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Abstract 

Author:  Stephen Louis Dorton 

Title:  Analysis of Airport Security Screening Checkpoints Queuing Networks and 

Discrete Event Simulation: A Theoretical and Empirical Approach 

Institution: Embry-Riddle Aeronautical University 

Year: 2011 

This study utilized discrete event simulation (DES) and queuing networks to investigate 

the effects of baggage volume and alarm rate at the Security Screening Checkpoint (SSCP) of a 

small origin and destination airport. A Jackson queuing network was considered for a theoretical 

assessment to SSCP performance. A DES model using Arena version 12 was utilized for an 

empirical approach. Data was collected from both literature and by manual collection methods. 

Manual data was collected during the peak operating time of 6am - 7am local time at the airport 

being modeled. The simulation model was verified and validated qualitatively and quantitatively 

by statistical testing before experimentation. After validation, a sensitivity analysis was 

performed on baggage volume of passengers (PAX) and the alarm rate of baggage screening 

devices, where SSCP throughput and PAX cycle time were the dependent measures. The 

theoretical queuing network approach proved an accurate method of predicting cycle time, but 

only under limited steady-state conditions. The empirical model and sensitivity analysis showed 

that SSCP performance is highly sensitive to alarm rate in both throughput and cycle time. 

Furthermore, empirical modeling and sensitivity analysis showed that SSCP performance was 

moderately sensitive to alarm rate, and completely resilient to the effects of baggage volume. 

Practical implications and future directions were also discussed at the conclusion of the study.
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Introduction 

Airport Security 

 Airport security is an integral part of national transportation infrastructure and a critical 

aspect of airport operations globally. With over 600 million passengers (PAX) and 700 million 

pieces of baggage being checked annually in the United States, airports and aircraft have become 

a high-level target for terrorism (Yildiz, Abraham, Panetta, & Agaian, 2008). Meanwhile, with a 

growing number of PAX, efficient and accurate security screening measures and practices are at 

a premium to ensure that air transportation operations remain effective and do not incur 

significant delays.  

A brief history of airport security. 

 Transportation security measures have constantly evolved with time and trends in 

activities. The most significant event that has spurned constant change in aviation security is the 

terrorist attacks of September 11, 2001. The attacks of 9-11 have caused security measures in 

America as well as other countries to improve security processes, policies, technology, and 

programming (Frederick-Recascino, Greene, Burns, & Flynn, 2003). For a complete list of 

aviation and security acronyms see Appendix A. 

 Before 9-11 there were already policies and advanced screening technology in place for 

commercial aviation. Explosive Detection Systems (EDS) were being used on selected baggage, 

but not all baggage checked for a flight. Baggage was selected for screening based on a 

computerized profiling system. The Computer-Assisted Passenger Pre-screening System 

(CAPPS) selected passengers and their baggage for more in-depth screening based on a number 

of factors that qualified them as a high risk passenger. After 9-11 congress enacted the Aviation 
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Transportation Security Act (ATSA) in November of 2001, which mandated that 100% of all 

checked baggage be screened by EDS (Hafizogullari, Bender, & Tunasar, 2003). 

 After the enactment of the ATSA in November of 2001, an entire series of laws and 

regulations on transportation security followed that governed airport security into the process 

into its current state. By January of 2002 implementations were made to screen 100% of all 

checked baggage and a list of approved screening methods and equipment was introduced. By 

February of 2002 the Transportation Security Administration (TSA) was made responsible for all 

aviation security functions, and by May of 2002 an implementation plan for deploying EDS at all 

airports was submitted to congress for approval. November of 2002 was the deadline for the 

deployment of Federal Screening Personnel (FSP) and the checking of all airports for installation 

of approved baggage screening methods. December 31, 2002 was the final deadline for 

deployment of EDS at all airports in the United States (Leone, 2002). The TSA currently scans 

100% of checked baggage and carry-on baggage, as well as utilizes technologies described in 

further sections. 

Post 9/11 attitudes of security. 

 While the purpose of airport security and passenger screening is to ultimately ensure the 

safety and well being of PAX, there have been some negative effects on perception of security. 

Security measures have become all too familiar, where the trade-off for increased security 

measures comes at the price of inconvenience and timely delays (Pendergraft, Robertson, & 

Shrader, 2004). 

 A study by Frederick-Recascino et al. (2003) assessed the attitudes and behaviors of 

American and British PAX regarding safety and security issues in post 9-11 air transportation. 

American and worldwide security efforts have increased greatly to provide commendable 
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security; however, some view these policies as tedious, unnecessary, or as a violation of civil 

liberties. Of their top five concerns, the third and fourth highest concerns by American 

participants were the competence of security screeners at security screening checkpoints SSCPs 

and the ability of airlines to screen for explosive devices, respectively. The British participants 

were more accepting of security procedures that may seem personally invasive than American 

participants. Finally, the study showed that in the American sample, participants were willing to 

wait an extra 28 minutes for enhanced security measures. 

Security Screening Checkpoints (SSCPs). 

 Operations and processes involved with baggage screening at SSCPs are an integral 

component of airport security. The purpose of SSCPs is to screen PAX and their baggage to 

intercept prohibited items that may be a hazard to the safety of persons involved in aviation 

transportation. On a larger scale, the SSCP is one of 20 layers of security employed by the TSA 

to deter criminal activity. While each airport is different in size, throughput, and layout, all 

SSCPs must follow TSA established requirements unless written approval for deviation has been 

granted (Transportation Security Administration, 2009).  

While no two airports are the same, the requirements for SSCP equipage are standardized 

and available in the Checkpoint Design Guide (CDG). Each airport must have a specific amount 

of each component of an SSCP based on the number of lanes and module sets including large 

equipment such as Walk Through Metal Detectors (WTMD) and Explosive Trace Detection 

(ETD) cabinets down to smaller items such as benches and anti-fatigue mats. Figure 1 shows a 

complete breakdown of SSCP equipage requirements with accompanying visual depictions. 
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Airport Security Screening Process. 

The SSCP considered in this study is comprised of two lanes and multiple components, 

each serving a different purpose. The first component of the SSCP is the Travel Document 

Checker (TDC). The TDC is a designated Transportation Security Officer (TSO) that verifies 

identification and boarding documentation of PAX before allowing them through the SSCP 

(Transportation Security Administration, 2009). The next process for PAX is to divest their 

personal belongings into bins at the leading edge of the divesting table. Once PAX have taken 

off all appropriate personal belongings they place their bin(s) and carry-on baggage onto the feed 

belt of the Threat Image Protection Ready X-ray (TRX). The baggage and bins pass through the 

TRX while a TSO observes a monitor and looks for contraband and prohibited items in the 

baggage (Transportation Security Administration, 2009). If there is an alarm in the TRX, the 

suspected baggage is be removed from that process by a TSO and brought to an ETD table for 

more rigorous searching while the person proceeds through the WTMD. 

Figure 1. SSCP equipage requirements. Adapted from “Checkpoint Design Guide” by 
Transportation Security Administration, 2009. 
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PAX then funnel into a single WTMD, which is used to detect metallic weapons and/or 

metallic contraband. After passing through the WTMD PAX proceed to their respective vesting 

table and wait for their baggage to be searched before exiting the SSCP. If there is an alarm with 

the WTMD, the person is searched with a hand operated metal detector to attempt to localize 

what object is setting the alarm off. After the wand search the person removes the suspect item 

and walk back then re-enter the WTMD while subsequent PAX queue at the WTMD. If the 

alarm is resolved they proceed to their vesting table and exit the SSCP. Only PAX who have 

pacemakers, wheelchairs, or physical limitations would bypass the WTMD and undergo a 

manual screening before vesting and exiting the SSCP (Transportation Security Administration, 

2009). 

The SSCP being modeled is represented by the depiction in Figure 2, only the ETD and 

manual screening areas are located in different positions with regards to the two TRX lanes. 

While Figure 2 represents the entirety of the system being investigated, the scope of this study 

Figure 2. Approximate SSCP layout at modeled airport with divesting tables, TRXs in blue, 
vesting tables, WTMD center left, manual screening area center, and ETD top right. Adapted 
from “Checkpoint Design Guide,” by Transportation Security Administration, 2009. 
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focuses on the baggage screening operations specifically because they have been identified 

throughout the literature as being the most crucial aspect of SSCP performance. 

Queuing Theory and Queuing Networks 

 One method of approximating cycle time or average waiting time in systems is by the 

utilization of queuing theory and queuing networks. Queuing network theory has been a staple of 

operations research since Jackson (1963) identified the need for stochastic modeling of queuing 

in multipurpose production systems and proceeded to establish joint probability distribution and 

create the M/M/1 queue. Blanchard and Fabrycky (2006) define queuing systems as a Monte 

Carlo analysis to understand entity arrivals and service of entities based on probability rather 

than an absolute rate. There are multiple applications of queuing theory from manufacturing, 

maintenance, toll gates, doctor offices, restaurants, and movie theatres. Queuing theory allows 

for an analysis of a system based on a probabilistic model, rather than constant arrival and 

service times. Queuing networks are compilations of different service processes that are 

stochastic, or dependent on other processes and times in the work flow (Shanthikumar, Ding, & 

Zhang, 2007). 

Basic Queuing Notation. 

In any generic queuing system such as an M/M/1, the arrival rate is typically denoted as 

λ, while service rate for a process is denoted as µ. The arrival mechanism (λ) depends on the 

nature of the population of entities that create the need for services by the system. Arrival rates 

can also be constant, probabilistic, or based on a schedule depending on the nature of the system. 

The service mechanism of the system (µ) is a discrete entity because items are processed on a 

unit to unit basis. Cycle time is the amount of time an entity spends in the queuing network, and 

is denoted as CT. The amount of time spent waiting at a specific service mechanism for service 
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is commonly denoted as tq, and s is the actual service time. CT is a sum of all tq and s in a 

queuing network (Blanchard & Fabrycky, 2006; Shanthikumar et al., 2007). A generic queuing 

model is shown in Figure 3, with λ and µ illustrated.  

 

Common Queuing Models. 

 Shanthikumar et al. (2007) described using queuing networks in place of simulation for a 

relatively simple scenario of a manufacturing process. If certain assumptions of a model are 

made then an application of queuing theory can be a simple alternative to a more labor intensive 

simulation study. The most basic queuing model is the M/M/1 model, developed by Jackson 

(1963). The M is indicative of a Markov Poisson arrival and Markov Exponential service time, 

where the “one” indicates a single server system which relies on the assumption that arrival and 

service processes are independent of each other. The cycle time (CT) an entity spends in an 

M/M/1 system can be calculated using Equation 1 and Equation 2 where s is the average service 

time (s = 1/µ), λ is the arrival rate, 𝑡𝑞 is the average waiting time for service, and ρ denotes 

server utilization. 

𝐶𝑇 = 𝑠 + 𝑡𝑞 = 𝑠 +  
𝜌

1 − 𝜌
𝑠 (1) 

Figure 3. A generic single server queuing network. 
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𝜌 = 𝜆𝑠 =
𝜆
𝜇

 
(2) 

 A basic extension of the M/M/1 model is the M/M/c model. The M/M/c is a server model 

that represents multiple M/M/1 servers in parallel with each other, where c is the number of 

service channels where each can service one entity at a time. An arriving entity will go to the 

first available service channel. If there are no available service channels a single queue will be 

formed whereupon the first entity in queue will be released to the first service channel available 

(Blanchard & Fabrycky, 2006). Hopp and Spearman (2001) utilized the M/M/1 equation along 

with principles of universal relations to produce the M/M/c model shown in Equation 3, where c 

is the number of parallel servers with identical mean effective service times. 

𝐶𝑇 =
𝜌�2(𝑐+1)−1

𝑐(1 − 𝜌)
µ 

(3) 

If Markov assumptions are violated, a closer approximation can be made by queuing 

models with general distributions. Shanthikumar et al. (2007) also utilized the M/G/1 model, 

where the G signifies a service time with a general distribution. The M/G/1 cycle time is shown 

in Equation 4, where the 𝑐𝑠2 is the squared coefficient of variation of the service times. Also an 

approximation has been proposed for a more generalized model referred to as the G/G/1 queue, 

where 𝑐𝑎2 squared coefficient of variation for arrival times, as shown in Equation 5. 

𝐶𝑇 =
𝜌(1 + 𝑐𝑠2)
2(1 − 𝜌)

𝑠 
(4) 

𝐶𝑇 =
𝜌(𝑐𝑎2 + 𝑐𝑠2)
2(1 − 𝜌)

𝑠 
(5) 

These models are good for looking at the relationships of different aspects of a queuing 

system, yet are not accurate enough to model even a moderately intricate manufacturing system 
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because of the amount of assumptions made in the mathematical model. Based on the G/G/1 

approximation model, a G/G/m model has been proposed in Shanthikumar et al. (2007) that 

allows for the estimation of cycle time for m number of identical machines in a queuing network. 

Equation 6 shows the G/G/m model for CT, which most notably shows that the higher the 

variance of waiting time or service time the higher the average cycle time. Also, it should be 

noted that for G/G/m systems ρ equals λ/cµ. 

𝐶𝑇 = �
𝑐𝑎2 + 𝑐𝑠2

2
��

𝜌��2(𝑚+1)−1�

1 − 𝜌
�𝑠 (6) 

Mathematical models using queuing networks are useful for examining system 

performance without investing time and money into a simulation study (Kelton et al, 2007). 

Queuing theory has been established for hundreds of years and queuing networks have been 

successfully used across a wide variety of industrial applications since the 1960s (Blanchard & 

Fabrycky, 2006; Jackson, 1963). Even if a mathematical model cannot empirically solve CT or 

throughput of a system, it can be used to examine relationships between multiple facets of a 

system. When a system lacks significant data to power an empirical simulation with confidence a 

mathematical model can offer valuable insight to system performance and supplement a DES 

approach (Leone & Liu, 2010; Shanthikumar et al., 2007). 

The major limiting factor to the use of queuing networks is that queuing models rely on 

assumptions that are not typically justified in more complex systems. Shanthikumar et al. (2007) 

were dissuaded from using queuing networks for semiconductor manufacturing because of the 

balking and reworking of chips, despite assessing system that has fairly consistent arrival and 

service times. Leone and Liu (2010) built a queuing network for a SSCP system with one TRX 

and one WTMD, assuming each process as an M/M/1. DES was instead used because these 
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processes violate the assumption of being independent of each other and the assumption of 

Markov distributions for all λ and µ. As stated by Blanchard & Fabrycky (2006), the arrival 

mechanism of a system is determined by the nature of the system itself. In the case of an airport 

the scheduled departures would make a Poisson arrival schedule very unlikely. 

Discrete Event Simulation 

 Simulation is a general collection of theories, methods, and applications to replicate 

behavior of real systems for assessment or experimentation. Simulation can be done by hand, by 

spreadsheet, or even by advanced computing programs. While simulation has existed in many 

forms for quite some time, advancement in technology is making it more powerful and popular 

than ever. Simulation involves modeling a system, oftentimes to measure performance, improve 

operation, or design the system if it does not yet exist (Kelton, Sadowski, & Sturrock, 2007). 

Blanchard and Fabrycky (2006) characterize simulation as a form of indirect experimentation, 

where systems analysis is performed without changing the operational system itself. Simulation 

in general is an effective tool that allows for control of extraneous variables while allowing the 

researcher to generalize their results (Bordens & Abbott, 2008). 

 There are multiple types of simulations, which can be identified by three key 

characteristics. First, simulations can be static or dynamic in nature. Static models are not time 

sensitive, where events have the same validity if they are done a second apart or a year apart. 

Dynamic simulations are more common where events are time sensitive such as a manufacturing 

process or a SSCP. Secondly, models can be defined as continuous or discrete. Continuous 

simulations represent systems with a continuous change such as pressure levels or fluid levels, 

whereas discrete event simulations model systems where events occur at specific points in time. 

Discrete simulations are effective in modeling parts or people arriving at specific times and 
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undergoing processes at specific times. The operations at a SSCP are discrete and would be 

modeled accurately by DES. Finally, simulations can be deterministic or stochastic. 

Deterministic simulations have no random input, meaning that events always happen at exactly 

the same time such as fixed appointments. Stochastic simulations are simulations where at least 

some of the events occur at random times, such as PAX arrival and baggage screening times in 

the case of a SSCP simulation (Kelton et al., 2007).  

 Based on the definitions of simulation provided by Kelton et al. (2007), the operations of 

an airport SSCP are best analyzed with DES. The system is dynamic in nature, where events 

happen on a timeline and one event can and often will affect another. In a SSCP events occur at 

discrete times from entering the system until exiting the system, calling for the use of DES. 

Finally, the events in a SSCP are heavily affected by the human element, causing them to be 

stochastic or random in nature. Because of these system descriptions, a DES approach is the 

most fitting way to simulate the SSCP system. Crook (1998) advocates the use of DES in airport 

operations research because of its ability to analyze complex logistical problems in various parts 

of the system lifecycle, from feasibility studies to in-service studies and evaluation. 

 Advantages and limitations of DES. 

 There are several advantages of DES in simulating systems. While DES originated as a 

method to assess manufacturing systems, it now has nearly limitless applications in non-

manufacturing systems such as healthcare and airport operations (Tavakoli, Mousavi, & 

Komashie, 2008). Additionally, once a system is modeled and validated DES allows researchers 

and decision makers to examine nearly any aspect of the system from staffing to process 

management and resource availability (Werker, Saure, French, & Schechter, 2009). An 

advantage of DES over a pure mathematical queuing model is that DES accounts for the 
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randomness that the human element adds to a system. The human element can and usually does 

significantly alter process times and advertized throughput rates of machinery (Kelton et al., 

2007; Leone, 2002). Finally, DES allows for any empirical or theoretical probability distribution 

to be applied to service times or arrivals, as well as allow for scheduling and batch arrivals in the 

system rather than rely solely on empirical distributions.DES serves as an invaluable tool when it 

is too costly to change a process or system design. The ability to closely mimic a systems 

performance and change different characteristics provides a non-invasive and cost efficient 

method to perform system analysis (Kelton et al., 2007; Law, 2006). These advantages make 

DES a desirable method to assess a complex operational system such as a SSCP. 

 With any method, technique, or tool there are disadvantages or limitations. This also 

applies to DES. Tavakoli et al. (2008) identified two limitations of applying a DES approach to 

systems analysis. One limitation of DES is that it is typically a timely process. From creation of a 

problem statement and designing a model through model validation and eventual analysis can 

take a large amount of time. If there is a deadline for requirement or equipage implementation 

and the system is relatively simple, a mathematical model may be a better solution. Also, DES 

models are inaccurate for predictions. DES can be used to assess future “what-if” scenarios, but 

only based on data collected in the past. If a system has seasonal performance or if entity arrivals 

double the next year, new data would have to be acquired to make the simulation valid. The most 

significant limitation to DES is that a simulation or model is not useful unless the model has 

been verified and validated by a number of qualitative and quantitative methods (Law, 2006). 

The less adequate the validation of a model the less generality a simulation has. 
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DES in airport operations. 

Acknowledging the advantages of a DES approach to analyzing airport operations, 

multiple researchers have used DES in the realm of aviation transportation and security. Most 

studies where DES was used on airport operations either specifically investigate the check in 

process, the checked baggage screening process, or the entire airport departure experience, only a 

handful of studies have been performed on SSCPs. Arena simulation software which was used in 

this study was commonly used throughout the literature for a DES approach. 

Brown and Madhavan (2010) performed a study on identifying choke points in airport 

departure operations. Arena simulation software was used to simulate passenger arrival, check in 

modality (self or clerk) at each airline, and security times in order to identify bottlenecks that 

cause the need for early arrival times. This model looked at SSCP as one process, where only the 

overall throughput was used as aggregate. The check in process was identified as the largest 

delay, and recommendations were made that the number of self check in kiosks should be 

increased.  

Guizzi, Murino, and Romano (2009) performed a study using DES to predict delays and 

make management decisions to increase PAX flow at a large international Italian airport. A 

discrete stochastic model was used with Arena simulation software to model the process from 

PAX arrival at the airport, check in, SSCP, to the eventual boarding of the aircraft. The number 

of SSCPs available was adjusted and simulated to find the optimum level of performance and 

cost via OptQuest software. While the simulation offered valuable insight, it is typically not 

feasible to construct extra SSCPs at an airport. 

A study by Appelt, Batta, Lin, and Drury (2007) used DES and Arena simulation 

software to simulate and analyze PAX cycle time of the airport check in process. The check in 
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times of PAX was analyzed by method of check-in (online or in person) and the number of bags 

the PAX checked in. The use of DES rather than a mathematical model allowed for the travelers 

experience levels with check-in kiosks to be adequately integrated into the model. It was found 

that because business travelers (with carry-on bags only) used the kiosks, so other PAX with 

large luggage were bottlenecked into the few staffed check in counters. A recommendation was 

made to increase the staffing of check in counters to reduce check in cycle time. 

A proceeding by Wilson, Roe, and So (2006) showcased a new DES software package 

called Security Checkpoint Optimizer (SCO). The SCO program utilized the mathematical and 

logical concepts of DES, while adding a graphical user interface to allow TSA researchers to 

drag and drop equipment into a model. The integration of drag and drop and drawing tools into a 

DES engine allows for analysis of SSCP performance as well as assessing the feasibility of 

adding equipment to a finite area. 

A study by Hafizogullari et al. (2003) utilized DES to evaluate different SSCP 

configurations to satisfy the 95-10 requirement, or the performance metric that 95% of all 

passengers during peak operations must wait no longer than 10 minutes for baggage screening. 

Scenarios were run with the use of ETDs or Explosive Detection Systems (EDS) and different 

levels of staffing. While throughput for the EDS was advertized as being greater, the high False 

Alarm Rate (FAR) caused the ETD machine to be a superior choice during peak operation. 

Policies on baggage cart utilization were analyzed and it was determined that waiting for the 

baggage carts to fill before taking them to the airplane caused unacceptably long process times. 

A study by Pendergraft et al. (2004) used DES to understand operational dynamics of 

both checked baggage screening and the SSCP at a major U.S. airport during peak operating 

hours. PAX arrivals were generated randomly based on historical data, and random probability 
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functions were used to trigger alarms in the WTMD. Alarm resolution was not explicitly 

modeled in the simulation, yet very accurate results were still attainable. This study was received 

so well that it resulted in the promulgation of the 85-10 methodology where 85% of passengers 

wait 10 minutes or less for screening. Likewise, requirements for staffing, equipage, and 

compliance levels were promulgated from this study. 

A study by Wetter, Lipphardt, and Hofer (2010) used DES to assess throughput of SSCPs 

by examining internal and external factors. Internal factors were factors that were influenced by 

security personnel such as training and teamwork, while external factors were factors that could 

not be influenced by security personnel such as passenger arrival and baggage variability. Aside 

from quantitative data such as throughput and cycle time, subjective data from TSOs was 

collected to evaluate all aspects of the SSCP process. It was demonstrated that there was a 

significant effect on throughput by altering the number of manual baggage screenings performed. 

Higher WTMD alarms did not decrease throughput, but did increase the TSOs subjective 

workload ratings. Wetter et al. (2010) speculated that if screening technology increased to where 

passengers could divest less, then throughput may be seriously increased because of the 

shortened divesting and vesting times. 

Other applications of DES. 

DES has been used to assess and analyze several aspects of airport operations throughout 

the literature; however, it has many other applications where it has also proven useful. For 

example, a study by Giachetti, E. A. Centeno, M. A. Centeno, and Sundaram (2005) used DES to 

assess the patient scheduling at an outpatient dermatology clinic. After analysis and 

experimentation scheduling policies were identified that decreased the patient cycle time by 50% 
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and significantly reduce the number of no-show patients. Furthermore, the variability of 

physician utilization was considerably stabilized. 

Tavakoli et al. (2008) performed a study where DES was used in conjunction with real 

time software to monitor and analyze a large manufacturing system and a health care operation. 

By coupling the power of DES with Labview inter-communication module a constant adjustment 

of data was achieved to provide accurate simulation of the system. Further applications of this 

study involve using real time data to track trends in the system being modeled. This technology 

allowed for accurate analysis of system performance to reduce costs and idle time. 

Werker et al. (2009) used DES to make adjustments to a pre-existing system that was 

already considered efficient. Arena simulation software and historical data were used to assess 

the radiotherapy planning process primarily with regards to staffing availability and skill level of 

oncologists. A sensitivity analysis showed that by standardizing oncologist delays the 

radiotherapy planning process was reduced from an average of seven days to two. There is 

extensive literature on applications of DES in a wide variety of domains. 

Conducting a Successful Simulation Study 

 There are many considerations when performing a successful simulation study. Kelton et 

al. (2007) defines a successful simulation study as one that not only has a good simulation 

model, but one that answers the questions of the researcher or decision makers, and does so using 

understandable metrics. While building an impressive simulation model can be seen at face value 

to be indicative of a successful study, a model should only be as detailed as the information 

provided (Kelton et al., 2007; Law, 2006). In fact, a successful or accurate model is just one step 

of creating a successful simulation study. 
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Creating a successful simulation study is an iterative process that involves revisiting 

multiple aspects of the study to ensure verification and validation of the study. Law (2006) 

proposes a seven step approach to creating a successful simulation, which is also used by Kelton 

et al. (2007). The model used by Law (2006) is shown in Figure 4, which has been adapted for 

Figure 4. Seven-Step approach for conducting a successful simulation study. Adapted from 
“How to build valid and credible simulation models,” by Law, 2006.  
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use as the method for completion of this study. The adaptation for this study is that the model 

and assumptions are made before initial data collection. The approach starts with formulating the 

problem that will be investigated by the study. The problem formulation involves the identifying 

the overall objective of the study as well as establishing the scope of the study, and specific 

questions the study aims to answer (Kelton et al., 2007; Law 2006). 

Once the problem has been adequately formulated, data collection and construction of 

assumptions are the next step. Data collection consists of collecting information on the system 

layout and operations performed, as well as process times and probability distributions. During 

collection of data assumptions that need to be made in the model will be documented and later 

validated before experimentation begins. The level of detail of the model will depend on a 

number of factors, including but not limited to: the scope of the model, data availability, time 

and money constraints, and input from SMEs (Kelton et al., 2007; Law, 2006). 

After data collection and construction of the assumptions document, the assumptions 

document was validated using a technique sometimes referred to as conceptual model validation 

(Law, 2006). The assumptions were validated by conferring with SMEs and literature on similar 

simulation studies of airport security operations. If assumptions are not validated then further 

data collection and consultation of SMEs will be performed before proceeding to the next step of 

the simulation study approach. Once the assumptions were validated the model was programmed 

in simulation software, specifically Arena version 12. Upon the completion of the simulation 

model, it must undergo verification and validation before experimentation begins (Kelton et al., 

2007; Law, 2006). 

Verification is a step of building simulation models that can be best described as 

debugging, where the model is checked to make sure it works as intended. Models are verified 
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by running excessively small or large batches of entities (in this case PAX) through a system in 

an attempt to cause the system to create an error in any of its processes or decision algorithms. 

After running a model multiple times under different parameters a model is considered verified 

and is ready for validation (Kelton et al., 2007). Validation of a model is the process where the 

model is tested to see if it represents the system it is designed to simulate. There are generally 

two types of validation, face validation and quantitative validation. Face validity occurs when 

SMEs and simulation analysts agree that the model represents the actual system. Results 

validation or quantitative validation is achieved when the simulation is run and the performance 

metrics are comparable to that of data collected from the actual system or similar systems 

(Kelton et al., 2007; Law, 2006). 

The final two steps of the simulation modeling approach are to design, conduct, and 

analyze experiments and to document and present the results.  Experimentation is performed by 

adjusting variables of interest in the system and monitoring changes in dependent metrics 

identified earlier in the simulation process by systems analysts and SMEs. After analysis of the 

results, the necessity for further experimentation is identified and documented (Law, 2006). 

Summary 

 From the review of the literature it can be seen that there have been multiple studies on 

airport operations as a whole, but very few on SSCPs. A variety of approaches have been used 

from purely theoretical methods with queuing networks to purely empirical methods using DES, 

along with few utilizing both approaches. While most studies focus on internal factors of SSCP 

operations such as staffing and equipage, this study aims to investigate the effects of the external 

factors of baggage volume and alarm rate on SSCP throughput (TH) and PAX cycle time (CT). 

A mixed methods approach will be applied, where both theoretical and empirical methods will 
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be utilized to make a more comprehensive approach at understanding SSCP operations through 

the use of Jackson queuing networks and DES with Arena simulation software. The methods will 

be discussed in greater detail in the following sections. 

Method 

Problem Formulation 

The first step of a successful simulation study is problem formulation, or establishing the 

need for the study (Law, 2006). Yildiz et al. (2008) cites airport screening operations as the 

probable cause for the ceaselessly growing delays in airport operations. It is crucial for 

operational efficiency as well as the financial health of the airport and industry to investigate the 

optimization of security screening because increased delays are directly linked to lowered 

customer satisfaction (Appelt et al., 2007; Guizzi et al., 2009; Pendergraft et al., 2004; Yildiz et 

al., 2008).  

Wetter et al. (2010) breaks down SSCP issues into internal and external factors, where 

external factors are things that cannot be controlled by security personnel such as weather, 

number of bags each person carries, and number of suspect bags to be inspected; while internal 

factors are things that can be controlled such as staffing, task allocation, and training. In the 

study by Wetter et al. (2010), external factors had a large effect on throughput, which proves 

extremely volatile to SSCP efficiency because oftentimes external factors are regarded as a given 

fact and not fully considered. This study aims to investigate the problem of external factors such 

as baggage volume and the alarm rate of suspect bags that require manual inspection. By 

investigating the sensitivity effects of external factors on SSCP performance, rather than 

disregarding them as uncontrollable, will allow for the adjustment of internal factors to cope 
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successfully and ensure favorable system performance as well as understand what scenarios will 

cause SSCP requirements to not be met. 

Assumptions Documentation 

 Kelton et al. (2007) and Law (2006) state that a model should only be as detailed as it 

needs to be to assess the variable(s) of interest and accurately reflect the system with the data 

available. The following assumptions were made to the simulation model to ensure simplicity, 

while still accurately reflecting the phenomena of interest: 

• Staffing factors were not investigated in the model. The scope of this study is on external 

factors as defined by Wetter et al. (2010) and does not investigate staffing issues. 

Therefore, a fixed staffing schedule is assumed for the SSCP being modeled. Staffing 

requirements for equipage are already designated in the CDG (Transportation Security 

Administration, 2009). 

• The Travel Document Checker (TDC) was ignored from the model. No studies to the 

author’s knowledge have explicitly modeled the TDC in DES or queuing networks 

because the primary performance affecting process is baggage screening. 

• WTMD operations were ignored from the model; it is believed they did not impact SSCP 

performance. From observation of the system and corroboration with SMEs, the superior 

majority of PAX take less time to pass the WTMD or wand searching than for their 

baggage to be screened. The only PAX who bypass the WTMD and receive longer 

screening are persons too large to fit through, persons in wheel chairs, and persons with 

pacemakers or prosthetics (Transportation Security Administration, 2009) which is a 

negligible occurrence at the system being modeled according to SMEs.  
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• Travel time between arrival and baggage screening and between baggage screening and 

secondary screening was ignored from the model. The diminutive size of the SSCP being 

modeled has negligible time of travel between services and was therefore not included. 

• Personal affects bins were assumed to require the same process time distribution for TRX 

screening as baggage, which is used by other researchers as well (Leone & Liu, 2010). 

• Only the peak operational time of 6am to 7am was simulated. Multiple studies on airport 

operations only simulated the peak hours because it is assumed that the SSCP can handle 

less than maximal traffic (Appelt et al., 2007; Guizzi et al., 2009; Leone, 2002). 

• A 10 minute warm-up period, determined by visual inspection of the Work in progress 

(WIP) statistics of the system, was utilized to allow the SSCP to achieve steady state. 

• All queues and processes were modeled as first-in first-out (FIFO) rule. 

• The TRIA[1,4,20]  seconds distribution that was used for baggage screening times is an 

approximation of 98% of recorded times. Leone and Liu (2010) eliminated the other 

cases from the data because their frequency was negligible. 

Mathematical Modeling 

To assess throughput of an SSCP, mathematical modeling was used alongside DES for a 

more comprehensive understanding of the system. A queuing network was constructed based off 

a combination of M/G/1 servers (an M/G/2) and an M/M/1 server. The M/M/1 model created by 

Jackson (1963) was used by Leone and Liu (2010) in tandem with alarm/rejection rates to create 

a single line SSCP queuing model. The approach of an M/G/2 with an M/M/1 server based on 

probability function β provides a more accurate simulation of the double line system without 

using DES, by allowing for process times to follow a general distribution without central 

tendency. This is crucial because although service times are exponential, a series of multiple 
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service times no longer behave exponentially, but rather that of an Erlang-K distribution which is 

the sum of 𝑘 curves. Because there is only one server involved in manual baggage screening, an 

M/M/1 server is a sufficient fit, rather than utilizing an M/G/1 or other model. 

For the mathematical model of the SSCP, the system as a whole will be assumed to be in 

steady state where 𝜆 < µ, despite instantaneous fluctuations of arrivals. The manual baggage 

screening service mechanism will be modeled as an M/M/1 process, and the TRX1 and TRX2 

service mechanisms will be modeled as an M/G/2. The alarm rate, or probability of a bag being 

cleared from screening is modeled as β, and the probability of the bag needing manual screening 

is modeled as 1 − 𝛽.  For mathematical modeling of the SSCP systems, a Jackson open network 

is considered. The mathematical model is illustrated in Figure 5. 

 

The following notation in the model denotes:  

𝐽 : the number service node 𝐽 = 2 for the SSCP case;  

𝜆𝑖: the arrival rate for each service node;  

𝑝0𝑖 probability of each arrival independently routed to node 𝑖; 𝑝0𝑖 ≥ 0;  

Figure 5. Mathematical Model of SSCP using Jackson open queuing network. 
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𝑝𝑖𝑗: probability of each passenger route from node 𝑖 to node 𝑗;  

𝑝𝑗0: probability of each passenger leaving the system from node 𝑗;  

It can be shown that the following equation holds 

𝑝𝑖0 = 1 −� 𝑝𝑖𝑗
𝐽

𝑗=1
 (7) 

In tandem with the following traffic equation  

𝜆𝑖 = 𝜆𝑝0𝑖 +  � 𝜆𝑗𝑝𝑗𝑖
𝐽

𝑗=1
, 𝑖 = 1, 2, … , 𝐽 (8) 

Let 𝜇𝑖 indicate the exponential service rate for each of the service node, 𝑖 = 1, 2, … , 𝐽. 

Z: the number of bags that each passenger carries, which is a random number that follows a 

discrete distribution, with 𝑃(𝑍 = 𝑘), 𝑘 = 1, 2, … , 𝐾, , K is the upper bound for this number, and 

∑ 𝑃(𝑍 = 𝑘) = 1𝐾
𝑘=1 . It is assumed that because bags are proprietary, the same person has to wait 

until all of their bags are finished, thus the service time for each passenger can be considered as 

the sum of a series of k independent Exponential distribution. It is known that the sum of k 

independent Exponential random variables forms an Erlang distribution at the kth order, with the 

probability distribution function  

𝑓(𝑥; 𝑘, 𝜇) =
𝜇𝑗𝑥𝑘−1𝑒−𝜇𝑥

(𝑘 − 1)!
 (9) 

It is easy to derive the mean and variance for Erlang-k distribution as 

𝐸(𝑥) =
𝑘
𝜇

 (10) 

𝑉𝑎𝑟(𝑥) =
𝑘
𝜇2

 (11) 

According to Jackson (1963), the joint distribution of the security screening network is 
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𝑃(𝑌1 = 𝑛1, 𝑌2 = 𝑛2) = �𝑃(𝑌𝑖 = 𝑛𝑖)
2

𝑖=1

   (12) 

Where n denotes the number of PAX in the ith node; (i = 1, 2). The mean number in the SSCP 

system can be thought as the sum of the two nodes together 

𝑁 = 𝑛1 + 𝑛2 (13) 

Using standard M/G/2 and M/M/1 queue it can be derived 

𝑛1 = 𝜆1𝑊1 (14) 

𝑊1 = 𝑊𝑄 + 𝐸[𝑆] (15) 

𝑊𝑞 ≈
𝜆1

2𝐸[𝑆2](𝐸[𝑆])

(2 − 𝜆1𝐸[𝑆])2 �∑ (𝜆1𝐸[𝑆])𝑛
𝑛! + (𝜆1𝐸[𝑆])2

(2 − 1)! (2 − 𝜆1𝐸[𝑆])
1
𝑛=0 �

 (16) 

𝐸[𝑆] =
𝑘
𝜇1

 (17) 

𝐸[𝑆2] = 𝑉𝑎𝑟(𝑆) + (𝐸[𝑆])2 =
𝑘
𝜇12

+
𝑘2

𝜇12
 (18) 

Where 𝑘 is the average baggage number for each passenger (Ross, 1997). 

𝑛2 =
𝜌2

1 − 𝜌2
 (19) 

𝜌2 =
𝜆2
𝜇2

 (20) 

According to Little’s law, the mean time for passenger to pass through the SSCP is 

𝑊 =
𝑁
𝜆

=
𝑛1 + 𝑛2

𝜆
 (21) 

The mathematical model is limited in multiple respects such as the inability to account 

for the non-stationary arrivals to the SSCP and non-exponential service times. Also, any results 
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produced by the production of a queuing network are approximations of cycle time, rather than 

empirical results derived from DES (Shanthikumar et al., 2007). 

Data Collection 

Four types of data were collected to power the empirical and theoretical modes: Arrival 

rates, baggage volume, service rates, and alarm rates. Arrival times and number of bags each 

person carries on them were recorded for a sample of seven days during the peak time of 6am to 

7am at the SSCP being modeled. The sample size of seven days was used to provide a sample of 

over 1000 PAX during peak operating times. Data was collected by the use of the data collection 

form in Appendix B, where the number of bags each person carried into the SSCP was marked 

into a box corresponding with the time they arrived at the system. PAX were considered to have 

arrived in the SSCP when they physically crossed the threshold into the hallway where the TDC 

is located. If the queue protruded from the hallway, the passenger was marked as arrived at the 

moment they came to a complete stop at the end of the queue.  

All data collection was performed solely by the researcher after pilot study observations 

indicated there was a degree of simplicity to the process that would not require multiple persons 

for data collection. The reliability of arrival data collection process is substantiated by the small 

difference in observed PAX arrival for the peak hour and reported PAX throughput for the 

respective samples shown in Table 1. The PAX throughput for the sample dates in Table 1 was 

reported by a SME with access to privileged information regarding the SSCP. 
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Table 1 

PAX arrivals and throughput by sample. 

Sample 1 2 3 4 5 6 7 Average 
PAXObserved 167 153 159 176 159 163 157 162.00 
PAXReported 180 145 194 158 159 153 182 167.29 
DifferencePAX 13 8 35 18 0 10 25 5.29 
 
 

 
 
Figure 6. PAX arrival rate with sample arrival rates in blue and mean arrival rate in red. 

 

Since arrivals did not follow a theoretical distribution, but rather a non-stationary 

schedule, arrivals were split into equal times for a piece-wise distribution, where multiple 

Poisson curves were fitted based on a schedule (Pendergraft et al., 2004). The instantaneous 

arrivals rates used in the piece-wise Poisson distribution are shown in Appendix C. The erratic 

nature of the PAX arrival rate can be seen in Figure 6. Arrivals were scheduled based on three 

minute intervals of the average arrival rate for each minute, which allowed for a modest 

smoothing effect of the arrival curve without sacrificing the sensitivity of trends. 
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The number of bags each person carried was converted to a discrete distribution of 

baggage to allow for an accurate simulation analysis as shown in Figure 7. The number of bags 

each person carries was adjusted with a value of 1 added to account for the bin of shoes and 

personal items that were searched through the TRX and therefore a minimum value of 1 was 

established for each PAX. A value of 1 was added for any passengers that were wearing or 

carrying a heavy coat that would require a separate bin and time through the TRX. Therefore all 

PAX had a value of 1 added to the recorded number of bags they carried, while PAX with heavy 

coats had a value of 2 added to the recorded number of bags they carried. Purses were counted as 

one item of baggage because they are typically placed on the belt as a standalone item, as 

corroborated by a SSCP SME.  

 

Figure 7. Distribution of sample baggage volume. 
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Figure 8. Baggage screening time distribution. Adapted from “Improving airport security 
screening checkpoint operations in the us via paced system design,” by Leone and Liu, 2010. 
 
 
 
Table 2 
 
Process times and alarm rates of multiple SSCP operations. Adapted from “Improving airport 
security screening checkpoint operations in the us via paced system design,” by Leone and Liu, 
2010. 
 

Sample NPAX Mean Time (S) Percent Passed NFailed Percent Failed 
1 1149 6.64 91 109 9 
2 1223 7.64 89 158 11 
3 1247 6.59 88 165 12 
4 1264 6.84 94 80 6 
5 976 6.92 95 52 5 
6 994 6.42 92 92 8 
7 1194 7.87 91 111 9 
8 1136 6.83 97 41 3 
9 1064 6.69 88 149 12 
10 1043 6.71 88 136 12 
Total 11290 6.93 91 1093 9 
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 Process times and alarm rates for SSCP baggage screening processes were taken from the 

data reported by Leone and Liu (2010), and are shown in Table 2. The data was collected in 10 

samples from five separate locations from multiple days at peak times from different sized 

airports, and encompasses a sample size of over 11,000 bags. While Table 2 shows the mean 

times from the samples, Figure 8 shows the distribution of times that more adequately reflect a 

triangular distribution with values of [1,4,20] than an exponential distribution of five. The 

process time for manual baggage searches was yielded from a sample of over 500 manual 

searches provided by the TSA, and is reported to be consistent across all airport types and sizes 

with a uniform time between 120 and 300 seconds per baggage (Leone & Liu, 2010).  

Arena Simulation Software 

 Because a queuing network relies on many assumptions, the SSCP system was modeled 

and analyzed with Arena version 12. Arena is developed and distributed by Rockwell 

Automation and is a Graphical User Interface (GUI) based tool that allows for in-depth 

experimentation of systems and the ability to examine future options without disturbing the 

system at hand. Arena allows for the creation, refinement, and simulation of models as well as 

analysis of simulation results (Rockwell Automation, 2010). 

 Arena offers a more user friendly interface for the simulation modeling language 

SIMAN, while still allowing the option to manually code in SIMAN if desired. The drag and 

drop interface allows for expeditious composure of the conceptual model and ability to simply 

type in appropriate process and decision parameters. Likewise, the ability to animate the 

simulation allows for a visual representation of the process being modeled to be more easily 

corroborated between systems analysts, SMEs, and any involved person not familiar with 

simulation (Kelton et al., 2007). 
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SSPC Simulation Model  

Arena version 12 was used to create the simulation model of the SSCP, perform all 

experiments, and collect data on throughput and cycle time in this study. A simple and effective 

simulation model was run with accurate input, which yielded a validated experimental simulation 

model to further understand the effects of different external factors on SSCP performance 

(Rockwell Automation, 2010).  

The SSPC simulation model is based off of the conceptual model of SSCP operations 

shown in Figure 9 with some differences in queuing and stochastic drawing of times for TRX 

baggage screening. 

 

Figure 9. Conceptual DES model of SSCP. 
 

Verification and Validation of the Simulation Model 

Before experimentation begins, a simulation model must be verified and validated 

(Kelton et al., 2007; Law, 2006). The simulation model underwent a verification process and was 

validated in two methods before the sensitivity analysis was performed.  
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Verification of the simulation model. 

 Model verification was performed in the manner prescribed by Kelton et al. (2007). 

Verification was performed by running the model in a variety of scenarios in an attempt to cause 

an error in the model, or a process commonly referred to as debugging. Verification consisted of 

the following tests and expected outcomes as shown in Table 3. The overall purpose of model 

verification was to ensure that the model represents the conceptual system model accurately with 

respect to entity paths, queuing, and logic (Kelton et al., 2007). 

Table 3 

Verification Tests and Expected Outcomes 

Test Outcome 
Run with single entity Verify entity path logic 
Run with 20 entity batch Verify system queuing logic 
Run with 100 entity batch Verify and stress system queuing logic 
Run with 1 bag per entity Verify TRX baggage screening algorithm and separate/batching  
Run with 5 bags per entity Verify TRX baggage screening algorithm and separate/batching 
 

Validation of the simulation model. 

The simulation model was validated for both face validity and quantitative validity before 

experimentation began. Face validation was performed by iterative consulting with SMEs from 

the airport being modeled, as well as SMEs from simulation and industrial engineering 

backgrounds. The SMEs cross referenced the simulation model with the assumptions 

documentation and compared it with their knowledge and expertise of the system and its 

operations.  

After verification and face validation of the simulation model, quantitative validation was 

performed. For quantitative validation the simulation model was run in a batch of 100 

repetitions, so that the throughput of the simulation model could be tested against the throughput 
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of the actual system. Previous studies have used repetitions of 80 or 30 runs for validation and 

data collection purposes (Brown & Madhavan, 2010; Werker et al., 2009). Because of the short 

run time and relative simplicity of the system, a replication of 100 runs is more than adequate for 

all purposes of this study.  

Because alarm rate data was not available at the specific SSCP being modeled, the 

arithmetic mean (91%) of the alarm rates from Table 2 was utilized. The alarm rate of 91% was 

confirmed by the SSCP SME as an accurate assumption of the actual systems alarm rate. The 

baseline baggage volume based on data collected from the actual system was used for validation 

runs. 

Sensitivity Analysis 

 Once the simulation model was validated a sensitivity analysis was performed on the 

SSCP model, where the independent variables were the baggage volume, and the alarm rate that 

allows PAX to exit rather than undergo a manual search. Werker et al. (2009) defines a 

sensitivity analysis as varying an input and measuring the effects on model output. In general, a 

sensitivity analysis involves running an “as-is” scenario, then running other scenarios with 

different system parameters in “what-if” scenarios (Leone, 2002; Pendergraft et al., 2004; 

Werker et al., 2009). 

Batches of 100 simulation runs were performed at each level of both variables, where 

both dependent measures were recorded. Each batch of 100 simulation runs yielded mean values 

for the dependent measures of cycle time and SSCP throughput. Also, batches of 100 simulation 

runs were performed for both independent variables, where one variable was left at its baseline 

validated level while experimentation was performed on the other variable. 
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Independent Variables. 

The independent variables for this study were baggage volume and alarm rate. In this 

study, baggage volume was defined as the amount of baggage PAX carry with them that requires 

screening. The baseline baggage distribution is shown in Figure 8. Five levels of baggage 

volume were used in this study: Baseline baggage volume, Baseline – 1, Baseline – 2, Baseline + 

1, and Baseline +2. 

The values for baggage volume have a lower bound at a value of one because each 

passenger must have at least one searchable bin to account for their shoes and personal affects. 

The different levels of baggage volume are intended to investigate the effects of seasonal 

changes on baggage volume identified in Wetter et al. (2010) and corroborated by the SSCP 

SME. Likewise, if a high sensitivity was to be found in lowered baggage volume, airlines could 

examine incentivizing checking baggage to increase security throughput and enable more flights 

for higher gains. 

 The second independent variable for this study was the alarm rate. In this study the alarm 

rate was defined as the percentage of PAX that are cleared for exit from the SSCP into the sterile 

area rather than proceeding to a more invasive manual search of baggage, and is denoted as β. 

There were 22 levels of alarm rate, from 0% through 100% at 5% intervals, in addition to the 

baseline validated alarm rate (91%). The investigation of the dependent measures based on a 

function of alarm rate would be invaluable to a SSCP planner, as holidays and other special 

occasions create trends in alarm rates according to SSCP SMEs. Likewise, if large percentages of 

PAX can be manually searched and still meet requirements, a decrease in expensive equipage 

could be a possibility. 
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Dependent Measures. 

There were two dependent measures for this study: SSCP throughput per hour and cycle 

time. SSCP throughput is defined as the amount of PAX that arrive and exit the SSCP simulation 

model within the one hour peak time period of 6am - 7am. ARENA automatically records SSCP 

throughput into batch means throughout replications (Rockwell Automation, 2010). Throughput 

is a classical measure of system performance in both DES and queuing networks, and reflects the 

system’s ability to process entities under a given set of conditions (Blanchard & Fabrycky, 2006; 

Jackson, 1963; Shanthikumar et al., 2007). In general, a higher throughput rate is desirable, 

meaning the system can process more entities in same or less time, usually yielding higher 

productivity and profits. 

Cycle time is the amount of time each passenger spends in the SSCP system, and is 

recorded by ARENA through a time stamp and recording module for each passenger (Rockwell 

Automation, 2010). Cycle time is a standard measure of system performance (Blanchard & 

Fabrycky, 2006; Kelton et al., 2007) and is used in many simulation studies on airport operations 

and SSCP efficiency (Appelt et al., 2007; Giachetti et al., 2005; Leone & Liu, 2010; Pendergraft 

et al., 2005). Aside from strictly being a measure of performance, cycle time has a large effect on 

PAX satisfaction with SSCP and aviation transportation as a whole (Appelt et al., 2007; Guizzi 

et al., 2009; Yildiz et al., 2008). The current industry standard for cycle time is 10 minutes or 

less (Hafizogullari et al., 2003; Leone & Liu, 2010; & Pendergraft et al., 2004), while the 

customer (PAX) requirement for satisfaction and continued use is 30 minutes or less (Frederick-

Recascino et al., 2003). The sensitivity analysis allows for a better understanding of the effects of 

both independent variables on cycle time, as well as illustrates which conditions violate 

requirements of industry and consumer. 
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Results 

Queuing Network Results 

 The mathematical model was programmed using MATLAB to allow for efficient 

calculations of output. The source code is attached in Appendix D. MATLAB is a high level 

language and program that enables high level computations to be performed much faster than in 

other programming languages or computation by hand alone (Mathworks, 2011). Because the 

queuing network model is limited in respects to probability distributions of arrivals and service 

times, the parameters were taken based on the estimation of the simulation model. These 

parameters are illustrated in Table 4. Arrival rates and service times were determined by using 

the arithmetic mean of the distributions by which they followed. The baggage distribution was 

adjusted by taking the expected value of the distribution, then rounding to the nearest whole 

integer. The alarm rate was adjusted to 95% to allow for the assumption of steady-state, which 

will be discussed in greater detail. 

Table 4 

Differences in DES and mathematical models. 

Model parameter DES value Queuing network value 
Arrival rate (λ) Non-stationary schedule 2.7 PAX/min 
Baggage distribution (𝜅) DISC[0.03,1,0.39,2,0.83, 3,0.99,4,1,5] 2, 3 
𝜇TRX (𝑛1) 1/TRIA[1,4,20] s 8.40 PAX/min 
𝜇Manual (𝑛2) 1/UNIF[120,300] s .29 PAX/min 
𝛽 (Alarm rate) 91%* 95% 
* Denotes baseline validated level 

 The parameters shown in Table 4 were made to the Monte-Carlo simulation (DES) model 

so that the accuracy of the mathematical model could be assessed. The Monte-Carlo simulation 

DES model was the DES model modified with the data in Table 4 so that it would mimic a 

mathematical approach. The Monte-Carlo simulation model was run for a sample of 50 
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simulation runs, where the mean PAX cycle time was recorded for each run and compared to the 

cycle time produced by the mathematical model using a t-test. 

 To solve the network for cycle time, given 𝜆 = 2.7, Equation 7 was expanded to provide 

the following traffic probabilities 

𝑃01 = 1 

𝑃02 = 0 

𝑃12 = 1 − 𝛽 

𝑃21 = 0 

𝑃10 = 𝛽 

𝑃20 = 1 

 Equation 8 for 𝜆1 and 𝜆2 became 

𝜆1 = 𝜆𝑃01 + [𝜆1𝑃11 + 𝜆2𝑃21], 𝑖 = 1 (22) 

𝜆2 = 𝜆𝑃02 + [𝜆1𝑃12 + 𝜆2𝑃22], 𝑖 = 2 (23) 

Which after applying the traffic probabilities yielded 

𝜆1 = 𝜆 + 0 = 𝜆 (24) 

𝜆2 = 0 + 𝜆(1 − 𝛽) + 𝜆20 = 𝜆(1 − 𝛽) (25) 

After applying baggage number of 2 and service time of 7.14 seconds, the mean and variance for 

the Erlang-K distribution became 

𝐸(𝑥) =
2

7.14
= .289 (26) 

𝑉𝑎𝑟(𝑥) =
2

7.142
= .0392 (27) 

 

Once values were applied, Equation 17 and Equation 18 became 
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𝐸[𝑠] =
2

7.14
= 0.28 (28) 

𝐸[𝑠2] = 𝑉𝑎𝑟(𝑠) + (𝐸[𝑆])2 =
2

7.142
+

4
7.142

= 0.12 (29) 

Equation 16 was solved after the values were incorporated into it such that 

𝑊𝑞 ≈
2.72(0.12)(0.28)

(2 − (2.7)(0.28))2[1 + (2.7)(0.28)] + [(2.7)(0.28)]2
2 − (2.7)(0.28)

≈ 0.0701 (min ) (30) 

Equation 15 was then used to find the waiting time for 𝑛1 

𝑤1 = 0.0701 + 0.28 = 0.3501 (min) (31) 

Equation 14 was then used to find the number of PAX in 𝑛1 

𝑛1 = 2.7(0.3501) = 0.9453 (32) 

To find the number of PAX in 𝑛2, an M/M/1 queue, Equation 20 was used to find 𝜌2 

𝜌2 =
(1 − 0.95)2.7

0.2857
= 0.473 (33) 

So that 𝑛2 could be found with Equation 20  

𝑛2 =
0.473

1 − 0.473
= 0.898 (34) 

N was found by adding the sum of 𝑛1and n2 as shown in Equation13. Finally, by using Little’s 

law, the mean PAX cycle time was found using Equation 21 such that 

𝑊 =
1.841

2.7
= .682 𝑚𝑖𝑛 = 40.92 𝑠 (35) 

The same mathematical process was used for two cases with the queuing network, with 

exception of changing the value of 𝜅, the number of bags each passenger carried. The first test 

comparison was performed where 𝛽 = 95%, 𝜅 = 2, which is shown above. The second test 

comparison was performed where 𝛽 = 95%, 𝜅 = 3. The cycle time of 40.92 seconds yielded by 
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the mathematical model in the first case was a good fit of the mathematical model. The cycle 

time of 40.92 seconds yielded by the mathematical model was not significantly different than the 

mean cycle time of 40.99 (SD = 3.91) of the Monte-Carlo simulation model t(49) = -.018, p = 

.986. However, when 𝜅 was increased to three bags, where 𝛽 = 95%, the result of 60 sec was 

significantly different than the mean cycle time of 54.07 (SD = 2.92) yielded by the Monte Carlo 

simulation t(49) = -14.35, p = .000. When k equaled three, the mathematical model is not a good 

fit of assessing SSCP performance. 

 Under certain conditions, the mathematical model can serve as a near exact fit for 

predicting PAX cycle time in an SSCP; however, under other conditions the model fails to be an 

accurate method of assessment. By investigating the assumption of the system being in steady 

state the reason behind these results becomes apparent. For queuing networks to work, the 

system must be in steady state, a condition where 𝜆/𝜇 < 1 must be met. If the system fails to 

converge to steady state, results can be inaccurate or erratic (Blanchard & Fabrycky, 2006; Hopp 

& Spearmann, 2001; Ross, 1997). 

 The results of the queuing network identified two points when results would cease to be 

accurate. If either 𝜂1 (TRXs) or 𝜂2 (manual screening) are not within steady state, the queuing 

network will fail to produce accurate results. Given the equation for steady state 

𝜆1
𝜇1 

< 1 (36) 

With the modified service time of 𝜇1, adjusted for 𝜅 bags that must exceed 𝜆1 

𝜇1 =
7.14
𝜅

> 2.7 (37) 
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It can be derived that 𝜅 must be less than 2.64 bags per passenger. In addition to the limitations 

at 𝜂1, the process at 𝜂2 must also be in steady state for the queuing network to yield accurate 

results. In similar fashion to 𝜂1, given the equation for steady state 

𝜌2 =
𝜆2
𝜇2 

< 1 (38) 

Where 𝜆2 is modified to be a function of alarm rate (𝛽) 

𝜌2 =
(1 − 𝛽)(2.7)

. 29
< 1 (39) 

It can be seen that 𝛽 must be greater than .893, or 89% for the queuing network to remain 

in steady state. In the first tested scenario where 𝜅 was three, the model could not achieve steady 

state and therefore yielded significantly different results than it should have. However, when a 

value of two was used for 𝜅, the queuing network yielded impeccably accurate results of PAX 

cycle time in the SSCP system. 

Discrete Event Simulation Results 

A DES model was constructed using Arena simulation software. The model accurately 

reflects the conceptual model of the system, and was verified and validated in multiple ways 

before experimentation began. After verification and validation of the simulation model, a 

sensitivity analysis was performed. The sensitivity analysis using the DES/empirical approach 

yielded results of SSCP performance for 110 different combinations of the two independent 

variables (baggage volume and alarm rate). Results were collected for the dependent measures of 

system throughput and cycle time for all 110 scenarios of operation. Both dependent measures 

were more sensitive to the effects of alarm rate than that of baggage volume. Model description, 

verification and validation results, and findings for each dependent measure are presented in the 

following sections.  
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Modeling results. 

The model was built using Arena simulation software, version 12. The simulation model 

differed from the conceptual simulation model shown in Figure 9 in multiple respects. The 

simulation model, shown in Figure 10, utilizes multiple assign and record modules to assign 

multiple entity attributes such as the number of bags each passenger carried (k). Furthermore, the 

assign and record modules enabled the collection and export of statistics under investigation such 

as cycle time. Finally, where the conceptual model shows a linear process, the DES model 

utilizes a pair of separate and batch modules to allow for a stochastic process time of each bag to 

be assigned. 

 Figure 10. DES model of SSCP. 

 

Verification and validation results. 

Verification of the DES model was a simple process. Steps from Table 3 were performed 

in succession to ensure that the model operated as intended and was free of logical errors. In 

addition to the verification methods shown in Table 3, multiple SMEs in discrete event 
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simulation used and evaluated the model to further ensure model verification. Once the model 

was verified, it was validated through qualitative and quantitative methods. 

Qualitative validation involved the inspection of the model by SMEs to ensure that it 

represents the system it intends to simulate. SMEs from multiple disciplines of airport 

security/SSCPs viewed the DES model and the assumptions documentation and confirmed that it 

was an accurate representation of the actual SSCP system, therefore qualitatively validating the 

model. After initial qualitative validation, quantitative validation was performed by statistically 

testing simulation throughput against throughput reported by SMEs. 

Once simulation throughput results were derived, they were checked for the assumption 

of normality, and then compared to actual throughput results from the dates used for sampling 

using a t-test. The t-test is a standard method of testing the difference of means in two samples 

and comparing them to expected differences in their representative populations (Field, 2009). 

The simulation runs (n = 100) yielded a system throughput of 161.33 PAX (SD = 12.71), while 

the actual sample of system throughput (n = 7) yielded a system throughput of 167.29 (SD = 

18.02). There was no significant difference in the mean system throughput of the simulated and 

actual results (t(105) = -1.17, p > .05). Because there is no significant difference in simulation 

throughout and actual throughput, the model is quantitatively validated. After quantitative 

validation, the SSCP SMEs were consulted a final time to confirm that the model, assumptions, 

and preliminary results were all valid before experimentation began.  

Sensitivity analysis results. 

 Results indicated that throughput of the SSCP was not affected by baggage volume. 

Figure 11 shows the SSCP throughput levels for all combinations used in the sensitivity analysis. 

It can be seen that throughput levels remain practically the same for all baggage volumes at each 
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level of alarm rate from 0% through 100%. At the baseline alarm rate of 91%, baggage volume 

only accounts for a change of 164 PAX per hour to 160 PAX per hour, a difference of four. 

 
Figure 11. PAX throughput results from sensitivity analysis. 
 

While throughput is unaffected by baggage volume, it is highly sensitive to the effects of 

alarm rate. In general, as alarm rate decreases and more PAX are sent to manual screening 

throughput decreases. At the baseline baggage volume, alarm rate accounts for a drop of 164 

PAX per hour to 17 PAX per hour, a difference of 147. There is relatively no difference in 

throughput at the higher alarm rates, where no noticeable change occurs until the alarm rate 

drops below 85%. Throughput follows a linear trend regardless of baggage volume from 85% to 

0%, as shown in Figure 12. Results indicate that SSCP throughput is unaffected by alarm rate 

until it becomes lower than 85% upon where it declines in a linear fashion until alarm rate 

reaches 0%.  

Unlike throughput, cycle time was found to be slightly sensitive to baggage volume as 

shown in Figure 14. At the validated alarm rate of 91%, Baggage volume accounted for a change 

in average passenger screening time from 87 seconds at baseline to 254 seconds at baseline +2 of 

almost three minutes (167 sec). Furthermore baggage volume accounted for a difference of 190 

seconds between baseline +2 and baseline -2 conditions. The effects of baggage volume are less 



45 

 

severe at lower alarm rates such as 15% and less, where the cycle times all become nearly equal.

 

 Figure 12. Graphical depiction of PAX throughput from sensitivity analysis. 

  

Figure 13. Three dimensional graphical depiction of PAX throughput per hour from sensitivity 
analysis. 
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Figure 14. PAX cycle time results from sensitivity analysis, where green indicates performance 
within industry requirements, yellow indicates performance within PAX requirements, and red 
being unacceptable performance. 
 

As with throughput, cycle time was very sensitive to alarm rate. Unlike throughput 

however, cycle time is affected by alarm rate at nearly every baggage volume level from the 

baseline level of 91% to 0%. Unlike throughput, the effects of alarm rate on cycle time occur in a 

nonlinear fashion, as shown in Figure 15 and Figure 16. Cycle time increases in a nonlinear 

fashion, where the difference in cycle time is of greater magnitude the lower the alarm rate gets. 

 

Figure 15. Graphical depiction of PAX cycle time from sensitivity analysis. 
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Figure 16. Three dimensional graphical depiction of PAX cycle time from sensitivity analysis. 

 

 Despite the large sensitivity of alarm rate on cycle time, the SSCP can still meet TSA and 

PAX requirements under strenuous conditions. With exception of the baseline + 2 level of 

baggage volume, TSA requirements for PAX cycle time of 10 minutes or less were fulfilled until 

the alarm rate exceeded 30%. PAX requirements of 30 minutes or less as defined in Frederick-

Recascino et al. (2003) were still met with a 5% alarm rate. A 0% alarm rate is the only alarm 

rate at which the average PAX cycle time does not meet any requirements. Caution should be 

used however when assessing these requirements. The average cycle time is only collected for 

PAX that exit the system; therefore, while cycle time may meet the requirements it is certainly 

not feasible to have only 67 PAX per hour. Major results, practical applications, and limitations 

of the study will be discussed in the following section. 
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Discussion 

Discussion of Results 

Results from the queuing network provided interesting insight into the accuracy of 

mathematical modeling, as well as the fragility of the model. As demonstrated, the Jackson open 

queuing network produced accurate results while it was within the assumption of steady state 

performance. When it was not in steady state however the results could not converge to a finite 

solution. This is an inherent characteristic of queuing theory and accounts for the varied results 

(Blanchard & Fabrycky, 2006; Hopp & Spearmann, 2001; Ross, 1997).  

This sensitivity of assumptions has been highlighted throughout not only the classic 

queuing theory literature, but exemplified by its attempts at being used in a variety of industries. 

While queuing networks are an accurate and efficient predictor of performance in simple 

industrial settings, even a modestly complicated system with decision modules and balking can 

make a queuing network approach futile (Shanthikumar et al., 2007). Aside from manufacturing, 

the application of queuing networks to SSCP operations has been found to be ineffective because 

of the limitation of assumptions (Leone & Liu, 2010). The results of the use of mathematical 

modeling found in this study were concurrent with what is commonly stated in the literature. 

One advantage of queuing theory/theoretical approach over a DES/empirical approach is 

the ease of assessing validity of the method. Using Equation 37 and Equation 39, one can find 

the limits to which a queuing network is in steady state from knowing either the arrival rate or 

service time of the system. Conversely, one must spend considerable time in construction of a 

model, construction of assumptions documentation, verification, and validation of a DES model 

to know whether it is applicable or a good fit to the system of interest. Verification and 
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validation of a simulation model are iterative processes that take much time and effort to 

complete. If time or workload is a significant factor, it is tremendously simple to assess the 

applicability of a theoretical approach to the problem rather than assess the applicability of an 

empirical approach. 

Results from the sensitivity analysis show that there is a high sensitivity to alarm rate 

with both of the dependent measures, little sensitivity of baggage volume on cycle time, and 

practically no sensitivity of baggage volume on throughput. The high sensitivity of alarm rate is 

because manual screening is a long process and the airport being modeled only utilizes one 

manual screening server. In queuing theory, longer service times and fewer servers are typically 

causative of lowered performance (Blanchard & Fabrycky, 2006). As shown in Figure 12, there 

is a delay in the effects of alarm rate on throughput until approximately 85%, which indicates 

that the effect of alarm rate on the single queue that builds up at the manual screening server 

exceeds its service capacity. This is a “choke point” of the operation similar to those found in the 

study by Brown and Madhavan (2010), yet does not affect the SSCP because of the consistently 

high alarm rate in the actual system. The results of this study compliment the results of the study 

by Leone (2002) by showing that throughput is not only sensitive to alarm rate in checked 

baggage, but screened baggage as well. 

Baggage volume had only a moderate effect on cycle time and no effect on throughput. 

The low process times published in Leone and Liu (2010) would only cause a marginal increase 

in time if baggage were increased, which was reflected in the results of the sensitivity analysis. 

Because there were two servers and the process times were relatively low, the TRX servers were 

able to cope with the added baggage volume effectively. Furthermore, as alarm rates increase 

and more bags are sent to manual screening, the effects of baggage volume become diminished 
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as shown in Figure 15 and Figure 16. With exception of the alarm rate being 30% or 35%, 

baggage volume had no effect on whether or not cycle time requirements were met. At these 

levels the cycle time exceeded the TSA requirement of 10 minutes or less once baggage volume 

exceeded the baseline + 1 level, which resembles a tipping point where queuing network 

performance has a practical impact. With exception of the two cases of β = 30% and β = 35%, 

the lack of effects on requirements means that the only remaining limit to baggage is spatial 

requirements of the aircraft. 

The dependent measures of throughput and cycle time reacted in an interesting fashion. 

Throughput is not an exact function of cycle time; however, the two dependent measures are 

roughly inversely proportional. When entities exhibit a shorter cycle time, a greater throughput is 

possible in an infinite population queuing system as displayed by the results of this study. 

Because of this relationship, caution should be taken when assessing the dependent measures as 

two independent ideas. However, it should be noted that throughput behaved in a linear fashion, 

while cycle time behaved in a non-linear fashion when independent variables were altered. This 

difference supports the concept that the two are not directly related to each other. While they are 

closed related concepts, the cycle time is a measure of customer satisfaction in this study, and 

behaves differently than throughput, which is used as a measure of system efficiency. The 

difference in performance as well as the different contextual uses of each dependent measure 

supports the use of both measures to assess system performance, although they are closely 

related variables. 

Limitations of the Study 

 While data collection was straight forward, research was performed in corroboration with 

SMEs, and the model was verified and validated, there are still experimental aspects to consider 
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before applying the results of this study. While the methods used in this study produced a 

validated simulation model there are identified factors that may have affected the internal 

validity of the study. Because no data collection access was granted in the actual SSCP, there is 

no conclusive evidence as to how small children/infants, and disabled persons have on SSCP 

throughput and cycle time. Descriptive data of PAX with small children and PAX who were 

disabled (walked with crutches, a walking cane, a visible cast, or were in a wheelchair), as well 

as the occurrence of PAX with heavy coats are shown in Table 5.  

While it has been discussed with SMEs that children can slow down the screening process, the 

mean occurrence of two per operating session can more than likely rule them out as confounds. 

Also, PAX who are disabled and require manual searching as deemed by the Americans with 

Disabilities Act (ADA) are done so explicitly by TSOs who are staffed for that very purpose, 

ruling out disabled PAX as confounding to the internal validity of the study.  

Table 5 

Descriptive statistics of possible confounding PAX. 

Sample PAX ADA Coats Kids 
1 2 14 4 
2 0 16 2 
3 1 20 2 
4 5 22 3 
5 3 26 1 
6 2 25 1 
7 3 16 2 
Σ 16 139 15 
Mean 2 20 2 
St. Dev 1.60 4.71 1.07 

 

Finally, the number of coats counted as extra baggage were counted during data 

collection to assess the impact of the assumption of considering heavy coats as baggage. While 
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139 coats may seem like a large quantity at face value, the coats account for merely 7% of 

baggage. Given the small sensitivity of baggage volume on the dependent measures it is highly 

unlikely that the coat assumption could have affected internal validity. 

 Another phenomenon that could have possibly altered the results PAX arrival data was 

the small quantity of PAX that entered the SSCP by the definitions of this study, then turned 

around and left without receiving any screening. From observations and collaboration with 

SMEs this can occur for any number of reasons such as people wishing to eat or drink something 

before scanning to avoid throwing it out, assisting family members with baggage, or being a 

“well-wisher”, somebody who is seeing a loved one off. The occurrence of this phenomenon was 

very low, happening roughly once per sample. Also, because of the average arrival of two to 

three PAX per minute made it fairly easy to keep track of PAX who exited the SSCP after 

arriving. Because it was a well managed and rare occurrence it is unlikely that it affected arrival 

data; however, this could pose a serious problem to validity at a larger airport. 

Practical Implications 

 Given the results from the theoretical model, it becomes difficult to place practical 

applications of queuing networks into a process as frenetic as a SSCP due to the strict limitations 

on the steady state assumption. Given that the DES model and actual probability distributions for 

service times had to be subjected to assumptions, and that the queuing network was only accurate 

if it met the steady state assumption, it should be noted that it should not be a preferred method 

of assessing SSCP performance. The primary problem with applying queuing networks to SSCP 

operations at smaller airports is the arrival rate. The queuing network relies on a stationary 

arrival rate, while SSCPs experience non-stationary scheduled arrivals. The choice to research a 

peak time inherently implies that the system will not be in a steady state, but in an overloaded 
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state. Therefore, queuing networks should be applied only at SSCPs where flow rate is 

stationary, or in other aspects of airport operations such as shuttle services or more consistent 

processes. 

One intended application of this study was to investigate the feasibility of incentivizing 

PAX to check more baggage to increase SSCP performance and allow for more efficient 

operations. While less carry-on baggage would likely speed up planing and deplaning operations, 

baggage volume was demonstrated to have little effect on throughput or cycle time. Regardless 

of alarm rate, approximately 15 seconds would be saved if PAX on average carried two less 

items each. Depending on financial models of air carriers, it would not seem prudent or feasible 

to incentivize checking baggage to save such a negligible amount of time and make no impact on 

throughput. 

 Another application of this study is an examination of equipage and staffing at small 

origin and destination airports. As previously stated, equipage and staffing are both heavily 

regulated by the TSA (Transportation Security Administration, 2009); however, results of this 

study support the ability of small volume airports to effectively screen PAX with less expensive 

equipment. Leone (2002) analyzed different screening machines and found that some were much 

faster, yet limited because of their higher FARs. In a scenario such as the SSCP modeled in this 

study, a higher alarm rate would be acceptable as long as it did not exceed approximately 75% or 

lower based on the number of PAX on the scheduled flights. This slightly elevated alarm rate 

(false or real) would also be buffered by utilizing the manual screening resource in a fashion 

similar to the paced-system design utilized in the study by Leone and Liu (2010). Any findings 

with regards to equipage changes must be evaluated with caution, as PAX throughput would 
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drastically change if more flights were scheduled. Currently only three of a total of eight gates 

are being utilized at the airport being modeled. 

 Possibly the most noteworthy application of this study would be the possible reinvention 

of PAX check-in and screening processes. Yildiz et al. (2008) proposes a new concept of 

screening, where nearly all technology at SSCPs would be altered rather than changing one or 

two aspects. This method of thinking is known as holistic design, which is contrasted to 

reductionist thinking in which research or ideas are used to alter a small portion of a system 

(Vicente, 2006). A similar large scale adjustment could be made with regards to PAX check in 

and SSCP utilization based on the results of this study.  Brown and Madhavan (2010) found that 

PAX checking in and utilizing a gate agent and checking bags was the largest choke point in 

airport operations. PAX who utilized a self check in kiosk took only a fraction of time that others 

did to acquire their travel documentation and check a bag. These findings, in tandem with the 

findings of this study, can be combined to reinvent the check-in and screening processes. 

 Because there is no effect of baggage volume on SSCP throughput or cycle time, 

theoretically PAX could bring all of their baggage through security without affecting throughput 

and slightly affecting cycle time. This concept could enable airlines to replace traditional check-

in counters with automated kiosks and minimal staffing, and allow PAX to pass through security 

and check their bags at the gate. By checking bags at the gate, there would be no need for large 

amounts of staffing at check-in, or the entire existing infrastructure of people and equipment to 

convey baggage from check-in to the airplane. Even a modest increase in cycle time would be 

more than likely allowable because of the time saved from negating the traditional check in 

process. While theoretically a unified check in process would save large amounts of time and 

money, further research would be needed to investigate the legitimacy of such a concept.  
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 Finally, the sensitivity to alarm rate shown in the results of this study offer practical 

implications. If the national security level is raised, or if a known threat is confirmed, thresholds 

for supplemental manual screening can be derived from the results of this study. In the case of 

the SSCP investigated in this study, an alarm rate of 80% still produces acceptable throughput 

and cycle times. This shows that whether or not there was a TRX alarm, one in every five PAX 

could be randomly searched during peak times for increased security without disrupting airport 

operations as a whole. Likewise, during non-peak hours the alarm rate could be decreased to 

allow for even more PAX to be manually searched. The sensitivity to baggage volume found in 

this study could allow for SSCP planners to add supplemental manual searching to increase 

security without disrupting system performance. 

Conclusions 

 As discussed in the previous section, the results of this study lend themselves to 

applications in SSCP operations. While results of a sensitivity analysis may indicate something is 

possible, the very nature of simulation is based on the fact if one component is changed, the 

system as a whole may behave in an unpredictable manner (Kelton et al., 2007). There are a 

handful of research studies that can and should be conducted to successfully apply the results of 

this study. 

 While the queuing network proved to be an effective tool under limited conditions, it has 

only been speculated whether it would work an airport with more steady PAX flow. Leone and 

Liu (2010) attempted to use queuing networks at a larger airport than the one in this study, yet 

were not effective. This study employed a different network than theirs, and was used at a less 

steady SSCP. Future research could apply the queuing network utilized in this study and apply it 

to a larger more stable SSCP operation to see if it is an accurate fit. If queuing networks and 
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mathematical modeling proved effective at larger airports, much effort could be saved in SSCP 

planning. 

 Likewise, the results of the queuing network were based on a network where nearly every 

aspect of the system was reduced to an assumption. Arrival times, service times, baggage 

distribution, and alarm rates were all modified to ensure the network would operate. The results 

of a sensitivity output from a queuing network may or may not be comparable to results obtained 

in this study from the DES approach. Because of the ability of DES to more adequately capture 

the randomness of human systems, one might speculate that DES would be the more accurate 

method. If access was granted to an extensive amount of throughput data of an SSCP a side by 

side comparison of DES and queuing network outputs could be performed to assess the accuracy 

of both. The most valuable research in this area would be to see if one could interpolate the 

results of actual output as somewhere between results from queuing networks and DES. If such, 

a correctional coefficient could be applied to mathematical results to correct for missed 

randomness, while not requiring planners to utilize DES. 

As stated in the results section, the performance metric of cycle time is very robust to the 

effects of alarm rate and even more so to baggage volume. The practical constraint however is 

that cycle time may be within limits, but the throughput is unacceptable for loading a plane in a 

timely manner. Further research should be performed to use linear or nonlinear optimization 

methods to find the practical limit to alarm rate and baggage volume based on the number of 

scheduled flights. Using the validated times and rates for this airport, further research could show 

throughput requirements for the SSCP based on the number of gates being utilized. 

Graphical representations such as Figure 12 and Figure 15 show that performance metrics 

of the SSCP behave in linear and nonlinear manners respectively. While simple regression 
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methods are limited to linear models, multiple regression methods may offer valuable insight to 

predicting SSCP performance (Field, 2009). A well founded regression model would not only 

allow TSA professionals to be able to predict performance. Also, if research supported other 

airport SSCPs behaved similarly to the one modeled in this study, a simple switch of the 

regression coefficients could allow the formula to be applied to any airport that operates in a 

similar manner. 

Other research could be performed to determine the trade-off of manual screening servers 

and TRX machines. Given the high price of machinery and the recurring costs of maintenance 

and certification, it would be valuable to investigate the possibility of replacing a two TRX setup 

with a single TRX setup at smaller airports. The paced design proposed by Leone and Liu (2010) 

increased throughput by utilizing a seldom used resource. By that concept, staffing and 

equipping multiple manual screening stations and utilizing them could prove efficient. A study 

could investigate different levels of paced system parameters as well as number of manual 

screening servers to see if the SSCP still meets requirements. While the TSA may or may not be 

receptive to suggestions on equipage, research in this area could increase awareness of alternate 

possibilities. A large confounding factor with this method would be the high stress placed on 

heavily utilized manual screeners, necessitating high pay and shift rotation, thereby negating the 

financial advantage of not using machinery (Wetter et al., 2010). 

Finally, rather than concentrating only on the SSCP, further research could help reinvent 

the entire airport departure process. A concept such as the unified check in would require a vast 

amount of data collection and experimentation. Different TRXs are used for checked baggage 

and carry-on baggage so that larger checked bags could be handled. While baggage volume 

seems to have no effect on performance, the space requirements for introducing TRX machinery 
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to handle larger bags could be violated (Wilson et al., 2006). A large scale simulation would 

need to be constructed to not concentrate on only the SSCP or only the airport as a whole, but 

instead model everything to an adequate level to see the effects of SSCP modifications on total 

system performance. Wetter et al. (2010) have shown that subjective ratings of employees and 

PAX must be considered when proposing system changes. A major limiting factor to this 

proposed research would be the amount of data needed to power it. Simulations are only as 

accurate and reliable as the amount and quality of data put into them, meaning a large scale study 

to redesign the system would need requisitely large amounts of data (Law, 2006; Kelton et al., 

2007). The lack of public access to data pertaining to airport operations may be the single largest 

factor limiting a study of this scale to take place. 

 In conclusion, this study utilized information from a vast body of literature and multiple 

SMEs to investigate important factors of SSCPs. While most studies investigate staffing and 

equipage factors, this study investigated the effects of baggage volume and alarm rate on SSCP 

performance with regards to both system performance (throughput) and passenger experience 

(cycle time). Furthermore, this study revealed under what conditions of baggage volume and 

alarm rate the SSCP would be able to meet regulatory requirements as well as passenger 

expectations. In addition to results from the empirical approach of DES, the theoretical method 

of queuing networks and their applicability were assessed in this study. It was demonstrated that 

queuing networks are very accurate when the system is in steady state, yet unreliable when it is 

not. Likewise, the methods of evaluating applicability of both theoretical and empirical methods 

were compared to show the ease of testing steady state assumption for queuing networks in 

comparison to verification and validation of DES/empirical models.  
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As the number of PAX per year continually increases, this field and contributions to 

optimizing it becoming increasingly important. This study offers valuable insight into SSCP 

operations and performance, discusses results and practical applications, and entices further 

research to benefit the betterment of public aviation transportation.
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Appendix A: List of Aviation & Security Acronyms 

 
ADA Americans with Disabilities Act 
ATSA Aviation Transportation Security Act 
CAPPS Computer-Assisted Passenger Pre-Screening System 
CDG Checkpoint Design Guide 
DES Discrete Event Simulation 
DHS Department of Homeland Security 
EDS Explosive Detection System 
ETD Explosive Trace Detection 
FAR False Alarm Rate 
FSP Federal Screening Personnel 
PAX Passengers 
SME Subject Matter Expert 
SSCP Security Screening Checkpoint 
TDC Travel Document Checker 
TSA Transportation Security Administration 
TSO Transportation Security Officer 
WTMD Walk Through Metal Detector 
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Appendix B: Data Collection Form 
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Appendix C: Mean Hourly Arrival Rates by Different Scheduling Lengths 

XBar Xbar 
Time λ (1) λ (3) λ (5) λ (10) λ (15) 
5:50 171.43 

120.00 
145.71 

162 N/A 

5:51 128.57 
5:52 60.00 
5:53 205.71 

205.71 5:54 162.86 
5:55 248.57 

178.29 
5:56 180.00 

168.57 5:57 197.14 
5:58 128.57 

5:59 137.14 N/A 

6:00 111.43 
114.29 

109.71 

118.29 

130.86 

6:01 68.57 
6:02 162.86 
6:03 111.43 

114.29 6:04 94.29 
6:05 137.14 

126.86 
6:06 137.14 

114.29 6:07 120.00 
6:08 85.71 
6:09 154.29 

168.57 6:10 154.29 

156 

174 

6:11 197.14 
6:12 77.14 

142.86 6:13 214.29 
6:14 137.14 
6:15 214.29 

222.86 
192 

202.29 

6:16 240.00 
6:17 214.29 
6:18 154.29 

157.14 6:19 137.14 
6:20 180.00 

190.29 207.43 
6:21 180.00 

185.71 6:22 128.57 
6:23 248.57 
6:24 214.29 194.29 
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6:25 180.00 

224.57 
6:26 188.57 
6:27 265.71 

251.43 6:28 248.57 
6:29 240.00 
6:30 300.00 

257.14 
255.43 

228.86 

213.71 

6:31 257.14 
6:32 214.29 
6:33 214.29 

217.14 6:34 291.43 
6:35 145.71 

202.29 
6:36 240.00 

202.86 6:37 145.71 
6:38 222.86 
6:39 257.14 

208.57 6:40 162.86 

183.43 

162.86 

6:41 205.71 
6:42 240.00 

182.86 6:43 137.14 
6:44 171.43 
6:45 102.86 

151.43 
142.29 

101.14 

6:46 171.43 
6:47 180.00 
6:48 120.00 

134.29 6:49 137.14 
6:50 145.71 

99.429 

80.571 

6:51 111.43 
85.71 6:52 60.00 

6:53 85.71 
6:54 94.29 

85.71 6:55 85.71 

61.714 
6:56 77.14 
6:57 60.00 

48.57 6:58 34.29 

6:59 51.43 
 

  



67 

 

Appendix D: MATLAB Source Code for Theoretical Model 

 

function [Wq, n1, n2, W]=computeWq(k, beta) 
  
lamda=2.7; 
mu=7.14; 
  
ES=k/mu; 
ESsquare=k/mu^2+(k/mu)^2; 
Wq1=(lamda^2*ES*ESsquare); 
Wq2=((2-lamda*ES)^2)*((1+lamda*ES)+((lamda*ES)^2/(2-lamda*ES))); 
Wq=Wq1/Wq2; 
  
n1=lamda*(Wq+ES); 
  
mu2=0.2857; 
lamda2=(1-beta)*lamda 
rou2=lamda2/mu2; 
n2=rou2/(1-rou2); 
  
n=n1+n2; 
  
W=n/lamda; 
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