against the north wall, thus avoiding the need to reconstruct it. Surprisingly, even

though the loudspeaker is directional, the proposed algorithm reconstructs all the remaining
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walls accurately, including the floor and the ceiling (Figure 3.13C).

Figures 3.14A and 3.14B shows a panoramic view and the floor plan of the portal of the

Lausanne cathedral. The central part is a pit reached by two stairs. The side and back walls

are closed by glass windows, with their lower parts in concrete. In front of each side wall, there

are two columns, and the walls are joined by column rows indicated in the figure. The ceiling

is a dome approximately 9 meters high. We used a directional loudspeaker placed at the point

’L’ in Figure 3.14C. Microphones were placed around the center of the portal. Alas, in this case

we do not have a way to remove unwanted image sources, as the portal is poorly approximated

by a convex polyhedron. The glass front, numeral 1 in Figure 3.14C, and the floor beneath the

microphone array can be considered flat surfaces. For all the other boundaries of the room, this

assumption does not hold. The arched roof cannot be represented by a single height-estimate.

The side windows, numerals 2 and 3 in Figure 3.14C, with pillars in front of them and erratic

structural elements at the height of the microphones, the rear wall, and the angled corners

with large pillars and large statues, all present irregular surfaces creating diffuse reflections. In

spite of the complex room structure with obstacles in front of the walls and numerous small

objects resulting in many small-amplitude, temporally spread echoes, the proposed algorithm

correctly groups the echoes corresponding to the three glass walls and the floor. This indicates

the robustness of the method.

3.9 Conclusion

Can one hear the shape of a room? The answer is a definite yes in many practically relevant

situations. We showed that even with a single microphone we can reconstruct the shapes of

convex polyhedral rooms, at least in theory. What is more, we have shown that the convex

polygonal (and polyhedral in 3D) rooms are uniquely described by G1 and G2, sets of times of

arrivals of first- and second-order echoes. We have also described a simple indoor localization

algorithm based on the proposed room reconstruction method.

What made this work is exploiting the geometrical relationships between different generations

of echoes, and useful properties of Euclidean distance matrices, or more generally, of Euclidean

distance geometry. This is to our knowledge the most versatile algorithm for single-channel room

reconstruction in terms of reconstructible geometries, and the only one that warrants uniqueness.

Future work on single RIR room reconstruction includes

Getting rid of the combinatorial search for assigning echoes to generations,

Using any echo, regardless of its order,

Studying uniqueness in more complicated geometries (curved walls, non-convex),

Robust formulations.

Next, to address the combinatorial challenges that arise when using only a single microphone,

we looked at room geometry estimation with several microphones. We presented an algorithm for

reconstructing the 3D geometry of a convex polyhedral room from a few acoustic measurements.

Our algorithm requires a single sound emission and uses a minimal number of microphones.

The proposed algorithm has essentially no constraints on the microphone setup. Thus, we

can arbitrarily reposition the microphones, as long as we know their pairwise distances (in our

experiments we did not “design” the geometry of the microphone setup). Further, we proved
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that the first-order echoes collected by a few microphones indeed describe the room uniquely.

Taking the image source point of view enabled us to derive clean criteria for echo sorting.

Our algorithms open the way for different applications in virtual reality, auralization, ar-

chitectural acoustics and audio forensics. For example, we can use it to design acoustic spaces

with desired characteristics or to change the auditory perception of existing spaces. The pro-

posed echo-sorting solution is useful beyond hearing rooms. Examples are omni-directional radar,

multiple-input-multiple-output (MIMO) channel estimation, and indoor localization, to name a

few. As an extension of our method, a person walking around the room and talking into a cell-

phone could enable us to both “hear” the room and find the person’s location. Future research

will aim at exploring these various applications.
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3.A Proof of Theorem 3.3

It is sufficient to consider M “ 4 in 3D. For M ą 4 we can simply select a subset of four

microphones. We want to show that wrong combinations of echoes cannot produce consistent

sets of distances.

A selection of echoes is a vector d “ rt1, . . . , t4s such that tm P Tm. Notice that for any

selection of echoes we must have one of the following:

(i) All echoes in d come from the same image source,

(ii) There is an image source from which exactly one echo is in d ,

(iii) There are two image sources such that two echoes in d come from one of them and two

echoes are from the other one.

If (i) occurred, then the echoes corresponding to this image source are correctly grouped. If (ii)

occurred, we can assume without the loss of generality that the image source with exactly one

echo in d is S1 and that the echo is received by M1, as illustrated in Figure 3.15A. In the figure,

the echoes are assumed to be sorted, so that every column corresponds to one image source. With

reference to the figure, all echoes (times of arrivals) that are shaded in gray are independent from

the framed blue echo in S1 by the assumptions of the theorem. A particular selection of echoes

induces spheres of the radii corresponding to echo delays centered at the microphones. If the

selected echoes in the shaded region induce spheres that do not intersect, we are done (this wrong

combination will fail the EDM test). The echoes in the shaded part correspond to three spheres

with centers at M1, M2, and M3. If all three come from the same image source, their intersection

contains two points with probability one, due to the assumptions of the theorem. But then the

probability that a random sphere ‖r1 ´ x‖2 “ ‖r1 ´ s1‖2 independent from these two points

contains one of them is zero. Similar reasoning explains that the intersection of the three spheres

in the shaded part will be either two points or an empty set with probability one.

Similarly, the case (iii) can be represented as in Figure 3.15B. Both pairs of echoes correspond

to two intersected spheres, whose intersections are two circles with probability one. Due to the

assumptions of the theorem, the centers of these two circles are independent and distributed

absolutely continuously in 3D. Thus the probability that the two circles intersect is zero.

M1

M2

M3

M4

S1 S2 S3 S4 S5
M1

M2

M3

M4

S1 S2 S3 S4 S5
A B

Figure 3.15: Illustration of the two salient situations in echo sorting.
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3.B Room Reconstruction Procedure

The echo sorting algorithm outputs a list of image sources; some of these image sources are

first-order images that we use to reconstruct the room, and some are higher-order sources. In

order to reconstruct the room, we need to detect these higher-order image sources and remove

them from the list. From (3.17), it follows that higher-order image sources are obtained as certain

“combinations” of lower-order ones—a fact that we use to discriminate them, as explained below.

We process the candidate image sources in the order of increasing distance from the loud-

speaker. If the current image source cannot be obtained as a combination of closer sources, we

add the corresponding plane (halfspace) to the list of halfspaces whose intersection determines

the final room.

Beyond the “combining criterion”, if the halfspace (an inequality) that we are adding does not

change the room, we discard the corresponding image source. We also do it if the new inequality

perturbs the room only slightly.

Algorithm 3.4 Room reconstruction procedure

Input: Candidate images rs1, . . . , rsP , loudspeaker location s0, distance threshold ε

Output: Room vertices

1: rrs1, ¨ ¨ ¨ , rsP s Ð SortByDistanceFromLoudspeakerprrs1, ¨ ¨ ¨ , rsP sq

2: deletedr1 : P s Ð false
3: for i “ 1 to P do

4: if Dj, k ă i, j ‰ k s.t. ‖Combineprsj , rskq ´ rsi‖ ă ε then

5: deletedris Ð true
6: else if Planeprsiq intersects the current room then

7: Add Planeprsiq to the current set of planes

8: else

9: deletedris Ð true
10: end if

11: end for

This procedure is summarized in Algorithm 3.4. The following definition is used in the

algorithm (s is the loudspeaker):

Combineprs1, rs2q
def
“ rs1 ` 2 xp2 ´ rs1,n2yn2, (3.30)

where p2 “ ps `rs2q{2 is a point on the (hypothetical) wall defined by s2; that is, a point on the

median plane between the loudspeaker and s2. The outward pointing unit normal is defined as

n2 “ prs2 ´ sq{‖rs2 ´ s‖.

The room is defined as the intersection of halfspaces generated by the first-order image

sources. With the above notation, halfspace corresponding to the image source si is defined by
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The plane corresponding to the image source si is denoted simply by Planepsiq.





Chapter 4

Localization and Position
Calibration*

4.1 Introduction

In this chapter we pursue our study of the potential of echoes, this time by looking at three

problems of localization. We will show how echoes can help localize accurately with fewer sensors

and in geometries unreachable to classical methods.

A common assumption in localization methods such as beamforming, subspace methods or

different parametric methods is that the sound propagates in free space [112]. These assumptions

are essentially violated in rooms, and the performance of these methods degrades in the presence

of multipath. The opposite is true of our methods that model the echoes: They become an

additional useful source of information. As we demonstrate towards the end of the chapter, we

can reap the benefits even when the geometry of the room is unknown.

We first look at the problem of localizing multiple wideband sound sources in a known room.

We approach it by discretizing the Helmholtz equation using the finite element method (FEM)

[194, 193], so we only consider echoes implicitly (in addition to other wave effects). FEM is espe-

cially well-suited to source localization because the obtained vectors and matrices are expressed

in spatially localized basis, so we naturally obtain the measurements in the form of a sparse sum

of atoms in a certain dictionary. We thus combine solving the wave equation and sparse modeling

into one step, as once the geometry is specified, the physical modeling becomes implicit in the

sparse approximation method.

In the second part, we move to explicit treatment of echoes which were only implicit in the

first part. To use echoes effectively, we make an assumption that the source emits a known pulse

whose time of arrival can be accurately measured at the receiver. This part is closely related

to the topic of indoor positioning, which recently received significant attention due to numerous

attractive applications. To name a few, it enables automatized inventory management, object

tracking, and various location-aware services. Location-customized information is valuable for

users (or information providers) in administrative buildings and museums. It is important in

*Parts of this chapter are joint work with several colleagues (all with Martin Vetterli): Single-channel local-
ization is a joint work with Reza Parhizkar [163]; localization in non-convex rooms is a joint work with Orhan
Öçal [159]; calibration using multidimensional unfolding and EDMs is a joint work with Juri Ranieri [59]; zero-
knowledge calibration is a joint work with Laurent Daudet [51].
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security and rescue operations, for example tracking the location of firefighters in a burning

building [90].

Positioning systems (indoor or outdoor) can be divided into three main topologies [64]. First,

the self-positioning system, where the receiver makes measurements from distributed transmitters

to determine its own position (e.g., GPS); second, remote positioning, where receivers located at

possibly multiple locations measure the signal from an object to find its location; and third, indi-

rect positioning where a data link is used to transfer position information from a self-positioning

system to a remote site or vice versa. Our algorithms fall into first two groups, with real and

image sources playing the role of distributed transmitters, and real and image microphones the

role of distributed receivers.

We start by showing how to do single-channel localization. Imagine a setup where a source

sends a pulse and a synchronized receiver can measure the time of arrival of the pulse. If we

are to localize the source, it is clear that in free space we can do no better than to place it in

on a sphere around the receiver with the radius corresponding to the propagation time. The

situation changes considerably once we are in a room, as echoes provide information that can

help resolve the spherical ambiguity. Next, we use echoes to localize around corners. Assuming

that the room geometry is known, there is no need to localize the true source at all; as soon as

we see any of the image sources, we can find the true source too.

Thirdly, we look at the problem of position calibration in microphone arrays. A compelling

method to calibrate the positions of microphones in an array is with sources at unknown locations.

Remarkably, it is possible to reconstruct the locations of both the sources and the receivers, if

their number is larger than some prescribed minimum [186]. We propose a flexible localization

algorithm by first recognizing the problem as an instance of multidimensional unfolding (MDU)—

a classical problem in Euclidean geometry and psychometrics—and then solving the MDU as a

special case of Euclidean distance matrix (EDM) completion. We solve the EDM completion

using a semidefinite relaxation. In contrast to existing methods, the semidefinite formulation

allows us to elegantly handle missing pairwise distance information, but also to incorporate

various prior information about the distances between the pairs of microphones or sources. The

prior information could be in the form of bounds on the distances, or it could be ordinal, such

as “microphones 1 and 2 are further apart than microphones 1 and 15”. The intuition that this

should improve the localization performance is confirmed by numerical experiments.

Next, we ask our usual question: Can the room help in calibration? But the case of a known

room simply makes calibration equivalent to the single-channel localization scenario, so we know

that the room helps. We therefore raise the stakes and ask if the room helps even if it is unknown.

Thus we consider the following scenario: We place a number of microphones at unknown positions

in an unknown room, and we produce a number of acoustic events at unknown positions. Can

we learn the microphone locations, the room shape, and the locations of acoustic events from

time of arrival measurements?

Not only is the answer affirmative, but we also show that by placing the whole setup inside

an unknown room, we can reduce the number of sources required for calibration to only one.

By using echoes, we can calibrate an arbitrary number of microphones in a single finger snap.

Additionally, we learn the array’s absolute position inside the room; an indispensable piece of

information for various tracking schemes.

It is useful to think about various inverse problems in this thesis in terms of three players in

room acoustics: sources, receivers, and the room itself (abstracted through its geometry). Using

this perspective, in Table 4.1 we summarize what is known and what is sought by the various

algorithms.
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Table 4.1: Three players in room acoustics, either known (3) or unknown (7) in different geometric
inverse problems.

Algorithm Sources Receivers Room

Room Geometry Reconstruction (Chapter 3) 7 3 7

Single-Channel Localization (Section 4.3.2) 3 7 3

Inverse Method of Images (Section 4.3.5) 7 3 3

Zero-Knowledge Calibration (Section 4.6.2) 7 7 7

4.2 Sound Source Localization with Finite Elements and Wide-

band Diversity

In this section we study sound source localization as a sparse reconstruction problem. Framing

source localization—a parameter estimation problem—in terms of sparse reconstruction is not a

new idea. Malioutov, Çetin and Willsky [133, 134] are among the first to systematically exploit

spatial sparsity to localize multiple sources, and they mention several earlier references. They

mainly treat narrowband sources, although some extensions to the wideband case are available

in [134]. Model and Zibulevsky [149] similarly assume the sources to be sparsely distributed on a

grid, but they further assume that the sources are temporally sparse in a known dictionary and

show how this assumption improves the source localization performance. The idea of exploiting

a known propagation model for source localization is known as matched-field processing, with

early work in underwater acoustics already in the 1970s [27] and considerable later developments

[204].

Our contributions to wave-based source localization depart from these approaches in two ways.

First, we show explicitly how to discretize the wave (Helmholtz) equation in a way that is directly

amenable to sparse recovery methods. This is achieved by the FEM. The key observation is that

the finite support of the finite elements turns them instantaneously into a sparsifying basis. We

then exploit the spatial sparsity of the sources, but assume no sparsity in the temporal domain.

We assume however the knowledge of the room.

Second, if the sources are wideband, we show that by exploiting the full source bandwidth

we can achieve accurate localization with fewer sensors. We improve on the treatment of the

wideband case by Malioutov [134] by recognizing that the sparsity pattern does not change

with the frequency, and propose greedy algorithms and algorithms based on convex optimization

(group sparsity algorithms) for source localization. We recently discovered that at the time

we submitted our work in September 2011 [61] to ICASSP 2012, Boufounos, Smaragdis and

Raj [21] have already presented their work exploiting this constant sparsity pattern at SPIE

Wavelets. Their work considered the free field, not reverberant rooms. Other works considering

the wideband diversity in rooms appeared later; see for example the paper by LeRoux et al.

[120].

All of the mentioned algorithms, including our work, exploit the sparsity of the sources in

the synthesis form. They require us to compute a dictionary of Green’s function, and the mea-

surements are modeled as a sparse sum of the atoms in this dictionary. A promising alternative

perspective is that of sparse analysis, or cosparsity, where one does not have to a priori invert

the PDE [108, 109].
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Our primary interest here is to show that rooms indeed help. To do it, we make a strong

assumption that the room is known. Some recent works address a difficult problem of narrowband

reverberant source localization without the knowledge of the boundary conditions. Chardon and

Daudet [35, 36] propose to decompose the field into a part due to the sources (a particular solution

of the Helmholtz equation without the boundary conditions), and a solution of the homogeneous

equation satisfying the boundary conditions, and to model the latter as sums of plane waves or

Fourier-Bessel functions. Such models are justified by the Vekua theory [150, 151, 213]. The price

to pay is an expected one: considerably more sensors than when the room is known. Additionally,

the antenna must enclose the region of interest.

4.2.1 Problem Setup

Consider K localized acoustic sources inside a room Ω Ă R3. Assume that the spatial distribution

of the sources is given by a set of points at locations tsku
K
k“1, sk P Ω. The kth source’s waveform

is given by a signal akptq. These signals may represent music, speech or other arbitrary sounds.

The total source distribution inside the room is then described by a function f ,

fpx , tq “
K
ÿ

k“1

akptqδpx ´ skq. (4.1)

Sources generate pressure variations inside the room, which we denote by upx , tq. We sample

upx , tq with M microphones at positions trmu
M
m“1 and attempt to solve the following problem:

Problem 4.1

Given access to measurements of sound pressure tuprm, tq ` εmptqu
M
m“1 inside a known room

D, where tεmu
M
m“1 accounts for the modeling mismatch and noise, find the source locations

tsku
K
k“1.

4.2.2 Discretizing the Wave Equation with the Finite Element Method

Recall from Chapter 2 (e.g. Equation (2.24)) that the acoustic wave motion is described by the

wave equation,

´∆w `
1

c2
B2w

Bt2
“ g, (4.2)

with g being the source term, not present in (2.24).

In many applications we do not require a full time-dependent wave equation, and we analyze

the system under the assumption that the field is time-harmonic, wpx , tq “ upx , ωqe´jωt, which

is equivalent to taking the Fourier transform of the wave equation (4.2) with respect to time.

This leads to the Helmholtz equation which we have also seen in Chapter 2,

´∆upx , ωq ´
ω2

c2
upx , ωq “ fpx , ωq. (4.3)

Equation (4.3) does not involve time derivatives since the Fourier transform simplifies them into

a multiplication with the frequency squared.
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Accounting for the source model (4.1), the Helmholtz equation (4.3) becomes

´∆upx , ωq ´ pω2{c2qupx , ωq “
K
ÿ

k“1

akpωqδpx ´ skq, (4.4)

where s is the Fourier transform of g.

To have a complete characterization of the wave equation, we must specify the boundary

conditions. Throughout this section we will assume sound-hard (perfectly reflective) walls cor-

responding to the Neumann boundary condition:

x∇upx , tq,npx qy “ 0, x P BΩ, (4.5)

where npx q is the unit normal, but arbitrary mixed boundary conditions are possible.

Let us show how to obtain a FEM discretization of the Helmholtz equation (4.3). We start

by multiplying both sides of the equation by a test function v and integrating over the room,

´

ż

Ω

∆u v dx ´ k2

ż

Ω

uv dx “

ż

Ω

fv dx , (4.6)

where k
def
“ ω{c is the wavenumber. Intuitively, if we require that this hold for any test function

v, then this form is equivalent to the original pointwise equation. Indeed, one could imagine

highly localized test functions that extract the function value at a point. Actually we require it

to hold for all v that are admissible; admissibility conditions are discussed in detail in [194].

Equation (4.6) is asymmetric in the sense that u “has” second derivatives, while v “has” no

derivatives. A more symmetric form is obtained after applying the Green’s theorem (integration

by parts) to the first integral,
ż

Ω

x∇u,∇vy dx ´ k2

ż

Ω

uv dx “

ż

Ω

fv dx . (4.7)

Equation (4.7) is called the weak form of the Helmholtz equation. Note that the additional term

(integration over the boundary BΩ) produced by the application of Green’s theorem vanishes

thanks to the boundary condition (4.5).

Let us now try to find an approximate solution u‹ « u as a linear combination of N trial

functions tφku
N
k“1, u‹px q “

řN
i“1 u

‹
iφipx q by using the weak form. Plugging u‹ into (4.7), we

get one linear equation in N unknowns tu‹i u
N
i“1, and the problem is reduced to the computation

of these coefficients. To solve it, we need N independent equations, which we can obtain by

choosing N independent test functions v1, . . . , vN .

Putting these pieces together in (4.7), the weak form becomes

ż

Ω

B

∇
ˆ N
ÿ

i“1

u‹iφi

˙

,∇vj
F

dx ´ k2

ż

Ω

ˆ N
ÿ

i“1

u‹iφi

˙

vj dx “

ż

Ω

fvj dx , 1 ď j ď N. (4.8)

For each j we have a linear equation with the unknowns u‹1, . . . , u
‹
N . Written more compactly,

the system is
N
ÿ

i“1

rKi,j ´ k
2Mi,jsu

‹
i “ fi, 1 ď j ď N. (4.9)

where Ki,j “
ş

Ω
x∇φj ,∇viy dx , Mi,j “

ş

Ω
φivj dx and fi “

ş

Ω
fvi dx , or in a matrix form,

u‹ “ f . (4.10)
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Ω

∂Ω

φ

Figure 4.1: Triangular mesh in a plane. Elements φ are pyramids of height 1 centered at mesh
nodes.

It is common to choose the test functions to be the same as the trial functions, vj “ φj , so that

K and M be symmetric positive-definite matrices.

Interestingly, the approximate solution u‹ is the orthogonal projection of the exact solution u

onto the linear subspace spanned by φ1, . . . , φN . This projection is called the Galerkin projection

in honor of the Russian mathematician Boris Galerkin. From Galerkin’s idea to FEM there is

only one small step—one chooses the trial functions tφiu
N
i“1 to be localized piecewise polynomials.

There are two immediate benefits from having this formulation. First, if we choose φs to

have a localized support, many of the elements will not overlap. This means that many integrals

for Ki,j and Mi,j will be zero, and K ´ k2M will be sparse. Second, since there are no more

second derivatives, we can conveniently choose the elements φj to be piecewise linear. A typical

procedure is then to discretize the domain into a triangular mesh, and use piecewise linear

elements centered at the mesh nodes. An illustration in 2D is given in Figure 4.1.

We omit the discussion of how to insert the boundary conditions into the FEM formulation.

It is an important topic though, closely connected to the uniqueness of the solution or invertibility

of K ´ k2M . We will simply assume that this matrix is invertible.

4.2.3 Sparsity and Wideband Diversity

An advantage of choosing finite elements for test and trial functions is their restricted spatial

support. Furthermore, with piecewise linear elements, only one element at any given node is

non-zero.

This implies that given a sufficiently fine mesh, the amplitude of the pressure oscillations at

some location x at a frequency ω approximately equals the value of the coefficient u‹ω,i corre-

sponding to the finite element centered around x . Thus the sources of the field will activate only

a small number of finite elements.

More concretely, let Apωq
def
“ K ´ pω2{c2qM be the matrix of the discretized Helmholtz

equation and denote Gpωq
def
“ Apωq´1. Then given the source distribution f pωq, the solution
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Figure 4.2: Matrix structure of the wideband source localization via sparse recovery. On the left,
we show systems at three different frequencies with different measurement vectors and matrices, and
unknown source vectors having the same sparsity pattern. On the right, we combine the three systems
into one big matrix-vector equation, with the equivalent group sparsity constraints.

u‹pωq is obtained as

u‹pωq “ Gpωqf pωq. (4.11)

As we are solving the inverse problem, we do not know the source term f pωq; rather, we aim

to compute it from the measurements of u at a few locations. From the above discussion it is

clear that by placing microphones in a room we get to measure the corresponding entries of the

vector u‹pωq. Denote this set of entries by R, and the restrictions of u‹pωq and Gpωq to these

rows by u‹Rpωq and GRpωq. Our measurements are then exactly u‹pωq.

Note that we implicitly assume that the microphones are located at the mesh nodes. This is

not unrealistic, since we know the array geometry by design, and we can always mesh in such a

way that this is true. Using the introduced notation, the measurements can be expressed as

u‹Rpωq “ GRpωqf pωq. (4.12)

Because the sources are spatially sparse, only a small fraction of the elements in f pωq are non-

zero. Columns of GRpωq represent the transfer functions—samples of the Green’s function—from

the corresponding source location to microphones in R. The goal is to find a sparse selection of

columns in GRpωq that explains the measurements u‹Rpωq.
So far we discussed only what happens at a single frequency ω. The key insight is that we

can write out the Helmholtz equation for more than one ω. If the sources are wideband and

their spectra are non-zero at this frequency, the solution u will be non-zero. In the inverse

problem that we are solving, we will have a different measurement vector u‹Rpωq and a different
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sampling matrix GRpωq for every ω, but the sparsity pattern of the sought vector f pωq will

remain unchanged, as the sources are at the same locations regardless of the frequency.

By choosing a discrete set of frequencies tωiu
F
i“1, we arrive at the following system of under-

determined linear systems linked by a common sparsity pattern,

$

’

’

’

’

&

’

’

’

’

%

u‹Rpω1q “ GRpω1qf pω1q

u‹Rpω2q “ GRpω2qf pω2q

...

u‹RpωF q “ GRpωF qf pωF q

, (4.13)

The structure of this system is illustrated on the left-hand side of Figure 4.2 for F “ 3. The

right hand side of the figure illustrates a way to concisely write this system in one matrix-

vector equation. Let yJ
def
“ ru‹Rpω1q

J, . . . , u‹RpωF q
Js, H

def
“ diagpGRpω1q, . . . , GRpωF qq and

zJ
def
“ rf pω1q

J, . . . , f pωF q
Js. We then rewrite (4.13) simply as

y “ H z . (4.14)

This problem is a problem of joint sparsity. Define the group of entries corresponding to the

ith position in the room as

z i
def
“

»

—

–

fipω1q

...

fipωF q

fi

ffi

fl

. (4.15)

Then our goal can be stated as minimizing the number of active (non-zero) groups, while repro-

ducing the measurements (satisfying (4.14)) as accurately as possible. Minimizing the number of

active groups corresponds to minimizing the number of active sources; what happens within each

group does not matter. For example, we do not require the sources to have a sparse spectrum.

This structure, often termed structured, joint, block or group sparsity [10, 70, 208] is known to

be promoted by the mixed `1{`2 norm1, which is the `1 norm of the `2 norms of groups. Thus

we can estimate the source locations by solving the following convex optimization program,

minimize
G

‖rz 1, . . . , zN s‖`1{`2 p “

N
ÿ

i“1

‖z i‖2 q

subject to y “ H z .

(4.16)

Depending on the problem dimensions (number of possible source locations N , number of

microphones M , number of frequencies F ), solving the convex program (4.16) exactly may be

computationally too expensive. Iterative and greedy approaches can then be used to reduce the

computational cost. In [61] we used an adaptation of the orthogonal matching pursuit (OMP)

[166, 209]. The performance is improved with respect to block OMP of Eldar, Kuppinger and

Bölsckei [70] by simply replacing an incoherent sum of the goodness of groups by a coherent one.

Boufounos, Smaragdis and Raj [21] propose to use the multichannel extension of the CoSaMP

algorithm [156]. The modified CoSaMP requires a smaller number of measurements than the

block OMP for the same sparsity level, at a somewhat higher computational cost. The best

performing procedure is to solve the convex program (4.16). Knowing that the `1{`2 norm has

1Actually we want to minimize the `0{`2 norm, where `0 counts the number of non-zeros in a vector. However,
this is not computationally tractable, so we do a standard trick of replacing it by its convex envelope `1{`2.



4.2. Sound Source Localization with Finite Elements and Wideband Diversity 87

an efficient proximal mapping [192] (cf. Chapter 7), this minimization can also be implemented

efficiently by various proximal algorithms [164].

4.2.4 Using Only One Microphone

A remarkable thing is possible if we solve the full convex relaxation (4.16) instead of using the

mentioned greedy algorithms: We can localize multiple sources using a single microphone. Every

pair of microphone-source locations in a room exhibits a particular spectral pattern. This pattern

should be seen as a filter which is with high probability unique to this pair of locations. If a

source excites this spectral pattern at the receiver, we may be able to recognize it. A few sources

will excite a sparse combination of spectral patterns at the receiver, and we might be able to

recover their locations from this combination.

Of course, one could imagine sources that are adversarial with respect to any given room, in

the sense that their spectrum inverts the spectral signature of their true location and produces the

signature of a different location, thus preventing correct localization. But numerical experiments

reveal that the localization of multiple sources with one microphone is possible for various signals,

so this is very unlikely to happen over wider frequency ranges and for various natural, noise-like

signals, so our method will still work. The explanations is that inverting the frequency response

is too costly in the sense that it generates a spectral signature with a large norm, thereby

disqualifying the corresponding solution candidate.

What is more, if we are indeed searching for the sparsest combination, then the original

combination will very likely be there. Again we could imagine an adversarial pair of sources

jointly producing the signature of some third location at the sensor, but this would again require

the costly inversion.

There is no magic here: As Boufounos notes [21], if the number of sources is greater than the

number of microphones, we cannot reconstruct the source spectra as the system is underdeter-

mined even when restricted only to active locations. To deal with this issue, we could imagine

adding side knowledge via additional regularizations beyond the standard `1{`2.

As a final note, single microphone localization of multiple sources is challenging (if at all

possible) in free field (see, e.g., the setup in [21]) as the corresponding spectral signatures are

just simple delays and thus not rich enough. It also cannot be achieved by algorithms such

as CoSaMP or OMP (without additional modifications), as they do not discriminate based on

spectral patterns. Concretely, the location candidates in CoSaMP are chosen iteratively as the

large `2-norm rows in the following matrix:

F
ÿ

i“1

GRpωiq
Ju‹Rpωiq. (4.17)

But when M “ 1, the above matrix-vector multiplications become scalings of a column vector

for every frequency, and there is no particular selectivity for any location as all of them are

scaled equally (this is not the case for M ą 1, when the correlations between the microphone

measurements and the residual vector in fact do exhibit spatial selectivity).

4.2.5 Numerical Experiments

We have validated the theoretical results in a number of numerical simulations. For visualization

we use a 2D room, but the developed theory is valid in both 2D and 3D.
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A B
Ω Ω

1.375 m

Figure 4.3: (A) Simulation domain (room) and the FEM simulation mesh used in the experiments.
(B) Candidate source locations.

A B C
Figure 4.4: Three localization examples for F “ 512 wavenumbers evenly spaced in r10, 70s m´1

and source emitting white noise. Circles represent true source locations, dots represent estimated
source locations, and red squares represent microphone locations. (A) 5 sources localized with 2
microphones; (B) 8 sources localized with 4 microphones; (C) attempt to localize 20 sources with 5
microphones, with erroneous localizations. Colors depict the field at the wavenumber k “ 33.37 m´1.

Acoustics are simulated using a fine mesh shown in Figure 4.3A for F “ 512 wavenumbers k

uniformly spaced in r10, 70s m´1, and this result is considered to be the true acoustic wavefield.

We assume that the sources can appear at a discrete set of locations shown in Figure 4.3B. In order

to test the method “in isolation”, we commit an inverse crime by using the same set of points

to look for the sources. Nevertheless, we experiment with adding noise to the measurements

(Figure 4.5).

Three localization results are shown in Figure 4.4, all with a higher number of sources than

microphones. We can conclude that the room indeed helps: The (strong) assumption that we

know the room geometry turns it into a highly discriminative device for source localization. The

key here is to use the diversity offered by the bandwidth, thus increasing the effective number of

measurements.

Finally, Figure 4.5 shows a localization experiment with a single microphone. We see that

using the mixed-norm minimization (4.16) we can localize multiple sources using only a single

sensor. What is more, the source need not be visible to the receiver. Figure 4.5C shows the
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Figure 4.5: Single microphone experiments, with the same annotations as in Figure 4.4. (A) 3
sources localized by one microphone; (B) 2 source localized by one microphone, with one source
being invisible to the microphone; (C) success rate per source for two different microphone locations,
and the number of source K between 1 and 5. Colors depict the field at k “ 15.8 m´1 in (A) and
at k “ 22.8 m´1 in (B).

localization success rate for different numbers of randomly placed sources and two different

microphone locations. The success rates are shown both for the noiseless case and at the SNR

of 30 dB. Two observations can be made: 1) microphone location matters, 2) the performance

is maintained in the presence of noise.

4.3 Distance-Based Approaches (or a Tale of Two Applications

of Echo Sorting)

In this section we present two simple localization results that exploit echoes and echo sorting. To-

gether with Section 4.4 they may be seen as setting up the stage for the result on zero-knowledge

calibration. We start by showing that in a room, it is possible to localize an omnidirectional

source with a single omnidirectional receiver (and vice versa).

Localizing a source usually involves more than one receiver, especially if the receivers are

omnidirectional [12, 135]. We show how to use only one sensor for source localization in a

room by explicitly taking echoes into account [163]. To do it, we will assume that the room

geometry is known. We do not require the detailed knowledge of the room structure—locations

and orientations of principal reflectors (walls) are sufficient. The key ingredient is to recognize

that the image sources and image microphones provide additional measurements for free. In

the context of multilateration (Section 4.3.1) these additional sources or sensors are often called

virtual anchors.

Note that we can either localize sources using multiple receivers, or localize receivers using

multiple sources. In the former case we would have virtual microphones that behave analogously

to the virtual sources by the duality of the wave equation. For the sake of consistency (that is,

to keep working with image sources), we first consider the case of microphone localization using

multiple image sources.

Virtual anchors have been used previously for similar tasks. Ribeiro et al. [175, 177] use echoes

to improve the accuracy of source localization with a microphone array. Meissner, Steiner, and
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Witrisal [143, 144] use virtual anchors for ultra-wideband (UWB) positioning, also using a single

sensor. They develop a probabilistic method for localization under echo ordering ambiguity, and

the source location is obtained by computing a MAP estimate. Their formulation allows them

to handle missing echoes. Echo sorting, on the other hand, solves the problem in a clear-cut way

with very low complexity, and gives necessary and and sufficient conditions for the localization

to succeed.

Our method can be regarded as a dual of the room geometry reconstruction algorithm.

Similarly to room reconstruction, we need to use echo sorting to associate recorded echoes to

correct walls. In a noisy situation we can again use EDM for echo sorting, but we opt to present a

simple method based on multilateration. We verify the method by an experiment in a classroom

at EPFL.

4.3.1 Multilateration

At the core of our algorithms lies the principle of multilateration [12, 135]. Suppose that we

have M sensors at locations rm and a source at location s. Furthermore, we have a collection

of noisy measurements of the distances between rm and s,

dm “ ‖rm ´ s‖` εm. (4.18)

Multilateration refers to any method that attempts to find the source locations s given these

measurements and the microphone locations.

A natural way to proceed is to find s as a minimizer of a particular cost function:

ps “ arg min
xPR3

M
ÿ

m“1

`

‖rm ´ x‖´ dm
˘2
. (4.19)

As a motivation for this cost function, we can take the following proposition, the proof of which

is given in Appendix 4.A:

Proposition 4.1

Suppose that εm are iid zero-mean Gaussian random variables. Then (4.19) is a maximum

likelihood estimate of s.

While it is desirable to compute ps according to (4.19), the cost function is not convex and

there is no known efficient algorithm for minimizing it. There exist approaches using semidefinite

relaxations [37]; however, they are not guaranteed to produce the optimal solution.

Another reasonable cost function is a slight modification of (4.19), involving squared distances

instead of distances. The source location estimate is thus obtained as follows:

ps “ arg min
xPR3

M
ÿ

m“1

`

‖rm ´ x‖2 ´ d2
m

˘2
. (4.20)

This function can be seen as s-stress (cf. Chapter 2, Equation (2.88)) written out for a single point

x . Although (4.20) is also not convex, the globally optimal solution can be found efficiently (in

polynomial time) using an algorithm by Beck, Stoica and Li [12]. An example of multilateration

using the two cost functions is shown in Figure 4.6. Beck, Stoica and Li also devise an efficient

procedure for multilateration from distance difference data. This corresponds to the situation

where the source and the receivers are not synchronized. All of the results in this chapter can be

recast in the language of distance differences, but for simplicity we choose to work with distances.
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A B

Figure 4.6: Localization by minimization of `2 error in distances squared and `2 error in non-squared
distances. (A) noiseless case; (B) noisy case, the hollow diamond corresponds to distances, the full
square corresponds to distances squared.

4.3.2 Single-Channel Localization

Consider now the case where M “ K “ 1, and the source emits a single click. In free space this

gives us a single distance measurement d given that the source and the receiver are synchronized.

Once the inflating sphere of sound passes the microphone, it is lost forever; there are no echoes

that could bring it back. The equation that captures this scenario is

‖s ´ r‖ “ d, (4.21)

which determines s up to a sphere of ambiguity if r is known, and vice-versa.

Now consider the same setup in a known room (a K-faced polyhedron). We already know

that by measuring the room impulse response we access the echo arrival times ti. These arrival

times can be linked to the room geometry and microphone position with the image source model

(cf. Chapter 2). On the other hand, because we know the room shape and the source locations,

we also know the locations of the image sources. This means that instead of having just one

TOA measurement, we get one per image source. This is illustrated in Figure 4.7.

As the geometry of the room and the position of the loudspeaker are known, we also know

the positions of image sources, rsi (cf. (2.62)). If we further knew the correspondences of the

recorded echoes by the microphone with the image sources (which echo comes from which wall)

we could simply multilaterate the position of the microphone. However, we face two problems:

Not all the extracted echoes from the impulse response correspond to first-order image

sources, and some spurious peaks do not correspond to echoes at all,

The echoes arrive at the microphone in an unknown order that depends on the position of

the microphone, so we do not know which circle to put around which image source.

Recall the annotated RIR measurements from Figure 3.10. We can see that many of the extracted

peaks do not correspond to a first-order image source, or that they are simply spurious peaks in

the impulse response. We again face an echo sorting problem.
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Figure 4.7: An example of echo labeling for microphone localization. The gray part of the matrices
shows the distances between the sources. We augment this matrix with a combination of echoes
extracted from the microphone RIR. If the echoes are selected correctly and have the right order the
augmented matrix is an EDM. The matrix Daug,1 is an EDM. But since the echoes are not correctly
ordered in Daug,2, it is not an EDM.

4.3.3 Echo Labeling and Almost Sure Uniqueness

To correctly label the echoes, we could use the same EDM-based algorithm we used to sort

echoes in the room hearing application in Chapter 3. However, let us explain a similar (but not

equivalent) procedure in terms of multilateration.

Denote by d1, . . . , dM the measured distances between the sources (real or virutal) sk and

the microphone whose position r we seek to estimate, and define f as follows:

fpd1, . . . , dM q “ min

#

K
ÿ

k“1

`

‖sk ´ x‖2 ´ d2
m

˘2
ˇ

ˇ

ˇ

ˇ

x P R3

+

. (4.22)

That is, f is the optimal value of the multilateration cost function with squared distances (4.20),

and we know that it can be computed efficiently [12]. In the noiseless case we are searching for

an assignment of echoes that makes f zero; in the noisy case, we want to make f as small as

possible.

Let T be the set of extracted times of arrivals of echoes (including the direct sound), and

let rsks
K
k“1 be the list of all anchors (real and virtual). Then we define an echo assignment as

follows,
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Definition 4.1 (Echo assignment)

An echo assignment is a K-tuple pd1, . . . , dKq such that dk P T and dk ‰ d` for k ‰ `. The

set of all assignments is denoted by ApT q.

To model situations with multiple echoes arriving at the same time, we can extend T to be a

multi-set, and relax the requirement that dk be distinct. We choose not to pursue this possibility

here.

Drawing on the discussions in Chapter 3, we know that with high probability, only the correct

selection of echoes can yield a zero cost function in the noiseless case, and that in a noisy situation

we should expect the correct combination to yield the smallest value of the cost function. Thus

the correct labeling can be obtained as follows,

ppd1, . . . , pdM q “ arg min
pd1,...,dKqPApT q

fpd1, . . . , dM q. (4.23)

Using familiar arguments, we can establish the following proposition:

Proposition 4.2

Suppose that we detect L echoes (including the direct path) in the received signal and thus

obtain the corresponding image source distances T “ t‖r ´ s`‖u. Then the noiseless single-

channel source localization problem can be solved by testing OpL3q echo assignments of size

K “ 4.

The above procedure is similar to using EDMs as in echo sorting (cf. Algorithm 3.3), but

not identical. The principal difference is that here we implicitly assume that the locations of the

microphone and virtual microphones are perfectly known. In reality we also want to optimize

over their locations so it makes sense to run everything EDM style (although we could first perfect

our knowledge of the virtual sources or microphones).

Using the techniques introduced in Chapter 3, we can further establish the following unique-

ness result:

Proposition 4.3

Consider any full-dimensional convex polyhedral room Ω, with wall normals n i and pi being

any point belonging to the ith wall, and place a source s and a receiver r in the room

independently at random according to some absolutely continuous distribution. Then the

location of r is uniquely determined by any (unlabeled) subset of
 

‖r ´ si‖
ˇ

ˇ si “ s `

xpi ´ s,n iyn i

(

of cardinality at least four.

Note that there is no reason not to consider image sources of arbitrarily high orders, but in

practice high-order echoes are difficult to measure.

4.3.4 Experimental Example

We ran an experiment in a lecture room on EFPL campus (the same room we used for experiments

in Chapter 3). Two walls of the room are glass windows, and two are gypsum-board partitions.

The room is equipped with a perforated metal plate ceiling suspended below a concrete ceiling.

We replaced one wall by a wall made of tables. The RIR from the loudspeaker to the microphone

was estimated by the sine sweep technique [72]. The room dimensions are known a priori and

the loudspeaker location was measured during the experiment. The experimental setup with the

image sources of the loudspeaker are shown in Figure 4.8. As the loudspeaker is placed against
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3.684 m
3.680 m

7.080 m

4.590 m

Figure 4.8: Sketch of a room on EPFL campus where the in-room localization experiment is per-
formed. The image sources of the loudspeaker are shown with stars. The image source of the floor
(rs4) is not shown for better visualization. The actual distance of the loudspeaker and the microphone
is shown in red while the estimated distance is in black.

the north wall, we do not consider the image source for this wall. The EDM of the real and

image sources is given as

D «

»

—

—

—

—

—

—

–

0.00 25.40 178.48 5.91 4.66 10.38

25.40 0.00 203.90 55.40 30.07 35.77

178.48 203.90 0.00 172.38 183.15 188.86

5.91 55.40 172.38 0.00 10.58 16.28

4.66 30.07 183.15 10.58 0.00 28.94

10.38 35.77 188.86 16.28 28.94 0.00

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We augment this matrix with 6-tuples of echoes selected from the microphone’s RIR. For each

combination we find the value of s-stresspDaugq. The combination that results in the minimum

score is selected as the correct combination and the microphone position is found using the

estimated permutation of the echoes. As shown in Figure 4.8 position of the microphone was

estimated within an error of the order of 1 cm.

4.3.5 The Non-Convex Case: Inverse Method of Images

One of the reasons indoor localization remains a challenge despite numerous attractive applica-

tions (see, e.g., [124]) is the occlusion of the line-of-sight path required by many distance-based

methods that are efficient outdoor. We demonstrate a simple method that obviates this problem

in rooms [159]. We show how to perform indoor localization in non-convex rooms by using the

reverse method of images—a sequence of reflections of the localized virtual sources. Furthermore,

we propose a technique based on gradient descent to refine the position estimate. The refining

technique can be used as a building block of a tracking algorithm. The results are valid in both

2D and 3D. While we choose to do illustrations and numerical experiments in 2D purely for

simplicity, we note that there do exist “almost-2D” ultrasonic transducers [203] that could be

used to obtain echoes from vertical walls only.
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Figure 4.9: Reflecting a localized second order virtual source into the room using the image source
method in reverse order.

Similarly to the single-channel localization case, the key here is to treat virtual and real

sources equally, thereby transforming the indoor localization problem into a problem of localizing

multiple sources in free field using a microphone array. We know from Chapter 3 that the main

challenge when performing multilateration from reverberant recordings is to group the echoes that

correspond to a single virtual source. This is especially the case with non-compact microphone

arrays. To address the labeling problem, we can use the echo sorting algorithm (cf. Chapter 3,

Algorithm 3.3) or the variant with multilateration described in the previous section.

4.3.6 Reflecting Localized Sources

After finding the location of the virtual source, we can use the knowledge of the room geometry

to reflect it back into the room following the method of images in reverse order. After a sequence

of reflections, we find the position of the source that generated the localized virtual source.

We explain the reflecting procedure with reference to Figure 4.9. A line is drawn between

the virtual source and each of the microphones. Then, we reflect the virtual source across the

wall that intersects the drawn lines, and we store the intersection points. If the reflected source

is inside the room, we are done. Otherwise, we draw a new set of lines between the previous

set of intersection points and the new virtual source, and we reflect the virtual source across the

wall that intersects the newly drawn lines. The algorithm is iterated until the reflected source

is finally inside the room. In Figure 4.9, the procedure is illustrated for a second order virtual

source.

A problem that may occur while applying the inverse method of images is that the lines

connecting the virtual source with the microphones intersect more than one wall because of the

errors in virtual source estimation. In such case, we may either discard the problematic virtual

source, or we can reflect across the wall with the highest number of intersections.

4.3.7 Estimating the Source Position

Thus far, we have localized multiple virtual sources and reflected them back into the room.

There are different ways to combine multiple reflected sources into a single position estimate.
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For example, we could take the mean location of all sources reflected back into the room, or we

could take the one that achieves the best value of the multilateration cost function. However,

as the measurement jitter increases, it may happen that wrong echo combinations that do not

correspond to any source pass the echo sorting stage. To address this, we propose a scoring

scheme suitable for localization in strong measurement jitter.

If the position estimate is close to the source, the simulated RIR from the estimated position

is close to the recorded RIR. To use this idea to estimate the source position, we define a metric

that measures the distance between the two RIRs. For every echo recorded by the microphones,

we find the echo closest in time in the simulated RIR, and compute the (squared) 2-norm of the

time differences. More precisely, we define the cost function between the RIRs as

gpx q “
M
ÿ

m“1

K
ÿ

k“1

e2
ijpx q, (4.24)

where

emkpx q “ min
`
|tmk ´ t

‹
m`px q|,

time tmk is the delay of kth echo recorded by the mth microphone, t‹m`px q is the `th echo delay

in the simulated RIR for the mth microphone if the source position is x , and K is the number of

echoes heard by the ith microphone. We can then pick the reflected version of the virtual source

that minimizes gpx q,

sbest “ arg min
sPS

gpsq, (4.25)

where by S we denoted the set of all candidates for the source location estimate obtained by

reflecting the virtual source back into the room.

4.3.8 Optimizing the Position Estimate

Note that in (4.24) we restricted the search space for the minimizer of g to the discrete set of

reflected virtual sources. It is possible to further improve the localization by perturbing the

obtained location estimate sbest so that the multilateration cost function in (4.19) is minimized,

but this time over the estimated source location and its image sources. Concretely, we want to

minimize the following cost function

hpsq “
M
ÿ

m“1

K
ÿ

k“1

“

dmk ´ ‖Imkpsq ´ rm‖
‰2
, (4.26)

where inner summation goes over the echoes in the recorded responses that we want to match.

By Imkpsq we denote an image source of s that generates the echo closest to dmk at microphone

m. To this image source we associate the sequence of walls that generates it, denoted by Wmkpsq.

One possibility to minimize h is simply by gradient descent. Since we have a very good initial

guess for the source location, we expect this to lead to the global optimum with high probability

despite the problem not being convex. The gradient can be computed as

∇hpsq “ 2
M
ÿ

m“1

K
ÿ

k“1

„

ź

w PWmkpsq

pI 2 ´ 2Nwq



`

‖Imkpsq ´ r i‖´ dmk
˘ Imkpsq ´ rm
‖Imkpsq ´ rm‖ ,
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Algorithm 4.1 Localization by the Inverse Method of Images

Input: Echo arrival times at the M microphones TM , microphone positions, room geometry

(normals n i, points pi)

Output: Source location estimate ps

1: Localize the set of real and virtual sources tsku
K
k“1 using echo sorting (Algorithm 3.3),

2: for every k P t1, . . . ,Ku do

3: psk Ð sk
4: while psk not in the room do

5: Draw the line segments connecting rm and sk; they intersect wall i

6: Mirror the current estimate, psk Ð psk ´ 2 xpi ´ psk,n iyn i

7: end while

8: end for

9: Define the set of mirrored image sources, S Ð tps1, . . . , psKu,

10: sbest “ arg minsPS gpsq Ź g as in (4.24)

11: ps Ð arg minsPR3 hpsq Ź Gradient descent on (4.26) starting at sbest

where Nw
def
“ nwnJw and nw is the normal corresponding to wall w, and we used the expression

for the position of an image source (2.62).

Minimizing h can again be motivated by the maximum likelihood argument in Proposition

4.1; however, because we do not have the actual distances between the virtual sources and the

microphones, but we rather get them by finding the closest matching echoes in the recorded

signals, this minimization should be seen as a heuristic. The complete localization algorithm is

summarized in Algorithm 4.1.

4.3.9 Tracking

Source tracking can be performed by repeated localization; the source can be localized inde-

pendently at each time instant using Algorithm 4.1. However, because the current position of

the source depends on previous locations, we can leverage previous estimates to improve the

performance.

We propose the following simple method: For the initial position there are no prior estimates,

so we localize the source using the algorithm described in Section 3.4. This means that we do 1)

echo sorting, 2) virtual source localization, 3) virtual source reflection, and 4) minimization of g.

For the remaining time instances, we assume that the source position did not change significantly

(by choosing the time interval appropriately), and we localize the source only by solving (4.26)

by the gradient descent initialized at the previous position estimate.

4.3.10 Numerical Simulations for Non-Convex Localization

We test the localization algorithm in an L-shaped room shown in Figure 4.10A. The coordinates

of the source are p6 m, 7 mq, and we use four microphones positioned uniformly at random over

the square with corners at p1 m, 1 mq, p1 m, 3 mq, p3 m, 3 mq and p1 m, 3 mq. We stop the

simulation after the third order echoes. Note that there is no line-of-sight path between the

source and any microphone.

Figure 4.10A shows an outcome of the localization from jitter-free measurements. It can be

seen that s-stress prefers positions close to the real source, and that g chooses the best position
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Figure 4.10: Numerical simulations for non-convex localization. In all figures, the purple “x” denotes
the microphone position and the black circle depicts the source location. Green squares are the
reflected virtual sources ordered by the echo sorting score (s-stress). Smaller indices indicate better
scores. The solid square depicts the reflected virtual source with the best g, and the blue dot
is obtained by solving (4.26) by a gradient descent initialized at the position of the solid square.
(A) Jitter free localization; (B) Measurement jitter from N p0, 0.052q; (C) Measurement jitter from
N p0, 0.12q; (D) Real trajectory in the tracking experiment with jitter with σ “ 0.05; (E) Tracking
only by the inverse image method; (F) Tracking by minimizing (4.26).

among the reflected virtual sources. The resulting solid green square overlaps with the blue dot,

as in this case both the minimization of g and of h give perfect localization.

Figure 4.10B shows localization with the measurement jitter drawn iid from a centered Gaus-

sian with σ “ 0.05. Although there are reflected sources in the vicinity of the true source position,

the ones giving the best s-stress are farther away. Nevertheless, g successfully discriminated the

correct reflected source (closest to the true position). We observe that minimizing h in (4.26)

further improves the position. We tested the algorithm in a more complex room, as shown in

Figure 4.10C, with σ “ 0.1. The reflected virtual sources still concentrate around the real source

position. Although the positions with the highest localization scores are scattered around the

room, g selects the one that is closest to the source. Again, solving minimizing h in (4.26)

improves the estimate.

Figure 4.10E and Figure 4.10F show the result of tracking a source that was moving along the

curve rs1ptq s2ptqsJ : r0,8qÑR2 with s1ptq “ 4`3 cos3pπt{60q m and s2ptq “ 6.5`2 sin3pπt{60q m,

with the jitter variance of σ “ 0.05 m. Figure 4.10E was obtained by going through all of the

steps of the localization algorithm at each time instance (echo sorting, multilateration, image

source reflecting), but without performing the optimization (4.26). In Figure 4.10F we used only

the heuristic h. It can be seen that the second, simpler approach performs significantly better.

4.4 Position Calibration of Microphone Arrays

Applications of microphone arrays typically require us to know where the microphones are. If

the geometry of the array is not known, we must somehow learn it.

The position calibration problem is particularly important in two groups of applications. The

first one is ad hoc microphone arrays, for example microphones deployed to run an experiment or

to make a recording, or microphone-equipped devices that share the room, such as smartphones,

tablets, laptops, or glasses. Another relevant group of applications is in very large, fixed micro-

phone arrays, where precise hand measurements of the microphone positions become impossible.

By very large we think of at least several tens, or even hundreds or thousands of microphones

[221].
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In both groups of applications, measuring microphone positions by hand is slow, imprecise,

and impractical. It is also inconvenient to use specialized calibration rigs, e.g., loudspeakers

mounted on a fixed construction [182].

Recent practical methods for microphone localization use arbitrarily positioned acoustic

events for calibration [41, 77, 170]. Raykar and Duraiswami [174] formulate a non-linear least

squares problem using at least five loudspeakers, and derive a closed form solution in the case

when one loudspeaker is close to a microphone. Crocco, Del Bue and Murino [43] demonstrate

an approach that uses low-rank matrix factorization. They, too, derive a closed-form expression

for microphone positions for a collocated source and microphone. With sources appearing at

known times, the problem is equivalent to multi-dimensional unfolding, with the solution similar

to the one in [186].

We focus on calibration from time-of-flight measurements between the microphones and the

acoustic events, but we should mention that there are methods that directly measure the pair-

wise distances between the microphones, typically using the coherence of the diffuse noise [197].

Beyond using distances, some very recent calibration methods exploit efficient representations of

reverberant sound fields in terms of, for example, Fourier-Bessel functions [158]. These methods

have potential to enable calibration with narrowband sources.

Some methods can also cope with unknown sound emission times. Thrun [202] transposed

the Tomasi-Kanade factorization used in computer vision [205] to the microphone position cal-

ibration problem; he assumes that the sources are in the far field. Pollefeys and Nister [170]

exhibit a similar method that requires no such assumption. Gaubitch, Kleijn and Heusdens [77]

additionally allow for unknown internal delays of the microphone processing chain.

On the other hand, these methods require a full set of distance measurements. Furthermore, it

is not straightforward to add a priori information about the relative geometry of the microphones

or of the acoustic events. Such a priori information may take any of the following forms:

Distance between microphones 5 and 10 is 10 cm,

Calibration events 3, 4, and 5 are all within a ball of 20 cm,

Distance between microphones 1 and 2 is between 20 and 30 cm,

Distance between microphones 1 and 2 is larger than the distance between microphones 1

and 3.

Intuition suggests that prior knowledge should improve calibration performance. As we show in

numerical experiments, this intuition is confirmed in practice.

To address potentially missing distances between sources and microphones, and to incorporate

the prior information about the geometry, we propose to frame microphone localization as a

special case of Euclidean distance matrix (EDM) completion.

We do it in two steps. First, we recognize the calibration problem as an instance of multi-

dimensional unfolding (MDU)—a set of tools used for data visualization in psychometrics. The

MDU was addressed in detail by Schönemann in 1970 [186].

Second, we recognize that MDU is a special case of the EDM completion problem (Prob-

lem 2.1), with a structure complementary to the more thoroughly investigated sensor network

localization problem [191, 17]. We solve the EDM completion problem using the methods intro-

duced in Chapter 2. A constraint of this approach is that to use EDMs we need to work with

distances, as opposed to distance differences. Thus, we need to assume synchronization between

the microphones and the sources.
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4.5 Microphone Calibration and Multidimensional Unfolding

We define the microphone localization problem as the task of finding the locations of m micro-

phones given their distances to k acoustic events.

Problem 4.2

Denote by R “ rr1, . . . , rM s P RdˆM the unknown microphone locations, and by S “

rs1, . . . , sKs P RdˆK the unknown source locations, where d denotes the ambient dimen-

sionality (usually d “ 2 or d “ 3). The distance between the mth microphone and kth source

is

δmk “ ‖rm ´ sk‖2, (4.27)

where ‖ ¨ ‖ denotes the Euclidean norm. We collect these distances in the matrix ∆, and the

task is to recover R (and S) from ∆.

This standard scenario is described for example in [43]. We first recognize this problem as an

instance of metric multidimensional unfolding (MDU) [186]. Indeed, MDU is defined as the

problem of localizing a set of points partitioned into two subsets, where we can measure the

distances between the points belonging to different subsets, but not between the points in the

same subset.

One of the early approaches to the metric MDU is described by Schönemann [186]. We go

through the steps of the algorithm, and then explain how we can solve the problem using EDMs.

The goal is to make a comparison between the MDU-specific approach and a more general EDM

formalization, and to emphasize the universality and simplicity of the EDM approach.

We can write the definition of δmk (4.27) in matrix form as

∆ “ EDMpR,Sq
def
“ diagpRJRq1J ´ 2RJS ` 1 diagpSJSq. (4.28)

Consider now two geometric centering matrices of sizes M and K, denoted JM and JK . Recall

that the geometric centering matrix of size N is defined as

JN “ I ´
1

N
11J. (4.29)

Using this definition, we have

RJM “ R ´ r c1
J, SJK “ S ´ sc1

J, (4.30)

where r c is the geometric center of the microphones in R, and sc is the geometric center of the

sources in S . This means that

JM∆JK “ rR
J
rS

def
“ rG (4.31)

is a matrix of inner products between vectors rrM and rsK . We used tildes to differentiate this

from real inner products betwen rM and sK , because in (4.31), the points in rR and rS are

referenced to different coordinate systems. The centroids r c and sc generally do not coincide.

There are different ways to decompose rG into a product of two full rank matrices A and B ,

rG “ AJB . (4.32)

We could for example use the SVD, rG “ U ΣV J, and set AJ
“ U and B “ ΣV J. Any two

such decompositions are linked by some invertible transformation T P Rdˆd,

rG “ AJB “ rR
J

T´1T rS . (4.33)
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Figure 4.11: Microphone calibration as an example of MDU. We can measure only the propagation
times from acoustic sources at unknown locations, to microphones at unknown locations. The corre-
sponding revealed part of the EDM has a particular off-diagonal structure, leading to a special case
of EDM completion.

We can now write down the conversion rule between the sought microphone positions and the

matrices A and B which we can compute from the distance measurements ∆:

R “ TJA ` r c1
J

S “ pT´1qJB ` sc1
J,

(4.34)

where A and B are computed according to (4.32). Because we cannot reconstruct the absolute

position of the point configuration, we can arbitrarily set r c “ 0, and sc “ αe1. Recapitulating,

we have that

∆ “ EDM
´

TJA, pT´1qJB ` αe11
J

¯

, (4.35)

and the problem is reduced to computing T and α so that (4.35) hold, or in other words, so

that the right hand side be consistent with the data ∆. We reduced MDU to a relatively small

problem: In 3D, we need to compute only ten scalars. Schönemann [186] gives an algebraic

method to find these parameters, and mentions the possibility of least squares, while Crocco,

Del Bue and Murino [43] clearly outline an approach using non-linear least squares. We should

add here that their method differs from Schönemann’s in yet another way: Instead of subtracting

the centers of R and S using the geometric centering matrix, they subtract the first point. As

discussed in Chapter 2, this can be modeled as a multiplication of the point set by a matrix of

the form

I ´ e11
J. (4.36)

In both cases, the described procedure seems quite convoluted. Rather, we see MDU as a special

case of matrix completion.

4.5.1 Unfolding as Matrix Completion

We now frame Problem 4.2 (MDU) as a special case of Problem 2.1 (EDM completion). Let

the microphones and the sources be represented by a set of N “ K ` M points, ascribed to

the columns of matrix X “ rR S s. Then EDMpXJX q has a special structure as illustrated in

Figure 4.11,

EDMpX q “
„

EDMpRq EDMpR,Sq
EDMpS ,Rq EDMpSq



, (4.37)
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Figure 4.12: Comparison of two algorithms applied to multidimensional unfolding with varying
number of acoustic events K and noisy distances. For every number of acoustic events, we generated
1000 realizations of M “ 20 microphone locations uniformly at random in a unit cube. In addition
to the number of acoustic events, we varied the amount of random jitter added to the distances.
Jitter was drawn from a centered uniform distribution, with the level increasing in the direction of
the arrow, from Ur0, 0s (no jitter) for the darkest curve at the bottom, to Ur´0.15, 0.15s for the
lightest curve at the top, in 11 increments. For every jitter level, we plotted the mean relative error
} pD ´D}F {}D}F for all algorithms.
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Figure 4.13: Comparison of the influence of prior information on the reconstruction accuracy. For
every number of acoustic events, we generated 500 realizations of 15 microphones inside the unit
cube (acoustic event were also generated inside the unit cube). Jitter of ˘7 cm was added to the
distances measurements and then varying percentage of microphone pairwise distances was revealed
within ˘15 % of the true distance. The curves show the absolute reconstruction error } pD ´D}F .
Mean value of the Frobenius norm of the true EDM was around 13 for 20 acoustic events, so the
absolute error of 1 can be considered as successful localization.

where the upper-right and the lower-left blocks are measured, and the diagonal blocks are un-

known. Thus we define the mask matrix for MDU as

W MDU
def
“

„

0MˆM 1MˆK
1KˆM 0KˆK



. (4.38)

With this matrix, we can simply invoke the SDR in Algorithm 2.5 (Chapter 2).
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4.5.2 Integrating Prior Knowledge

Recall the semidefinite relaxation with trace maximization for completing noisy EDMs (4.39),

maximize
H

tracepH q ´ λ‖W ˝
`

rD ´KpV H V J
q
˘

‖F ,

subject to H P SN´1
` . (4.39)

The attractiveness of this formulation with the Gram matrix, as opposed to explicitly writing

out the stress functions, is in its flexibility: it is easy to insert many useful constraints on the

distances. Furthermore, unlike with the methods that are developed specifically for microphone

calibration, if we miss one or more source-microphone distances, (4.39) still works with a trivial

modification of the mask matrix W . Such situations arise commonly in practice.

It is easy to insert estimates or bounds on the distances. For example, we may have a rough

idea of the distances between some pairs of microphones, as well as a rough idea of the distances

between some pairs of acoustic events. All of these constraints are simply linear constraints on

D “ KpV H V J
q. Let us give some examples. Upper and lower bounds can be specified as

follows
W L ˝ rKpV H V J

q ´ Ls ě 0

W U ˝ rKpV H V J
q ´U s ď 0,

(4.40)

where matrices W L and W U select the elements for which we have bounds, and L and U

contain the bounds.

We can also plug in ordinal information about the distances. For example, we can require

that the distance between the microphones i and j be smaller than the distance between the

microphones i and k. This is written simply as

eJi KpV H V J
qpej ´ ekq ď 0, (4.41)

where e i is the ith canonical basis vector. Many other useful constraints can be modeled as

linear constraints on K.

4.5.3 Numerical Experiments

We demonstrate the usefulness of EDMs for the microphone calibration problem in two different

scenarios. First, we address the problem of localizing the microphone array from the set of

pairwise distance measurements in the presence of noise, and compare the SDR with the method

of Crocco, Del Bue and Murino [43]. The results are illustrated in Figure 4.12. We observe

that for the noiseless case, the SDR performs better, giving perfect reconstruction for all but the

lowest number of acoustic events. It also yields more accurate reconstructions at higher noise

levels. When the number of acoustic events is very low, the method from [43] performs better;

SDR retrieves solutions whose embedding dimension is too high.

Second, we explore the effect of adding prior information on the distances between the mi-

crophones in Figure 4.13. We add considerable jitter to measurements (˘7 cm within a meter

is surpassed by any method for measuring distance using times of flight). We then add upper

and lower bounds at 15% of the true distance for varying percentage of the pairwise microphone

distances. It is clearly observed that adding prior information can improve the localization per-

formance. A comparison with other approaches is not possible as they do not allow to easily

integrate such constraints.
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4.6 How to Localize Ten Microphones in a Finger Snap (With

a Little Help From Echoes)

We have seen in the previous section that a compelling method to calibrate the positions of

microphones in an array is with sources at unknown locations; remarkably, it is possible to

reconstruct the locations of both the sources and the receivers, if their number is larger than

some prescribed minimum. All existing methods, based on times of arrival or time differences

of arrival, only exploit the direct paths between the sources and the receivers. In the existing

approaches, the room reverberation is either ignored or considered detrimental.

In this section we present a proof-of-concept of using echoes to considerably reduce the number

of sources needed for calibration. We demonstrate that being in a room reduces the number of

acoustic events needed for calibration, even if we do not know how the room looks like or how

the microphone array is positioned and oriented inside the room. It is somewhat surprising to

note that the echoes help in the calibration despite not knowing where they are coming from.

Supposing that the positions of the walls are unknown, the location of the source is unknown,

and the locations of all the microphones are unknown, we are still able to estimate all these

parameters. In fact, we can do the estimation from a single finger snap.

Our algorithm outputs two particularly useful by-products: 1) information about the room

shape (as we also localize virtual sources), and 2) the array’s absolute position in the room, not

available with other calibration methods. The proposed procedure is in a way a total calibration—

we learn about microphones, sources and reflectors without knowing them a priori. We show

through numerical simulations that the algorithm can indeed localize ten microphones with a

single sound source.

4.6.1 Anechoic Calibration

As a building block in our approach, we use an algorithm for anechoic calibration. Any of the

algorithms mentioned in the previous section will do. Assume that the sources produce some

impulsive sound that the microphones record, and whose time-of-arrival (TOA) we can estimate

(up to a possibly unknown offset); assume further that the microphones are synchronized.

We denote the source positions by tsku
K
k“1, and the microphone positions by trmu

M
m“1. An

offset time τk is associated with the kth source. Then we can express the measurements as

ϑkm “ c τk ` ‖sk ´ rm‖2. (4.42)

We collect the measurements in a matrix Θ “
“

ϑkm
‰K,M

k,m“1
.

As announced, we assume the existence of a module—a black box as far as we are concerned—

that we denote Calibrate, and that computes the estimates of the unknown microphone and

source locations R
def
“ rr1, . . . , rM s,S

def
“ rs1, . . . , sKs, and offsets τ “ rτ1, . . . , τKs

T from

Θ . We can write

ppR, pS , pτ , εq “ CalibratepΘq, (4.43)

where ε ě 0 denotes some measure of fit. The measure of fit is computed as the discrepancy

between the measured data and the data that would have been generated by sensors at estimated

positions,
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ε “
K
ÿ

k“1

M
ÿ

m“1

|ϑkm ´ p‖psk ´ prm‖2 ` c pτkq|
2

(4.44)

If pR, pS and pτ perfectly generate Θ , then ε “ 0.

Any algorithm behind the Calibrate component is associated with a certain minimal number

of microphones and sources required for estimation, call them Mmin and Kmin. Typically, Kmin

is a (non-increasing) function of Mmin. A particular consequence of this is that the minimal

number of columns of Θ is Mmin, and the smallest corresponding number of rows Kmin. When

the source offsets are known or all equal, we can swap Mmin and Kmin by invoking the duality.

4.6.2 Zero-Knowledge Indoor Calibration

In a room, or more generally in the presence of acoustic reflectors, the sources tsku generate

reflections, and the reflections are equivalent to virtual sources (mirror images of the real sources

across corresponding walls).

But this means that by virtue of echoes, we get additional sources for free. Normally, we

would consider these echoes to be a nuisance because, unlike in the single-channel localization

case from Section 4.3.2, we do not know where the virtual sources are located (remember that the

room shape is unknown). But in the microphone position calibration problem (Problem 4.2), we

do not know the locations of the real sources either. Thus, virtual sources at unknown locations

are just as good (or just as bad) as real sources at unknown locations.

A challenge that again appears in this setting is that we cannot address each virtual source

individually—they are not labeled, and with multiple walls they are heard by microphones in

different orders. This problem does not appear with real calibration events, as they are well

separated in time. Thus, we need to label the echoes by performing echo sorting, introduced in

Chapter 3. There, the need to disambiguate echoes (virtual sources) arises when estimating the

shape of a room from sound. However, the problems are not the same—in the scenario therein,

we assume that we know the relative geometry of the microphone array; in the zero-knowledge

calibration problem, we do not know it. This means that the minimal number of microphones

and the minimal number of sources will be higher, as reflected by Kmin and Mmin. Moreover, we

cannot perform the assignment echo-by-echo, the way we did in Algorithm 3.3; rather, we must

assign all echoes at once. This results in a significantly higher computational cost.

The principle at play is similar to the one used in Chapter 3: Provided we have enough

noiseless measurements ϑkm, the equations (4.42) yield a unique solution for locations and offsets.

That is, these are the only pR, pS and pτ that could have generated Θ . Depending on the solution

strategy (e.g., solving an optimization program), any wrong permutation or assignment of echoes

will lead to an unsolvable system (4.42), or will yield a wrong solution that cannot recreate the

measurements Θ .

The goal is to find the best fit among all possible echo assignments. This can be achieved by

running Calibrate for different echo assignments, and taking as the correct assignment the one

with the smallest ε. The described procedure is summarized in Algorithm 4.6.4.

Performing the combinatorial search is feasible for small array sizes. For large arrays, however,

the number of combinations becomes too big, and we need to do something else. In this case,

we can bootstrap the method by first running it for one or more sub-arrays of the big array.

Depending on the target application, we might even have an idea about groups of microphones

that are spatially close (this will be the case for large fixed arrays). Knowing which microphones
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are close in space is relevant, as proximity makes it more likely that the microphones will have

picked up the same echoes. In spatially large arrays, it is not guaranteed that all the microphones

will hear all the echoes.

The estimation can be performed one acoustic event at a time (e.g. a finger snap). This is

useful, as we know that the time offset τ will be the same for all virtual events corresponding to

a single real event (and it will be equal to the offset of that event). Structured information like

this can be exploited in the design of the Calibrate module.

4.6.3 Minimal Infrastructure for Calibration

We can use a degree-of-freedom counting argument as in [77] to determine the smallest number of

microphones and sources necessary for the calibration. Every microphone brings in d unknowns

for each of its coordinates where d is the ambient dimensionality, while every source brings in

d unknowns (coordinates) in the synchronized case, and d ` 1 unknowns (coordinates and the

offset τ) in the asynchronous case. In applications d is typically 2 or 3.

On the other hand, we get a measurement for every source-microphone pair (for every TOA

measurement), so that the number of measurements is MK, and we need this number to be

larger than the total number of unknowns. Note further that we can fix the location of one

microphone and the rotation of the remaining points around this microphone. This takes out a

total of d`
`

d
2

˘

degrees of freedom, resulting finally in

Ksync ě
dp2M ´ d´ 1q

2pM ´ dq
and Kasync ě

dp2M ´ d´ 1q

2pM ´ d´ 1q
. (4.45)

The above bounds are fundamental, and for fewer acoustic events the solution set is not zero-

dimensional. It is important to note that minimal solvers do not yield a unique solution, but

rather a zero-dimensional variety. For example, Kuang et al. [115] show that the minimal solver

in 3D (M “ 4, K “ 6) gives 38 solutions. Some of these will be complex, but even the number

of real solutions is greater than one. To complicate things further, the number of real solutions

depends on the problem instance. In order to obviate these complications, we consider the

minimal number of microphones and sources as a property of the method used to calibrate.

We use this example to show that something remarkable can happen in a room. Suppose

that M “ 10. In this case, we compute that K ě 4; that is, we need at least four sources.

Now imagine that in a room we have a single acoustic event, and that we can get at least

three echoes. Together with the direct sound, we get enough measurements (real and virtual) to

actually calibrate the microphone array, and to determine its absolute orientation with respect

to the walls. This is true in spite of the fact that we do not know the room, the microphone

locations, the source location nor the source timing. In this case we only need to estimate a

single emission time, as it will be the same for all the image sources. We note that in this case

the solution is unique with high probability.

4.6.4 Algorithm

The algorithm, summarized in Algorithm 4.6.4 simply tries all plausible assignments, and chooses

the one with the smallest ε as measured by the Calibrate module as the estimate. In order

to reduce the number of combinations as much as possible, the algorithm is specified for the

minimal number of microphones and sources solvable by a particular chosen Calibrate module.
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The assignment problem in zero-knowledge calibration can be seen as the problem of labeling

edges in a complete bipartite graph. This perspective is illustrated in Figure 4.14.

Mic 1 Mic 2 Mic 3 Mic 4

Figure 4.14: Illustration of the zero-knowledge echo sorting procedure.

In the noiseless case or with sufficiently small noise, the Calibrate box can simply be a

polynomial system solver, and thus very fast for such a small problem. The question then becomes

how many times we need to call the solver; this is the subject of the following proposition:

Proposition 4.4

Associate with a particular Calibrate module the minimal number of microphones Mmin and

sources Kmin. Suppose further that we detect K echoes per microphone. Then the number

of assignments to test equals
„

pK ´ 1q!

pK ´Kminq!

Mmin´1

(4.46)

This number looks daunting, but in small-dimensional cases it is still manageable. For example,

in 2D the number of combinations to test for the minimal solver is just OpK4q. For the minimal

solver in 3D however, it is OpK15q which rapidly becomes impractical, and various heuristics

must be used to trim down the search spaces. Some examples of heuristics are:

Combine the echoes only within a temporal window corresponding to the array size,

Assume only a small number of echo swaps can occur per microphone,



108 Chapter 4.

Algorithm 4.2 Zero-Knowledge Calibration

Input: Echo arrival times at the M microphones Tm
Output: Microphone locations rm, real source location s, image source locations sk

1: Fix the origin and the rotation (6 degrees of freedom)

2: Label the first arriving echo in all microphones as the direct sound

3: Label the first Kmin ´ 1 echoes in r1 arbitrarily and assign them to t1

4: εbest Ð `8

5: for each assignment tuple t2 P ApKmin´1qpT2q, . . . , tMmin
P ApKmin´1qpTMmin

q do

6: Construct the measurement matrix Θ

7: Compute the estimate rpR, pS , pτ , εs Ð CalibratepΘq,

8: if ε ă εbest then

9: rpRbest, pSbest, pτbest, εbests Ð rpR, pS , pτ , εs

10: end if

11: end for

12: Use the localized microphone and echo sorting to localize the remaining microphones and

sources

Assume echo swaps occurred at a limited number of microphones,

Normalize by the decay and discriminate first-order peaks by the magnitude,

Order the echo assignments by some heuristic a priori likelihood and stop as soon as we

get a score below a prescribed threshold.

The most potent heuristic is the one about the array size, and that is the one used in practice.

To clearly quantify the savings, we state the following proposition:

Proposition 4.5

Assume that the diameter of the microphone array is sufficiently small so that any echo

received by a given microphone can be combined with at most J adjacent echoes received by

any other microphone. Then the number of combinations to test is at most J pKmin´1qpMmin´1q.

Example 4.1

Consider the minimal solver in 3D, with Mmin “ 4 and Kmin “ 6, and suppose that we

detect 10 echoes per microphone. Using no heuristics, the number of combinations to test is

« 3.5ˆ 1012 which is intractable on a desktop computer.

If we further assume that the array is not too large, so that J “ 3, the number of

combinations to test becomes at most 14 million, which can be tested in reasonable time.

4.6.5 Numerical Experiment

We ran numerical simulations using only one acoustic event to localize ten microphones. We

simulated a shoebox room with dimensions W “ 5 m, L “ 6 m, H “ 3 m, using the image

source model, up to second-order reflections. We experimented with random microphone array

geometries and with different numbers of microphones. First six echoes were used in conjunction

with the array size heuristic to obtain the reconstructions.
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A B

Figure 4.15: (A) and (B) Two typical reconstruction results with M “ 10 microphones randomly
placed inside a box approximately 1m ˆ 1m ˆ 0.5m large. We emphasize that the room dimensions
(5m ˆ 6m ˆ 3m) and the room shape is not assumed known. Red-black triangle represents the
source location. Small black crosses are true microphone locations, while blue squares denote the
estimated locations.

Simulations confirm that it is possible to obtain accurate estimates of microphone positions

by using only a single source. The room shape or dimensions are considered unknown by the

algorithm. Despite this, we obtain a full reconstruction of the source and microphone locations,

as well as their absolute pose inside the room (more precisely, relative to the localized image

sources). We also obtain the positions of walls corresponding to these image sources. Two

reconstruction examples are shown in Figures 4.15A and 4.15B, for random microphone arrays

comprising ten microphones.
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4.A Proof of Proposition 4.1

The distance measurements are given as

dm “ ‖rm ´ vs‖` nm, (4.47)

where nm „ N p0, σ2q. Since nm are assumed independent, the joint probability distribution can

be written as

ppd1, . . . , dm; sq “
M
ź

m“1

1

σ
?

2π
e´pdm´‖r´s‖q2{σ2

(4.48)

so that the log-likelihood is

Lps; d1, . . . , dmq “
M
ÿ

m“1

´ lnpσ
?

2πq ´
pdm ´ ‖rm ´ s‖q2

σ2
. (4.49)

The maximum likelihood estimator is then obtained as

ps “ arg max
s

Lps; d1, . . . , dmq “ arg min
M
ÿ

m“1

`

dm ´ ‖rm ´ s‖
˘2
. (4.50)



Chapter 5

Sampling Sparse Signals on the
Sphere*

Because the world is round it turns me on,

Because the world is round...

The Beatles

5.1 Introduction

Our initial motivation to look at signal processing on the sphere was to solve source localization

problems with spherical sensor geometries; a common example are spherical microphone arrays.

This turned into a development of theory and algorithms for sampling sparse signals on the

sphere, which we describe in this chapter.

Numerous signals live on a sphere. Take for example any signal defined on Earth’s surface

[71, 189, 9]. Signals from space measured on Earth [97, 132] also have a spherical domain.

In acoustics, spherical microphone arrays output a time-varying signal supported on a sphere

[145, 98], while in diffusion weighted magnetic resonance imaging fiber orientations live on a

sphere [207]. In practice, we only have access to a finite number of samples of such signals, so it

is important to study sampling and reconstruction of spherical signals.

Just as signals in Euclidean domains can be expanded via sines and cosines [214], one can

naturally represent spherical signals in the Fourier domain via spherical harmonics [65]. A signal

is bandlimited if it is a linear combination of finitely many spherical harmonics.

In this chapter, we study the problem of sampling localized spikes on the sphere; in the limit,

the spikes become Dirac delta functions. Such sparse signals on the sphere are encountered in

*This chapter is a result of a joint work with Yue M. Lu [53].
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many problems. For example, various acoustic sources are well-approximated by point sources;

the directional distribution of multiple sources is then a finite collection of spikes. Stars in the

sky observed from Earth are angular spikes, and so are plume sources on Earth.

Localized spikes are not bandlimited, so the bandlimited sampling theorems [65, 141, 107] do

not apply. In this chapter, we propose an algorithm to perfectly reconstruct collections of spikes

from their lowpass-filtered observations. Our algorithm efficiently reconstructs K spikes when

the bandwidth of the lowpass filter is at least K `
?
K.

5.1.1 Prior Art

Sampling bandlimited signals on the sphere has been studied extensively: For signals bandlimited

to spherical harmonic degree L, Driscoll and Healy [65] proposed a sampling theorem that requires

4L2 spherical samples. The best exact general purpose sampling theorem due to McEwen and

Wiaux uses 2L2 samples [141]. Recently, Khalid, Kennedy and McEwen devised a stable sampling

scheme that requires the optimal number of samples, L2 [107].

Our work is in the same spirit as finite rate-of-innovation (FRI) sampling, introduced by

Vetterli, Marziliano, and Blu [215]. They showed that a stream of K Diracs on the line can be

efficiently recovered from 2K ` 1 samples. Initially developed for 1D signals, the original FRI

sampling was extended to 2D and higher-dimensional signals in [136, 187], and its performance

was studied in noisy conditions [137, 63].

In a related work [47, 48], Deslauriers-Gauthier and Marziliano proposed an FRI sampling

scheme for signals on the sphere, reconstructing K Diracs from 4K2 samples. Their motivating

application is the recovery of the fiber orientations in diffusion weighted magnetic resonance

imaging [46, 207]. They further show that if only 3K spectral bins are active, the required

number of samples can be reduced to 3K. Sampling at this lower rate, however, relies on the

assumption that we can apply arbitrary spectral filters to the signal before sampling. This

is known as spatial anti-aliasing—a procedure that is generally challenging or impossible to

implement in most applications involving spherical signals, where we only have access to finite

samples of the underlying continuous signals.1

In many applications, the sampling kernels (i.e., the lowpass filters) through which we observe

the spikes are provided by some underlying physical process (e.g., point spread functions and

Green’s functions). These kernels are often approximately bandlimited, but we cannot further

control or design their spectral selectivity. This impossibility of arbitrary spatial filtering suggests

that our goal is to reduce the required bandwidth, or more practically, to maximize the number

of spikes that we can reconstruct at a given bandwidth.

Recently, Bendory, Dekel and Feuer proposed a spherical super-resolution method [14, 15],

extending the results of Candès and Fernandez-Granda [30] to the spherical domain. They

showed that an ensemble of Diracs on the sphere can be reconstructed from projections onto a

set of spherical harmonics by solving a semidefinite program, provided that the Diracs satisfy a

minimal separation condition. When the Diracs are constrained to a discrete set of locations,

their formulation allows them to bound the recovery error in the presence of noise. Our non-

iterative (thus very fast) algorithm based on FRI does not require any separation between the

Diracs. We also allow the weights to be complex, which may be important in applications (for an

example on sound source localization, see Section 5.4.3). On the other hand, we need to assume

1This is not to be confused with spatial anti-aliasing in image downsampling, where we do have access to all
pixels.
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that the number of Diracs is known a priori (or that it can be estimated through other means),

whereas in [14, 15] no such assumption is necessary.

5.1.2 Outline and Main Contributions

We start by reviewing some basic notions of harmonic analysis on the sphere in Section 5.2.

We then present the main result of this work in Section 5.3 : A collection of K Diracs on the

sphere can be reconstructed from its lowpass filtered version, provided that the bandwidth of the

sampling kernel is at least K `
?
K. This bandwidth requirement also implies that pK `

?
Kq2

spatial samples taken at generic locations suffice to reconstruct the K Diracs. We establish

this result by constructing a new algorithm for spherical FRI sampling. Compared to 4K2

samples as required in a previous work [47], our algorithm reduces the numbers of samples via

a more efficient use of the available spectrum. For large K, the required number of samples

is reduced by a factor of up to 4. The proposed algorithm is first developed for the noiseless

case. Procedures to improve the robustness of the algorithm in noisy situations are presented

in Section 5.3.5, and we compare the performance of the algorithm with the Cramér-Rao lower

bound [101] in Section 5.3.6. Section 5.4 presents the applications of the proposed algorithm

to three problems: 1) sampling diffusion processes on the sphere, 2) shot noise removal, and 3)

sound source localization. These diverse applications demonstrate the usefulness and versatility

of our results.

5.2 Harmonic Analysis on the Sphere and Problem Formulation

5.2.1 Spherical Harmonics

We briefly recall the definitions of spherical harmonics and spherical convolution. The 2-sphere

is defined as the locus of points in R3 with unit norm,

S2 def
“

 

x P R3 | xJx “ 1
(

.

In what follows, we often use ξ to represent a generic point on the sphere. In addition to

the standard Euclidean representation ξ “ rx, y, zsJ, points on S2 can also be conveniently

parameterized by angles of colatitude and azimuth, i.e., ξ “ pθ, φq, with θ measured from the

positive z-axis, and φ measured in the xy plane from the positive x-axis. The two equivalent

representations are related by the following conversion:

x “ sinpθq cospφq,

y “ sinpθq sinpφq,

z “ cospθq.

(5.1)

The Hilbert space of square-integrable functions on the sphere, L2pS2q, is defined through

the corresponding inner product. For two functions f, g P L2pS2q we have

xf, gy
def
“

ż

S2
fpξqgpξqdξ, (5.2)

where dξ “ sinpθqdθ dφ is the usual rotationally invariant measure on the sphere. With respect

to this inner product, spherical harmonics form a natural orthonormal Fourier basis for L2pS2q.

They are defined as [65]

Y m` pθ, φq “ Nm
` P

|m|
` pcos θqe jmφ, (5.3)
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where the normalization constant is

Nm
` “ p´1qpm`|m|q{2

d

p2`` 1q

4π

pl ´ |m|q!

pl ` |m|q!
, (5.4)

and Pm` pxq is the associated Legendre polynomial of degree ` and order m. Note that different

communities sometimes use different normalizations and sign conventions in the definitions of

spherical harmonics and associated Legendre polynomials. As long as applied consistently, the

choice of convention does not affect our results.2

In this paper, we adopt the following definition:

Pm` pxq
def
“ p´1qmp1´ x2qm{2

dm

dxm
P`pxq, for m ě 0, (5.5)

where P`pxq is the Legendre polynomial of degree ` [1].

Any square integrable function on the sphere, f P L2pS2q, can be expanded in the spherical

harmonic basis,

fpθ, φq “
8
ÿ

`“0

ÿ

|m|ď`

pfm` Y
m
` pθ, φq, (5.6)

where the Fourier coefficients are computed as

pfm` “ xf, Y m` y “

ż

S2
fpξqY m` pξqdξ. (5.7)

The coefficients
“

pfm` , p`,mq P I
‰

form a countable set supported on an infinite triangle of indices,

I “
 

p`,mq P Z2 | ` ě 0, |m| ď `
(

. (5.8)

We say that f is bandlimited with bandwidth L if pfm` “ 0 for ` ě L. Often we think of L as

the smallest integer such that this holds. For a bandlimited function, the triangle I is cut off at

` “ L. In what follows, we use

IL def
“

 

p`,mq P Z2 | 0 ď ` ă L, |m| ď `
(

(5.9)

to represent the spectral support of a bandlimited function with bandwidth L. The set IL
contains L2 indices, so we can represent the spectrum as an L2-dimensional column vector

pf
def
“

”

pf 0
0 ,

pf´1
1 , pf 0

1 ,
pf 1
1 , . . . ,

pf´L`1
L´1 , . . . , pf L´1

L´1

ıJ

. (5.10)

5.2.2 Rotations and Convolutions on the Sphere

Let SO3 denote the group of rotations in R3; any rotation % P SO3 is parameterized by three

angles that specify rotations about three distinct axes. Thus we can write % “ %pα, β, γq. The

most common parameterization is called Euler angles [212].

2It is common to write the spherical harmonic order m in the superscript. We will keep this convention for the

associated Legendre polynomials P
|m|
` , spherical harmonics Ym` , normalization constants Nm

` and the spherical

Fourier coefficients pfm` . It is not to be confused with integer powers such as x`.
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A citeounter-clockwise rotation of a vector x P R3 about the z-axis is achieved by multiplying

x by the corresponding rotation matrix,

Rzpαq “

»

–

cosα ´ sinα 0

sinα cosα 0

0 0 1

fi

fl ,

where α is the rotation angle. Rotation matrices around axes x and y can be defined analogously.

We use Λp%q to represent the rotation operator corresponding to %, that acts on spherical

functions. Thus for f a function on the sphere, Λp%qf represents the rotated function, defined as

rΛp%qf spξq
def
“ fp%´1 ˝ ξq, (5.11)

where ρ´1 is the inverse rotation of ρ, and by %´1 ˝ ξ we mean pre-multiplying by Rp%´1q the

unit column vector corresponding to ξ, cf. (5.1). Compare this definition with the Euclidean

case where shifting the argument to the left (subtracting a positive number) results in the shift

of the function to the right.

There are various definitions of convolution on the sphere, all being non-commutative. One

function, call it f , provides the weighting for the rotations of the other function h. A standard

definition is then [65, 57]

rf ˚ hs pξq
def
“

„ˆ

1

2π

ż

SO3

d% ¨ fp% ˝ ηq ¨ Λp%q

˙

h



pξq

“
1

2π

ż

SO3

fp% ˝ ηqhp%´1 ˝ ξqd%,

(5.12)

where η P S2 is the north pole. It is easy to verify that this definition generalizes the standard

convolution in Euclidean spaces [214], with the rotation operator % playing the same role as

translations do on the line. Because the spherical convolution is not commutative, it is important

to fix the ordering of the arguments. In our case, the second argument—h in (5.12)—will always

be the filter, i.e., the observation kernel.

The familiar convolution–multiplication rule in standard Euclidean domains [214] holds for

spherical convolutions too. It can be shown [65, Theorem 1] that for any two functions f, h P

L2pS2q, the Fourier transform of their convolution is a pointwise product of the transforms, i.e.,

pzf ˚ hqm` “

c

4π

2`` 1
pfm`

ph0
` . (5.13)

We note that f can also be a generalized function (a distribution). In particular, we consider

spherical Dirac delta functions, defined as [67]

δpθ, φ; θ0, φ0q “
δpθ ´ θ0qδpφ´ φ0q

sinpθq
, (5.14)

and weighted sums of Dirac deltas. To lighten the notation, we often write δpξ; ξ0q. With the

definition in (5.14), it is ensured that

ż

S2
δpξ; ξ0qdξ “ 1, @ξ0 P S2. (5.15)
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5.2.3 Problem Formulation

Consider a collection of K Diracs on the sphere,

fpξq “
K
ÿ

k“1

αkδpξ; ξkq, (5.16)

where the weights tαk P CuKk“1 and the locations of the Diracs tξk “ pθk, φkqu
K
k“1 are all unknown

parameters. Let ypξq be a filtered version of fpξq, i.e.,

ypξq “ rf ˚ hspξq,

where the filter (or sampling kernel) hpξq is a bandlimited function with bandwidth L. We further

assume that the spherical Fourier transform of hpξq is nonzero within its spectral support, i.e.,
phm` ‰ 0 for all ` ă L. Given spatial samples of ypξq, we would like to reconstruct fpξq, or

equivalently, to recover the unknown parameters tpck, ξkqu
K
k“1.

Since the filtered signal ypξq is bandlimited, we can use the sampling theorems for bandlimited

functions on the sphere (e.g., [65, 141]) or direct linear inversion (see Section 5.3.1) to recover

its Fourier spectrum pym` from its spatial samples of sufficient density. Using the convolution-

multiplication identity in (5.13), we can then recover the lowpass subband of fpξq as

pfm` “ rp2`` 1q{p4πqs
1{2
¨

´

pym` {
ph0
`

¯

,

for 0 ď ` ă L and |m| ď `. Being a collection of Diracs, f R L2pS2q, but its Fourier transform
pfm` can still be computed via (5.7) in the sense of distributions as

pfm` “

K
ÿ

k“1

αkY m` pθk, φkq

“ Nm
`

K
ÿ

k“1

αkP
|m|
` pcos θkqe

´jmφk .

(5.17)

The problems we address in this chapter can now be stated as follows: Can we reconstruct

a collection of K Diracs on the sphere from its Fourier coefficients pfm` in the lowpass subband

IL as defined in (5.9)? If so, then what is the minimum bandwidth L that allows us to do it?

In practice, the sampling kernel is often given and not subject to our control. In this case, the

previous question can be reformulated as determining the maximum number of spikes that we

can reconstruct at a given bandwidth L.

5.3 Sampling Spherical FRI Signals

In this section we address the questions stated above. Our main result can be summarized in

the following theorem:
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Theorem 5.1

Let f be a collection of K Diracs on the sphere S2, with complex weights tαku
K
k“1 at locations

tξk “ pθk, φkqu
K
k“1, as in (5.16). Convolve f with a bandlimited sampling kernel hL, where the

bandwidth L ě K`
?
K, and sample the resulting signal rf˚hLspξq at L2 points

 

ψn P S2
(L2

n“1
chosen uniformly at random on S2. Then almost surely the samples

fn “ rf ˚ hLspψnq, n “ 1, . . . , L2

are a sufficient characterization of f .

We provide a constructive proof of this theorem by presenting an algorithm that can efficiently

recover K localized spikes from L2 samples, where L ě K`
?
K. Before presenting the algorithm

and the proof, we first define some relevant notation and state two lemmas.

5.3.1 From Samples to the Fourier Transform

Our algorithms perform computation with spectral coefficients. In practice, we have access to

spatial samples of the function, so we need a procedure to convert between the spatial and the

Fourier representations. We first describe a method to compute the Fourier transform from

samples taken at generically placed sampling points.

Let the function f P L2pS2q have bandwidth L; then we can express it as

fpθ, φq “
L´1
ÿ

`“0

ÿ̀

m“´`

pfm` Y
m
` pθ, φq. (5.18)

Choose a set of sampling points
 

ψn P S2
(N

n“1
, and let Y “

“

yn,p`,mq
‰

where yn,p`,mq “ Y m` pψnq.

Furthermore, let f “ rfpψ1q, . . . , fpψnqs
J be the vector of samples of f . We can then write

f “ Y pf , (5.19)

where pf is the L2-dimensional vector of spectral coefficients as defined in (5.10). The goal is to

recover the spectral coefficients pf . We can recover pf from f as soon as the matrix Y has full

column rank. In that case, we compute

pf “ Y :f , (5.20)

where Y : denotes the Moore-Penrose pseudoinverse of the matrix Y .

In particular, if we draw the samples uniformly at random on the sphere, we can show that

Y is regular with probability one:

Proposition 5.1

Draw N sampling points from any absolutely continuous probability measure on the sphere

(e.g. uniformly at random). Then Y has full column rank almost surely if N ě L2, that is,

if it has at least as many rows as columns.

The proof of this proposition is identical to that of Theorem 3.2 in [11], and is thus omitted.

The above result indicates that we can recover the spectral coefficients pfm` in the lowpass

region IL from L2 samples taken at generic points on the sphere. The reconstruction requires a

matrix inversion as in (5.20).



118 Chapter 5.

Much faster reconstruction is possible when the function is sampled on certain regular grids.

In that case, we can leverage the structure of Y to accelerate the matrix inversion. Such efficient

schemes were proposed by Driscoll and Healy [65], requiring 4L2 samples; by McEwen and Wiaux

[141], requiring 2L2 samples; and most recently, by Khalid, Kennedy and McEwen [107], requiring

L2 samples.

5.3.2 The Data Matrix

Using the definition of associated Legendre polynomials in (5.5), we rewrite the spherical har-

monics (5.3) as

Y m` pθ, φq “
rNm
` psin θq

|m|

„

d|m|

dpcos θq|m|
P`pcos θq



e jmφ, (5.21)

where rNm
` “ p´1qmNm

` .

The essential observation is that the bracketed term in (5.21) is a polynomial in x “ cos θ.

At bandwidth L, the largest spherical harmonic degree is L ´ 1, so the largest power of x in

(5.21) is L´ 1 as well. It follows that we can rewrite the derivative term as a linear combination

of powers of x, i.e.

rNm
`

d|m|

dpcos θq|m|
P`pcos θq “ cJ`mx , (5.22)

where x
def
“ rxL´1, xL´2, ¨ ¨ ¨ , x, 1sJ, x “ cos θ and c`m P RL contains the corresponding

polynomial coefficients.

Using the dot-product formulation (5.22), the spectrum of f , as given by (5.17), can be

expressed as

pfm` “ cJ`m

K
ÿ

k“1

αkxkpsin θkq
|m|e´jmφk , (5.23)

where xk
def
“ rxL´1

k , xL´2
k , ¨ ¨ ¨ , xk, 1sJ with xk “ cos θk, and we factored cJ`m out of the

summation as it does not depend on k.

A key ingredient in our proposed algorithm is what we call the data matrix ∆, formed as a

product of three matrices,

∆
def
“ X AU , (5.24)

where

X “ rx 1, ¨ ¨ ¨ , xKs P R
LˆK , (5.25)

is a Vandermonde matrix with roots cos θk, A “ diagpα1, . . . , αKq is the diagonal matrix of Dirac

magnitudes, and we define

U “ rukms P RKˆp2L´1q, (5.26)

with ukm
def
“ psin θkq

|m|e´jmφk .

It is convenient to keep a non-standard indexing scheme for the rows and columns of ∆, as

illustrated in Figure 5.1B. Rows of ∆, indexed by p, correspond to decreasing powers of cos θk,

from p “ L´1 at the top, to p “ 0 at the bottom; columns correspond to ukm, with m increasing

from ´L ` 1 on the left, to L ´ 1 on the right. We see from (5.23) and (5.24) that computing

any spectral coefficient pfm` amounts to applying a linear functional on ∆ as follows

pfm` “ cJ`m∆em “
@

c`meJm, ∆
D

F
, (5.27)
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where em P R2L´1 is the vector with one in position m for ´L ă m ă L, and zeros elsewhere,

and x ¨ , ¨ yF denotes the standard inner product between two matrices, defined as xA, ByF “
ř

ij aijbij “ tracepA˚Bq.

The last expresion in (5.27) implies that the spectral coefficient pfm` can be obtained as an

inner product between the data matrix ∆ and a mask c`meJm that is overlaid over ∆. One can

verify that the support of this mask for pfm` is on the column corresponding to m, and on the

rows corresponding to 0 ď p ă L ´ |m|. That means that certain parts of the data matrix are

not involved in the creation of any spectral coefficient; consequently, they cannot be recovered

from the spectrum. Nevertheless, we can recover a large part:

Lemma 5.1

There is a one-to-one linear mapping between the spherical harmonic coefficients in the

lowpass subband,
“

pfm` , p`,mq P IL
‰

, and the triangular part of the data matrix ∆ indexed

by JL “ tpp,mq | 0 ď |m| ď p ă Lu (with indexing as illustrated in Figure 5.1).

Proof : It is straightforward to verify that all the masks c`meJm for 0 ď |m| ď ` ă L are supported

on the triangular part of ∆, as indexed by JL. Because the number of such masks coincides with

the number of entries in the triangular part, and no mask is identically zero, it only remains to

show that the masks are linearly independent. For m1 ‰ m2, this is true because their supports

are disjoint (eJm1
and eJm2

activate different columns),

supppc`1m1eJm1
q X supppc`2m2eJm2

q “ H (5.28)

for any `1, `2. For `1 ă `2 and m1 “ m2 “ m, cJ`1mx and cJ`2mx are polynomials of different

degrees (c.f. (5.22)),

degpcJ`1mx q “ p`1 ´ |m|q ă p`2 ´ |m|q “ degpcJ`2mx , (5.29)

where degp ¨ q denotes the degree of the polynomial in the argument. Therefore, supppc`1meJmq ‰

supppc`2m2eJmq, and in particular c`2m is linearly independent from all c`m such that ` ă `2.

This implies that all masks are linearly independent. Thus the mapping

∆ ÞÑ
“

A

c`meJm, ∆
E

F
, 0 ď |m| ď ` ă L

‰

“
“

pfm` , 0 ď |m| ď ` ă L
‰

(5.30)

is one-to-one on JL.

5.3.3 Reconstruction by Generalized Annihilating Filtering

An element of the data matrix ∆ at the position pp,mq (with reference to Figure 5.1B) can be

expanded as

dpm “
K
ÿ

k“1

αkx
p
kpsin θkq

|m|e´jmφk , (5.31)

where p varies from 0 to L´1, and m from ´pL´1q to pL´1q. For either positive or negative m,

the sum (5.31) is a sum of 2D exponentials. Lemma 5.1 implies that we can recover the shaded

triangular part of the data matrix in Figure 5.1 from the spectrum. In what follows, we propose

a new algorithm to recover the parameters of the Diracs from that triangular part.
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m = 0m = − L + 1 m = L − 1

p = L − 1

∆ =

p = 0

Invertible linear mapping

Spherical harmonic spectrum

A

B

C

� = 0

� = L − 1

Z

= 0

h

Figure 5.1: Illustration of Algorithm 5.1. Spherical harmonic spectrum (A) is linearly mapped onto
the shaded triangular part of the data matrix ∆ (B). Columns of the data matrix are indexed from
left to right by m, ´pL ´ 1q ď m ď pL ´ 1q, corresponding to spherical harmonic order. Rows
are indexed from bottom to top by p, 0 ď p ď pL ´ 1q corresponding to powers of cos θ. Note
that the triangular part of the data matrix does not coincide with the spherical harmonic spectrum,
although there is a one-to-one linear mapping between the two (see Lemma 5.1). Existing results
on 2D harmonic retrieval can exploit only a small part of the data matrix, for example the hatched
square (see Section 5.3.4). Finally, sufficiently long columns of ∆ are rearranged in the block-Hankel-
structured annihilation matrix Z , whose nullspace contains exactly the sought annihilation filter, h
(C).
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The vector dm
def
“ ∆em is a linear combination of columns of X , i.e., it is a linear combination

of K exponentials with bases xk,

dpm “
K
ÿ

k“1

pαkukmqx
p
k, (5.32)

where xk “ cospθkq. Similarly to the standard Euclidean FRI sampling [215], we can use the

annihilating filter technique to estimate the roots txk “ cos θku
K
k“1 of these exponentials.

The annihilating filter is a finite impulse response (FIR) filter with zeros positioned so that

it annihilates signals of the form (5.32). Consider an FIR filter Hpzq with the transfer function

Hpzq
def
“

K
ź

k“1

p1´ xkz
´1q

def
“

K
ÿ

n“0

hnz
´n, (5.33)

where h “ rh0, h1, . . . , hKs
J is the vector of filter coefficients. It holds that h ˚ dm ” 0 (see

Appendix 5.A) for any m, provided that dm is of length at least K ` 1. Equivalently,

rdn,m, dn´1,m, . . . , dn´K,ms

»

—

—

—

–

h0

h1

...

hK

fi

ffi

ffi

ffi

fl

“ 0, (5.34)

for n ě K. In our scenario, we do not know the bases of the exponentials txku
K
k“1—they are

exactly the parameters we aim to estimate. Thus we do not know the filter Hpzq either.

Up to a scaling factor, there is a unique pK ` 1q-tap filter Hpzq with the sought property.

The orthogonality relation (5.34) says that h lives in the nullspace of rdn,m dn´1,m ¨ ¨ ¨ dn´K,ms;

we need at least K such vectors to make their joint nullspace one-dimensional, thus to pinpoint

h . Once the filter coefficients are found, we can obtain the unknown parameters txku by root

finding and using the factorization in (5.33).

For the annihilating filter technique to be applicable, we need to ensure that all the colatitude

angles θk are distinct. Furthermore, the form of our equations reveals that for θk P t0, πu, ukm “ 0

for all m. In the parameterization (5.24), this is equivalent to setting αk “ 0, and it prevents

us from recovering the corresponding Dirac. This behavior is undesirable, but we can guarantee

that no Dirac sits on a pole by first applying a random rotation. This fact is formalized in the

following lemma, which follows immediately from the absolute continuity of the Haar measure.

Lemma 5.2

Consider a collection of Dirac delta functions on the sphere, fpξq “
řK
k“1 αkδpξ; ξkq, and a

random rotation % drawn from the Haar measure on SO3 ( i.e. uniformly over the elements of

the group). Then with probability 1, Λp%qf contains Diracs with distinct colatitude angles,

θi ‰ θj for i ‰ j, and no Dirac is on the pole, θk R t0, πu for all k.

We are now well-equipped to prove the main result.

Proof of Theorem 5.1 : We provide a constructive proof, summarized in Algorithm 5.1. First

observe that L2 random samples almost surely suffice to compute the spectral coefficients pfm` in

the lowpass subband IL with bandwidth L, as detailed in Section 5.3.1 (see Proposition 5.1). By

Lemma 5.1, we can then compute the shaded part of ∆ given the spectrum pf .
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Our aim is to construct the annihilating matrix Z , structured as follows

Z “

»

—

—

—

—

—

—

—

—

—

—

—

–

dL´1,0 dL´2,0 ¨ ¨ ¨ dL´K´1,0

dL´2,0 dL´3,0 ¨ ¨ ¨ dL´K´2,0

...
...

...

dK,0 dK´1,0 ¨ ¨ ¨ d0,0

dL´2,1 dL´3,1 ¨ ¨ ¨ dL´K´2,1

dL´3,1 dL´4,1 ¨ ¨ ¨ dL´K´3,1

...
...

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5.35)

Z is constructed by stacking segments of length pK ` 1q extracted from the columns of ∆.

From the annihilation property (5.34), it follows that the nullspace of Z contains the sought

annihilating filter.

The trick now is to count how many such segments we can get from the shaded part of ∆.

For m “ 0, p varies from 0 to L ´ 1. Therefore, we can construct L ´K rows of the matrix Z .

For m “ 1, p varies from 0 to L´ 2, so we can construct L´K´ 1 rows of Z , and the same goes

for m “ ´1. This process is illustrated in Figures 5.1B and 5.1C. Summing up, we get the total

number of rows of Z that we can construct from the available spectrum,

# “ pL´Kq ` 2ˆ pL´K ´ 1q ` ¨ ¨ ¨ ` 2ˆ 1

“ pL´Kq2.
(5.36)

Z needs at least K rows, as we need a 1D nullspace. Thus

pL´Kq2 ě K

ñ L ě K `
?
K.

(5.37)

In Appendix 5.C we show that Z has rank K as soon as it has K or more rows. In other

words, it has a one-dimensional nullspace, and thus the annihilating filter coefficients are uniquely

determined, up to a scaling factor.

We find the parameters tθku
K
k“1 by taking the arc cosine of the roots of Hpzq. This procedure

is well-posed because arc cosine is one-to-one on r0, πs. To ensure that the roots are distinct,

we apply a random rotation before the estimation, and the inverse of this random rotation after

recovering all the parameters of the Diracs (invoking Lemma 5.2).

In order to recover the azimuths tφku
K
k“1, note that after recovering the colatitudes, we can

construct the matrix X , and compute AU em for |m| ď L ´ K. The azimuths are then given

as the phase difference between AU e0 and AU e1. The magnitudes αk are obtained simply as

AU e0.

5.3.4 Sampling Efficiency and Relation to Prior Work

Our proposed sampling scheme and the spherical FRI sampling theorem by Deslauriers-Gauthier

and Marziliano [47] are both naturally expressed in terms of the bandwidth L of the sampling

kernel required to recover K Diracs. In our case, the bandwidth requirement is that it be at least

K `
?
K. This implies that we need at least pK `

?
Kq2 spatial samples in order to recover the

K Diracs. For comparison, the FRI sampling theorem of Deslauriers-Gauthier and Marziliano

[47] requires L ě 2K, and thus their algorithm recovers K Diracs given 4K2 samples. This is

asymptotically four times the number of samples required by Algorithm 5.1.
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Algorithm 5.1 Spherical Sparse Sampling

Input: Spatial samples of f P L2pS2q with bandwidth L, number of Diracs K

Output: Colatitudes, azimuths and magnitudes tpαk, θk, φkqu
K
k“1 of the K Diracs

1: Sample a random rotation % „ HaarpSO3q

2: Apply % to f , f Ð Λp%qf (relabel sampling points)

3: Compute the spectrum pf from the rotated samples of f

4: Form ∆ from pf using the inverse mapping of (5.30)

5: Form Z from ∆ according to (5.35)

6: h Ð Right singular vector of Z for smallest sing. val.

7: Compute the colatitudes, pθkq
K
k“1 Ð arccosrRootsphqs

8: Construct X from xk “ cos θk according to (5.25)

9: Using X in (5.24), compute AU e0 and AU e1

10: pφkq
K
k“1 Ð Angle

“

pAU e0q m pAU e1q
‰

Ź See the note

11: pαkq
K
k“1 Ð AU e0

12: Apply the inverse of %, ξk “ pθk, φkq Ð %´1 ˝ ξk, @k

� Note: we use the symbol m to denote the entrywise division of vectors.

The difference in sampling efficiency can be explained by the spectrum usage. Figure 5.2

illustrates the portion of the spectrum used by the two algorithms. We can see that the proposed

algorithm is more efficient in that it uses a larger portion of the available spectrum to reconstruct

the Diracs.

Similar problems have been considered in the literature on 2D harmonic retrieval [211]. How-

ever, these earlier works assume that the entire data matrix is known. In our case, ∆ is known

only partially, as illustrated in Figure 5.1B. To apply the existing results on 2D harmonic re-

trieval, we could use a square portion that falls strictly inside a half of the triangle, either for

m ě 0 or for m ď 0. However, we can see in Figure 5.1B that this is an inefficient use of available

spectrum, and it requires an unnecessarily high sampling density.

As mentioned earlier, in most situations we do not get to choose L as it is fixed by the

underlying physical process. Then the question is how many Diracs we can reconstruct given a

kernel with a fixed bandwidth L. By solving L ě K `
?
K for K, we get that

K ď L´ pL` 1
4 q

1{2 ` 1
2 . (5.38)

In contrast, the algorithm in [47] can reconstruct up to K “ L{2 Diracs.

5.3.5 Denoising Strategies

Theorem 5.1 and Algorithm 5.1 provide a tool to recover sparse signals on the sphere in the

noiseless case. We may apply several procedures to improve the robustness of the algorithm in

the presence of noise.

In general, if the samples are noisy then the annihilating matrix Z in (5.35) will not have

a nontrivial nullspace. A simple and robust approach is to use the right singular vector corre-

sponding to the smallest singular value of Z as the annihilation filter. Let Z “ U ΣVH be the

SVD of Z ; then we set h “ vK`1.

To further improve the algorithm performance, we can use the output of Algorithm 5.1 to

initialize a local search for the minimizer of the `2 error between the spectrum generated by the
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Proposed
D-G,M [47]

Figure 5.2: Spectrum usage for different algorithms. Spectral coefficients used by our algorithms
are shown hatched. Spectrum used by the algorithm of Deslauriers-Gauthier and Marziliano [47] is
shaded green. In the example, the bandwidth is set to L “ 12, so the maximum number of Diracs
that can be recovered by Algorithm 5.1 is K “ 9. The algorithm in [47] recovers K “ 6 Diracs.

estimated Diracs, and the measured spectrum,

minimize
prαk,rθk,rφkqKk“1

L´1
ÿ

`“0

ÿ̀

m“´`

ˇ

ˇ

ˇ

ˇ

ˇ

pfm` ´
K
ÿ

k“1

rαkY
m
` p

rθk, rφkq

ˇ

ˇ

ˇ

ˇ

ˇ

2

. (5.39)

We note that directly solving (5.39) with a random starting point is hopeless due to a multitude

of local minima.

5.3.6 Cramér-Rao Lower Bound

We evaluate the Cramér-Rao lower bound (CRLB) for the estimation problem. For simplicity

we treat the K “ 1 case, so that the minimal bandwidth is L “ 2, and ` P t0, 1u. We assume

that the spatial samples are taken on the sampling grid defined by McEwen–Wiaux [141], given

at this bandwidth as
„

θ

φ



“

„

π{3 π{3 π{3 π π π

0 0 2π{3 2π{3 4π{3 4π{3



. (5.40)

The resulting expressions for the elements of the Fisher information matrix are complicated, and

there is no need to exhibit them explicitly. We give the details of the computation in Appendix

5.B, and we compute the CRLB numerically. The resulting bound, together with the MSE

achieved by Algorithm 5.1 followed by the descent (5.39), is plotted in Figure 5.3 for two different

spike colatitudes. As pointed out before, because our scheme is coordinate-system-dependent,

the bound depends on the colatitude of the Dirac.

5.4 Applications

To showcase the versatility of the proposed algorithm, we present three stylized applications: 1)

sampling diffusion processes on the sphere, 2) shot noise removal, and 3) sound source localization

with spherical microphone arrays.



5.4. Applications 125

0 20 40
−50
−40
−30
−20
−10

0
10
20

Input SNR [dB]

10
 lo

g 10
(M

SE
)

MSE CRLB 

Figure 5.3: Comparison between the mean squared error (MSE) of the proposed algorithm in es-
timating the spherical location pθ, φq, with K “ 1, and the Cramér-Rao lower bound (CRLB), at
two different colatitudes. Note that the bound is different for different colatitudes of the spike, due
to parameterization dependence. MSE is shown for the output of Algorithm 5.1 followed by the
minimization of (5.39) using Matlab’s fminsearch function.

5.4.1 Sampling Diffusion Processes on the Sphere

The diffusion process models many natural phenomena. Examples include heat diffusion and

plume spreading from a smokestack. Often, the source of the diffusion process is localized in

space, and instantaneous in time. Sampling such processes in Euclidean domains has been well

studied [58, 131, 130].

Diffusion processes on the sphere are governed by the equation [28]

k∆vpξ, tq “
B

Bt
vpξ, tq, (5.41)

where ∆ is the Laplace-Beltrami operator on S2, and k is the diffusion constant. In the spherical

harmonic domain, this becomes

´ k`p`` 1qpvm` ptq “
B

Bt
pvm` ptq, (5.42)

giving the solution

pvm` ptq “ e´`p``1qkt
pvm` p0q, (5.43)

where pvm` p0q is the spectrum of the initial distribution. Therefore, we interpret the term

e´`p``1qktδm,0 as the spectrum of the Green’s function of the spherical diffusion equation. In

other words, it is the spectrum of the diffusion kernel on the sphere. Then (5.43) should be

interpreted as the convolution between the kernel and the initial distribution.

We consider the case when the diffusion process is initiated by K sources localized in space

and time, i.e., the initial distribution in (5.43) is

vpξ; 0q “
K
ÿ

k“1

αkδpξ; ξkq. (5.44)

We show how to use the proposed sampling algorithm to estimate the locations and the strengths

of the sources from spatial samples of the diffusion field taken at a later time t0. Recovering all
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Figure 5.4: Estimating the release locations and magnitudes of diffusive sources on the sphere. We
assume that the diffusive sources appear at time t “ 0 s, and that we sample the field at time t “ 1 s.
Shape of the diffusion kernel as a function of θ is shown in subfigure A for three different values of
the coefficient k (in units of inverse time). The logarithm of the aliasing error (5.47) is plotted as a
function of the cutoff degree L in subfigure B. Subfigures C and D show a typical reconstruction result
for k “ 0.1 (2 sources) and k “ 0.01 (3 sources). Magnitudes of the sources are represented by the
distance of the corresponding symbols from the sphere’s center. Blue diamonds represent true source
locations and magnitudes, while red circles represent estimated source locations and magnitudes. The
sphere color corresponds to the value of the function induced on the sphere by the sources (red is
large, blue is small). Signal-to-noise ratio in both C and D was set to 30 dB. We used the approximate
bandwidth of L “ 7, so that the number of samples taken in either case was 49.

parameters (locations, amplitudes and release times) of multiple diffusion sources is a challenging

task [58]. To focus on the proposed sampling result, we make the simplifying assumption that

the K sources are released simultaneously, and at a known time (t “ 0). In principle, the

more challenging case of unknown and different release times can be handled by adapting the

techniques derived in [131, 130], but these generalizations are out of the scope of this work.

In the spatial domain, the diffusion kernel at time t0 after the release is given as

hdifpξ; t0q “
8
ÿ

`“0

e´`p``1qkt0Y 0
` pξq. (5.45)

Combining (5.45) with (5.43) and the spherical convolution-multiplication rule (5.13), we get

vpξ; t0q “ vpξ; 0q ˚ hdifpξ; t0q

“

K
ÿ

k“1

ckrΛp%kqhdifp ¨ ; t0qspξq.
(5.46)
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This signal is a sum of rotations of a known template. The diffusion kernel in (5.45) is not exactly

bandlimited, but it is approximately so. We can therefore apply the spherical FRI theory and

Algorithm 5.1 to recover the locations and the magnitudes of the diffusive sources.

Figure 5.4A shows the shape of the symmetric diffusion kernel as a function of the colatitude

θ. The high degree of smoothness is reflected in an approximately bandlimited spectrum. This is

demonstrated in Figure 5.4B, where we see that the aliasing energy due to spectral truncation,

defined as

εpLq “
1

‖v‖2
2

8
ÿ

`“L

|pvm` |
2

2`` 1
, (5.47)

rapidly becomes negligible as we increase the cutoff bandwidth L. Figures 5.4C and 5.4D demon-

strate accurate reconstruction of the localized diffusion sources at two different values of the

diffusion coefficient (the detailed parameters of the numerical experiment are given in the figure

caption).

5.4.2 Shot Noise Removal

Suppose that we sample a bandlimited function on the sphere, but a small number of samples

are corrupted—they contain shot noise—due to sensor malfunction. Moreover, the identities of

the malfunctioning sensors are not known a priori. Can we detect and correct these anomalous

measurements? We show that our sampling results can be applied to solve this problem, provided

that the number of erroneous sensors is not too large and that the original sampling grid is

oversampling the bandlimited function. A similar idea was used in [139] to remove shot noise in

the 1D Euclidean case.

For this application we assume that the samples are taken on a uniform grid on the sphere,

tpθp, φqq | p, q P Z, 0 ď p ă 2L1, 0 ď q ă 2L1u, defined by

θp “
pπ

2L1
, φq “

qπ

L1
. (5.48)

Imagine now that we sample f on this sampling grid. Some samples are corrupted, so we

measure gpθp, φqq “ fpθp, φqq ` spq, where

spq “

#

nonzero pp, qq P S
zero otherwise,

(5.49)

and S holds the indices of the corrupted samples. We will leverage an elegant quadrature rule

by Driscoll and Healy [65]:

Theorem 5.2 ([65, Theorem 3])

Let f be a bandlimited function on S2 such that pfm` “ 0 for ` ě L1. Then for p`,mq P IL1 we

have

pfm` “

2L1´1
ÿ

p“0

2L1´1
ÿ

q“0

apL
1
q

p fpθp, φkqY m` pθp, φqq, (5.50)

where the weights a
pL1q
p are defined in [65].
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In other words, the Fourier coefficients pfm` can be expressed as a dot-product between the

weighted sample values and the basis functions evaluated at the sampling points. In analogy

with the Euclidean case, we now observe that the lowpass portion of the spectrum of f coincides

with the lowpass portion of the spectrum of the generalized function obtained by placing weighted

Diracs at grid points. Let f be bandlimited so that pfm` “ 0 for ` ě L. Let further L ă L1; that

is, the grid (5.48) oversamples f . Then the spectral coefficients can be expressed as the following

inner product,

pfm` “

C

2L1´1
ÿ

p,q“0

apL
1
q

p fpθp, φqqδθj ,φq , Y
m
`

G

, (5.51)

for ` ă L, |m| ď `.

This is the key insight. Notice that the lowpass portion of the spectrum of g (for ` ă L1) can

be written as

pgm` “
pfm` `

C

ÿ

pp,qqPS
apL

1
q

p spqδθp,φq , Y
m
`

G

. (5.52)

But pfm` “ 0 for ` ě L, so the portion of the spectrum for L ď ` ă L1 contains only the influence

of the corrupted samples,

pgm` “

C

ÿ

pp,qqPS
apL

1
q

p spqδθp,φq , Y
m
`

G

, L ď ` ă L1. (5.53)

Consequently, we can use this part of the spectrum to learn which samples are corrupted, and

by how much. This is the subject of the following proposition.

Proposition 5.2

Let f be a signal on the sphere of bandwidth L. Then we can perfectly reconstruct f from

corrupted samples taken on the grid (5.48), as long as the number of corruptions K satisfies

K ď L1 ´ L´
?
L1 ´ L` 1` 1. (5.54)

Proof : As discussed in Section 5.3, we can use any m “ const. line in the spectrum to get the rows

of the annihilation matrix. However, we first need to compute the corresponding columns of the

data matrix. From Figure 5.5, we see that the middle columns cannot be used for shot noise

removal: we seek columns influenced only by corruptions. But the middle columns of the data

matrix are obtained from the middle spectral columns (for m ă L), so they are influenced both

by the desired signal and the corruptions. This means that we can only use spectral bins for

L ď m ă L1, as illustrated in Figure 5.5. For m “ L and m “ ´L, the number of segments of

length K`1 that we can get is L1´L´K. For m “ L`1 and m “ ´pL`1q it is L1´L´K´1,

and so on. Summing up we have that the total number of consecutive segments of length K ` 1

we can use is

# “ 2pL1 ´ L´Kq ` 2pL1 ´ L´K ´ 1q ` ¨ ¨ ¨ ` 2 ¨ 1

“ pL1 ´ L´KqpL1 ´ L´K ` 1q.

We need this number to be at least K, because we need K rows in the annihilation matrix. We

thus obtain the claim of the proposition by solving the inequality # ě K.
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Lowpass signal
Shot-noise influence

Used for shot-noise 
removal

f

� < L

Figure 5.5: Spectrum structure in shot noise removal. Green-shaded bins get contribution from the
desired signal f with bandwidth L; hatched bins are influenced by the shot noise; red-shaded columns
are (i) long enough to annihilate shot noise and (ii) recoverable from the corrupted spectrum.

A B

Figure 5.6: Shot noise removal via spherical FRI, for L “ 6, L1 “ 12 and K “ 4 malfunctioning
sensors. Corrupted signal is shown in subfigure A, together with the true corruption values (blue
diamonds) and the estimated corruptions (red circles); same signal with the shot noise removed is
shown in B, with the correct sample values at the corrupted locations denoted by blue diamonds.
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Figure 5.7: Multiple DOA estimation by a spherical microphone array. First row of subfigures
corresponds to f1 “ 1000 Hz, and second row to f2 “ 4000 Hz. Sphere has a radius r “ 0.2 m, and
the source is located at r0, 0, 3sJ m. The real and imaginary parts, and the absolute value of the
Green’s function are shown in subfigures A and D. Real part, imaginary part and absolute value of
the spectrum are shown in subfigures B and E. Subfigures C and F show the simulation results for
K “ 2 and K “ 5, and random source placement. Blue diamonds represent the source locations,
and thick red lines show the estimated directions. Size of the sphere is exaggerated for the purpose
of illustration. The sphere color corresponds to the absolute value of the function induced on the
sphere by the sources (microphones measure samples of this function). The bandwidth was set to
L “ 12 at 1000 Hz and to L “ 30 at 4000 Hz.

After detecting the corrupted readings, we can use the estimated corruption values to estimate

the function. Another option is to simply ignore them altogether, as we have more samples than

the minimum number thanks to oversampling. A shot noise removal experiment is illustrated in

Figure 5.6.

5.4.3 Sound Source Localization

Spherical microphone arrays measure a time-varying spherical signal. If the signal is induced by

a collection of point sources, we can use the proposed spherical FRI sampling scheme to estimate

the directions-of-arrival (DOAs) of the sources. For simplicity, we consider the narrowband case,

i.e., the sources emit a single sinusoid.

How does this example fit into our sparse sampling framework? In spherical microphone

arrays, the microphones are distributed on the surface of a sphere, either open or rigid [98].

Therefore, the microphone signals represent samples of a time-varying function on S2. If a

sound source emits a sinusoid, every microphone measures the amplitude and the phase of that

sinusoid shaped by the characteristics of the propagating medium and of the spherical casing.
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Equivalently, for every microphone we get a complex number.

Suppose that a source of unit intensity is located at s, and that the microphones are mounted

on a rigid sphere of radius r centered at the origin. The response measured by the microphone

at r , such that ‖r‖ “ r, is given by the corresponding Green’s function. For a wavenumber

κ “ 2πν{c, where ν is the frequency and c is the speed of sound, the Green’s function is [98]

gpr |s, κq “
jk

4π

8
ÿ

`“0

b`pκrqh
p1q
` pκsqp2`` 1qP`pcosαrsq, (5.55)

where h
p1q
` is the spherical Hankel function of the first kind and of order `, P` is the `th Legendre

polynomial, and cosαrs “
1
rs xr , sy. Mode strength b`pkrq is defined as

b`pκrq
def
“ j`pκrq ´

j1`pκrq

h
p1q1
` pκrq

h
p1q
` pκrq, (5.56)

where j` is the spherical Bessel function3 of order `, and prime p ¨ q1 denotes the derivative with

respect to the argument.

The Green’s function g should be seen as a filter that describes how the point source’s influence

spreads over the sphere. It is shown for two different frequencies in Figures 5.7A and 5.7D, while

the corresponding spectra are given in Figures 5.7B and 5.7E. We see that the absolute pressure

on the sphere has a similar shape for both frequencies, but the real and imaginary parts vary

faster at higher frequencies, implying higher bandwidth. In both cases we observe that the

Green’s function is approximately bandlimited.4

Assume now that there are K sound sources at locations tsku
K
k“1, with complex intensities

tαku
K
k“1. The resulting measurement by a microphone at point r is

fprq “
K
ÿ

k“1

αigpr |sk, κq. (5.57)

If all the source locations sk are at the same distance from the sphere, then the Green’s

function (5.55) depends only on the angle between r and s. For some fixed source distance d,

we can define hSSLpξq
def
“ gpx ξr|x ηd, κq, where x ξ denotes the unit vector corresponding to ξ, x η

the unit vector corresponding to the north pole η, and the subscript SSL stands for sound source

localization. Then (5.57) corresponds to a weighted sum of K rotations of a known template

function hSSL,

fpξq “
K
ÿ

k“1

αkhSSLp%
´1
k ˝ ξq. (5.58)

As it is unrealistic to assume that the sources are all at the same distance, we hope that

the shape of gpr |s, κq does not (strongly) depend on ‖s‖. Indeed, it turns out that the shape

is approximately preserved within a certain range, as illustrated in Figure 5.8. We therefore

suppress the dependency of g on ‖s‖ and approximate (5.57) as follows,

3We use the standard symbol j` for the spherical Bessel function. Note the subtle difference from the imaginary
unit j.

4This can be related to the spectral support of the plenacoustic function [3].
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Figure 5.8: Ratios of Green’s functions. We computed the Green’s function for nine different source
distances (1.0 m, 1.2 m, 1.4 m, 1.6 m, 1.8 m, 2.0 m, 3.0 m, 4.0 m, 5.0 m). Then we plotted the
magnitude of the ratio of the Green’s function at each distance and the Green’s function at the largest
distance (5 m), both in space (B) and in the spectrum (C). The more parallel the ratio curve is with
the abscissa axis, the more similar the Green’s function at that distance is to the Green’s function at
5 m. Curves are plotted in the order of increasing distance in the direction of the dashed arrow (up
to down), as indicated in (A).

fpξq “
K
ÿ

k“1

αkgpξ|sk, κq

«

K
ÿ

k“1

rαkhSSLp%
´1
k ˝ ξq

“

«

K
ÿ

k“1

rαkδpξ; ξskq

ff

˚ hSSLpξq.

(5.59)

Here, we absorbed αk and additional (complex) scaling due to different distances into rαk, and

hSSL is computed at some predefined mean distance.

We thus reduced the sound source localization problem to a problem of finding the parameters

of a weighted sum of Diracs. In order to apply our spherical FRI algorithm, we need to verify

that g is bandlimited on the sphere. Figures 5.7D and 5.7E show that it is indeed approximately

bandlimited, and that the bandwidth depends on the frequency (it also depends on the sphere

radius).

Figures 5.7C and 5.7D show an example of recovering two sources at 1000 Hz and 5 sources

at 4000 Hz using the proposed spherical sparse sampling scheme. It is worth noting that this

succeeds in spite of the model mismatch due to varying source distances. This indicates the

robustness of the proposed reconstruction algorithm.

5.5 Conclusion

We developed a new sampling theorem for sparse signals on the sphere. In particular, by leverag-

ing ideas from finite rate-of-innovation sampling, we showed how to reconstruct sparse collections
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of spikes on the sphere from their lowpass-filtered observations. Compared to the existing sparse

sampling schemes on the sphere, our algorithm uses the available spectrum more efficiently by

generalizing known results on 2D harmonic retrieval, thereby reducing the number of samples

required to reconstruct the parameters of the spikes.

We illustrated the usefulness of the proposed algorithm by solving three problems: sampling

diffusion processes, shot noise removal, and sound source localization. But there is a wealth of

other applications, for example in astronomy. Just think about the numerous spherical signal

processing challenges put forward by the square kilometer array (SKA) project [49].

We mentioned some approaches to estimation from noisy samples, but more efficient denoising

schemes should be studied. One example, effective in the Euclidean setting, is the Cadzow

denoising algorithm [29]. The problem seems more challenging on the sphere; in particular, the

annihilating matrix is block-Hankel, rather than Hankel.
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5.A Annihilating Property

For the sake of completeness, we show in this appendix that the annihilation filter annihilates

linear combinations of exponentials. We compute the response of the filter Hpzq in (5.33) to a

signal of the form yn “
řK
k“1 bkx

n
k as

py ˚ hqn “
K
ÿ

m“0

yn´mhm “
K
ÿ

m“0

˜

K
ÿ

k“1

bkx
n´m
k

¸

hm

“

K
ÿ

k“1

xnkbk

K
ÿ

m“0

hmx
´m
k “

K
ÿ

k“1

xnkbk

K
ź

i“1

p1´ xkx
´1
i q

“ 0.

5.B Computation of the Cramér-Rao Lower Bound

A lowpass-filtered collection of K Diracs can be written as follows,

fpθ, φq “
L´1
ÿ

`“0

ÿ̀

m“´`

˜

K
ÿ

k“1

αkY m` pθk, φkq

¸

Y m` pθ, φq. (5.60)

In the remainder of this section, we assume K “ 1, so we rewrite the function as

fpθ, φq “
L´1
ÿ

`“0

ÿ̀

m“´`

α0Y m` pθ0, φ0qY
m
` pθ, φq. (5.61)

We take samples on the sphere at the locations tpθn, φnqu
N
n“1. The nth sample is given by

µn “ fpθn, φnq ` εn (5.62)

where εn „ N p0, σ2q, and they are iid. By ζ “ rα0, θ0, φ0s
J, we denote the vector of parameters

we estimate. To make the dependence on ζ explicit, we rewrite (5.62) slightly as

µn “ fnpζq ` εn. (5.63)

With this notation in hand, we can write the conditional probability density function of the

nth measurement as

ppµ|ζq “
1

?
2πσ2

e´rµ´fnpζqs
2
{p2σ2

q, (5.64)

so that the log-likelihood function is

Lpζq
def
“ ln ppµ1, . . . , µN |ζq

“

N
ÿ

n“1

“

´ 1
2 lnp2πσ2q ´ pµn´fnpζqq

2{p2σ2q
‰

. (5.65)

Consequently, differentiating L with respect to any entry ζi of ζ gives

BL

Bζi
“

1

σ2

N
ÿ

n“1

εn
Bfnpζq

Bζi
. (5.66)
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We can compute the three required derivatives

Bfnpζq

Bα0
“

L´1
ÿ

`“0

ÿ

|m|ď`

Y m` pθ0, φ0qY
m
` pθn, φnq,

Bfnpζq

Bθ0
“ α0

L´1
ÿ

`“0

ÿ

|m|ď`

„

m cot θ0Y m` pθ0, φ0q

`
a

pl ´mqpl `m` 1qejφ0Y m`1
` pθ0, φ0q



Y m` pθn, φnq,

Bfnpζq

Bφ0
“ α0

L´1
ÿ

`“0

ÿ

|m|ď`

p´jmqY m` pθ0, φ0qY
m
` pθn, φnq.

Now ∇L “
”

BL
Bα0

, BL
Bθ0
, BL
Bφ0

ıJ

, and the Fisher information matrix is

I pζq
def
“ E

“

∇Lpζq∇LpζqH
‰

“
1

σ2

N
ÿ

n“1

∇fnpζq∇fnpζqH .

Let pζ be any unbiased estimator of the parameters ζ. The CRLB can then be computed as

covppζq ľ I pζq´1. (5.67)

5.C Rank of the annihilating matrix

In this appendix, we show that the rank of the annihilating matrix Z (5.35) is K with probability

one, as soon as it has at least K rows. It then follows follows that the annihilating filter h is

uniquely determined, up to a scaling factor, by solving Zh “ 0 .

Consider the factorization ∆ “ X AU ,

∆ “

»

—

—

—

–

1 ¨ ¨ ¨ 1

x1 ¨ ¨ ¨ xk
...

...

xL´1
1 ¨ ¨ ¨xL´1

K

fi

ffi

ffi

ffi

fl

»

—

–

α1

. . .

αK

fi

ffi

fl

»

—

–

u1,1´L ¨ ¨ ¨ 1¨ ¨ ¨u1,L´1

...
...

uK,1´L¨ ¨ ¨ 1¨ ¨ ¨u1,L´1

fi

ffi

fl

,

where xk “ cos θk and uk,m “ psin θkq
|m|e´jmφk .

To construct the annihilating matrix Z as in equation (5.35), we create Hankel blocks from

columns of ∆. The pL´KqˆpK`1q Hankel block corresponding to the middle (m “ 0) column

of ∆ can be factored as

B0 “

»

—

—

—

–

xL´K´1
1 ¨ ¨ ¨ xL´K´1

K
...

...

x1 ¨ ¨ ¨ xK
1 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

fl

»

—

–

α1

. . .

αK

fi

ffi

fl

»

—

–

xK1 ¨ ¨ ¨ x0
1

...
...

xKK ¨ ¨ ¨ x0
K

fi

ffi

fl

def
“ X 0AΞ . (5.68)
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The second block of the annihilating matrix obtained from the column corresponding to m “ ´1

is similar,

B´1 “ X 1Y ´1AΞ , (5.69)

where Y ´1
def
“ diagpu1,´1, . . . , uK,´1q, and Xm is obtained by removing the m leading rows from

X 0. Then we can write

Z “ rBJ
0 , BJ

´1, BJ
1 , . . . , BJ

K´L`1, BJ
L´K´1s

J

“

»

—

—

—

—

—

—

—

–

X 0 ¨ I ¨ AΞ

X 1 ¨ Y ´1 ¨ AΞ

X 1 ¨ Y 1 ¨ AΞ
...

XL´K´1 ¨ YK´L`1 ¨ AΞ

XL´K´1 ¨ Y L´K´1 ¨ AΞ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
(5.70)

with the AΞ factor being common for all row-blocks. We want to show that the nullspace of Z

has dimension one. To that end, we just need to establish that the following matrix,

T “

»

—

—

—

—

—

—

—

–

X 0 ¨ I

X 1 ¨ Y ´1

X 1 ¨ Y 1

...

XL´K´1 ¨ YK´L`1

XL´K´1 ¨ Y L´K´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (5.71)

has full column rank. To see why this is the case, let v be a non-zero vector such that 0 “ Zv “

T pAΞ vq. It then follows from the full-rankness of T that AΞ v “ 0 . Since A is a diagonal

matrix with non-zero entries on the diagonal and Ξ is a K ˆpK ` 1q Vandermonde matrix with

distinct roots, the vector v is uniquely determined up to a multiplicative factor. We now show

that the matrix T indeed has full column rank almost surely.

Any column in TJ is of the form
»

—

–

pcos θ1q
rpsin θ1q

|s|e jjφ1s

...

pcos θKq
rpsin θKq

|s|e jjφKs

fi

ffi

fl

, (5.72)

where 0 ď r ă L´K ´ |s| and ´pL´K ´ 1q ď s ď L´K ´ 1. If the locations of the Diracs are

random, we can use the following lemma to show that the matrix T will have full column rank

with probability one.

Lemma 5.3

Draw rξk “ pθk, φkqs
K
k“1 independently at random from any absolutely continuous probability

distribution on R “ r0, πsˆr0, 2πs (w.r.t. Lebesgue measure). Let M “ tpr1, s1q, . . . , prN , sN qu

be a set of distinct integer pairs and let G “ rgpqs, where gpq “ pcos θpq
rq psin θpq

|sq |e jjφpsq .

Then G has full rank almost surely.

Proof : This proof is parallel to that of Theorem 3.2 from [11]. Let GM be the upper left M ˆM

minor of G. We define the bad set BM as the set on which GM is singular,

BM “

!

pξ1, . . . , ξM q P RM
| det GM “ 0

)

. (5.73)
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The goal is to show that µpBKq “ 0, where µ is the Lebesgue measure on RK . We proceed by

induction on M ; for M “ 1, we have that

G1 “ rpcos θ1q
r1psin θ1q

|s1|e jφ1s1 s,

which is non-zero almost surely, so the claim holds. Assume now that M ă minpK,Nq and that

the bad set BM has measure zero. Let pξ1, . . . , ξM q R BM , i.e., GM is invertible. Because it is

invertible, there exists a unique coefficient vector b “ bpξ1, . . . , ξM q such that

GMb “ gM`1, (5.74)

where by gM`1 we denote the first M entries of the last column of GM`1. The bigger matrix

GM`1 will be singular if and only if the same linear combination is also consistent with its

pM ` 1qst row. In other words, GM`1 is invertible if and only if ξM`1 is not in the set

ZM pξ1, . . . , ξM q “
"

pθ, φq “ ξ P R
ˇ

ˇ

ˇ

ˇ

pcos θqrM`1psin θq|sM`1|e jφsM`1 “

M
ÿ

i“1

bipcos θqripsin θq|si|e jφsi

*

.

For fixed pξ1, . . . , ξM q, this is the set of zeros of a particular (generalized) trigonometric polyno-

mial, thus it has measure zero. Note that the definition of ZM makes sense only for pξ1, . . . , ξM q R

BM , as otherwise GM is not invertible. Thus, the solution b to (5.74) may not exist.

Consider now the following two sets:

UM`1
def
“ tpξ1, . . . , ξM`1q | pξ1, . . . , ξM q P BM , ξM`1 P Ru

and

VM`1
def
“

!

pξ1, . . . , ξM`1q | pξ1, . . . , ξM q P RM , ξM`1 P ZM
)

.

The bad set BM`1 must be a subset of the set U Y V. But we just showed that the set V has

measure zero; by the induction hypothesis, U also has measure zero. Thus their union, too, has

measure zero.

It follows that BM`1 has measure zero. Finally, because the distributions of ξi are absolutely

continuous w.r.t. the Lebesgue measure, so is their product distribution. Hence the probability

that pξ1, . . . , ξKq lies in the zero-measure set BK is zero.

To complete the argument, note that the matrix TJ has the same form as the matrix G in

the statement of Lemma 5.3, with 0 ď r ă L ´ K ´ |s| and ´pL ´ K ´ 1q ď s ď L ´ K ´ 1.

Thus, the columns of T are independent with probability one, provided that its number of rows

is at least K.





Chapter 6

Acoustic Rake Receiver*

6.1 Introduction

In this chapter we propose acoustic rake receivers1 (ARR)—microphone beamformers that use

echoes to improve noise and interference suppression. Instead of trying to mitigate multipath

propagation, rake receivers take advantage of it. The basic idea of the rake receivers, which are

commonly used in wireless communications, is to coherently add the multipath components and

thus increase the effective signal-to-noise ratio (SNR).

Rake receivers were introduced by Price and Green [171], who described a wideband radio

receiver consisting of a delay line and a series of correlators synchronized at successive delay

increments of 1{W , where W is the signal bandwidth. Under certain assumptions, this system

is capable of discriminating and “bringing into step” all multipath components, which are then

summed algebraically instead of vectorially. The bank of correlators synchronized at different

delays resembles the fingers of a rake2 that collects, or rakes, the various signal paths.

The original scheme [171] was developed for single-antenna systems, and it was later extended

to arrays of antennas by Khalaj, Paulraj, and Kailath [106] and by Naguib [155]. The advantage

of using an antenna array is that we get spatial selectivity. Thus components that are not

resolvable with a single antenna because they arrive at similar times become resolvable because

they arrive from different directions. One should imagine a beamformer whose beam is steered

towards each of the components in turn.

6.1.1 Wireless vs Speech

In spite of the success of the rake receivers in wireless communications, the principle has not

received significant attention in room acoustics. Nevertheless, constructive use of echoes in rooms

to improve beamforming has been mentioned in the literature [6, 160, 96]. In particular, the term

Acoustic Rake Receiver (ARR) was used in the SCENIC project proposal [6].

1We caution the reader that ARR is somewhat of a misnomer as we primarily exploit the spatial structure
of the multipath, unlike the original work on rake receivers (and the origin of the noun adjunct rake) that was
exploiting the temporal structure.

2A rake is a broom for outside use; a horticultural implement consisting of a toothed bar fixed transversely to
a handle, and used to collect leaves, hay, grass, etc. [Wikipedia].

*This chapter is a result of a joint work with Robin Scheibler and Martin Vetterli[60, 184].
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The list of ingredients for ARRs in room acoustics is similar as in wireless communications: a

wave (acoustic instead of electromagnetic) propagates in space; reflections and scattering cause

the wave to arrive at the receiver through multiple paths in addition to the direct path, and

these multipath components all contain the source waveform.

The main difference is that in room acoustics we do not get to design the input signal. What

makes rake receivers work in wireless communications is the particular signal structure. Price and

Green [171] assume that the sender sends two different waveforms, “Mark” and “Space”, which

have a low cross-correlation and a very peaky autocorrelation. Khalaj, Paulraj and Kailath [106]

use known pseudo-noise spreading (chip) sequences with similar properties (near-orthogonality

to shifts, and orthogonality between different users), as is common in spread spectrum CDMA

systems [169, 181].

All this facilitates multipath channel estimation: The basic approach is simply to crosscorre-

late the received signals with known templates. But with speech we have no such structure. Even

if the inverse bandwidth of speech is relatively small compared to typical separations between

strong echoes, speech segments are long and unknown. We have an idea about their statistics,

but there is no firm template that we could use to estimate the multipath structure.

On the contrary, there are no significant differences between wireless communications and

speech in terms of the spatial structure. If we know where the echoes are coming from, we can

design spatial processing algorithms—for example beamformers—that use multiple copies of the

same signal arriving from different directions. The most significant difference is perhaps that

the resulting signal is to be listened to by people, leading to additional perceptual constraints

on processing.

Imagine first that we know the room geometry. Then, if we localize the source, we can

predict where its echoes will come from by using simple geometric rules [5, 19]. Localizing the

direct signal in a reverberant environment is a well-understood problem [218, 50]. What is more,

we do not need to know the room shape in detail—locations of the most important reflectors

(ceiling, floor, walls) suffice to localize the major echoes. In many cases this knowledge is readily

available from floor plans or measurements. In ad-hoc deployments, the room geometry may be

difficult to obtain. If that is the case, we can first perform a calibration step to learn it. An

appealing method to infer the room geometry is by using sound and the same array we use for

beamforming, as was demonstrated recently [176, 7, 54, 56].

We may still be able to take advantage of the echoes without estimating the room geometry.

Note that we are not after the room geometry itself; rather, we only need to know where the

early echoes are coming from. Echoes can be seen as signals emitted by image sources—mirror

images of the true source across reflecting walls [5]. Knowing where the echoes are coming from

is equivalent to knowing where the image sources are.

Image source localization can be solved, for example, by echo sorting as described in [56].

Alternatively, O’Donovan, Duraiswami, and Zotkin [160] propose to use an audio camera with

a large number of microphones to find the images. Once the image sources are localized (in

a calibration phase or otherwise), we can predict their movement using geometrical rules, as

discussed in Section 6.5. Thus, the acoustic raking is a multi-stage process comprising real

and image source localization and tracking, and the computation of beamforming weights. The

complete block diagram is shown in Figure 6.1.
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Figure 6.1: A block diagram for acoustic rake receivers. In this chapter, we focus on ARR beam-
forming weight computation, and we briefly discuss echo tracking and image source localization. The
geometry estimation block is optional (room geometry could be known in advance), hence the dashed
box.

6.1.2 Related Work

It is interesting to note the analogy between the ARRs and human auditory perception. It is well

established that the early echoes improve speech intelligibility [25, 127]. In fact, adding energy

in the form of early echoes—approximately within the first 50 ms of the room impulse response

(RIR)—is equivalent to adding the same energy to the direct sound [25]. This observation

suggests new designs for indoor beamformers, with different choices of performance measures

and reference signals. A related discussion of this topic is given by Habets and co-authors [88],

who examine the tradeoff between dereverberation and denoising in beamforming. In addition

to the standard SNR, we propose to use the useful-to-detrimental ratio (UDR), first defined by

Lochner and Burger [127], and used by Bradley, Sato and Picard [25]. We generalize UDR to a

scenario with interferers, defining it as the the ratio of the direct and early reflection energy to

the energy of the noise and interference.

ARRs focus on the early part of the RIR, trying to concentrate the energy contained in the

early echoes. In that regard, there are similarities between ARRs and channel shortening [201,

223]. Channel shortening produces filters that are much better behaved than complete inversion,

e.g., by the multiple-input-output-theorem (MINT) [148, 75]. Nevertheless, it is assumed that

we know the acoustic impulse responses between the sources and the microphones. In contrast

to channel shortening, as well as other methods assuming this knowledge [16, 148], we never

attempt the difficult task of estimating the impulse responses. Our task is simpler: we only need

to detect the early echoes, and lift them to 3D space as image sources.

6.1.3 Main Contributions and Limitations

We introduce the acoustic rake receiver (ARR) as an echo-aware microphone beamformer. We

present several formulations with different properties, and analyze their behavior theoretically
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and numerically. The analysis shows that ARRs lead to significantly improved SNR and in-

terference cancellation when compared with standard beamformers that only extract the direct

path. ARRs can suppress interference in cases when conventional beamforming is bound to fail,

for example when an interferer is occluding the desired source. This is illustrated in Figure 6.2

(for a sneak-peak of the numerical results, fast forward to Figure 6.8). We can listen behind an

interferer by listening to echoes of the desired source, instead of listening to its direct path. This

could be seen as an analogy with user separation in multiuser wireless systems; however, the

latter is achieved primarily by temporal means (orthogonal codes).

The raking microphone beamformers are particularly well-suited to extracting the desired

speech signal in the presence of interfering sounds, in part because they can focus on echoes of

the desired sound and cancel the echoes of the interference. The analogous human capacity to

focus on a particular acoustic stimulus while not perceiving other, unwanted sounds is called the

cocktail party effect [91].

We present optimal formulations that outperform the earlier delay-and-sum (DS) approaches

[96], especially when interferers are present. Significant gains are observed not only in terms of

signal-to-interference-and-noise ratio (SINR) and UDR, but also in terms of perceptual evaluation

of speech quality (PESQ) [178].

We first design and apply the ARRs in the frequency domain. Frequency domain formulation

is simple and concise; it allows us to focus on objective gains from acoustic raking; time-domain

designs [92, 183] offer better control over the impulse responses of the beamforming filters.

Towards the end of the chapter we propose the time-domain formulation of the rake receivers,

and first experimental results that show that these receivers indeed improve the beamforming

impulse responses.

Let us also mention some limitations of our results. For clarity, the numerical experiments are

presented in a 2D “room”, and as such are directly applicable to planar (e.g., linear or circular)

arrays. Extension to 3D arrays is straightforward. We do not discuss robust formulations that

address uncertainties in the array calibration. Microphones are assumed to be ideally omni-

directional with a flat frequency response. Except for Section 6.5, we assume that the locations

of the image sources are known. We explain how to find the image sources when the room

geometry is either known or unknown; for details about room geometry estimation techniques,

as well as the list of references, we refer the reader to Chapter 3. We consider the walls to be

flat-fading; in reality, they are frequency selective. We do not discuss the estimation of various

covariance matrices [32].

6.2 Signal model

Suppose that the desired source of sound is at the location s0 in a room. Sound from this source

arrives at the microphones located at trmu
M
m“1 via the direct path, but also via the echoes

from the walls. The echoes can be replaced by the image sources—mirror images of the true

sources across the corresponding walls—according to the image source model (cf. Chapter 2).

An important consequence is that instead of modeling the source of the desired or the interefering

signal as a single point in a room, we can model it as a collection of points in free space.

Denote by xrns the signal3 (e.g. speech) emitted by the source; then all the image sources emit

3We use the same symbol (e.g. x) for both the time-domain signal xrns and its spectrum xpe jωq. The reason for
this choice is to keep the clean symbol for the frequency domain equations and avoid clutter, while not introducing
a non-standard symbol for the time-domain signals. If the argument is absent, we assume the frequency domain.
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Figure 6.2: Listening behind an interferer by listening to echoes (illustration).

xrns as well, and the signals from the image sources reach the microphones with the appropriate

delays. In our application, the essential fact is that echoes correspond to image sources. We

denote the image source positions by sk, 1 ď k ď K, where K denotes the largest number of

image sources considered. Note that we do not care about the sequence of walls that generates

sk, nor do we care about how many walls are in this sequence. For us, all sk are simply additional

sources of the desired signal. The described setup is illustrated Figure 6.3.

Suppose further that there is an interferer at the location q0 (for simplicity, we consider only

a single interferer). The interferer emits a signal zrns, and its image sources emit zrns as well.

Similarly as for the desired source, we denote by qk, 1 ď k ď K 1 the positions of the interfering

image sources, with K 1 being the largest number of interfering image source considered. The

model mismatch (e.g., the image sources of high orders and the late reverberation) and the noise

are absorbed in the term nmrns.
The signal received by the mth microphone is then a sum of convolutions

ymrns “
K
ÿ

k“0

`

ampskq ˚ x
˘

rns `
K1
ÿ

k“0

`

ampqkq ˚ z
˘

rns ` nmrns, (6.1)

where ampskq denotes the impulse response of the channel between the source located at sk and

the mth microphone—in this case a delay and a scaling factor.

We will first discuss beamforming in the frequency domain, as it is conceptually simpler.

That is, we will be working with the DTFT of the discrete-time signal x,

xpe jωq def“
ÿ

nPZ
xrns e´jωn. (6.2)

In practical implementations, we use the discrete-time short-time Fourier transform (STFT).

More implementation details are given in Section 6.6.
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Figure 6.3: Illustration of the notation and concepts. Echoes of the desired signal emitted at s0

can be modeled as a direct sound coming from the image sources of s0. Two generations of image
sources are illustrated: first (s1, s3, s5, s7) and second (s2, s4, s6, s8), as well as the corresponding
sound rays for s5 and s6. The interferer is located at q0 (its image sources are not shown), and the
microphones are located at r1, . . . , r4.

Using these notations, we can write the signal picked up by the mth microphone as

ympe
jωq “

K
ÿ

k“0

ampsk,Ωqxpe
jωq `

K1
ÿ

k“0

ampqk,Ωqzpe
jωq ` nmpe

jωq, (6.3)

where nmpe
jωq models the noise and other errors, and ampsk,Ωq denotes the mth component

of the steering vector for the source sk. The steering vector is the Fourier transform of the

continuous version of the impulse response apskq, evaluated at the frequency Ω. The discrete-

time frequency ω and the continuous-time frequency Ω are related as ω “ ΩTs, where Ts is the

sampling period. The steering vector is then simply apsk,Ωq “ rampsk,Ωqs
M´1
m“0 .

We can write out the entries of the steering vectors explicitly for a point source in free

space. They are given as the appropriately scaled free-space Green’s functions for the Helmholtz

equation [67] (cf. Chapter 2, equation (2.58)),

ampsk,Ωq “
αk

4π‖rm ´ sk‖
e´jκ‖rm´sk‖, (6.4)

where we define the wavenumber as κ
def
“ Ω{c, and αk is the attenuation corresponding to sk.

Using vector notation, the microphone signals can be written concisely as

ype jωq “ Aspe
jωq1xpe jωq `Aqpe

jωq1zpe jωq ` npe jωq, (6.5)

where Aspe
jωq

def
“ raps1,Ωq, . . . ,apsK ,Ωqs, Aqpe

jωq
def
“ rapq1,Ωq, . . . ,apqK1 ,Ωqs, and 1 is the

all-ones vector.
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Figure 6.4: Stucture of time-domain and frequency-domain beamformers. (A) In the time domain,
signals received by the microphones are filtered by the filters hm (often FIR). (B) In the frequency
domain, microphone signals are typically processed with the short-time Fourier transform (STFT) and
then multiplied per-frequency by the corresponding frequency-dependent beamforming weights.

6.3 Beamforming Preliminaries

Microphone beamformers combine the outputs of multiple microphones in order to achieve spatial

selectivity, or more generally to suppress noise and interference [210, 199]. Basic structures

of frequency-domain and time-domain beamformers are illustrated in Figure 6.4. The design

parameters are filters hm in the time domain, and weights wmpe
jωq in the frequency domain.

The goal is to design these filters and weights in a way that will optimize certain design criteria,

such as interference suppression or SNR at the output.

We primarily treat beamforming in the frequency domain because it is conceptually simpler

(this will be clear later when we discuss time-domain raking). With reference to the figure, we

see that the output of the time-domain beamformer is computed as

urns “
M
ÿ

m“1

pym ˚ hmqrns. (6.6)
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Taking the DTFT of both sides we have that

upe jωq “

M
ÿ

m“1

ympe
jωqhmpe

jωq. (6.7)

Evidently, for a narrowband signal, a beamformer forms a simple linear combination of the

microphone outputs to yield the output u. A typical procedure is then to design beamformers

independently in every frequency bin (although there are exceptions to this, for example when

we desire constant beam shape over a wide frequency band [219, 79]).

From here onward, we suppress the frequency dependency of the steering vectors and the

beamforming weights to reduce the notational clutter. We can write (6.7) as

u “ w˚y “ w˚As1x`w˚Aq1z `w˚n , (6.8)

where the vector w P CM contains the beamforming weights.

The weights w are often selected so that they optimize some design criterion. Common exam-

ples of beamformers are the delay-and-sum (DS) beamformer, minimum-variance-distortionless-

response (MVDR) beamformer, maximum-signal-to-interference-and-noise (Max-SINR) beam-

former, and minimum-mean-squared-error (MMSE) beamformer. In this chapter we discuss the

rake formulation of the DS and the Max-SINR beamformers; for completeness, we first describe

the non-raking variants.

6.3.1 Delay-and-Sum Beamformer

DS is the simplest and often quite effective beamformer [210]. It inserts delays into microphone

signals so that they become aligned in time, and then takes their mean. Assume that we want

to listen to a source at s. Then we form the DS beamformer by compensating the propagation

delays from the source s to the microphones rm,

uDS “
1

M

M´1
ÿ

m“0

yme jκ‖rm´s‖ “
1

M

M´1
ÿ

m“0

„

x e´jκ‖rm´s‖

4π‖rm ´ s‖ ` nm


e jκ‖rm´s‖ (6.9)

«
x

4π}r ´ s}
`

1

M

M´1
ÿ

m“0

e jκ‖rm´s‖nm (6.10)

“ y ` n, (6.11)

where r “ 1
M

řM´1
m“0 rm denotes the center of the array. The beamforming weights can be read

out from (6.9) as

wDS “
apsq

‖apsq‖ , (6.12)

where we used the definition of ym (6.5) and the definition of the steering vector (6.4). We

can see from (6.9) that if n „ N p0 , σ2IM q, then the output noise n is distributed according

to N p0, σ2{Mq, that is, we obtain an M -fold decrease in the noise variance at the output with

respect to any reference microphone.

6.3.2 Maximum Signal-to-Interference-and-Noise Ratio Beamformer

The SINR is an important figure of merit used to assess the performance of ARRs, and to compare

it with the standard non-raking beamformers. It is computed as the ratio of the power of the



6.4. Acoustic Rake Receivers 147

desired output signal to the power of the undesired output signal. The desired output signal is

the output signal due to the desired source, while the undesired signal is the output signal due

to the interferers and noise.

For a desired source at s and an interfering source at q we can write

SINR
def
“

E|w˚apsqx|
2

E|w˚papqqz ` nq|
2 “ σ2

x

w˚apsqapsq˚w

w˚Knqw
, (6.13)

where Knq is the covariance matrix of the noise and the interference.

It is compelling to pick w that maximizes the SINR (6.13) [210]. The maximization can be

solved by noting that the rescaling of the beamformer weights leaves the SINR unchanged. This

means that we can minimize the denominator subject to numerator being an arbitrary constant.

The solution is given as

wSINR “
K´1
nq as

a˚sK´1
nq as

. (6.14)

Using the definition (6.13), we can derive the SINR for the Max-SINR beamformer as

SINR “ σ2
xa˚sK´1

nq as. (6.15)

Because K´1
nq is a Hermitian symmetric positive definite matrix, it has an eigenvalue decompo-

sition as K´1
nq “ U ˚ΛU , where U is unitary, and Λ is diagonal with positive entries. We can

write a˚K´1
nq a “ pU aq˚ΛpU aq. Because ‖U a‖2 “ ‖a‖2, and because Λ is positive, increasing

‖a‖2 typically leads to an increased SINR, although we can construct counterexamples. This will

be important when we discuss the SINR gain of the Rake-Max-SINR beamformer.

Note that we do not discuss the well-known MVDR beamformer as in the narrowband case

it is the same (up to a scaling of the output) as the Max-SINR beamformer when all covariance

matrices are accurately known (as we assume).

6.4 Acoustic Rake Receivers

In this section, we present several formulations of the ARR. The Rake-DS beamformer is a

straightforward generalization of the conventional DS beamformer. The one-forcing beamformer

implements the idea of steering a fixed beam power towards every image source, while trying

to minimize interference and noise. It is a naive extension of the MVDR beamformer in that

it attempts to get undistorted versions of each image sources. In practice it performs poorly,

but we include it to show how intuition can lead to very bad results. The Rake-Max-SINR

and Rake-Max-UDR beamformers optimize the corresonding performance measures; we show in

Section 6.6 that the Rake-Max-SINR beamforming performs best (except, as expected, in terms

of UDR).

6.4.1 Delay-and-Sum Raking

If we had access to every echo separately (i.e. not summed with all the other echoes), we could

align them all to maximize the performance gain. Unfortunately, this is not the case: each

microphone picks up the convolution of speech with the impulse response, which is effectively a

sum of overlapping echoes of the speech signal. If we only wanted to extract the direct path, we
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would use the standard DS beamformer (6.12). To build the Rake-DS receiver, we create a DS

beamformer for every image source, and average the outputs,

1

K ` 1

K
ÿ

k“0

α1k
M

M´1
ÿ

m“0

yme jκ‖rm´sk‖, (6.16)

where α1k
def
“ αk{p4π‖rm ´ sk‖q. We read out the beamforming weights from (6.16) as

wR-DS “
1

‖řk apskq‖
K
ÿ

k“0

apskq “
As1

‖As1‖ , (6.17)

where we chose the scaling in analogy with (6.12) (scaling of the weights does not alter the

output SINR). Thus the weights for the Rake-DS beamformer are just a scaled sum of the

steering vectors for each image source.

6.4.2 One-Forcing Raking

A different approach, based on intuition, is to design a beamformer that listens to all K image

sources with the same power, and at the same time minimizes the noise and interference energy:

minimize
wPCM

E

ˇ

ˇ

ˇ

ˇ

ˇ

K1
ÿ

k“0

w˚apqkqz `w˚n

ˇ

ˇ

ˇ

ˇ

ˇ

2

subject to w˚apskq “ 1,@ 0 ď k ď K.

(6.18)

Alternatively, we may choose to null the interfering source and its image sources. Both cases

are an instance of the standard linearly-constrained-minimum-variance (LCMV) beamformer

[74]. Collecting all the steering vectors in a matrix, we can write the constraint as w˚As “ 1J.

The solution can be found in closed form as

wR-OF “ K´1
nqAspA

˚
sK´1

nqAsq
´11M . (6.19)

A few remarks are in order. First, with M microphones, it does not make sense to increase

K beyond M , as this results in more constraints than degrees of freedom. Second, using this

beamformer is a bad idea if there is an interferer along the ray through the microphone array

and any of image sources.

As with all LCMV beamformers, adding linear constraints uses up degrees of freedom that

could otherwise be used for noise and interference suppression. It is better to let the “beamformer

decide” or “the beamforming procedure decide” on how to maximize a well-chosen cost function;

one such procedure is described in the next subsection.

6.4.3 Max-SINR Raking

The main workhorse of the paper is the Rake-Max-SINR. We compute the weights so as to

maximize the SINR, taking into account the echoes of the desired signal, and the echoes of the

interfering signal,

maximize
wPCM

E
ˇ

ˇ

ˇ

řK
k“0 w˚apskqx

ˇ

ˇ

ˇ

2

E
ˇ

ˇ

ˇ

řK1

k“0 w˚apqkqz `w˚n
ˇ

ˇ

ˇ

2 . (6.20)
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Table 6.1: Summary of beamformers.

Acronym Description Beamforming Weights

DS Align delayed copies of signal at the microphone wDS “ apsq{‖apsq‖
Max-SINR max. w˚asa

˚
sw{pw˚Knqwq wSINR “ K´1

nq as{pa
˚
sK´1

nq asq

Rake-DS Weighted average of DS beamformers over image sources wR-DS “ As1 {‖As1‖

Rake-OF min. E
ˇ

ˇ

ˇ

řK1

k“0 w˚apqkqz `w˚n
ˇ

ˇ

ˇ

2

, s.t. w˚As “ 1J wR-OF “ K´1
nqAspA

˚
sK´1

nqAsq
´11M

Rake-Max-SINR max. E
ˇ

ˇ

ˇ

řK
k“0 w˚apskqx

ˇ

ˇ

ˇ

2
L

E
ˇ

ˇ

ˇ

řK1

k“0 w˚apqkqz `w˚n
ˇ

ˇ

ˇ

2

wR-SINR “ K´1
nqAs1 {p1

˚A˚
sK´1

nqAs1 q

Rake-Max-UDR max. E
řK
k“0 |w

˚apskqx|
2L E

ˇ

ˇ

ˇ
w˚

řK1

k“0 apqkqz `w˚n
ˇ

ˇ

ˇ

2

wR-UDR “ wmax, AsA
˚
swmax “ λmaxKnqwmax

The logic behind this expression can be summarized as follows: we present the beamforming

procedure with a set of good sources whose influence we aim to maximize at the output, and

with a set of bad sources whose power we try to minimize at the output. It turns out that this

leads to the standard Max-SINR beamformer with a structured steering vector and covariance

matrix. We define the combined noise and interference covariance matrix as

Knq
def
“ Kn ` σ

2
z

˜

K1
ÿ

k“0

apqkq

¸˜

K1
ÿ

k“0

apqkq

¸˚

, (6.21)

where Kn is the covariance matrix of the noise term, and σ2
z is the power of the interferer at a

particular frequency. Then the solution to (6.20) is given as

wR-SINR “
K´1
nqAs1

1˚A˚
sK´1

nqAs1
. (6.22)

Note that when Knq “ σ2IM (e.g. no interferers and iid noise), the Rake-Max-SINR beam-

former reduces to As1 {‖As1‖, which is exactly the Rake-DS beamformer. This is analogous to

the behavior in the non-raking case (6.12).

6.4.4 Max-UDR Raking

Finally, it is interesting to investigate what happens if we choose the weights that optimize the

perceptually motivated UDR [25, 127]. The UDR expresses the fact that adding early reflections

(up to 50 ms in the RIR) is as good as adding the energy to the direct sound, as far as speech

intelligibility goes. The useful signal is a coherent sum of the direct and early reflected speech

energy, so that

UDR “
E
řK
k“0 |w

˚apskqx|
2

E
ˇ

ˇ

ˇ

řK1

k“0 w˚apqkqz `w˚n
ˇ

ˇ

ˇ

2 . (6.23)

In applications K is rarely large enough to cover all the reflections occurring within 50 ms, simply

because it is too optimistic to assume we know all the corresponding image sources. Therefore,

(6.23) typically underestimates the UDR.

Alas, because (6.23) is specified in the frequency domain, it is challenging to control whether

the reflections in the numerator arrive before or after the direct sound, so optimizing this criterion
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may lead to pre-echoes. Nevertheless, it is interesting to analyze it for the sake of comparison

with time-domain raking formulations. It also provides a meaningful metric for evaluation of the

raking algorithms presented in this chapter.

To compute the Rake-Max-UDR weights, we solve the following program

maximize
wPCM

E
řK
k“0 |w

˚apskqx|
2

E
ˇ

ˇ

ˇ
w˚

řK1

k“0 apqkqz `w˚n
ˇ

ˇ

ˇ

2 . (6.24)

This amounts to maximizing a particular generalized Rayleigh quotient,

w˚AsA
˚
sw

w˚Knqw
. (6.25)

The maximum of this expression is found as the largest eigenvalue in the generalized eigenvalue

problem

AsA
˚
sw “ λKnqw , (6.26)

and it is achieved by the corresponding generalized eigenvector ,

wR-UDR “ wmax. (6.27)

6.4.5 SINR Gain from Raking

Intuitively, if we have multiple sources of the desired signal scattered in space, and we account

for it in the design, we should do at least as well as when we ignore the image sources. Let us

see how large the gain can be for the Rake-Max-SINR beamformer. We have that

SINR “ σ2
xpAs1 q

˚K´1
nq pAs1 q. (6.28)

Intuitively, the larger the norm of As1 , the better the SINR as Knq is positive.4 To explicitly

see if there is any gain in using the acoustic rake receiver, we should compare the standard

Max-SINR beamformer with the Rake-Max-SINR, e.g., we should evaluate
`
ř

k apskq
˘˚

K´1
nq

`
ř

k apskq
˘

aps0q
˚K´1

nq aps0q
. (6.29)

One possible interpretation of (6.29) is that we ask whether the steering vectors apskq sum

coherently or they cancel out.

To answer this, assume that sk, 0 ď k ď K are the desired sources (true and image), and let

β
def
“

řK
k“1pαk{α0q

2, where αk is the strength of the source sk received by the array. Then

E

¨

˝

›

›

›

›

›

K
ÿ

k“0

apskq

›

›

›

›

›

2
˛

‚« p1` βqEp‖aps0q‖2q, (6.30)

that is, we can expect an increase in the output SINR approximately by a factor of p1 ` βq

when using the Rake-Max-SINR beamformer. This statement is made precise in Theorem 6.1 in

Appendix 6.A. It holds when Knq has eigenvalues of similar magnitude, which is typically not

the case in the presence of interferers. However, we show in Section 6.6 that with interferers

present, the gains actually increase.

A couple of remarks are in order:

4It is not difficult to contrive counterexamples, but generically SINR will grow with ‖As1‖.
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Figure 6.5: Comparison of the simulated SNR gains and the theoretical prediction from Theorem
6.1 for K “ 8, and K “ 16. The theoretical prediction of the gain is 10 log10p8 ` 1q « 9.54 for
K “ 8, and 10 log10p16` 1q « 12.30 for K “ 16.

(i) This result is in expectation; it says that on average, the SINR will increase by a factor of

p1` βq. In the worst case, the steering vectors apskq can even cancel out so that the SINR
decreases. But the numerical experiments suggest that this is very rare in practice, and we

can on the other hand observe large gains.

(ii) We see that summing the phasors in ampskq behaves as a two-dimensional random walk.

It is known that the root-mean-square distance of a 2D random walk from the origin after

n steps is
?
n [140].

(iii) Due to the far-field assumption in Theorem 6.1, the attenuations αk are assumed to be

independent of the microphones; in reality they do depend on the source locations. How-

ever, they also depend on a number of additional factors, for example wall attenuations

and radiation patterns of the sources. Therefore, for simplicity, we consider them to be

independent. One can verify that this assumption does not change the described trend.

It is reassuring to observe the behavior suggested by (6.30) in practice. Figure 6.5 shows

the comparison of the prediction by Theorem 6.1 with the SNR gains observed in simulated

rooms. In this case, we are comparing the pure SNR gain for white noise, without interferers.

To generate Figure 6.5, we randomized the location of the source inside the rectangular room.

For simplicity we fixed the signal power as received by the microphones to the same value for all

the image sources, so that the expected gain is K ` 1 in the linear scale. The obtained curves

agree near-perfectly with the prediction of Theorem 6.1. As we will see, with interferers the

gains become larger.

6.5 Comments on Finding and Tracking the Echoes

Thus far we have assumed that the locations of the image sources are known. In this section

we briefly describe some methods to localize them when they are a priori unknown. We assume

that we can localize the true source, or at least one image source. Combined with the knowledge

of the room geometry, this suffices to find the locations of other image sources [159].
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Figure 6.6: Illustration of image source tracking in rectangular geometries.

6.5.1 Known Room Geometry

In many cases, for example for fixed deployments, the room geometry is known. This knowledge

could be obtained at the time of the deployment, or from blueprints. In most indoor environ-

ments, we encounter a large number of planar reflectors. These reflectors correspond to image

sources. Using the tools from Chapter 2 (Section 2.3.4), we can easily compute the image source

locations.

6.5.2 Acoustic Image Source Localization

When the room geometry is not known, it is possible to estimate it using the same array that

we use for beamforming. We can do it by employing the methods in Chapter 3 in a calibration

phase.

But to design an ARR, we do not really need to know how the room looks like; we only

need to know where the major echoes are coming from. One possible approach is to locate the

image sources in the initial calibration phase, and then track their movement by tracking the

true source.

We propose a tracking rule that leverages the knowledge of the displacement of the true

source. Again with reference to Figure 6.6, we can state the following simple proposition:

Proposition 6.1

Suppose that the room has only right angles so that the walls are parallel with the coordinate

axes. Let the source move from s to s` t . Then any image source sk, moves to a point given

by

sk `Tt , (6.31)

where T “ diagp˘1,¯1q for odd generations, and T “ ˘I 2 for even generations.

Proof : The proof follows directly from the figure. The displacement of the image source is the same

as the displacement of the true source, passed through a series of reflections. Reflection matrices

are diagonal matrices with ˘1 on the diagonal, and determinant equal to ´1, hence the result.
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Figure 6.7: Block diagram of the simulation setup used for numerical experiments.

The usefulness of this proposition is that it gives us a tool to track the image sources even

when we do not know the room geometry (as long as it has right angles). A possible use scenario

is to start with a calibration procedure with a controlled source, and perform the echo sorting to

find multiple image sources. Then if possible, we assign to each image source a generation (this

is in fact a by-product of echo sorting), or we try different hypotheses using Proposition 6.1, and

choose the one that maximizes the output SINR.

6.6 Numerical Experiments

In this section, we validate the described theoretical results through numerical experiments.

First, we analyze the beampatterns produced by the ARR; second, we evaluate the SINR for

various beamformers as a function of the number of image sources used in weight computation;

and third, we evaluate the PESQ metric [178]. Finally, we show spectrograms that reveal visually

the improved interferer and noise suppression achieved by the ARR.

6.6.1 Simulation Setup

We use a simple room acoustic framework written in Python, that relies on Numpy and Scipy

for matrix computations [161]. We limit ourselves to 2D geometry and rectangular rooms. In all

experiments, the sampling frequency Fs was set to 8 kHz. An overview of the simulation setup

is shown in Figure 6.7.

Starting from the room geometry and the positions of the sources and microphones, we first

compute the locations of all images sources up to ten generations. The reflectivity of the walls is

fixed to 0.9. The RIR between the source s0 and the microphone rm is convolved with an ideal
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Figure 6.8: Beam patterns in different scenarios. The rectangular room is 4 by 6 meters and contains
a source of interest (�) and an interferer (+) ((B), (C), (D) only). The first order image sources
are also displayed. The weight computation of the beamformer includes the direct source and the
first order image sources of both desired source and interferer (when applicable). (A) Rake-Max-
SINR, no interferer, (B) Rake-Max-SINR, one interferer, (C) Rake-Max-UDR, one interferer, (D)
Rake-Max-SINR, interferer is in direct path.

low-pass filter in the continuous domain and then sampled at the sampling frequency Fs,

ramps0qrns “
K
ÿ

k“0

αk
4π}rm ´ sk}

sinc

ˆ

n´ Fs
}rm ´ sk}

c

˙

, (6.32)

where K is the number of image sources considered. We choose the limits of n such that the

cardinal sine in (6.32) decays sufficiently to avoid artifacts. The discrete signals from all sound

sources are then convolved with their respective RIRs, and added together to obtain the mth

microphone’s signal.

The beamforming weights are computed in the frequency domain. We use the discrete-time

STFT processing with a frame size of L “ 4096 samples, 50% overlap and zero padding on both

sides of the signal by L{2. A real fast Fourier transform of size 2L and a Hann window are used

in the analysis. By exploiting the conjugate symmetry of the real FFT we only need to compute

L`1 beamforming weights, one for every positive frequency bin. The length L is dictated by the

length of the beamforming filters in the time-domain and was set empirically to avoid any aliasing

in the filter responses. The output signal was synthesized using the conventional overlap-add

method [188].

6.6.2 Results

Beampatterns We first inspect the beampatterns produced by the Rake-Max-SINR and Rake-

Max-UDR beamformers for different source-interferer placements. We consider a 4 m ˆ 6 m

rectangular room with a source of interest at p1 m, 4.5 mq and a linear microphone array centered

at p2 m, 1.5 mq, parallel to the x-axis. Spacing between the microphones was set to 8 cm. In

Figure 6.8, we show the beampatterns for four different configurations of the source and the

interferer. We consider a scenario without an interferer, one with an interferer placed favorably

at p2.8 m, 4.3 mq, and finally one where the interferer is placed half-way between the desired

source and the array at p1.5 m, 3.0 mq.
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The last scenario is the least favorable. Interestingly, we can observe that the Rake-Max-

SINR beampattern adjusts by completely ignoring the direct path, and steering the beam towards

the echoes of the source of interest. This is validating the intuition that we can “hear behind

an interferer by listening for the echoes”. Note that such a pattern cannot be achieved by a

beamformer that only takes into account the direct path. We further note that, while the beam-

patterns only show the magnitude of the beamformer’s response, the phase plays an important

role with multiple sources present.

SINR Gains from Raking In the experiments in this subsection, we set the power of the desired

source and of the interferer to be equal, σ2
x “ σ2

z “ 1. The noise covariance matrix is set to

10´3 ¨ IM . We use a circular array of M “ 12 microphones with a diameter of 30 cm, and

randomize the position of the desired source and the interferer inside the room. The resulting

curves show median performance out of 20000 runs.

Figure 6.9A shows output SINR for different beamformers. The one-forcing beamformer is

left out because it performs poorly in terms of SINR, as predicted earlier. Clearly, the Rake-

Max-SINR beamformer outperforms all others. The output SINR for beamformers using only

the direct path (Max-SINR and DS) remains approximately constant. The UDR is plotted

against the number of image sources for various beamformers in Figure 6.9B. The Rake-Max-

UDR beamformer performs well in terms of the two measures; however, its output is perceptually

unpleasing due to audible pre-echoes; in informal listening tests, the Rake-Max-SINR beamformer

did not produce such artifacts. It is interesting to note that the Rake-Max-SINR also performs

well in terms of the UDR. Similar SINR gains to those in 6.9A are observed in Figure 6.9C over

a range of frequencies. It is therefore justified to extrapolate the results at one frequency in

Figure 6.9A to wideband SINR.

Evaluation of Speech Quality We complement the informal listening tests and the evaluation

of SINR and UDR with extensive simulations to asses the improvement in speech quality achieved

by acoustic raking. We simulate a room with two sources—a desired source and an interferer—

and compare the outputs of the Rake-DS, Rake-Max-SINR, and Rake-Max-UDR as a function

of the number of image sources used to design the beamformers.

The same number of image sources is used for the target and interferer (K “ K 1). The

performance metric used is PESQ [178]. In particular, we use the reference implementation

described by the the ITU P.862 Amendment 2 [95]. PESQ compares the reference signal with

the degraded signal and predicts the perceptual quality of the latter as it would be measured by

the mean opinion score (MOS) value, on a scale from 1 to 4.5.

We consider the same room and microphone array setting as before (see Figure 6.8A). The

desired and the interfering sources are placed uniformly at random in a rectangular area with the

lower left corner at p1 m, 2.5 mq and upper right corner at p3 m, 5 mq. To limit the experimental

variation, the speech samples attributed to the sources are fixed throughout the simulation. The

two sources start reproducing speech at the same time and approximately overlap for the total

duration of the speech samples. The signals are normalized to have the same power at the source.

We added white Gaussian noise to the microphone signals, with power chosen so that the SNR of

the direct sound for the desired source is 20 dB at the center of the microphone array. All signals

are high-pass filtered with a cut-off frequency of 300 Hz. The reference for all PESQ results is

the direct path of the target signal as measured at the center of the array p2 m, 1.5 mq.

The median PESQ measure of 10000 Monte Carlo runs, given in raw MOS, is shown in

Figure 6.9D. The median PESQ of the degraded signal measured at the center of the array
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Figure 6.9: Median output SINR (A) and UDR (B) plotted against the number of image sources
used in the design for different beamformers, at a frequency f “ 1 kHz. The shaded area contains the
Rake-Max-SINR output SINRs for 50% of the 20000 Monte Carlo runs in (A) and the Rake-Max-UDR
output UDR for 50% of the 20000 Monte Carlo runs in (B).

before processing was found to be 1.6 raw MOS. When only the direct sound is used (i.e.,

K “ 0), all three beamformers yield the same improvement of about 0.2 raw MOS. We observe

that Rake-DS is marginally better than the other beamformers. Using any number of echoes in

addition to the direct sound results in larger MOS for all beamformers. When more than one

image source is used, the Rake-Max-SINR beamformer always yields the largest MOS, with up

to 0.5 MOS gain when using 10 images sources.

It is worth mentioning that in the beamformer design, we do not assume that we know the

spectrum of the source or the interferer—we design as if it was flat. Thus the interferer acts

as a strong source of colored, spatially correlated, non-stationary noise, spectrally mismatched

with the designed beamformer. There is another source of model mismatch: while the RIRs were

computed using hundreds of image sources, we use only up to ten to design the beamformers.

Spectrograms and Sounds Samples Finally, we present the spectrograms for a scenario where

we want to focus on a singer in the presence of interfering speech. We consider the same room,

source, interferer, and microphone array geometry as in Figure 6.8B.
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Figure 6.10: Comparison of the conventional Max-SINR and Rake-Max-SINR beamformer on a real
speech sample. Spectrograms of (A) clean signal of interest, (B) signal corrupted by an interferer and
additive white Gaussian noise at the microphone input, outputs of (C) conventional Max-SINR and
(D) Rake-Max-SINR beamformers. Time naturally goes from left to right, and frequency increases
from zero at the bottom up to Fs{2. To highlight the improvement of Rake-Max-SINR over Max-
SINR, we blow-up three parts of the spectrograms in the lower part of the figure. The boxes and the
corresponding part of the original spectrogram are numbered in (A). The numbering is the same but
omitted in the rest of the figure for clarity.

The source signal is a snippet by a female opera singer (Figure 6.10A), with strongly pro-

nounced harmonics; the interfering signal is a male speech extract. The two signals are normalized

to have unit maximum magnitude. We add white Gaussian noise to the microphone signals with

power such that the SNR of the direct sound of the desired source is 20 dB at the center of

the microphone array. All signals are high-pass filtered with a cut-off frequency of 300 Hz. The

Rake-Max-SINR beamformer weights are computed using the direct source and three generations

of image sources for both the desired sound source (singing) and the interferer (speech).

The output of the conventional Max-SINR beamformer (Figure 6.10C) is compared to that

of the Rake-Max-SINR (Figure 6.10D). We can observe from the spectrogram that the Rake-

Max-SINR reduces very effectively the power of the interfering signal at all frequencies, but

particularly in the mid to high range. This is true even when the interferer overlaps significantly

with the desired signal. Informal listening tests confirm that the Rake-Max-SINR maintains

high quality of the desired signal while strongly reducing the interference. The Rake-Max-UDR

beamformer provides good interference suppression, but it produces audible pre-echoes that

render it unsuitable for speech processing applications. The sound clips can be found online

together with the code.

6.7 Time-Domain Formulation

We have seen that the frequency-domain ARR improves over classical beamformers without the

need for accurate RIR measurements. We have also seen that the Rake-Max-SINR beamformer

improves the mean-opinion score as predicted by the industry standard PESQ.

However, there is potential to do even better if we design the ARR in the time domain. For

example, the perceptual quality of the Rake-Max-UDR output is poor because it generates strong

pre-echoes. But if we design the ARR in the time domain, we can associate a cost to pre-echoes

in the design phase, while leaving the early post-echoes intact.
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For the sake of completeness, we explain how to formulate the ARR optimization problems in

the time domain. We then propose three raking formulations and discuss preliminary numerical

results.

6.7.1 Signal Model

Let us start from the continuous-time domain. The signal at the mth microphone can be written

as

ymptq “
K
ÿ

k“0

rampsk, tq ˚ xptqs `
K1
ÿ

k“0

rampqk, tq ˚ zptqs ` emptq (6.33)

where ampsk, tq is the channel response between sk and the rm, and emptq is noise at rm. We

assume flat-fading walls, so that the impulse responses are given as the appropriately scaled

Green’s functions for the wave equation in 3D (cf. Chapter 2, Equation (2.56)),

ampsk, tq “
αpskq

4π}sk ´ rm}
δ

ˆ

t´
}sk ´ rm}

c

˙

where rm is the position of the mth microphone, c is the speed of sound in air, αpskq is the

attenuation for the kth image source, and δptq is the Dirac delta distribution. It is convenient

to model the channel response as an FIR filter. Thus we low-pass filter it and sample it in the

usual way,

ampsk, nq “

ż 8

´8

ampsk, uq sincpn´ Fs uq du “
αpskq

4π}sk ´ rm}
sinc

ˆ

n´ Fs
}sk ´ rm}

c

˙

.

Next, we choose a length Lh such that the error incurred by truncating ampsk, nq to Lh samples

is negligible,

ÿ

|n|ěLh{2

|ampsk, nq|
2
« 0.

Using the obtained finite length discretization of the channel responses, we can rewrite (6.33)

in matrix form for Lg microphone samples at once:

ym “
K
ÿ

k“0

Ampskqx `
K1
ÿ

k“0

Ampqkqz ` em, (6.34)

where
ym “

“

ymrns , ymrn´ 1s , . . . , ymrn´ Lg ` 1s
‰J
,

x “
“

xrns , xrn´ 1s , . . . , xrn´ L` 1s
‰J
,

z “
“

zrns , zrn´ 1s , . . . , zrn´ L` 1s
‰J
,

em “
“

emrns , emrn´ 1s , . . . , emrn´ Lg ` 1s
‰J
.

and Ampskq is the Lg ˆ L convolution matrix, with Lg being the desired length of the beam-

forming filter and L “ Lh ` Lg ´ 1. It is a Toeplitz matrix whose first row is

r ampsk, 0q, . . . , ampsk, Lh ´ 1q, 0, . . . , 0
loooomoooon

Lg´1 times

s, (6.35)
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and first column is ampsk, 0q padded by Lg ´ 1 zeros.

Stacking all the vectors and matrices indexed by m and dropping the index, we obtain the

following compact form of (6.34):

y “ H sx `H qz ` e ,

where H s “
řK
k“0 Apskq and H q “

řK1

k“0 Apqkq. The mth beamforming filter is gm “
“

gmr0s, . . . , gmrLg ´ 1s
‰J

and its output at time n can be written as the inner product

gJmym. Stacking all M filters in a vector, g “ r gJ0 , ¨ ¨ ¨ , gJM´1 s
J, the sum of all filter outputs

can be conveniently computed as gJy .

We can now concisely write down the responses of the beamformer towards the desired source

and towards the interferer,

us “ HJ
s g , uq “ HJ

q g .

6.7.2 Time-Domain Rake Beamformers

Minimum Variance Distortionless Response Rake Beamformer A time-domain flavor of the

minimum-variance-distortionless-response (MVDR) beamformer [31] is given by5,

minimize
g

E|gJy |2

subject to gJhτ “ 1,
(6.36)

where hτ is the pτFsqth column of H s, and τ denotes the delay of the beamformer. Information

about the image sources is embedded in hτ . The constraint promotes unit response towards the

desired source, although it does not require the response towards it to be simply a delay. The

value of τ should be larger than the time of arrival of the latest arriving echo that we wish to

rake.

The optimization problem can be rewritten as

minimize
g

gJRyyg

subject to gJhτ “ 1
(6.37)

where Ryy is the covariance matrix of y ,

Ryy “ H sRxxHJ
s `H qRzzH

J
q `Rbb,

and Rxx, Rzz, and Rbb are the covariance matrices of x , z and the noise. The optimizer is

gR-MVDR “ R´1
yy hτ ph

J
τ R´1

yy hτ q
´1.

Assuming samples from both sources are independent and identically normally distributed,

and that the noise is AWGN, i.e., Rxx “ σ2
xI , Rzz “ σ2

zI , and Ree “ σ2
nI , (6.37) can be

rewritten as
minimize

g
σ2
x‖us‖2 ` σ2

z‖uq‖2 ` σ2
n‖g‖2

subject to usrτ s “ 1,

us “ HJ
s g , uq “ HJ

q g ,

5Although the response is not truly distortionless, we follow the definition of the time-domain MVDR beam-
former of Benesty et al [16].
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where usrτ s is the τth element of us. From this form, it is clear that the optimal beamformer

will balance distortionless response towards the desired source with interference cancellation and

noise suppression. For a fixed Lg, adding more image sources will increase Lh and consequently

the number of constraints in the optimization problem, thus taking up degrees of freedom that

would otherwise be used for noise suppression.

Finally, using our geometric interpretation it is possible to know precisely how many echoes

can be exploited. Because the response is distortionless, the output of the beamformer should

be the desired source with a delay τ . This means that we can only exploit the echoes that arrive

up to time τ after the direct sound. Using the speed of sound, this translates into a geometrical

criterion on which image sources can be included. Concretely, we can use the image sources

within a distance of ‖s0 ´ rm‖` cτ{Fs from the microphone array.

Perceptually Motivated Rake Beamformer We already mentioned that early echoes can con-

tribute to the perceived power of the source and improve speedch intelligibility. Lochner and

Burger [127] describe precisely how much reverberation is perceptually beneficial. They have

found that for speech signals, echoes arriving within 30 ms of the direct sound are fully inte-

grated, while those arriving within 95 ms are still partially integrated. Echoes arriving later than

35 ms are noticeable.

Inspired by these results, we can define the perceptually motivated Rake beamformer subject

to the following requirements,

Minimize the interference and noise power,

Have zero response before τ (i.e. no pre-echoes),

Have unit response at τ ,

Have zero response after τ `∆τ , where ∆τ « 35 ms.

We can design this beamformer by solving the following quadratic program:

minimize
g

gJKnqg

subject to gJĂH s “ δ
J
τ ,

(6.38)

where Knq “ H qRzzH
J
q `Rbb, the matrix ĂH s contains the columns 1 to τ and κ` 1 to L of

H s, and δτ is the vector with a one at position τ and all other entries zero. Beamforming filters

are found as

gR-P “ K´1
nq

ĂH spĂH
J

s K´1
nq

ĂH sq
´1δτ .

A similar criterion as for the Rake-MVDR beamformer applies as to which image sources can

be used constructively; image sources not farther than ‖s0´rm‖` cpτ `κq{Fs can be exploited.

Maximum SINR Rake Beamformer The signal to interference and noise ratio (SINR) is defined

as

SINR “
E|gJH sx |

2

E|gJpH qz ` bq|2
“

gJK xg

gJKnqg
, (6.39)

where K x “ H sRxxHJ
s . This quantity can be optimized directly by solving the generalized

eigenvalue problem K xg “ λKnqg , and the maximizer is given by the generalized eigenvector
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BA C

800 Hz 1600 Hz

Figure 6.11: Beampatterns of (A) Rake-MVDR, and (B), (C) Rake-Perceptual, in a 4ˆ 6 m room
containing the desired source ( ) and an interferer (�). In (C), the interferer is in the direct path
of the desired source. First order image sources are also displayed. The darker/red and light/yellow
lines are for 800 Hz and 1600 Hz, respectively.

corresponding to the largest generalized eigenvalue. Unfortunately, this will not yield a practical

beamformer—as no constraint is imposed on the response towards the desired source, its signal

can be arbitrarily distorted. Nevertheless, this gives an upper bound on achievable SINR.

6.7.3 Numerical Results for TD Beamformers

In this section, we assess the performance of the three rake beamformers described. First, we

inspect the beampatterns obtained. Then, the gain of using additional sources is evaluated in

terms of output SINR. We use the same simulation setup as for the frequency-domain raking.

To simulate room acoustics, we use the image source method with up to 10th order reflections

(220 image sources). Samples from both sources are assumed to be zero-mean independent and

identically distributed and the noise is AWGN so that

Rxx “ σ2
xI , Rzz “ σ2

zI , Rbb “ σ2
nI ,

where I is the identity matrix and σ2
x “ σ2

z “ 1.

Beampatterns We consider a 4 by 6 m2 room with a source of interest at (1 m, 4.5 m) and

a linear array of eight microphones equally spaced by 8 cm, parallel to the x-axis and centered

at (2 m, 1.5 m) (origin is assumed to be the lower-left corner of the room). The length of the

beamforming filters is set to 50 ms which results in Lg “ 400 at 8 kHz, and the delay τ is set to

20 ms. The noise variance at the microphones is fixed at σ2
n “ 10´7.

Beampatterns for both TD-Rake-MVDR and TD-Rake-Perceptual with an interferer placed

at (2.8 m, 4.3 m) are shown for 800 Hz and 1600 Hz in Figure 6.11. The diagram in the figure

shows the beampatterns for Rake-Perceptual when the interferer is placed in the direct path of

the desired source at (1.5 m, 3 m). We observe that similarly as in the frequency-domain case,

ARR completely ignores the direct sound and focuses on the reflections.

SINR gain from raking We use the same simulation parameters to evaluate the SINR gain

from time-domain raking. Source and interferer positions are chosen independently at random in
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Figure 6.12: Median output SINR computed according to (6.39) against the number of image sources
K used in the optimization. The same number of image sources is used for the desired source and
the interferer. The ambient noise SNR is fixed to 10 dB with respect to the direct path of the desired
source and the center of the microphone array. The grey area contains 50% of the Rake-MaxSINR
outcomes.

each Monte Carlo run, and the SINR is computed according to (6.39) for TD-Rake-MVDR, TD-

Rake-Perceptual, and TD-Rake-MaxSINR. We mentioned that Rake-MaxSINR is not practical,

but it gives an upper bound on the achievable SINR gain. The same number of image sources

is used in the design for the source and for the interferer. The noise variance is fixed so that the

SNR of the direct path of the desired source is 10 dB at the center of the array. Length of the

beamforming filters is set to 30 ms (i.e., Lg “ 240) and the delay is 20 ms.

The median of 10000 runs is depicted in Figure 6.12. For every beamformer considered,

adding more sources results in a net increase in SINR. Adding just the 1st order reflections, or

5 sources, rakes in 1.8 dB improvement for TD-Rake-MVDR and 3 dB SINR improvement for

TD-Rake-Perceptual. No beamformer achieves more than 6 dB improvement as shown by the

curve for TD-Max-SINR.

6.8 Summary and Conclusion

We investigated the concept of acoustic rake receivers—beamformers that use echoes. Unlike

earlier related work, we presented optimal formulations that outperform the delay-and-sum style

approaches by a large margin. This is especially true in the presence of interferers, resembling

very much the cocktail party scenario—ARRs yield considerable SINR gains.

We have shown that ARRs improve the SINR both theoretically and numerically. Beyond

this objective criterion, we have shown for the first time that ARRs improve the subjective

quality of speech as predicted by PESQ, proportionally to the number of image sources used.

A particularly illustrative example is when the interferer is occluding the desired source—the
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optimal ARR takes care of this simply by listening to the echoes. Finally, informal listening tests

further confirm the improved interference suppression achieved by the ARR.

Perhaps the most important aspect of ongoing work is the design of robust formulations of

ARRs. This may involve various heuristics, as well as combinatorial optimization due to the

discrete nature of image sources. We expect that the raking beamformers described in this

chapter inherit the robustness properties of their classical counterparts. For example, the Rake-

DS beamformer is likely to be more robust to array calibration errors than the Rake-Max-SINR

beamformer. Furthermore, we expect that taking the image source perspective makes various

ARRs more robust to errors in source locations than the schemes that assume the knowledge of

the RIR.

Another line of ongoing work investigates the time-domain formulations of the ARRs, with

some initial results already available [183]. Time-domain formulations offer better control over

whether the echoes appear before or after the direct sound. This provides a more natural

framework for optimizing perceptually motivated performance measures, such as the UDR.
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6.A Theorem 6.1

We note that the theorem is is stated for a linear array, but the described behavior is universal.

Theorem 6.1

Assume that there are K ` 1 sources located at sk “ rkrcos θk sin θks
J where θk „ Up0, 2πq

and rk „ Upa, bq are all independent, for some 0 ă a ă b such that the far-field assumption

holds. Let As collect the corresponding steering vectors for a uniform linear microphone array.

Then E‖As1‖2 ě p1 ` βqE‖aps0q‖2, where β “
řK
k“1pαk{α0q

2, and αk are attenuations of

the steering vectors, assumed independent from the source locations. In fact, Ep‖As1‖2q “

p1` βqEp‖aps0q‖2q `Op1{Ω3q.

Proof : Thanks to the far-field assumption, we can decompose the steering vector into a factor due

to the array, and a phase factor due to different distances of different image sources. We have

that

am “ pAs1 qm “
K
ÿ

k“0

αke´jκmd sin θke´jΩδk{c, (6.40)

where d is the microphone spacing and κ
def
“ Ω{c. Without loss of generality we assume that

δk „ Upa, bq. We can further write

E|am|2 “ E
„ˆ K

ÿ

k“0

αke´jκmd sin θke´jκδk

˙ˆ K
ÿ

`“0

α`e
jκmd sin θ`e jκδ`

˙

“

K
ÿ

k“0

α2
k `

K
ÿ

k‰`“0

αkα`E
”

e jκmdpsin θ`´sin θkqe jκpδ`´δkq
ı

.

(6.41)

Invoking the independence for k ‰ `, we compute the above expectation as

E
”

e jκmdpsin θ`´sin θkqe jκpδ`´δkq
ı

“
2J2

0 pmdκq
“

1´ cosp∆κq
‰

p∆κq2
, (6.42)

where J0 denotes the Bessel function of the first kind and zeroth order and ∆
def
“ b´ a.

Plugging this back into (6.41), we obtain

E|am|2 “
K
ÿ

k“0

α2
k

˜

1` C
2J2

0 pmdκq
“

1´ cosp∆κq
‰

p∆κq2

¸

, (6.43)

where C “
ř

k‰` αkα`{
ř

k α
2
k.

Because |J0pzq| ď
a

2{pπzq `Op|z|´1
q ([1], Eq. 9.2.1), we see that the expression in brackets

is 1`OpΩ´3
q. Rewriting

K
ÿ

k“0

α2
k “

1

M
E‖aps0q‖2

˜

1`
K
ÿ

k“1

pαk{α0q
2

¸

(6.44)

concludes the proof.



Chapter 7

Norm-Minimizing Generalized
Inverses*

7.1 Introduction

Generalized inverses arise in applications ranging from over- and underdetermined linear inverse

problems to sparse representations with redundant signal dictionaries. The motivation that led

us to writing this chapter comes from a tomographic reconstruction problem we worked on with

a start-up company. Because of stringent complexity constraints for a real-time, high frame rate

implementation on embedded hardware, precomputed pseudoinverses must be used. In that case,

it pays to use “sparse pseudoinverses” instead of the usual Moore-Penrose pseudoinverse. The

idea is then to search for an alternative generalized inverse that has a small number of non-zero

entries, but still behaves nicely. This has since expanded into a general study of norm-minimizing

linear generalized inverses.

Linear inverse problems In discrete linear inverse problems, we seek to estimate a signal x

from measurements y , when they are related by a linear system, y “ Ax , A P Cmˆn. Such

problems come in two very different flavors: determined and overdetermined (m ě n), and

underdetermined (m ă n). Depending on how we tune the modeling parameters, both cases could

occur in the same application. For example, in computed tomography the entries of the system

matrix quantify how much the ith ray affects the jth voxel. If we target a coarse reconstruction

resolution (less voxels than rays), the system matrix is tall and we deal with an overdetermined

system. In this case, we may obtain x from y by applying a generalized (left) inverse, very often

the Moore-Penrose pseudoinverse (MPP),1 When the system is underdetermined (m ă n), we

need to “know what we are looking for” in order to get a meaningful solution; this means that

we need a suitable signal model. For most common models (e.g. sparsity), the reconstruction of

x from y in the underdetermined case is no longer achievable by a linear operator in the style

of MPP.

1The Moore-Penrose pseudoinverse was discovered by Moore in 1920 [153], and later independently by Penrose
in 1955 [167].

*This chapter is a result of an (as of yet) unpublished joint work with Rémi Gribonval. Parts of the chapter
are a joint with Mihailo Kolundžija and Martin Vetterli [52].
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Redundant representations In redundant representations, we represent lower-dimensional vec-

tors through higher-dimensional frame and dictionary expansions. The frame expansion coef-

ficients are computed as α “ A˚x , where A has more columns than rows, and the columns

represent the frame vectors. The original signal is then reconstructed as x “ Dα, where D is a

dual frame of A, such that DA˚
“ I . There is a unique correspondence between dual frames

and generalized inverses. Different duals lead to different reconstruction properties in terms of

resilience to noise and erasures, computational complexity, and other figures of merit [110]. It

is therefore interesting to study alternative generalized inverses (alternative to the MPP), in

particular those optimal (minimal) according to various criteria; equivalently, it is interesting to

study alternative duals.

Generalized inverses beyond the MPP In general, for a matrix A P Cmˆn, there are many dif-

ferent generalized inverses. If A is invertible, they all match. The Moore-Penrose Pseudoinverse

(MPP), denoted A:, is special as it optimizes a number of interesting properties. Much of this

optimality comes from geometry: for m ă n, A:A is an orthogonal projection onto the range of

AJ, and this fact turns out to play a key role over and over again. Nevertheless, the MPP is

only one of infinitely many generalized inverses, and it is interesting to investigate the properties

of others. As the MPP minimizes a particular matrix norm—the Frobenius norm2—it seems

natural to study alternative generalized inverses that minimize different matrix norms, leading

to different optimality properties. Our initial motivation for studying alternative generalized

inverses is twofold:

(i) Efficient computation: Computing a sparse pseudoinverse gives considerable savings in the

speed of computation [52]. Consequently, we may want to compute the sparsest generalized

pseudoinverse that is still in some sense stable. A natural object to compute is

ginv0pAq
def
“ arg min‖vecpX q‖0 s.t. AX “ I

where ‖¨‖0 counts the total number of nonzero entries of a matrix, which gives the naive

complexity of applying X or its adjoint to a vector. Solving the above optimization problem

is NP-hard in general (although we will see that for most matrices A the solution is trivial—

just invert any full rank minor). Yet, the vast literature establishing equivalence between

`0 and `1 minimization suggests to replace it by the minimization of the entrywise `1-norm

ginv1pAq
def
“ arg min‖vecpX q‖1 s.t. AX “ I . (7.1)

Not only is (7.1) computationally tractable, but it also leads to much better behaved

matrices than just inverting a submatrix.

(ii) Poor man’s `p minimization: Further motivation comes from an effort to construct a poor

man’s version of the `p-minimal solution to an underdetermined set of linear equations

y “ Ax . For a general p, the solution to

px
def
“ arg min‖x‖p subject to Ax “ y , (7.2)

cannot be obtained by any linear operator B (see Section 7.2.4). That is, there is no B

such that z
def
“ By satisfies px “ z for every choice of y . The exception is p “ 2 for which

2We will see later that it actually minimizes many norms.
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the MPP does provide the minimum `2-norm representation A:y of y ; Proposition 7.1 and

comments thereafter show that this is indeed the only exception. On the other hand, we

can obtain the following bound, valid for any x such that Ax “ y , hence in particular for
px :

‖z‖p “ ‖BAx‖p ď ‖BA‖`pÑ`p‖x‖p. (7.3)

In particular, if AB “ I , then z “ By provides an admissible representation Az “ y ,

and

‖z‖p ď ‖BA‖`pÑ`p‖px‖p. (7.4)

This expression suggests that the best generalized inverse B in the sense of minimal worst

case `p-norm blow-up is the one that minimizes ‖BA‖`pÑ`p , motivating the definition of

pginvppAq
def
“ arg min‖X A‖`pÑ`p s.t. AX “ I . (7.5)

Objectives The purpose of this chapter is to investigate the properties of generalized inverses

defined using various norms. We ask the following questions:

(i) Are there norm families that all lead to the same generalized inverse, thus facilitating the

computation?

(ii) Are there specific classes of matrices for which different norms will lead to the same gener-

alized inverse, potentially different from the MPP?

Let us mention that instead of studying alternative generalized inverses, we could have decided

to take a frame-theoretical perspective [110, 38] and study alternative dual frames. These two

points of view are equivalent, and our choice is arbitrary.

7.1.1 Prior Art

There are several recent papers in frame theory that study alternative dual frames, or equiva-

lently, generalized inverses. These works concentrate on existence results and explicit construc-

tions of sparse frames and sparse dual frames with prescribed spectra [111, 33]. In particular,

Krahmer, Kutyniok, and Lemvig [111] establish sharp bounds on the sparsity of dual frames,

showing that generically, for A P Cmˆn the sparsest dual has mn´m2 zeros.

Unitarily invariant matrix norms are studied in depth by Mirsky [147]. Some important

results on the connection between these norms and the MPP are given by Ziȩtak [224]; we

comment on these connections in detail in Section 7.4.

Alternative dual frames appear in the literature on sparse representations, for example

analysis-based compressed sensing [126]. The idea is that if f is sparse in an overcomplete

dictionary D , and y “ Φf “ ΦDx , it is not necessarily the case that D˚f or D:f is sparse.

However, if x is sparse, there must exist a dual of D that generates a sparse vector, so the au-

thors propose to optimize not only over f , but also over duals of D . Another use of generalized

inverses different from MPP is when we have some idea about the subspace we want the solution

to live in. We can then apply the restricted inverse of Bott and Duffin [20], or its generalizations

[146].

MPP can be seen as a minimizer of various cost functions involving the Frobenius norm (as

well as of the Frobenius norm itself), over the set of all generalized inverses. The authors in

[196] show how to compute approximate MPP-like inverses with an additional constraint that
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the minimizer lives in a particular matrix subspace, and show how to use such matrices to

precondition linear systems.

One use of frames is to encode the data before transmitting them over a channel. The channel

introduces errors into the data, and the need for robust reconstruction leads to the design of

optimal dual frames [122, 129]. Similarly, one can try to compute the best generalized inverse

for reconstruction from quantized measurements [118]. Perraudin et al. use convex optimization

to derive dual Gabor frames with more favorable properties than the canonical dual frame [168],

particularly in the sense of time-frequency localization.

In their detailed account of generalized inverses [13], Ben-Israel and Greville use the expres-

sion minimal properties of generalized inverses, but they primarily concentrate on variations of

the square-norm minimality. Additionally, they define a class of non-linear generalized inverses

corresponding to various metric projections. We are primarily concerned with generalized in-

verses that are themselves matrices, but one can imagine various decoding rules that search for

a vector that satisfies a model, and that is consistent with the measurements [22]. In general,

such decoding rules are not linear.

7.1.2 Contributions and the Chapter Outline

We observe that interesting alternative generalized inverses arise through norm minimization.

The norm can be placed either on the pseudoinverse X itself, or on the corresponding projection

operator X A. We study the properties of generalized inverses corresponding to various norms,

listed in Table 7.1. The relevant definitions and theoretical results are presented in Section 7.2.

In Section 7.3 we put forward some preliminary results on norm equivalences with respect

to norm-minimizing generalized inverses. We summarize the landscape of norm-minimizing gen-

eralized inverses tabularly, but also using the matrix norm cube—a matrix norm visualization

device we developed.

Section 7.4 discusses classes of norms that lead to the MPP. We extend the results of Ziȩtak

on unitarily invariant norms to left unitarily invariant norms. Left-unitary invariance is also

relevant when minimizing the norm of the projection operator X A, which is in turn relevant for

the poor man’s `p minimization (Section 7.5.3).

In Section 7.5 we continue the discussion of various norms, by looking at those that almost

never yield the MPP. A particular representative of these norms is the entrywise `1 norm yielding

the sparse pseudoinverse. We show that minimizing the entrywise `1-norm of the generalized

inverse will always result in a maximally sparse inverse. Here we also talk about poor man’s `p

minimization, by discussing generalized inverses that minimize the worst case and the average

case `p blowup. Again, these inverses generally do not coincide with the MPP. However, through

numerical simulations we observe that if the forward matrix is a large random matrix, then many

of these generalized inverses will be close to each other. In particular, the smallest worst and

average case `p blowup will be achieved by the MPP.

Sections 7.4 and 7.5 talk about norms; in Section 7.6, we concentrate on matrices. We

have seen that many norms yield the MPP for all possible input matrices and that some norms

generically do not yield the MPP. In Section 7.6 we first discuss a class of matrices for which some

of those norms do yield the MPP. Particular instances of these classes of matrices are partial

Fourier and Hadamard matrices. Next, we exhibit a class of matrices for which many generalized

inverses coincide, but not with the MPP.

Finally, in Section 7.7 we discuss how to efficiently compute some of the mentioned pseu-

doinverses. We observe that in some cases the computation simplifies to a vector problem, while
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in other cases it is indeed a full matrix problem. We propose to use the alternating-direction

method of multipliers (ADMM) [164] to compute the generalized inverse, as it can conveniently

address both the norms on X and on X A.

7.2 Definitions and Known Results (Preliminaries)

Throughout the chapter we assume that all vectors and matrices are over C. We will point out

the cases when the result is valid only over the reals. Vectors are all column vectors, and they are

denoted with a bold lowercase letters, like x . Matrices are denoted by bold capital letters, such

as M . By M P Cmˆn we mean that the matrix M has m rows and n columns. The notation

Im stands for the identity matrix in Cmˆm; the subscript m will often be omitted. We write

mj for the jth column of M , and m i for its ith row. The conjugate transpose of M is denoted

M ˚. The notation e i denotes the ith canonical vector.

7.2.1 Generalized Inverses

A generalized inverse of a rectangular matrix is a matrix that has some, but not all properties

of the standard inverse of an invertible square matrix. It can be defined for non-square matrices

that are not necessarily of full rank.

Definition 7.1 (Generalized inverse)

X P Cnˆm is a generalized inverse of a matrix A P Cmˆn if it satisfies AX A “ A.

We denote by GpAq the set of all generalized inverses of a matrix A .

For the sake of clarity we will primarily concentrate on inverses of underdetermined matrices

(m ă n). As we show in Section 7.3, this choice does not incur a loss of generality. Furthermore,

we will often assume that the matrix has full rank: rankpAq “ m. In this case, X is the

generalized (right) inverse of A if and only if AX “ Im.

7.2.2 Correspondence Between Generalized Inverses and Dual Frames

Definition 7.2

A collection of vectors pφiq
n
i“1 is called a (finite) frame for Cm if there exist constants A and

B, 0 ă A ď B ă 8, such that

A‖x‖2
2 ď

n
ÿ

i“1

|xx , φiy|
2
ď B‖x‖2

2, (7.6)

for all x P Cm.

Definition 7.3

A frame pψiq
n
i“1 is a dual frame to pφiq

n
i“1 if the following holds for any x P Cm,

x “
n
ÿ

i“1

xx ,φiyψi. (7.7)

This equation can be rewritten in matrix form as
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x “ ΨΦ˚x . (7.8)

As this must hold for all x , we can conclude that

ΨΦ˚
“ Im, (7.9)

and so any dual frame Ψ of Φ is a generalized left inverse of Φ˚. Thus there is a one-to-one

correspondence between dual frames and generalized inverses.

7.2.3 Characterization with the Singular Value Decomposition (SVD)

A particularly useful characterization of generalized inverses is through the singular value de-

composition (SVD). It has been used extensively to prove theorems in [224, 111] and elsewhere.

Consider the SVD of the matrix A

A “ U ΣV ˚, (7.10)

where U P Cmˆm and V P Cnˆn are unitary and Σ “
“

diagpσ1pAq, . . . , σmpAqq,0mˆpn´mq
‰

contains the singular values of A in a non-increasing order. For a matrix X , let M
def
“ V ˚X U .

Then it follows from Definition 7.1 that X is a generalized inverse of A if and only if

ΣM Σ “ Σ . (7.11)

Denoting by r the rank of A and setting

Σ˝ “ diagpσ1pAq, . . . , σrpAqq, (7.12)

we deduce that M must be of the form

M “

„

Σ´1
˝ R

S T



, (7.13)

where R P Crˆpm´rq, S P Cpn´rqˆr, and T P Cpn´rqˆpm´rq are arbitrary matrices.

For a full-rank A, (7.13) simplifies to

M “

„

Σ´1
˝

S



(7.14)

In the rest of this chapter we restrict ourselves to full-rank matrices, and use the following

characterization of the set of all generalized inverses of a matrix

GpAq “
 

X : X “ V M U ˚ where M has the form (7.14)
(

. (7.15)

7.2.4 The Moore-Penrose Pseudoinverse (MPP)

The Moore-Penrose Pseudoinverse (MPP) has a special place among generalized inverses, thanks

to its various optimality and symmetry properties.



7.2. Definitions and Known Results (Preliminaries) 171

Definition 7.4 (MPP)

The Moore-Penrose Pseudoinverse of the matrix A is the unique matrix A: satisfying

AA:A “ A, pAA:
q˚ “ AA:,

A:AA:
“ A:, pA:Aq˚ “ A:A. (7.16)

This definition is universal—it holds regardless of whether A is underdetermined or overde-

termined, and regardless of whether it is full rank. Under the conditions primarily considered

in this chapter (m ă n, rankpAq “ m), we can express the MPP as A:
“ A˚

pAA˚
q´1, which

corresponds to the particular choice S “ 0pn´mqˆm in (7.14). The canonical dual frame Φ of a

frame Ψ is the adjoint Φ “ rΦ:
s˚ of its MPP.

There are several alternative definitions of MPP. One that is often encountered in the litera-

ture is as follows (that this definition makes sense will also be clear from the next section):

Definition 7.5

MPP is the unique generalized inverse of A with minimal Frobenius norm.

As we will see in Section 7.4, the MPP can also be characterized as the generalized inverse

minimizing other matrix norms.

The MPP has a number of interesting properties. If A P Cmˆn, with m ą n, and

y “ Ax ` e , (7.17)

we can compute

px “ A:y . (7.18)

This vector px is what would in the noiseless case generate py “ AA:y—the orthogonal projection

of y onto the range of A. This is also known as the least-squares solution to an inconsistent

overdetermined system of linear equations, in the sense that it minimizes the sum of squared

residuals over all equations. For uncorrelated, zero-mean errors of equal variance, this gives the

best linear unbiased estimator (BLUE) of x .

Note that the optimal solution to (7.17) in the MMSE sense (when x and e are considered

random) is not given by the MPP, but rather as the Wiener filter [101],

BMMSE “ C xA˚
pAC xA˚

`Cnq
´1 , (7.19)

where C x and Cn are the signal and noise covariance matrices. The MPP is a special case of

this formula for Cn “ 0 and C x “ I .

In the underdetermined case, A P Cmˆn, m ă n, applying the MPP yields the solution with

the smallest `2-norm among all vectors x satisfying y “ Ax (among all admissible x ). That is,

‖A:Ax‖2 ď ‖z‖2, @ z such that Az “ Ax . (7.20)

To see this, we use the orthogonality of A:A. Note that any vector x can be decomposed as

A:Ax ` pI ´A:Aqx , (7.21)
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where A:A is the orthogonal projection on rangepA˚
q, and pI ´A:Aq the orthogonal projection

on rangepA˚
qK. Then we have

‖z‖2
2 “ ‖A:Az ` pI ´A:Aqz‖2

2

“ ‖A:Az‖2
2 ` ‖pI ´A:Aqz‖2

2

ě ‖A:Az‖2
2 “ ‖A:Ax‖2

2.

(7.22)

A natural question to ask is if there are other linear generalized inverses corresponding to

p ‰ 2. The answer is negative: MPP is the only linear generalized inverse that produces solutions

to underdetermined linear systems with a minimal `p norm, as a consequence of the following

result on projections:

Proposition 7.1 (Theorem 3, [157])

Let M Ă Cn be a linear subspace, and denote by EM an `p-norm projection onto M ,

EM pyq
def
“ arg min

xPM
‖x ´ y‖`p . (7.23)

Then EM is linear for all M if and only if n ď 2 or p “ 2.

But all solutions to y “ Ax live in A:y `N pAq, so the `p-minimal one can be written as

A:y ` arg min
nPN pAq

‖A:y ` n‖`p “ A:y ` EN pAqp´A:yq. (7.24)

7.2.5 Generalized Inverses Minimizing Matrix Norms

An interesting way of generating different generalized inverses is by norm3 minimization.

Two central definitions of such generalized inverses will be used in this chapter. The gen-

eralized inverse of A P Cmˆn, m ă n with minimal ν-norm is defined as (‖ ¨ ‖ν is an arbitrary

matrix norm)

ginvνpAq
def
“ arg min

X
‖X ‖ν subject to X P GpAq.

The generalized inverse minimizing the µ-norm of the product X A is defined as

pginvµpAq
def
“ arg min

X
‖X A‖µ subject to X P GpAq.

This definition, which is a particular case of the first one with ‖ ¨ ‖ν “ ‖ ¨A‖µ, will serve when

considering X as a poor man’s linear replacement for `p minimization. Strictly speaking, the

above-defined pseudoinverses are sets, since the corresponding programs may have more than

one solution. We will point out the cases when special care must be taken.

We will treat several families of matrix norms. A matrix norm is any norm on Cmˆn.

Entrywise norms. The simplest matrix norm is the p-entrywise norm. It is defined through

an isomorphism between Cmˆn and Cmn, i.e., it is simply a vector `p-norm of the concatenated

columns.

3For brevity, we also loosely call “norm” any quasi-norm such as `p, p ă 1, as well as the “pseudo-norm” `0.
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Definition 7.6

The p-entrywise norm of M P Cmˆn, where 0 ď p ď 8, is given as

‖M ‖p def
“ ‖vecpM q‖p. (7.25)

A particular entrywise norm is the Frobenius norm associated to p “ 2.

Induced norms. An important class of norms are the induced norms (or operator norms). To

define these norms, we consider M P Cmˆn as an operator mapping vectors from Cn (equipped

with an `p-norm) to Cm (equipped with an `q-norm).

Definition 7.7

The `p Ñ `q induced norm of M P Cmˆn, where 0 ă p, q ď 8, is

‖M ‖`pÑ`q def
“ sup

x‰0

‖M x‖q
‖x‖p

. (7.26)

It is straightforward to show that this definition is equivalent to ‖M ‖`pÑ`q “ sup‖x‖p“1‖M x‖q.
Note that while this is usually defined only for proper norms (i.e., with 1 ď p, q ď 8) the

definition remains valid when 0 ă p ă 1 and/or 0 ă q ă 1.

Mixed norms (columnwise and rowwise). An interesting case mentioned in the introduction

is the `1 Ñ `1 induced norm of X A, as it leads to a sort of optimal poor man’s `1 minimization.

The `1 Ñ `1 induced norm is a special case of the family of `1 Ñ `q induced norms, which can

be shown to have a simple expression as columnwise mixed norm

‖M ‖`1Ñ`q “ max
1ďjďn

‖mj‖q def
“ ‖M ‖|q,8|. (7.27)

More generally, one can consider columnwise mixed norms for any p and q:

Definition 7.8

The columnwise mixed norm ‖M ‖|p,q| is defined as

‖M ‖|p,q| def“
ˆ

ÿ

j

‖mj‖qp
˙1{q

(7.28)

with the usual modification for q “ 8.

We deal both with column- and row-wise norms, so we introduce a mnemonic notation to

easily tell them apart. Thus ‖ ¨ ‖|p,q| denotes columnwise mixed norms, and ‖ ¨ ‖p,q denotes

rowwise mixed norms, defined as follows:
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Definition 7.9

The rowwise mixed norm ‖M ‖p,q is defined as

‖M ‖p,q def
“

ˆ

ÿ

i

‖mj‖qp
˙1{q

, (7.29)

with the usual modification for q “ 8.

Schatten norms. Another classical norm is the spectral norm, which is the `2 Ñ `2 induced

norm. It equals the maximum singular value of M , and is a special case of a Schatten norm,

just as the Frobenius norm which is the `2-norm of the vector of singular values of M . We can

also define a general Schatten norm ‖σpM q‖p where σpM q is the vector of singular values.

Definition 7.10

The Schatten norm ‖M ‖Sp is defined as

‖M ‖Sp def
“ ‖σM ‖p, (7.30)

where σM is the vector of singular values.

As we will see further on, these are special cases of the larger class of unitarily invariant

matrix norms.

7.3 Preliminary Results

In this chapter, we concentrate on generalized inverses of fat matrices—matrices with more

columns than rows. We first want to show that there is no loss of generality in making this

choice. This is clear for minimizing mixed norms and Schatten norms, as for mixed norms we

have that

‖M ‖|p,q| “ ‖M ˚‖p,q, (7.31)

and for Schatten norm we have

‖M ‖Sp “ ‖M ˚‖Sp . (7.32)

It only remains to be shown for induced norms. We can state the following lemma:

Lemma 7.1

Let 1 ď p, q, p˚, q˚ ď 8 with 1
p `

1
p˚ “ 1 and 1

q `
1
q˚ “ 1. Then we have the relation

‖M ‖`pÑ`q = ‖M ˚‖`q˚Ñ`p˚ .

In other words, all norms we consider on tall matrices can be converted to norms on their fat

transposes, and our results applied.

As a corollary we have

‖M ‖`pÑ`8 “ ‖M ˚‖`1Ñ`p˚ “ ‖M ˚‖|p˚,8| def
“ ‖M ‖p˚,8 “ max

1ďiďm
‖m i‖p˚ . (7.33)

Next, we show that generalized inverses obtained by minimizing columnwise mixed norms

always match minimizing an entrywise norm or an induced norm.
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Lemma 7.2

Consider 0 ă p ď 8 and a full rank matrix A. For 0 ă q ă 8, we have the set equality

ginv|p,q|pAq “ ginvppAq.

For q “ 8 we have ‖¨‖|p,8| “ ‖¨‖`1Ñ`p and the set inclusion ginvppAq Ă ginv|p,8|pAq “

ginv`1Ñ`ppAq.

Proof : For q ă 8, minimizing ‖X ‖|p,q| under the constraint X P GpAq amounts to minimizing
ř

j‖x j‖qp under the constraints Ax j “ ej , where x j is the jth column of X and ej the jth

canonical vector. Equivalently, one can separately minimize ‖x j‖p such that Ax j “ ej .

Hence, when considering columnwise norms, we are primarily interested in minimizing ‖X A‖|p,q|
rather than ‖X ‖|p,q|.

7.3.1 Summary and Visualization of Matrix Norms

We can see that many of the considered norms coincide for particular choices of parameters. For

example, the Schatten 2-norm equals the Frobenius norm as well as the entrywise 2-norm. The

induced `2 Ñ `2 norm equals the Schatten 8-norm, while the induced `1 Ñ `p norm equals the

largest column p-norm, that is to say the |p,8| columnwise mixed norm. In an effort to capture

these equivalences, we constructed a graphical visualization of the treated matrix norms shown

on Figure 7.1, where each considered matrix norm is represented as a point.

For certain matrix norms, we prove (cf. Corollary 7.2) that ginvνpAq and pginvνpAq always

contain the MPP. We also show that for certain matrices with “flat” MPP (cf. Theorem 7.6),

ginvνpAq contains the MPP for a large class of mixed norms, also those that normally do not

yield the MPP. This is the case in particular for partial Fourier matrices.

The main matrix norms we study in this chapter are listed in Table 7.1.

Norm name Symbol Definition A:
P ginvνpAq A:

P pginvνpAq

Schatten p-norms ‖M ‖Sp ‖σipM q‖p X X
Entrywise p-norms ‖M ‖p ‖vecpM q‖p X(p “ 2) X(p “ 2)

Induced norm (operator norm) ‖M ‖`pÑ`q sup t‖M x‖q, ‖x‖p “ 1u X(q “ 2) X(q “ 2)

ˆ(q ‰ 2) ˆ(q ‰ 2)

Mixed norm (column-wise) ‖M ‖|p,q| ‖t‖mj‖punj“1‖q cf ‖M ‖p (q ă 8) X(p “ 2)

cf ‖M ‖`1Ñ`p (q “ 8) ˆ(p ‰ 2)

Mixed norm (row-wise) ‖M ‖p,q ‖t‖m i‖pumi“1‖q ˆ ˆ

Table 7.1: Summary of matrix norms considered in this chapter.

7.4 Classes of Norms Yielding the Moore-Penrose Pseudoin-

verse

A particularly interesting property of the MPP is that it minimizes many of the norms in Ta-

ble 7.1. This property is related to their unitary invariance, and to the geometric interpretation

of the MPP.
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Mixed row norms

Mixed column norms

Operator norms

∞→ 2

∞→ 12→ 1

Frobenius = σ2 = 2

Trace (Nuclear) = σ1

Spectral = 2→ 2 = σ∞

1

0

1

Schatten

Entrywise

|pc, qc|

pr, qr

1

qop
=

1

pc
=

1

qr

1

pop
=1− 1

qc
=1− 1

pr

�1 → �2
= |2,∞|

NP

NP

NP
�1 → �1

= |1,∞|

�∞→�∞
= 1,∞

�∞
= �1 → �∞
= ∞,∞
= |∞,∞|

�p

�2 → �∞
= 2,∞

∞, 1

|∞, 1|

|1, 1| = 1, 1

|2, 1|

2, 1

*

Figure 7.1: Graphical representation of matrix norms (the norm cube). The green plane is that of
operator norms, the blue one of columnwise mixed norms, and the gray one of rowwise mixed norms.
The intersection of rowwise and columnwise mixed norms is shown by the thick red line—these are
the entrywise `p-norms. The vertical blue line is that of Schatten norms, with the nuclear norm S1

at its bottom, and the spectral norm S8 on the top. Among columnwise mixed norms |pc, qc|, all
norms with a fixed value of pc lead to the same minimizer. Red squares indicate norms ν for which
ginvνpAq contains the MPP A:.
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7.4.1 Unitarily invariant norms

Definition 7.11 (Unitarily invariant matrix norm)

A matrix norm ‖ ¨ ‖ is called unitarily invariant if and only if ‖U M V ‖ “ ‖M ‖ for any M

and any unitary matrices U and V .

Unitarily invariant matrix norms are intimately related to symmetric gauge functions [147],

defined as vector norms invariant to sign changes and permutations of the vector entries. A

theorem by Von Neumann [216, 93] states that any unitarily invariant norm ‖ ¨ ‖ is a symmetric

gauge function φ of the singular values, i.e., ‖ ¨ ‖ “ φpσp¨qq
def
“ ‖ ¨ ‖φ. To be a symmetric gauge

function, φ has to satisfy the following properties [147]:

(i) φpx q ě 0 for x ‰ 0,

(ii) φpαx q “ |α|φpx q,

(iii) φpx ` yq ď φpx q ` φpyq,

(iv) φpΠ x q “ φpx q,

(v) φpΣx q “ φpx q,

where α P R, Π is a permutation matrix, and Σ is a diagonal matrix with diagonal entries in

t´1,`1u.

Ziȩtak [224] shows that the MPP minimizes any unitarily invariant norm.

Theorem 7.1 (Ziȩtak, 1997)

Let ‖ ¨ ‖φ be a unitarily invariant norm corresponding to a symmetric gauge function φ.

Then, for any A P Cmˆn, ‖A:‖φ “ min t‖B‖φ : B P GpAqu. If additionally φ is strictly

monotonic, then the set of minimizers contains a single element A:.

It is interesting to note that in the case of the operator norm, which is associated to the

symmetric gauge function φp¨q “ ‖ ¨ ‖8, the minimizer is not unique. Ziȩtak mentions a simple

example for rank-deficient matrices, but multiple minimizers are present in the full-rank case

too, as illustrated by the following example.
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Example 7.1

Let the matrix A be

A “

„

1 1 0

1 0 1



. (7.34)

Singular values of A are σ1 “
?

3 and σ2 “ 1, and its MPP is

A:
“ V

»

–

?
3

3 0

0 1

0 0

fi

flU ˚
“

1

3

»

–

1 1

2 ´1

´1 2

fi

fl . (7.35)

Consider now matrices of the form

A;
“ V

»

–

?
3

3 0

0 1

α 0

fi

flU ˚. (7.36)

It is readily verified that AA;
“ I and σpA;

q “

!
b

α2 ` 1
3 , 1

)

. Hence, whenever 0 ă |α| ď
b

2
3 , we have that ‖A;‖S8 “ ‖σpA;

q‖8 “ 1 “ ‖A:‖S8 , and yet A;
‰ A:.

7.4.2 Left unitarily invariant norms

Another case of particular interest is when the norm is not fully unitarily invariant, but is still

unitarily invariant on one side. As we have restricted our attention to fat matrices, we will

examine left unitarily invariant norms, because these will conveniently again lead to the MPP.

This is the consequence of the following lemma,

Lemma 7.3

Let X ,Y P Cnˆm be defined as

X “

„

K 1

0



, Y “

„

K 1

K 2



. (7.37)

Then ‖X ‖ ď ‖Y ‖ for any left unitarily invariant norm ‖ ¨ ‖.

Proof : Observe that X “ TY with

T “

„

I 0

0 0



. (7.38)

Now note that

T “
1

2

„

I 0

0 ´I



`
1

2

„

I 0

0 I



, (7.39)

where the two matrices on the right hand side are unitary, and apply the triangle inequality.

With this lemma in hand, we can prove the main result for left unitarily invariant norms.

Theorem 7.2

Let ‖ ¨ ‖ be a left unitarily invariant norm, and let A P Cmˆn be full rank with m ă n. Then

‖A:‖ “ min t‖X ‖ : X P GpAqu. If ‖ ¨ ‖ satisfies a strict inequality in Lemma 7.3 whenever

K 2 ‰ 0 , then the set of minimizers is a singleton tA:
u.
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Proof : Write Y P GpAq in the form (7.15). By the left unitary invariance and Lemma 7.3

‖Y ‖ “ ‖M U ˚‖ “
∥∥∥∥„ Σ´1

˝ U ˚

SU ˚

∥∥∥∥ ě ∥∥∥∥„ Σ´1
˝ U ˚

0

∥∥∥∥ “ ‖A:‖.

7.4.3 Left unitarily invariant norms on the product operator

We now show that the same phenomenon occurs when minimizing a left unitarily invariant

norm of the product X A. This simply comes from the observation that if ‖ ¨ ‖µ is left unitarily

invariant, then so is ‖ ¨ ‖ν “ ‖¨A‖µ.

Corollary 7.1

Let ‖¨‖ be a left unitarily invariant norm, and let A P Cmˆn be full rank with m ă n. Then

‖A:‖ “ min t‖X A‖ : X P GpAqu. If ‖¨‖ satisfies a strict inequality in Lemma 7.3 whenever

K 2 ‰ 0 , then the set of minimizers is a singleton tA:
u.

7.4.4 Classical norms leading to the MPP

As a corollary, some large families of norms lead to the MPP.

Corollary 7.2

Let A P Cmˆn be full rank with m ă n.

Schatten norms: for 1 ď p ď 8

A:
P ginvSppAq A:

P pginvSppAq.

The considered sets are singletons for p ă 8.

The set ginvS8pAq is not necessarily a singleton; pginvS8pAq is a singleton.

Columnwise mixed norms: for 1 ď q ď 8

A:
P ginv|2,q|pAq A:

P pginv|2,q|pAq

The considered sets are singletons for q ă 8, but not always for q “ 8.

Induced norms: for 1 ď p ď 8

A:
P ginv`pÑ`2pAq A:

P pginv`pÑ`2pAq

The set ginv`pÑ`2pAq is not always a singleton for p ď 2.

The proof is given in Appendix 7.A.

Remark 1

Let us highlight an interesting consequence of Corollary 7.2: The computation of the ‖ ¨ ‖`8Ñ`2
norm is known to be NP-complete [123]. Despite this fact, Corollary 7.2 implies that we can

find a solution of an optimization program involving this norm.
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7.5 Norms that Almost Never Yield the MPP

After discussing matrix norms whose minimization always leads to the MPP, it is interesting to

look at norms that generically never lead to the MPP. Among the norms that we study, these are

columnwise mixed norms with p ‰ 2, rowwise norms, and induced norms for q ‰ 2. Let us show

this in particular for the columnwise mixed norms ‖ ¨ ‖|p,q| p ‰ 2. We can state the following

result:

Proposition 7.2

Let the entries of A P Rmˆn be drawn from some absolutely continuous probability distri-

bution. Then for p ‰ 2, p ě 1 and 1 ď q ď 8 we have that A:
R ginv|p,q|pAq with probability

one.

Proof : First note that because the optimization for ginv|p,q|pAq decouples over columns, it is suf-

ficient to show that the ith column of the MPP does not minimize the corresponding column

problem for any i. That is,

Dx P Rn such that Ax “ ei and ‖A:ei‖pp ą ‖x‖pp ô MPP is not a minimizer. (7.40)

By integrating the constraint Ax “ ei into the cost function, the cost function for the ith

column can be written as fpz q “ ‖A:ei`N z‖pp (minimization is over z P Rn´m), where columns

of N form the orthogonal basis for N pAq. The gradient of f is computed as

∇fpz q “ pNJ
ˇ

ˇ

ˇ
A:ei `N z

ˇ

ˇ

ˇ

p´1

˝ signpA:ei `N z q. (7.41)

Our goal is now to show that ∇fp0 q ‰ 0 almost surely. Denoting X “ A:, x i “ X ei, and

gpx q “ |x |p´2
˝ x , this is equivalent to showing that

Di such that NJgpx iq ‰ 0 , (7.42)

or in other words, that gpx iq ‰ rangepAJ
q for at least one i. Note next that rangepAJ

q “

rangepX q, and that while elements of X are not independent, their joint distribution is still ab-

solutely continuous. We can now rephrase our task: For a matrix X whose elements have a con-

tinuous distribution, show that gpx 1q R rangepX q. Equivalently, we ask that pI ´X X :
qgpx 1q ‰

0 . But entries of X : are rational functions of the entries of X , so the entries of the vector

pI ´ X X :
qgpx 1q ‰ 0 are rational functions whose numerator is a non-zero polynomial in xij

assuming for that p is even. To see that the above polynomial is not identically zero it suffices

to find one X for which it is non-zero. Consider the following construction:

X “

»

—

—

—

—

—

—

—

—

—

—

—

–

1 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0
...

. . .

0 0 ¨ ¨ ¨ 1

0 0 ¨ ¨ ¨ 0
...

2 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, so that X :
“

»

—

—

—

–

1
5

0 0 0 0 ¨ ¨ ¨ 2
5

0 1 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

0 0
. . . 0 0 ¨ ¨ ¨ 0

0 0 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

fl

. (7.43)

Then it is straightforward to verify that pI ´X X :
qgpx 1q ‰ 0 for all p ‰ 2.

As the joint distribution of xij is absolutely continuous, and the sets of zeros of these poly-

nomial have measure zero, the probability (with respect to realizations of A) that all entries of

pI ´ X X :
qgpx 1q vanish is zero. For a rational p “ q{r we can use similar arguments using a

reparameterization in terms of zij “ signpxijq|xij |
1{r.
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Remark 2

Note that this straightforwardly extends into a proof that the `p-minimal solution to an

underdetermined system of linear equations generically changes with p (in particular it is

different from the least-squares solution).

7.5.1 Sparse Pseudoinverse

We now concentrate on ginv, rather than pginv, and in particular on the generalized inverse

minimizing the entrywise `1-norm. We know from Proposition 7.2 that this generalized inverse

is in general not the MPP.

The motivation to look specifically at `1-norm is that one expects it to promote the sparsity of

the entries, resulting in what could be called the sparse pseudoinverse. The sparse pseudoinverse

was studied in [52], where it was shown empirically that the minimizer is indeed a sparse matrix,

and that it gives a fast way to solve certain inverse problems. It is convenient to define the

specific notation spinvpAq “ ginv1pAq.

The usual first step would be to try and compute ginv0pAq; that is, the sparsest generalized

inverse of A. This computation is in general not tractable, so we replace ‖ ¨ ‖0 by its convex

envelope ‖ ¨ ‖1 [62]. On the other hand, we will show that finding a minimizer of ‖ ¨ ‖0 is generically

trivial, but usually not a good idea (unlike in the compressed sensing scenario).

The intuitive reasoning is as follows: The constraint AX “ Im is a shorthand notation for

m2 linear equations, so it constraints m2 degrees of freedom. The matrix X has nm entries,

thus we are left with nm ´ m2 degrees of freedom, which we hope will be set to zero by `1

minimization. Indeed, we can state the following result:

Theorem 7.3

Let A P Rmˆn, m ă n. Then there exists X P spinvpAq that contains at least mn´m2 zero

elements.

Remark 3

As a consequence of this theorem, in general the sparse pseudoinverse is not the MPP.

In proving this theorem we use a known fact about `p minimization for p ď 1: the set of

minimizers always contains an m-sparse point.

Lemma 7.4

Let y “ Ax , where A P Rmˆn with m ă n. Then the set of minimizers of ‖z‖p, 0 ď p ď 1,

subject to the constraint that Az “ y , always contains an m-sparse point:

Proof (Theorem 7.3) : Minimization for spinvpAq can be decoupled into `1 minimizations for

every column,

spinvpAqi “ arg min
Ax“ei

‖x‖`1 . (7.44)

By Lemma 7.4, the set of minimizers for every column of spinvpAq—solution to (7.44) contains a

point with n´m zeros. Because spinvpAq has m columns, there exists a minimizer for spinvpAq

with at least mpn´mq zero entries.

A corollary of Theorem 7.3 is that, generically, spinvpAq is the sparsest pseudoinverse of A.

To see this, we invoke a result by Krahmer, Kutyniok and Lemvig [111]:
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=

=

Moore-Penrose pseudoinverse

Sparse pseudoinverse

Figure 7.2: Illustration of a sparse pseudoinverse of A P R10ˆ40. Both X 1 (upper) and X 2 (lower)
are right inverses of A, but the sparse pseudoinverse X 2 has a large number (300 or 75%) of zero
entries.

Lemma 7.5 ([111, Theorem 3.6])

Let Fpm,nq be the set of full rank matrices in Cmˆn, and denote by N pm,nq the subset of

matrices in Fpm,nq whose sparsest generalized inverse has m2 non-zeros. Then

(i) Any matrix in Fpm,nq is arbitrarily close to a matrix in N pm,nq,

(ii) The set Fpm,nq z N pm,nq has measure zero.

In particular, many random matrices (e.g. iid Gaussian) will have a sparsest generalized inverse

with sparsity m2. We can then state the following important result on sparse pseudoinverses:

Theorem 7.4

The set of matrices in Fpm,nq for which spinv does not contain the sparsest generalized

inverse has measure zero.

Numerical Stability For matrices in a general position (that is, for most matrices), there is a

simpler way to obtain a generalized inverse with the minimal number m2 of non-zeroes—just

invert any full-rank mˆm submatrix of A. But there is a good reason not to do so in practice:

Computing the sparse pseudoinverse is a better idea because of stability. Consider for a change

an overdetermined inverse problem y “ Bx `z , with B P Cnˆm where m ă n, and z is random

noise. For any matrix W P GpBq we have that

Er‖W y ´ x‖2
2s “ ‖W ‖2

F

n
ÿ

i“1

Er|zi|2s. (7.45)
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In noisy situations, we want to control the influence of the noise in the output. We see from the

above that this error is dictated by the Frobenius norm of W , so it is desirable to use generalized

inverses with small Frobenius norms. Alas, for a simple inversion of an m ˆm submatrix, this

Frobenius norm can be quite large (it is known that the smallest singular value of an mˆm iid

random matrix is „ m´1{2 with high probability [180, 69]).

On the contrary, the sparse pseudoinverse as well as other norm-minimizing generalized in-

verses have controlled Frobenius norms. This is shown for Gaussian random matrices in Figure 7.3

and for Bernoulli random matrices in Figure 7.4. The two figures further show that interesting

norm-minimizing generalized inverses behave nicely with respect to various matrix norms. This

suggests that these generalized inverses will behave in a stable manner with respect to noise in

overdetermined inverse problems.

Motivation for Sparse Pseudoinverse (Numerical Experiment) We initially proposed the

sparse pseudoinverse to speed up overdetermined tomographic inversion which had to be per-

formed at a fast rate on computation-constrained embedded hardware. Multiplication by the

MPP of the system matrix was far too expensive for the purpose. To illustrate the benefits

offered by the sparse pseudoinverse, we test the performance of several methods for solving

overdetermined systems, including the sparse pseudoinverse.

The upper part of Figure 7.5 shows the performance of various reconstruction methods with

a dense forward matrix. We show results for spinvpAq and sspinvpAq which is just spinv with

hard-thresholded entries. The threshold τ is computed from the empirical CDF of the absolute

values of matrix entries shown in the same figure. The number of non-zeros in sspinv is about

two times lower than for spinvpAq, and four times lower than for MPP. As we will see spinv

and sspinv are particularly interesting in the sparse matrix case. We also include well-known

non-linear iterative methods: Kaczmarz [100] and randomized Kaczmarz algorithms [195]. The

number of iterations in these algorithms is set to have the same operation count as for the

application of sspinvpAq. We sampled 50 realizations of A, with entries aij „ Upr0, 1sq. For

each matrix, a different random input vector was generated, and 50 different iid Gaussian noise

vectors were added to the simulated measurements y “ Ax . We can see that at all but the

lowest SNRs, the MPP performs the best. But the cost of applying and storing spinv is 2 times

lower, and the cost of applying the sspinv 4 times lower. The spinv and sspinv perform similarly

up to 30 dB, and both variants of Kaczmarz algorithm perform worse at all but the lowest tested

SNRs. This example indicates the merit of computing a sparse pseudoinverse.

In applications like tomography we often encounter sparse forward matrices. This makes the

Kaczmarz algorithm attractive, especially for large systems. Surprisingly, we demonstrate that

sparse pseudoinvese may be an attractive option even for sparse matrices. We run the simulation

like in the previous case, but with the fraction of non-zeros in the forward matrix set to 0.03. This

is the sparsity of the model matrix in our practical setup (but with smaller matrix dimensions).

The matrix size was 202ˆ 101. In the lower half of Figure 7.5, we see that the MPP consistently

performs better than spinv at all input SNRs by about 6 dB. Again, it requires at least twice

the number of operations. The sparser sspinv performs the same as spinv up to higher SNR

values (around 40 dB). But here, sspinv requires 38 times less computation than the MPP. The

randomized Kaczmarz algorithm performs the best on the average at low SNRs (below 15 dB),

but its performance at higher SNRs is notably inferior to all three linear reconstruction methods.

Conventional Kaczmarz has the worst average performance at all tested SNRs.
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Figure 7.3: Average norms of different generalized inverses. Input matrices are drawn so that
aij „ N p0, 1q independently with m “ 20 rows (upper 4 graphs) and m “ 200 rows (lower 4
graphs). The oversampling factor is defined as n{m where n is the number of columns.

7.5.2 Unbiasedness of Generalized Inverses

The MPP has certain “nice” properties that could be missing for other inverses. One such

property is it being unbiased in a certain sense. That is, for A a random Gaussian matrix we
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Figure 7.4: Average norms of different generalized inverses. Input matrices are drawn so that
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have that

n

m
ErA:As “ I . (7.46)
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Figure 7.5: Output SNR and empirical cumulative distribution function (CDF) of matrix entry
magnitudes for the MPP, spinvpAq and sspinvpAq, for a full forward matrix (upper part) and a
sparse forward matrix (lower part). A comparison is also shown with Kaczmarz and randomized
Kaczmarz methods with a fixed number of scalar multiplication.

In other words, for this random matrix ensemble, applying A to a vector, and then the MPP to

the measurements will on average retrieve the scaled version of the input vector. This property is

useful in various iterative algorithms. To motivate it we consider the following generic procedure:

let y “ Ax , where x is the object we are interested in (e.g., an image), A a dimensionality-

reducing measurement system, and y the resulting measurements. One admissible estimate of

x is given by X Ax , where X P GpAq. If the dimensionality-reducing system is random, we can

compute the expectation of the reconstructed vector as

ErX y s “ ErX Ax s “ ErX Asx . (7.47)

Provided that ErX As “ m
n I , we will obtain, on average, a scaled version of the object we wish

to reconstruct.4

Clearly, this property will not hold for generalized inverses obtained by inverting a particular

minor of the input matrix. As we show next, it does hold for a large class of norm-minimizing

generalized inverses.

4This linear step is usually part of a more complicated algorithm which also includes a nonlinear denoising
step (e.g., thresholding, non-local means). If the denoising step is a contraction in some sense (i.e. it brings us

closer to the object we are reconstructing), the following scheme (or a similar one) will work well: x pk`1q def
“

ηpx pkq ` n
m

X py ´Ax pkqqq.
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Figure 7.6: Illustration of the unbiasedness property. The left half shows ginv`1pAqA averaged over
the indicated number of realizations of A P R10ˆ30 with aij . On the right, the same is shown for
A P R100ˆ300.

Theorem 7.5

Let A P Rmˆn, m ă n be a random matrix with iid columns such that aij „ p´aijq. Let

further ‖ ¨ ‖ν be any matrix norm such that ‖Π ¨‖ν “ ‖ ¨ ‖ν and ‖Σ ¨‖ν “ ‖ ¨ ‖ν , for any

permutation matrix Π and modulation matrix Σ “ diagpσq, where σ P t´1, 1u
n
. Then, if

ginvνpAq and pginvνpAq are singletons for all A, we have

ErginvνpAqAs “ ErpginvνpAqAs “
m
n I n (7.48)

More generally, consider a function f : C ÞÑ fpCq P C Ă Rnˆm that selects a particular

representative for any bounded convex set C, and assume that fpUCq “ U fpCq for any

unitary matrix U and any C. Examples of such functions f include: selecting the centroid

of the convex set, or selecting its element with minimum Frobenius norm. We have

ErfpginvνpAqqAs “ ErfppginvνpAqqAs “
m
n I n. (7.49)

Remark 4

This includes all classical norms (invariance to row permutations and sign changes) as well

as any left unitarily invariant norm (permutations and sign changes are unitary).

To prove the theorem we use the following lemma,
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Lemma 7.6

Let U P Cnˆn be an invertible matrix, and ‖ ¨ ‖ν a norm such that ‖U ¨ ‖ν “ ‖ ¨ ‖ν . Then

the following claims hold,

ginvνpAU q “ U´1ginvνpAq, (7.50)

pginvνpAU q “ U´1 pginvνpAq (7.51)

for any A.

Proof of the lemma : We only prove the first claim; the remaining parts follow analogously using

that pginvνpAq “ ginvµpAq where ‖ ¨ ‖µ def
“ ‖ ¨A‖ν “ ‖U ¨ A‖ν “ ‖U ¨ ‖µ.

Feasibility: pAU qpU´1ginvνpAqq “ AginvνpAq “ Im.

Optimality: Consider any X P GpAU q. Since pAU qX “ Im “ ApU X q, the matrix U X belongs

to GpAq hence

‖X ‖ν “ ‖U X ‖ν ě ‖ginvνpAq‖ν “ ‖U U´1ginvνpAq‖ν “ ‖U´1ginvνpAq‖ν . (7.52)

Proof (Theorem 7.5) : Since the matrix columns are iid, A is distributed identically to AΠ for

any permutation matrix Π . This implies that functions of A and AΠ have the same distribu-

tion(s). Thus the sets fpginvνpAqqA and fpginvνpAΠ qqAΠ are identically distributed. Using

Lemma 7.6 with U “ Π , we have that

M
def
“ ErfpginvνpAqqAs “ ErfpginvνpAΠ qqAΠ s (7.53)

“ ErfpΠ ˚ginvνpAqqAΠ s (7.54)

“ ErΠ
˚

fpginvνpAqqAΠ s “ Π ˚M Π . (7.55)

This is more explicitly written mij “ mπpiqπpjq for all i, j and π the permutation associated

to the permutation matrix Π . Since this holds for any permutation matrix, we can write

M “

»

—

—

—

–

c b ¨ ¨ ¨ b

b c ¨ ¨ ¨ b
...

. . .
...

b b ¨ ¨ ¨ c

fi

ffi

ffi

ffi

fl

, (7.56)

We compute the value of c “ m
n

as follows:

nc “ trace ErfpginvνpAqqAs

“ Ertrace fpginvνpAqqAs

“ Ertrace A fpginvνpAqqs (7.57)

“ trace Im

“ m.

To show that b “ 0, we observe that since aij „ p´aijq, the matrices A and AΣ have

the same distribution. As above, using Lemma 7.6 with U “ Σ , this implies M “ ΣM Σ

for any modulation matrix Σ , that is to say mij “ σimijσj for any i, j and σ P t´1, 1un. It

follows that mij “ 0 for i ‰ j. Since we already established that ci ”
m
n

we conclude that

ErfpginvνpAqqAs “
m
n

I n.
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The conditions of Theorem 7.5 are satisfied by many random matrices, e.g., by iid Gaussian

matrices.

7.5.3 Poor man’s `p minimization revisited

As pointed out in the introduction, the generalized inverse ginv`1Ñ`1pAq is the one which mini-

mizes the worst case blowup of the `1-norm between z , the minimum `1 norm vector such that

y “ Az , and the linear estimate X y where X P GpAq. In this sense, ginv`1Ñ`1pAq provides the

best worst-case poor man’s (linear) `1 minimization, and solves

inf
XPGpAq

sup
y‰0

‖X y‖1

infz :Az“y‖z‖1
. (7.58)

Instead of minimizing the worst-case blowup, we might want to minimize average-case `p

blowup over a given class of input vectors. Let u be a random vector with the probability

density function given by fu . Given A, our goal is to minimize Er‖X Au‖ps, which is the

average `p norm blow-up raised to pth power. We replace this minimization by a simpler proxy:

we aim to minimize Er‖X Au‖pps
1
p . It is not difficult to verify that this expectation defines a

norm (or a semi-norm, depending on fu).

Interestingly, for certain densities fu this leads back to minimization of standard matrix

norms:

Proposition 7.3

Assume that u „ N p0 , I nq. Then we have

arg min
XPGpAq

`

Er‖X Au‖pps
˘1{p

“ pginv2,ppAq (7.59)

Remark 5

This result is intuitively pleasing. It is known that the 2, 1 mixed norm promotes row sparsity,

thus the resulting X will have rows set to zero. Therefore, even if the result might have been

predicted, it is interesting to see how a generic requirement to have a small `1 norm of the

output leads to a known group sparsity cost function on the product matrix.

Proof :

Eu

“

‖X Au‖pp
‰

. “
n
ÿ

i“1

Eu

“

|pX Auqi|
p
‰

(7.60)

Because u is centered normal with covariance I n, the covariance matrix of X Au is K “

pX AqpX Aq˚. Individual components are distributed according to pX Auqi „ N p0,K iiq “

N p0, ‖x iA‖2
2q. A straightforward computation shows that

E
“

|pX Auqi|
p
‰

“
2p{2 Γ

`

1`p
2

˘

?
π

‖x iA‖p2. (7.61)

We can then continue writing

E
“

‖X Au‖pp
‰

“

n
ÿ

i“1

‖x iA‖p2 “ ‖X A‖2,p, (7.62)

and the claim follows.
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Figure 7.7: Cumulative sum profiles achieved by various generalized inverses for different matrix
sizes. For every subfigure, 500 realizations of A P Rmˆn were generated, with aij „ N p0, 1q iid.
The dimensions m and n are indicated in parenthesis after the callout. The random matrix A was
used to produce measurements y “ Ax , where x was generated randomly for every realization of
A: the support of the m{2 non-zero entries was chosen uniformly at random, and the entries were
again iid Gaussians. Four different reconstructions px were then obtained by four different generalized
inverses, and for each of them we plotted the cumulative sum of the sorted entries of |px | (average
over 500 realizations).

Numerical Experiment Figure 7.7 shows cumulative sums of sorted entry magnitudes of output

vectors produced by different generalized inverses, for various problem sizes. We can see that

pginv2,1pAq outputs more smaller elements, especially for smaller problem size. Nevertheless, the

average `1-norm (the final value of the curve) is only slightly better than the one achieved by the

MPP. Between the MPP and the pginv2,1pAq we have pginv`1Ñ`1pAq. Interestingly, for larger

problem sizes all inverses except the sparse pseudoinverse have identical profiles. This, together

with the findings from Figure 7.3 and Figure 7.4 suggests that for large random matrices, all

inverses become close to the MPP.

7.6 Matrices Having the Same Inverse for Many Norms

In the previous section, we saw that a large class of matrix norms leads to the Moore-Penrose

pseudoinverse. In this section we discuss some classes of matrices whose generalized inverses

minimize multiple norms.

7.6.1 Matrices which MPP has Entries on the Unit Circle

We start by an example where minimizing norms which usually do not give the MPP results in

the MPP. When all entries of A: have the same magnitude, we can show that the MPP actually
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minimizes many norms beyond those already covered by Corollary 7.2.

Theorem 7.6

Let A P Cmˆn. Suppose that all entries of X “ A: have the same magnitude, |xij | “ c.

Then the following statements are true,

(i) For 1 ď p ď 8, 0 ă q ď 8, we have

A:
P ginv|p,q|pAq.

This set is a singleton for 1 ă p ă 8 and 0 ă q ă 8.

(ii) For 1 ď p, q ď 8, we have

A:
P ginvp,qpAq.

This set is a singleton for 1 ă p ă q ă 8.

Example 7.2

Primary examples of matrices A satisfying the assumptions of Theorem 7.6 are tight

frames A with entries of constant magnitude, such as the partial Fourier matrix, A “ RF ,

and the partial Hadamard matrix, A “ RH , where R is the restriction of the identity

matrix I n to some arbitrary subset of m rows, and F (resp. H ) denote the Fourier (resp. a

Hadamard) matrix of size n.

Indeed, when A is a tight frame, we have AA˚
9 ¨ Im, hence A:

“ A˚
pAA˚

q´19A˚.

When in addition the entries of A have equal magnitude, so must the entries of A:.

Proof : Consider E a matrix and denote its columns as εj . If the matrix Y “ X ` E still belongs

to GpAq, then for each column we have

Apx j ` εjq “ ej “ Ax j . (7.63)

That is to say εj must be in the nullspace of A for each column j. Since N pAq “ spanpA˚
q
K
“

spanpX qK, εj must be orthogonal to any column of X , and in particular to x j . As a result,

xx j , εjy “ 0 for each column j; (7.64)

and xX ,Ey “ 0 globally. (7.65)

(i) To show this statement, it suffices to show that the columns x j of X “ A: minimize all `p

norms, 1 ď p ď 8, among the columns of Y P GpAq.
By the convexity of pεR, εIq ÞÑ fpεR, εIq “ ‖x ` εR ` jεIq‖pp, where the subscripts denote

the real and imaginary parts of x and ε in a natural way and j is the imaginary unit, we

have that ‖x ` ε‖pp ě ‖x‖pp ` x∇fp0 ,0 q, pεR, εIqy. We can compute5 that ∇fpεR, εIq “
p |x |pp´2q

˝ pxR, x Iq so that for a column x i of X with all entries of the same magnitude

we have, using (7.64):

‖x i ` εi‖pp ě ‖x i‖pp ` p
A

|x i|
¨pp´2q

˝ px iR, x iIq, pεiR, εiIq
E

R2n

“ ‖x i‖pp ` cpp, x iq< xx i, εiyCn “ ‖x i‖pp.
(7.66)

5| ¨ |¨ q stands for the entrywise qth power of the magnitude of a vector or matrix; x ˝ y (resp. X ˝Y ) is the
entrywise multiplication.
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Since this holds true for any 1 ď p ă 8, we also get ‖x j ` εj‖8 ě ‖x j‖8 by considering

the limit when p Ñ 8. For 1 ă p ă 8 and 0 ă q ă 8, the strict convexity of f and

the strict monotonicity of the `q (quasi)norm imply that the inequality is strict whenever

E ‰ 0 , hence the uniqueness result.

(ii) We use the fact that pER,E Iq ÞÑ gpER,E Iq “ ‖X ` ER ` jE I‖qp,q is a convex function

of pER,E Iq (a composition of an affine function and a power (q ě 1) of a (convex) norm).

Therefore ‖X ` E‖qp,q ě ‖X ‖qp,q ` x∇gp0 ,0 q, pER,E Iqy. We can compute

B‖X ‖qp,q
Bxk`R

“ q‖xk‖q´pp |xk`|
p´2xk`R, (7.67)

and a similar expression for the partial derivative with respect to the imaginary part xk`I
so that

∇gp0 ,0 q “ q diagp‖x 1‖p, . . . , ‖xn‖pqq´p|X |¨pp´2q
˝ pXR,X Iq. (7.68)

For X with all entries of the same magnitude we have, using (7.65):

‖X ` E‖qp,q ě ‖X ‖qp,q ` cpp, q,X q xpXR,X Iq, pER,E Iqy

“ ‖X ‖qp,q ` cpp, q,X q< xX ,Ey “ ‖X ‖qp,q.
(7.69)

As above the inequality ‖X ` E‖p,q ě ‖X ‖p,q is extended to p “ 8 and/or q “ 8 by

considering the limit. For 1 ă p ă 8 and 1 ă q ă 8 the function g is strictly convex

implying that the inequality is strict whenever E ‰ 0 , establishing the uniqueness result.

Example 7.3

Let A “ r1, 1s. Then the MPP is given as

A:
“

1

2

„

1

1



, (7.70)

and by Theorem 7.6 we know that ‖A:‖|1,1| is optimal. Consider now the following matrix,

A;
pαq “

„

1´ α

α



, (7.71)

for 0 ď α ď 1. We have that AA;
“ I , so A;

P GpAq. We also have that ‖A;‖|1,1| “
‖A:‖|1,1| “ 1, so the minimizer is not unique: A;

pαq P ginv|1,1|pAq, @α P r0, 1s.

Example 7.4

Similarly, let

A “

„

1 1 1 1

1 ´1 1 ´1



, (7.72)

and by Theorem 7.6 we know that ‖A:‖|8,1| is optimal, because A:
“ 1

4AJ. But

A;
“

1

2

»

—

—

–

1 0

0 ´1

0 1

1 0

fi

ffi

ffi

fl

, (7.73)

is also in GpAq, and ‖A;‖1,8 “ ‖A:‖1,8 “
1
2 , so again the minimizer is not unique.
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7.6.2 Matrices with a highly sparse generalized inverse

Next we consider matrices for which a single generalized inverse, which is not the MPP, simulta-

neously minimizes several norms. Consider 0 ď p ď 1. It is known that if x is sufficiently sparse,

then it can be uniquely recovered from y “ Ax by `p minimization. Denote kppAq the largest

integer k such that this holds true for any k-sparse vector x :

kp “ max

"

k : arg min
Apx“Ax

‖px‖p “ txu, @x such that ‖x‖0 ď k

*

. (7.74)

Using this definition we can then state the following theorem:

Theorem 7.7

Consider A P Cmˆn, and assume there exists a generalized inverse X P GpAq such that

every of its columns x i is kp0pAq-sparse, for some 0 ă p0 ď 1. Then, for all 0 ă q ă 8, and

all 0 ď p ď p0, we have

ginv|p,q|pAq “ tX u.

Example 7.5

Let A be the Dirac-Fourier (resp. the Dirac-Hadamard) dictionary, A “ rI , F s (resp.

A “ rI , H s). It is known that k1pAq ě p1`
?
mq{2 (see, e.g., [86]). Moreoever

X
def
“

„

I

0



P GpAq

has k “ 1-sparse columns. As a result, ginv|p,q|pAq “ tX u for any 0 ď p ď 1 and 0 ă q ă 8.

On this specific case, the equality can also be checked for q “ 8. Thus, ginv|p,q|pAq is distinct

from the MPP of A, A:
“ A˚

{2.

Proof : It is known [86] that for 0 ď p ď p0 ď 1 and any A we have kppAq ě kp0pAq. Hence, the

column x i of X is the unique minimum `p norm solution to Ax “ ei. When q ă 8 this implies

ginv|p,q|pAq “ tX u. When q “ 8 this simply implies ginv|p,q|pAq Q X .

7.7 Computation of Norm-Minimizing Generalized Inverses

In this section we discuss the computation of the generalized inverses associated with matrix

norms. Interior point methods, and general-purpose solvers such as CVX are generally quite

slow, especially for problems that cannot be reduced to vector problems. For the kind of problems

that we need to solve, it appears more appropriate to use methods such as the projected gradient

method, or the alternating direction method of multipliers (ADMM) [164], also known as the

Douglas-Rachford splitting method [68].

To implement ADMM, we should know how to compute the proximal operators associated

with matrix norms, or equivalently, projections onto various matrix norm balls. The attractive

property is that we do not care about possible non-smoothness or non-strict convexity. On

the other hand, if the corresponding proximal operators are difficult to compute, we may use

the projected subgradient method that can handle non-smooth norms. We find ADMM more

attractive because it yields to an immediate extension from ginv to pginv via the so called
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linearized ADMM. Thus we may use almost the same algorithm to optimize for ‖X ‖ and for

‖X A‖.

7.7.1 Norms that Reduce to the Vector Case

In certain cases, it is possible to reduce the computation of the norm-minimizing generalized

inverse to a collection of independent vector problems. This is the case with entrywise norms

and with columnwise mixed norms. As the entrywise norms are a special case of the columnwise

mixed norms, we discuss the latter case.

Consider the minimization for ginv|p,q|pAq, q ă 8. It is straightforward to verify the following

series of equivalences:

min
XPGpAq

˜

ÿ

i

‖x i‖qp

¸
1
q

ô min
AX“I

ÿ

i

‖x i‖qp ô
"

min
Ax i“ei

‖x i‖p, 1 ď i ď n

*

. (7.75)

We can therefore use our favorite algorithm for finding the `p-minimal solution to an under-

determined system of linear equations. The most interesting cases are probably for p P t1, 2,8u.

For p “ 2, we of course get the MPP, and for the other two cases, we have efficient algorithms

at our disposal.

7.7.2 ADMM for Norms that do not (Easily) Reduce to the Vector Case

Even for entrywise and columnwise mixed norms, things get more complicated when instead of

ginv|p,q|pAq we try to compute pginv|p,q|pAq. This is because the objective ‖X A‖|p,q| now mixes

the columns of X so that they cannot be untangled. Similar issues arise when trying to compute

ginvp,qpAq. We will see that this issue is elegantly adressed by the linearized ADMM.

7.7.3 Alternating Direction Method of Multipliers

ADMM is a method to solve problems of the form

minimize fpxq ` gpxq, (7.76)

where in our case x is a matrix X , and g is a monotonically increasing function of a matrix

norm ‖X ‖. The reason why we choose g and not f to be the matrix norm has to do with

efficient computation of pginvpq, as discussed below. ADMM relies on the iterative computation

of proximal operators

proxϕpyq “ arg min
z

1
2‖y ´ x‖2

2 ` ϕpxq.

Proximal operator of the indicator function IGpAqpX q.

To cast our minimization in the form (7.76), we first rewrite the constraint using the indicator

function. The indicator function of a set S is defined as

ISpX q
def
“

#

0, X P S
`8, X R S.

(7.77)

Its proximal operator is just the Euclidean projection onto the set. In the case of the affine

subspace S “ GpAq, we can verify that this is given as
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proxIGpAqpV q “ projGpAqpV q “ A:
`N N ˚V , (7.78)

where the columns of N form an orthogonal basis for the nullspace of A.

Proximal operators of matrix norms

Computing the proximal operator for various norms can get more tricky. We expound here the

proximal operators for some mixed and some induced norms; the first ingredient is an expression

for the proximal operator of a norm in terms of the projection onto the norm ball of the dual

norm. We have that for any scalar λ ą 0,

proxλ‖¨‖pV q “ V ´ λprojtX :‖X‖˚ď1upV q (7.79)

with ‖¨‖‹ the dual norm to ‖¨‖. This means that we can compute the proximal operator efficiently

if we can project efficiently, and vice-versa.

We continue with a useful lemma:

Lemma 7.7

The dual norm of ‖¨‖`1Ñ`q “ ‖¨‖|q,8| is

‖¨‖˚`1Ñ`q “ ‖¨‖|q˚,1|,

and the dual norm of ‖¨‖`pÑ`8 “ ‖¨‖p˚,8 is

‖¨‖˚`pÑ`8 “ ‖¨‖p,1,

where 1{p` 1{p˚ “ 1{q ` 1{q˚ “ 1.

Proof : The first result is a direct consequence of the characterization (7.27) of `1 Ñ `q norms in

terms of columnwise mixed norms |q,8|, and of [192, Lemma 3]. The second result follows from

the characterization (7.33) of `p Ñ `8 norms in terms of p˚,8 and, again, of [192, Lemma 3].

Combining (7.79) with Lemma 7.7 shows that for ‖¨‖`1Ñ`q , where q P t1, 2,8u, computing

the proximal operator means projecting onto the ball of the ‖¨‖|q˚,1| norm. The good news is

that these projections can be computed efficiently [192, 172]. Even for a general q, the projection

can be computed efficiently, but the algorithm becomes more involved [125, 217]. In summary,

we can efficiently compute the proximal mapping for induced norms ‖¨‖`1Ñ`q , and equivalently

for induced norms ‖¨‖`pÑ`8 , because these read as proximal mappings for certain mixed norms.

As far as the columnwise mixed norms go, we do not really have to compute the proximal

mapping for the norm itself, but rather for ‖¨‖p
|p,q|. This can be again achieved by decoupling

because

proxλ‖¨‖p
|p,q|
pV q “ arg min

X

ÿ

i

‖x i‖pq `
1

2λ
‖X ´V ‖2

F

“ arg min
X

ÿ

i

ˆ

‖x i‖pq `
1

2λ
‖x i ´ v i‖2

2

˙

.

(7.80)

We now converted the problem to computing proxλ‖¨‖pq , and the task is to find efficient algorithms

to compute it. We focus again on the interesting (and simpler) case of p “ 1. Here, we can use
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known proximal operators for `q norms. Alternatively, we could directly compute the proximal

mapping from known projection algorithms and using root finding.

Finally, we note that an analogous argumentation can be made for rowwise norms: Their

proximal mappings can be constructed from vector proximal mappings as well.

Our minimization program now becomes

minimize hp‖X ‖q ` IGpAqpX q. (7.81)

To apply ADMM, we need to compute the proximal operators of functions f and g.

7.7.4 Generic ADMM for matrix norm minimization

The generic ADMM updates for computing ginvνpAq can be written as [164],

X k`1 def
“ A:

`N N ˚
pX k

´U k
q

Z k`1 def
“ proxλ‖¨‖ν pX

k`1
`U k

q

U k`1 def
“ U k

`X k`1
´ Z k`1.

(7.82)

While there are a number of references that study the choice of the regularization parameter λ

for particular f and g, this choice still remains something of a black art. A discussion of this

topic falls out of the scope of our work. In our implementations we used values for which the

algorithm was empirically verified to converge.

The convenience of ADMM is that we can easily adapt this for norms on the matrix X A,

without computing the new proximal operator. In particular, the ADMM solves the following

problem,

minimize fpx q ` gpAx q, (7.83)

with updates involving A and A˚. If we think of this as applying a linear operator and its

adjoint, we can adapt it to our problem which has the form

minimize fpX q ` gpX Aq, (7.84)

where we consider g to be the norm that we aim to minimize. It is easy to verify that the adjoint

of postmultiplying an nˆm matrix by A is simply postmultiplication by A˚,

xX A,Y y “ traceppX Aq˚Y q “ tracepA˚X ˚Y q “ tracepX ˚Y A˚
q “

@

X ,Y A˚
D

. (7.85)

The updates for pginv‖¨‖pAq are then

X k`1 def
“ A:

`N N ˚
”

X k
´ pµ{λqpX kA´ Z k

`U k
qA˚

ı

Z k`1 def
“ proxλ‖¨‖ν pX

k`1A`U k
q

U k`1 def
“ U k

`X k`1A´ Z k`1,

(7.86)

where 0 ă µ ď λ{‖A‖2.
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7.8 Conclusion

Our motivation in the quest for interesting norm-minimizing generalized inverses is twofold: 1)

need for a fast generalized inverse, and 2) prospect of having operators that yield as poor man’s

`p minimizers. Often our developments seem Sisyphean, in that for various norms and matrices

we just recover the optimality of the MPP. But there are cases such as the `1 entrywise norm,

which always yield a different solution with interesting properties. Furthermore, it is valuable

to know that in terms of many interesting optimality measures, there is no need to look beyond

the MPP if we insist on linearity.
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7.A Proof of Corollary 7.2

We begin by showing that the MPP is a minimizer of the considered norms. The result for ‖¨‖Sp
with 1 ď p ď 8, for the induced norm ‖¨‖`2Ñ`2 and columnwise mixed norm ‖¨‖|2,2| follow from

their unitary invariance and Theorem 7.1. In contrast, the norms ‖¨A‖Sp generally fail to be

unitarily invariant. Similarly, for p ‰ 2 and q ‰ 2, induced norms and columnwise mixed norms

are not unitarily invariant, hence the results do not directly follow from Theorem 7.1. Instead,

the reader can easily check that all considered norms are left unitarily invariant, hence the MPP

is a minimizer by Theorem 7.2 and Corollary 7.1.

We now turn to uniqueness for Schatten norms and columnwise mixed norms. Since Schatten

norms with 1 ď p ă 8 are fully unitarily invariant and associated to a strictly monotonic

symmetric gauge function, the uniqueness result of Theorem 7.1 applies. To establish uniqueness

with the norms ‖¨A‖Sp , 1 ď p ă 8 we exploit the following useful Lemma (see, e.g., [224, Lemma

7] and references therein for a proof).

Lemma 7.8

Let X ,Y P Cmˆn be given as

X “

„

K 1 0

0 0



, Y “

„

K 1 K 2

K 3 K 4



(7.87)

where the block K 1 is of size rˆr. Then we have that σjpX q ď σjpY q for 1 ď j ď r, and for

any unitarily invariant norm ‖ ¨ ‖φ associated to a symmetric gauge φ, we have ‖X ‖φ ď ‖Y ‖φ.

When φ is strictly monotonic, ‖X ‖φ “ ‖Y ‖φ if and only if K 2,K 3 and K 4 are zero blocks.

Considering X P GpAq and its representation as given in (7.15), using the unitary invariance of

the Schatten norm, we have

‖X A‖Sp “ ‖M Σ‖Sp “
∥∥∥∥„ Im 0

SΣ˝ 0


∥∥∥∥
Sp

ą

∥∥∥∥„Im 0

0 0


∥∥∥∥
Sp

“ ‖A:A‖Sp (7.88)

as soon as SΣ˝ ‰ 0 , that is to say whenever S ‰ 0 . For both types of columnwise mixed norms

with 1 ď q ă 8, the strictness of the inequality in Lemma 7.3 when K 2 ‰ 0 is easy to check,

and we can apply the uniqueness result of Corollary 7.1.

Finally, we consider the possible lack of uniqueness. The construction of A;
‰ A: in Exam-

ple 7.1 provides a matrix A for which ginvS8pAq Ą tA
:,A;

u is not reduced to the MPP.

To prove uniqueness for pginvS8pAq, consider again equation (7.88) with p “ 8. Denote

Z
def
“ SΣ˝ ‰ 0 , and let z˚ be its first nonzero row. We bound the largest singular value σ1 of

the matrix Y defined as follows

Y
def
“

„

Im 0

z˚ 0



.

By the variational characterization of eigenvalues of a Hermitian matrix, we have

σ2
1 “ max

‖x‖2“1
x˚Y Y ˚x “ max

‖x‖2“1
x˚

„

Im z

z˚ ‖z‖2
2



x . (7.89)

Partitioning x as x˚ “ prx˚, x˚nq with xn P C we write the maximization as

max
‖rx‖2

2`|xn|
2“1

‖rx‖2
2 ` 2<px˚nz˚rx q ` |xn|

2‖z‖2
2. (7.90)
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Since z ‰ 0 by assumption, it must have at least one non-zero entry. Let i be the index of a

non-zero entry, and restrict rx to the form rx “ αe i, α P C. We have that

max
‖rx‖2

2`|xn|
2“1

‖px‖2
2 ` 2<px˚nz˚rx q ` |xn|

2‖z‖2
2 ě max

|α|ď1
|α|2 ` 2

a

1´ |α|2 ¨ |zi| ¨ |α| ` p1´ |α|
2q|zi|

2,

(7.91)

where we used the fact that maximization over a smaller set can only diminish the optimum,

as well as that ‖z‖2
2 ě |zi|

2. Straightforward calculus shows that the maximum of the last

expression is 1` |zi|
2, which is strictly larger than 1. Since Y Y ˚ is a principal minor of

„

Im 0

SΣ˝ 0

 „

Im 0

SΣ˝ 0

˚

,

it follows by Cauchy’s interlacing theorem (or it could be seen directly from (7.89)) that∥∥∥∥„ Im 0

SΣ˝ 0


∥∥∥∥
S8

ě σ1 ě
a

1` |zi|2
strictly
ą 1 “ ‖A:A‖S8 .

A counterexample for ginv|2,8|p¨q is as follows: consider 0 ă η ă 1 and the following matrix,

A “

„

η´1 0 0

0 1 0



. (7.92)

Its MPP is simply A:
“

„

η 0 0

0 1 0

J

, and we have that ‖A:‖|2,8| “ 1. Among many other

generalized inverses, one class is given as

A;
pαq “

»

–

η 0

0 1

α 0

fi

fl . (7.93)

Clearly for all α with |α| ď
a

1´ η2, ‖A;
pαq‖|2,8| “ ‖A:‖|2,8| “ 1, hence ginv|2,8|p¨q is not a

singleton. To construct a counterexample for pginv|2,8|p), consider a full rank matrix A with

the SVD A “ U ΣV ˚. Then all the generalized inverses A; are given as (7.15), so that

‖A;A‖|2,8| “
∥∥∥∥„ V ˚

1

SΣV ˚
1


∥∥∥∥
|2,8|

, (7.94)

where we applied the left unitary invariance and we partitioned V “ rV 1 V 2s. Clearly, setting

S “ 0 gives the MPP and optimizes to norm. To construct a counterexample, note that

generically V ˚
1 will have columns with different 2-norms. Let v be its column with the largest

2-norm; we choose a matrix P so that PΣv “ 0 while PΣV ˚
1 ‰ 0 . Then there exists ε0 so

that for any ε ď ε0, ∥∥∥∥„ V ˚
1

εPΣV ˚
1


∥∥∥∥
|2,8|

“

∥∥∥∥„V ˚
1

0


∥∥∥∥
|2,8|

“ ‖A:A‖|2,8|. (7.95)

We can reuse counterexample (7.92) to show the lack of uniqueness for the induced norms

(note that we already have two counterexamples: for p “ 1 as this gives back the columnwise

norm, and for p “ 2 as this gives back the spectral norm which is the Schatten infinity norm).
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u1

u2

1

−1

−1

1

p = 1

p = 2

10
3− 10

3

Figure 7.8: Geometry of the optimization problem (7.96). Unit norm balls |u1|
p
` |u2|

p
“ 1 are

shown for p P t1, 1.25, 1.5, 1.75, 2u.

Let us look at ‖A;
pαq‖`pÑ`2 “ maxuPR2:‖u‖p“1‖A;

pαqu‖2. We can write this as (after squaring

the 2-norm)

max
up1`u

p
2“1
pη2 ` α2qu2

1 ` u
2
2. (7.96)

The optimization problem (7.96) is depicted geometrically in Figure 7.8: consider the ellipse with

the equation

pη2 ` α2qu2
1 ` u

2
2 “ R2. (7.97)

We are searching for the largest R so that there exists a point on this ellipse with the unit

`p-norm. In other words, we are squeezing the ellipse until it touches the `p-norm ball. The

semi-axes of the ellipse are R{
a

η2 ` α2 and R, so that when η and α are both small, the ellipses

are elongated along the horizontal axis and the intersection between the squeezed ellipse and the

`p ball will be close to the vertical axis. In fact, for p ď 2 , one can check6 that there exists

0 ă β ă 1 such that, whenever η2 `α2 ď β2, the squeezed ellipse touches the `p ball only at the

points r0,˘1sJ (as seen on Figure 7.8). That is, the maximum is achieved for R “ 1. The value

of the cost function at this maximum is

pη2 ` α2q02 ` p˘1q2 “ 1 (7.98)

Therefore, choosing η ă β, the value of ‖A;
pαq‖`pÑ`2 is constant for all α2 ď β2 ´ η2, showing

that there are many generalized inverses yielding the same `p Ñ `2 norm as the MPP, which we

know achieves the optimum.

6This is no longer the case for p ą 2 for the `p ball is “too smooth” at the point r0, 1s: around this point on
the ball we have 1´ u2 “ c|u1|

pp1` opu1qq “ opu2
1q.



Conclusion

It’s been a hard day’s night,

and I’d been working like a dog.

It’s been a hard day’s night,

I should be sleeping like a log...

The Beatles

While doing the research described in this thesis, ideas for new research were occurring at a

steady pace. Writing the thesis was a similar experience: Nearly every page inspired new ideas

which seemed more attractive to pursue than the writing itself. Older ideas then kept generating

their progeny ideas, while the new ideas generated new ideas of their own, so the number of ideas

at page n should not have been too far from the nth Fibonacci number.

Therefore, instead of re-summarizing the content of the thesis, we decided to use this space

to outline a research proposal based on our findings and a small selection of the mentioned ideas.

Hearing Room Shapes and Echo Sorting Recently it became clear to us that modeling the

room probabilistically could obviate the problems that arise because of the missing echoes, over-

lapping echoes, noise, and model mismatch. It also seems natural to extend the theory to moving

microphones and sources, which quickly brings us into the realm of simultaneous localization and

mapping (SLAM) and its vast literature.

Some of this literature looks at time-of-arrival problems similar to the ones that we address

by echo sorting. Particularly appealing are the works of Meissner, Leitinger and their colleagues

on UWB positioning and SLAM [121, 142]. But the existing works rely on beacons, and the

big question is: What can we do with zero fixed infrastructure? That is, what can we do with

a standalone device without making assumptions about the space to be mapped except that it

contains reflectors? We believe that a fast and practical method should use both the echo sorting

and the probabilistic perspective.

Another important line of research is hearing rooms passively. That means reducing the

infrastructural demands from Chapter 3 even further by not requiring any active sources. Work

in this direction has already begun: Crocco and colleagues [42] have spearheaded the topic and

their numerical simulations indicate the feasibility of the passive approach. However, their models
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are still relatively simple, and the question is how to obtain completely general formulations that

efficiently exploit whatever geometric regularities there are?

A different line of work which we did not pursue here are analytic approaches to room hearing.

If we think about the problem in terms of the wave or Helmholtz equation on a set of domains,

it is not difficult to concoct a cost function involving the room boundary and try to minimize

it. Unfortunately, there is no hope for a frontal attack to succeed, as any such cost function

has a googol of local minima. Nevertheless, for certain parametric classes of geometries this

optimization becomes feasible. The question is then whether we can make it work in practically

interesting scenarios. This approach also has potential to take us beyond flat walls required by

the image source model.

Crystallography Crystallography has been among the most important disciplines in science for

decades now, and it has allowed us to learn the structure of the big molecules that make us up,

such as proteins and DNA, and of molecular machines such as ribosomes. In a way, it uncovered

the structure of life. Somewhat unexpectedly, the echo sorting toolbox is relevant to determining

the molecular structure. Methods such as X-ray or NMR crystallography produce unlabeled sets

of distances (perhaps indirectly), and this geometry can be leveraged to develop algorithms [173].

It is often assumed that we know the labeling (it may be obtained by complementary methods

and expert knowledge).

But ultimately, the prize is in developing ab initio reconstruction algorithms that do the

labeling all on their own. A prime example of a crystallography method that could benefit from

these algorithms is powder diffraction [222]; the prospect of adapting our results in this context

is thrilling.

Expanding the EDM Toolbox EDMs are a powerful (and underused) tool. Many challenges

related to EDMs are still to be resolved. We have seen that for small numbers of points (opposite

from the current big data trend), it is not easy to get the point set in the correct embedding

dimension. Thus one should investigate how to enforce rank in smaller problems, while guaran-

teeing the optimality.

Another quirk is that to use EDMs, we need actual distances. When we lose synchronization

between the sources and the receivers, we can only measure distance differences. We know that

this class of problems is also solvable, but as far as we know, there is no nice tool such as an

EDM to address distance differences. The geometry changes from circles to hyperbolas, and

things become more difficult, so having an EDM-like formulation that is a natural vehicle for

algorithm design should unlock numerous new applications.

Information-Theoretic Perspectives Time and time again we work with corrupted (missing,

noisy, unlabeled) distances between points. The relevant point sets arise from wave propagation

in enclosures. That is, they arise from echoes. An interesting question is how much information

can we fundamentally extract from these distances knowing that they are noisy, unlabeled and

incomplete? There is a limit to how much we can infer, and the way to establish it could be

by the tools of information theory. The question here is, if we had all the computational power

we like, what is the most accurate description of the point set that we could obtain according to

some reasonable metric, given the corrupted distance data?

Wideband Diversity In Chapter 4 we have seen that by exploiting the full bandwidth of the

sources we can localize multiple sources with only a single microphone. This may initially come
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as a surprise, but it starts making sense after one reflects upon the problem for a moment. What

makes it work? The key is in having a rich spectral signature at every candidate location. Draw-

ing parallels with compressed sensing, random spectral signatures seem like good candidates. In

a room they are fixed (we cannot design them), but there is a different, bigger issue.

When relying on the room to provide us with this diversity, we make a very strong assumption

that the room is known. This is clearly impractical for ad hoc deployments. But what if we

could take a room that we know well with ourselves?

Indeed, we can design our spectral signatures if we change the perspective: Imagine putting

the microphone (or microphones) on an opportunely designed scattering structure. The idea

initially came from thinking about head-related transfer functions. People can identify whether

a sound is coming from below or from above the median plane. Knowing that ears are inside

the median plane, this ability may be surprising until we give up on omnidirectionality. Our

skull, pinna and torso filter sounds coming from down below differently from those coming from

up above, and our brains learned how to use these cues to determine the elevation of the sound

source.

So the idea is—let us build our own rich spectral signatures by designing the best of heads

(which may incidentally be random). Then we can place any number of microphones on, or inside

this head. One microphone will already suffice for localization, but we can also place more than

two to make it more robust. Once we localize the sources we also learn the transfer functions

which further facilitates source separation. Possibilities are exciting and ample.

The wideband diversity can also help in sparse sampling in the vein of FRI. We have seen in

Chapter 5 how the source localization problem with spherical microphone arrays can be posed

as a sparse spherical sampling problem. There we posed it at a single frequency, but exactly

the same trick could be used to reduce the number of microphones. There, it will translate

into a common nullspace property. This should lead to a complete FRI theory for sampling

time-varying signals.

Finally, the Helmholtz equation is one particular (Fourier) transform of the wave equation.

Other representations are possible [45], and some may be more suitable for localization and

separation problems than sinusoids.

Raking for Source Separation A natural next step in the acoustic raking perspective is to use

it to enhance (semi-)blind source separation (in wireless communications there is no severe source

separation issue, thanks to the signal design). It has been known that source localization and

beamforming (i.e., geometric information) aid in source separation [165]. But what if we are in

a reverberant environment, and we know where the early echoes are coming from? We predict

that this would significantly improve the separation quality.

Ideally, we could account for the early echoes without knowing where they are coming from

a priori. Similarly as in room geometry estimation, there must exist methods that would allow

to leverage the multipath structure without explicitly estimating it. Maybe by using the image

source geometry of early reflections as a form of regularization in solving an inverse problem,

with a cleverly designed cost function which we could efficiently optimize.

A Closing Note This brings us to the end of this thesis. It was a long journey through problems

and answers about echoes, sound, and beyond, and we hope you do not regret your time invest-

ment. As in the beginning of the thesis, we maintain: It’s a good idea to listen to echoes—they’re

friends!
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[11] R. F. Bass and K. Gröchenig, “Random Sampling of Multivariate Trigonometric Polyno-

mials,” SIAM J. Math. Anal., vol. 36, no. 3, pp. 773–795, Jan. 2005.

[12] A. Beck, P. Stoica, and J. Li, “Exact and Approximate Solutions of Source Localization

Problems,” IEEE Trans. Signal Process., vol. 56, no. 5, pp. 1770–1778, 2008.

[13] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications. New

York: Springer, June 2003.

[14] T. Bendory, S. Dekel, and A. Feuer, “Exact Recovery of Dirac Ensembles from the Projec-

tion Onto Spaces of Spherical Harmonics,” Constr. Approx., pp. 1–25, 2014.

[15] ——, “Super-resolution on the Sphere using Convex Optimization,” arXiv, Dec. 2014.

[16] J. Benesty, J. Chen, Y. A. Huang, and J. Dmochowski, “On Microphone-Array Beamform-

ing From a MIMO Acoustic Signal Processing Perspective,” IEEE Trans. Audio, Speech,

Language Process., vol. 15, no. 3, pp. 1053–1065, Mar. 2007.

[17] P. Biswas, T. C. Liang, K. C. Toh, Y. Ye, and T. C. Wang, “Semidefinite Programming

Approaches for Sensor Network Localization With Noisy Distance Measurements,” IEEE

Trans. Autom. Sci. Eng. Trans. Autom. Sci. Eng. Trans. Autom. Sci. Eng. Trans. Autom.

Sci. Eng. IEEE Trans. Aut. Sci. Eng., vol. 3, no. 4, pp. 360–371, 2006.

[18] I. Borg and P. J. F. Groenen, Modern Multidimensional Scaling, Springer Series in Statis-

tics. New York, NY: Springer New York, 2005.

[19] J. Borish, “Extension of the Image Model To Arbitrary Polyhedra,” J. Acoust. Soc. Am.,

vol. 75, no. 6, pp. 1827–1836, 1984.

[20] R. Bott and R. J. Duffin, “On the algebra of networks,” 1953.

[21] P. T. Boufounos, P. Smaragdis, and B. Raj, “Joint Sparsity Models for Wideband Array

Processing,” Wavelets and Sparsity XIV, vol. 8138, pp. 81 380K–81 380K–10, Sept. 2011.

[22] A. Bourrier, M. E. Davies, T. Peleg, P. Perez, and R. Gribonval, “Fundamental Perfor-

mance Limits for Ideal Decoders in High-Dimensional Linear Inverse Problems,” IEEE

Trans. Inf. Theory, pp. 1–1, 2014.

[23] M. Boutin and G. Kemper, “On Reconstructing N-Point Configurations From the Distri-

bution of Distances or Areas,” Adv. Appl. Math., vol. 32, no. 4, pp. 709–735, May 2004.

[24] J. S. Bradley, R. D. Reich, and S. G. Norcross, “On the Combined Effects of Signal-to-Noise

Ratio and Room Acoustics on Speech Intelligibility,” J. Acoust. Soc. Am., 1999.

[25] J. S. Bradley, H. Sato, and M. Picard, “On the Importance of Early Reflections for Speech

in Rooms,” J. Acoust. Soc. Am., vol. 113, no. 6, p. 3233, 2003.

[26] M. W. Browne, “The Young-Householder Algorithm and the Least Squares Multidimen-

sional Scaling of Squared Distances,” J. Classification, vol. 4, no. 2, pp. 175–190, 1987.



Bibliography 207

[27] H. P. Bucker, “Use of Calculated Sound Fields and Matched-Field Detection to Locate

Sound Sources in Shallow Water,” J. Acoust. Soc. Am., vol. 59, no. 2, pp. 368–373, 1976.

[28] T. Bulow, “Spherical Diffusion for 3D Surface Smoothing,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 26, no. 12, pp. 1650–1654, 2004.

[29] J. A. Cadzow, “Signal Enhancement—A Composite Property Mapping Algorithm,” IEEE

Trans. Acoust., Speech, Signal Process., vol. 36, no. 1, pp. 49–62, 1988.

[30] E. J. Candès and C. Fernandez-Granda, “Towards a Mathematical Theory of Super-

resolution,” Commun. Pur. Appl. Math., vol. 67, no. 6, pp. 906–956, June 2014.

[31] J. Capon, “High-Resolution Frequency-Wavenumber Spectrum Analysis,” Proc. IEEE,

vol. 57, no. 8, pp. 1408–1418, 1969.

[32] B. D. Carlson, “Covariance Matrix Estimation Errors and Diagonal Loading in Adaptive

Arrays,” IEEE Trans. Aerosp. Electron. Syst., vol. 24, no. 4, pp. 397–401, July 1988.

[33] P. G. Casazza, A. Heinecke, F. Krahmer, and G. Kutyniok, “Optimally Sparse Frames,”

IEEE Trans. Inf. Theory, vol. 57, no. 11, pp. 7279–7287.

[34] S. J. Chapman, “Drums that sound the same,” Am. Math. Mon., vol. 102, no. 2, pp.

124–138, Feb. 1995.

[35] G. Chardon and L. Daudet, “Narrowband Source Localization in an Unknown Reverberant

Environment Using Wavefield Sparse Decomposition,” in Proc. IEEE ICASSP, pp. 9–12,

2012.

[36] G. Chardon, “Approximations parcimonieuses et problèmes inverses en acoustique ,” Ph.D.
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[58] I. Dokmanić, J. Ranieri, A. Chebira, and M. Vetterli, “Sensor Networks for Diffusion Fields:

Detection of Sources in Space and Time,” in Proc. Allerton, pp. 1552–1558, 2011.
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