1,482 research outputs found

    Analysis of Airport Security Screening Checkpoints using Queuing Networks and Discrete Event Simulation: A Theoretical and Empirical Approach

    Get PDF
    This study utilized discrete event simulation (DES) and queuing networks to investigate the effects of baggage volume and alarm rate at the Security Screening Checkpoint (SSCP) of a small origin and destination airport. A Jackson queuing network was considered for a theoretical assessment to SSCP performance. A DES model using Arena version 12 was utilized for an empirical approach. Data was collected from both literature and by manual collection methods. Manual data was collected during the peak operating time of 6am-7am local time at the airport being modeled. The simulation model was verified and validated qualitatively and quantitatively by statistical testing before experimentation. After validation, a sensitivity analysis was performed on baggage volume of passengers (PAX) and the alarm rate of baggage screening devices, where SSCP throughput and PAX cycle time were the dependent measures. The theoretical queuing network approach proved an accurate method of predicting cycle time, but only under limited steady-state conditions. The empirical model and sensitivity analysis showed that SSCP performance is highly sensitive to alarm rate in both throughput and cycle time. Furthermore, empirical modeling and sensitivity analysis showed that SSCP performance was moderately sensitive to alarm rate, and completely resilient to the effects of baggage volume. Practical implications and future directions were also discussed at the conclusion of the study

    Aeronautical Engineering: A special bibliography with indexes, supplement 74

    Get PDF
    This special bibliography lists 295 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1976

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 153)

    Get PDF
    This bibliography lists 175 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1976

    A multi-objective sequential stochastic assignment problem for Ebola entry screening

    Get PDF
    The 2014 Ebola outbreak in West Africa prompted a need to assess how deplaning passengers from West Africa should be managed. A 21-day quarantine requirement for deplaning passengers, based on their risk factors, was implemented at five international airports in the United States in late 2014. This thesis formulates the multi-objective sequential stochastic assignment problem (MOSSAP) to improve the process for managing such quarantine assignments. In MOSSAP, each passenger is assessed with a two-dimensional risk vector, revealed upon entering the United States, which is used to make the quarantine assignment. The objective is to maximize the expected number of passengers assigned to the correct level of monitoring (quarantine, self-monitoring), subject to quarantine capacity constraint. The weighted sum method is used to generate Pareto optimal policies for MOSSAP. Statistics available from Ebola entry screening and related public health sources are used to illustrate how such a policy would operate in practice

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    Microwave imaging for security applications

    Get PDF
    Microwave imaging technologies have been widely researched in the biomedical field where they rely on the imaging of dielectric properties of tissues. Healthy and malignant tissue have different dielectric properties in the microwave frequency region, therefore, the dielectric properties of a human body’s tissues are generally different from other contraband materials. Consequently, dielectric data analysis techniques using microwave signals can be used to distinguish between different types of materials that could be hidden in the human body, such as explosives or drugs. Other concerns raised about these particular imaging systems were how to build them cost effectively, with less radiation emissions, and to overcome the disadvantages of X-ray imaging systems. The key challenge in security applications using microwave imaging is the image reconstruction methods adopted in order to gain a clear image of illuminated objects inside the human body or underneath clothing. This thesis will discuss in detail how microwave tomography scanning could overcome the challenge of imaging objects concealed in the human body, and prove the concept of imaging inside a human body using image reconstruction algorithms such as Radon transformation image reconstruction. Also, this thesis presents subspace based TR-MUSIC algorithms for point targets and extended targets. The algorithm is based on the collection of the dominant response matrix reflected by targets at the transducers in homogenous backgrounds, and uses the MUSIC function to image it. Lumerical FDTD solution is used to model the transducers and the objects to process its response matrix data in Matlab. Clear images of metal dielectric properties have been clearly detected. Security management understanding in airports is also discussed to use new scanning technologies such as microwave imaging in the future.The main contribution of this reseach is that microwave was proved to be able to image and detect illegal objects embedded or implanted inside human body

    Resource allocation optimization problems in the public sector

    Get PDF
    This dissertation consists of three distinct, although conceptually related, public sector topics: the Transportation Security Agency (TSA), U.S. Customs and Border Patrol (CBP), and the Georgia Trauma Care Network Commission (GTCNC). The topics are unified in their mathematical modeling and mixed-integer programming solution strategies. In Chapter 2, we discuss strategies for solving large-scale integer programs to include column generation and the known heuristic of particle swarm optimization (PSO). In order to solve problems with an exponential number of decision variables, we employ Dantzig-Wolfe decomposition to take advantage of the special subproblem structures encountered in resource allocation problems. In each of the resource allocation problems presented, we concentrate on selecting an optimal portfolio of improvement measures. In most cases, the number of potential portfolios of investment is too large to be expressed explicitly or stored on a computer. We use column generation to effectively solve these problems to optimality, but are hindered by the solution time and large CPU requirement. We explore utilizing multi-swarm particle swarm optimization to solve the decomposition heuristically. We also explore integrating multi-swarm PSO into the column generation framework to solve the pricing problem for entering columns of negative reduced cost. In Chapter 3, we present a TSA problem to allocate security measures across all federally funded airports nationwide. This project establishes a quantitative construct for enterprise risk assessment and optimal resource allocation to achieve the best aviation security. We first analyze and model the various aviation transportation risks and establish their interdependencies. The mixed-integer program determines how best to invest any additional security measures for the best overall risk protection and return on investment. Our analysis involves cascading and inter-dependency modeling of the multi-tier risk taxonomy and overlaying security measurements. The model selects optimal security measure allocations for each airport with the objectives to minimize the probability of false clears, maximize the probability of threat detection, and maximize the risk posture (ability to mitigate risks) in aviation security. The risk assessment and optimal resource allocation construct are generalizable and are applied to the CBP problem. In Chapter 4, we optimize security measure investments to achieve the most cost-effective deterrence and detection capabilities for the CBP. A large-scale resource allocation integer program was successfully modeled that rapidly returns good Pareto optimal results. The model incorporates the utility of each measure, the probability of success, along with multiple objectives. To the best of our knowledge, our work presents the first mathematical model that optimizes security strategies for the CBP and is the first to introduce a utility factor to emphasize deterrence and detection impact. The model accommodates different resources, constraints, and various types of objectives. In Chapter 5, we analyze the emergency trauma network problem first by simulation. The simulation offers a framework of resource allocation for trauma systems and possible ways to evaluate the impact of the investments on the overall performance of the trauma system. The simulation works as an effective proof of concept to demonstrate that improvements to patient well-being can be measured and that alternative solutions can be analyzed. We then explore three different formulations to model the Emergency Trauma Network as a mixed-integer programming model. The first model is a Multi-Region, Multi-Depot, Multi-Trip Vehicle Routing Problem with Time Windows. This is a known expansion of the vehicle routing problem that has been extended to model the Georgia trauma network. We then adapt an Ambulance Routing Problem (ARP) to the previously mentioned VRP. There are no known ARPs of this magnitude/extension of a VRP. One of the primary differences is many ARPs are constructed for disaster scenarios versus day-to-day emergency trauma operations. The new ARP also implements more constraints based on trauma level limitations for patients and hospitals. Lastly, the Resource Allocation ARP is constructed to reflect the investment decisions presented in the simulation.Ph.D

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 99

    Get PDF
    This bibliography lists 292 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1978

    Aeronautical Engineering. A continuing bibliography with indexes, supplement 156

    Get PDF
    This bibliography lists 288 reports, articles and other documents introduced into the NASA scientific and technical information system in December 1982
    • …
    corecore