4,438 research outputs found

    Development of an iodine generator for reclaimed water purification in manned spacecraft applications

    Get PDF
    A successful 30-day test is described of a prototype Iodine Generating and Dispensing System (IGDS). The IGDS was sized to iodinate the drinking water nominally consumed by six men, 4.5 to 13.6 kg (10 to 30 lb) water per man-day with a + or - 10 to 20% variation with iodine (I2) levels of 0.5 to 20 parts per million (ppm). The I2 treats reclaimed water to prevent or eliminate microorganism contamination. Treatment is maintained with a residual of I2 within the manned spacecraft water supply. A simplified version of the chlorogen water disinfection concept, developed by life systems for on-site generation of chlorine (Cl2), was used as a basis for IGDS development. Potable water contaminated with abundant E. Coliform Group organisms was treated by electrolytically generated I2 at levels of 5 to 10 ppm. In all instances, the E. coli were eliminated

    Cryogenic in-memory computing using tunable chiral edge states

    Full text link
    Energy-efficient hardware implementation of machine learning algorithms for quantum computation requires nonvolatile and electrically-programmable devices, memristors, working at cryogenic temperatures that enable in-memory computing. Magnetic topological insulators are promising candidates due to their tunable magnetic order by electrical currents with high energy efficiency. Here, we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a chiral edge state-based cryogenic in-memory computing scheme. On the one hand, the chiral edge state can be tuned from left-handed to right-handed chirality through spin-momentum locked topological surface current injection. On the other hand, the chiral edge state exhibits giant and bipolar anomalous Hall resistance, which facilitates the electrical readout. The memristive switching and reading of the chiral edge state exhibit high energy efficiency, high stability, and low stochasticity. We achieve high accuracy in a proof-of-concept classification task using four magnetic topological memristors. Furthermore, our algorithm-level and circuit-level simulations of large-scale neural networks based on magnetic topological memristors demonstrate a software-level accuracy and lower energy consumption for image recognition and quantum state preparation compared with existing memristor technologies. Our results may inspire further topological quantum physics-based novel computing schemes.Comment: 33 pages, 12 figure

    Ultra-low Voltage Digital Circuits and Extreme Temperature Electronics Design

    Get PDF
    Certain applications require digital electronics to operate under extreme conditions e.g., large swings in ambient temperature, very low supply voltage, high radiation. Such applications include sensor networks, wearable electronics, unmanned aerial vehicles, spacecraft, and energyharvesting systems. This dissertation splits into two projects that study digital electronics supplied by ultra-low voltages and build an electronic system for extreme temperatures. The first project introduces techniques that improve circuit reliability at deep subthreshold voltages as well as determine the minimum required supply voltage. These techniques address digital electronic design at several levels: the physical process, gate design, and system architecture. This dissertation analyzes a silicon-on-insulator process, Schmitt-trigger gate design, and asynchronous logic at supply voltages lower than 100 millivolts. The second project describes construction of a sensor digital controller for the lunar environment. Parts of the digital controller are an asynchronous 8031 microprocessor that is compatible with synchronous logic, memory with error detection and correction, and a robust network interface. The digitial sensor ASIC is fabricated on a silicon-germanium process and built with cells optimized for extreme temperatures

    Memory Module Design for High-Temperature Applications in SiC CMOS Technology

    Get PDF
    The wide bandgap (WBG) characteristics of SiC play a significant and disruptive role in the power electronics industry. The same characteristics make this material a viable choice for high-temperature electronics systems. Leveraging the high-temperature capability of SiC is crucial to automotive, space exploration, aerospace, deep well drilling, and gas turbines. A significant issue with the high-temperature operation is the exponential increase in leakage current. The lower intrinsic carrier concentration of SiC (10-9 cm-3) compared to Si (1010 cm-3) leads to lower leakage over temperature. Several researchers have demonstrated analog and digital circuits designed in SiC. However, a memory module is required to realize a complete electronic system in SiC that bridges the gap between data processing and data storage. Designing memory that can process massive amounts of data in harsh environments while consuming low power opens doors for future electronics. A novel static random-access memory (SRAM) cell is designed and implemented in a SiC 1 µm triple well CMOS process for high-temperature applications in this work. The prevalent issues encountered during SiC fabrication and the uncertainties in device performance led to 6T SRAM cell design modifications that enable adaptability to the worst and the best cases. However, design trade-offs are made in the design size, the number of transistors, number of I/Os, and the cell\u27s power consumption. The novel SRAM cell design mitigates the effect of poor p-type contacts after the device fabrication by controlling the cell\u27s drive strength via an additional pull-up network. The design also includes two parallel access transistors and separate wordlines that control both access transistors. This individual control enables post-fabrication tunability in the cell ratio (CR) and the pull-up (PR) ratio of the cell. It also allows tuning the access transistors\u27 effective width during a data read operation, and a data write operation, independently. Along with the SRAM cell design, the conventional latch-based sense amplifier is also designed in the SiC CMOS process to realize the monolithic memory IC modules. The SRAM cell performance is evaluated on the basis of static noise margin (SNM), write SNM (WSNM), read SNM (RSNM), leakage current, and read access time over a wide temperature range (25ºC to 500ºC) on three uniquely processed wafers. The noise margins measured on Wafer #2 show a lower leakage current of ~500 nA at 500ºC with the supply voltage of 10 V. The SNM of 6.07 V is measured at 500ºC with a 10 V of power supply. The read access time at 400ºC is ~7.5 µs at a supply voltage of 10 V

    Developments in Radiation-Hardened Electronics Applicable to the Vision for Space Exploration

    Get PDF
    The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs

    Portable lab-on-chip platform for bovine mastitis diagnosis in raw milk

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica , apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015As medidas de prevenção e controlo da mastite bovina consistem em boas práticas de gestão aliadas à administração de antibióticos. Os conceitos actuais para uma utilização prudente de antibióticos e preocupações a nível de saúde pública têm vindo a reforçar a necessidade de um diagnóstico adequado e atempado. Geralmente, a mastite é detectada com base em sinais clínicos evidentes de condições anormais do leite e / ou do úbere das vacas ou por testes que indicam uma reacção inflamatória. O teste Califórnia Mastite, consiste na contagem de células somáticas e kits relativamente baratos de bio marcadores estão disponíveis para o efeito, mas estes apenas fornecem informações sobre a presença / ausência de inflamação. Nos últimos anos, a tecnologia de Lab-on-Chip teve grandes desenvolvimentos, apresentando inúmeras vantagens relativamente aos métodos tradicionais de detecção de biomoléculas: maior sensibilidade, uma resposta mais rápida, recurso a pequenas quantidades de reagentes, redução do tamanho dos dispositivos, fácil utilização e custos acessíveis. Com o crescente interesse da medicina, indústria farmacêutica, biotecnologia e controlo ambiental, a tendência será deslocar os laboratórios para mais próximo dos clientes, através desta tecnologia também designada Point-of-Care (POC). Paralelamente, a integração da tecnologia biológica em aplicações de engenharia alimentar tem tido particular interesse na última década. A identificação precoce dos agentes patogénicos causadores da mastite bovina tem uma grande importância para a implementação de medidas de controlo adequadas, reduzindo o risco de infecções crónicas e permitindo orientar a terapêutica antimicrobiana a ser prescrita. A rápida identificação dos agentes patogénicos, como Staphylococcus spp. e Streptococcus spp. e, entre estes, a discriminação entre os principais agentes contagiosos Staphylococcus aureus e Streptococcus agalactiae, irá contribuir para um decréscimo dos danos económicos e de saúde pública consequentes da mastite bovina. Apesar dos sistemas de citometria convencional fornecerem resultados rápidos e fiáveis, estes continuam a ser volumosos, o que dificulta a sua portabilidade, além de apresentarem custos relativamente elevados e serem de utilização complexa. Por seu lado, os sensores magnetoresistivos são micro fabricados, podem ser integrados em canais microfluídicos e conseguem detectar células marcadas magneticamente. Os sensores magnetoresistivos utilizados neste trabalho são designados por Spin-Valve, sendo constituídos por uma camada de metal não magnético entre duas camadas de metais magnéticos. Uma das camadas magnéticas apresenta uma magnetização fixa, devido a uma camada antiferromagnética adjacente que lhe fixa a magnetização, enquanto a magnetização da outra camada se encontra livre para rodar. Esta dissertação pretende desenvolver uma plataforma portátil que integra um magnete permanente como fonte de magnetização, vinte e oito sensores magnetoresistivos e microfluídica, tornando possível a detecção e quantificação, de forma dinâmica e em tempo real, de partículas magnéticas e células marcadas magneticamente, utilizando vários sensores. Para tal, utilizou-se como ponto de partida um protótipo já existente no INESC-MN, que embora funcional, apresentava limitações na integração do biochip com a fonte de magnetização das nanopartículas, neste caso um magnete permanente. Como as Spin-Valves são apenas sensíveis a uma direcção no plano, se bem alinhadas na zona de homogeneidade dos campos perpendiculares criados pelo magnete, este não afecta a sensibilidade dos sensores. No entanto, uma pequena inclinação do magnete pode criar componentes de campo magnético no plano do sensor e, por conseguinte, afectar a sua sensibilidade. O magnete utilizado neste trabalho tem dimensões 20x20x3mm3 e um campo magnético residual de 1.2-1.3T. O sistema de microfluídica é composto por quatro canais lineares e individuais com 50 μm de altura, 100 μm de largura e 1 cm de comprimento, alinhados com cada conjunto de sensores. O chip e os microcanais são montados face-a-face e selados através de um processo químico, sendo depois montados e soldados num circuito impresso. Neste caso particular, o biossensor é desenhado para ser capaz de detectar e quantificar pequenas variações de campo magnético causadas pela presença de marcadores superparamagnéticos que são funcionalizados com anticorpos para proteínas de parede celular específicas que estão presentes na superfície das células de interesse. As partículas superparamagnéticas são muito utilizadas neste tipo de aplicações pelo facto de, na ausência de campo magnético externo, apresentarem magnetização nula – estão num estado superparamagnético. Quando um campo magnético externo é aplicado, provoca a magnetização destas partículas conduzindo-as a um estado paramagnético. Uma partícula magnetizada verticalmente, ao fluir no microcanal, gera um campo variável sobre o sensor. Como resultado, um pico bipolar é a assinatura da passagem de uma partícula perpendicularmente magnetizada sobre o sensor. De forma a conseguir obter uma plataforma com as características identificadas acima, foram combinados vários componentes numa única plataforma, através de um processo faseado que incluiu: i) A microfabricação de sensores magnetoresistivos, através de técnicas de fotolitografia, etching e lift-off; ii) A fabricação de um sistema de microfluidica em PDMS; iii) A integração do chip com os microcanais de PDMS através de um processo de ligação químico; iv) desenvolver um estudo sobre os efeitos de campos magnéticos externos sobre os sensores magnetoresistivos devido à presença de magnetes permanentes; v) O desenvolvimento de um módulo com um sensor de efeito de hall, que integrado numa plataforma de scanning permitisse quantificar os campos perpendiculares e longitudinais de magnetes; vi) a optimização do design do biochip de acordo com os dados obtidos; vii) O desenvolvimento de uma plataforma de suporte para a combinação do biochip com o magnete permanente; viii) A medição do momento magnético de um conjunto de partículas magnéticas com diferentes dimensões; ix) A validação experimental da eficiência do magnete permanente na magnetização de nanopartículas magnéticas, através de ensaios experimentais de detecção de nanopartículas de diferentes dimensões. x) O desenvolvimento de um programa de análise e contagem de eventos magnéticos utilizando o software Matlab®; xi) A avaliação experimental da detecção de células marcadas com partículas magnéticas. As medições experimentais foram realizadas utilizando uma plataforma electrónica desenvolvida pelo INESC-ID, há dois anos por um aluno de doutoramento, mostraram que a plataforma já optimizada permite a detecção de nanopartículas magnéticas e células marcadas magneticamente utilizando vários sensores magnetoresistivos, o que não era possível no protótipo anterior. Cinco tipos de partículas magnéticas, com dimensões entre os 2800 nm e os 50 nm, foram testadas nos vários canais. Foram observados picos correspondentes à passagem de partículas magnéticas em todas as amostras, excepto para as partículas com dimensões de 80 nm e 50 nm. Face a estes resultados conclui-se que, provavelmente: - Partículas de menores dimensões não apresentam tendência para formar aglomerados e, partículas individualizadas não têm momento magnético suficiente para serem detectadas; - Ou que a magnetização das partículas pelo magnete permanente é demasiado pequena para induzir um momento magnético significativo nas mesmas. Contudo, como neste caso é importante diminuir a probabilidade de ocorrência de falsos positivos, é relevante que partículas magnéticas que não estejam ligadas às moléculas de interesse não sejam detectadas pelo sensor. Deste modo, determinou-se que, para este sensor, as partículas de 80 nm ou 50 nm são as mais indicadas. Para validação da detecção de células foram realizadas experiências usando amostras de leite com Staphyloccocus spp. cedidas por uma colega do INESC-MN que está a desenvolver o seu trabalho de doutoramento em plataformas portáteis para análises ao leite. Estes testes com amostras biológicas foram realizados no INESC-MN, utilizando culturas de bactérias e protocolos de funcionalização e marcação magnética previamente desenvolvidos no Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA). As células foram marcadas magneticamente com partículas de 50 nm funcionalizadas com o anticorpo monoclonal anti-Staphyloccocus spp. e introduzidas no biochip para os testes de aquisição. Nesta fase foram utilizadas amostras de 500 μL contendo 10000 ufc e 8 x 108 partículas magnéticas funcionalizadas. Foram detectados picos, o que indica a capacidade desta plataforma para a detecção magnética de células marcadas. Para além disso, com o programa de contagem foi possível quantificar o número de eventos magnéticos ocorridos, tendo sido detectados 6063, para um número de colónias de 10000. Os resultados obtidos são bastante promissores, no entanto são necessários ainda estudos futuros para que este citómetro possa quantificar com maior precisão. Nomeadamente, um dos objectivos seria a medição realizada por vários sensores em simultâneo, de forma a obterem-se resultados mais confiáveis e precisos. Para tal, optimizações ao nível da aquisição do sinal, mais propriamente ao nível da plataforma electrónica de aquisição serão necessárias para que seja possível a medição com sensores em paralelo.Over the past decade, the drawbacks of conventional flow cytometers have encouraged efforts in microfabrication technologies and advanced microfluidics systems. Biosensor technology has been in exponentially development as it presents huge advantages when in comparison to traditional detection methods of biomolecules, such as high sensitivity, rapid response and small amount of reagents. Unlike external fluorescent/optical detectors, magnetoresistive (MR) sensors are micro-fabricated, can be integrated within microfluidic channels and can detect magnetically labelled biomolecules. Bovine mastitis is an economic burden for dairy farmers and control measures to prevent mastitis are crucial for dairy company sustainability. The present work describes a platform for dynamic mastitis diagnosis through detection of magnetically labelled cells with a magnetoresistive based cell cytometer, where a permanent magnet is used as magnetic source. A study about the effects of the magnetic fields over the MR sensors was developed in order to be possible to design and engineer a platform integrating the permanent magnet with the chip in such a way that the magnetic fields did not affect the MR sensors behaviour. Overall, assays were performed involving magnetic nanoparticles (MNP) and cells labelled with MNP. These assays were performed with a platform mentioned above, containing a permanent magnet assembled with the chip which was integrated with an electronic platform from INESC-ID, allowing signal acquisition from magnetized nanoparticles. In a very preliminary stage, magnetic particles between 2800 nm and 50 nm were tested flowing through a 100 μm wide, 50 μm high microchannel, with speeds around 50 μL/min being detected. Bipolar and unipolar signals with average amplitude of 15 μV – ~250 μV were observed corresponding to magnetic events. A home-made program to count magnetic events was developed in Matlab®. In particular it is presented an example for the validation of the platform as a magnetic counter that identifies and quantifies Staphylococcus spp. cells magnetically labelled with 50nm particles in a milk sample. In assays using 500 μL of milk sample, cells were detected with signal amplitude of 30 μV – ~200 μV

    Integrated Circuit Design in US High-Energy Physics

    Full text link
    This whitepaper summarizes the status, plans, and challenges in the area of integrated circuit design in the United States for future High Energy Physics (HEP) experiments. It has been submitted to CPAD (Coordinating Panel for Advanced Detectors) and the HEP Community Summer Study 2013(Snowmass on the Mississippi) held in Minnesota July 29 to August 6, 2013. A workshop titled: US Workshop on IC Design for High Energy Physics, HEPIC2013 was held May 30 to June 1, 2013 at Lawrence Berkeley National Laboratory (LBNL). A draft of the whitepaper was distributed to the attendees before the workshop, the content was discussed at the meeting, and this document is the resulting final product. The scope of the whitepaper includes the following topics: Needs for IC technologies to enable future experiments in the three HEP frontiers Energy, Cosmic and Intensity Frontiers; Challenges in the different technology and circuit design areas and the related R&D needs; Motivation for using different fabrication technologies; Outlook of future technologies including 2.5D and 3D; Survey of ICs used in current experiments and ICs targeted for approved or proposed experiments; IC design at US institutes and recommendations for collaboration in the future

    Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    Get PDF
    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed

    Design and Optimization of a High Power Density Silicon Carbide Traction Inverter

    Get PDF
    This project was initiated with the goal of demonstrating a 3-phase silicon carbide based 150-kW 25 kW/L DC-AC power conversion unit capable of operation with coolant temperatures up to 90°C. The project goals were met and exceeded by first analyzing the established inverter topologies to find which one would yield the highest power density while still meeting electrical performance needs in the 150-kW range. Following topology selection, the smallest silicon carbide power module that met the electrical requirements of the system was found through experimental testing and simulation. After a power module selection was finalized, a DC link capacitor bank was designed by calculating the electrical requirements of the system and choosing the capacitor available that added the least volume to the overall system while still meeting the system’s electrical requirements. PCB-based bussing was designed around the power modules and capacitors in SolidWorks and then electrically optimized through simulations in Ansys. A custom DSP-based controller built around the Texas Instruments 28379D control card was designed and created for the control basis of the power converter. The complete system was constructed and tested at low power with great success, demonstrating the ability to operate at the desired full power of 150 kW, while achieving an overall volume of 1.35 L
    corecore