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Beyond Moore-Penrose

Part II: The Sparse Pseudoinverse

Ivan Dokmanić and Rémi Gribonval

Abstract

This is the second part of a two-paper series on norm-minimizing generalized inverses.
In Part II we focus on generalized inverses that are minimizers of entrywise `p norms, with
the main representative being the sparse pseudoinverse for p = 1. We are motivated by
the idea to replace the Moore-Penrose pseudoinverse by a sparser generalized inverse which
is in some sense well-behaved. Sparsity means that it is faster to multiply by resulting
matrix; well-behavedness means that we do not lose much with respect to the least-squares
performance of the MPP.

We first address questions of uniqueness and non-zero count of (putative) sparse pseu-
doinverses. We show that a sparse pseudoinverse is generically unique, and that it indeed
reaches optimal sparsity for almost all matrices. We then turn to proving our main stability
result: finite-size concentration bounds for the Frobenius norm of `p-minimal inverses for
1 ≤ p ≤ 2. Our proof is based on tools from convex analysis and random matrix theory,
in particular the recently developed convex Gaussian min-max theorem. Along the way we
prove several folklore facts about sparse representations and convex programming that were
to the best of our knowledge thus far unproven.

1 Introduction

A generalized inverse (or a pseudoinverse) of a rectangular matrix is a matrix that has some
properties of the usual inverse of a regular square matrix. We call X ∈ Cn×m a generalized
inverse of A ∈ Cm×n if it holds that AXA = A; we denote the set of all generalized inverses of
A by G(A).

The most common generalized inverse is the famous Moore-Penrose pseudoinverse (MPP).
Some of the many uses of the MPP are to compute the least-squares fit to an overdetermined
system of linear equations, or to find the shortest solution of an underdetermined system; many
other related results are presented in Part I.

However, the MPP is only one out of infinitely many possible generalized inverses. By relax-
ing the requirements needed to get the MPP we free up degrees of freedom that can be optimized
to promote other interesting properties. Our study focuses on a particular strategy to obtain al-
ternative pseudoinverses: among all pseudoinverses, the MPP has the smallest Frobenius norm1,
so it seems natural to ask what happens if we replace the Frobenius norm by other matrix norms.

A generalized inverse of A ∈ Cm×n, m < n that minimizes some arbitrary (quasi)norm ν is
defined as

ginvν(A)
def
= arg min

X
‖X‖ν subject to X ∈ G(A).

1It also minimizes a number of other norms (see Part I).

1



Strictly speaking, ginvν(A) is a set, since the corresponding optimization program may have
more than one solution. This, however, will not be the case for most studied norms and matrices
(see, for example, Section 2) so we write “=” instead of “∈” and warn the reader when extra
care is advised. We also note that if ‖ · ‖ν is a bona fide norm, then ginvν(A) involves solving a
convex program. At least in principle, this means that it can actually be computed in the sense
that any first-order scheme leads to a global optimum.

In this Part II, we specifically focus on entrywise `p norms2 which are straightforward ex-

tensions of vector `p norms. Concretely, for M ∈ Cm×n and 0 < p < ∞ we have ‖M‖p
def
=

‖vec(M)‖p =
(∑

ij |mij |p
)1/p

, with vec( · ) denoting the concatenation of the columns of the

argument matrix. A particular entrywise norm is the Frobenius norm associated to p = 2 and
mininimizing it gives the MPP. But our main motivation to look at entrywise norms is rather
the case p = 1, which, as we show, leads to sparse pseudoinverses.

The motivation is that applying a sparse pseudoinverse requires less computation than ap-
plying a full one [DKV13, LLM13, CHKK, KKL12]. We could take advantage of this fact if we
knew how to compute a sparse pseudoinverse that is in some sense stable to noise. Ignoring the
last requirement, finding the sparsest pseudoinverse may be formulated as

ginv0(A)
def
= arg min

X
‖vec(X)‖0 subject to X ∈ G(A), (1)

where ‖ · ‖0 counts the total number of non-zero entries in a vector and vec(·) transforms a matrix
into a vector by stacking its columns. The non-zero count gives the naive complexity of applying
X or its adjoint to a vector (for an illustration, see Figure 1).

Any optimally sparse generalized inverse of A in the sense of the `0 norm (1) is by definition
in the set ginv0(A). When A ∈ Cm×n, m < n, has full column rank the condition X ∈ G(A) is
equivalent to AX = Im, and computing an element from this set can be expressed columnwise,
as a collection of `0 minimization problems

[ginv0(A)]i = arg min
Ax=ei

‖x‖`0 .

Even though optimization problems of this kind are NP-hard [Nat95, DMA97], we will see that
for most matrices A finding a solution is trivial and not very useful: just invert any full-rank
m×m submatrix and set the rest to zero. What we mean by “not useful” is that the resulting
matrix is in general poorly conditioned. On the other hand, the vast literature on conditions
of equivalence between solutions of `0 and `1 minimization (see, e.g. [Don06]) suggests that `1

minimization is a good computationally tractable proxy. In fact, we will show that the sparsest
pseudoinverse can be computed by convex optimization; that is, a convex program generically
provides a minimizer of the `0 norm. Moreover, we will show that this minimizer is generically
unique. This motivates the definition of the specific notation

spinv(A)
def
= ginv1(A) = arg min

X
‖vec(X)‖1 subject to X ∈ G(A). (2)

Not only is (2) computationally tractable but we will show that it leads to well-behaved matrices
that are indeed sparse. Intuitive reasoning is as follows: an m × n matrix A is generically
full rank, hence the constraint X ∈ G(A) is generically equivalent to AX = Im. As this is a
shorthand notation for m2 linear equations, it constrains m2 degrees of freedom. The matrix X
has nm entries, leaving us with nm −m2 degrees of freedom, which will (hopefully) be set to
zero by `1 minimization.

2For brevity, we loosely call “norm” any quasi-norm such as `p, p < 1, as well as the “pseudo-norm” `0.
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Figure 1: Illustration of the sparse pseudoinverse: A is a realization of a 10 × 30 iid Gaussian
matrix; the MPP X1 = A† is a full matrix; the sparse pseudoinverse X2 = spinv(A) has only
102 non-zeros among 10× 30 entries.

1.1 Prior Art

Several earlier work address sparsity of generalized inverses and dual frames [CHKK, KKL12,
LLM13]. These works concentrate on existence results and explicit constructions of sparse frames
and sparse dual frames with prescribed spectra. Krahmer, Kutyniok, and Lemvig [KKL12]
establish sharp bounds on the sparsity of dual frames, showing that generically, for A ∈ Cm×n,
the sparsest dual has mn −m2 zeros. Li, Liu, and Mi [LLM13] provide bounds on the sparsity
of duals of Gabor frames which are better than generic bounds. They also introduce the idea of
using `p (for p = 1) minimization to compute these dual frames, and show that under certain
conditions, the `1 minimization yields the sparsest possible dual Gabor frame. Further examples
of non-canonical dual Gabor frames are given by Perraudin et al., who use convex optimization
to derive dual Gabor frames with more favorable properties than the canonical one [PHSB14],
particularly in terms of time-frequency localization.

Our stability results fit squarely within random matrix theory. However, a perusal of the
corresponding rich literature indicates that results on finite-size concentration bounds for norms
of pseudoinverses are scarce. One notable exception is [HMT11] which gives the expected Frobe-
nius norm of the MPP and a corresponding upper bound on a probability of large deviation;
we note that our techniques allow us to get a finite-size concentration result for the MPP for a
range of deviations complementary to the one considered in [HMT11]. It is also worth noting
that there are a number of results for square matrices [Rud08, Ver14].

Finally, the sparse pseudoinverse was previously studied in [DKV13], where it was shown
empirically that the minimizer is indeed a sparse matrix, and that it can be used to speed up
the resolution of certain inverse problems.

1.2 Our Contributions and Paper Outline

We address fundamental questions of uniqueness and stability of the sparse pseudoinverse. First,
in Section 2, we show that minimizing the entrywise `1 norm of the generalized inverse generically
results in a maximally sparse inverse. By exploiting connections between basis pursuit and basis
pursuit denoising/lasso we also show that the optimum is generically unique. We then prove
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in Section 3 that unlike other, simpler strategies that yield a sparsest generalized inverse, `1

minimization produces a good, well-conditioned matrix.
We measure well-behavedness by the Frobenius norm, which arises naturally in the context

of linear inverse problems with noisy measurements: for white noise the output MSE is directly
proportional to the Frobenius norm. Our main result is a characterization of the typical Frobenius
norm of the `p-minimal generalized inverse for random Gaussian matrices for 1 ≤ p ≤ 2. As
a corollary we show the the Frobenius norm of the sparse pseudoinverse ginv1(A) is indeed
controlled.

The proof uses the convex Gaussian min-max theorem [TAH16, OTH13, TO15] which has
thus far found major use in quantifying the performance of regularized M-estimators such as
the lasso [TAH16]. Unlike these previous applications, we give finite-size concentration bounds
rather than “in probability” asymptotic results.

Along the way we collect a number of useful byproducts related to matrix analysis, sparse
representations, and convex programming. For example, we prove that basis pursuit generically
has a unique minimizer—a folklore fact mentioned repeatedly in the literature, but of which we
could find no proof. The same goes for the fact that `p minimization for 0 ≤ p ≤ 1 has a sparse
solution which is to the best of our knowledge yet another piece of thus far unproven folklore.

2 A Sparse Pseudoinverse is (Generically) Unique and Op-
timally Sparse

As the section title promises, we first settle the questions of uniqueness and non-zero count of a
“sparse” pseudoinverse spinv(A). We rely on two groups of facts: first, existing results on sparse
dual frames which characterize maximal levels of sparsity attainable by generalized inverses
[KKL12, CHKK, LLM13], and second, new results on constrained `p minimization which we put
forward in Section 2.1.

Our main result in this section can be informally stated as

Theorem 2.1 (Informal). For a generic A ∈ Rm×n with m < n, spinv(A) is unique, spinv(A) ∈
ginv0(A), and it has exactly m non-zeros per column.

We begin by proving two preliminary results about vectors.

2.1 Vector Facts

First, we show that the set of `p minimizers for 0 ≤ p ≤ 1 always contains an m-sparse point.
While this is known folklore, we could only find a proof for p = 1 [Ela10, Section 1.4] so we give
one for 0 ≤ p ≤ 1 below, courtesy of Simon Foucart:

Lemma 2.1. Consider 0 ≤ p ≤ 1 and let A ∈ Rm×n with m < n and y ∈ R(A). Then the
set of minimizers of ‖z‖p subject to the constraint that Az = y always contains a point with at
most m non-zero entries.

Proof. Let Z(y) be the (non-empty, closed) set of all solutions to y = Az that reach the minimum
`p norm solution. Let z ∈ Z(y) be an element of this set reaching the smallest `0 norm:
‖z‖0 ≤ ‖z′‖0 for all z′ ∈ Z(y). For the sake of contradiction, assume that ‖z‖0 > m and
denote by S the support of z. By assumption the size of S exceeds m, the number of rows of A,
hence the columns of A indexed by S are linearly dependent and there exists a nonzero vector
h of the null space of A that is supported in S. Considering z′ = z + εh we have Az′ = y.
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There is a critical εo > 0 and s ∈ {±1} such that: sign(z + εh) = sign(z) when |ε| < εo; and
‖z + sεoh‖0 < ‖z‖0 (corresponding to the cancellation of at least one component of z by adding
sεoh). In the remainder of the proof we take s = 1 with no loss of generality.

For p = 0, the contradiction follows immediately. For 0 < p ≤ 1, we let q
def
= 1/p and

q∗ = 1/(1− p) so that 1/q + 1/q∗ = 1. Then by Hölder’s inequality, when |ε| < εo

‖z′‖pp =
∑
j∈S

|z′j|p
|zj |p(1−p)

· |zj |p(1−p) ≤

∑
j∈S

(
|z′j|p

|zj |p(1−p)

)q1/q

·

∑
j∈S

(
|zj |p(1−p)

)q∗1/q∗

=

∑
j∈S

|z′j|
|zj |1−p

p

·

∑
j∈S
|zj |p

1−p

=

∑
j∈S

sign(zj + εhj)
zj+εhj
|zj |1−p

p

· ‖z‖p(1−p)p

=

∑
j∈S

sign(zj)
zj+εhj
|zj |1−p

p

· ‖z‖p(1−p)p =
(
‖z‖pp + ε

∑
j∈S

sign(zj)
hj

|zj |1−p︸ ︷︷ ︸
def
= σ

)p
· ‖z‖p(1−p)p

Hence

• if σ 6= 0, choosing |ε| < εo with sign(ε) = −sign(σ) we obtain ‖z′‖pp < ‖z‖
p
p; a contradiction.

• if σ = 0, choosing ε = sεo, by continuity we get ‖z′‖pp ≤ ‖z‖
p
p (hence z′ ∈ Z(y)), yet

‖z′‖0 < ‖z‖0; another contradiction.

For the second fact, related to uniqueness, we need the notion of general position. To this
end we quote two definitions from [Tib13].

Definition 2.1. The m × n matrix A ∈ Rm×n has columns in general position if for any
k < m the affine span of any k + 1 vectors ±ai1 , . . . ,±aik+1

does not contain any vector ±ai,
i /∈ {i1, . . . , ik+1}.

Definition 2.2. The m× n matrix A ∈ Rm×n is in general position with respect to the vector
y ∈ Rm if for any k < m, y does not belong to the linear span of any k columns of A.

We now show that for a generic A ∈ Rm×n and y ∈ Rm, the problem

min
x:Ax=y

‖x‖1 (3)

has a unique minimizer. Similarly to Lemma 2.1, this fact seems to be a piece of folklore. But
although it has been mentioned in the literature (e.g. [Dos12]) we could find no proof, so we
produce one based on the properties of the lasso.

Lemma 2.2. Assume that A ∈ Rm×n has columns in general position, and that A is in general
position with respect to y ∈ Rm. Then (3) has a unique solution.
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Proof of Lemma 2.2. The proof is a combination of a sufficient condition for uniqueness of the
squared lasso [Fuc04, Tib13]:

min
x

1
2 ‖y −Ax‖22 + λ ‖x‖1 (4)

with a technique to map solutions of (3) to those of (4) for small λ [Fuc04]. We start by writing
out the KKT optimality conditions for the problem (4):

A>(y −Ax∗) = λh, where hi ∈

{
{sign(x∗i )} , x∗i 6= 0,

[−1, 1], x∗i = 0
. (5)

Next, the so-called equicorrelation set I = I(y,A, λ) and equicorrelation sign s = s(y,A, λ) are
defined as

I
def
=
{
i :
∣∣a>i (y −Ax∗)

∣∣ = λ
}
, s

def
= sign(A>I (y −Ax∗)). (6)

The set I and the vector s are unique in the sense that all solutions x∗ of (4) have the
same equicorrelation set and equicorrelation sign. This follows from the strict convexity of
the quadratic loss which, combined with the convexity of the `1 norm implies (see, e.g., [Tib13,
Lemma 1]) that all solutions lead to the same Ax∗. From these definitions and (5) we see that
the solutions x∗ of (4) are characterized by

x∗Ic = 0, (7)

A>I (y −AIx
∗
I) = λs. (8)

Since A has columns in general position, as shown in [Tib13, Lemma 3], the matrix AI has a
trivial nullspace for any y and λ > 0, hence

|I| ≤ m. (9)

It follows that any solution x∗ of (4) can be written as

x∗I = A†I [y − λ(A>I )†s], (10)

and the solution is indeed unique, with s = sign(x∗I).
Note that the solution (10) of (4) in general does not satisfy Ax∗ = y. We now use a

construction by Fuchs [Fuc04, Theorem 2] to relate solutions of (4) to those of (3).
Denote X the convex set of solutions of (3). It is classical exercise in convex analysis [Ela10,

Section 1.4] to show that this set contains at least one vector whose support J is associated to
linearly independent columns of A, i.e., AJ has a trivial null space (see also Lemma 2.1 applied
to p = 1). Hence, the set

J def
= {J = support(x]) : x] ∈ X , N (AJ) = {0}}

is non empty. Moreover, if (3) has a non-unique set of minimizers (i.e., if X is not a singleton),
then J contains at least two distinct sets J1 6= J2. To see this, first observe that X is convex and
compact so it is the convex hull of its extreme points. Let xe be an element of X with support
J , and assume AJ has a non-trivial nullspace. Similarly as in Lemma 2.1, there exists a vector
h ∈ N (A) entirely supported in J . Then, for any ε, xe+εh is a feasible point for the optimization

(3) and there exists a critical ε0 > 0 such that for all |ε| < ε0, sign(xe + εh) = sign(xe)
def
= s.

For |ε| < ε0, reasoning as in Lemma 2.1 we can compute ‖xe + εh‖1 = ‖xe‖1 + ε
∑n
i=1 sihi. If
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σ
def
=
∑n
i=1 sihi 6= 0 then by setting ε = −sign(σ)ε0/2 we get ‖xe + εh‖1 = ‖xe‖1−

1
2ε0 |σ| < ‖xe‖1

which is a contradiction since xe + εh is feasible. It therefore must hold that σ = 0, meaning
that ‖xe + εh‖1 = ‖xe − εh‖1 = ‖xe‖1 when |ε| < ε0, or in other words, (xe ± εh) ∈ X . As

xe = 1
2 (xe + εxk) + 1

2 (xe − εxk),

the element xe can be written as a convex combination (with non-zero coefficients) of two distinct
points in X which shows that it is not an extreme point of K. By contraposition, this establishes
that any extreme point x of X has a support J(x) such that AJ(x) has full column rank, that
is, J(x) ∈ J .

If J is a singleton with one element J then X has a single extreme point with non-zero
entries A†Jy. Consequently X is a singleton as the convex hull of that single extreme point. By
contraposition, if X is not a singleton, it has multiple extreme points and J is not a singleton.

Consider any J ∈ J and x] the corresponding solution of (3), characterized by J = support(x]),

x]J = A†Jy and x]Jc = 0. For any λ > 0 we construct x? (note the ? instead of ∗) as follows:

x?J
def
= x]J − λ(A>J AJ)−1sign(x]J), x?Jc

def
= 0 (11)

There is a critical value λJ > 0 such that for λ < λJ we have sign(x?J) = sign(x]J), so that

A>J (y −Ax?) = A>J (AJx]J −AJx?J) = λA>J AJ(A>J AJ)−1sign(x]J) = λsign(x]J) = λsign(x?J).

This shows that J ⊆ I(y,A, λ). Since A is in general position with respect to y and y ∈ R(AJ),
we have |J | ≥ m. We also know that, since A has columns in general position, |I| ≤ m
by (9). Hence I = J . This shows that J is made of a single support set J , which matches the
equicorrelation set I(y,A, λ) for any small enough λ. As a consequence, X is a singleton and (3)
has a unique solution.

2.2 Generic Uniqueness and Optimal Sparsity of Spinv

In the previous subsection we proved two facts about (vector) `1 minimization: that the optimizer
is generically sparse and that it is unique. We now combine these results with known facts about
optimal sparsity of dual frames. Let us first state a simple matrix consequence of Lemma 2.1:

Lemma 2.3. Let A ∈ Rm×n, m < n, and 0 ≤ p ≤ 1. Then there exists X ∈ ginvp(A) with
at most m2 nonzero entries (more precisely, with at most m nonzero elements per column). In
particular, there is such an X ∈ spinv(A) = ginv1(A).

Remark 2.1. One consequence of Lemma 2.3 is that spinv(A) is in general not the MPP A†.

Proof. Minimization for ginvp(A) can be decoupled into `p minimizations for every column,

ginvp(A)j = arg min
Ax=ej

‖x‖p . (12)

By Lemma 2.1, the set of minimizers for every column of ginvp(A) (the set of solutions to (12))
contains a point with at most m nonzeros. Because ginvp(A) has m columns, there exists an
element of ginvp(A) with at most m2 non-zero entries.

A corollary of Lemma 2.3 is that generically, spinv(A) is the sparsest pseudoinverse of A. To
see this, we invoke a result by Krahmer, Kutyniok and Lemvig [KKL12]:
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Lemma 2.4 ([KKL12, Theorem 3.6]). Let F(m,n) be the set of full rank matrices in Rm×n,
and denote by N (m,n) the subset of matrices in F(m,n) whose sparsest generalized inverse has
m2 non-zeros. Then

(i) Any matrix in F(m,n) is arbitrarily close to a matrix in N (m,n),

(ii) The set F(m,n) \ N (m,n) has measure zero.

In particular, the sparsest generalized inverse of many random matrices (e.g., iid Gaussian) will
have m2 non-zeros with probability 1.

Lemmata 2.3 and 2.4 imply that for almost all matrices the set of sparsest generalized inverses
intersects the set of `1-norm minimizing generalized inverses:

Theorem 2.2. The set of matrices A in F(m,n) such that spinv(A) does not intersect ginv0(A)
has measure zero.

With all these results in hand we can prove a stronger claim which is our main result. Namely,
the spinv is generically unique and m2-sparse.

Theorem 2.3. Assume that A ∈ Rm×n has columns in general position, and that A is in general
position with respect to the canonical basis vectors e1, . . . , em. Then the sparse pseudoinverse
spinv(A) of A contains a single matrix whose columns are all exactly m-sparse.

Corollary 2.1. Except for a measure-zero set of matrices, the sparse pseudoinverse spinv(A)
of A ∈ Rm×n contains a single matrix whose columns are all exactly m-sparse.

Proof of Theorem 2.3. To finish the proof of Theorem 2.3, we apply Lemma 2.1 and Lemma 2.2
to the sparse pseudoinverse by setting y = ei to obtain xi, i ≤ 1 ≤ m.

Proof of Corollary 2.1. When A is a random matrix drawn from a probability distribution which
is absolutely continuous with respect to the Lebesgue measure, we have with probability one
that: a) its columns are in general position; b) it is in general position with respect to any finite
collection of vectors {y1, . . . ,y`}. We can thus apply Theorem 2.3.

3 Numerical Stability

For matrices in general position (that is, for most matrices), there is a simpler way to obtain a
generalized inverse with the minimal number m2 of non-zeroes than solving for spinv—just invert
any full-rank m×m submatrix of A. But there is a good reason why minimizing the `1 norm is
a better idea than inverting a submatrix: it gives much better conditioned matrices.

To understand precisely what we mean by better conditioned, consider an overdetermined
inverse problem y = Bx + z, where B ∈ Cn×m is full rank with m < n, and z is white noise. For
any matrix W ∈ G(B) we have that

Ez[‖Wy − x‖22] = Ez[‖Wz‖22] ∝ ‖W‖2F . (13)

Thus the influence of noise on the output is controlled by the Frobenius norm of W which makes
it clear that it is desirable to use generalized inverses with small Frobenius norms. The right
figure of merit is how much larger the Frobenius norm of our generalized inverse is than that of
the MPP which attains the smallest one.
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Figure 2: Frobenius norm of a random element of ginv0(A) for A a random Gaussian matrix of
size 20 × 30 and a sparse pseudoinverse spinv(A) (generically in ginv0(A); cf. Corollary 2.1) of
the same matrix. The random element of ginv0(A) is computed by selecting m columns of A at
random and inverting the obtained submatrix. The plot shows results of 5 identical experiments,
each consisting of generating a random 20×30 matrix and computing the two inverses 100 times.
In the first experiment, the outlier norms extend to 2000 so they were clipped at 100. Green
lines denote medians, and boxes denote the second and the third quartile.

Alas, Figure 2 shows that for a simple inversion of an m × m submatrix, this Frobenius
norm can be quite large. Worse, as figure shows, the variance of the norm of this inverted
minor is large (note that the ordinate axis was clipped). On the contrary, if we carefully select
a particular element of ginv0(A), namely the sparse pseudoinverse, then it appears that we get
a well-controlled Frobenius norm; in other words we get a well-conditioned generalized inverse.
The goal of this section is to make the last statement rigorous by developing concentration results
for the Frobenius norm of spinv(A) when A is an iid Gaussian random matrix. In particular, we
will prove the following result:

Theorem 3.1. Let A ∈ Rm×n be a standard iid Gaussian matrix, 1 ≤ m ≤ n. Define δ
def
=

(m− 1)/n ∈ (0, 1) and for 1 ≤ p ≤ 2 define the function

D(t) = Dp(t;n)
def
= 1

n

[
Eh∼N (0,In) dist(h, ‖ · ‖p∗ ≤ t)

]2
∈ (0, 1), (14)

Let t∗ = t∗p(δ, n) be the unique solution of δ = D(t)− t
2D
′(t) on (0,∞) and denote

α∗ = α∗p(δ, n)
def
=

√
D(t∗)

δ(δ −D(t∗))
.

If there exist γ(δ) and N(δ) such that −t∗D′p(t∗;n) ≥ γ(δ) > 0 for all n ≥ N(δ), then for any
n ≥ max(2/(1− δ), N(δ)) we have: for any 0 < ε ≤ 1

P
[∣∣∣ nm ∥∥ginvp(A)

∥∥2

F
− (α∗)2

∣∣∣ ≥ ε(α∗)2
]
≤ n

C1ε
e−C2nε

4

, (15)

where the constants C1, C2 > 0 may depend on δ but not on n or ε.
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The statement of Theorem 3.1 may be difficult to parse at first glance. Luckily, it allows us to
obtain more explicit results for the two most interesting cases: p = 1 and p = 2. For p = 2 we get
a result on the Frobenius norm of the Moore-Penrose pseudoinverse. It is complementary to a
known large deviation bound [HMT11, Proposition A.5; Theorem A.6] obtained by a completely
different technique.

Corollary 3.1 (p = 2). With the notations of the above theorem, for 0 < δ < 1 and n ≥ N(δ)
we have: for any 0 < ε ≤ 1

P
[∣∣∣ nm ∥∥A†∥∥2

F
− (α∗)2

∣∣∣ ≥ ε(α∗)2
]
≤ n

C1ε
e−C2nε

4

, (16)

where the constants C1, C2 > 0 may depend on δ but not on n or ε, and α∗ = α∗2(δ;n) with

lim
n→∞

α∗2(δ;n) =
1√

1− δ
. (17)

Remark 3.1. This corollary covers “small” deviations (0 < ε ≤ 1). In contrast, the result of

[HMT11] establishes that E n
m

∥∥A†∥∥2

F
= n

n−m−1 = 1
1−δ and that for any τ ≥ 1,

P
[
n
m

∥∥A†∥∥2

F
≥ 12n

n−mτ
]
≤ 4τ−(n−m)/4 = 4e−n

(1−m/n) log τ
4 .

For large n we have 12n
n−mτ ≈

12τ
1−δ ≈ 12τ(α∗2)2 and (1−m/n) log τ

4 ≈ (1−δ) log τ
4 , hence this provides

a bound for 1 + ε := 12τ ≥ 12 with an exponent log τ , of the order of log ε (instead of ε4 we get
for 0 < ε ≤ 1). Furthermore, unlike [HMT11], we give a two-sided bound; that is, we also show

that the probability of n
m

∥∥A†∥∥2

F
being much smaller than (α∗)2 is exponentially small.

The most interesting corollary is for p = 1.

Corollary 3.2 (p = 1). With the notations of the above theorem, for 0 < δ < 1 and n ≥ N(δ)
we have: for any 0 < ε ≤ 1

P
[∣∣∣ nm ‖spinv(A)‖2F − (α∗)2

∣∣∣ ≥ ε(α∗)2
]
≤ n

C1ε
e−C2nε

4

, (18)

where the constants C1, C2 > 0 may depend on δ but not on n or ε, and α∗ = α∗1(δ;n) with

lim
n→∞

α∗1(δ;n) =

√√√√ 1√
2
π e−

(t∗1)2

2 t∗1 − δ(t∗1)2

− 1
δ (19)

t∗1 =
√

2 · erfc−1(δ).

Results of Corollaries 3.1 and 3.2 are illustrated3 in Figures 3 and 4. Figure 3 shows the
shape of the limiting (α∗p)

2 as a function of δ, as well as empirical averages of 10 realization for
different values of n and δ. As expected, the limiting values get closer to the empirical result as
n grows larger; for n = 1000 the agreement is near-perfect.

3For reproducible research, code is available online at https://github.com/doksa/altginv.
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In Figure 3 we also show the individual realizations for different combinations of n and δ.

As predicted by the two corollaries, the variance of both n
m

∥∥A†∥∥2

F
and n

m ‖spinv(A)‖2F reduces

with n. For larger values of n, all realizations are very close to the limiting (α∗p)
2.

It is worth noting that the spinv and the MPP exhibit rather different qualitative behaviors.
The Frobenius norm of the MPP monotonically decreases as δ gets smaller, while that of the
spinv turns up below some critical δ. This may be understood by noting that for small δ, the
support of the spinv is concentrated on very few entries, so those have to be comparably large
to produce the ones in the identity matrix I = AX. However, the `2 norm is more punishing for
large entries.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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14

δ

n m
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2 F
,

n m
sp
in
v(
A
)†

2 F

spinv

MPP

Figure 3: Comparison of the limiting (α∗p)
2 with the mean of n

m

∥∥A†∥∥2

F
and n

m ‖spinv(A)‖2F
for 10 realizations of A. Empirical results are given for δ ∈ {0.1, 0.2, . . . , 0.9} and n ∈
{100, 200, 500, 1000}. Black squares represent the empirical result for n = 1000; colored squares

represent the empirical mean of n
m

∥∥A†∥∥2

F
for n ∈ {100, 200, 500}, with the largest discrepancy

(purple squares) for n = 100; colored diamonds represent the empirical mean of n
m ‖spinv(A)‖2F

with the largest discrepancy (orange diamonds) again for n = 100.

Several remarks are due:

1. The bound (15) and the corresponding bounds in Corollaries 3.2 and 3.1 involve ε4 instead of

the usual ε2 implying a higher variance of n
m

∥∥ginvp(A)
∥∥2

F
: to guarantee a given probability

in the right hand side of (15), ε should be of the order n−1/4 instead of the usual n−1/2. This
seems to be a consequence of the technique used to lower bound inf |α−α∗|≥ε κ(α) − κ(α∗)
in Lemma B.7 which relies on strong convexity of κ. A more refined bound may give the
result with better error bars, albeit also complicate the analysis.

2. Corollaries 3.1 and 3.2 specialize Theorem 3.1 to cases p = 1 and p = 2 proving that
the Frobenius norm of the corresponding generalized inverses indeed concentrates, and
giving a closed-form limiting value of the optimal α∗. It would seem rather natural that

11
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Figure 4: Comparison of the limiting (α∗p)
2 with the value of n

m ‖spinv(A)‖2F (left) and n
m

∥∥A†∥∥2

F
(right) for 10 realizations of A. Results are shown for δ ∈ {0.1, 0.2, 0.4, 0.7} and different values
of n. Values for individual realizations are shown with colored dots with different color for every
combination of n and δ. Horizontal dashed lines indicate the limiting value for the considered
values of δ.

an interpolation to p ∈ (1, 2) is possible, although α∗p would be specified implicitly and
have to be computed numerically. Whether an extension to p > 2 is possible is less clear.
Numerical evidence suggests that it is, but we leave the corresponding theory to future
work.

3. With additional work, one could characterize the rate of convergence of α∗p(δ;n) towards
its limit in Corollaries 3.1 and 3.2. We leave these characterizations to future work.

Proof of Corollaries 3.1-3.2. For p ∈ {1, 2}, using Lemmas B.5-B.6 we lower bound −t∗D′p(t∗) ≥
γ(δ) for all n above some N(δ), and control limn→∞ α∗p(δ;n). Applying Theorem 3.1 yields the
conclusion.

3.1 Proof of the Main Concentration Result, Theorem 3.1

We prove Theorem 3.1 by first noting that the matrix optimization for ginvp(A) decouples into
m vector optimizations, and then using the following vector result for each column of ginvp(A):

Lemma 3.1. With notations and assumptions as in Theorem 3.1, we have for 0 < ε′ ≤ 1 and
n ≥ max(2/(1− δ), N(δ))

P
[∣∣√n ‖x∗‖ − α∗∣∣ ≥ ε′α∗] ≤ 1

K1ε′
e−K2nε

′4
.

where K1,K2 > 0 may depend on δ but not on n or ε′.

The proof of this result is given in Section 3.2. It is based on the convex Gaussian min-max
theorem [TAH16], cf Appendix A.3. However, because the squared Frobenius norm is a sum of
m squared `2 column norms, an “in probability” result on vector norms would not suffice. To
address this shortcoming we developed a number of technical lemmas that lead to a stronger
concentration result. With Lemma 3.1 we now continue working to prove Theorem 3.1.
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By definition, we have

ginvp(A) = arg min
AX=I

‖vec(X)‖p = arg min
AX=I

‖vec(X)‖pp ,

where we assume that the solution is unique (for p = 1 this is true with probability 1, so
we can condition on this event). This optimization decouples over columns of X: denoting
X∗ = ginvp(A) we have for the ith column that x∗i = arg minAx=ei ‖x‖p.

Lemma 3.1 tells us that
√
n ‖x∗i ‖2 remains close to (α∗). However, to exploit the additivity

of the squared Frobenius norms over columns a more useful statement would be that n ‖x∗i ‖
2
2

remains close to (α∗)2. To show that this is indeed the case, we note that (n ‖x∗‖2 − (α∗)2) =
(
√
n ‖x∗‖ − α∗)(

√
n ‖x∗‖+ α∗) so we can write for any b > 0

P
[∣∣∣n ‖x∗‖2 − (α∗)2

∣∣∣ ≥ ε′(α∗)2
]
≤ P

[∣∣√n ‖x∗‖ − (α∗)
∣∣ ≥ ε′(α∗)2/b

]
+ P

[
(
√
n ‖x∗‖+ α∗) ≥ b

]
.

By taking b = 3α∗, we bound the second term as

P
[
(
√
n ‖x∗‖+ α∗) ≥ b

]
≤ P

[
(
√
n ‖x∗‖ − α∗) ≥ 1α∗

]
≤ 1

K1
e−K2n

using Lemma 3.1. To bound the first term we again use Lemma 3.1 to finally obtain

P
[∣∣∣n ‖x∗‖2 − (α∗)2

∣∣∣ ≥ ε(α∗)2
]
≤ 1

K1
e−K2n +

3

K1ε
e−K2n(ε/3)4 ≤ 1

C1ε
e−C2nε

4

with an appropriate choice of C1, C2.
This characterizes the squared `2 norm of one column of the MPP. The squared Frobenius

norm is a sum of m such terms
∑m
i=1 ‖xi‖

2
which are not independent. Our goal is to show that

n

m
‖X∗‖2F =

n

m

m∑
i=1

‖x∗i ‖
2

stays close to (α∗)2 as well. We work as follows:

P
[∣∣∣ nm ‖X?‖2F − (α∗)2

∣∣∣ > ε(α∗)2
]

= P

[∣∣∣∣∣
m∑
i=1

(n ‖x?‖2 − (α∗)2

∣∣∣∣∣ > mε(α∗)2

]

≤ P

[
m∑
i=1

∣∣∣n ‖x?‖2 − (α∗)2
∣∣∣ > mε(α∗)2

]
= (∗).

Now observe that if the sum of m terms is to be larger than mε, then at least one term must be
larger than ε, so we can continue writing:

(∗) ≤ P
[
∃ k ∈ {1, . . . ,m} :

∣∣∣n ‖x?k‖2 − (α∗)2
∣∣∣ > ε(α∗)2

]
= P

[
m⋃
i=1

{∣∣∣n ‖x?i ‖2 − (α∗)2
∣∣∣ > ε(α∗)2

}]

≤
m∑
i=1

P[
∣∣n ‖x?i ‖ − (α∗)2

∣∣ > ε(α∗)2]

≤ m 1

C1ε
e−C2nε

4

≤ n 1

C1ε
e−C2nε

4

,

(20)
which completes the proof.

13



3.2 Proof of the Main Vector Result, Lemma 3.1

In the Appendix we establish Lemma B.14 which lets us rewrite the optimization

x∗ = arg min
Ax=e1

‖x‖p (21)

in an unconstrained form as (note that the data fidelity term is not squared here):

x̃ = arg min
x
‖Ax− e1‖+ λ ‖x‖p . (22)

More precisely, since the `p norm is L-Lipschitz with respect to the `2 norm (with L
def
=

nmax(1/p−1/2,0)), Lemma B.1 tells us that if we choose λ ≤
√
n−√m
L (1− ε), minimizers x∗ and x̃

of (21) and (22) coincide5 with probability at least 1− 2e−ε
2(
√
n−√m)2/2. Rewriting the `2 norm

in a variational form, we obtain

x̃ = arg min
x

max
u:‖u‖≤1

u>Ax + λ ‖x‖p − u>e1. (23)

The expression (23) is a sum of a bilinear term involving A and a convex-concave function6

ψ(x,u) = λ ‖x‖p − u>e1. That is exactly the structure required by the convex Gaussian min-
max theorem [TO15, Theorem 3] [TAH16, Theorem 6.1]. For readers’ convenience, we reproduce
the version of CGMT we use in Appendix A.3 as Theorem A.1. The only non-conforming detail
is that x is not constrained to be in a compact set. To address this, instead of (23), we analyze
the following bounded modification:

x̃K = arg min
x:‖x‖≤K

max
u:‖u‖≤1

u>Ax + λ ‖x‖p − u>e1 (24)

We will show in due time that x̃K = x̃ with high probability.
By the CGMT, instead of analyzing the so-called principal optimization (24), we can analyze

an auxiliary optimization

x̂K = arg min
x:‖x‖≤K

max
u:‖u‖≤1

‖x‖g>u− ‖u‖h>x + λ ‖x‖p − u>e1, (25)

where ‖ · ‖ are 2-norms and g ∈ Rm and h ∈ Rn are iid standard Gaussian random vectors. Part
2 of the CGMT tells us that if the optimal value of the auxiliary optimization (25) concentrates
(note that (25) is a random optimization program), the optimal value of (24) will concentrate
around the same value. This lets us prove that if the norm ‖x̂K‖ of the optimizer of (25)
concentrates, the norm ‖x̃K‖ of the optimizer of (24) will also concentrate around the same
value.7

We will now formally show how to use this property for our purpose by going through a series
of steps to simplify (25). The analysis will be easier if the argument of the optimization is of
order 1, so let z be an appropriately scaled version of x, z = x

√
n (accordingly A = K

√
n).

Using the variational characterization of the `p norm we can rewrite (25) as

ẑA = arg min
z:‖z‖≤A

max
β:0≤β≤1
u:‖u‖=β

w:‖w‖p∗≤1

1√
n
‖z‖g>u− 1√

n
‖u‖h>z− u>e1 +

λ√
n

w>z. (26)

4We note that Lemma B.1 is a simple restatement of [OTH13, Lemma 9.2] with dependence on ε made explicit.
5An analogous result does not hold for the squared lasso (except for λ = 0+).
6Convex in the first argument, concave in the second one.
7The referenced CGMT contains a similar statement, albeit we need a different derivation to get exponential

concentration.
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Let ẑA be a (random) optimizer of (26), and žA a (random) value of z at the optimum of
the following program with the same cost function but an altered order of minimization and
maximization:

max
β:0≤β≤1

w:‖w‖p∗≤1

min
z:‖z‖≤A

max
u:‖u‖=β

1√
n
‖z‖g>u− 1√

n
‖u‖h>z− u>e1 +

λ√
n

w>z. (27)

Even though after performing optimization over u in (26) we do not get a convex-concave cost
function, we will see that we can indeed reorder maximizations as in (27) for our purposes. In
the following we focus on (27) since it is easier to analyze. We compute as follows:

(27) = max
β:0≤β≤1

w:‖w‖p∗≤1

min
z:‖z‖≤A

β

∥∥∥∥‖z‖g√
n
− e1

∥∥∥∥− β√
n

h>z +
λ√
n

w>z (28a)

= max
β:0≤β≤1

w:‖w‖p∗≤1

min
α:0≤α≤A

min
z:‖z‖=α

β

∥∥∥∥‖z‖g√
n
− e1

∥∥∥∥− β√
n

h>z +
λ√
n

w>z (28b)

= max
β:0≤β≤1

w:‖w‖p∗≤1

min
α:0≤α≤A

β

∥∥∥∥ αg√
n
− e1

∥∥∥∥− α√
n
‖βh− λw‖ . (28c)

The objective in the last line is convex in α and jointly concave in (β,w). Additionally, the
constraint sets are all convex and bounded, so by [Sio58, Corollary 3.3] we can swap the order
of min and max again. We thus continue writing:

= min
α:0≤α≤A

max
β:0≤β≤1

w:‖w‖p∗≤1

β

∥∥∥∥ αg√
n
− e1

∥∥∥∥− α√
n
‖βh− λw‖ (29a)

= min
α:0≤α≤A

max
β:0≤β≤1

(
β

∥∥∥∥ αg√
n
− e1

∥∥∥∥− α√
n

min
w:‖w‖p∗≤1

‖βh− λw‖

)
(29b)

= min
α:0≤α≤A

max
β:0≤β≤1

β

∥∥∥∥ αg√
n
− e1

∥∥∥∥− αβ√
n
dist(βh, ‖ · ‖p∗ ≤ λ) (29c)

= min
α:0≤α≤A

max
β:0≤β≤1

φ(α, β; g,h) (29d)

where

φ(α, β; g,h)
def
= β

∥∥∥∥ αg√
n
− e1

∥∥∥∥− α√
n
dist(βh, ‖ · ‖p∗ ≤ λ). (30)

We have achieved two important feats: 1) we simplified a high-dimensional vector optimiza-
tion (22) into an optimization over two scalars (29d), 2) one of these scalars, α̌ = ‖žA‖ is almost
giving us what we seek—the (scaled) Frobenius norm of X. To put all pieces together, there now
remains to formally prove that the min-max switches and the concentation results we mentioned
actually hold.

Combining the ingredients. By Lemma B.2, φ(α, β; g,h) concentrates around some deter-
ministic function κ(α, β) = κp(α, β;n, δ, λ) with δ = (m− 1)/n. By Lemma B.7-Property 3, the
minimizer of this function is given by

arg min
α:0≤α≤A

max
β:0≤β≤1

κ(α, β) = α∗ = α∗p(δ;n)
def
=

√
Dp(t∗p;n)

δ(δ −Dp(t∗p;n))
(31)
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as soon as A = K
√
n > α∗ and λ ≤ t∗ (cf. Lemma B.3-Property 7 for the definition of

t∗ = t∗p(δ, n)). By Lemma B.9, for 0 < ε ≤ max(α∗, A− α∗), the minimizer

α∗φ
def
= arg min

0≤α≤A
max

0≤β≤1
φ(α, β; g,h)

stays ε-close to α∗ with high probability:

P[
∣∣α∗φ − α∗∣∣ ≥ ε] ≤ ζ(n, ω(ε)

2

)
,

where

ζ(n, ξ) = ζ(n, ξ;A, δ)
def
= c1

ξ e−c2ξ
2n·c(δ,A), with c(δ, A)

def
= min(δ,A−2)

1+δA2

and c1, c2 universal constants, and

ω(ε) = ωp(ε;n, δ, λ)
def
=

ε2

2

λδ/t∗

(1 + δ(α∗ + ε)2)3/2
.

As a consequence, as established in Lemma B.11, the scaled norm
√
n ‖x̃K‖ of the minimizer of

the (bounded) principal optimization problem (24) stays ε-close to α∗ with high probability

P
[ ∣∣√n ‖x̃K‖ − α∗∣∣ ≥ ε] ≤ 4ζ

(
n, ω(ε)

2

)
.

Similarly, for 0 < ε ≤ min(α∗, A− α∗) by invoking Lemma B.12 we obtain that the scaled norm√
n ‖x̃‖ of the minimizer of the unbounded optimization (23) stays in the neighborhood of α∗

with high probability

P
[ ∣∣√n ‖x̃‖ − α∗∣∣ ≥ ε] ≤ 4ζ

(
n, ω(ε)

2

)
and in fact P[x̃ 6= x̃K ] ≤ 4ζ

(
n, ω(ε)

2

)
.

Since the `p norm is L-Lipschitz with respect to the Euclidean metric in Rn, with L =
nmax(1/p−1/2,0), invoking Lemma B.1 yields that, for any

λ < λmax(n,m, t∗)
def
= min

{√
n−√m
2L , t∗

}
.

the minimizer x∗ of the equality-constrained optimization (21) coincides with the minimizer x̃

of the lasso formulation (22)-(23) except with probability at most e−n(1−
√
δ+1/n)2/8.

Overall this yields, for λ < λmax and ε ≤ min(α∗, A− α∗):

P
[ ∣∣√n‖x∗‖ − α∗∣∣ ≥ ε] ≤ e−n(1−

√
δ+1/n)2/8 + 4ζ

(
n, ω(ε)

2

)
. (32)

The infimum over admissible values of λ is obtained by taking its value when λ = λmax.

Expliciting the bound (32). From now on we choose A
def
= 2α∗ and, for 0 < ε′ ≤ 1, we

consider ε
def
= ε′α∗ (which satisfies 0 < ε ≤ min(α∗, A− α∗) = α∗). We use .δ and &δ to denote

inequalities up to a constant that may depend on δ, but not on n or ε′, provided n ≥ n(δ). We
specify n(δ) where appropriate.

By Lemma B.4-item 1, for any 1 ≤ p ≤ 2 and any n ≥ 1

λmax = t∗ min
(√

n−√m
n1/p−1/2

1
2t∗ , 1

)
&δ t∗ min

(√
n(1−
√
m/n)

n1/p−1/2
1

n1−1/p , 1

)
= t∗min

(
1−

√
m/n, 1

)
.
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For n ≥ 2
1−δ we have

1−
√
m/n = 1−

√
δ + 1

n ≥ 1−
√

(1 + δ)/2 &δ 1 (33)

hence λmax &δ t∗.
With the shorthands D(t) = Dp(t;n) and D = Dp(t

∗;n), we have

1 + δ(α∗ + ε)2 ≤ 1 + δA2 ≤ 4(1 + δ(α∗)2) = 4(1 + D
δ−D ) =

4δ

δ −D
.δ (δ −D)−1.

hence with λ = λmax we get for n ≥ 2/(1− δ)

ω(ε) =
ε′2

2

λmax

t∗
δ(α∗)2

(1 + δ(α∗ + ε)2)3/2
&δ ε

′2
D
δ−D

( 4δ
δ−D )3/2

&δ ε
′2D
√
δ −D

By Lemma B.4-item 4 we have D = Dp(t
∗;n) ≥ (δ/C)2 for a universal constant C independent

of n or p, hence for n ≥ 1, D &δ 1 and for n ≥ 2/(1− δ),

ω(ε) &δ
√
−t∗D′p(t∗;n)ε′2

Moreover since min(δ, A−2) ≥ 1
4 min(δ, (α∗)−2) = 1

4 min(δ, δ(δ −D)/D) we also get

c(δ, A) = min(δ,A−2)
1+δA2 ≥ min(δ,δ(δ−D)/D)

δ/(δ−D) = min(δ −D, (δ−D)2

D ) ≥ (δ −D)2 = 1
4 [−t∗D′p(t∗;n)]2.

Since −t∗D′p(t∗;n) ≥ γ(δ) > 0 for any n ≥ N(δ) (recall that t∗ = t∗p(δ;n)), we have

−t∗D′p(t∗) &δ 1, (34)

and we obtain for n ≥ max(2/(1 − δ), N): ω(ε) &δ ε′2 and c(δ, A) &δ 1. Combining the above
yields, for 0 < ε′ ≤ 1, n ≥ max(2/(1− δ), N(δ)):

P[
∣∣∣‖x∗‖ − α∗√

n

∣∣∣ ≥ ε′α∗√
n

] ≤ e−C1n + 4ζ
(
n,C2ε

′2)
≤ +

1

K1(ε′)2
e−K2(ε′)4n

with Ki, Ci &δ 1.

4 Conclusion

In this paper (Part II of the “Beyond Moore-Penrose” mini-series) we looked at generalized
matrix inverses which minimize entrywise `p norms, with a particular emphasis on the sparse
pseudoinverse (p = 1). Our central result is Theorem 3.1 together with Corollaries 3.1 and 3.2
which discuss numerical stability of a class of generalized inverses as measured by their Frobenius
norm. This allows us to quantify the MSE hit incurred by using the sparse pseudoinverse instead
of the MPP and to show that, in fact, this hit is controlled.

We highlight three main results about the sparse pseudoinverse spinv(A) = ginv1(A) of a
generic matrix A ∈ Rm×n: 1) it is unique, 2) it has precisely m zeros per column, and 2) its
Frobenius norm is characterized by Corollary 3.2. For a large range of m/n (with m < n) the
Frobenius norm of the sparse pseudoinverse is relatively close to the Frobenius norm of the MPP
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which is the smallest possible among all generalized inverses (Figure 3). This does not hold for
certain ad hoc strategies that yield generalized inverses with the same non-zero count (Figure 2).
More generally, we gave finite-size concentration bounds for the square of the Frobenius norm of
all ginvp( · ), 1 ≤ p ≤ 2, complementing a known result for p = 2.

Theorem 3.1 of Part I and Corollary 3.2 together establish a form of regularity of the sparse
pseudoinverse, namely that n

mE [spinv(A)Ax] = x and that ‖spinv(A)Ax‖ is well-behaved (at
least for Gaussian random matrices)—two essential properties exhibited by the MPP.

As a useful side product, along the way we presented a number of new results related to
matrix analysis, sparse representations, and convex programming. For example, we proved that
basis pursuit generically has a unique minimizer—a folklore fact mentioned repeatedly in the
literature, but for which we could find no proof. The same goes for the fact that `p minimization
for 0 ≤ p ≤ 1 has a sparse solution—to the best of our knowledge, yet another piece of thus far
unproven folklore.

The most important future work is to develop extensions of Theorem 3.1 and the two corol-
laries to p > 2.
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Appendices

A Results about Gaussian processes

A.1 Concentration of measure

Lemma A.1. Let h be a standard Gaussian random vector of length n, h ∼ N (0, In), and
f : Rn → R a 1-Lipschitz function. Then the following hold:

(a) For any 0 < ε < 1, P[‖h‖2 ≤ n(1− ε)] ≤ e−ε
2/4; P[‖h‖2 ≥ n/(1− ε)] ≤ e−ε

2/4;

(b) For any 0 < ε < 1, P
{
‖h‖2 /∈ [(1− ε)n, n/(1− ε)]

}
≤ 2e−

ε2n
4 ;

(c) For any ε > 0, P
[∣∣∣‖h‖2 − n∣∣∣ ≥ √εn] ≤ {2e−

ε
8 for 0 ≤ ε ≤ n,

2e−
√
εn
8 for ε > n.

(d) For any u > 0, P [f(h)− Ef(h) ≥ t] ≤ e−u
2/2; P [f(h)− Ef(h) ≤ −u] ≤ e−u

2/2;

(e) For any u > 0, P[|f(h)− Ef(h)| ≥ u] ≤ 2e−u
2/2;

(f) Var[f(h)] ≤ 1
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Proofs and references. We mostly refer to texts where the proofs can be found and show how to
modify the standard forms of the bounds address our needs.

(a) See [Bar05, Corollary 2.3].

(b) Immediate consequence of (a) by a union bound.

(c) We use a Bernstein-type inequality for sub-exponential random variables. Namely, Xi = h2
i

is χ2
1 which is subexponential with parameters ν = 2, b = 4 [Wai15, Example 2.4], i.e.

E[eλ(Xi−µ)] ≤ e
ν2λ2

2 for all |λ| ≤ 1
b , and µ = E[Xi] = 1. Applying [Wai15, Proposition 2.2]

then yields

P
[∣∣∣‖h‖2 − n∣∣∣ ≥ √εn] ≤ 2

{
e−

ε
8 for 0 ≤ ε ≤ n,

e−
√
εn
8 for ε > n.

(d) [Led99, Eq. (1.22)].

(e) Union bound applied to (d).

(f) A consequence of Poincaré inequality for Gaussian measures [Led99, Eq. (2.16)]: Var[f(h)] ≤
E[‖∇f(h)‖2] for 1-Lipschitz f for which ‖∇f(h)‖ ≤ 1.

A.2 Complementary error function and related functions

We will be using the complementary error function and will need some basic properties which
can be found e.g. in [CDS03] or references therein.

Lemma A.2. The complementary error function is defined for any z ∈ R as

erfc(z)
def
=

2√
π

∫ ∞
z

e−t
2

dt. (35)

For any z > 0 we have
erfc(z) ≤ exp(−z2). (36)

Moreover, if g ∼ N (0, 1) is a standard centered normal variable then any x > 0

P {|g| > x} = erfc(x/
√

2). (37)

Lemma A.3. Let θ(t)
def
= E(|h| − t)2

+, where h ∼ N (0, 1) and t ≥ 0. Then

1. θ(t) =
(
t2 + 1

)
erfc

(
t√
2

)
−
√

2
π e−

t2

2 t,

2. θ(t)− (t/2)θ′(t) = erfc(t/
√

2).

Proof. θ(t) = E(|h| − t)2
+ =

∫ ∞
−∞

(|ϕ| − t)2
+ph(ϕ) dϕ = 2

∫ ∞
t

(ϕ2 − 2tϕ+ t2)ph(ϕ) dϕ.

Now we compute as follows:
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•
∫ ∞
t

ϕ2ph(ϕ) dϕ = 1√
2π

∫ ∞
t

ϕ2e−
ϕ2

2 dϕ = 1√
2π

∫ ∞
t

(−ϕ)
d

dϕ

{
e−

ϕ2

2

}
dϕ

= 1√
2π

([
−ϕe−

ϕ2

2

]∞
t

+

∫ ∞
t

e−
ϕ2

2 dϕ

)
(a)
= 1

2erfc
(

t√
2

)
+ e−

t2

2 t√
2π

,

where in (a) we used Lemma A.2,

•
∫ ∞
t

ϕph(ϕ) dϕ = 1√
2π

∫ ∞
t

d

dϕ

{
−e−

ϕ2

2

}
dϕ = 1√

2π

[
−e−

ϕ2

2

]∞
t

= e−
t2

2√
2π
,

•
∫ ∞
t

ph(ϕ) dϕ = 1
2erfc

(
t√
2

)
again by Lemma A.2.

Putting together the above we get the desired expression. The second statement follows from

the fact that d
dterfc

(
t√
2

)
= −

√
2
π e−

t2

2 .

A.3 Convex Gaussian Min-Max Theorem (CGMT) [TAH16, Theorem
6.1]

Let the principal optimization (PO) and auxiliary optimization (AO) be defined as

Φ(G)
def
= min

v∈Sv
max
u∈Su

u>Gw + ψ(v,u) (38)

φ(g,h)
def
= min

v∈Sv
max
u∈Su

‖v‖2 g>u + ‖u‖2 h>v + ψ(v,u), (39)

with G ∈ Rm×n, g ∈ Rm, h ∈ Rn, Sv ⊂ Rn, Su ⊂ Rm and ψ : Rn × Rm → R. Let further

vΦ
def
= vΦ(G) denote any optimal minimizer of (PO) and vφ

def
= vφ(g,h) any optimal minimizer

of (AO). Then the following holds:

Theorem A.1. In (38) and (39), let Sv and Su be compact and ψ continuous on Sv ×Su. Let
also G, g, h have entries that are iid standard normal. The following hold:

1. For all c ∈ R
P[Φ(G) < c] ≤ 2P[φ(g,h) ≤ c]

2. Assume further that ψ(v,u) is convex-concave on Sv × Su where Sv and Su are convex.
Then for all c ∈ R

P[Φ(G) > c] ≤ 2P[φ(g,h) ≥ c].

In particular, for all µ ∈ R and t > 0,

P[|Φ(G)− µ| > t] ≤ 2P[|φ(g,h)− µ| ≥ t].

B Lemmata for Section 3

Lemma B.1 (Rewriting of [OTH13, Lemma 9.2] with dependence on ε made explicit). Let
A ∈ Rm×n be a random matrix with iid standard normal entries, and m < n. Let further
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y ∈ Rm. Consider the solution of an `2-lasso with a regularizer f which is L-Lipschitz with
respect to the `2-norm:

x?
def
= arg min

x∈Rn
‖y −Ax‖+ λf(x).

Then for any 0 ≤ ε < 1 and 0 < λ <
√
n−√m
L (1 − ε) the solution x? satisfies y = Ax?

with probability at least 1 − e−ε
2(
√
n−√m)2/2. In other words, `2-lasso (let us emphasize that

the data fidelity term is not squared here) gives the same result as the equality-constrained f -
minimization.

Proof. Using [Ver09, Corollary 5.35]8, we have for every t ≥ 0

P[σmin(A>) ≤
√
n−
√
m− t] ≤ e−t

2/2.

Dividing by
√
n−
√
m, we can rewrite this as

P[σmin(A>)/(
√
n−
√
m) ≤ 1− t/(

√
n−
√
m)] ≤ e−t

2/2,

or equivalently, by setting t = ε(
√
n−
√
m) for any ε ≥ 0,

P[σmin(A>)/(
√
n−
√
m) ≤ 1− ε] ≤ e−ε

2(
√
n−√m)2/2. (40)

Let p
def
= y − Ax?. The goal is to show that p = 0. To this end, let w

def
= A†p, where

A† = A>(AA>)−1 denotes the MPP (note that AA> is almost surely invertible). Because

‖w‖2 = p>(AA>)−1p ≤ ‖p‖2

σ2
min(A>)

we have for 0 < ε < 1, by the concentration of σmin(A>) (40) that with probability at least

1− e−ε
2(
√
n−√m)2/2,

‖w‖ ≤ ‖p‖
(
√
n−
√
m)(1− ε)

.

Let x◦
def
= x? + w so that y −Ax◦ = 0. Using this together with the optimality of x? gives[

‖y −Ax?‖+ λf(x?)
]
−
[
‖y −Ax◦‖+ λf(x◦)

]
≤ 0. (41)

On the other hand,

[
‖y −Ax?‖+ λf(x?)

]
−
[
‖y −Ax◦‖+ λf(x◦)

]
= ‖p‖+ λf(x?)− λf(x◦)

≥ ‖p‖ − λ |f(x?)− λf(x◦)|
≥ ‖p‖ − λL ‖x? − x◦‖
= ‖p‖ − λL ‖w‖

≥ ‖p‖
(

1− λL

(
√
n−
√
m)(1− ε))

)
,

where, by (41), the last expression must be non-positive. But if we choose

8We actually use a one-sided variant of [Ver09, Corollary 5.35] which can be obtained by combining Lemma
A.1(d) with the estimate of the expectation of σmin, [Ver09, Theorem 5.32].
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λ <

√
n−
√
m

L
(1− ε),

the only way to make it non-positive is that ‖p‖ = 0.

Lemma B.2. Consider g ∼ N (0, Im), h ∼ N (0, In) and define

∆p(β; h, λ)
def
= 1√

n
dist(βh, ‖ · ‖p∗ ≤ λ)

∆p(β;n, λ)
def
= E[∆p(β; h, λ)]

There exist universal constants c1, c2 > 0 such that for any 0 < ε < 2, any integers m,n, any

A > 0 we have, with δ
def
= (m− 1)/n and φ(α, β; g,h) defined as in (30):

P
{
∃0 < α ≤ A, 0 < β < 1, |φ(α, β; g,h)− κ(α, β)| ≥ ε

}
≤ c1

ε e
−c2ε2n·

min(δ,1/A2)
1+δA2 def

= ζ(n, ε;A, δ)
(42)

where
κ(α, β) = κp(α, β;n, δ, λ)

def
= β

√
δα2 + 1− α∆p(β;n, λ). (43)

Proof. We first look at the term ‖αg/
√
n− e1‖. We have∥∥αg/

√
n− e1

∥∥2
=
∥∥αg̃/

√
n
∥∥2

+ (αg0/
√
n− 1)2,

where we partitioned g as [g0, g̃>]>, g̃ ∈ Rm−1. By Lemma A.1(b), for a standard Gaussian
random vector x ∼ N (0, In) it holds that for any 0 < ε < 1

P
{
‖x‖2 /∈ [(1− ε)n, n/(1− ε)]

}
≤ 2e−

ε2n
4 . (44)

Denoting δ
def
= m−1

n , it follows that

P
[
∃0 < α ≤ A,

∥∥αg̃/
√
n
∥∥2

/∈ [(1− ε)δα2, δα2/(1− ε)]
]
≤ 2e−

ε2(m−1)
4 = 2e−

ε2nδ
4 .

Next, we show that the term (αg0/
√
n − 1)2 cannot deviate much from 1: setting ε′ = ε/2, we

have
√

1− ε < 1− ε′ and 1 + ε′ < 1/
√

1− ε hence

P
{
∀0 < α ≤ A,

(
αg0√
n
− 1
)2

∈ [1− ε, 1/(1− ε)]
}
≥ P

{
∀0 < α ≤ A,

∣∣∣αg0√n − 1
∣∣∣ ∈ [1− ε′, 1 + ε′]

}
≥ P

{
∀0 < α ≤ A, αg0/

√
n ∈ [−ε′, ε′]

}
= P

{
Ag0/

√
n ∈ [−ε′, ε′]

}
so that using Lemma A.2 we have, with erfc the complementary error function,

P
{
∃0 < α ≤ A,

(
αg0√
n
− 1
)2

/∈ [1− ε, 1/(1− ε)]
}
≤ P(|g0| > ε′

√
n

A ) = erfc
[
ε′
√
n√

2A

]
≤ e−

ε′2n
2A2 = e−

ε2n
8A2 .
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Combining the above, we get that: for any 0 < ε < 1, setting ε′ = 1− (1− ε)2 = ε(2− ε) ≥ ε,

P
{
∃0 < α ≤ A,

∥∥αg/
√
n− e1

∥∥ /∈ [(1− ε)
√
δα2 + 1,

√
δα2 + 1/(1− ε)]

}
= P

{
∃0 < α ≤ A,

∥∥αg/
√
n− e1

∥∥2
/∈ [(1− ε′)(δα2 + 1), (δα2 + 1)/(1− ε′)]

}
≤ 2e−

ε′2nδ
4 + e−

ε′2n
8A2 ≤ c′1e−c

′
2ε
′2n·min(δ,1/A2) ≤ c′1e−c

′
2ε

2n·min(δ,1/A2), (45)

where the constants c′1, c
′
2 are universal.

For the second term in φ(α, β; g,h), we use Gaussian concentration of Lipschitz functions. It
is known that (Euclidean) distance to a convex set, dist(x, C), is 1-Lipschitz in x (with respect
to the Euclidean metric) so by Lemma A.1(e) we get for 0 < β ≤ 1 (we omit the dependency in
λ for brevity) and any t ≥ 0

P
[√

n
β |∆p(β; h)−∆p(β)| > t

]
≤ 2e−

t2

2 ,

Setting t = τ
√
n/β we obtain for any τ ≥ 0

P [|∆p(β; h)−∆p(β)| > τ ] ≤ 2e
− τ

2n
2β2 ≤ 2e−

τ2n
2 , (46)

This obviously extends to β = 0 since ∆p(0; h) = ∆p(0) = 0.
Next we want to bound

P [∃β ∈ [0, 1], |∆p(β; h)−∆p(β)| > τ ] = P

[
sup
β∈[0,1]

|∆p(β; h)−∆p(β)| > τ

]
.

By Lemma B.13, the function β 7→ fh(β)
def
= |∆p(β; h)−∆p(β)| is Lh-Lipschitz in β with

Lh
def
= max {‖h‖ /

√
n, 1}. Hence fh is continuous, and its supremum on the closed interval [0, 1]

is indeed a maximum reached at some maximizer βh.
Let b ≤ 1/2 and Yb = {bτ/2, 3bτ/2, . . . , (n− 1/2)bτ} be a uniform sampling of [0, 1] with

spacing bτ , with the last segment possibly being shorter. For a given h, there exists yh ∈ Yb such
that |βh − yh| ≤ bτ . For this yh we write

fh(βh)− fh(yh) ≤ |fh(βh)− fh(yh)| ≤ Lh |βh − yh| ≤ Lhbτ

so that

P[ sup
β∈[0,1]

fh(β) > τ ] = P[fh(βh) > τ ] ≤ P[fh(yh) + Lhbτ > τ ] ≤ P
[
fh(yh) > τ/2

∨
Lhbτ > τ/2

]
≤ P[fh(yh) > τ/2] + P[max

{
‖h‖ /

√
n, 1
}
b > 1/2]

As we do not know a priori to which y ∈ Yb the maximizer βh will be close, we continue with a
union bound, and we further use that b ≤ 1/2 to obtain by (46) and Lemma A.1(a)

P[ sup
β∈[0,1]

fh(β) > τ ] ≤ P
[ ∨
y∈Yb

fh(y) > τ/2
]

+ P
[
‖h‖2 > n

4b2

]
≤ ]Yb 2e−

τ2n
8 + e−

(1−4b2)2n
4

≤ (1 + 1/(bτ))2e−
τ2n

8 + e−
(1−4b2)2n

4 .
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We conclude the argument for the second term by choosing b
def
= 1

2

√
2−
√

2
2 ≈ 0.27, so that: for

any 0 < τ < 1, we have (1−4b2)2

4 = 1
8 ≥

τ2

8 hence

P[ sup
β∈[0,1]

fh(β) > τ ] ≤ (3 + 2/(bτ))e−
τ2n

8 < 11
τ e−

τ2n
8 , 0 < τ < 1. (47)

To conclude we combine concentration bounds for both terms. First, we observe that

sup
0≤α≤A
0≤β≤1

|φ(α, β; g,h)− κ(α, β)| ≤ sup
0≤α≤A

∣∣∣∣∥∥∥∥ αg√
n
− e1

∥∥∥∥−√1 + δα2

∣∣∣∣+A sup
0≤β≤1

|∆p(β; h)−∆p(β)|

hence by a union bound we just need to control the probability that each term exceeds ε/2.
Since we assume that 0 < ε < 2, we can use the multiplicative control (45) of the first term and
convert it into the desired additive bound as follows:

P
{
∃α ∈ (0, A],

∣∣∣∥∥∥ αg√n − e1

∥∥∥−√δα2 + 1
∣∣∣ > ε

2

}
= P

∃α ∈ (0, A],

∣∣∣∣∣∣
∥∥∥∥ αg√n−e1

∥∥∥∥
√
δα2+1

− 1

∣∣∣∣∣∣ > ε
2
√
δα2+1

]


≤ P

∃α ∈ (0, A],

∣∣∣∣∣∣
∥∥∥∥ αg√n−e1

∥∥∥∥
√
δα2+1

− 1

∣∣∣∣∣∣ > ε
2
√
δA2+1


≤ P

{
∃α ∈ (0, A],

‖αg/√n−e1‖√
δα2+1

/∈ [1− ε′, 1
1−ε′ ]

}
≤ c′1e−c

′
2ε
′2n·min(δ,1/A2).

provided that [1− ε′, 1/(1− ε′)] ⊂ [1− ε
2
√
δA2+1

, 1 + ε
2
√
δA2+1

]. This is achieved with ε′ = ε/(1 +
√
δA2 + 1). Combining the resulting probability bound with the bound on P[supβ∈[0,1] fh(β) >
ε

2A ] resulting from (47) yields the result.

Corollary B.1. Consider A > 0 and define for any set S ⊆ [0, A]:

φ(α; g,h)
def
= sup

0≤β≤1
φ(α, β; g,h), κ(α)

def
= sup

0≤β≤1
κ(α, β),

φS(g,h)
def
= inf

α∈S
φ(α; g,h), κS

def
= inf

α∈S
κ(α),

With g ∼ N (0, Im), h ∼ N (0, In), δ = (m− 1)/n, we have for 0 < ε < 2

P

[
sup

S⊂[0,A]

|φS(g,h)− κS | ≥ ε

]
≤ ζ(n, ε). (48)

with ζ(n, ε) = ζ(n, ε;A, δ) defined in (42). In particular,

P
[

sup
0≤α≤A

|φ(α)− κ(α)| ≥ ε
]
≤ ζ(n, ε). (49)

Proof. To lighten notation we suppress the dependence of the stochastic function φ on random
vectors g and h. By Lemma B.2 we have with probability at least 1− ζ(n, ε): for all 0 ≤ α ≤ A
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and 0 ≤ β ≤ 1, |φ(α, β)− κ(α, β)| ≤ ε. When this holds we have for any S ⊂ [0, A]:

φS = inf
α∈S

φ(α) ≤ inf
α∈S

[κ(α) + ε] = κS + ε (50)

and
φS = inf

α∈S
φ(α) ≥ inf

α∈S
[κ(α)− ε] = κS − ε. (51)

We will shortly characterize κ(α, β) and κ(α). To that end, we will use some properties of the
following quantity

Dp(t;n)
def
=
(
E[ 1√

n
dist(h, ‖ · ‖p∗ ≤ t)]

)2

. (52)

Lemma B.3 (Deterministic properties of Dp). Define Ct = Ct,p
def
=
{

x ∈ Rn : ‖x‖p∗ ≤ t
}

and

Dp(t;n) as in (52). Using Dp(t) as a shortand, the following hold:

1. The sets Ct are convex and nested with Ct ( Ct′ for t < t′.

2. For any vector h, the function t 7→ dist(h, Ct) is non-inscreasing and convex.

3. Dp(t) is a (strictly) decreasing convex function of t,

4. limt→∞Dp(t) = 0,

5. n
n+1 ≤ Dp(0) ≤ 1,

6. The function t 7→ Dp(t) is infinitely differentiable.

7. Let g(t) = g(t;n)
def
= Dp(t)− t

2D
′
p(t). For any 0 < δ < Dp(0) there is a unique

t∗ = t∗p(δ;n) ∈ (0,∞)

such that g(t) > δ for t < t∗ and g(t) < δ for t > t∗. It holds that Dp(t
∗) < g(t∗) = δ.

Proof. • Property 1 is obvious.

• Property 2: we recall that x 7→ dist(x, C) is convex for convex C [BV04, Example 3.16].
Next, (x, t) 7→ tdist(x/t, C) is convex in both arguments because it is the perspective of
x 7→ dist(x, C) [BV04, Chapter 2]. Applying this to C = C1 and observing that dist(h, Ct) =
tdist(h/t, C1) we obtain that dist(h, Ct) is convex in t. The fact that it is non-increasing
follows from Property 1.

• Property 3: since expectation of convex functions is convex, and the pointwise square of a
non-negative convex function is convex, we conclude that Dp(t) is convex as claimed. The
fact that it is (strictly) decreasing is obvious.

• Property 4: for any y ∈ Rn and p ≥ 1, ‖y‖p∗ ≤ ‖y‖1 ≤
√
n ‖y‖. Hence, for any given
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t > 0, dist(y, Ct) = 0 as soon as ‖y‖ ≤ t/
√
n. Further, for all p ≥ 1 we can write

E[dist(h, Ct)] =

∫
Rn

dist(y, Ct) ph(y) dy

=

∫
b∈Sn−1

∫ ∞
r=0

dist(rb, Ct) ph(rb) µ(db) rn−1 dr

=

∫
b∈Sn−1

∫ ∞
r=t/

√
n

dist(rb, Ct) ph(rb) µ(db) rn−1 dr

≤
∫
b∈Sn−1

∫ ∞
r=t/

√
n

r ph(rb) µ(db) rn−1 dr

=

∫
b∈Sn−1

µ(db)

∫ ∞
r=t/

√
n

rn Zne−r
2/2 dr

= Znµ(Sn−1)

∫ ∞
r=t/

√
n

rne−r
2/2 dr → 0 as t→∞,

where Zn = (2π)−n/2 is the normalization term for the n-variate iid Gaussian distribution,
and µ(Sn−1) = 2πn/2/Γ

(
n
2

)
is the surface area of the unit-radius (n− 1)-sphere embedded

in Rn with Γ (·) being the gamma function.

• Property 5: by Jensen’s inequality and Property 3, we obtain the upper bound

Dp(0) =
(
E 1√

n
dist(h, C0)

)2

≤ E
(

1√
n
dist(h, C0)

)2

= E‖h‖
2

n = 1.

To get the lower bound, we again note that nDp(0) = [E ‖h‖]2, which can be computed by
integration in polar coordinates. Working as in the proof of Property 4 we get that

E[dist(h, C0)] = E[‖h‖] =

∫
b∈Sn−1

∫ ∞
r=0

r ph(rb) µ(db) rn−1 dr

since r = ‖h‖ = dist(h, C0). It follows that

E[‖h‖] = Znµ(Sn−1)

∫ ∞
r=0

rne−r
2/2 dr

(a)
= (2π)−n/2

2πn/2

Γ
(
n
2

) ∫ ∞
s=0

2
n−1
2 s

n−1
2 e−s dr

(b)
=
√

2 Γ

(
n+ 1

2

)/
Γ
(n

2

)
where in (a) we used the substitution u = r2/2, and in (b) we invoked the definition of the
gamma function, Γ(z) =

∫∞
0
xz−1e−xdx. We now use the inequality of Wendel, [Wen48,

Eq. (7)]:
Γ(x+ a)

/
Γ(x) ≥ x(x+ a)a−1

to conclude that
E[‖h‖] ≥ n(n+ 1)−1/2 (53)

and Dp(0) ≥ n/(n+ 1).
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• Property 6: starting similarly as in the proof of Property 4 and using dist(h, Ct) =
tdist(h/t, C1) and a change of variable r = tρ we obtain the following expression for Dp(t):

q(t)
def
=
√
nDp(t) = tn+1

∫
b∈Sn−1

∫ ∞
ρ=0

dist(ρb, C1)ph(ρtb)µ(db)ρn−1 dρ (54)

= Znt
n+1

∫
b∈Sn−1

∫ ∞
ρ=0

dist(ρb, C1)e−ρ
2t2/2 µ(db)ρn−1 dρ (55)

so that Dp(t) is infinitely differentiable (by the repeated application of the dominated
convergence theorem).

• Property 7: in particular, since∣∣∣∣ ∂∂tdist(ρb, C1)e−ρ
2t2/2ρn−1

∣∣∣∣ = dist(ρb, C1)tρn+1e−ρ
2t2/2 ≤ ρn+2te−ρ

2t2/2

where the rightmost expression is integrable for every t > 0 and n ∈ N, the dominated
convergence theorem allows us to differentiate under the integral sign in (55) to get

− t
2D
′
p(t) = − t

nq(t)q
′(t)

= − 1
nq(t)

(
(n+ 1)q(t)− Zntn+3

∫
b∈Sn−1

∫ ∞
ρ=0

dist(ρb, C1)ρn+1e−ρ
2t2/2 µ(db) dρ

)
.

(56)

All terms can be seen to vanish as t → ∞ by arguments analogous to those in the end of
the proof of Property 5, hence limt→∞[− t

2D
′
p(t)] = 0.

Since Dp(t) is strictly decreasing we have D′p(t) < 0. Since it is convex, we have D′′p (t) ≥ 0.
Thus

g′(t) = D′p(t)− 1
2D
′
p(t)− t

2D
′′
p (t) = 1

2D
′
p(t)− t

2D
′′
p (t) < 0

for t > 0, meaning that g(t) is strictly decreasing. Since limt→∞[− t
2D
′
p(t)] = 0 and

limt→∞Dp(t) = 0, we have limt→∞ g(t) = 0, it follows that for 0 < t < limt→0 g(t), there
is a unique t∗(δ), such that 0 < t∗(δ) <∞ and g(t) > δ for t < t∗ and g(t) < δ for t > t∗.
We conclude by observing that since g(t) ≥ Dp(t) we have limt→0 g(t) ≥ Dp(0).

Lemma B.4. Denote
θ(t)

def
= E(|h| − t)2

+ (57)

with h a standard centered normal variable and (·)+ = max(., 0) the positive part. This is a
strictly decreasing function of t with θ(0) = 1 and limt→∞ θ(t) = 0. The following holds for all
1 ≤ p ≤ ∞, 0 < δ < 1:

1. For any n ≥ 1
t∗p(δ;n) ≤ 2 θ−1(δ) n1−1/p. (58)

2. For any n ≥ 2
1−δ

t∗p(δ;n) ≥ θ−1( 1+δ
2 ) > 0 (59)
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3. For any n ≥ max
(

2
1−δ ,

1
δ

)
t∗p(δ;n) ≥ max

(
θ−1(2δ), θ−1( 1+δ

2 )
)
> 0 (60)

4. There is a universal constant C independent of δ, p and n such that for all n ≥ 1

Dp(t
∗
p;n) ≥

(
δ

C

)2

(61)

where we use the shorthand t∗p = t∗p(δ;n).

Lemma B.5. With the notations of Theorem 3.1, for p = 2,

lim
n→∞

−t∗2D′2(t∗2;n) = (1− δ)δ > 0 (62)

lim
n→∞

α∗2(δ;n) = 1√
1−δ . (63)

Lemma B.6. With the notations of Theorem 3.1, for p = 1,

lim
n→∞

−t∗1D′1(t∗1;n) > 0 (64)

α∗1(δ)
def
= lim

n→∞
α∗1(δ;n) =

√√√√ 1√
2
π e−

(t∗1)2

2 t∗1 − δ(t∗1)2

− 1
δ . (65)

where t∗1(δ)
def
=
√

2erfc−1(δ).

Proof of Lemmas B.4-B.5-B.6.

• Step 1. We prove that for all p, n, t

Dp(t;n) ≥ D1(t;n) ≥ Dp

(
tn1−1/p;n

)
. (66)

The inequalities ‖·‖p∗ ≥ ‖·‖∞ ≥ n−1/p∗ ‖·‖p∗ = n−(1−1/p) ‖·‖p∗ imply the inclusions Ct,p ⊂
Ct,1 ⊂ Ctn1−1/p,p. It follows that d(·, Ct,p) ≥ d(·, Ct,1) ≥ d(·, Ctn1−1/p,p), which yields (66).

• Step 2. We establish that for any p, n, δ, with the shorthand t∗p = t∗p(δ;n),

Dp(t
∗
p/2;n) ≥ δ (67)

Dp(t
∗
p;n) ≤ δ (68)

With the additional shorthand Dp(t) = Dp(t;n), since Dp(t) is convex, we have for all t, h

Dp(t+ h) ≥ Dp(t) + hD′p(t). (69)

Applying it to t = t∗p and h = −t∗p/2 and using the definition of t∗p, we get

Dp(t
∗
p/2) ≥ Dp(t

∗
p)− (t∗p/2)D′p(t

∗
p) = δ

i.e. (67) holds. SinceDp(t) is non-increasing, we haveD′p(t) ≤ 0 andDp(t)− t
2D
′
p(t) ≥ Dp(t)

for any t. Applying to t = t∗p this establishes (68) by definition of t∗p.
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• Step 3. We show that for any p, n, t

Dp(t;n) ≤ D̄p(t;n)
def
= 1

nE dist2(h, ‖ · ‖p∗ ≤ t) (70)

and that for p = 1
D̄1(t;n) = θ(t) (71)

is independent of n. By the concavity of square root and Jensen’s inequality we can write

nDp(t;n) =
(
E dist(h, ‖ · ‖p∗ ≤ t)

)2

≤ E dist2(h, ‖ · ‖p∗ ≤ t) = nD̄p(t;n).

This establishes (70).

For p = 1, since p∗ =∞ we can compute

nD̄1(t)
def
= E dist2(h, ‖ · ‖∞ ≤ t) = E

∥∥∥h− proj‖ · ‖∞≤th
∥∥∥2

2
= E

n∑
i=1

(hi − (proj‖ · ‖∞≤th)i)
2

=

n∑
i=1

E(|hi| − t)2
+ = nθ(t).

• Step 4. Combining the previous steps we get for any p, δ, n:

θ(t∗pn
1/p−1/2)

(71)
= D̄1(t∗pn

1/p−1/2)
(70)

≥ D1(t∗pn
1/p−1/2)

(66)

≥ Dp(t
∗
p/2)

(67)

≥ δ

This yields (58).

• Step 5. We show that for any p, n, t

Dp(t;n) ≥ D̄p(t;n)− 1
n . (72)

Indeed, the function f : h 7→ f(h)
def
= dist(h, ‖ · ‖p∗ ≤ t) is 1-Lipschitz, and h is a standard

normal Gaussian variable, hence we can apply Lemma A.1(f).

• Step 6. Combining with the previous steps yields for any p, δ, and n > 1
1−δ :

θ(t∗p)
(71)
= D̄1(t∗p)

(72)

≤ D1(t∗p) + 1
n

(66)

≤ Dp(t
∗
p) + 1

n

(68)

≤ δ + 1
n < 1

For n ≥ 2
1−δ , we have δ+ 1

n ≤
1+δ

2 < 1 which yields (59). For n ≥ max( 2
1−δ , 1/δ), we have

δ + 1
n ≤ min( 1+δ

2 , 2δ) < 1 which yields (60).

• Step 7. To establish (61) we start with the expression (56), with the shorthand q(t)
def
=√

nDp(t):

− t
2D
′
p(t) = − 1

nq(t)

(
(n+ 1)q(t)− Zntn+3

∫
b∈Sn−1

∫ ∞
ρ=0

dist(ρb, C1)ρn+1e−ρ
2t2/2 µ(db) dρ

)
− t

2D
′
p(t) + n+1

n q2(t) =
q(t)

n
Znt

n+3

∫
b∈Sn−1

∫ ∞
ρ=0

dist(ρb, C1)ρn+1e−ρ
2t2/2 µ(db) dρ

r=tρ
=

q(t)

n

∫
b∈Sn−1

∫ ∞
ρ=0

tdist(rb/t, C1)rn+1ph(rb)µ(db) dr

y=rb
=

q(t)

n

∫
Rn
tdist(y/t, C1) ‖y‖2 ph(y)dy

=
q(t)

n
E[dist(h, Ct) ‖h‖2].

(73)
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Since n+1
n q2(t) = (n+ 1)Dp(t) we can rewrite (73) using the definition of Dp(t) as

Dp(t)− t
2D
′
p(t) =

q(t)

n
E[dist(h, Ct)(‖h‖2 − n)]. (74)

Observing further that E[‖h‖2 − n] = 0 and E[dist(h, Ct)] = q(t), the following holds:

Dp(t)− t
2D
′
p(t) =

q(t)

n
E
[
(dist(h, Ct)− q(t))(‖h‖2 − n)

]
=

√
Dp(t) E

[
(dist(h, Ct)− q(t))

‖h‖2 − n√
n

]

≤
√
Dp(t) E

[∣∣∣∣dist(h, Ct)− q(t)∣∣∣∣
∣∣∣∣∣‖h‖2 − n√

n

∣∣∣∣∣
]

=
√
Dp(t)

∫ ∞
0

P

[∣∣∣∣dist(h, Ct)− q(t)∣∣∣∣
∣∣∣∣∣‖h‖2 − n√

n

∣∣∣∣∣ ≥ ε
]

dε

The integrand can be controlled by a union bound as

P

[∣∣∣∣dist(h, Ct)− q(t)∣∣∣∣
∣∣∣∣∣‖h‖2 − n√

n

∣∣∣∣∣ ≥ ε
]
≤ P

[∣∣∣∣dist(h, Ct)− q(t)∣∣∣∣ ≥ √ε]+P

[∣∣∣∣∣‖h‖2 − n√
n

∣∣∣∣∣ ≥ √ε
]

which together with Lemma A.1(e) for the first term and Lemma A.1(c) for the second
term yields Dp(t)− t

2D
′
p(t) ≤ Cn

√
Dp(t) with

Cn
def
=

∫ ∞
0

2

(
e−ε/2 +

{
e−

ε
8 for 0 ≤ ε ≤ n,

e−
√
εn
8 for ε > n

)
dε

≤
∫ ∞

0

2
(

e−ε/2 + e−
ε
8 + e−

√
εn
8

)
dε

≤
∫ ∞

0

2
(

e−ε/2 + e−
ε
8 + e−

√
ε

8

)
dε

def
= C <∞.

• Step 8. (Proof of Lemma B.5). Since dist(h, ‖·‖p∗ ≤ t) = (‖h‖2 − t)+, we have

D2(t;n) = 1
n (E(‖h‖2 − t)+)

2
. With d(t)

def
=
√
D2(t;n) = 1√

n
E(‖h‖2 − t)+ we have

d′(t) = − 1√
n
E[I‖h‖2>t] = − 1√

n
P(‖h‖2 > t)

and −(t/2)D′2(t) = −td(t)d′(t). With a change of variables τ = t/
√
n, define

F1(τ ;n)
def
= D2(τ

√
n;n) =

{
E
(
‖h‖2√
n
− τ
)

+

}2

F2(τ ;n)
def
= − τ

√
n

2 D′2(τ
√
n;n) = E

(
‖h‖2√
n
− τ
)

+
· τP

(
‖h‖2√
n
> τ

)
F (τ ;n)

def
= F1(τ ;n) + F2(τ ;n)

Since ‖h‖2 concentrates around
√
n for large n, as we show below for any 0 < τ < 1

lim
n→∞

F1(τ ;n)
def
= F1(τ) = (1− τ)2 (75)

lim
n→∞

F2(τ ;n)
def
= F2(τ) = (1− τ)τ (76)
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It follows that for δ ∈ (0, 1) we have limn→∞ F (1− δ;n) = δ and

lim
n→∞

t∗2(δ;n)√
n

= 1− δ

lim
n→∞

−(t∗2/2)D′2(t∗2;n) = F2(δ) = (1− δ)δ

lim
n→∞

D(t∗2;n) = F1(δ) = δ2

lim
n→∞

α∗2(δ;n) =
√

δ2

δ(δ−δ2) = 1/
√

1− δ.

which establishes (62)-(63).

To turn these estimates into mathematics we compute for 0 < τ < 1, and ε > 0

E
(
‖h‖2√
n
− τ
)

+
= E

{(
‖h‖2√
n
− τ
)

+

∣∣∣ ∣∣∣‖h‖2√n − 1
∣∣∣ > ε

}
P
(∣∣∣‖h‖2√n − 1

∣∣∣ > ε
)

+E
{

(
‖h‖2√
n
− τ)+

∣∣∣ ∣∣∣‖h‖2√n − 1
∣∣∣ ≤ ε}P

(∣∣∣‖h‖2√n − 1
∣∣∣ ≤ ε)

P
(
‖h‖2√
n
> τ

)
= P

(
‖h‖2√
n
> τ

∣∣∣ ∣∣∣‖h‖2√n − 1
∣∣∣ > ε

)
P
(∣∣∣‖h‖2√n − 1

∣∣∣ > ε
)

+P
(
‖h‖2√
n
> τ

∣∣∣ ∣∣∣‖h‖2√n − 1
∣∣∣ ≤ ε)P(∣∣∣‖h‖2√n − 1

∣∣∣ ≤ ε)
For any 0 < ε < min(1− τ, 1

2 ) we get

P
(∣∣∣‖h‖2√n − 1

∣∣∣ ≤ ε) (a)

≥ 1− 2e−cnε
2

E
{(
‖h‖2√
n
− τ
)

+

∣∣∣ ∣∣∣‖h‖2√n − 1
∣∣∣ ≤ ε} ≥ 1− τ − ε > 0

P
(
‖h‖2√
n
> τ

∣∣∣ ∣∣∣‖h‖2√n − 1
∣∣∣ ≤ ε) = 1

E
(
‖h‖2√
n
− τ
)

+
≥ (1− τ − ε)(1− 2e−cnε

2

)

P
(
‖h‖2√
n
> τ

)
≥ (1− 2e−cnε

2

)

where (a) follows from Lemma A.1(b) by noting that for 0 < ε ≤ 1
2 ,
√

1
1−ε ≤ 1 + ε. Hence,

with ε = (1− τ)/n1/4,

F1(τ ;n) ≥ (1− τ)2(1− n−1/4)2(1− 2e−c(1−τ)2n1/2

)2 (77)

F2(τ ;n) ≥ τ(1− τ)(1− n−1/4)(1− 2e−c(1−τ)2n1/2

)2 (78)

For an upper bound, denote cn
def
= 1√

n
E ‖h‖2. Since n√

n+1
≤ E ‖h‖2 ≤

√
n (cf (53) for the

lower bound, Jensen’s inequality for the upper bound) we have 1 ≥ cn ≥
√

n
n+1 ≥ 1− 1

2n

so that 0 ≤ 2(1− cn) ≤ 1/n. By Jensen’s inequality, for 0 < τ < 1,

E
(
‖h‖2√
n
− τ
)

+
≤

√
E
(
‖h‖2√
n
− τ
)2

+
≤
√
E
(
‖h‖2√
n
− τ
)2

=
√

1− 2cnτ + τ2

=
√

(1− τ)2 + 2(1− cn)τ ≤
√

(1− τ)2 + τ/n = (1− τ)
√

1 + τ
(1−τ)2n
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so that

F1(τ ;n) ≤ (1− τ)2 + τ/n (79)

F2(τ ;n) ≤ τ(1− τ)
√

1 + τ
(1−τ)2n ≤ τ(1− τ)

(
1 + τ

(1−τ)2n

)
(80)

Combining all of the above yields (75)-(76).

• Step 9. (Proof of Lemma B.6). By (58) and (59) we have for any n ≥ 2/(1− δ)

0 < tmin(δ)
def
= θ−1( 1+δ

2 ) ≤ t∗1(δ;n) ≤ 2θ−1(δ)
def
= tmax(δ).

By the continuity of θ and its strict monotonicity, we have

V (δ)
def
= inf

t∈[tmin(δ),tmax(δ)]
{θ(t)− θ(2t)} > 0 (81)

Applying (69) (convexity of D1(t)) with h = t = t∗1 yields D1(2t∗1) ≥ D1(t∗1) + t∗1D
′
1(t∗1),

hence

−t∗1D′1(t∗1;n) ≥ D1(t∗1;n)−D1(2t∗1;n)
(70)&(72)

≥ D̄1(t∗1;n)− D̄1(2t∗1;n)− 1
n

(71)
= θ(t∗1)− θ(2t∗1)− 1

n

≥ V (δ)− 1
n .

For n ≥ N(δ)
def
= max(2/V (δ), 2/(1 − δ)) we obtain −t∗1D′1(t∗1;n) ≥ V (δ)/2

def
= γ(δ) > 0

which establishes (64).

By (70)-(71)-(72) we have θ(t)−1/n ≤ D1(t;n) ≤ θ(t) for all t and n. Hence, the sequence of
convex differentiable functions {D1( · ;n)}n converges uniformly to the convex and smooth
function θ(t). It is a classical exercise in convex analysis to show that this implies the
convergence of derivatives: indeed, since D1(·;n) is convex we have for hn = n−1/2 with
n > t−2 (so that t− hn > 0):

D′1(t;n) ≤ D1(t+ hn;n)−D1(t;n)

hn
≤
θ(t+ hn)− θ(t) + 1

n

hn
=
θ(t+ hn)− θ(t)

hn
+ 1√

n

D′1(t;n) ≥ D1(t;n)−D1(t− hn;n)

hn
≥
θ(t)− θ(t− hn)− 1

n

hn
=
θ(t)− θ(t− hn)

hn
− 1√

n

It follows that limn→∞D′1(t;n) = θ′(t). Just as for the case p = 2 we have shown that
limn→∞ {D1(t;n)− (t/2)D′1(t;n)} = θ(t)− (t/2)θ′(t). By Lemma A.3, θ(t)− (t/2)θ′(t) =
erfc(t/

√
2) so the unique t = t∗1(δ) such that θ(t)− (t/2)θ′(t) = δ is

t∗1(δ) =
√

2erfc−1(δ).

With the same reasoning as for the case p = 2 above we get that

lim
n→∞

t∗1(δ;n) = t∗1(δ)

lim
n→∞

−t∗1D′1(t∗1;n) = − t
∗
1(δ)
2 θ′(t∗1(δ)) > 0

lim
n→∞

D1(t∗1;n) = θ(t∗1(δ))

lim
n→∞

α∗1(δ;n) =

√
θ(t∗1(δ))

δ(δ − θ(t∗1(δ)))
.
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Since erfc(t∗1/
√

2) = δ we have θ(t∗1) = δ−

(√
2
π e−

(t∗1)2

2 t∗1 − δ(t∗1)2

)
and we conclude that

lim
n→∞

α∗1(δ;n) =

√
δ − (δ − θ(t∗1))

δ(δ − θ(t∗1))
=

√√√√ 1√
2
π e−

(t∗1)2

2 t∗1 − δ(t∗1)2

− 1
δ (82)

Lemma B.7 (Deterministic properties of κ(α, β)). Consider 1 ≤ m < n two integers, δ
def
=

(m− 1)/n, 1 ≤ p ≤ ∞, κ(α, β) defined in (43), Dp(t) defined in (52). The following hold:

1. The function κ(α, β) is convex-concave and proper on [0,∞)× [0,∞), hence the function

κ(α)
def
= sup

0≤β≤1
κ(α, β) (83)

is convex on [0,∞), and for any A > 0 the function

κA(β)
def
= inf

0≤α≤A
κ(α, β) (84)

is concave on [0,∞).

2. The scalar t∗ = t∗p(δ;n) (cf. Lemma B.3-Property 7) is well defined, with Dp(t
∗) < δ.

3. Define

α∗ = α∗(δ;n)
def
=
√

Dp(t∗)
δ(δ−Dp(t∗)) (85)

For A > α∗ and λ ≤ t∗ we have

arg min
α:0≤α≤A

max
β:0≤β≤1

κ(α, β) = α∗. (86)

The corresponding optimal β is β∗ = β∗(λ, δ;n)
def
= λ/t∗.

4. For A > α∗, λ ≤ t∗, 0 < ε ≤ max(α∗, A− α∗) we have

inf
|α−α∗|≥ε

κ(α)− κ(α∗) = inf
|α−α∗|=ε

κ(α)− κ(α∗) ≥ ω(ε) = ωp(ε;n, δ, λ)
def
= ε2

2
λδ/t∗

(1+δ(α∗+ε)2)3/2
.

(87)
Observe that for the considered range of λ and ε, we have ω(ε) ≤ 1/2.

Proof of Lemma B.7.

1. It is obvious that κ is proper. One easily checks that α 7→
√
δα2 + 1 is convex by checking

the non-negativity of its second derivative, hence κ is convex in α. The concavity in β
follows from the convexity of β 7→ ∆p(β; h, λ) which is a distance to a convex set [BV04,
Example 3.16], and the fact that the expectation ∆p(β, λ) of a convex function is convex.
As a result, κ(α) is convex and κ(β) is concave.
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2. We have δ
def
= (m − 1)/n < 1, and by Lemma B.3, Property 4, Dp(0) ≥ n

n+1 . Because we
consider the underdetermined case, 1 ≤ m < n, we have n ≥ 2 and

δ ≤ (n− 2)/n ≤ n/(n+ 1) ≤ Dp(0).

3. Since κ(α, β) is convex-concave and proper, and the constraint sets in (86) are convex and
compact, we can change the order of maximization and minimization [Sio58, Corollary 3.3].

• Consider the minimization over α first.

For β = 0 and any λ ≥ 0 we have ∆p(β, λ) = 0 hence κA(0) = inf0≤α≤A κ(α, 0) = 0.

For β > 0, observing that ∆p(β, λ) = β
√
Dp(λ/β) we rewrite

κ(α, β) = β(
√
δα2 + 1− α

√
Dp(λ/β)).

With D−1
p (y)

def
= inf {t : Dp(t) ≤ y} the reciprocal of the strictly decreasing function

Dp, we have

Dp(λ/β) ≤ A2δ2

1 + δA2

if and only if 0 < β ≤ β̃
def
= λ

D−1
p (A2δ2/(1+δA2))

. Since A2δ2

1+δA2 < δ, this implies that for

0 < β ≤ β̃ we can define

α̃(β)
def
=

√
Dp(λ/β)

δ(δ −Dp(λ/β))
. (88)

and check that α̃(β) ≤ A. By studying the sign of ∂κ(α,β)
∂α = β

(
δα√
δα2+1

−
√
Dp(λ/β)

)
,

we get that α 7→ κ(α, β) has a unique minimizer on [0, A] which is precisely α∗(β) =
α̃(β). It follows that for 0 < β ≤ β̃ we have:

κA(β) = min
0≤α≤A

κ(α, β) = κ(α∗(β), β) = β

√
δ −Dp(λ/β)

δ
. (89)

• Consider now the maximization over β. For 0 < β ≤ β̃ the expression of κA(β) is

given by (89). The sign of κ′A(β) is that of δ− g(λ/β) with g(t)
def
= Dp(t)− t

2D
′
p(t) as

in Lemma B.3-Property 7. Hence, we have: κ′A(β) > 0 if t = λ/β > t∗ (that is to say

if β < β∗
def
= λ/t∗); κ′A(β) < 0 if β > β∗; and Dp(t

∗) < δ.

We check that A > α∗ implies Dp(t
∗) < A2δ2/(1 + δA2) i.e. β∗ < β̃. Combined

with the fact that κ(0) = 0, this shows that the supremum of κ(β) over [0, β̃] is
indeed achieved uniquely at β∗. This also implies that κ(β) is strictly decreasing for
β∗ < β ≤ β̃. Being concave, κA(β) must be also strictly decreasing for β ≥ β̃, so the
supremum over [0,∞) is indeed achieved at β∗. Since λ ≤ t∗ we further have β∗ ≤ 1
hence this is also the supremum over β ∈ [0, 1].

To summarize, the optimal β is β∗ = λ/t∗, and the corresponding optimal α is given as

α∗(β∗) = α̃(λ/t∗) =

√
Dp(t∗)

δ(δ −Dp(t∗))
. (90)
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4. The assumption ε ≤ max(α∗, A−α∗) ensures that the set {α : |α− α∗| ≥ ε, 0 ≤ α ≤ A} is
not empty. Since κ(α) is convex on [0,∞) with its minimum at α∗, we have

ω(ε)
def
= inf

α:|α−α∗|≥ε
0≤α≤A

κ(α)− κ(α∗) = min
α:|α−α∗|=ε

0≤α≤A

κ(α)− κ(α∗)

Since A > α∗ and λ ≤ t∗, we have 0 < β∗ < 1. The second derivative of α 7→ κ(α, β∗) with
respect to α reads:

∂2κ(α, β∗)
∂α2

=
β∗δ

(1 + δα2)3/2
> 0.

This implies that on [0, A] ∩ [α∗ − ε, α∗ + ε] the function α 7→ κ(α, β∗) is strongly convex

with strong convexity modulus β∗δ
(1+δ(α∗+ε)2)3/2

. Since α 7→ κ(α, β∗) is minimum at α∗, it

holds that

κ(α∗ ± ε, β∗) ≥ κ(α∗, β∗) +
ε2

2

β∗δ

(1 + δ(α∗ + ε)2)3/2

Furthermore, from the definition of κ(α) and β∗, we have that κ(α) ≥ κ(α, β∗) for any α,
with equality for α = α∗. The claim therefore follows.

Since λ ≤ t∗ and ε ≤ α∗ we have ω(ε) ≤ δ(α∗)2

2(1+δ(α∗)2)3/2
= f

(
(1 + δ(α∗)2)−1/2

)
with

f(u)
def
= 1

2 (1/u2 − 1)u3 = u−u3

2 ≤ 1/2 for 0 < u ≤ 1. Hence, ω(ε) ≤ 1/2.

Invoking a lemma from [HP93] we show that arg minα φ(α) concentrates around arg minα κ(α).

Lemma B.8 ([HP93, Lemma 2]). Let f(t) be a random convex function on some open set
S ⊂ Rp, and let tf be (one of) its minimizer(s). Consider another function g(t) (which we
interpret as approximating f), such that it has a unique argmin tg. Then for each ε > 0, we
have that:

P[‖tf − tg‖ ≥ ε] ≤ P[ sup
‖s−tg‖≤ε

‖f(s)− g(s)‖ ≥ 1
2 inf
‖s−tg‖=ε

(g(s)− g(tg))] (91)

The role of f(t) (resp. tf will be played by φ(α) (resp α∗φ), and the role of g(t) (resp. tg) by
κ(α) (resp. α∗).

Lemma B.9. Let A > α∗, λ ≤ t∗, with α∗ defined as in Lemma B.7-Equation (86) and
t∗ = t∗p(δ;n) as in Lemma B.3-Property 7. Consider the random function φ(α) defined as in
Corollary B.1, and

α∗φ
def
= arg min

0≤α≤A
φ(α). (92)

For 0 < ε ≤ max(α∗, A− α∗) we have

P
[∣∣α∗φ − α∗∣∣ ≥ ε] ≤ ζ

(
n, ω(ε)

2

)
(93)

with ζ(n, ε) = ζ(n, ε;A, δ) defined in (42) and ω(ε) defined in (87).
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Proof. Since 0 < ε ≤ max(α∗, A − α∗) the set {α : 0 ≤ α ≤ A, |α− α∗| ≤ ε} is a non-empty
subset of [0, A], and

sup
α:0≤α≤A, |α−α∗|≤ε

|φ(α)− κ(α)| ≤ sup
0≤α≤A

|φ(α)− κ(α)| .

Since φ is a random convex function, we can apply Lemma B.8 to obtain

P
[∣∣α∗φ − α∗∣∣ ≥ ε] ≤ P

[
sup

α:0≤α≤A, |α−α∗|≤ε
|φ(α)− κ(α)| ≥ ω(ε)

2

]
≤ P

[
sup

0≤α≤A
|φ(α)− κ(α)| ≥ ω(ε)

2

]
≤ ζ(n, ω(ε)/2),

where we used that ω(ε) ≤ infα:0≤α≤A, |α−α∗|=ε κ(α) − κ(α∗), and the last inequality follows
from Corollary B.1 – which we can use since ω(ε)/2 ≤ 1/4 < 2.

Lemma B.10. Let A > α∗, λ ≤ t∗ with α∗ defined as in Lemma B.7-Equation (86) and
t∗ = t∗p(δ;n) as in Lemma B.3-Property 7. For 0 ≤ ε ≤ max(α∗, A − α∗), consider the optimal
cost of the auxiliary optimization (27) with an altered order of minimization and maximization
and ‖z‖2 further restricted to be ε-away from α∗

φε(g,h)
def
= max

β:0≤β≤1
w:‖w‖p∗≤1

min
z:‖z‖≤A

‖z‖/∈(α∗−ε,α∗+ε)

max
u:‖u‖=β

1√
n
‖z‖g>u− 1√

n
‖u‖h>z− u>e1 +

λ√
n

w>z.

(94)
With g ∼ N (0, Im), h ∼ N (0, In), 1 ≤ m < n, δ = (m− 1)/n we have for any 0 < η < 2: with
probability at least 1− ζ(n, η),

φ0(g,h) < κ(α∗) + η,

φε(g,h) > κ(α∗) + ω(ε)− η,
(95)

with ζ(n, ε) = ζ(n, ε;A, δ) defined in (42) and ω(ε) defined in (87).

Proof. Since 0 < ε ≤ max(α∗, A−α∗) the set Sε
def
= {α : 0 ≤ α ≤ A, |α− α∗| ≤ ε} is a non-empty

subset of [0, A]. Denote S−ε
def
= [0, α∗ − ε] and S+

ε = [α∗ + ε, A] its two convex components (at
most one of them may be empty). Let φS+

ε
(g,h) the value of (94), but with ‖z‖ constrained to

lie in S+
ε (by convention, this is +∞ when S+

ε = ∅). Similarly define φS−ε (g,h). When S+
ε is

non-empty, since it is convex, we can effect the same simplifications and min-max swaps as in
the proof of Lemma 3.1 (from (28a) to (29d)) to arrive at

φS+
ε

(g,h) = min
α:α∗+ε≤α≤A

max
β:0≤β≤1

φ(α, β; g,h)

and similary with S−ε we get when it is non-empty that

φS−ε (g,h) = min
α:0≤α≤α∗−ε

max
β:0≤β≤1

φ(α, β; g,h)

This shows that φε(g,h) = min(φS−ε(g,h), φS+
ε

(g,h)) = φSε(g,h) where the notation φSε(g,h)
matches that used in Corollary B.1. Moreover by definition (see Lemma B.7) we have

κSε
def
= min

α∈Sε
max

0≤β≤1
κ(α, β) = κ(α∗) + ω(ε).
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By Corollary B.1 we have, for 0 < η < 2, with probability at least 1− ζ(n, η): for all S ⊂ [0, A],
|φS(g,h)− κS | < η. Specializing to S = [0, A] and S = Sε and combining the above yields

φ0(g,h) = φ[0,A](g,h) < κ[0,A] + η = κ(α∗) + η

φε(g,h) = φSε(g,h) > κSε − η = κ(α∗) + ω(ε)− η.

Lemma B.11. Let K > α∗/
√
n, λ ≤ t∗ with α∗ defined as in Lemma B.7-Equation (86) and

t∗ = t∗p(δ;n) as in Lemma B.3-Property 7. Denote by x̃K any optimal solution of (24). For
0 < ε ≤ max(α∗,K

√
n− α∗) we have

P
[ ∣∣∣‖x̃K‖ − α∗√

n

∣∣∣ ≥ ε√
n

]
≤ 4ζ

(
n, ω(ε)

2

)
.

with ζ(n, ε) = ζ(n, ε;K
√
n, δ) defined in (42) and ω(ε) defined in (87).

Proof. Denote Φ the optimal cost of (24) and Φε the corresponding cost when z = x
√
n is further

restricted to Sε
def
= {z : ‖z‖2 ≤ A and |‖z‖2 − α?| ≥ ε}, with A

def
= K

√
n:

Φε = min
x:‖x‖≤K,
|√n‖x‖−α∗|≥ε

max
u:‖u‖≤1

u>Ax + λ ‖x‖p − u>e1. (96)

We now want to show that for ε > 0 we have with high probability Φε > Φ = Φ0, because this

is equivalent to z̃K = x̃K
√
n ∈ S ′ε

def
= {z : ‖z‖2 ≤ A and |‖z‖2 − α?| < ε}.

By CGMT part 1 and part 2 (see Theorem A.1 in Appendix A.3), denoting φPε (resp. φDε )
the optimum value of the “primal” (resp. “dual”) auxiliary optimization problem associated to
the principal optimization problem (96), we have for any c ∈ R

P[Φε < c] ≤ 2P[φPε ≤ c] and P[Φ0 > c] ≤ 2P[φD0 ≥ c]. (97)

For the second one, we use additionally that φD0 = φP0 since we optimize over convex sets (being
a ball, S0 is convex) and the penalty ψ(x,u) = λ ‖x‖p−u>e1 is convex-concave (see e.g. [Sio58,
Corollary 3.3]).

Let C(z,u,w) = C(z,u, z; g,h) be the objective function in (27) and (94), so that (94)

becomes (with A
def
= K

√
n)

φε = max
β:0≤β≤1

w:‖w‖p∗≤1

min
z:‖z‖≤A
z∈Sε

max
u:‖u‖=β

C(z,u,w),

and the optimal cost of (27) reads φ = φ0. With these notations, we have (noting that max min ≤
min max is always true)

φPε
def
= min

z:‖z‖≤A
z∈Sε

max
u:‖u‖≤1,

w:‖w‖p∗≤1

C(z,u,w) = min
z:‖z‖≤A
z∈Sε

max
β:0≤β≤1,

w:‖w‖p∗≤1

max
u:‖u‖2=β

C(z,u,w)

≥ max
β:0≤β≤1,

w:‖w‖p∗≤1

min
z:‖z‖≤A
z∈Sε

max
u:‖u‖2=β

C(z,u,w) = φε
(98)
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and

φD0
def
= max

u:‖u‖≤1,
w:‖w‖p∗≤1

min
z:‖z‖≤A

C(z,u,w) = max
β:0≤β≤1,

w:‖w‖p∗≤1

max
u:‖u‖2=β

min
‖z‖≤A

C(z,u,w)

≤ max
β:0≤β≤1,

w:‖w‖p∗≤1

min
z:‖z‖≤A

max
u:‖u‖2=β

C(z,u,w) = φ0.
(99)

Denote φ
ε

def
= κ(α∗) + ω(ε) and φ̄

def
= κ(α∗) and use the above with c1 = φ

ε
− η and c2 = φ̄ + η

where η > 0 is arbitrary to get

P[Φε < φ
ε
− η] ≤ 2P[φPε ≤ φε − η] ≤ 2P[φε ≤ φε − η],

P[Φ > φ̄+ η] ≤ 2P[φD ≥ φ̄+ η] ≤ 2P[φ0 ≥ φ̄+ η].
(100)

Consider the event E =
{

Φε ≥ φε − η and Φ ≤ φ̄+ η
}

. For 0 < η < (φ
ε
− φ̄)/2 = ω(ε)/2 we

have c1 > c2 hence this event implies that z̃K ∈ S ′ε, which is what we wanted to prove. For
such η, since ω(ε)/2 ≤ 1/4 < 2 we can use Lemma B.10 and a union bound to obtain that
this event happens with probability at least 1 − 4ζ(n, η). Hence, for any 0 < η < ω(ε)/2 we
have P(z̃K /∈ Sε) ≤ 4ζ(n, η). By continuity of η 7→ ζ(n, η) we take the limit when η tends to
ω(ε)/2.

Lemma B.12. Let K > α∗/
√
n, λ ≤ t∗ with α∗ defined as in Lemma B.7-Equation (86) and

t∗ = t∗p(δ;n) as in Lemma B.3-Property 7. Denote by x̃K any optimal solution of the random
bounded problem (24) and x̃ any optimal solution of the random unbounded problem (22). For
0 < ε ≤ min(α∗,K

√
n− α∗) (NB: here the upper bound on ε is the min, not the max) we have

P[x̃K 6= x̃] ≤ 4ζ
(
n, ω(ε)

2

)
,

and
P
[ ∣∣∣‖x̃‖ − α∗√

n

∣∣∣ ≥ ε√
n

]
≤ 4ζ

(
n, ω(ε)

2

)
.

with ζ(n, ε) = ζ(n, ε;K
√
n, δ) defined in (42) and ω(ε) defined in (87).

Proof. To handle the case of non-unique solutions, x̃ (resp. x̃K) may denote the convex set of
solutions of the respective convex optimization problems. The property x̃ 6= x̃K then means that
the sets do not intersect, and inequalities such as f(x̃) > c are meant to hold for all elements of
the set x̃.

We first prove, by contradiction, that if x̃ 6= x̃K , then necessarily ‖x̃K‖ = K. Suppose the
opposite: despite the fact that x̃ 6= x̃K , we have ‖x̃K‖ < K. Since x̃ 6= x̃K we have ‖x̃‖ > K.
Denoting the lasso objective in (22) by θ(x), this means that θ(x̃) < θ(x̃K). By convexity of θ
it follows that all points on the line segment xν = νx̃K + (1− ν)x̃, 0 ≤ ν ≤ 1 satisfy

θ(xν) ≤ θ(x̃K). (101)

Since ‖x0‖ > K and ‖x1‖ < K, by continuity there exists ν ∈ (0, 1) such that ‖xν‖ = K.
Further, by (101), xν is optimizing the bounded problem (24), contradicting our assumption.

The contraposition of what we just established is that, if ‖x̃K‖ < K then x̃ = x̃K . In
particular, since we assume K

√
n > α∗ + ε, we have: if |

√
n ‖x̃K‖ − α∗| < ε then ‖x̃K‖ <
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K hence x̃ = x̃K and |
√
n ‖x̃‖ − α∗| = |

√
n ‖x̃K‖ − α∗| < ε. It follows that P[x̃K 6= x̃] ≤

P[|
√
n ‖x̃K‖ − α∗| ≥ ε] and

P[
∣∣√n ‖x̃‖ − α∗∣∣ ≥ ε] ≤ P[

∣∣√n ‖x̃K‖ − α∗∣∣ ≥ ε].
We conclude using Lemma B.11.

Lemma B.13. With ∆p defined as in Lemma B.2, the function fh(β)
def
= |∆p(β; h, λ)−∆p(β;n, λ)|

is max {‖h‖ /
√
n, 1}-Lipschitz in β.

Proof. We omit the dependency in λ for brevity and write by definition

|∆p(β1; h)−∆p(β2; h)| = 1√
n
|dist(β1h, C)− dist(β2h, C)| ≤ 1√

n
‖β1h− β2h‖ ≤ ‖h‖√n |β1 − β2| ,

where we used the fact that the Euclidean distance to a convex set is 1-Lipschitz with respect to
the Euclidean metric. Further, we have

|∆p(β1)−∆p(β2)| = |E(∆p(β1; h)−∆p(β2; h))| ≤ E |(∆p(β1; h)−∆p(β2; h))|
≤ |β1−β2|√

n
E ‖h‖ ≤ |β1 − β2| .

To conclude, note that the Lipschitz constant of the difference of two Lipschitz functions does
not exceed the largest of the two Lipschitz constants, and that taking the absolute value does
not change it.
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Séminaire de Probabilités XXXIII. Berlin, Heidelberg: Springer, Berlin, Heidelberg,
1999, pp. 120–216.

[LLM13] S. Li, Y. Liu, and T. Mi, “Sparse Dual Frames and Dual Gabor Functions of Minimal
Time and Frequency Supports,” J. Fourier Anal. Appl., vol. 19, no. 1, pp. 48–76,
2013.

[Nat95] B. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J. Computing,
vol. 25, no. 2, pp. 227–234, 1995.

[OTH13] S. Oymak, C. Thrampoulidis, and B. Hassibi, “The Squared-Error of Generalized
LASSO: A Precise Analysis,” arXiv, Nov. 2013.

[PHSB14] N. Perraudin, N. Holighaus, P. L. Søndergaard, and P. Balazs, “Designing Gabor
Windows Using Convex Optimization,” arXiv, Jan. 2014.

[Rud08] M. Rudelson, “Invertibility of random matrices: norm of the inverse,” Annals of
Mathematics, vol. 168, no. 2, pp. 575–600, 2008.

[Sio58] M. Sion, “On general minimax theorems,” Pacific Journal of Mathematics, vol. 8,
no. 1, pp. 171–176, Mar. 1958.

[TAH16] C. Thrampoulidis, E. Abbasi, and B. Hassibi, “Precise Error Analysis of Regularized
M-estimators in High-dimensions,” arXiv, Jan. 2016.

[Tib13] R. J. Tibshirani, “The lasso problem and uniqueness,” Electronic Journal of Statistics,
vol. 7, no. 0, pp. 1456–1490, 2013.

[TO15] C. Thrampoulidis and S. Oymak, “Regularized linear regression: A precise analysis
of the estimation error,” in Proceedings of The 28th . . . , 2015.

[Ver09] R. Vershynin, “Introduction to the non-asymptotic analysis of random matrices,” in
Compressed Sensing, Y. C. Eldar and G. Kutyniok, Eds. Cambridge: Cambridge
University Press, 2009, pp. 210–268.

[Ver14] ——, “Invertibility of symmetric random matrices,” Random Structures &amp; Algo-
rithms, vol. 44, no. 2, pp. 135–182, Mar. 2014.

40



[Wai15] M. Wainwright, Basic tail and concentration bounds, Draft, 2015. [Online]. Avail-
able: https://www.stat.berkeley.edu/∼mjwain/stat210b/Chap2 TailBounds Jan22
2015.pdf

[Wen48] J. G. Wendel, “Note on the Gamma Function,” Am. Math. Mon., vol. 55, no. 9, p.
563, Nov. 1948.

41

https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf

	Introduction
	Prior Art
	Our Contributions and Paper Outline

	A Sparse Pseudoinverse is (Generically) Unique and Optimally Sparse
	Vector Facts
	Generic Uniqueness and Optimal Sparsity of Spinv

	Numerical Stability
	Proof of the Main Concentration Result, Theorem 3.1
	Proof of the Main Vector Result, Lemma 3.1

	Conclusion
	Acknowledgments
	Results about Gaussian processes
	Concentration of measure
	Complementary error function and related functions
	Convex Gaussian Min-Max Theorem (CGMT) [Theorem 6.1]Thrampoulidis:2016vo

	Lemmata for Section 3

