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Abstract

Unsupervised Machine Learning Algorithms to Characterize Single-Cell Heterogeneity

and Perturbation Response

Daniel Bernard Burkhardt

2021

Recent advances in microfluidic technologies facilitate the measurement of gene ex-

pression, DNA accessibility, protein content, or genomic mutations at unprecedented scale.

The challenges imposed by the scale of these datasets are further exacerbated by non-

linearity in molecular effects, complex interdependencies between features, and a lack of

understanding of both data generating processes and sources of technical and biological

noise. As a result, analysis of modern single-cell data requires the development of special-

ized computational tools. One solution to these problems is the use of manifold learning,

a sub-field of unsupervised machine learning that seeks to model data geometry using a

simplifying assumption that the underlying system is continuous and locally Euclidean.

In this dissertation, I show how manifold learning is naturally suited for single-cell analy-

sis and introduce three related algorithms for characterization of single-cell heterogeneity

and perturbation response. I first describe Vertex Frequency Clustering, an algorithm that

identifies groups of cells with similar responses to an experiment perturbation by analyz-

ing the spectral representation of condition labels expressed as signals over a cell similarity

graph. Next, I introduce MELD, an algorithm that expands on these ideas to estimate the

density of each experimental sample over the graph to quantify the effect of an experimen-

tal perturbation at single cell resolution. Finally, I describe a neural network for archetypal

analysis that represents the data as continuously distributed between a set of extrema. Each

of these algorithms are demonstrated on a combination of real and synthetic datasets and

are benchmarked against state-of-the-art algorithms.
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Chapter 1

Introduction

Recent advances in microfluidic technology facilitate the measurement of gene expres-

sion [1, 2], DNA accessibility [3, 4], protein content [5, 6], and genomic mutations [7, 8]

across tens of thousands of single-cells. These technologies mark a revolutionary change

from the previous half century of single-cell research where techniques such as flow cy-

tometry recorded only one or two dozen features per cell. Standard cytometry analysis

involves iterative gating of cells into high or low expression on a per-maker basis. How-

ever, the recent increase in number of features provided by modern single-cell techniques

requires the development of novel tools for data analysis.

The past several years have seen an explosion in the development of algorithms for

single-cell analysis tasks including dimensionality reduction [9–14], data denoising [15–

18], data integration [19–24], clustering [25–30], and trajectory inference [31]. Although

some methods are purpose built for a specific data modality, an emerging trend is the ap-

plication of generalizable algorithms, some of which were developed outside the biolog-

ical sciences. For example, t-SNE, a non-linear dimensionality reduction algorithm, was

originally applied to images of handwritten digits and household objects [32]. However,

t-SNE is widely applied in the single-cell literature with little adaptation of the original

algorithm [10]. To avoid confusion in this dissertation, I will refer primarily to methods

1



as being applied to single-cell RNA-sequencing (scRNA-seq) data. However, like tSNE,

many of these methods can be applied to many other kinds of data across scientific do-

mains.

These generalizable algorithms stand in contrast to specialized statistical methods

purpose-build for a specific data modality. To understand these differences, we can com-

pare t-SNE to Zero-Inflated Factor Analysis (ZIFA), a dimensionality reduction algorithm

designed specifically for scRNA-seq [33]. ZIFA is latent variable model where expres-

sion values in a cell are given by a linear combination of latent factors plus Gaussian

noise. However, observing over abundance of zero values in the data matrices of single-

cell datasets, ZIFA adds a zero-inflation term that has the potential to set expression of a

gene to zero in any cell. While the addition of a zero-inflation term may allow ZIFA to

better fit scRNA-seq data, this statistical model is biologically implausible. Zero-inflation

implies a molecular process that inhibits all mRNA copies of genes from being captured

during library preparation. Although gene-specific reverse transcription and amplification

biases exist [34], these biases should act independently at the transcript level. Each tran-

script should have some independent probability of being detected, whereas zero-inflation

acts at the gene level. As such, zero-inflated models are no longer widely used in current

single-cell literature [35, 36].

This example serves to illustrate the potential pitfalls of applying restrictive statistical

models applied to a nascent data modality. This is not to say that statistical models have

no place in single-cell analysis. However, until noise and data generative processes are

better understood, the strong assumptions of these models pose a risk of misrepresenting

the underlying biology.

One class of generalizable algorithms come from the framework of manifold learn-

ing, which models the cellular landscape or manifold in order to understand the potential

states that cells can occupy [37]. A manifold is a mathematical model that describes a

space that is smooth, differentiable, and locally Euclidean. Measured cellular features,
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for example gene counts in scRNA-seq space define a space with tens of thousands of

dimensions. This is called the ambient space or the feature space. Relationships between

genes are complex and potentially non-linear meaning that the ambient space is likely

globally non-Euclidean. However, we understand that cells smoothly progress between

states rather than jumping discretely as an electron might change orbitals. This suggests

that the landscape of cellular states is smooth and locally Euclidean, like the classic depic-

tions of Waddington’s Landscape [38] (Figure 1.1a). Unlike those original drawings, we

understand the dimensionality of the space of viable cellular states to be high dimensional,

but not as high dimensional as the ambient gene space. For example, intrinsic dimen-

sionality in the gene space is reduced by informational redundancy resulting from gene

interactions and co-regulation of gene modules. This suggests the cellular manifold has

lower dimensionality than the number of genes or proteins in a cell. These constraints on

the gene space mean the cellular manifold or landscape can be computed from scRNA-seq

data using manifold learning techniques.

Characterizing manifold geometry from discretely sampled data points can be done by

calculating distances along a graph computed from the data (Figure 1.1b). For droplet-

based scRNA-seq, these discretely sampled points are snapshot gene profiles measured

using Unique Molecular Identifiers, or UMIs. From these profiles, it is possible to com-

pute a cell similarity graph where nodes represent cells and edges connect closely con-

nected points as calculated using a kernel function. Kernel functions are most commonly

encountered when performing kernel density estimation (KDE), where they are used to

measure the amount of data in a region of the feature space. These functions can also be

used to build a graph by measuring the similarity between data points. Here similarity is

the inverse measure of distance. These similarities can be used to calculate an adjacency

matrix for a graph. The choice of kernel method preserves local neighborhoods in the

data. Distances are then calculated along edges of the graph. It has been shown that in

the limit as the number of points grows large distances along a graph calculated over data
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sampled from a manifold approximate distances along that manifold [39]. This becomes

possible with single-cell methods because the number of data points scales from the tens

of thousands to millions.

Manifold theory provides many tools for characterizing data. For example, geometric

diffusion has been used in scRNA-seq for data visualization [41, 42], denoising [43], batch

normalization [44], and trajectory inference [45]. Data diffusion is related to Markov pro-

cesses, which are used to model random walks. Applied to a graph, a Markov diffusion

operator can be obtained using a row-normalized affinity matrix where the values in each

row sums to 1. Eigenvectors of this matrix provide paths through the data that suggest tran-

sitions between cellular states that are analogous to the valleys in the Waddington Land-

scape. Representations of data using these eigenvectors are called Diffusion Maps [41].

Figure 1.2 shows a PHATE visualization of the data colored by the first two non-trivial

Figure 1.1: Application of manifold learning to single-cell biology. (a) In the Waddington Landscape
model, cells are likely to be found in states of low free energy depicted as valleys and progress from states
of high to low free energy. (b) We can recreate these paths from data sampled from this manifold using a
graph. (c) The graph representation is useful for many downstream analysis tasks.
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eigenvectors of the diffusion operator on a graph constructed from 392 cells generated

from trans-differentiating fibroblasts by Treutlein et al. [40]. The first non-trivial eigen-

vector, ψ2, has a maximum near the mouse embryonic fibroblasts (MEF) and minima at

the two terminally differentiated clusters, Neuron and Myocyte. Thus, this eigenvector

traces the developmental path through trans-differentiation. The next eigenvector, ψ3, has

a maximum at the Myocyte cluster and a minimum at the neuronal state. Note, this eigen-

vector traces a path through the data, but not one that follows a natural developmental

Figure 1.2: Eigenvectors reveal paths through data. (a) A PHATE embedding of 329 trans-differentiated
fibroblasts colored by cluster labels identified by Treutlein et al. [40]. Cells from the earliest time point are
Mouse Embryonic Fibroblasts (MEF) and transition into either neurons or myocytes. (b, c) The first two
non-trivial eigenvectors of the diffusion operator reveal paths through the data.
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progression. To interpret the results of manifold learning techniques, it is often crucial to

incorporate prior knowledge about the system under investigation. In this case, we know

the transition starts from MEF and terminates at Neuron and Myocyte for ψ2. We also

know that each of the extrema of ψ3 indicate a terminal state and that there is no process

going from Neuron to Myocyte in this system. This information helps orient inferences

made from manifold and diffusion methods.

Another framework for single-cell analysis is deep learning using neural networks.

Neural networks are computing systems that consist of complex arrangements and inter-

connections between simple units called neurons. Each neuron receives a series of inputs

that are multiplied by weights and summed. This sum is then passed through a non-linear

activation function and used as input to another set of neurons in the next layer. Most

neural network arrangements, called architectures, consist of layers of neurons. Generally,

all neurons within a layer receive the same set of inputs, but each neuron has different

weights associated with each input and therefore activates in response to different patterns

of input. Modern neural networks consist of many layers. For example Inception v3, the

record-breaking image classification network from Google, is 48 layers deep, hence the

term deep learning.

The power of deep learning originates from these networks’ potential to learn com-

plex non-linear representations of data. Unlike Principal Components Analysis (PCA) or

Diffusion Maps, which apply set transformations of the data to obtain useful representa-

tions, neural networks learn representations implicitly as they are optimized to perform

a specific task. One of the most fundamental representation learning networks, the au-

toencoder, is trained to reproduce it’s input as output while constraining the network to

encode information into a bottleneck layer consisting of many fewer neurons than input

features. A common cost function for the autoencoder is mean-squared error between the

input and the output. This function is used to calculate how well the network performs a

task. Thus, training the network consists of random initialization of weights and biases
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for each neuron, followed by evaluation of the network on a batch of input data. Finally,

the output is compared to the input using the cost function and the gradient of the cost

with respect to each of the weights and biases is calculated. These gradients are then

backpropogated through the network such that the cost function is minimized. The steps

after initialization are repeated until the network converges, i.e. subsequent updates to the

network parameters stop improving the cost function.

Although the autoencoder is trained based on it’s performance at recreating it’s in-

put, the utility of the network is the representation learned in the bottleneck layer. In the

standard autoencoder, there is no constraint on the representation in the bottleneck layer.

However, the literature in deep learning is built on iterative advances on existing designs.

A common approach to modifying an existing neural network is to add constraints. Con-

straints are terms added to the cost function that alter the representations learned by a

network. For example, one could constrain the sum of the weights and biases in a layer

of a network using an L2 regularization. This term adds the sum of squared weights in a

layer of the network to the cost function. Penalizing large weights can prevent a network

from overfitting [46]. There are almost as many constraints as neural network papers and

they can be used for everything from data denoising [47] to image classification [48]

A powerful autoencoder for single-cell analysis is SAUCIE, a Sparse Autoencoder

for Unsupervised Clustering, Imputation and Embedding and batch normalization [19].

SAUCIE contains several novel constraints that allow the network to perform each of these

tasks across training modes. For example, one such innovation is Information Dimension

(ID) regularization that promotes binary activation of neurons in a layer of the network.

This binary encoding for each cell is then used to aggregate cells into clusters for annota-

tion. Another variation of the autoencoder for biological data is the single-cell Variational

Inference (scVI) network [22]. scVI is derived from the Variational Autoeconder, which

introduces a constraint on the bottleneck representation to encode each point to a Gaus-

sian ball and offers a probabilistic interpretation for the representation. scVI builds on this
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framework using four networks to learn both a probabilistic latent representation and a

batch-specific noise estimate in the bottleneck layer. Two more networks are used to learn

cell-specific scaling, counts, and dropout parameters that are fed to a generative model that

recreates the original data. scVI has been further extended across six different tools for

various analysis tasks. The flexibility of neural networks provides many opportunities to

develop tools for single-cell analysis.

These two frameworks of manifold theory and deep learning can be combined to sug-

gest novel methods to summarize data. Traditional biological data analysis has been dom-

inated by discrete cluster descriptions. A classic example is the collection of discrete

haematopoietic states that can be found in a standard immunology textbook. Recent ad-

vances in single-cell sequencing have revealed that this process is rather a continuous

spectrum of states [49]. More recently, continuum-data summarizations are now proving

highly advantageous. One example is archetypal analysis [50, 51], which is a technique

that fits a convex hull to the data where the corners of the convex hull represent extrema

and other data points are convex mixtures of the extrema. In contrast to clustering that

assumes cells occupy distinct and disconnected spaces, archetypal analysis describes a

spectrum of cell states.

In this thesis, I will describe three algorithms for single-cell analysis. The first, Vertex

Frequency Clustering (VFC) uses graph structure and metadata variables, such as experi-

mental condition, to identify populations of cell with similar spectral characteristics across

those labels. When applied to condition labels, VFC identifies population of cells with

similar responses to an experimental perturbation. Next, I will present MELD, a method

for comparative analysis of single-cell datasets collected from different experimental con-

ditions. Rather than characterize the effect of an experimental treatment at the level of

clusters, MELD measures this effect continuously across a graph representation of the

data. This provides a single-cell estimate of treatment effect measured as the relative like-

lihood of observing a cell in each condition. Finally, I will describe AAnet, an autoencoder
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with novel regularizations the provides a scalable and non-linear approach to the task of

archetypal analysis.
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Abstract

We propose a novel approach for clustering the vertices of a graph. The method, Vertex-

Frequency Clustering (VFC), considers the local harmonic content of one or many graph

signals, forming partitions based on spectral features in the input signal. The method can

be related to spectral clustering, and the length scale over which frequencies are considered

is tunable. This allows one to cluster data based on intrinsic graph geometry in the context

of signal dynamics. VFC is useful for unravelling active regions in a signal, collecting

sets of similar observations, or detecting anomalies. We demonstrate the utility of VFC
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in synthetic and biological data, and show how VFC can be used to identify observations

with similar feature sets and signal profiles.

Contribution

I identified the motivating problem for this chapter, trying to identify populations of data

with similar distributions of signal distribution. I worked with Jay Stanley to adapt the

vertex frequency analysis of Shuman et al. [52] for single-cell data. I led the analysis of

the biological and simulated data and designed the figures. Jay and I co-wrote the paper. I

am the primary author of the introduction, single-cell analysis, and discussion.

2.1 Introduction

Many modern datasets naturally occur as weighted graphs, such as social networks, sensor

networks, or road connectivity maps. While existing graph based clustering methods [26,

29, 53–55] can partition graphs into localized modules, they often do not take into account

signals on the graph, which can greatly inform clustering in many real-world situations.

For instance, partitionings of road maps can be enhanced by taking into account traffic flow

patterns, groupings of neurons can become more functionally relevant if accounting for

firing or activity signals, and social network groupings can become more coherent if taking

into account features of people such as their political beliefs or age demographics. In these

examples, the graph is fixed based on some underlying data structure, either geography or

anatomy, while the signals are acquired through some independent process. Here, we

tackle this problem by using tools from graph signal processing. In particular, we use the

frequency domain information of signals on a graph by using a localized graph Fourier

transform at each vertex, leading to a vertex-frequency clustering algorithm that provides

more informative and interpretable clusterings of large graphs.
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We propose a clustering method that considers graph structure in the context of one or

multiple graph signals. The method, which we call Vertex-Frequency Clustering (VFC),

is constructed through a multiscale representation of the input signal using an extension of

the Short Time Fourier Transform (STFT) of classical Euclidean signal processing. This

representation uses graph frequencies to localize the frequency content of the graph signal

at each node in the graph. By clustering over this representation, VFC partitions the data

in the context of signal behavior, separating populations that are smooth or constant in

the signal from those where the signal is strongly trending, oscillating, or divergent. In

simulations, we use VFC to identify partitions that disentangle the signal of a simulated

experimental perturbation, and we use VFC partitions to detect regions of anomalous fre-

quency signatures in graph signals. In these ground-truth datasets we show that VFC

achieves superior qualitative and quantitative performance to existing methods. Finally,

we apply VFC to separate biologically relevant populations of pancreatic beta cells based

on their response to an experimental stimulus.

2.1.1 Prior Works

Generalization of classical signal processing notions to irregular domains is a focus of

graph signal processing [56]. In particular, time-frequency frames have been of key in-

terest for extension to the graph setting, where the vertex domain (i.e. the set of nodes in

a graph) is treated analogously to the time domain. Eigenvectors of the graph Laplacian

are treated as the harmonics of the graph. The seminal work of [41] established diffu-

sion wavelets, a set of orthonormal wavelet frames for irregular domains composed of a

sequence of decompositions and low rank approximations. Later works by [57] treated

vertex-frequency analysis by defining wavelets directly in the graph spectral domain. Sub-

sequently, a flurry of works have developed wavelets with desirable features such as tight

frames [58] that adapt to the density of Laplacian eigenvalues [59], and fast decomposi-
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tions [60].

The first approach to incorporating graph signal frequency for clustering was proposed

in [52], and it has direct roots to spectral clustering [61]. The notion of using vertex-

frequency analysis for localizing signal components was discussed in [62], but clustering

was not the focus of this chapter. Here, we extend the work of [52], which proposed the

windowed graph Fourier transform (WGFT).

2.1.2 Notation

Let v = [v(i)]Ni=1 be a vector in RN with i-th entry v(i) ∈ R. Construct a set of vectors,

V = {vj : vj ∈ RN}Dj=1. Then we may construct a D ×N matrix V = [vj]
D
j=1 with vj as

its j-th column. We index this column by V(·,j) = vj . Similarly we index the i-th row by

V(i,·) = [vj(i)]
D
j=1, and let V(i,j) = vj(i). Let {x, y} ⊂ RN .

Define x ◦ y as the Hadamard (element-wise) product of two vectors. Choosing A ∈

RN×N , we define [A� y](i,·) = A(i,·) ◦ y, the row-wise Hadamard product. Note that

V = I� [αi]
N
i=1 for αi ∈ R is a diagonal matrix with V(i,i) = αi.

2.2 Background

2.2.1 Graph Signal Processing

For a undirected, weighted graph with vertex set V = {vi}Ni=1 and edge weightsW : V 2 7→

R, the graph Laplacian L is a difference operator on the space of functions g : V 7→ R.

The functions in this space can be treated as graph signals defines over each vertex. The

graph Laplacian can be used for harmonic analysis on graphs in analogy to the Euclidean

setting [56]. These tools form the field of graph signal processing, which uses the fact that

the Laplacian eigenbasis is interpretable as a Fourier basis with frequencies Λ = {λi}Ni=1
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and corresponding harmonics Ψ = {ψi}Ni=1
1.

We use the normalized Laplace operator L. Let d(i) =
∑

jW (vi, vj). Then L satisfies

(Lfk)i = 1√
d(i)

∑
xj∈X

( fk(i)√
d(i)
− fk(j)√

d(j)

)
. The eigenvalues of this operator satisfy 0 ≤

λ ≤ 2, and its eigenfunctions can be used to describe random-walk processes on graphs.

More concretely, let D be the diagonal degree matrix with D(i,i) = d(i) and let W be

the weight matrix with W(i,j) = W (vi, vj). Then one choice of random-walk operator is

M = D−1W. Letting µi and φi be the i-th eigenvalues and eigenvectors of this matrix,

one has the relations µi = 1− λi and φi = D−1/2ψi.

2.2.2 Vertex-Frequency Analysis

Briefly, we review the construction of the generalized translation and modulation by [52].

These tools are used to build a vertex-frequency transform.

The derivation of the STFT relies on well-defined notions of translation and modula-

tion. For general graph signals, these concepts cannot be applied due to vertex irregularity.

However, for certain classes of functions, generalized translation and modulation can be

performed. These functions, which must satisfy localization in both the vertex and fre-

quency domain, can be translated and modulated via a generalization of convolution de-

veloped by [52]. This generalization allows us to define the WGFT by using low-frequency

kernels centered at every vertex.

To form a WGFT frame, a window kernel is translated to each vertex i, gi(n) =

(Tig)(n) =
√
N
∑N

`=1 ĝ(λ`)ψ`(i)ψ`(n), and modulated to every frequency k via gi,k(n) =

(Mkgi)(n) =
√
Nψk(n)gi(n). [52] proposed the use of the heat kernel ĝ(λ) = exp(−tλ)

for a window function. This construction forms a frame, which can be used for vertex-

frequency analysis via the spectrogram matrix Stf(i, k) = [Stf ]i,k = 〈f, gti,k〉. We refer

the reader to [52] for a detailed description of generalized convolution, translation, and

1We will treat the eigenvectors of L as a set and as a matrix with each eigenvector as a column.
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modulation on graphs.

Finally, in [52], the authors demonstrate a toy example of “signal-biased spectral clus-

tering” (SBSC) using the features generated by the WGFT. In brief, their algorithm pro-

ceeds as follows:

1. Generate a WGFT of the input signal, St(f) = Stf ,

2. Apply an element-wise nonlinear activation function,

S′tf = tanh(α|Stf |),

3. Perform k-means clustering over the transformed points

Y = {y1,y2, . . . ,yN : yi = [S′tf ](i,·)}

Building on this work, we propose a method to analyze graph signal frequencies at

many scales using a multi-resolution adaptation of the WGFT. We also use a PCA-based

dimensionality reduction of this frequency information to produce a reduced feature space

that can be used for efficient data partitioning.

2.3 Vertex-Frequency Clustering

2.3.1 Problem Statement

We seek to form k partitions of a dataset X = {xi}Ni=1 that capture the dynamics of one

or many signals F = {fi : X 7→ R}di=1 relative to the latent geometry of X . This

geometry is captured by an undirected, weighted graph with vertex set V = X and edge

weights W : V 2 7→ R.2 Our proposed approach leverages the joint localization of graph

signals provided by the WGFT to cluster the data in a basis that describes both vertex and

2In this formulation we consider clustering the vertices of a graph. When no a priori graph exists for
datasets of the form X = {xi : xi ∈ RD}Ni=1, we construct a graph by defining a vertex for each data point
xi. The weights of this graph are then given by a Mercer kernel K : R2×D 7→ R such that W (xi, xj) =
K(xi, xj)
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frequency patterns. These patterns are obtained by aggregating Fourier features from the

input signals over many vertex scales. Then, the aggregated features are reduced using

principal components analysis to obtain salient directions of variance in the frequency

space. The result of this is clustered using k-Means.

2.3.2 Frame Selection

We begin by noting that one may define the WGFT as the graph Fourier transform of a

set of overlapping vertex slices of an input signal x. Letting gi be a vector that contains

the values of the window at each vertex around i, windowing may be written as gi ◦ f .

Subsequently, the Fourier transform of the windowed signal ĝi ◦ f is taken, yielding a

set of frequency coefficients for each vertex slice. Using this second definition, the WGFT

can be expressed using a filter matrix Pt that satisfies the vertex and frequency localization

requirements of [52]. In the case of the heat kernel, Pt = exp(−tL) such that gi = Pt
(i,·).

However, as exp(−tL) is computationally expensive to calculate, we note that the rows of

a Markov matrix P = D−1W = M may be used analogously3. Then, the WGFT is

St(f) = ΨT
[
Pt � f

]T
=
[
Pt � f

]
Ψ. (2.1)

From this, we have the following lemma, which concerns the window scale of the WGFT:

Lemma 1 (Fourier scaling4). Define St(f) = St as the windowed graph Fourier transform

of a signal f with diagonalizable window matrix P. Then

lim
t→0

St(f) = fT �Ψ

Proof. For any diagonalizable matrix A0 = UV0U−1 = I, so

3This construction relies on a graph with self-loops, as is the case with kernel matrices. This requirement
may be relaxed by considering the related lazy random walk matrix, P = 1

2

(
I + D1/2MD−1/2

)
4Note that this is an elaboration of a suggested result in [52]
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lim
t→0

St(f) =
[
P0 � f

]
Ψ = [I� f ] Ψ = fT �Ψ.

Thus, in the small scale limit the WGFT acts as a rescaling of the eigenvectors of the

graph Laplacian. Consequently, if one has f = 1, the all-ones vector, then limt→0 St(f) =

Ψ, and SBSC amounts to traditional spectral clustering with an activation function.

2.3.3 VFC

Our proposed approach, VFC, is built by considering geometry over many scales. As

clusters can manifest over many scales in a graph, we create a sequence of WGFT frames

at Ω scales starting from t = p by the collection G = {P2t}Ω
t=p to represent the graph

over multiple geometric scales. The diffusion time, t, controls the radius of the geometry

considered for each frame set.

We use this set of frames to analyze each signal in the ensemble f ∈ F . The application

of each frame is given by via the inner product [Stf ](i,k) = 〈f, gti,k〉 =
[
Pt

(i,·) ◦ f
]
ψk.

Each spectrogram thus contains the vertex-frequency analysis of an individual signal in

the ensemble at a specific scale. As we are primarily interested in patterns and frequency

localization, we use the common classical signal processing trick of introducing element-

wise nonlinearity to each scale. We combine all the scales for a given signal f using

Sf =
Ω−1∑
t=p

tanh(|S2tf |). (2.2)

One interpretation for the nonlinearity in this step is that it removes the phase from the

graph signal, and allows the algorithm to only consider raw frequency amplitude. If phase

was of interest we would concatenate the signal, as shown in Section 2.5.

Finally, one constructs Sf for each f ∈ F , combining these via the vertex-wise (hori-
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zontal) concatenation S′ = [Sfi]fi∈F . ThisN×(N×|F |) matrix contains Fourier features

aggregated across very local scales (which, according to Lemma 1 can converge to spectral

clustering for small p) to very large scales (as Ω→ N , features become close to the GFT).

In practice, we have found that Ω = 6 and p = 0 delivers stable clustering.

The aggregate Fourier features contained in S′ are subsequently reduced to salient

directions using principle component analysis, i.e.

Y = {yi : yi = [vjuj(i)]
k+1
j=1}

N
i=1.

where U = [ui]
N
i=1 and V = I � [vi]

N
i=1 are the eigenvector and eigenvalue matrices of

the covariance matrix C = S′TS′. This step allows the algorithm to learn patterns in the

frequency domain, which will be summarized along principal components. In contrast,

wavelet-based constructions will be restricted to contiguous regions of frequency space.

Finally, we apply k-Means to the transformed data Y .

2.4 Synthetic Examples

2.4.1 Gaussian Mixtures

As SBSC depends on a fixed window size, the clusters that the algorithm captures come

from a single scale. We found that this leads to instabilities when performing exploratory

analysis, as the choice of window size t is inflexible to cluster size in both the vertex and

frequency domains. In figure 2.1, we attempt to cluster a mixture of Gaussians sampled

from two experimental conditions (±1 in Fig. 2.1a). This mixture represents disparate

responses of two populations to the condition. In the first population (top of Fig. 2.1a),

the condition label is completely mixed, meant to exemplify a population that did not

“respond” to the experimental treatment. In contrast, the second population (bottom of

18



Fig. 2.1a) transitions between two well-separated condition clusters. In this example,

the goal is to partition the data into 4 profiles such that the unresponsive population (1)

is separated from the transitioning population, which is partitioned into two pure regions

(left: 2, right: 3) and the middle transitioning region (4). Traditional spectral clustering

(Fig. 2.1b) without the input signal according to the Ng algorithm [61] captured population

1, 2, and 3, but created a spurious cluster for the 4th partition. On the other hand, SBSC

with window size of t = 1 partitions the data across a single frequency scale, creating a

single cluster for population 1 and population 4 (Fig. 2.1c). This can be attributed due to

the high frequency content of both populations. We note that sufficient window size tuning

could produce the desired clusters in this example, but in exploratory analysis ground true

cluster granularity is rarely known.

Figure 2.1: Comparison of VFC to other graph clustering methods.

A natural alternative to the WGFT for vertex-frequency analysis across multiple scales

are spectral graph wavelets. We hypothesized that clustering the data using signal scalo-

19



grams would be robust to the single-scale limitations of SBSC. Figure 2.1d and 2.1e

demonstrate the result of scalogram clustering using 20 filters using the Abspline wavelets

of [57] and the tight frame itersine wavelets of [63]. We note that each wavelet construction

groups both population 2 and 3 together due to the similarity in the low-order frequency

content of both. However, abspline wavelets (Fig. 2.1d) fail to resolve meaningful differ-

ences amongst the remaining three higher-order clusters. We hypothesized that this could

be due to the frame bounds of the abspline wavelets, which lead to non-uniform represen-

tation of the signal across the graph frequency domain. Itersine wavelets (Fig. 2.1e) are

tight frame and do not suffer from this instability. Interestingly, this construction parti-

tioned the transitioning population 4 based on medium frequency content on the periphery

of populations 2 and 3. Despite this, each of the proposed methods were insufficient to

recover the appropriate paritioning of the data. The observation that the aforementioned

representations could not robustly capture a simple gaussian mixture scenario led us to

design a robust and expressive representation of the data. In figure 2.1f we demonstrate

clustering using our proposed representation, which we call Vertex-Frequency Clustering

(VFC). The clusters obtained by VFC are mostly contiguous in the vertex domain, but

represent the three disparate frequency regimes in the data.

2.4.2 Anomaly Detection

One application of VFC is in anomaly detection. In this setting, one wishes to capture a

small region of the graph that whose behavior is an outlier with respect to some observation

signal. Such behavior may manifest itself in the frequency spectrum, where the frequency

signature of anomalous vertices will be disparate from their neighbors. In figure 2.2 we

explore the ability of VFC to isolate an anomalous cluster. In brief, the goal in this scenario

is to separate the anomaly from the background data points in the vertex domain based on

its frequency profile alone. In figure 2.2a we show that VFC is robust to a wide range of

20



anomaly sizes in the vertex domain. In figure 2.2b we show that the method scales better

than SBSC in terms of the bandwidth size of the anomaly. Taken together, these results

indicate that VFC could be used to explore new methods for anomaly detection on graphs.
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Figure 2.2: Anomaly detection with VFC. (a) N = 750 points were sampled from a Gaussian and a graph
was built over the data. A sampling of points from the center of the Gaussian (x-axis) were selected to
be an anomaly, and a high frequency signal (bandwidth = 60) was generated on them. This signal was
combined with a low frequency signal (bandwidth = 20) which was located on the rest of the graph. Then,
clustering was performed using the indicated method and the adjusted rand index relative to the anomaly
indicator vector was recorded. (b) A similar experiment to (a) was performed, this time varying the ratio of
the anomaly signal bandwidth to the low frequency background. Wavelets and spectral clustering were left
out due to poor performance in (a).

2.5 Analysis of single-cell RNA sequencing

To demonstrate the ability for VFC to identify biological populations with various re-

sponses to perturbation, we analyzed two scRNA-seq samples of human pancreatic islets

stimulated with interferon-gamma (IFNg). Human islets from a single donor were cul-

tured for 24 hours with or without IFNg before collection for scRNA-seq. We visualized

the data using PHATE data[11]. To obtain an input signal f , cells from the IFNg condition

were assigned a value of +1 and cell from the control condition were assigned a value of

−1 (Fig. 2.3a). In [64], we recently showed that this approach is useful for understanding
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Figure 2.3: VFC captures biologically relevant populations of beta cells. (a) The input signal f denotes if
a cell recieved IFNg (f = 1) or did not (f = −1). (b) We then calculate the spectrogram S′ of f and plot
the first principle component of S′ on a PHATE embedding. (c) KMeans on S′ produces partitions of the
graph with uniform frequency. (d) The smoothed signal ffilt. (e) PC1 of the concatenation of ffilt to S′,
highlights signal frequency and sign. (f) Clustering on ffilt and S′ produces clusters that distinguish our
four conjectured populations.

the experimental conditions of a single-cell experiment.

Examining the distribution of f on a PHATE plot, we conjectured that there are four

ideal partitions of the data: two clusters only found in the IFNg or control conditions,

respectively, a third cluster transitioning between these two clusters, and a fourth cluster

projecting off the main group of cells with uniform mixing of cells from either condition.

We then calculated the combined spectrogram S′ of f and perform clustering on this matrix

setting k=4 (Fig. 2.3b,c). We observed that VFC on S′ alone partitioned each of the cells

that are exclusively found in the IFNg or control conditions in a single cluster. Examining

the first principle component (PC1) of S′, we see that indeed these two populations of cells

have similar frequencies despite being localized in different regions of the graph.

To obtain our conjectured clusters, we reasoned that we should consider not only the

frequency of the input signal, but also the sign of the smoothed signal ffilt. We used the
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graph filter proposed in [64] to filter f . Extreme values of ffilt denote areas of the graph

enriched in either condition (Fig. 2.3d). To incorporate this information, we concatenated

ffilt and S′. PC1 of this concatenated matrix separates the four conjectured populations,

and clustering on this concatenated matrix produces ideal cluster assignments (Fig. 2.3e,

f).

To confirm these clusters are biologically relevant, we examined expression of STAT1

and IRF1, two genes known to be upregulated in response to IFNg stimulation [65]. We

found that, in the clusters found from the concatenation of ffilt and S′, clusters 0 and 2

have the lowest expression of the IFNg-induced genes, cluster 1 has intermediate expres-

sion of STAT1 and IRF1, and cluster 3 has the highest expression of these two genes.

These results indicate that cluster 2, the group of cells with uniform mixture from either

condition, are unaffected by the IFNg treatment. We also find that these cells are marked

by extreme high insulin expression. Recent studies have described a subpopulation of beta

cells marked by high insulin mRNA production that are hypothesized to have functional

differences to typical beta cells [66].

2.6 Discussion

We present a novel clustering algorithm, Vertex-Frequency Clustering (VFC), that parti-

tions the vertices of a graph in the context of the local Fourier content of a signal. This

method has the potential to identify regions of a graph with divergent signal frequency

composition. On synthetic and biological data, VFC outperforms existing graph clus-

tering methods including existing and proposed frequency-biased clustering approaches.

Applied to a single-cell RNA-sequencing dataset, VFC identifies a cluster correspond-

ing to a recently-described subpopulation of pancreatic beta cells. In [64] we apply this

method for deeper single-cell RNA sequencing analysis. Future works could enhance the

algorithm using fast approximate transforms such as [67] and [60].
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Abstract

Current methods for comparing single-cell RNA sequencing datasets collected in multiple

conditions focus on discrete regions of the transcriptional state space, such as clusters of

cells. Here we quantify the effects of perturbations at the single-cell level using a contin-
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uous measure of the effect of a perturbation across the transcriptomic space. We describe

this space as a manifold and develop a relative likelihood estimate of observing each cell

in each of the experimental conditions using graph signal processing. This likelihood es-

timate can be used to identify cell populations specifically affected by a perturbation. We

also develop vertex frequency clustering to extract populations of affected cells at the level

of granularity that matches the perturbation response. The accuracy of our algorithm at

identifying clusters of cells that are enriched or depleted in each condition is, on average,

57% higher than the next-best-performing algorithm tested. Gene signatures derived from

these clusters are more accurate than those of six alternative algorithms in ground truth

comparisons.

Contribution

This project started during a laboratory hackathon in December 2017. During that event

I identified the potential for metadata label smoothing over a graph, initially proposed

by Dr. David van Dijk and Dr. Smita Krishnaswamy, as a measure of an experimental

perturbation. From that point forward I took a leadership position driving the development

of MELD. I led the algorithmic development and designed all experiments and figures with

the exception of the signal separation experiment in Figure 3.20. I wrote the manuscript

text and was helped on the methods section from Jay Stanley and Alexander Tong.

3.1 Introduction

As single-cell RNA-sequencing (scRNA-seq) has become more accessible, the design

of single-cell experiments has become increasingly complex. Researchers regularly use

scRNA-seq to quantify the effect of a drug, gene knockout, or other experimental per-

turbation on a biological system. However, quantifying the differences between single-
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cell datasets collected from multiple experimental conditions remains an analytical chal-

lenge [68]. This task is hindered by biological heterogeneity, technical noise, and uneven

exposure to a perturbation. Furthermore, each single-cell dataset comprises several intrin-

sic structures of heterogeneous cells, and the effect of the treatment condition could be

diffuse across all cells or isolated to particular populations. To address this, we develop

a method that quantifies the probability that each cell state would be observed in a given

sample condition.

Our goal is to quantify the effect of an experimental perturbation on every cell observed

in matched treatment and control scRNA-seq samples of the same biological system. We

begin by modelling the cellular transcriptomic state space as a smooth low-dimensional

manifold or set of manifolds. This approach has been previously applied to characterize

cellular heterogeneity and dynamic biological processes in single-cell data [14, 11, 17,

69, 26, 29, 9]. We then define and calculate a sample-associated density estimate, which

quantifies the density of each sample over the manifold of cell states. We then consider

differences in the sample-associated density estimates for each cell to calculate a sample-

associated relative likelihood, which quantifies the effect of an experimental perturbation

as the likelihood of observing each cell in each experimental condition (Figure 3.1).

Almost all previous work quantifying differences between single-cell datasets relies

on discrete partitioning of the data prior to downstream analysis [70–73, 8, 74–76]. First,

datasets are merged applying either batch normalization [75, 76] or a simple concatenation

of data matrices [70–73, 8, 74]. Next, clusters are identified by grouping either sets of cells

or modules of genes. Finally, within each cluster, the cells from each condition are used to

calculate statistical measures, such as fold-change between samples. However, reducing

experimental analysis to the level of clusters sacrifices the power of single-cell data. We

demonstrate cases where subsets of a cluster exhibit divergent responses to a perturbation

that were missed in published analysis that was limited to clusters derived using data ge-

ometry alone. Instead of quantifying the effect of a perturbation within clusters, we focus
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on the level of single-cells.

In the sections that follow, we show that the sample-associated relative likelihood has

useful information for the analysis of experimental conditions in scRNA-seq. First, the

relative likelihoods of each condition can be used to identify the cell states most and least

affected by an experimental treatment. Second, we show that the frequency composition of

the sample label and the relative likelihood scores can be used as the basis for a clustering

algorithm we call vertex frequency clustering (VFC). VFC identifies populations of cells

that are similarly affected (either enriched, depleted, or unchanged) between conditions at

the level of granularity of the perturbation response. Third, we obtain gene signatures of a

perturbation by performing differential expression between vertex frequency clusters.

We call the algorithm to calculate the sample-associated density estimate and relative

likelihood the MELD algorithm, so named for its utility in joint analysis of single-cell

datasets. The MELD and VFC algorithms are provided in an open-source Python package

available on GitHub at https://github.com/KrishnaswamyLab/MELD.

3.2 Results

3.2.1 Overview of the MELD algorithm

We propose a framework for quantifying differences in cell states observed across single-

cell samples. The power of scRNA-seq as a measure of an experimental treatment is that it

provides samples of cell state at thousands to millions of points across the transcriptomic

space in varying experimental conditions. Our approach is inspired by recent successes in

applying manifold learning to scRNA-seq analysis [37]. The manifold model is a useful

approximation for the transcriptomic space because biologically valid cellular states are

intrinsically low-dimensional with smooth transitions between similar states. In this con-

text, our goal is to quantify the change in enrichment of cell states along the underlying
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Figure 3.1: (a) To quantify the effect of an experiment, we model single-cell experiments as samples from a
probability density function (pdf) over the underlying transcriptomic cell state space manifold. The pdf for
the control sample is the frequency with which cell states are observed in the control sample compared to the
overall frequency of the cell state in both samples combined. In this context, the effect of an experimental
perturbation is to alter this probability density and thus the data density in the treatment sample relative to
the control. Therefore, the effect of an experimental perturbation can be quantified as the change in the
probability density in the experiment condition relative to the control. (b) The sample-associated relative
likelihood quantifies this effect by computing a kernel density estimate over the cell similarity graph using
graph signals representing indicator vectors for each sample. The sample-associated relative likelihood
indicates the likelihood that a particular cell is from the treatment or control conditions. (c) In traditional
analysis of scRNA-seq datasets, the clusters are based solely on the data geometry and changes in abundance
between conditions may not align with the true affected populations. Using the sample-associated relative
likelihood and VFC, we can identify the correct cluster resolution for downstream analysis.

cellular manifold as a result of the experimental treatment (Figure 3.1).

For an intuitive understanding, we first consider a simple experiment with one sam-

ple from a treatment condition and one sample from a control condition. Here, sample

refers to a library of scRNA-seq profiles, and condition refers to a particular configuration

of experimental variables. In this simple experiment, our goal is to calculate the relative

likelihood that each cell would be observed in either the treatment or control condition

over a manifold approximated from all cells from both conditions. This relative likeli-

hood can be used as a measure of the effect of the experimental perturbation because it

indicates for each cell how much more likely we are to observe that cell state in the treat-

ment condition relative to the control condition (Figure 3.1). We refer to this ratio as the

28



sample-associated relative likelihood. The steps to calculate the sample-associated rela-

tive likelihood are given in Algorithm 1 and a visual depiction can be found in Figure

S1.

As has been done previously, we first approximate the cellular manifold by construct-

ing an affinity graph between cells from all samples [14, 11, 17, 69, 26, 29, 9]. In this

graph, each node corresponds to a cell, and the edges between nodes describe the tran-

scriptional similarity between the cells. We then estimate the density of each sample over

the graph using graph signal processing [56]. A graph signal is any function that has a

defined value for each node in a graph. Here we use labels indicating the sample origin

of each cell to develop a collection of one-hot indicator signals over the graph with one

signal per sample. Each indicator signal has value 1 associated with each cell from the

corresponding sample and value 0 elsewhere. In a simple two-sample experiment, the

sample indicator signals would comprise two one-hot signals, one for the control sample

and one for the treatment sample. These one-hot signals are column-wise L1 normalized

to account for different numbers of cells sequenced in each sample. After normalization,

each indicator signal represents an empirical probability density over the graph for the cor-

responding sample. We next use these normalized indicator signals to calculate a kernel

density estimate of each sample over the graph.
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Algorithm 1: The MELD algorithm
Input: Dataset X = {x1,x2, ...,xn},xi ∈ Rm; Condition labels y s.t. yi indicates

the condition in which observation xi was sampled.

Output: Sample-associated relative likelihood Ỹnorm ∈ Rn×d where d is the

number of unique conditions in y

1. Build graph G = {V,E} by applying anisotropic or other kernel function on X

;

2. Instantiate One-Hot Indicator Y, with one column for each unique condition in

y;

3. Column-wise L1-normalize Y to yield Ynorm;

4. Apply manifold heat filter over (G,Ynorm) to calculate Ỹ, the kernel density

estimate of the data in each condition, also referred to as the sample-associated

density estimates;

5. Row-wise L1 normalize Ỹ to yield Ỹnorm also referred to as the

sample-associated relative likelihoods;

3.2.2 Calculating sample-associated density estimates

A popular non-parametric approach to estimating data density is using a kernel density

estimate (KDE), which relies on an affinity kernel function. To estimate the density of

single-cell samples over a graph, we turn to the heat kernel. This kernel uses diffusion

to provide local adaptivity in regions of varying data density [77] such as is observed in

single-cell data. Here, we extend this kernel as a low pass filter over a graph to estimate the

density of a sample represented by the sample indicator signals defined above. To begin,

we take the Gaussian KDE, which is a well known tool for density estimation in Rd. We

then generalize this form to smooth manifolds. The full construction of this generalization

is described in detail in the Methods, and a high level overview is provided here.
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A kernel density estimator f̂(x, t) with bandwidth t > 0 and kernel function K(x, y, t)

is defined as

f̂(x, t) =
1

N

N∑
i=1

K(x,Xi, t), x ∈ X (3.1)

where X is the observed data, x is some point in X := Rd (i.e., X is defined as Rd), and

X is endowed with the Gaussian kernel defined as

K(x, y, t) =
1

(4πt)d/2
e−‖x−y‖

2
2/4t (3.2)

Thus, Equation 3.2 defines the Gaussian KDE in Rd. However, this function relies on

the Euclidean distance ‖x− y‖2
2, which is derived from the kernel space in Rd. Since

manifolds are only locally Euclidean, we cannot apply this KDE directly to a general

manifold.

To generalize the Gaussian KDE to a manifold we need to define a kernel space (i.e.,

the range of a kernel operator) over a manifold. In Rd the kernel space is often defined via

infinite weighted sums of sines and cosines, also known as the Fourier series. However,

this basis is not well defined for a Riemannian manifold, so we instead use the eigen-

basis of the Laplace operator as our kernel basis. The derivation and implication of this

extension is formally explored in the Methods. The key insight is that using this kernel

space, the Gaussian KDE can be defined as a filter constructed from the eigenvectors and

eigenvalues of the Laplace operator on a manifold. When this manifold is approximated

using a graph, we define this KDE as a graph filter over the graph Laplacian given by the

following equation:

f̂(x, t) = e−tLx = Ψh(Λ)Ψ−1x (3.3)

where t is the kernel bandwidth, L is the graph Laplacian, x is the empirical density, Ψ

and Λ are the eigenvectors and corresponding eigenvalues of L, and e−tL is the matrix
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exponential. This signal processing formulation can alternatively be formulated as an

optimization with Tikhonov Regularization, which seeks to reconstruct the original signal

while penalizing differences along edges of the graph. This connection is further explored

in the Methods.

To achieve an efficient implementation of the filter in Equation 3.3, the MELD al-

gorithm considers the spectral representation of the sample indicator signals and uses a

Chebyshev polynomial approximation [78] to efficiently compute the sample-associated

density estimate (see the Methods). The result is a highly scalable implementation. The

sample-associated density estimate for two conditions can be calculated on a dataset of

50,000 cells in less than 8 minutes in a free Google Colaboratory notebook1, with more

than 7 minutes of that time spent constructing a graph that can be reused for visualization

[11] or imputation [17]. With the sample-associated density estimates, it is now possible

to identify the cells that are most and least affected by an experimental perturbation.

3.2.3 Using sample-associated relative likelihood to quantify differ-

ences between experimental conditions

Each sample-associated density estimate over the graph indicates the probability of ob-

serving each cell within a given experimental sample. For example, in a healthy periph-

eral blood sample, we would expect high density estimates associated with abundant blood

cells such as neutrophils and T cells and low density estimates associated with less abun-

dant cells types, such as basophils and eosinophils. When considering the effect of an

experimental perturbation, we are not only interested in these density estimates directly,

but we want also to quantify the change in density associated with a change in an experi-

mental variable. For example, one might want to know if a drug treatment causes a change

in probability of observing some kinds of blood cells in peripheral blood.

1Freely available at colab.research.google.com, most instances provide a 4-core 2GHz CPU
and 20GB of RAM.
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When examining the rows of the sample-associated density estimates for a single-cell,

the values represent the likelihood of observing that cell in each experimental condition.

To quantify the change in likelihood across conditions, we apply a normalization across the

likelihoods for each cell to calculate sample-associated relative likelihoods. These relative

likelihoods sum to 1 for each cell and provide a basis for quantifying the change in likeli-

hood of observing a cell in each condition. We then use these relative likelihoods as a basis

for identifying cell states that are enriched, depleted, or unaffected by the perturbation.

The sample-associated relative likelihoods can be used to analyze scRNA-seq pertur-

bation studies of varying experimental designs. For cases with only one experimental and

one control condition, we typically only refer to the sample-associated relative likelihood

of the treatment condition for downstream analysis. For more complicated experiments

comprising replicates, we normalize matched experimental and control conditions indi-

vidually, then average the relative likelihood of the each condition across replicates, as

in Section 3.2.7 and Section 3.2.8. With datasets comprising three or more experimental

conditions, each sample-associated relative likelihood may be used individually to ana-

lyze cells that are enriched, depleted, or unaffected in the corresponding condition, as in

Section 3.2.9. We expect this flexibility will enable the use of sample-associated density

estimates and relative likelihoods across a wide range of single-cell studies.

3.2.4 Vertex-frequency clustering identifies cell populations affected

by a perturbation

A common goal for analysis of experimental scRNA-seq data is to identify subpopulations

of cells that are responsive to the experimental treatment. Existing methods cluster cells

by transcriptome alone and then attempt to quantify the degree to which these clusters are

differentially represented in the two conditions. However, this is problematic because the

granularity, or sizes, of these clusters may not correspond to the sizes of the cell popu-
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lations that respond similarly to experimental treatment. Additionally, when partitioning

data along a continuum, cluster boundaries are somewhat arbitrary and may not correspond

to populations with distinct differences between conditions. Our goal is to identify clus-

ters that are not only transcriptionally similar but also respond similarly to an experimental

perturbation (Figure 3.2).

A naı̈ve approach to identify such clusters would be to simply concatenate the sample-

associated relative likelihood to the gene expression data as an additional feature and clus-

ter on these combined features. However, the magnitude of the relative likelihood does not

give a complete picture of differences in response to a perturbation. For example, even in

a two-sample experiment, there are multiple ways for a cell to have a sample-associated

relative likelihood of 0.5. In one case, it might be that there is a continuum of cells one end

of which is enriched in the treatment condition and the other end is enriched in the con-

trol condition. In this case transitional cells halfway through this continuum will have a

sample-associated relative likelihood of 0.5 (we show an example of this in Section 3.2.6).

Another scenario that would result in a relative likelihood of 0.5 is even mixing of a pop-

ulation of cells between control and treatment conditions with no transition, i.e., cells that

are part of a non-responsive cell subtype that is unchanged between conditions (we show

an example of this in Section 3.2.8 and Figure S2). To differentiate between such scenar-

ios we must consider not only the magnitude of the sample-associated relative likelihood

but also the frequency of the input sample indicator signals over the manifold. Indeed in

the transitional case the input sample labels change gradually or has low frequency over the

manifold, and in the even-mixture case it changes frequently between closely connected

cells or has high frequency over the manifold.

As no contemporary method is suitable for resolving these cases, we developed an al-

gorithm that integrates gene expression, the magnitude of sample-associated relative like-

lihoods, and the frequency response of the input sample labels over the cellular manifold

(Figure S2). In particular, we cluster using local frequency profiles of the sample indicator
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signal around each cell. This method, which we call vertex-frequency clustering (VFC), is

an adaptation of the signal-biased spectral clustering proposed by Shuman et al. [52]. The

VFC algorithm provides a feature basis for clustering based on the spectrogram [52] of the

sample indicator signals, which can be thought of as a histogram of frequency components

of graph signals. We observe that we can distinguish between non-responsive populations

of cells with high frequency sample indicator signal components and transitional popula-

tions with lower frequency indicator signal components. The VFC feature basis combines

this frequency information with the magnitude of the sample-associated relative likelihood

and the cell similarity graph to identify phenotypically similar populations of cells with

uniform response to a perturbation. The algorithm is discussed in further detail in the

Methods.

With VFC, it is possible to define a new paradigm for recovering the gene signature

of a perturbation. In traditional analysis, where clusters are calculating data geometry

alone, gene signatures are often calculated using differential expression analysis between

experimental conditions within each cluster (Figure S3a). The theory of the traditional

framework is that these expression differences reflect the change in cell states observed as

a result of the perturbation. However, if the cluster contains multiple subpopulations that

each contain different responses to the perturbation, we can first separate these populations

using VFC and then compare each subpopulation individually (Figure S3b). Not only

does this allow for more finely resolved comparisons, we show in the following section

that this approach is capable of recovering gene signatures more accurately than directly

comparing two samples.

We describe a full pipeline for analysis of scRNA-seq datasets with MELD and VFC

in Supplementary Note 1 and Figure S4.
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Figure 3.2: Vertex Frequency Analysis using the sample-associated indicator signals and relative likelihood
(a) The Windowed Graph Fourier Transform of the sample-associated indicator signals and values of sample-
associated relative likelihood values at four example points shows distinct patterns between a transitional
(blue) and unaffected (red) cell. This information is used in spectral clustering, resulting in Vertex Frequency
Clustering. (b) Characterizing Vertex Frequency Clusters with the highest and lowest sample-associated
relative likelihood values elucidates gene expression changes associated with experimental perturbations.
(c) Examining the distribution of sample-associated relative likelihood scores in vertex-frequency clusters
identifies cell populations most affected by a perturbation.
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3.2.5 Quantitative validation of the MELD and VFC algorithms

No previous benchmarks exist to quantify the ability of an algorithm to capture changes in

density between scRNA-seq samples. To validate the sample-associated relative likelihood

and VFC algorithms, we used a combination of simulated scRNA-seq data and synthetic

experiments using previously published datasets. To create simulated scRNA-seq data,

we used Splatter [79]. To ensure the algorithms worked on real scRNA-seq datasets, we

also used two previously published datasets comprising Jurkat T cells [8] and cells from

whole zebrafish embryos [75]. In each dataset, we created a ground truth relative likeli-

hood distribution over all cells that determines the relative likelihood each cell would be

observed in one of two simulated conditions. In each simulation, different populations

of cells of varying sizes were depleted or enriched. Cells were then randomly split into

two samples according to this ground truth relative likelihood and used as input to each

algorithm. More detail on the comparison experiments is provided in the Methods.

We performed three sets of quantitative comparisons. First, we calculated the degree

to which the MELD algorithm captured the ground truth relative likelihood distribution in

each simulation. We found that MELD outperformed other graph smoothing algorithms

by 10-52% on simulated data and 36-51% on real datasets (Figure 3.3, Table S1). We also

determined that the MELD algorithm is robust to the number of cells captured in the exper-

iment with only a 10% decrease in performance when 65% of the cells in the T cell dataset

were removed (Figure S5). We used results from these simulations to determine the opti-

mal parameters for the MELD algorithm (Summplementary Note 3). Next, we quantified

the accuracy of the VFC algorithm to identify clusters of cells that were enriched or de-

pleted in each condition. When compared to six common clustering algorithms including

Leiden [27] and CellHarmony [80], VFC was the top performing algorithm on every sim-

ulation on the T cell data and best performing on average on the zebrafish dataset with

a 57% increase in average performance over Louvain, the next best algorithm (Figures
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S6a-c & S7, Table S2). Finally, we calculated how well VFC clusters could be used to

calculate the gene signature of a perturbation. Gene signatures obtained using VFC were

compared to signatures obtained using direct comparison of two conditions–the current

standard–and those obtained using other clustering algorithms (Figure S6d). These re-

sults confirm that MELD and VFC outperform existing methods for analyzing multiple

scRNA-seq datasets from different experimental conditions.

3.2.6 The sample-associated relative likelihood identifies a biologi-

cally relevant signature of T cell activation

To demonstrate the biological relevance of the MELD algorithm, we analyze Jurkat T cells

cultured for 10 days with and without anti-CD3/anti-CD28 antibodies as part of a Cas9

knock-out screen published by Datlinger et al. [8] (Figure 3.4a). The goal of this experi-

ment was to characterize the transcriptional signature of T cell Receptor (TCR) activation

and determine the impact of gene knockouts in the TCR pathway. First, we visualized cells

using PHATE, a visualization and dimensionality reduction tool for single-cell RNA-seq

data (Figure 3.4b) [11]. We observed a large degree of overlap in cell states between the

stimulated and control conditions, as noted in the original study [8].

To determine a gene signature of the TCR activation, we considered cells with no

CRISPR perturbation. First, we computed sample-associated relative likelihood and VFC

clusters on these samples. Then we derived a gene signature by performing differential

expression analysis between VFC clusters with the highest and lowest relative likelihood

values. We identified 2335 genes with a q-value < 0.05 as measured by a rank sum test

with a Benjamini & Hochberg False Discovery Rate correction [81]. We then compared

this signature to those obtained using the same methods from our simulation experiments.

To determine the biological relevance of these signature genes, we performed gene set

enrichment analysis on both gene sets using EnrichR [82]. Considering the GO terms

38



Figure 3.3: Quantitative comparison of the sample-associated relative likelihood and VFC. (a) Single-cell
datasets were generated using Splatter [79] or taken from previously published experiments [8, 75]. Ground
truth sample assignment probabilities with each of two conditions were randomly generated 20 times with
varying noise and regions of enrichment for the simulated data and 100 random sample assignments were
generated for the real-world datasets. Each cell is colored by the probability of being assigned to the treat-
ment sample. (b) Pearson correlation comparison of the sample-associated relative likelihood algorithm to
kNN averaging of the sample labels and graph averaging of the sample labels. Higher values are better. (c)
Comparison of VFC to popular clustering algorithms. Adjusted Rand Score (ARS) quantifies how accu-
rately each method detects regions that were enriched, depleted, or unchanged in the experimental condition
relative to the control. Higher values are better.
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highlighted by Datlinger et al. [8], we found that the MELD gene list has the highest com-

bined score in all of the gene terms we examined (Figure 3.4d). These results show that

the sample-associated relative likelihood and VFC are capable of identifying a biologi-

cally relevant dimension of T cell activation at the resolution of single-cells. Furthermore,

the gene signature identified using the MELD and VFC outperformed standard differential

expression analyses to identify the signature of a real-world experimental perturbation.

Finally, to quantitatively rank the impact of each Cas9 gene knockout on TCR activa-

tion we examined the distribution of sample-associated relative likelihood values for all

stimulated cells transfected with gRNAs targeting a given gene (Figure S8). We observed

a large variation in the impact of each gene knockout consistent with the published results

from Datlinger et al. [8]. Encouragingly, our results agree with the bulk RNA-seq valida-

tion experiment of Datlinger et al. [8] showing strongest depletion of TCR response with

knockout of kinases LCK and ZAP70 and adaptor protein LAT. We also find a slight in-

crease in relative likelihood of the stimulation condition in cells in which negative regula-

tors of TCR activation are knocked out, including PTPN6, PTPN11, and EGR3. Together,

these results show that the MELD and VFC algorithms are suitable for characterizing a

biological process such as TCR activation in the context of a complex Cas9 knockout

screen.

3.2.7 VFC improves characterization of subpopulation response to

chd loss-of-function

To demonstrate the utility of sample-associated relative likelihood analysis applied to

datasets composed of multiple cell types, we analyzed a chordin loss-of-function exper-

iment in zebrafish using CRISPR/Cas9 (Figure S9) [75]. In the experiment published

by Wagner et al. [75], zebrafish embryos were injected at the 1-cell stage with Cas9 and

gRNAs targeting either chordin (chd), a BMP-antagonist required for developmental pat-
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Figure 3.4: MELD recovers signature of TCR activation. (a) Jurkat T-cells were stimulated with α-
CD3/CD28 coated beads for 10 days before collection for scRNA-seq. (b) Examining a PHATE plot, there
is a large degree of overlap in cell state between experimental conditions. However, after MELD it is clear
which cells states are prototypical of each experimental condition. (c) Vertex Frequency Clustering identifies
an activated, a naive, and an intermediate population of cells. (d) Signature genes identified by comparing
the activated to naive cells are enriched for annotations related to TCR activation using EnrichR analysis.
Combined scores for the MELD gene signature are shown in red and scores for a gene signature obtained
using the sample labels only are shown in grey.
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terning, or tyrosinase (tyr), a control gene. Embryos were collected for scRNA-seq at

14-16 hours post-fertilization (hpf). We expect incomplete penetrance of the perturbation

in this dataset because of the mosaic nature of Cas9 mutagenesis [83].

First, we calculate the sample-associated relative likelihood between the chordin and

tyrosinase conditions. Because the experiment was performed in triplicate with three

paired chd and tyr samples, we first calculated the sample-associated density estimates

for each of the six samples. We then normalized the density estimated across the paired

chd and tyr conditions. Finally, we averaged the replicate-specific relative likelihoods of

the chd condition for downstream analysis. We refer to this averaged likelihood simply as

the chordin relative likelihood (Figure S9).

To characterize the effect of mutagenesis on various cell populations, we first exam-

ined the distribution of chordin relative likelihood values across the 28 cell state clusters

generated by Wagner et al. [75] (Figure 3.5b). We find that overall the most enriched

clusters contain mesodermal cells and the most depleted clusters contain dorsally-derived

neural cells matching the ventralization phenotype previously reported with chd loss-of-

function [84–86]. However, we observe that several clusters have a wide range of chordin

relative likelihood values suggesting that there are cells in these clusters with different

perturbation responses. Using VFC analysis we find that several of these clusters contain

biologically distinct subpopulations of cells with divergent responses to chd knock out.

An advantage of using MELD and VFC is the ability to characterize the response

to the perturbation at the resolution corresponding to the perturbation response (Figure

3.2c). We infer that the resolution of the published clusters is too coarse because the

distribution of chordin relative likelihood values is very large for several of the clusters.

For example the chordin relative likelihoods within the Tailbud – Presomitic Mesoderm

(TPM) range from 0.29-0.94 indicating some cells are strongly enriched while others are

depleted. To disentangle these effects, we performed VFC subclustering for all clusters

using the strategy proposed in Supplementary Note 1. We found 12 of the 28 published
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Figure 3.5: Characterizing chordin Cas9 mutagenesis with MELD. (a) PHATE shows a high degree of
overlap of sample labels across cell types. Applying MELD to the mutagenesis vector reveals regions of
cell states enriched in the chd or tyr conditions. (b) Using published cluster assignments2, we show that
the chd-associated relative likelihood quantifies the effect of the experimental perturbation on each cell,
providing more information than calculating fold-change in the number of cells between conditions in each
cluster (grey dot), as was done in the published analysis. Color of each point corresponds to the sample
labels in panel (a). Generally, average relative likelihood within each cluster aligns with the fold-change
metric. However, we can identify clusters, such as the TPM or TSC, with large ranges of relative likelihoods
indicating non-uniform response to the perturbation. (c) Visualizing the TPM cluster using PHATE, we
observe several cell states with mostly non-overlapping relative likelihood values. (d) Vertex Frequency
Clustering identifies four cell types in the TPM. (e) We see the range of relative likelihood values in the
TPM cluster is due to subpopulations with divergent responses to the chd perturbation. (f) We observe that
changes in gene expression between the tyr (blue) and chd (red) conditions is driven mostly by changes in
abundance of subpopulations with the TPM cluster.
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clusters warranted further subclustering with VFC resulting in a total of 50 final cluster

labels (Figure S10j). To determine the biological relevance of the VFC clusters, we man-

ually annotated each of the three largest clusters subdivided by VFC revealing previously

unreported effects of chd loss-of-function within this dataset. A full exploration can be

found in Supplementary Note 2 with the results of TPM cluster shown in Figure 3.5c-f.

3.2.8 Identifying the effect of IFNγ stimulation on pancreatic islet

cells

To determine the ability of the MELD and VFC to uncover biological insights, we gen-

erated and characterized a dataset of human pancreatic islet cells cultured for 24 hours

with and without interferon-gamma (IFNγ), a system with significant clinical relevance

to auto-immune diseases of the pancreas such as Type I Diabetes mellitus (T1D) and islet

allograft rejection [87]. Previous studies have characterized the effect of these cytokines

on pancreatic beta cells using bulk RNA-sequencing[88], but no studies have addressed

this system at single-cell resolution.

To better understand the effect of immune cytokines on islet cells, we cultured islet

cells from three donors for 24 hours with and without IFNγ and collected cells for scRNA-

seq. After filtering, we obtained 5,708 cells for further analysis. Examining the expression

of marker genes for major cell types of the pancreas, we observed a noticeable batch effect

associated with the donor ID, driven by the maximum expression of glucagon, insulin,

and somatostatin in alpha, beta, and delta cells respectively (Figure S11a). To correct for

this difference while preserving the relevant differences between donors, we applied the

MNN kernel correction described in the Methods. Note, here we are applying the MNN

2Abbreviations: MLP: Lateral plate, TPM: Tailbud - Presomitic mesoderm, HG: Hatching gland, MBI:
Blood island, EPP: Epidermal - pfn1, MEN: Endothelial, PRD: Periderm, EPA: Epidermal anterior, EPO:
Otic placode, LLP: Lateral line, EPF: Epidermal - foxi3a, GL: Germline, NRB: Rohon beard, NFP: Floor-
plate, MHF: Heart field, MPA: Pharyngeal arch, NCC: Neural crest - crestin, END: Endoderm, TSC: Tailbud
- spinal cord, NC: Neural crest, NTE: Telencephalon, MPD: Pronephric duct, NHB: Hindbrain, NMB: Mid-
brain, NTC: Notocord, NDI: Diencephalon, DN: Neurons, OP: Optic
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correction is only applied across donors, not across the IFNg treatment. We developed

guidelines for applying batch correction prior to running MELD in Supplementary Note

3.

To quantify the effect of IFNγ treatment across these cell types, we calculated the

sample-associated relative likelihood of IFNγ stimulation using the same strategy to han-

dle matched replicates as was done for the zebrafish data (Figure 3.6a). We then used

established marker genes of islet cells [89] to identify three major populations of cells cor-

responding to alpha, beta, and delta cells (Figures 3.6a-b & S11b). We next applied VFC

to each of the three endocrine cell types and identified a total of nine clusters. Notably, we

found two clusters of beta cells with intermediate IFNg relative likelihood values. These

clusters are cleanly separated on the PHATE plot of all islet cells (Figure 3.6a) and to-

gether the beta cells represent the largest range of IFNg relative likelihood scores in the

dataset.

To further inspect these beta cell clusters, we consider a separate PHATE plot of the

cells in the four beta cell clusters (Figure 3.6e). Examining the distribution of input sample

signals values in these intermediate cell types, we find that one cluster, which we label as

Non-responsive, exhibits high frequency input sample signals indicative of a population

of cells that does not respond to an experimental treatment. The Responsive - Mid cluster

matches our characterization of a transitional population with a structured distribution of

input sample signals. Supporting this characterization, we find a lack of upregulation in

IFNγ-regulated genes such as STAT1 in the non-responsive cluster, similar to the cluster

of beta cells with the lowest IFNg relative likelihood values (Figure 3.6f).

In order to understand the difference between the non-responsive beta cells and the re-

sponsive populations, we calculated differential expression of genes in the non-responsive

clusters and all others. The gene with the greatest difference in expression was insulin, the

major hormone produced by beta cells, which is approximately 2.5-fold increased in the

non-responsive cells (Figure 3.6f). This cluster of cells bears resemblance to a recently
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described “extreme” population of beta cells that exhibit elevated insulin mRNA levels

and are found to be more abundant in diabetic mice[90, 66]. That these cells appear non-

responsive to IFNγ stimulation and exhibit extreme expression of insulin suggests that the

presence of extreme high insulin in a beta cell prior to IFNγ exposure may inhibit the

IFNγ response pathway through an unknown mechanism.

We next characterized the gene expression signature of IFNγ treatment across all three

endocrine cell types (Figure 3.6c-d). Using a rank sum test to identify genes that change

the most between the clusters with highest and lowest IFNg relative likelihood values

within each endocrine population, we identify 911 genes differentially expressed in all

three cell types. This consensus signature includes activation of genes in the JAK-STAT

pathway including STAT1 and IRF1 [91] and in the IFN-mediated antiviral response in-

cluding MX1, OAS3, ISG20, and RSAD2 [92–94]. The activation of both of these path-

ways has been previously reported in beta cells in response to IFNγ [95, 96]. To confirm

the validity of our gene signatures, we use EnrichR [82] to perform gene set enrichment

analysis on the signature genes and find strong enrichment for terms associated with inter-

feron signalling pathways (Figure S11d). From these results we conclude that although

IFNγ leads to upregulation of the canonical signalling pathways in all three cell types, the

response to stimulation in delta cells is subtly different to that of alpha or beta cells.

Here, we applied MELD analysis to identify the signature of IFNγ stimulation across

alpha, beta, and delta cells, and we identified a population of beta cells with high insulin

expression that appears unaffected by IFNγ stimulation. Together, these results demon-

strate the utility of MELD analysis to reveal biological insights in a clinically-relevant

biological experiment.
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Figure 3.6: MELD characterizes the response to IFNγ in pancreatic islet cells. (a) PHATE visualization
of pancreatic islet cells cultured for 24 hours with or without IFNγ. Vertex-frequency clustering identifies
nine clusters corresponding to alpha, beta, and delta cells. (b) Examining the stimulation-associated relative
likelihood (RL) in each cluster, we observe that beta cells have a wider range of responses than alpha or
delta cells. (c) We identify the signature of IFNγ stimulation by calculating differential expression between
the VFC clusters with the highest and lowest stimulation likelihood values for each cell type. We find a high
degree of overlap of the significantly differentially expressed genes between alpha and beta cells. (d) Results
of gene set enrichment analysis for signature genes in each cell type. Beta cells have the strongest enrichment
for IFN response pathway genes. (e) Examining the four beta cell clusters more closely, we observe two
populations with intermediate relative likelihood values. These populations are differentiated by the structure
of the sample label in each cluster (outset). In the non-responsive cluster, the sample label has very high
frequency unlike the low frequency pattern in the transitional Responsive - mid cluster. (f) We find that
the non-responsive cluster has low expression of IFNγ-regulated genes such as STAT1 despite containing
roughly equal numbers of unstimulated and stimulated cells. This cluster is marked by approximately 40
percent higher expression of insulin.
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3.2.9 Analysis of donor-specific composition

Although most of the analysis here focuses on two condition experiments, we show that

it is possible to use the sample-associated relative likelihood to quantify the differences

between more than two conditions. In the islet dataset, we have samples of treatment and

control scRNA-seq data from three different donors. To quantify the differences in cell

profiles between donors, we first create a one-hot vector for each donor label and nor-

malize across all three smoothed vectors. This produces a measure of how likely each

transcriptional profile is to be observed in donor 1, 2, or 3. We then analyze each of these

signals for each cluster examined in Section 3.2.8 (Figure S12). We find that all of the

alpha cell and delta cell clusters are depleted in donor 3 and the non-responsive beta cell

cluster is enriched primarily in donor 1. Furthermore, the most highly activated alpha cell

cluster is enriched in donor 2. As with the sample-associated relative likelihood derived

for the IFNγ response, it is also possible to identify donor-specific changes in gene ex-

pression, or clusters of cells differentially abundant between each donor. We propose that

this strategy could be used to extend MELD analysis to experiments with multiple cate-

gorical experimental conditions, such as data collected from different tissues or stimulus

conditions.

3.3 Discussion

When performing multiple scRNA-seq experiments in various experimental and control

conditions, researchers often seek to characterize the cell types or sets of genes that change

from one condition to another. However, quantifying these differences is challenging due

to the subtlety of most biological effects relative to the biological and technical noise in-

herent to single-cell data. To overcome this hurdle, we designed the MELD and VFC

algorithms to quantify compositional differences between samples. The key innovation in
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the sample-associated relative likelihood algorithm is quantifying the effect of a perturba-

tion at the resolution of single-cells using theory from manifold learning.

We have shown that our analysis framework improves over the current best-practice

of clustering cells based on gene expression and calculating differential abundance and

differential expression within clusters. Clustering prior to quantifying compositional dif-

ferences can fail to identify the divergent responses of subpopulations of cells within a

cluster. Using the sample labels and sample-associated relative likelihood, we apply VFC

to derive clusters of cells to identify cells that are most enriched in either condition and

cells that are unaffected by an experimental perturbation. We show that gene signatures

extracted using these clusters outperform those derived from direct comparison of two

samples.

We demonstrated the application of MELD analysis on single-cell datasets from three

different biological systems and experimental designs. We provided a framework for han-

dling paired experimental and control replicates and guidance on analysis of complex ex-

perimental designs with more than two conditions and in the context of a single-cell Cas9

knockout screen. In our analysis of the zebrafish dataset, we showed the published clusters

contained biologically relevant subpopulations of cells with divergent responses to the ex-

perimental perturbation. We also described a previously unpublished dataset of pancreatic

islet cells stimulated with IFN-γ and characterize a previously unreported subpopulation

of β cells that appeared unresponsive to stimulation. We related this to emerging research

describing aβcells subtype marked by high insulin mRNA expression and unique biologi-

cal responses.

We anticipate MELD to have widespread use in many contexts since experimental la-

bels can arise in many contexts. As we showed, if we have sets of single-cell data from

healthy individuals vs sick individuals, the sample-associated relative likelihood could in-

dicate cell types specific to disease. This framework could potentially be extended to

patient level measurements where patients’ phenotypes as measured with clinical vari-
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ables and laboratory values can be associated with enriched states in disease or treatment

conditions. Indeed MELD has already seen use in several contexts [97–101].

Acknowledgements

The authors would like to thank C. Vejnar, R. Coifman, J. Noonan, V. Tornini, and C.

Kontur for fruitful discussions. We would like to thank Guilin Wang of the Yale Center

for Genome Analysis for help in preparing the pancreatic islet data. This research was

supported in part by: the Eunice Kennedy Shriver National Institute of Child Health &

Human Development of the NIH (Award Number: F31HD097958) [D.B.]; the Gruber

Foundation [S.G.]; IVADO Professor startup & operational funds, IVADO Fundamen-

tal Research Project grant PRF-2019-3583139727 [G.W.]; NIH grants R01GM135929 &

R01GM130847 [G.W., S.K.]; and Chan-Zuckerberg Initiative grants 182702 & CZF2019-

002440 [S.K.]. The content provided here is solely the responsibility of the authors and

does not necessarily represent the official views of the funding agencies.

3.4 Author Contributions

D.B.B., S.K., G.W., D.v.D., and A.J.G. envisioned the project. D.B.B., J.S. A.T. S.K.,

and G.W. developed the mathematical formulation of the problem and related numerical

analysis. D.B.B, J.S., and S.G. implemented the code. D.B.B. and S.K. performed the

analysis of biological and simulated data. A.L.P. and K.C.H. generated and assisted with

the analysis of the pancreatic islet dataset. A.J.G. assisted with the analysis of the zebrafish

data and related writing. D.B.B., J.S., A.T., S.K., and G.W. wrote the paper. S.G. assisted

with the writing.

50



3.5 Competing Interests

The authors declare the following competing interests: S.K. is a paid scientific advisor to

AI Therapeutics (Guilford, CT).

3.6 Methods

In this section, we will provide details about our computational methods for computing the

sample-associated density estimate and relative likelihood, as well as extracting informa-

tion from the sample label and sample-associated relative likelihood by way of a method

we call vertex frequency clustering. We will outline the mathematical foundations for each

algorithm, explain how they relate to previous works in manifold learning and graph signal

processing, and provide details of the implementations of each algorithm.

3.6.1 Computation of the sample-associated density estimate

Computing the sample-associated density estimate and relative likelihood involves the fol-

lowing steps each of which we will describe in detail.

1. A cell similarity graph is built over the combined data from all samples where each

node or vertex in the graph is a cell and edges in the graph connect cells with similar

gene expression values.

2. The sample label for each cell is used to create the sample-associated indicator sig-

nal.

3. Each indicator signal is then smoothed over the graph to estimate the density of each

sample using the manifold heat filter.
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4. Sample-associated density estimates for paired treatment and control samples are

normalized to calculate the sample-associated relative likelihood.

Graph construction

The first step in the MELD algorithm is to create a cell similarity graph. In single-cell

RNA sequencing, each cell is measured as a vector of gene expression counts measured

as unique molecules of mRNA. Following best practices for scRNA-seq analysis [68], we

normalize these counts by the total number of Unique Molecular Indicators (UMIs) per

cell to give relative abundance of each gene and apply a square-root transform. Next we

compute the similarity all pairs of cells, by using their Euclidean distances as an input to

a kernel function. More formally, we compute a similarity matrix W such that each entry

Wij encodes the similarity between cell gene expression vectors xi and xj from the dataset

X .

In our implementation we use α-decaying kernel proposed by Moon et al. [11] because

in practice it provides an effective graph construction for scRNA-seq analysis. However,

in cases where batch, density, and technical artifacts confound graph construction, we also

use a mutual nearest neighbor kernel as proposed by Haghverdi et al. [102].

The α-decaying kernel [11] is defined as

Kk,α(x,y)= 1
2

exp
(
−
(
‖x−y‖2
εk(x)

)α)
+ 1

2
exp
(
−
(
‖x−y‖2
εk(y)

)α)
, (3.4)

where x, y are data points, εk(x), εk(y) are the distance from x, y to their k-th nearest

neighbors, respectively, and α is a parameter that controls the decay rate (i.e., heaviness of

the tails) of the kernel. This construction generalizes the popular Gaussian kernel, which

is typically used in manifold learning, but also has some disadvantages alleviated by the

α-decaying kernel, as explained in Moon et al. [11].

The similarity matrix effectively defines a weighted and fully connected graph between
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cells such that every two cells are connected and that the connection between cells x and

y is given by K(x, y). To allow for computational efficiency, we sparsify the graph by

setting very small edge weights to 0.

While the kernel in Equation 3.4 provides an effective way of capturing neighborhood

structure in data, it is susceptible to batch effects. For example, when data is collected from

multiple patients, subjects, or environments (generally referred to as “batches”), such batch

effects can cause affinities within each batch are often much higher than between batches,

thus artificially creating separation between them rather than follow the underlying biolog-

ical state. To alleviate such effects, we adjust the kernel construction using an approach

inspired by recent work from by Haghverdi et al. [102] on the Mutual Nearest Neighbors

(MNN) kernel. We extend the standard MNN approach, which has previous been applied

to the k-Nearest Neighbors kernel, to the α-decay kernel as follows. First, within each

batch, the affinities are computed using Equation 3.4. Then, across batches, we compute

slightly modified affinities as

K′k,α(x,y)=min

{
exp

(
−
(
‖x−y‖2
ε′
k
(x)

)α)
,exp

(
−
(
‖x−y‖2
ε′
k
(y)

)α)}
,

where ε′k(x) are now computed via the k-th nearest neighbor of x in the batch containing

y (and vice versa for ε′k(y)). Next, a rescaling factor γxy is computed such that

∑
z∈batch(y)

γxyK
′
k,α(x, z) ≤ β

∑
z∈batch(x)

Kk,α(x, z)

for every x and y, where β > 0 is a user configurable parameter. This factor gives rise to

the rescaled kernel

K ′k,α,β(x, y) =


K ′k,α(x, y) if batch(x) = batch(y)

γxyK
′
k,α(x, y) otherwise.
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Finally, the full symmetric kernel is then computed as

K ′k,α(x, y) = K ′k,α(y, x) = min
{
K ′k,α,β(x, y), K ′k,α,β(y, x)

}
,

and used to set the weight matrix for the constructed graph over the data. Note that this

construction is a well-defined extension of (Equation 3.4), as it reduces back to that kernel

when only a single batch exists in the data.

We also perform an anisotropic density normalization transformation so that the kernel

reflects the underlying geometry normalized by density as in Coifman and Lafon [41]. The

density normalized kernel Kq
k,α divides out by density, estimated by the sum of outgoing

edge weights for each node is as follows,

Kq
k,α =

K ′k,α(x, y)

q(x)q(y)
,

where

q(x) =

∫
X

K ′k,αq(y)dy.

We use this density normalized kernel in all experiments. When the data is uniformly

sampled from the manifold then the density around each point is constant then this normal-

ization has no effect. When the density is non-uniformly sampled from the manifold this

allows an estimation of the underlying geometry unbiased by density. This is especially

important when performing density estimation from empirical distributions with different

underlying densities. By normalizing by density, we allow for construction of the manifold

geometry from multiple differently distributed samples and individual density estimation

for each of these densities on the same support. This normalization is further discussed in

Section 3.6.1.
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Estimating sample-associated density and relative likelihood on a graph

Density estimation is difficult in high dimensions because the number of samples needed

to accurately reconstruct density with bounded error is exponential in the number of di-

mensions. Since general high dimensional density estimation is an intrinsically difficult

problem, additional assumptions must be made. A common assumption is that the data

exists on a manifold of low intrinsic dimensionality in ambient space. Under this assump-

tion a number of works on graphs have addressed density estimation limited to the support

of the graph nodes [103–107]. Instead of estimating kernel density or histograms in D di-

mensions where D could be large, these methods rendered the data as a graph, and density

is estimated each point on the graph (each data point) as some variant counting the number

of points which lie within a radius of each point on the graph.

The MELD algorithm also estimates density of a signal on a graph. We use a gener-

alization of the standard heat kernel on the graph to estimate density (See Section 3.6.1).

We draw analogs between the resulting sample-associated density estimate and Gaussian

kernel density estimation on the manifold showing our density estimate with a specific pa-

rameter set is equivalent to the Gaussian density estimate on the graph (See Section 3.6.1).

Graph Signal Processing

The MELD algorithm leverages recent advances in graph signal processing (GSP) [56],

which aim to extend traditional signal processing tools from the spatiotemporal domain to

the graph domain. Such extensions include, for example, wavelet transforms [57], win-

dowed Fourier transforms [52], and uncertainty principles [108]. All of these extensions

rely heavily on the fundamental analogy between classical Fourier transform and graph

Fourier transform (described in the next section) derived from eigenfunctions of the graph

Laplacian, which is defined as

L := D −W, (3.5)
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where D is the degree matrix, which is a diagonal matrix with Dii = d(i) =
∑

jWij

containing the degrees of the vertices of the graph defined by W .

The Graph Fourier Transform

One of the fundamental tools in traditional signal processing is the Fourier transform,

which extracts the frequency content of spatiotemporal signals [109]. Frequency infor-

mation enables various insights into important characteristics of analyzed signals, such as

pitch in audio signals or edges and textures in images. Common to all of these is the rela-

tion between frequency and notions of smoothness. Intuitively, a function is smooth if one

is unlikely to encounter a dramatic change in value across neighboring points. A simple

way to imagine this is to look at the zero-crossings of a function. Consider, for example,

sine waves sin ax of various frequencies a = 2k, k ∈ N. For k = 0, the wave crosses the

x-axis (a zero-crossing) when x = π. When we double the frequency at k = 1, our wave

is now twice as likely to cross the zero and is thus less smooth than k = 0. This simple

zero-crossing intuition for smoothness is relatively powerful, as we will see shortly.

Next, we show that our notions of smoothness and frequency are readily applicable

to data that is not regularly structured, such as single-cell data. The graph Laplacian L

can be considered as a graph analog of the Laplace (second derivative) operator ∇2 from

multivariate calculus. This relation can be verified by deriving the graph Laplacian from

first principles.

For a graph G on N vertices, its graph Laplacian L and an arbitrary graph signal
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f ∈ RN , we use Equation 3.5 to write

(L f) (i) = ([D −W ] f) (i)

= d(i)f(i)−
∑
j

Wijf(j)

=
∑
j

Wij (f(i)− f(j)) . (3.6)

As the graph Laplacian is a weighted sum of differences of a function around a vertex,

we may interpret it analogously to its continuous counterpart as the curvature of a graph

signal. Another common interpretation made explicit by the derivation in Equation 3.6 is

that (Lf)(i) measures the local variation of a function at vertex i.

Local variation naturally leads to the notion of total variation,

TV(f) =
∑
i,j

Wij(f(i)− f(j))2,

which is effectively a sum of all local variations. TV(f) describes the global smoothness

of the graph signal f . In this setting, the more smooth a function is, the lower the value

of the variation. This quantity is more fundamentally known as the Laplacian quadratic

form,

fTL f =
∑
i,j

Wij(f(i)− f(j))2. (3.7)

Thus, the graph Laplacian can be used as an operator and in a quadratic form to mea-

sure the smoothness of a function defined over a graph. One effective tool for analyzing

such operators is to examine their eigensystems. In our case, we consider the eigende-

composition L = ΨΛΨ−1, with eigenvalues3 Λ := {0 = λ1 ≤ λ2 ≤ · · · ≤ λN} and

3Note that in this discussion we abuse notation by treating Λ as an ordered set of Laplacian eigenvalues
and as the diagonal matrix with entries from the elements of this set. Similarly, Ψ is both the set of column
eigenvectors {ψi}Ni=1 as well as the N ×N matrix [ψ1ψ2 · · ·ψN ] with eigenvector as a column.
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corresponding eigenvectors Ψ := {ψi}Ni=1. As the Laplacian is a square, symmetric ma-

trix, the spectral theorem tells us that its eigenvectors in Ψ form an orthonormal basis

for RN . Furthermore, the Courant-Fischer theorem establishes that the eigenvalues in Λ

are local minima of fTLf when fT f = 1 and f ∈ U as dim(U) = i = 1, 2, . . . , N . At

each eigenvalue λi this function has f = ψi. In summary, the eigenvectors of the graph

Laplacian (1) are an orthonormal basis and (2) minimize the Laplacian quadratic form for

a given dimension.

Henceforth, we use the term graph Fourier basis interchangeably with graph Lapla-

cian eigenvectors, as this basis can be thought of as an extension of the classical Fourier

modes to irregular domains [56]. In particular, the ring graph eigenbasis is composed of

sinusoidal eigenvectors, as they converge to discrete Fourier modes in one dimension. The

graph Fourier basis thus allows one to define the graph Fourier transform (GFT) by direct

analogy to the classical Fourier transform.

The GFT of a signal f is given by f̂(λ`) =
∑

i f(i)ψT` (i) = 〈f , ψ`〉, which can also be

written as the matrix-vector product

f̂ = ΨT f . (3.8)

As this transformation is unitary, the inverse graph Fourier transform (IGFT) is f = Ψf̂ .

Although the graph setting presents a new set of challenges for signal processing, many

classical signal processing notions such as filterbanks and wavelets have been extended

to graphs using the GFT. We use the GFT to process, analyze, and cluster experimental

signals from single-cell data using a novel graph filter construction and a new harmonic

clustering method.
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The manifold heat filter

In the MELD algorithm, we seek to estimate the change in sample density between exper-

imental labels along a manifold represented by a cell similarity graph. To estimate sample

density along the graph, we employ a novel graph filter construction, which we explain in

the following sections. To begin, we review the notion of filtering with focus on graphs and

demonstrate manifold heat filter in a low-pass setting. Next, we demonstrate the expanded

version of the manifold heat filter and provide an analysis of its parameters. Finally, we

provide a simple solution to the manifold heat filter that allows fast computation.

Filters on graphs

Filters can be thought of as devices that alter the spectrum of their input. Filters can be

used as bases, as is the case with wavelets, and they can be used to directly manipulate

signals by changing the frequency response of the filter. For example, many audio devices

contain an equalizer that allows one to change the amplitude of bass and treble frequencies.

Simple equalizers can be built simply by using a set of filters called a filterbank. In the

MELD algorithm, we use a tunable filter to estimate density of a sample indicator signal

on a single-cell graph.

Mathematically, graph filters work analogously to classical filters. Specifically, a fil-

ter takes in a signal and attenuates it according to a frequency response function. This

function accepts frequencies and returns a response coefficient. This is then multiplied by

the input Fourier coefficient at the corresponding frequency. The entire filter operation is

thus a reweighting of the input Fourier coefficients. In low-pass filters, the function only

preserves frequency components below a threshold. Conversely, high-pass filters work by

removing frequencies below a threshold. Bandpass filters transfer frequency components

that are within a certain range of a central frequency. The tunable filter in the MELD

algorithm is capable of producing any of these responses.
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As graph harmonics are defined on the set Λ, it is common to define them as functions

of the form h : [0,max(Λ)] 7→ [0, 1]. For example, a low pass filter with cutoff at λk

would have h(x) > 0 for x < λk and h(x) = 0 otherwise. By abuse of notation, we will

refer to the diagonal matrix with the filter h applied to each Laplacian eigenvalue as h(Λ),

though h is not a set-valued or matrix-valued function. Filtering a signal f is clearest in

the spectral domain, where one simply takes the multiplication f̂filt = h(Λ)f̂ = h(Λ)ΨT f .

Finally, it is worth using the above definitions to define a vertex-valued operator to

perform filtering. As a graph filter is merely a reweighting of the graph Fourier basis, one

can construct the filter matrix,

H = Ψh(Λ)ΨT . (3.9)

A manipulation using Equation 3.8 will verify that Hf is the WGFT of f̂filt. This filter

matrix will be used to solve the manifold heat filter in approximate form for computational

efficiency.

Laplacian Regularization

A simple assumption for density estimation is smoothness. In this model the density es-

timate is assumed to have a low amount of neighbor to neighbor variation. Laplacian

regularization [110–118] is a simple technique that targets signal smoothness via the op-

timization

y = argmin
z
‖x− z‖2

2︸ ︷︷ ︸
a

+ βzTLz︸ ︷︷ ︸
b

. (3.10)

Note that this optimization has two terms. The first term (a), called a reconstruction

penalty, aims to keep the density estimate similar to the input sample information. The sec-

ond term (b) ensures smoothness of the signal. Balancing these terms adjusts the amount
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of smoothness performed by the filter.

Laplacian regularization is a sub-problem of the manifold heat filter that we will dis-

cuss for low-pass filtering. In the above, a reconstruction penalty (a) is considered along-

side the Laplacian quadratic form (b), which is weighted by the parameter β. The Lapla-

cian quadratic form may also be considered as the norm of the graph gradient, i.e.

βzTLz = β‖∇Gz‖2
2.

Thus one may view Laplacian regularization as a minimization of the edge-derivatives of a

function while preserving a reconstruction. Because of this form, this technique has been

cast as Tikhonov regularization [112, 119], which is a common regularization to enforce

a low-pass filter to solve inverse problems in regression. In our results we demonstrate

a manifold heat filter that may be reduced to Laplacian regularization using a squared

Laplacian.

In Section 3.6.1 we introduced filters as functions defined over the Laplacian eigen-

values (h(Λ)) or as vertex operators in Equation 3.9. Minimizing optimization Equation

3.10 reveals a similar form for Laplacian regularization. Although Laplacian regulariza-

tion filter is presented as an optimization, it also has a closed form solution. We derive

this solution here as it is a useful building block for understanding the sample-associate

density estimate. To begin,

y = argmin
z
‖x− z‖2

2 + βzTLz

= argmin
z

(x− z)T (x− z) + βzTLz

= argmin
z

xTx + zTz− 2xTz + βzTLz
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Substituting y = z, we next differentiate with respect to y and set this to 0,

0 = ∇y(xTx + yTy − 2yTx + βyTLy)

= 2y − 2x + 2βLy

x = (I + βL)y,

so the global minima of (3.10) can be expressed in closed form as

y = (I + βL)−1x. (3.11)

As the input x is a graph signal in the vertex domain, the least squares solution (3.11) is a

filter matrix Hreg = (I + βL)−1 as discussed in Section 3.6.1. The spectral properties of

Laplacian regularization immediately follow as

Hreg = (I + βL)−1

= Ψ
1

1 + βΛ
ΨT . (3.12)

Thus Laplacian regularization is a graph filter with frequency response hreg(λ) = (1 +

βλ)−1. Figure S13 shows that this function is a low-pass filter on the Laplacian eigenval-

ues with cutoff parameterized by β.

Tunable Filtering

Though simple low-pass filtering with Laplacian regularization is a powerful tool for many

machine learning tasks, we sought to develop a filter that is flexible and capable of filtering

the signal at any frequency. To accomplish these goals, we introduce the manifold heat
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filter:

y = argmin
z
‖x− z‖2

2 + zTL∗z (3.13)

where L∗ = exp
(
β(L/λmax − αI)ρ

)
− I

This filter expands upon Laplacian regularization by the addition of a new smoothness

structure. Early and related work proposed the use of a power Laplacian smoothness ma-

trix S in a similar manner as we apply here [112], but little work has since proven its utility.

In our construction, α is referred to as modulation, β acts as a reconstruction penalty, and

ρ is filter order. These parameters add a great deal of versatility to the manifold heat filter,

and we demonstrate their spectral and vertex effects in Figure S13, as well as provide

mathematical analysis of the MELD algorithm parameters in the following section.

A similar derivation as Section 3.6.1 reveals the filter matrix

HMELD(L) = e−β(L/λmax−αI)ρ , (3.14)

which has the frequency response

hMELD(λ) = e−β(λ/λmax−α)ρ . (3.15)

Thus, the value of the MELD algorithm parameters in the vertex optimization (Equation

3.13) has a direct effect on the graph Fourier domain.

Parameter Analysis

β steepens the cutoff of the filter and shifts it more towards its central frequency (Figure

S13). In the case of α = 0, this frequency is λ1 = 0. This is done by scaling all frequencies

by a factor of β. For stability reasons, we choose β > 0, as a negative choice of β yields a

63



high frequency amplifier.

The parameters α and ρ change the filter from low pass to band pass or high pass.

Figure S13 highlights the effect on frequency response of the filters and showcases their

vertex effects in simple examples. We begin our mathematical analysis with the effects of

ρ.

ρ powers the Laplacian harmonics. This steepens the frequency response around the

central frequency of the manifold heat filter. Higher values of ρ lead to sharper tails

(Figure S13d,e), limiting the frequency response outside of the target band, but with in-

creased response within the band. Finally, ρ can be used to make a high pass filter by

setting it to negative values (Figure S13f).

For the integer powers, a basic vertex interpretation of ρ is available. Each column

of Lk is k-hop localized, meaning that Lkij is non-zero if and only if the there exists a

path length k between vertex i and vertex j (for a detailed discussion of this property, see

Hammond et al. [57, section 5.2].) Thus, for ρ ∈ N, the operator Lρ considers variation

over a hop distance of ρ. This naturally leads to the spectral behavior we demonstrate in

Figure S13d, as signals are required to be smooth over longer hop distances when α = 0

and ρ > 1.

The parameter α removes values from the diagonal of L. This results in a modulation

of frequency response by translating the Laplacian harmonic that yields the minimal value

for the problem (Equation 3.13). This allows one to change the central frequency, as

α effectively modulates a band-pass filter. As graph frequencies are positive, we do not

consider α < 0. In the vertex domain, the effect of α is more nuanced. We study this

parameter for α > 0 by considering a modified Laplacian L∗ with ρ = 1.

To conclude, we propose a filter parameterized by reconstruction β (Figure S13), order

ρ, and modulation α . The parameters α and β are limited to be strictly greater than or

equal to 0. When α = 0, ρ may be any integer, and it adds more low frequencies to the

frequency response as it becomes more positive. On the other hand, if ρ is negative and
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α = 0, ρ controls a high pass filter. When α > 0, the manifold heat filter becomes a band-

pass filter. In standard use cases we propose to use the parameters α = 0, β = 60, and ρ =

1. Other parameter values are explored further in (Figure S13). We note that the results

are relatively robust to parameter values around this default setting. All of our biological

results were obtained using this parameter set, which gives a square-integrable low-pass

filter. As these parameters have direct spectral effects, their implementation in an efficient

graph filter is straightforward and presented below.

In contrast to previous works using Laplacian filters, our parameters allow analysis of

signals that are combinations of several underlying changes occurring at various frequen-

cies. For an intuitive example, consider that the frequency of various Google searches will

vary from winter to summer (low-frequency variation), Saturday to Monday (medium-

frequency variation), or morning to night (high-frequency variation). In the biological

context such changes could manifest as differences in cell type abundance (low-frequency

variation) and cell-cycle (medium-frequency variation) [120]. We illustrate such an exam-

ple in Figure S13 by blindly separating a medium frequency signal from a low frequency

contaminating signal over simulated data. Such a technique could be used to separate low-

and medium-frequency components so that they can be analyzed independently. Each of

the filter parameters is explained in more detail below in the Paramter Analysis section.

Relation between MELD and the Gaussian KDE through the Heat Kernel

Kernel density estimators (KDEs) are widely used as estimating density is one of the

fundamental tasks in many data applications. The density estimate is normally done in

ambient space, and there are many methods to do so with a variety of advantages and

disadvantages depending on the application. We instead assume that the data is sampled

from some low dimensional subspace of the ambient space, e.g. that the data lies along a

manifold. The MELD algorithm can be thought of as a Gaussian KDE over the discrete

manifold formed by the data. This gives a density estimate at every sampled point for a

65



number of distributions. This density estimate, as the number of samples goes to infin-

ity, should converge to the density estimate along a continuous manifold formed by the

data. The case of data uniformly sampled on the manifold was explored in [121] proving

convergence of the eigenvectors and eigenvalues of the discrete Laplacian to the eigen-

functions of the continuous manifold. Coifman and Maggioni [122] explored when the

data is non-uniformly sampled from the manifold and provided a kernel which can nor-

malize out this density which results in a Laplacian modeling the underlying manifold

geometry, irrespective of data density. Building on these two works, MELD allows us to

estimate the manifold geometry using multiple samples with unknown distribution along it

and estimate density and conditional density for each distribution on this shared manifold.

A general kernel density estimator (KDE) f(x, t) with bandwidth t > 0 and kernel

function K(x, y, t) is defined as

f̂(x, t) =
1

N

N∑
i=1

K(x,Xi, t), x ∈ X (3.16)

With X := Rd, and endowed with the Gaussian kernel,

K(x, y, t) =
1

(4πt)d/2
e−‖x−y‖

2
2/4t, (3.17)

we have the Gaussian KDE in Rd.

This kernel is of particular interest for its thermodynamic interpretation. Namely the

Gaussian KDE is a space discretization of the unique solution to the heat diffusion partial

differential equation (PDE) [123, 77]:

∂

∂t
f̂(x, t) =

1

2

∂2

∂x2
f̂(x, t), x ∈ X , t > 0, (3.18)

with f̂(x, 0) = 1
N

∑n
i=1 δXi where δx is the Dirac measure at x. This is sometimes called
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Green’s function for the diffusion equation. Intuitively, f̂(x, t) can be thought of as mea-

suring the heat after time t after placing units of heat on the data points at t = 0.

In fact the Gaussian kernel can be represented instead in terms of the eigenfunctions

of the ambient space. With eigenfunctions φ and eigenvalues λ, the Gaussian kernel can

be alternative expressed as:

K(x, y, t) =
∞∑
n=0

e−tλnφn(x)φn(y) (3.19)

Of course for computational reasons we often prefer the closed form solution in (3.17).

We now consider the case whenX instead consists of uniform samples from a Riemannian

manifoldM embedded in Rd such that X ⊂ M ⊂ Rd. An analog to the Gaussian KDE

in Rd on a manifold is then the solution to the heat PDE restricted to the manifold, and

again we can use the eigenfunction interpretation of the Green’s function in (3.19), except

replacing the eigenfunctions of the manifold.

The eigenfunctions of the manifold can be approximated through the eigenvectors of

the discrete Laplacian. The solution of the heat equation on a graph is defined in terms of

the discrete Laplacian L = ΨΛΨ−1 as

K̂L(x, y, t) = δxe
−tLδy = δxΨe

−tΛΨ−1δy (3.20)

Where δx, δy are dirac functions at x and y respectively. This is equivalent to MELD when

β = tλmax, α = 0, and φ = 1.

When data X is sampled uniformly from the manifoldM and the standard gaussian

kernel is used to construct the graph, then Theorem 2.1 of Belkin and Niyogi [121] which

proves the convergence of the eigenvalues of the discrete graph laplacian to the continuous

laplacian implies (3.20) converges to the Gaussian KDE on the manifold.

However, real data is rarely uniformly sampled from a manifold. When the data is
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instead sampled from a smooth density X ∼ q(x) over the manifold then the density must

be normalized out to recover the geometry of the manifold. This problem was first tackled

in Coifman and Lafon [41], by constructing an anisotropic kernel which divides out the

density at every point. This correction allows us to estimate density over the underlying

geometry of the manifold even in the case where data is not uniformly sampled. This

allows us to use samples from multiple distributions, in our case distributions over cellular

states, which allows a better estimate of underlying manifold utilizing all available data.

In practice, we combine two methods to construct a discrete Laplacian that reflects the

underlying data geometry over which we estimate heat propagation and perform density

estimation, as explained in Section 3.6.1.

Implementation

A naı̈ve implementation of the MELD algorithm would apply the matrix inversion pre-

sented in Equation 3.14. This approach is untenable for the large single-cell graphs that

the MELD algorithm is designed for, as H−1
MELD will have many elements, and, for high

powers of ρ or non-sparse graphs, extremely dense. A second approach to solving Equa-

tion 3.13 would diagonalize L such that the filter function in Equation 3.15 could be

applied directly to the Fourier transform of input raw experimental signals. This approach

has similar shortcomings as eigendecomposition is substantively similar to inversion. Fi-

nally, a speedier approach might be to use conjugate gradient or proximal methods. In

practice, we found that these methods are not well-suited for estimating sample-associated

density.

Instead of gradient methods, we use Chebyshev polynomial approximations of

hMELD(λ) to rapidly approximate and apply the manifold heat filter. These approxima-

tions, proposed by Hammond et al. [57] and Shuman et al. [78], have gained traction in

the graph signal processing community for their efficiency and simplicity. Briefly, a trun-

cated and shifted Chebyshev polynomial approximation is fit to the frequency response of a
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graph filter. For analysis, the approximating polynomials are applied as polynomials of the

Laplacian multiplied by the signal to be filtered. As Chebyshev polynomials are given by a

recurrence relation, the approximation procedure reduces to a computationally efficient se-

ries of matrix-vector multiplications. For a more detailed treatment one may refer to Ham-

mond et al. [57] where the polynomials are proposed for graph filters. For application of

the manifold heat filter to a small set of input sample indicator signals, Chebyshev approx-

imations offer the simplest and most efficient implementation of our proposed algorithm.

For sufficiently large sets of samples, such as when considering hundreds of conditions,

the computational cost of obtaining the Fourier basis directly may be less than repeated

application of the approximation operator; in these cases, we diagonalize the Laplacian

either approximately through randomized SVD or exactly using eigendecomposition, de-

pending on user preference. Then, one simply constructs HMELD = ΨhMELD(Λ)ΨT to

calculate the sample-associated density estimate from the input sample indicator signals.

Summary of the MELD algorithm

In summary, we have proposed a family of graph filters based on a generalization of Lapla-

cian regularization framework to implement the computation of sample-associated density

estimates on a graph. This optimization, which can be solved analytically, allows us to

derive the relative likelihood of each sample in a dataset, as a smooth and denoised signal,

while also respecting multi-resolution changes in the likelihood landscape. As we show in

Section 3.6.7, this formulation performs better at deriving the true conditional likelihood

in quantitative comparisons than simpler label smoothing algorithms. Further, the MELD

algorithm it is efficient to compute.

The MELD algorithm is implemented in Python 3 as part of the MELD package and

is built atop the scprep, graphtools, and pygsp packages. We developed scprep

efficiently process single-cell data, and graphtoolswas developed for construction and

manipulation of graphs built on data. Fourier analysis and Chebyshev approximations are
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implemented using functions from the pygsp toolbox [124].

3.6.2 Vertex-frequency clustering

Next, we will describe the vertex frequency clustering algorithm for partitioning the cel-

lular manifold into regions of similar response to experimental perturbation. For this pur-

pose, we use a technique proposed in Shuman et al. [52] based on a graph generalization

of the classical Short Time Fourier Transform (STFT). This generalization will allow us to

simultaneously localize signals in both frequency and vertex domains. The output of this

transform will be a spectrogram Q, where the value in each entry Qi,j indicates the degree

to which each sample indicator signal in the neighborhood around vertex i is composed of

frequency j. We then concatenate the sample-associated relative likelihood and perform

k-means clustering. The resultant clusters will have similar transcriptomic profiles, simi-

lar likelihood estimates, and similar frequency trends of the sample indicator signals. The

frequency trends of the sample indicator signals are important because they allow us to

infer movements in the cellular state space that occur during experimental perturbation.

We derive vertex frequency clusters in the following steps:

1. We create the cell graph in the same way as is done in Section 3.6.1.

2. For each vertex in the graph (corresponding to a cell in the data), we create a series of

localized windowed signals by masking the sample indicator signal using a series of

heat kernels centered at the vertex. Graph Fourier decomposition of these localized

windows capture frequency of the sample indicator signal at different scales around

each vertex.

3. The graph Fourier representation of the localized windowed signals is thresholded

using a tanh activation function to produce pseudo-binary signals.

4. These pseudo-binarized signals are summed across windows of various scales to
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produce a single N ×N spectrogram Q. PCA is performed on the spectrogram for

dimensionality reduction.

5. The sample-associated relative likelihood is concatenated to the reduced spectro-

gram weighted by the L2-norm of PC1 to produce Q̂ which captures both local

sample indicator frequency trends and changes in conditional density around each

cell in both datasets.

6. k-Means is performed on the concatenated matrix to produce vertex-frequency clus-

ters.

Analyzing frequency content of the sample indicator signal

Before we go into further detail about the algorithm, it may be useful to provide some in-

tuitive explanations for why the frequency content of the sample indicator signal provides

a useful basis for identifying clusters of cells affected by an experimental perturbation.

Because the low frequency eigenvectors of the graph Laplacian identify smoothly varying

axes of variance through a graph, we associate trends in the sample indicator signal asso-

ciated these low-frequency eigenvectors as biological transitions between cell states. This

may correspond to the shift in T cells from naive to activated, for example. We note that at

intermediate cell transcriptomic states between the extreme states that are most enriched in

either condition, we observe both low and middle frequency sample indicator signal com-

ponents, see the blue cell in the cartoon in Figure 3.2a. This is because locally, the sample

indicator signal varies from cell to cell, but on a large scale is varying from enriched in

one condition to being enriched in the other. This is distinct from what we observe in our

model when a group of cells are completely unaffected by an experimental perturbation.

Here, we expect to find only high frequency variations in the sample indicator signal and

no underlying transition or low-frequency component. The goal of vertex frequency clus-

tering is to distinguish between these four cases: enriched in the experiment, enriched in
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the control, intermediate transitional states, and unaffected populations of cells. We also

want these clusters to have variable size so that even small groups of cells that may be

differentially abundant are captured in our clusters.

Using the Windowed Graph Fourier Transform (WGFT) to identify local changes in

sample indicator signal frequency

While the graph Fourier transform is useful for exploring the frequency content of a sig-

nal, it is unable to identify how the frequency content of graph signals change locally

over different regions of the graph. In vertex frequency clustering, we are interested in

understanding how the frequency content of the sample indicator signal changes in neigh-

borhoods around each cell. In the time domain, the windowed Fourier transform identifies

changing frequency composition of a signal over time by taking slices of the signal (e.g. a

sliding window of 10 seconds) and applying a Fourier decomposition to each window in-

dependently (WFT) [109]. The result is a spectrogram Q, where the value in each cell Qi,j

indicates the degree to which time-slice i is composed of frequency j. Recent works in

GSP have generalized the constructions windowed Fourier transform to graph signals[52].

To extend the notion of a sliding window to the graph domain, Shuman et al. [52] write

the operation of translation in terms of convolution as follows.

The generalized translation operator Ti : RN → RN of signal f to vertex i ∈

{1, 2, ..., N} is given by

(Tif)(n) :=
√
N(f ∗ δi)(n), δi(j) =


1 j = i

0 j 6= i

(3.21)

which convolves the signal f , in our case the sample indicator signal, with a dirac at

vertex i. Shuman et al. [52] demonstrate that this operator inherits various properties of its

classical counterpart; however, the operator is not isometric and is affected by the graph
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that it is built on. Furthermore, for signals that are not tightly localized in the vertex

domain and on graphs that are not directly related to Fourier harmonics (e.g., the circle

graph), it is not clear what graph translation implies.

In addition to translation, a generalized modulation operator is defined by Shuman

et al. [52] as Mk : RN → RN for frequencies k ∈ {0, 1, ..., N − 1} as

(Mkf)(n) :=
√
Nf(n)Uk(n) (3.22)

This formulation is analogous in construction to classical modulation, defined by point-

wise multiplication with a pure harmonic – a Laplacian eigenvector in our case. Classical

modulation translates signals in the Fourier domain; because of the discrete nature of the

graph Fourier domain, this property is only weakly shared between the two operators. In-

stead, the generalized modulation Mk translates the DC component of f , f̂(0), to λk, i.e.

(̂Mkf)(λk) = f̂(0). Furthermore, for any function f whose frequency content is localized

around λ0, (Mkf) is localized in frequency around λk. Shuman et al. [52] details this

construction and provides bounds on spectral localization and other properties.

With these two operators, a graph windowed Fourier atom is constructed[52] for any

window function g ∈ RN

gi,k(n) := (MkTig)(n) = NUk(n)
N−1∑
`=0

ĝ(λ`)U
∗
` (i)U`(n). (3.23)

We can then build a spectrogram Q = (qik) ∈ RN×N by taking the inner product of each

gi,k∀i ∈ {1, 2, ..., N} ∧ ∀k ∈ {0, 1, ..., N − 1} with the target signal f

qik = Sf(i, k) := 〈f, gi,k〉. (3.24)

As with the classical windowed Fourier transform, one could interpret this as segmenting
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the signal by windows and then taking the Fourier transform of each segment

qi = 〈(Tig� f), U〉 (3.25)

where � is the element-wise product.

Using heat kernels of increasing scales to produce the WGFT of the sample indicator

signal

To generate the spectrogram for clustering, we first need a suitable window function. We

use the normalized heat kernel as proposed by Shuman et al. [52]

ĝ(λ) = Ce−tλ, (3.26)

C = ||g||−1
2 . (3.27)

By translating this kernel, element-wise multiplying it with our target signal f and

taking the Fourier transform of the result, we obtain a windowed graph Fourier transform

of f that is localized based on the diffusion distance [108, 52] from each vertex to every

other vertex in the graph.

For an input sample indicator signal f , signal-biased spectral clustering as proposed by

Shuman et al. [52] proceeds as follows:

1. Generate the window matrix Pt, which contains as its columns translated and nor-

malized heat kernels at the scale t

2. Column-wise multiply Ft = P � f ; the i-th column of Ft is an entry-wise product

of the i-th window and f .

3. Take the Fourier Transform of each column of Ft. This matrix, Ĉt is the normalized

WGFT matrix.
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This produces a single WGFT for the scale t. At this stage, Shuman et al. [52] proposed

to saturate the elements of Ĉt using the activation function tanh(|Ĉt|) (where | . | is an

element-wise absolute value). Then, k-means is performed on this saturated output to

yield clusters. This operation has connections to spectral clustering as the features that

k-means is run on are coefficients of graph harmonics.

We build upon this approach to add robustness, sensitivity to sign changes, and scal-

ability. Particularly, vertex-frequency clustering builds a set of activated spectrograms at

different window scales. These scales are given by simulated heat diffusion over the graph

by adjusting the time-scale t in Equation 3.26. Then, the entire set is combined through

summation.

Combining the sample-associated relative likelihood and WGFT of the sample indi-

cator signal

As discussed in Section 3.2.4, it is useful to consider the value of the sample likelihood in

addition to the frequency content of the sample indicator. This is because if we consider

two populations of cells, one of which is highly enriched in the experimental condition

and another that is enriched in the control, we expect to find similar frequency content

of the sample indicator signal. Namely, both should have very low-frequency content, as

indicated in the cartoon in Figure 3.2a. However, we expect these two populations to

have very different sample likelihood values. To allow us to distinguish between these

populations, we also include the sample-associated relative likelihood in the matrix used

for clustering.

We concatenate the sample-associated relative likelihood as an additional column to

the multi-resolution spectrogram Q. However, we want to be able to tune the cluster-

ing with respect to how much the likelihood affects the result compared to the frequency

information in Q. Therefore, inspired by spectral clustering as proposed by [61], we first

perform PCA onQ to get k+1 principle components and then normalize the likelihood by
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the L2-norm of the first principle component. We then add the likelihood as an additional

column to the PCA-reduced Q to produce the matrix Q̂. The weight of the likelihood can

be modulated by a user-adjustable parameter w, but for all experiments in this chapter, we

leave w = 1. Finally, Q̂ is used as input for k-means clustering.

The multiscale approach we have proposed has a number of benefits. Foremost, it

removes the complexity of picking a window-size. Second, using the actual input signal as

a feature allows the clustering to consider both frequency and sign information in the raw

experimental signal. For scalability, we leverage the fact that Pt is effectively a diffusion

operator and thus can be built efficiently by treating it as a Markov matrix and normalizing

the graph adjacency by the degree.

Summary of the vertex frequency clustering algorithm

To identify clusters of cells that are transcriptionally similar and also affected by an exper-

imental perturbation in the same way, we introduced an algorithm called vertex frequency

clustering. Our approach builds on previous work by Shuman et al. [52] analyzing the

local frequency content of the sample indicator vector as defined over the vertices of a

graph. Here, we introduce two novel adaptations of the algorithm. First, we take a mul-

tiresolution approach to quantifying frequency trends in the neighborhoods around each

node. By considering windowed signals that are large (i.e. contain many neighboring

points) and small (i.e. very proximal on the graph), we can identify clusters both large and

small that are similarly affected by an experimental perturbation. Our second contribution

is the inclusion of the relative likelihood of each sample in our basis for clustering. This

allows VFC to take into account the degree of enrichment of each group of cells between

condition.
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3.6.3 Parameter search for the MELD algorithm

To determine the optimal set of parameters for the MELD algorithm, we performed a pa-

rameter search using splatter-generated datasets. For each of the four dataset structures,

we generated 10 datasets with different random seeds and 10 random ground-truth prob-

ability densities per dataset for a total of 400 datasets per combination of parameters. A

coarse-grained grid search revealed that setting α = 0 and ρ = 1 performed best regard-

less of the β parameter. This is expected because with these settings, the MELD filter is

the standard heat kernel. A fine-grained search over parameters for β showed that optimal

values were between 50-75 (Figure S14). We chose a value of 60 as the default in the

MELD toolkit and this was used for all experiments. We would like to note that the op-

timal β parameter will vary with dataset structure and the number of cells. Figure S14b

shows how the optimal β values varies as a function of the number of cells generated using

splatter while keeping the underlying geometry the same.

3.6.4 Processing and analysis of the T-cell datasets

Gene expression counts matrices prepared by Datlinger et al. [8] were accessed from the

NCBI GEO database accession GSE92872. 3,143 stimulated and 2,597 unstimulated T-

cells were processed in a pipeline derived from the published supplementary software.

First, artificial genes corresponding to gRNAs were removed from the counts matrix.

Genes observed in fewer than five cells were removed. Cells with a library size higher

than 35,000 UMI / cell were removed. To filter dead or dying cells, expression of all

mitochondrial genes was z-scored and cells with average z-score expression greater than

1 were removed. As in the published analysis, all mitochondrial and ribosomal genes

were excluded. Filtered cells and genes were library size normalized and square-root

transformed. To build a cell-state graph, 100 PCA dimensions were calculated and edge

weights between cells were calculated using an alpha-decay kernel as implemented in

77



the Graphtools library (www.github.com/KrishnaswamyLab/graphtools) using default pa-

rameters. MELD was run on the cell state graph using the stimulated / unstimulated

labels as input with the smoothing parameter β = 60. To identify a signature, the top

and bottom VFC clusters by sample-associated relative likelihood were used for differ-

ential expression using a rank test as implemented in diffxpy [81] and a q-value cutoff of

0.05. GO term enrichment was performed using EnrichR using the gseapy Python package

(https://pypi.org/project/gseapy/).

3.6.5 Processing and analysis of the zebrafish dataset

Gene expression counts matrices prepared by Wagner et al. [75] (the chordin dataset) were

downloaded from NCBI GEO (GSE112294). 16079 cells from chd embryos injected with

gRNAs targeting chordin and 10782 cells from tyr embryos injected with gRNAs targeting

tyrosinase were accessed. Lowly expressed genes detected in fewer than 5 cells were

removed. Cells with library sizes larger than 15,000 UMI / cell were removed. Counts

were library-size normalized and square root transformed. Cluster labels included with

the counts matrices were used for cell type identification.

During preliminary analysis, a group of 24 cells were identified originating exclu-

sively from the chd embryos. Despite an average library size in the bottom 12% of cells,

these cells exhibited 546-fold, 246-fold, and 1210-fold increased expression of Sh3Tc1,

LOC101882117, and LOC101885394 respectively relative to other cells. To the best of

our knowledge, the function of these genes in development is not described. These cells

were annotated by Wagner et al. [75] as belonging to 7 cell types including the Tailbud –

Spinal Cord and Neural – Midbrain. These cells were excluded from further analysis.

To generate a cell state graph, 100 PCA dimensions were calculated from the square

root transformed filtered gene expression matrix of both datasets. Edge weights between

cells on the graph were calculated using an alpha-decay kernel with parameters knn=20,
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decay=40. MAGIC was used to impute gene expression values using default parameters.

MELD was run using the tyr or chd labels as input. The sample-associated density esti-

mate was calculated for each of the 6 samples independently and normalized per replicate

to generate 3 chordin relative likelihood estimates. The average likelihood for the chordin

condition was calculated and used for downstream analysis. To identify subpopulations

within the published clusters, we manually examined a PHATE embedding of each sub-

cluster, the distribution of chordin likelihood values in each cluster, and the results of VFC

subclustering with varying numbers of clusters. The decision to apply VFC was done

one a per-cluster basis with the goal of identifying cell subpopulations with transcriptional

similarity (as assessed by visualization) and uniform response to perturbation (as assessed

by likelihood values). Cell types were annotated using sets of marker genes curated by

Farrell et al. [76]. Changes in gene expression between VFC clusters was assess using a

rank sum test as implemented by diffxpy.

3.6.6 Generation, processing and analysis of the pancreatic islet data

Single-cell RNA-sequencing was performed on human islet cells from three different islet

donors in the presence and absence of IFNγ. The islets were received on three different

days. Cells were cultured for 24 hours with 25ng/mL IFNγ (R&D Systems) in CMRL

1066 medium (Gibco) and subsequently dissociated into single-cells with 0.05% Trypsin

EDTA (Gibco). Cells were then stained with FluoZin-3 (Invitrogen) and TMRE (Life

Technologies) and sorted using a FACS Aria II (BD). The three samples were pooled for

the sequencing. Cells were immediately processed using the 10X Genomics Chromium

3’ Single-Cell RNA-sequencing kit at the Yale Center for Genome Analysis. The raw

sequencing data was processed using the 10X Genomics Cell Ranger Pipeline. Raw data

will be made available prior to publication.

Data from all three donors was concatenated into a single matrix for analysis. First,
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cells not expressing insulin, somatostatin, or glucagon were excluded from analysis using

donor-specific thresholds. The data was square root transformed and reduced to 100 PCA

dimensions. Next, we applied an MNN kernel to create a graph across all three donors

with parameters knn=5, decay=30. This graph was then used for PHATE. MELD was

run on the sample labels using default parameters. To identify coarse-grained cell types,

we used previously published markers of islet cells [89]. We then used VFC to identify

subpopulations of stimulated and unstimulated islet cells. To identify signature genes

of IFNγ stimulation, we calculated differential expression between the clusters with the

highest and lowest treatment likelihood values within each cell type using a rank sum

test as implemented in diffxpy. A consensus signature was then obtained by taking the

intersection genes with q-values < 0.05. Gene set enrichment was then calculated using

gseapy.

3.6.7 Quantitative comparisons

To generate single-cell data for the quantitative comparisons, we used Splatter. Datasets

were all generated using the ”Paths” mode so that a latent dimension in the data could

be used to create the ground truth likelihood that each cell would be observed in the ”ex-

perimental” condition relative to the ”control”. We focused on four data geometries: a

tree with three branches, a branch and cluster with either end of the branch enriched or

depleted and the cluster unaffected, a single branch with a middle section either enriched

or depleted, and four clusters with random segments enriched or depleted. To create clus-

ters, a multi-branched tree was created, and all but the tips of the branches were removed.

The ground truth experimental signal was created using custom Python scripts taking the

”Steps” latent variable from Splatter and randomly selecting a proportion of each branch

or cluster between 10% and 80% of the data was enriched or depleted by 25%. These re-

gions were divided into thirds to create a smooth transition between the unaffected regions
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and the differentially abundant regions. This likelihood ratio was then centered so that,

on average, half the cells would be assigned to each condition. The centered ground truth

signal was used to parameterize a Bernoulli random variable and assign each cell to the

experimental or control conditions. The data and sample labels were used as input to the

respective algorithms.

To quantify the accuracy of MELD to approximate the ground truth likelihood ratio, we

compared MELD, a kNN-smoothed signal, or a graph averaged signal to the ground truth

likelihood of observing each cell in either of the two conditions. We used the Pearson’s R

statistic to calculate the degree to which these estimates approximate the likelihood ratio.

Each of the four data geometries was tested 30 times with different random seeds.

We also performed MELD comparisons using the T cell and zebrafish datasets de-

scribed above. The preprocessed data was used to generate a three-dimensional PHATE

embedding that was z-score normalized. We then used a combination of PHATE dimen-

sions to create a ground truth probability each cell would be observed in the experimental

or control condition. Cells were then assigned to either condition based on this probabil-

ity as described above. We ran the same comparisons as on the simulated data with 100

random seeds per dataset.

To quantify the accuracy of VFC to detect the regions of the dataset that were enriched,

depleted, or unaffected between conditions, we calculated the Adjusted Rand Score be-

tween the ground truth regions with enriched, depleted, or unchanged likelihood ratios

between conditions. VFC was compared to k-Means, Spectral Clustering, Louvain, Lei-

den, and CellHarmony. As Leiden and Louvain do not provide a method to control the

number of clusters, we implemented a binary search to identify a resolution parameter

that provides the target number of clusters. Although Cell Harmony relies on an initial

Louvain clustering, the tool does not implement Louvain with a tuneable resolution. It is

also not possible to provide an initial clustering to CellHarmony, so we resorted to cutting

Louvain at the level closest to our target number of clusters. Finally, because CellHarmony

81



does not reconcile the disparate cluster assignments in the reference and query datasets,

and because not all cells in the query dataset may be aligned to the reference we needed

to generate manually new cluster labels for cells in the query dataset so that the method

could be compared to other clustering tools.

To characterize the ability of MELD to characterize gene signatures of a perturbation

dataset, we returned to the T cell dataset. We again used the same setup to create synthet-

ically 3 regions with different sampling probabilities in the dataset using PHATE clusters

as above. Because one of these clusters has no differential abundance between condi-

tions, we calculated the ground truth gene expression signature between the enriched and

depleted clusters only using diffxpy [81]. To calculate the gene signature for each clus-

tering method, we performed differential expression between the most enriched cluster

in the experimental condition and the most depleted cluster in the experimental condition

(or highest and lowest treatment likelihood for MELD). We also considered directly per-

forming two-sample comparison using the sample labels. To quantify the performance

of each method, we used the area under the receiving operator characteristic (AUCROC)

to compare the q-values produced using each method to the ground truth q-values. This

process was repeated over 100 random seeds. The AUCROC curves and performance of

each method relative to VFC is displayed in Figure S6d,e.

3.7 Data availability

Gene expression counts matrices prepared by Datlinger et al. [8] were accessed from the

NCBI GEO database accession GSE92872. Gene expression counts matrices prepared

by Wagner et al. [75] were downloaded from NCBI GEO accession GSE112294. The

pancreatic islets datasets are available on NCBI GEO at accession GSE161465.
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3.8 Code availability

Code for the MELD and VFC algorithms implemented in Python is available as part of

the MELD package on GitHub https://github.com/KrishnaswamyLab/MELD

and on the Python Package Index (PyPI). The GitHub repository also contains tutorials,

code to reproduce the analysis of the zebrafish dataset, and code associated with several of

the quantitative comparisons.

3.9 Supplementary Notes

Supplementary Note 1: A pipeline for analyzing single-cell data using MELD

Using the MELD algorithm and VFC, it is now possible to propose a novel framework

for analyzing single-cell perturbation experiments. The goal of this framework is to iden-

tify populations of cells that are the most affected by an experimental perturbation and to

characterize a gene signature of that perturbation. A schematic of the proposed pipeline is

shown in Figure 3.10.

Prior to using the algorithms in MELD, we recommended first following established

best practices for analysis of single-cell data including exploratory analysis using visu-

alization, preliminary clustering, and cluster annotation via differential expression anal-

ysis [68]. These steps ensure that the dataset is of high quality and comprises the cell

types expected from the experimental setup. Following exploratory characterization, we

propose the following analysis:

1. Estimate the sample-associate relative likelihood for each condition

2. Determine which exploratory clusters require subclustering with VFC by examining

the likelihood distribution within each cluster, a visualization of the cluster, and the

results of VFC with varying numbers of clusters
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3. Create new cluster assignments using VFC

4. Annotate each cluster following best practices [68]

5. Characterize enrichment of cell populations using sample likelihood and gene sig-

natures

The basic steps to calculate the sample-associated relative likelihood are provided in

the Results. In the case of multiple replicates, we recommend calculating the sample den-

sity for each sample over a graph of all cells from all samples so long as there is sufficient

overlap between samples. This overlap can be assessed using the k-nearest neighbor batch

effect test described in Büttner et al. [125]. We then normalize the sample density for

matched experimental and control samples of the same replicate and average across repli-

cates to obtain an average measure of the perturbation. Variation in this likelihood across

replicates can be used as a measure of consistency for the measured perturbation across

cell types. The result of this step is an estimate of the probability that each cell would be

observed in the treatment condition relative to the control.

Having calculated the sample-associated relative likelihood, we next recommend de-

termining which cell populations identified during exploratory analysis require further

subclustering with VFC to identify cell types enriched or depleted in the experimental

condition. Determining optimal cluster resolution for single-cell analysis will vary across

experiments depending on the biological system being studied and the goals of each in-

dividual researcher. Instead of providing a single measure to determine the number of

clusters, we outline a general strategy as a guide for users of MELD.

To determine the number of VFC clusters, we suggest taking into consideration tran-

scriptional variation within each coarse-grained cluster and the effect of the perturbation.

First, using a dimensionality reduction tool such as PHATE, examine a two or three di-

mensional scatter plot of the cluster colored by the sample likelihood for each cell. Here,

the goal is to identify either regions that have very different likelihood values or regions of
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data density separated by low-density regions suggesting the present of multiple subclus-

ters to target with VFC. We also suggest examining the distribution the likelihood values

within each cluster to determine if the cells in the cluster exhibit a restricted range of re-

sponses to the perturbation or large variation that would require subclustering. Finally, we

recommend running VFC with various numbers of clusters (2-5 is often sufficient) and

inspecting the output on a PHATE plot and/or with a swarm plot. In ambiguous cases,

it may be helpful to perform differential expression analysis and gene set enrichment to

determine whether or not each cluster is biologically relevant to the experimental question

under consideration [68, 126]. Importantly, not all clusters need subclustering, and we

emphasize the ideal cluster resolution will vary based on the goals of each analyst.

To determine the gene signature of the perturbation, we recommend quantifying the

differences in expression between VFC clusters. For experiments with only a single-cell

type and 3-4 VFC clusters, it is often sufficient to perform differential expression analysis

between the cluster most enriched in the experimental condition and the cluster most de-

pleted in the experimental condition. And example of this analysis is provided in the T cell

analysis section of the Results. For experiments with several cell types, we recommend

calculating the gene signature between the enriched and depleted VFC clusters within each

exploratory cluster. To obtain a consensus gene signature, a research may take the inter-

section of the gene signatures within exploratory cluster. An example of this analysis is

provided in the pancreatic islets section of the Results.

We note that the strategy for identifying gene signatures outlined in the previous para-

graph differs from the current framework employed in recent papers (Figure 3.9). Instead

of comparing expression between cells from the experimental condition and the control,

we compare clusters of cells identified with VFC. The rationale for the framework pre-

sented here is that if VFC clusters are transcriptionally homogeneous and exhibit a uniform

response to the perturbation, we expect differences in gene expression between conditions

within each cluster to represent biological and technical noise. However, characterizing
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transcriptional differences between cells of different clusters regardless of condition of

origin will yield a description of the cell states that vary between experimental condi-

tions. We confirm that the gene signatures obtained in this manner are more accurate than

between-sample comparisons in our quantitative comparisons.

Supplementary Note 2: VFC improves analysis of chd Cas9 knockout in zebrafish

embryos Here we provide details of our analysis of three clusters in the zebrafish datasets

[75] that required further subclustering using VFC. In each example, we show biologically

relevant insights that were missed in the published analysis.

The Tailbud – Presomitic Mesoderm (TPM) cluster exhibits the largest range of chordin

relative likelihood values of all the clusters annotated by Wagner et al. [75]. In a PHATE

visualization of the cluster, we observe many different branches of cell states, each with

varying ranges of chordin relative likelihood values (Figure 5c). Within the TPM clus-

ter, we find four subclusters using VFC (Figure 5d). Using established markers [76], we

identify these clusters as immature adaxial cells, mature adaxial cells, presomitic meso-

derm cells, and hematopoietic cells (Figures 5c & 3.16). Examining the distribution

of chordin relative likelihood scores within each cell type, we conclude that the large

range of chordin relative likelihood values within the TPM cluster is due to largely non-

overlapping distributions of scores within each of these subpopulations (Figure 5e). The

immature and mature adaxial cells, which are embryonic muscle precursors, have low

chordin relative likelihood values indicating depletion of these cells in the chd condition

which matches observed depletion of myotomal cells in chordin mutants [84]. Conversely,

the presomitic mesoderm and hematopoietic mesoderm have high chordin relative likeli-

hood values, indicating that these cells are enriched in a chordin mutant. Indeed, expansion

of the hematopoietic mesoderm has been observed in chordin morphants [127] and expan-

sion of the presomitic mesoderm was observed in siblings of the chd embryos by Wagner

et al. [75]. This heterogeneous effect was entirely missed by the fold-change analysis,

since the averaging of all cells assigned to the TPM cluster caused the depletion of adaxial
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cells to be masked by the expansion of the presomitic and hematopoietic mesoderm.

Another advantage of vertex-frequency clustering is that we can now differentiate be-

tween a change in gene expression levels across conditions and a change in abundance of

cells expressing a given gene between conditions. When we examined marker gene ex-

pression within each of the VFC subclusters, we find different trends in expression in each

cluster (Figure 5f). For example, Myod1, a marker of adaxial cells, is lowly expressed in

the presomitic and hematopoietic mesoderm, but highly expressed in adaxial cells. Using

a rank sum test, we find that Myod1 is not differentially expressed between conditions

within any of the VFC clusters despite there being differential expression using all cells in

the TPM cluster (Figure 5f). We find a similar trend with Tbx6, a mesoderm marker that

is not expressed in adaxial cells. We find Tbx6 is differentially expressed between chd and

tyr embryos within the whole cluster but not within the adaxial or presomitic mesoderm

clusters. These results show that the observed change in expression of these genes in the

published analysis was in fact due to changes in abundance of cell subpopulations that led

to misleading differences in statistics calculated across multiple populations as a whole.

Using the chordin relative likelihood and VFC, we can identify more appropriate clusters.

We similarly analyzed the ”Epidermal - pfn1 (EPP)” and ”Tailbud - Spinal Cord (TSC)”

clusters which had the 6th and 3rd largest standard deviation in chordin relative likeli-

hood values of all published clusters, respectively (Figure 3.16). We used VFC to break

up the Epidermal - pfn1 cluster into two subclusters. Among the top differentially ex-

pressed genes between the resulting clusters we find tbx2b, crabp2a, and pfn1. Crabp2a, a

marker of the neural plate border [76], is more lowly expressed in the cluster with higher

chordin relative likelihood values, suggesting that chd loss-of-function inhibits expression

of crabp2a. This is consistent with previous studies showing a requirement of chordin for

proper gene expression patterning within the neural plate [128, 129].

Within the Tailbud - Spinal Cord cluster we further identified three subpopulations of

cells using VFC. Examining gene expression within the subclusters, we can see that the
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published cluster contains different populations of cells. One group expresses markers

of the spinal cord (neurog, elavl3) and dorsal tissues (olig3, pax6a/b) with an average

chordin relative likelihood of 0.38, which is consistent with prior evidence that chd loss-of-

function disrupts specification of the neuroectoderm and dorsal tissues such as the spinal

cord [84]. Examining the two remaining subclusters, we see that these cells resemble

cells found in both the TPM and Epidermal - Pfn1 clusters. One cluster exhibits high

levels of crabp2a and chordin relative likelihood values <0.5 similar to the neural plate

border cells subpopulation within the Epidermal - Pfn1 cluster. Similarly, we find the

remaining cluster expressed markers of the tailbud and presomitic mesoderm including

tbx6, sox2, and fgf8a. Together, these results demonstrate the advantage of using the

sample-associated relative likelihood and vertex frequency clustering to quantify the effect

of genetic loss-of-function perturbations in a complex system with many cell types.

Supplementary Note 3: Applying MELD analysis to single-cell datasets with a

batch effect

When jointly analyzing single-cell datasets collected in different samples, difficulty

may arise due to systematic changes in gene expression profiles between biologically

equivalent cells [125]. These changes may be technical in nature (e.g. differences in the

reverse transcription efficiency during library preparation) or biological (e.g. changes in

sample preparation cause unexpected changes in biological state of otherwise equivalent

cells). Regardless of the cause, the unifying feature of batch effects is that they confound

the analysis a given research wants to perform. As such, it is unsurprising that dozens of

batch normalization tools have been developed for single-cell data [130]. However, it is

important to emphasize that what constitutes a batch effect is dependent on the biological

question in which a researcher is interested. Some analysts might be uninterested in varia-

tion caused by a change in cell media composition between samples, but other researchers

might want to study these differences. Batch normalization tools have no way to know

what variation is biologically relevant to the specific hypotheses of a given experiment and
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thus risk removing meaningful experimental signal when ”correcting” measured values.

This is problematic for analysis using MELD, because the goal of the toolkit is to quan-

tify the differences that exist between samples without regard for the specific interests of

given hypothesis. As such, we do not recommend using batch correction along the exper-

imental axis (i.e. between experimental and control conditions) before running MELD.

However, recognizing that in some cases batch correction is essential, we describe several

considerations for performing MELD analysis on batch-corrected data.

For the MELD algorithm to accurately estimate relative likelihood for each sample, we

assume that the graph learned from single-cell data approximates the underlying cell state

manifold. In the Methods we describe the use of an anisotropic kernel that normalizes

for varying sampling density across cell states. However, some batch correction methods,

such as mutual nearest neighbors [102], rely on the construction of a graph with artificially

inflated weights between nodes from different samples. This graph no longer models the

cell states an experiment measured, but rather enforces similarities between cells based on

the heuristic of the chosen normalization model. We provide no theoretical guarantees that

a graph learned from batch corrected data will accurately model the underlying probability

densities of each condition.

In practice when analyzing islet cells collected from multiple donors, that applying

batch correction methods across the donor label improves our ability to capture a signal

of IFNg stimulation. It is important to note that in this case, batch correction applied to

a label that is orthogonal to the experimental axis. We have no examined the accuracy

of the MELD algorithm when batch correction is applied between experimental and con-

trol samples, although it is our expectation that this will likely remove biological signal.

We recommend any user considering applying batch correction methods prior to running

MELD analysis follow these steps:

1. To determine if a batch effect exists, confirm that cells from one sample are not
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finding appropriate neighbors in another following the strategy outlined by Büttner

et al. [125].

2. To characterize the effect, identify which genes change the most between the sam-

ples

3. Confirm that the genes that are different are not relevant to the biological question

under investigation

4. Apply batch correction

5. Confirm that relevant biological differences are still present using MELD analysis

6. If the biological differences are not present, repeat from step 1 with less batch cor-

rection. If you hit your personal recursion limit, consider that you don’t actually

want to do batch correction

7. If biological differences are present, then confirm that previous batch effect has been

corrected and proceed to downstream analysis
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Figure 3.7: A step-by-step visual representation of the MELD algorithm using data from Datlinger et al. [8].
The sample labels are used to create a one-hot indicator signal for each condition. These one-hot signals are
then column-wise L1-normalized such that the sum of each vector is 1. This gives each sample equal weight
over the manifold despite a potential uneven number of cells in each condition. Next, the manifold heat filter
is used to calculate a kernel density estimate for each condition. These sample-associated density estimates
are then row-wise L1-normalized to yield the relative likelihood that each cell would be observed in each
condition. The relative likelihood of the treatment condition relative to the control is used for two-condition
experiments.
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Figure 3.8: Vertex-Frequency clustering with MELD. A Gaussian mixture model was used to generate N
= 2000 points in a mixture of three Gaussian distributions. This experiment is representative of a two-
cell type experiment (split by Dim 2) in which one sample changes (bottom clusters) along Dim 1 due to
the experiment while the other remains mixed (top clusters). Briefly, the sample labels (left) are used for
(1) a windowed graph Fourier Transform to obtain vertex-frequency information (above, logarithmically
downsampled for clarity) and (2) to calculate the sample-associated relative likelihood. These measures
are concatenated together and clustered with k-Means. The clusters (right) separate the two groups of data
(orange and green/purple/pink), and finds a separate grouping of points that are in transition from green
to pink, shown in purple. One may see along the left side of the spectrogram that points in the green
and pink clusters are found on relatively low frequency patterns with high activations in lower frequencies,
whereas the transition group in purple has a well-separated medium frequency pattern. The well-mixed,
nonresponsive population is entirely high frequency.
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Figure 3.9: Identifying gene signatures using MELD. (a) In traditional gene signature analysis, clusters are
identified based on data geometry and may not capture subpopulations of cells with varying response to a
perturbation. In this framework, gene signatures are calculated by comparing cells from the experimental
and control condition within each cluster. (b) To identify gene signatures of a perturbation with the MELD
toolkit, we propose first partitioning cell populations with divergent responses to an experimental perturba-
tion prior to differential expression analysis. We then assume that the differences within each VFC cluster is
noise. Differential expression can either be calculated between subclusters identified by VFC (as shown) or
by comparing each VFC cluster to the rest of the dataset independently.
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Figure 3.10: Overview of a pipeline for single-cell analysis using MELD. (1.) Initial exploratory analysis
of the dataset should follow established best practices to identify coarse-grained cell populations [68, 126].
(2.) Calculating the sample-associated relative likelihood provides a measure for each cell describing the
probability that cell would be observed in the experimental condition relative to the control. (3.) To identify
populations most affected by a perturbation, we consider several sources of information regarding biological
heterogeneity and the effect of the perturbation within each exploratory cluster. We then apply VFC at the
determined cluster resolution. (4.) To assess the biological relevance of each VFC cluster, standard methods
for cluster annotation can be applied. (5.) To characterize the gene signature of the perturbation, we compare
expression differences between VFC clusters with varying relative likelihood distributions.

94



Figure 3.11: Result of down-sampling on accurately recovering simulated relative likelihood values. We
generated 100 random ground truth relative likelihoods and then removed between 1-99% of the cells in the
dataset before running the MELD with default parameters. The average Pearson’s R is shown as a function
of the number of cells removed prior to estimating the sample-associated relative likelihood. The shaded
area demarks ±1 standard deviation. We observe an average correlation >0.9 for all experiments with at
least 35% of the data present, or 1956 out of 5591 cells.
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Figure 3.12: VFC accurately identifies cell populations affected by a perturbation in T cell data from
Datlinger et al. [8]. (a) To create ground truth clusters, we artificially enriched and depleted various cell
populations in either the experimental or control condition. Here we show the Adjusted Rand Score (ARS)
over 100 simulations for 6 methods. For ARS, values close to 1 indicate perfect correspondence with ground
truth, and values close to 0 indicate random labelling. VFC is the top performing method. (b) Because each
simulation produced varying ARS scores for each method due to random seeds, we also consider the differ-
ence on performance between each method and VFC on each simulation. In none of 100 random seeds did
any method outperform VFC. (c) The sample labels, sample-associated relative likelihoods, and clustering
results for one randomly selected simulation. (d) Receiver operating characteristic (ROC) curves for the
gene expression signatures described in the quantitative comparison section. The Area Under the Curve of
the ROC (AUCROC) indicates the overall performance of each strategy for identifying a gene signature.
MELD is the top performing approach followed by direct comparison of the two samples. (e) As above, we
consider the difference in AUCROC over each of 100 simulations between MELD and each method. In only
4 simulations does another method outperform MELD by more than 0.01.
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Figure 3.13: Quantitative comparison of clustering algorithms using zebrafish data from Wagner et al. [75].
(a) To create ground truth clusters, we artificially enriched and depleted various cell populations in either
the experimental or control condition. Here we show the Adjusted Rand Score (ARS) over 100 simulations
for 6 methods. VFC is the top performing method on average. (b) Difference on performance between each
method and VFC on each simulation. (c) The sample labels, sample-associated relative likelihoods, and
clustering results for the simulation in which VFC performed best relative to other methods and (d) for the
simulation in which VFC performed worst relative to other methods. We found that by adjusting the weight-
ing of the sample-associated relative likelihood from 1 (default) to 2, VFC becomes the top performing
algorithm on this case (’VFC - new’).
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Figure 3.14: Quantitative analysis of Cas9 perturbations in T cells [8] using the MELD. Each plot shows the
distribution of sample-associate relative likelihood values for all stimulated cells transfected with gRNAs
targeting a specific gene. The shade of each cell indicates the different gRNAs targeting the same gene.
To determine the impact of the gRNA on the TCR activation pathway, we rank each gene by the average
stimulation likelihood value. We observed a large variation in the impact of each gene knockout consistent
with the published results from Datlinger et al. [8]. Encouragingly, our results agree with their bulk RNA-
seq validation experiment showing greatest depletion of TCR response with knockout of kinases LCK and
ZAP70 and adaptor protein LAT. We also find a slight increase in stimulation likelihood values (and therefore
stimulation) in cells in which negative regulators of TCR activation are knocked out, including PTPN6,
PTPN11, and EGR3.
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Figure 3.15: Analysis of replicates within the zebrafish data generated by Wagner et al. [75]. (a) Because
the sample-associated relative likelihood (RL) is calculated by independently filtering a one-hot indicator
vector for each condition, to calculate the chordin likelihood for each replicate, we simply row-normalize
the smoothed vectors for the two signals indicating matched experimental / control pairs. For example,
the ”Replicate A - RL” is calculated by normalizing the ”chdA” and ”tyrA” filtered indicator vectors. We
notice comparing replicates that the chordin likelihood for a given cell population may vary. For example,
the Adaxial cell population in enriched in the Chd condition in Replicate A, but depleted in Replicate C.
Similarly, cells in the Notochord population are depleted in the Chd condition in Replicates A and C, but
show minimal change in abundance in Replicate B. (b) The average relative likelihood across all replicates
is shown for each cell on a PHATE embedding. (c) The standard deviation of the sample-associated relative
likelihood across all replicates is shown for each cell on a PHATE embedding. Regions that have higher
values exhibit greater variation in their response to the experimental perturbation. We should trust the av-
erage relative likelihood values for these cells less than for cells with little variation in relative likelihood
values. (d) A biaxial scatter plot showing the relationship between mean and standard deviation in the rela-
tive likelihood for each cell. Color indicates the cluster labels from Figure 5a We observe that for cells with
the highest relative likelihood, the standard deviation is smaller than for cells with relative likelihood values
close to 0.5 creating a slight negative Pearson correlation of -0.18.
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Figure 3.16: Characterization of vertex-frequency clusters in the zebrafish dataset. (a) Raw vertex-
frequency cluster assignments on a PHATE visualization of the Tailbud - Presomitic Mesoderm cluster.
(b) Normalized expression of previously identified marker genes of possible subtypes of the Tailbud - Pre-
somitic Mesoderm [76]. The color of the dot for each gene in each cluster indicates the expression level and
the size of the dot corresponds to the normalized Wasserstein distance between expression within cluster to
all other clusters. (c) Distribution of chordin relative likelihood values within the ”Epidermal - pfn1” cluster
identified by Wagner et al. [75] shown on a PHATE plot. (d) Four different values of ”n clusters” that was
used to create different VFC clusters with the ”Epidermal - pfn1” cluster. We selected n clusters = 2 because
this identified a population of cells with similar chordin relative likelihood values and localization on the
PHATE embedding. (e) Expression of three significantly differentially expressed genes between the two
VFC subpopulations detected in the ”Epidermal - pfn1” population. Tbx2b and Crabp2a were identified as
markers of the epidermis and neural plate border respectively by Farrell et al. [76]. Because we observed
differential expression of these two markers between the VFC subclusters suggests the ”Epidermal - pfn1”
cells identified by Wagner et al. [75] actually comprises cells originating from two distinct cell populations.
(f) Distribution of chordin relative likelihood values within the ”Tailbud - Spinal Cord” cluster identified by
Wagner et al. [75] shown on a PHATE plot. (g) Four different values of n clusters that was used to create
different VFC clusters within the ”Tailbud - Spinal Cord” cluster. We selected n clusters = 3 because this
identified populations of cells with similar likelihood values and localization on the PHATE embedding. (h)
Same plot as in (b) for the subclusters of the ”Tailbud - Spinal Cord”. (i) Distribution of relative likelihood
values within each VFC subcluster show that the three subclusters are biologically distinct with differing
responses to the experimental perturbation. (j) Repeating the VFC subclustering process for all cells, we
identified a total of 50 clusters within the zebrafish dataset generated by Wagner et al. [75]. Compared to
the plot in Figure 5b, we observed a more restricted distribution of chordin relative likelihood values within
each cluster suggesting these labels represent populations of cells that are more homogeneous with respect
to the experimental perturbation.
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Figure 3.17: Analysis of pancreatic islet cells from three donors. (a) Library-size normalized expression of
insulin (INS), glucagon (GCG), and somatostatin (SST) shows donor-specific batch effect across islet cells.
(b) Normalized expression of previously identified marker genes of alpha, beta, and delta cells[89] in each
cluster. The color of the dot for each gene in each cluster indicates the expression level after MAGIC and the
size of the dot corresponds to the normalized Wasserstein distance between expression within cluster to all
other clusters. (c) Results of VFC using varying numbers of clusters for each of the three cell types. The red
box denotes the selected level of clustering for each cell type. (d) The sample-associated relative likelihood
is calculated independently for each donor and then averaged to obtain the stimulated relative likelihood
used in the main analysis. We also calculate the standard deviation of the relative likelihood for each cell.
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Figure 3.18: Analysis of islet cell profiles across donors. (a) The sample labels and sample-associated
relative likelihood associated with each donor from which islet cells were obtained. (b) Comparison of
the donor likelihood values within each vertex frequency cluster identifies changes in enrichment for each
cluster in various donors. For example, the β - non-responsive cluster is strongly enriched in donor 1.
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Figure 3.19: Source Separation and Parameter Analysis with the MELD filter. (a) Sample labels (center)
are obtained that are a binarized observation of a low frequency latent signal (top left), a medium frequency
latent signal (top middle), and high frequency noise (top right). Analysis of the sample labels alone is
intractable as they are corrupted by noise and experimental binarization. MELD low-pass filters (bottom left)
to separate a longitudinal trajectory and band-pass filters (bottom right) to yield the periodic signature of the
medium frequency latent signal. Parameters used for this analysis are supplied beneath the corresponding
arrows and the laplacian filter is used for illustrative purposes. (b) Reconstruction penalty β controls a
low-pass filter. For this demonstration, α = 0, ρ = 1. This filter is equivalent to Laplacian regularization.
(c) Order ρ controls the filter squareness. This parameter is used in the low-pass filter of (a). For this
demonstration, β = 1, α = 0. (d) Band-pass modulation via α. When ρ is even valued, α modulates the
central frequency of a band-pass filter. This parameter is used in (a) to separate a medium-frequency source
from a low-frequency source. (e) α and ρ combine to make square band-pass filters. For (d) and (e), β = 1.
(f) Negative values of ρ yield a high-pass filter. For (b-f), Laplacian harmonics for a general normalized
Laplacian are plotted on the x-axis. The frequency response of the filter given by the colored parameters is
on the y-axis.
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Figure 3.20: Selecting parameters for MELD. (a) Results of a parameter search over the β parameter using
the four datasets described in the quantative comparisons section. The red line shows the average perfor-
mance over 10 different datasets of each geometry with one standard deviation marked by the grey lines. We
observe reasonably consistent performance of the sample-associated relative likelihood algorithm across all
datasets using a β value between 50-75. We chose a value of 60 as the default in the MELD package and
used this setting for all experiments. (b) We observe that the optimal β parameter for a dataset varies with
the number of cells in the dataset. We suggest increasing the default beta parameter for datasets larger than
30,000 cells.

104



Dataset Rel. Likelihood Graph Averaging kNN Averaging

Branch and Cluster 0.82 (0.05) 0.41 (0.05) 0.73 (0.04)
Non-monotonic 0.94 (0.03) 0.52 (0.06) 0.85 (0.03)

Four clusters 0.91 (0.06) 0.44 (0.07) 0.76 (0.07)
Three Branches 0.90 (0.03) 0.48 (0.07) 0.73 (0.07)

T cells [8] 0.98 (0.01) 0.72 (0.06) 0.32 (0.04)
Zebrafish [75] 0.98 (0.01) 0.53 (0.07) 0.80 (0.07)

Table 3.1: Quantitative comparison of methods for label smoothing over a graph. 40 random seeds were
used for each of 4 synthetic datasets. 100 random seeds were used to create sample assignments on the T
cell and zebrafish datasets. Average Pearson Correlation with ground truth signal is displayed with standard
deviation in parentheses. Top performing algorithm is bolded.

Dataset VFC Spectral Louvain Leiden KMeans CellHarmony

T cell [8] 0.62 (0.07) 0.23 (0.11) 0.31 (0.13) 0.34 (0.14) 0.11 (0.04) 0.13 (0.05)
Zebrafish [75] 0.53 (0.31) 0.13 (0.15) 0.23 (0.22) 0.19 (0.21) 0.23 (0.20) 0.22 (0.16)

Table 3.2: Quantitative comparison of clustering methods to identify the cell types affected by a simulated
experimental perturbation using real world data.
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Abstract

Archetypal analysis is a data decomposition method that describes each observation in a

dataset as a convex combination of ”pure types” or archetypes. These archetypes represent

extrema of a data space in which there is a trade-off between features, such as in biology

where different combinations of traits provide optimal fitness for different environments.

Existing methods for archetypal analysis work well when a linear relationship exists be-
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tween the feature space and the archetypal space. However, such methods are not appli-

cable to systems where the feature space is generated non-linearly from the combination

of archetypes, such as in biological systems or image transformations. Here, we propose

a reformulation of the problem such that the goal is to learn a non-linear transformation

of the data into a latent archetypal space. To solve this problem, we introduce Archetypal

Analysis network (AAnet), which is a deep neural network framework for learning and

generating from a latent archetypal representation of data. We demonstrate state-of-the-art

recovery of ground-truth archetypes in non-linear data domains, show AAnet can generate

from data geometry rather than from data density, and use AAnet to identify biologically

meaningful archetypes in single-cell gene expression data.

Contribution

The use of an autoencoder for archetypal analysis was initially proposed by Dr. David

van Dijk. I proposed the reformulation of archetypal analysis as learning a transformation

from the ambient space to a latent archetypal space bound by a simplex. I designed the

sphere projection, dSprites, reproducibility, scRNA-seq, and gut microbiome experiments.

I wrote a majority of the text and designed the figures.

4.1 Previous work and Background

The first algorithm proposed for archetypal analysis was principal convex hull analysis

(PCHA) as described by [50], which identifies a set of p archetypes constrained to be

linear combinations of the data such that the following is minimized:

min
W,H
||X′ −X′WH||2F (4.1)
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Here, X is the data matrix with n observations on the rows and m features. W is an

n × p matrix mapping the data to the archetypes and W is a p × n matrix denoting the

archetypes in the feature space. Cutler and Breiman [50] then propose an optimization

algorithm using alternating least squares.

Subsequent advances focused on improvements to the algorithm for fitting a hull to

the data. In [131], it is proposed to solve the PCHA optimization via projected gradient

descent. Further improvement to the optimization procedures are formed in [132], which

uses an active set strategy. More recently, envelope constraints were tightened in [133]

by adding a cost for the sum of the distances of the data points from the convex envelope

of the archetypes and another for the sum of the distances of archetypes from the convex

envelope of the data points.

The first work to propose AA on a transformed feature space is [131]. There, an

algorithm is provided for AA applied to the kernel space of a dataset. In [134], the authors

perform archetypal analysis on the representation found in a hidden layer of an image

classification neural network in order to define image styles. Although these methods

extend AA to non-linear feature spaces, both apply a fixed transformation to the data

space. By contrast, our goal is to find an optimal non-linear transformation of the data

such that the data is optimally described by a simplex. We propose to use a novel neural

network regularization for this task.

4.2 Introduction

Archetypal analysis (AA) decomposes each observation in a dataset into a convex com-

bination of pure types or archetypes. These archetypes represent extreme combinations

of features and thus are extrema of the data space. For example, species adapted to spe-

cific environments will have unique and extremal combinations of features [135]. Since

each observation is described as a mixture of the archetypes, AA describes the dataset as
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varying smoothly between the identified archetypes. This interpretation has several appli-

cations for exploratory data analysis. For example, the archetypes can be characterized in

the feature space to understand the extrema of a dataset. Additionally, when considering

the archetypal space, i.e. the mixture of archetypes for each data point, AA provides a new

factor space for data exploration. A point can now be characterized by its composition of

specific archetypes, and distances between points can be calculated from archetypal mix-

tures. These applications have led to the application of AA for exploratory data analysis in

a number of disciplines including astronomy [136], market research [137, 138], document

analysis [139, 140], and genomic inference [141, 51, 142].

Because each point is represented as a convex combination of archetypes, there is an

inherent trade-off between the archetypes. This limits the number of archetypes identifi-

able in Rn to n + 1. It is not possible to fit four archetypes to a rectangle in R2. This

constraint well fits systems with an inherent trade-off between features, such as in ge-

nomics where typically only relative abundances of genes are considered [142]. In this

way, AA bears similarity to Latent Dirichlet Allocation (LDA), a statistical method used

for topic analysis that models word occurrences in a document as occurring with some

probability over a discrete number of topics with a Dirichlet prior [143]. Thus, the latent

features in LDA also form a space bound by a simplex. However in LDA, the topics are

known a priori, and the goal of AA is to identify the archetypes. Finally, AA implies a

data model where each point varies continuously between a set of archetypes, unlike the

model of clustering methods where data originates from centroids plus noise. For such

cluster-like data sets, AA would need to be applied to each cluster independently.

Identifying archetypes is the primary challenge in AA. Most methods for AA identify

archetypes by fitting a simplex to the data space where the vertices are linear combinations

of the input data. A limitation of this approach is that if the relationships between features

in the dataset are non-linear, then the extrema of the data space may not correspond to

the extrema of the data geometry. Take, for example, a triangle projected onto a sphere.
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Although the vertices of the triangle remain the extrema of the data geometry, they may

no longer conform to extrema of the data space (Fig. 4.2). In this case, linear AA methods

fail to capture correct archetypes as shown in Section 4.4.1. Non-linear AA methods have

been proposed, such as kernel PCHA [131]. However, in these methods a fixed non-

linear transformation is applied to the data after which linear AA is performed. There

is no guarantee that any one transformation makes all data sets well-approximated by a

simplex.

To overcome these limitations, we propose a new formulation of the problem. Instead

of fitting a convex hull to a fixed feature space, our goal is to identify a transformation of

feature space X into an k-dimensional archetypal space where k corresponds to the number

of archetypes. In the archetypal space, Z, single activations of each dimension correspond

to archetypes (i.e. [1,0,0] for a space with 3 archetypes). The space is constrained such

that each data point is represented as a convex combination of the archetypes. Because of

the convexity constraint, all observations are bound by a k-dimensional simplex. In this

reformulation, the goal of AA is to learn the ideal transformation f(X) → Z and inverse

function f ′(Z)→ X such that the underlying data geometry is preserved.

To achieve this, we introduce the Archetypal Analysis network (AAnet), a neural net-

work framework for learning and generating from a latent archetypal space. AAnet uses an

autoencoder with a novel regularization on the latent layer in which the encoder E learns

the transformation from the data space (input) to the archetypal space (bottleneck layer),

and the decoder D learns the transformation back to the feature space (reconstruction).

Performing AA in this manner also provides powerful generative properties. Single acti-

vations of each node in the latent space represent an archetype of the data that the decoder

transforms back to the feature space. It is also possible to generate new data with a specific

mixture of each archetype. In contrast, the latent space of generative models such as the

VAE or the sampling space of a GAN have no accessible semantic structure from which to

generate data as a mixture of “pure types”. Furthermore, AAnet can sample from the data
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geometry independent of data density, which are limitations of VAEs and GANs.

The main contributions of this chapter are:

1. A reformulation of archetypal analysis with the goal of learning an optimal transfor-

mation of the data in the feature space into an archetypal space bound by a simplex;

2. A novel regularization on the latent space of an autoencoder such that nodes of the

bottleneck layer are archetypes and node activations are loadings of the data onto

the archetypes;

3. Demonstration of the generative properties of AAnet on unevenly sampled data with

comparisons to a VAE and GAN; and

4. An extensive collection of quantitative benchmarks comparing AAnet against five

state-of-the-art archetypal analysis methods.

The remainder of the paper provides a summary of previous work, description of the

AAnet framework and implementation, quantitative comparisons of AAnet to existing AA

methods on synthetic datasets, application of AAnet to a new single-cell gene expression

dataset, and demonstrations of the reproducibility, robustness, and scalability of AAnet.

4.3 Methods

First, we describe our new generalized problem formulation for finding a transformed data

space for archetypal analysis, and then we describe our AAnet framework.

4.3.1 Problem setup

Our problem formulation is a generalization of the formulation in Equation 4.1. Instead of

the archetypes learned as a linear combination of the original data points, we optimize over
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Figure 4.1: Illustrative representation of AAnet. AAnet learns a non-linear transformation of the input data
(blue) such that within the embedding layer, the data fits well within a simplex whose vertices (red dots)
represent extreme states of the data, also called archetypes. By decoding the points in the latent space,
AAnet can be used for exploratory data analysis and data generation.

a general nonlinear transformation f(X) from the feature space to an archetypal space in

which the convex constraints are enforced.

The generalized archetypal analysis problem is the following optimization:

arg min
f,c1,...,ck

n∑
i=1

‖f(xi)−
n∑

j=1

αijcj‖2

subject to f is approximately invertible on X

k∑
j=1

αij = 1, i = 1, . . . , n

αij ≥ 0, i = 1, . . . , n, j = 1, . . . , k

(4.2)

The inclusion of f in the optimization is unique to our formulation, while previous meth-

ods either considered no transformation (i.e., f = identity), or apply a fixed transforma-

tion during preprocessing (e.g. kernel PCHA). We note that our requirement that f be

approximately invertible is added here to allow the mapping of archetypes {cj}dj=1 and

hypothetical (convex) combinations of them to the original feature space.

4.3.2 The AAnet Framework

We propose a deep learning approach for solving the optimization problem in Eq. 4.2, by

considering f as the output of a neural network we called AAnet (Archetypal Analysis
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network) (see Fig. 4.1). To consider the approximate invertibility constraint, we base our

network on an autoencoder, where the encoder E(x) yields the transformation f , and the

decoder D(x) yields its (approximate) inverse. Then, the convex combination constraint

is ensured by a novel regularization that we term archetypal regularization. This regular-

ization constrains the activations in that layer to be coefficients of the archetypal decom-

position of a data point in the latent space of the neural network, and thus the archetypes

themselves are naturally represented by one-hot vectors in this space.

Formally, our network is formed by an encoder z = E(x) and decoder x̃ = D(z), with

the main MSE reconstruction loss: MSE = Ex∈X [‖x− x̃‖2] = Ex∈X [‖x = D(E(x)‖2] .

Then, to enforce k archetypes, we expect z to provide us with k activations that sum

up to one. However, notice that given such equality, we can directly compute αk = 1 −∑k−1
j=1 αj . Hence, we set the embedding layer in our network to have k−1 nodes computed

from the encoder layers, which we denote by E ′(x) ∈ Rk−1 and an additional virtual node

yielding z = E(x) = [E ′(x), 1− ‖E ′(x)‖1].

The described encoder architecture choice allows us to relax the unit-equality con-

straint to an inequality constraint, which is more suitable for the optimization used in

neural network training. Therefore, our archetypal regularization is formulated as two soft

constraints:

‖E ′(x)‖1 ≤ 1 and E ′(xi) ≥ 0, i = 1, . . . , n (4.3)

for every x ∈ X , which ensures the embedding layer provides convex combinations of

k archetypes given by the k one-hot vectors of Rk. Note, the requirement of data points

being well represented by these archetypes is implicitly enforced by the MSE reconstruc-

tion loss. The final network loss is then given by reconstruction loss + two archetypal

regularizations. Thus, the encoder learns a transformation that represents the data in the

bounds of a convex hull, and the decode enforces accuracy of the learned representation.

See Fig. 4.1 for a diagram of AAnet.
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Latent noise for tight archetypes

By default, AAnet can find archetypes outside the data. However, to encourage the arche-

types to be tight, i.e. close to the data, we can add Gaussian noise ∼ N(0, σ) in the latent

layer during training. Adding noise has an effect of spreading the data out in the latent

space, since the autoencoder has to reconstruct points despite the noise. This, in turn, has

the effect of bringing the archetypes closer to the data. We show this effect in Fig. 4.6

where we add increasing amounts of latent noise and plot the latent archetypal space with

the data and the archetypes. Finally, we note that the noise here is analogous to the δ

parameter in [131], which controls the distance of the archetypes to the data. By default,

we set sigma such that the archetypes are close to but not significantly inside the data. In

practice we set sigma such that only around 0.1 percent of the data points are outside the

convex hull. For all experiments in this chapter, this was achieved with a σ of 0.05.

Geometry based data generation

To generate new data using AAnet, we can sample arbitrary convex activations of the latent

space and decode them to the feature space. Since this convex hull represents the boundary

of the data geometry, this method allows us to sample directly from the geometry and

independently of the input data distribution. For example, we can sample uniformly from

the data geometry by sampling uniformly from a simplex and decode these points to the

data space. Uniform sampling from a simplex was achieved by sampling from a Dirichlet

distribution and then normalizing: Sij =
− log(Uij)∑nat
k=1− log(Uik)

, i = 1, . . . , n, j = 1, . . . , nat,

where U is an n× nat matrix whose elements are positive and i.i.d. uniformly distributed,

n is the number of data points and nat the number of latent archetypes. The resulting matrix

S is uniformly sampled on a simplex with nat corners. Finally, we get the generated data

via x̂ = D(S), where x̂ is the generated data and D is the decoder.
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4.3.3 Code availability

Code and a tutorial for AAnet is publicly available on GitHub at https://github.

com/KrishnaswamyLab/AAnet. This repository also includes scripts to run the

quantitative comparisons included in this chapter and to reproduce the dSprites image

translation experiment.

4.4 Results

Here we evaluate the accuracy and performance of AAnet in finding archetypes in ground-

truth non-linear data with defined archetypes. We demonstrate that AAnet recovers inter-

pretable archetypes in benchmark data from machine learning and in a biological dataset.

We compare AAnet to 5 other methods. These include three linear archetypal analysis

methods: [131] (i.e. PCHA), [133], and [132] as well as two non-linear AA methods:

kernel PCHA [131] and PCHA on the latent layer of a neural network [134]. For [134] we

exchanged the classifier framework for an autoencoder and refer to the method as ”PCHA

on AE”. We did this modification in order to be able to decode back to the data space,

which is required for quantifying the performance of the methods, and because most of

our data did not have labels. Full parameter details for AAnet are reported in Section 4.6.1

and details of methods used for comparison are reported in Section 4.6.2.

4.4.1 Archetypes from a triangle projected onto a sphere

To test the ability of AAnet to find archetypes in non-linear data, we uniformly sampled

2000 points on a triangle and projected the data onto a sphere with radius R. To create in-

creasing curvature on the projected triangle, we gradually decreased R from 1000 to 0.75.

We then ran AAnet as well as the other methods on this generated data and quantified how

well each method performs by computing the MSE between the ground truth archetypes
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Figure 4.2: (a) Points uniformly distributed within a triangle (blue dots) are projected onto a sphere of
varying radius (columns). 6 AA methods are compared on their ability to recover the vertices of the tri-
angle (green dots) and learn the correct mixture of archetypes for each point. Red circles mark the recov-
ered archetypes. Right, the MSE between ground truth and recovered archetypal spaces (b) and recovered
archetypes (c) are displayed for each method. Shaded area marks 95% CI over 5 runs.

with which the data was generated and the archetypes inferred by each method (ATs x fea-

tures). We also computed MSE between the recovered archetypal mixtures and the ground

truth mixtures (ATs x samples). We find that with low levels of curvature all methods per-

form well and are able to find the correct archetypes (Fig. 4.2). However, when increasing

the curvature (by decreasing the radius of the sphere) all methods other than AAnet break

down, with AAnet being the only method that consistently finds the right archetypes.

4.4.2 Finding archetypes of image translations

We compared the same set of methods on the dSprites dataset, which was designed as

a benchmark for disentanglement in unsupervised learning [144]. The dataset consists

of three image classes: rectangles, ovals, and hearts. Each class of images varies by 6

independent latent factors: horizontal and vertical offset, rotation, scale, and color. Disen-

tanglement shares an intuitive relationship with AA, because each archetype should corre-

spond to an extreme combination of the latent features of the dataset. Finally, although the

transformations are affine in the image space, they are non-linear in the Euclidean pixel
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space.

Figure 4.3: Comparison of AA methods on dSprites dataset. (a) Ground truth and recovered archetypal
hearts. (b) Ground truth and recovered archetypal space visualized using the same test set as in a. Points are
colored by the ground truth loading of each archetype. (c) Quantitative comparison of the archetypal space
recovered by each method. Each method was run on 5 samples of 15,000 images using each class in the
dSprites dataset. Error bars denote 95% confidence intervals over the 5 runs.

To generate images for our comparison, we uniformly sampled points from a four-

dimensional simplex. These values were used to adjust the horizontal offset, vertical offset,

and aspect ratio for each sprite using scikit-image [145]. Each method was run on 5

different samples of 15,000 images for each sprite. Representative archetypes recovered

from each method can be seen in Fig. 4.3a and the archetypal spaces learned for this same

batch are visualized in Fig. 4.3b. A full description of the visualization algorithm can

be found in Section 4.4.8. To quantify the accuracy of each method, we only considered

the MSE between the learned and ground truth archetypal spaces (Fig. 4.3c) because

euclidean distances between images are not meaningful. We found that AAnet performed

best overall, outperforming the second best method, PCHA on AE, by 80% on average.

Example images of input data and visualization of archetypes and archetypal spaces for

the ovals and hearts can be found in Fig. 4.10.

4.4.3 Generating from the data geometry with AAnet

Next, we investigate the ability of AAnet to generate data independently of the input data

density. The simplex learned by AAnet in the latent space represents the boundary of a

non-linear manifold or the geometry of the data. We can sample arbitrary convex com-
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Figure 4.4: (a) Above, the ground truth data geometry and non-uniformly sampled input data. Below, data
generated from AAnet, a GAN, and a VAE. MMD quantifies the discrepancy between each method and
the ground truth geometry. (b) We uniformly sample trajectories between two archetypes from the AAnet.
Shown above are such trajectories for MNIST 4s and 7s between all pairs of archetypes. Below, visualization
of the archetypal space for the input data (blue), archetypes (red) with images, and sampled points (yellow).

binations of the latent space to generate data based on data geometry rather than the data

density. Thus, even if the training data is non-uniformly distributed, we can learn its ge-

ometry and then sample uniformly from this geometry and decode the sample points back

to the feature space.

To test this, we generated a non-linear geometry with four archetypal points embedded

in 100 dimensions, as shown in Fig. 4.4a. We then sampled data non-uniformly (prefer-
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entially from the center) and trained AAnet, a GAN [146], and a VAE [147] on this data.

GANs and VAEs are generative models and are thus able to generate samples in the data

space by sampling in their latent spaces. We then sampled from the latent spaces of these

three models to generate points in the data space. The GAN and VAE both generate based

on the data density, while AAnet can generate from the geometry by sampling uniformly

from a simplex in its latent space (Section 4.3.2). To quantify the ability of each model to

generate from the geometry, we computed a Maximum Mean Discrepancy (MMD) [148]

(using a multiscale Gaussian kernel) between the ground truth geometry and the input data,

the data generated by AAnet, the data generated by the GAN, and the data generated by

the VAE. AAnet had the lowest discrepancy between the generated data and the ground

truth geometry performing 56% and 64% better than the VAE and GAN, respectively.

To demonstrate that the latent space of AAnet provides semantic structure for data

generation, we sampled images by interpolating between pairs of archetypes in the latent

space of AAnet trained on MNIST digits. Fig. 4.4b shows this for MNIST 4s and 7s. The

generated images do not appear in the training data, yet we observe gradual and meaning-

ful transitions between them. Each interpolated image looks like a convex combination of

its two corresponding archetypes.

4.4.4 AAnet identifies reproducible archetypes

To show that AAnet can identify robust, reproducible archetypes, we generated archetypes

for each MNIST digit 50 times using different random seeds. A subset of these images are

shown in Fig. 4.5a. We then calculated r2 between archetypes identified on subsequent

runs of AAnet and random MNIST images of the same digit. For all digits, we notice

a significantly higher correlation between archetypes identified in subsequent runs than

between archetypes and random data points (t-test, p < 10e − 16). R2 values are shown

for a subset of digits in Fig. 4.5b. This shows that AAnet can robustly find the same set of
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Figure 4.5: (a) Running AAnet repeatedly on the same dataset with different random seeds identifies similar
archetypes. (b) AAnet was run 50 times for each digit. Pearson’s r2 was calculated between all archetypes
identified for each digit (orange) and random images the digit (blue). (c) To pick the optimal number of
archetypes, we use the knee point (arrows) of loss of AAnet run on simplexes with varying numbers of
vertices. d) Run time of AAnet and other AA methods as a function of the number of data points on
generated data with 10 archetypes.

archetypes across different runs.

4.4.5 Optimal number of archetypes

One of the main parameters in AAnet is the number of archetypes in the model. We find

that the loss function of AAnet can point us to the optimal number of archetypes, i.e.

the true number of archetypes present in the data. Increasing the number of archetypes

will cause the loss to decrease generally. However, the rate of decrease diminishes, with

the loss converging at the right number of archetypes. To quantify this, we generated

data with different numbers of archetypes (from 2 to 5) and ran AAnet with increasing

numbers of archetypes in the model (1 to 8) and recorded the loss (Fig. 4.5c). We can

observe an exponential decrease of the loss with increasing numbers of archetypes in the

model. Indeed, the loss plateaus at exactly the correct number of archetypes which can

be found using an elbow analysis. This is similar to the approach used by [142] in which

they used an elbow analysis of the explained variance by PCHA as a function of increasing

numbers of model archetypes to pick the optimal number of archetypes.
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Figure 4.6: Adding increasing amounts of Gaussian noise (with standard deviation σ) to the latent archetypal
layer causes the archetypes (circles with numbers) to come closer to (and inside) the data (blue points).

4.4.6 Latent noise for tight archetypes

Archetypes can lie far outside of the data or they can be close to data points. We are able

to control the tightness of the archetypes by changing the amount of Gaussian noise we

add during training to the latent archetypal layer. Increasing the noise causes the convex

hull to become tighter and the archetypes to come closer to the data. To illustrate this, we

ran AAnet on MNIST 4s with increasing amounts of noise (see Figure 4.6). We observe

that as noise increases the archetypes move closer to and inside the data. With no noise the

archetypes represent hypothetical points, as they are effectively outside or in very sparse

outer regions of the data. Thus, with less noise the archetypes become more extreme.

4.4.7 Runtime

Another advantage of archetypal analysis with neural networks is that it is scalable. To

quantify this, we ran AAnet and the other methods on increasing sample numbers of data

generated on a 10 dimensional simplex that was projected into 100 dimensions (Fig. 4.5d).

While several methods run faster on smaller data (e.g. PCHA is faster or as fast up to
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around 50,000 samples) AAnet has the fastest run time on bigger data. In fact, the run

time of AAnet is constant, while the other methods all have exponentially increasing run

times with number of data points.

4.4.8 Visualizing the archetypal space

To visualize the archetypal space, we developed a fast interpolation-based method using

multidimensional scaling (MDS). First, we perform MDS on the archetypes in the feature

space so that the placement of the archetypes in the plot are fixed with respect to each other.

Next, the coordinates of the data in two or three dimensions are found by linearly interpo-

lating between the coordinates of the archetypes using the archetypal mixtures learned by

each method.

If A is the n-dimensional MDS coordinates of the archetypes and W represents that

archetypal mixtures of each point in the data, then X, the desired n-dimensional MDS

coordinates of the data can be calculated by:

X = WA

In practice, this interpolation method yields similar results to running MDS on a matrix

comprising W concatenated to the archetypes along the zero-th (vertical) axis. However,

this visualization method is dramatically faster. Running on 15,000 points, our method

completed in 0.05 seconds to generate the coordinates show in Fig. 4.7. Running MDS

directly on all points in the archetypal space (a 15000x4 matrix), took 99 minutes to com-

plete. We find that the results for the two visualization methods (neither of which are used

for quantification) are qualitatively similar across datasets.
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Figure 4.7: Comparison of our MDS interpolation method for visualizing the archetypal space to running
MDS directly on all points in the archetypal space. Runtimes reflect time to calculate coordinates for 15,000
points from the dSprites experiment run on 12 cores running at 3.4GHz.

4.4.9 Characterization of tumor-infiltrating lymphocytes using single-

cell sequencing

Although immune cell phenotypes have classically been modelled as discrete cell states,

recent applications of single-cell RNA-sequencing (scRNA-seq) have found that immune

cells are better described as a continuous spectrum of states [49, 149]. To characterize the

continuous and non-linear transcriptional state space of immune cells, we applied AAnet to

a newly generated scRNA-seq dataset of 3,554 lymphocytes extracted from mouse tumors

and selected for expression of the T cell marker CD3. We visualized the dataset using

PHATE, a dimensionality reduction method for biomedical data [11]. We found that 6

archetypes best describe the dataset, with each archetype representing a specific region

of the overall state space. In Fig. 4.8a, expression of T cell marker genes is plotted on

a PHATE embedding with missing gene expression values imputed using MAGIC [17].
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We also found that AAnet was able to represent a relatively small subset of around 150

Cytotoxic T cells expressing interferon-gamma (IFNγ), but not profilin 1 (PFN1) (AT 3 in

Fig. 4.8a).

Next, we sought to derive a gene signature of each archetype. We decoded the archetypes

into the original gene expression space and calculated the percentile expression of all genes

in each archetype compared to the input dataset. Fig. 4.8b shows the expression of the top

5 markers for each archetype. These signatures capture known markers of T cell states,

such as expression of the IFNγ receptor (IFNGR2) in archetype 2 (Naive T cells)[150],

high expression of perforin 1 (PRF1) in archetype 4 (Cytotoxic T cells) [151], and upreg-

ulation of CD40L in archetype 1 (activated memory cells) [152]. From these results, we

conclude that AAnet is capable of characterizing the state space of a clinically-relevant

biological system.

4.4.10 AAnet identifies archetypal states of gut microbiomes

The microbiota residing in the human gut have an impact on human health, yet little is

understood about the microbial diversity of the gut microbiome across individuals. Find-

ings from the first datasets of gut microbial diversity suggested that the microbial profiles

of individuals fit into one of several discrete clusters called enterotypes [153]. However,

more recent analysis suggests that gut diversity is better described by a spectrum of states

enriched for different bacterial populations [154, 155]. Recently, access to cohorts of thou-

sands of individual microbiome profiles make it possible to understand the space of human

gut microbial composition. To show the utility of AAnet in characterizing this state space,

we accessed 8,624 gut microbiome profiles from the American Gut project [156]. Here,

bacterial diversity was determined using the 16S rRNA gene. We visualized the data using

PHATE and found that the data was well described by 5 archetypes (Figure 4.9).

Examining the abundance of various bacterial populations, we find that these archetypes
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represent biologically relevant microbiome states. For example, two classical enterotypes

are characterized by high abundance of the Bacteroides and Prevotella genuses, respec-

tively [153]. We find that abundance of the Bacteriodes and Prevotella genuses increases

in points closest to archtypes 3 and 5, respectively. This suggests that the classical en-

terotypes are captured by AAnet. However, we identify three other archetypes character-

ized by high abundance of Ruminococcaceae and Tenericutes (archetype 1), Alpha-, beta-,

and Gammaproteobacteria (archetype 2), and Actinobacteria and Streptococcus (archetype

4) (Figure 4.9b). The significance of these archetypal states remains to be investigated.

Finally, we demonstrate that the archetypes capture non-linear trends in microbial

abundance. To show this, we plotted the abundance of various bacterial populations within

each individual as a function of the distance of that individual to a target archetype in the

latent space (Figure 4.9c). Here, a LOWESS curve is fit to the data and plotted as a dashed

red line. For example, examining abundance of the Firmicutes and Proteobacteria, we ob-

serve a clear non-linear trend in composition as individuals are increasingly distance from

Archetypes 1 and 2 respectively. These results show that AAnet can be used to characterize

non-linear trends across features in high-dimensional biological systems.

4.5 Conclusion

The main contribution of this chapter is a non-linear reformulation of archetypal analysis

that is solved by our neural network that we call AAnet, which features a novel archetypal

regularization that enforces a convex encoding of the data in the latent layer. AAnet is an

improvement over existing linear and non-linear AA methods, since AAnet 1) can learn an

archetypal space even when the original data is not well fit by a simplex, 2) learns a new

and optimal non-linear transformation instead of performing linear AA on a fixed non-

linear transformation, such as a kernel, and 3) AAnet can generate data from a geometric

description of the data [157] since it learns the boundary of the data geometry rather than
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the data density. Such descriptions are especially useful when describing biological phe-

notypes, since biological entities (cells, people, etc.) can exist in a non-uniform continuum

of states. Using this geometric description of the data we can generate new data points by

sampling uniformly from the latent archetypal space, which is useful for data that is sparse

or missing in certain regions of the geometry.

4.6 Supplement

4.6.1 Neural network parameters

The following parameters were used for experiments using AAnet. We used the same

network parameters for the autoencoder networks used for PCHA on AE with two differ-

ences. First, the weights on the archetypal regularizations are set to 0 for the AE used for

PCHA such that only MSE reconstruction loss was used for training. Second, we removed

one hidden layer from the AE on PCHA when training on the dSprites dataset because this

improved training of the vanilla AE.

For all datasets, we used 1024, 512, 256, 128 nodes in the four hidden layers of the

Encoder and 128, 256, 512, 1024 nodes in the four hidden layers of the Decoder. We

used between 1-8 ATs for each dataset as notes in the Results sections. All hidden layers

contain LRelu activations, besides layers directly before and after archetypal layer which

are linear so that each point is a linear combination of archetypes. For all but the T cell

and Gut microbiome datasets, the last layer was Tanh. For the T cell and Gut microbiome

datasets, a linear activation was used because these datasets were PCA reduced prior to

training. The latent noise σ was set to 0.05 for all datasets and the batch size was 256. The

optimizer was ADAM, the learning rate was set to 1e-3, and the weight initialization was

Xavier.
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4.6.2 Parameters for other methods

For PCHA, we used the Python implementation of the method from [131] provided by Ulf

Aslak and available on GitHub at https://github.com/ulfaslak/py_pcha.

PCHA was run with default parameters varying only the number of archetypes as indi-

cated in the text. To implement kernel PCHA, we first transformed the input data, X with

a linear kernel XX ′. We also tried using a radial basis kernel exp(−((X2)/σ)) with σ de-

fined as the standard deviation of X , but this yielded exclusively higher MSE and poorer

qualitative results than the linear kernel.

Implementations of the methods [132] and [133] were obtained from https://

github.com/samuelstjean/spams-python and http://web.stanford.

edu/˜hrhakim/NMF/, respectively. Both methods were run with default parameters

varying only the number of archetypes as indicated in the text.

For the GAN, we adapted code from https://github.com/changwoolee/

WGAN-GP-tensorflow with a generator with dense layers: [100, 100, 100] to go from

100 dimensional Gaussian latent noise to our 100 dimensional data distribution with 4

archetypes, and discriminator with dense layers: [100, 100, 100, 1]. For the VAE we

adapted code from https://github.com/hwalsuklee/tensorflow-mnist-VAE

to our 100 dimensional data.

127

https://github.com/ulfaslak/py_pcha
https://github.com/samuelstjean/spams-python
https://github.com/samuelstjean/spams-python
http://web.stanford.edu/~hrhakim/NMF/
http://web.stanford.edu/~hrhakim/NMF/
https://github.com/changwoolee/WGAN-GP-tensorflow
https://github.com/changwoolee/WGAN-GP-tensorflow
https://github.com/hwalsuklee/tensorflow-mnist-VAE


Figure 4.8: (a) PHATE visualization of scRNA-seq profiles and archetypes colored by gene expression for
markers of T-cell states. (b) The top 5 genes from each expression signature of each archetype. (c) Plotting
each cell (grey) by the distance to the each archetype shows how gene expression changes as distace to the
archetype increases. Lowess curves (red) highlight the trends.
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Figure 4.9: AAnet describes gut microbial diversity. (a) PHATE visualization of 8,624 gut microbiome
profiles from the American Gut Project shows that AAnet captures archetypal states including the two clas-
sical Bacteriodes- and Prevotella-enriched enterotypes. (b) Abundance of archetypal microbial populations
expressed as a percentile compared to the original data. (c) AAnet captures non-linear changes in microbial
abundance. Here, abundance of each population within each individual (grey dots) is plotted as a function
of that individual’s distance to an archetype (colored dots). LOWESS on original data is plotted (red-dashed
line)
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Figure 4.10: (a) Random samples of input data used for the dSprites experiment in Section 4.4.2. 16
random samples of each class is shown. (b) Left, comparison of archetypes recovered for each method using
rectangles generated with the same random seed as in Fig. 4.3). Right, visualization of the archetypal spaces
(i.e. archtypal mixtures of each point) recovered by each method. (c) Same as b, but for ovals. Quantification
of the accuracy of the recovered archetypal spaces can be found in Fig. 4.3c).
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Chapter 5

Conclusion

In this dissertation, I presented three novel algorithms for single-cell analysis. The first,

Vertex Frequency Clustering, is a spectral clustering method adapted for analysis of data

distributed over a graph. This approach builds on previous graph spectral techniques [52]

by considering frequency patterns in metadata labels at multiple scales. By separating

regions where labels are either static or smoothly varying over the graph from regions

where the label changing with high frequency between adjacent nodes, we can identify

populations of cells with similar responses to an experimental perturbation across a wide

range of sizes of each population. Future development in VFC will focus on obtaining

faster spectral representations of input labels using wavelets [57]. Avoiding a full eigen-

decomposition of the graph Laplacian for the WGFT will enable the VFC to be applied to

datasets of hundreds of thousands of cells.

Next, I described MELD, which builds on the way VFC considers spectral patterns

in metadata expressed as graph signals. Rather than clustering on a frequency-domain

representation of the signal, MELD uses a low-pass filter to perform kernel density es-

timation of each sample over the graph. These density estimates provide the probability

of observing a given cell within a given condition. However, these can also be viewed

as the likelihood of the condition given the cell. By considering the relative likelihood of
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each treatment condition, we can calculate a measurement of the perturbation effect for

every cell in the dataset. This measurement provides previously unavailable resolution

into which populations of cells are most or least affected by a perturbation. I showed how

this provides new insight into both previously published and new biological datasets and

performs better than existing methods in quantitative benchmarks.

Future development of MELD will focus on the ability to measure distances between

distributions of samples. Currently, MELD provides density estimates for each sample.

However, there is currently no way to determine how similar conditions are to each other.

One potential solution to this problem is the application of Wasserstein distances which

provides a distance metric between probability distributions. Recent methods have been

described to extend Wasserstein distance to discrete domains, such as graphs [158]. This

approach could be further used to interpolate between conditions to identify a distribution

of cells that are representative of an intermediate condition.

Finally, I presented AAnet, an autoencoder for archetypal analysis. AAnet provides a

new framework for archetypal analysis where the goal is to learn a flexible transformation

between the ambient space and the latent space, which is bounded by a simplex. The

transformation is learned through a novel regularization on the bottleneck layer of the

autoencoder that constrains the network to encode the input data as a convex combination

of activations of the bottleneck nodes. AAnet is scalable and non-linear with potential

applications across data domains. AAnet is especially well suited for single-cell analysis

where fitting of a convex hull in the ambient space may not identify extreme states.

These three methods also suggest future approaches for analysis of single-cell exper-

iments. Ongoing work is examining the potential for MELD to be used as a measure of

sample density within the latent space of AAnet. This suggests a new way to examine

changes in sample composition across experimental conditions. It also provides an op-

portunity for synthetic data generation across experimental conditions. Theses approaches

may be able to generate new insight into a diverse range of biological processes.
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[130] M. D. Luecken, M. Büttner, K. Chaichoompu, A. Danese, M. Interlandi, M. F.
Mueller, D. C. Strobl, L. Zappia, M. Dugas, M. Colomé-Tatché, and F. J. Theis.
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