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ABSTRACT

The 2014 Ebola outbreak in West Africa prompted a need to assess how

deplaning passengers from West Africa should be managed. A 21-day quar-

antine requirement for deplaning passengers, based on their risk factors, was

implemented at five international airports in the United States in late 2014.

This thesis formulates the multi-objective sequential stochastic assignment

problem (MOSSAP) to improve the process for managing such quarantine

assignments. In MOSSAP, each passenger is assessed with a two-dimensional

risk vector, revealed upon entering the United States, which is used to make

the quarantine assignment. The objective is to maximize the expected num-

ber of passengers assigned to the correct level of monitoring (quarantine,

self-monitoring), subject to quarantine capacity constraint. The weighted

sum method is used to generate Pareto optimal policies for MOSSAP. Statis-

tics available from Ebola entry screening and related public health sources

are used to illustrate how such a policy would operate in practice.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

The 2014 Ebola Hemorrhagic Fever (or simply, Ebola) outbreak in West

Africa created widespread concern of its possible spread to other countries.

As of Dec 15, 2015, there have been 28,638 cases and 11,315 deaths [1]. Be-

sides West African countries, two imported cases and two locally acquired

cases have been reported in the United States [1]. These cases prompted the

United States Government to take measures and monitor the flow of air trav-

eling out of West Africa to the United States. Together with exit screening at

airports in three West African countries (Guinea, Liberia, and Sierra Leone),

enhanced entry screening was enforced from October 11, 2014, at New York

JFK international airport and from October 16, 2014, at another four inter-

national airports (Washington-Dulles, Newark Liberty, Chicago-O’Hare, and

Atlanta Hartsfield-Jackson) [2]. Under this enhanced screening, all passen-

gers coming from or transferring through these three West African countries

are required to be routed to one of these five airports to undergo risk as-

sessment, and a possible 21-day quarantine requirement based on their risk

factors is implemented [3]. Developing an effective screening assignment pol-

icy to prevent the spread of Ebola, as well as the outbreak of other epidemics

in the future, is an essential component of contagious disease control.

The enhanced entry screening used by the United States Customs and Bor-

der Protection (CBP) checks each passenger’s exposure history and symp-

toms [4] and assesses each passenger’s risk with one of four risk levels (High

risk, Some risk, Low (but not zero) risk, and No identifiable risk) [5]. Dif-

ferent monitoring levels are required for passengers assessed with different

risk levels [6]. Among the monitoring levels, only quarantine monitoring (or

simply, quarantine) requires hospital space and medical intervention while

direct active monitoring and active monitoring do not. Moreover, quar-

antine costs are large compared to other monitoring levels. Therefore, we

limit monitoring assignments for Ebola entry screening (or simply, passen-
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ger assignments) to two categories: selectees, denoting the category where

passengers are quarantined, and non-selectees, denoting the category where

passengers are not quarantined (direct active monitoring, active monitoring

or other self-monitoring may be needed). Thus, this binary assignment (se-

lectee or non-selectee) can be viewed as a first-step assignment for enhanced

entry screening [6]; a more refined assignment can be made for non-selectees

after the initial assignment.

The Ebola entry screening problem and the aviation security screening

problem have similarities but differences. Both can be modeled as a se-

quential stochastic assignment problem with capacity constraints. Research

on the aviation security screening problem has resulted in several discrete

optimization models, which motivated the model for the Ebola entry screen-

ing problem in this work. [7] introduces the sequential stochastic passenger

screening problem (SSPSP) and models it as a Markov decision process. [8]

formulates a discrete-time model for real-time binary passenger assignments

in airport screening. [9] discusses a sequential stochastic multi-level passenger

screening problem. [10] introduces probability-based metrics to evaluate the

performance of sequential passenger assignments with respect to the retro-

spective off-line optimal policy. [11] models the passenger screening problem

with dynamic risk update as a multi-stage sequential assignment problem.

For all these aviation security screening models, each passenger is assessed

with a one-dimensional risk value.

Naively adopting the aviation security screening policy for Ebola entry

screening is not appropriate. The main issue is the transmission potential

of a sick passenger without protection measures. If a sick passenger is not

quarantined, then his or her social contacts have the potential of being in-

fected, which may lead to additional people infected. The basic reproduction

number (defined as the average number of infected persons caused by a sick

person without protection measures) of Ebola is around 2 for the three West

African countries [12], which indicates the possibility of a nationwide out-

break if left unattended. In addition, although the CDC reports that Ebola

has transmission potential only after symptoms appear [13], there is some

controversy concerning this observation. For example, [14] claims that Ebola

is contagious even when no symptoms are present. Moreover, Ebola symp-

toms are similar to those of influenza [15, 16], and hence, it is possible that

passengers with Ebola may not be recognized at the onset of symptoms. To
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prevent the spread of Ebola, contact tracing may need to be implemented,

which incurs additional costs. Contact tracing is defined as the identification

and follow-up of persons who may have interacted with a sick person with

no protection measures, as recommended for Ebola by the World Health Or-

ganization (WHO) [17] and the CDC [18]. For a suspected passenger with

a large number of social contacts, if this person is not quarantined and be-

comes sick with Ebola, then contact tracing costs may exceed the quarantine

cost. Therefore, a one-dimensional risk measure is insufficient to represent

the transmission potential of a passenger. The trade-off between quarantine

costs and passenger assignments efficiency is the fundamental objective for

Ebola entry screening studied in this work.

The primary contribution of this work is a mathematical model for multi-

objective sequential stochastic assignment problems (MOSSAP), which ex-

tends the classic single-objective sequential stochastic assignment problem

proposed by [19]. This problem, motivated by the Ebola entry screening

problem, requires passengers to be sequentially assigned to either the selectee

or the non-selectee category. The model of MOSSAP can be used to improve

the process for managing monitoring assignments for Ebola entry screening

at airports, as well as to prevent the spread of other epidemics in the future.

Pareto optimal policies for MOSSAP are generated by solving a sequence of

weighted objective sequential stochastic assignment problems. Mixed policies

for sequential stochastic assignment problems are defined formally and dis-

cussed in detail. Moreover, values of the multiple objective functions under

Pareto optimal policies for MOSSAP are provided with recursive equations.

These approaches can be applied directly to solve the general type of stochas-

tic sequential assignment problems with multiple objectives, as long as the

objective functions are in the form of accumulating a product-form reward

for each assignment (referred to as product-form MOSSAP). Simulation re-

sults using public health data from Ebola entry screening are presented to

illustrate operational implications of MOSSAP.
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1.1 Organization

This thesis is organized as follows. Chapter 2 describes the mathematical

model for MOSSAP admitting mixed policies. Chapter 3 presents the struc-

tural properties of MOSSAP, defines mixed policies for sequential stochastic

assignment problems, and simplifies MOSSAP into a sequence of weighted

objective sequential assignment problems (WOSA). Chapter 4 models WOSA

as a Markov decision process and a sequential stochastic assignment problem,

respectively, with optimal policies for WOSA proposed. Chapter 5 provides

the values of the objective functions under different Pareto optimal poli-

cies for MOSSAP. Chapter 6 presents simulation results using Ebola entry

screening data. Chapter 7 outlines operational implications and limitations

of MOSSAP. Chapter 8 summarizes the work with directions for future re-

search.
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CHAPTER 2

MULTI-OBJECTIVE SEQUENTIAL
STOCHASTIC ASSIGNMENT PROBLEM

This chapter describes the mathematical model for MOSSAP, which is moti-

vated by the Ebola entry screening problem at airports in the United States.

This model can be applied to the general type of product-form MOSSAP.

Passengers coming from or transferring through West African countries

with an Ebola outbreak are required to provide their recent travel and con-

tact histories before entering the United States [3]. This information will

be used as input to a prescreening system to assess each passenger with a

two-dimensional risk vector upon arrival, which consists of a primary risk

measure, defined as the probability of a passenger being sick, and a sec-

ondary risk measure, defined as the number of social contacts that need to

be covered by contact tracing if a passenger is not quarantined and becomes

sick. Bringing in this secondary risk measure here is motivated by the imple-

mentation of contact tracing in epidemic prevention and control. Note that

the disease status (i.e., whether a passenger is sick with Ebola) is not known

at the time of assignment. There are two categories for assignments based

on passengers’ assessed risk vectors: selectee and non-selectee category. Pas-

sengers assigned to the selectee category are to be quarantined, while those

assigned to the non-selectee category are not (though contact tracing may

be needed later). Therefore, only the capacity of the selectee category is

limited. A sequential policy that makes assignments upon passenger arrival

is defined as the on-line policy.

Several assumptions need to be clarified before formulating the MOSSAP

model for the Ebola entry screening problem. First, passenger assignments

are irrevocable and made on-line. Since passengers may not display symp-

toms for Ebola until entry into the United States, risk assessment cannot be

made until arrival. Moreover, passenger assignments must be made imme-

diately upon arrival at airports. Second, we assume passengers are assigned

during a fixed time period. Since the quarantine monitoring lasts for an in-
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cubation period (21 days for Ebola), the available quarantine space is reset

every 21 days. Under these assumptions, MOSSAP is formulated as a sequen-

tial stochastic assignment problem that assigns arriving passengers during an

21-day period. The limitations are discussed in Chapter 7.

2.1 Mathematical Model for MOSSAP

Consider T passengers to be sequentially assigned to one of the two categories

during the fixed time period. T is assumed to be known since the aircraft that

arrive to an airport each day are typically pre-scheduled and the number of

passenger enplanements is known from the check-in and boarding procedure

prior to landing. For the tth passenger, denote the primary and secondary

risk values by the random variables A(t) and B(t). Both the primary and

secondary risk measures are assumed independent and identically distributed

(IID) with known probability mass functions (pmf), denoted by pA(α) and

pB(β), respectively. The realized primary and secondary risk values of the tth

passenger, denoted by (αt, βt), become known upon the passenger’s arrival.

Denote the selectee category capacity by ηo ∈ Z+, which guarantees quaran-

tine space for up to ηo passengers.

A policy for MOSSAP defines a sequence of passenger assignments. Let

the binary random variable XΦ
t ∈ {0, 1} denote the tth passenger assignment

under policy Φ: XΦ
t = 1(0) denotes a selectee (non-selectee) assignment.

Policy Φ may be pure or mixed. Pure policies have only one level of random-

ness, which is generated by the joint distribution of the sequence of passenger

risk vectors. However, mixed policies have an additional level of randomness,

which is referred to as the randomness of the policy assignments. We will

discuss mixed policies in more detail in Chapter 3. The screening system out-

puts binary assignment variables {XΦ
t }Tt=1 sequentially. If a policy is pure,

then passenger assignments are deterministic given a sequence of passenger

risk vectors.

The objective function components are the expected number of passengers

assigned to the two categories and the expected number of social contacts to

be covered by contact tracing. These expected numbers show the trade-off

between quarantine costs (both the medical direct costs and societal indi-

rect tracing costs) and passenger assignments efficiency. On the one hand, if
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a healthy passenger is quarantined, the incurred medical costs and indirect

costs (such as disruption in personal life) are unnecessary. If a sick passenger

is not quarantined, the contact tracing costs incurred by his transmission

potential may exceed quarantine costs. On the other hand, passenger assign-

ments will be accurate when healthy passengers are not quarantined but sick

ones are. The costs incurred in these cases are of course warranted. Table 2.1

defines the five objective functions for MOSSAP, in the unit of number of

passengers/people, which are our chosen performance metrics for evaluating

a policy Φ. In Table 2.1, the expectations are taken with respect to the dis-

tributions of two passenger risk measures and the randomness of the policy

assignments, when applicable, i.e., for mixed policies only.

Next, we formulate MOSSAP as a discrete sequential stochastic optimiza-

Table 2.1: Five objective functions of MOSSAP.

Objective
function

Definition

Wns(Φ)
Expected number of right-screened healthy passengers
(i.e., healthy passengers assigned to the non-selectee category).

Ws(Φ)
Expected number of right-screened sick passengers
(i.e., sick passengers assigned to the selectee category).

V (Φ)
Expected number of over-screened passengers
(i.e., healthy passengers assigned to the selectee category).

U(Φ)
Expected number of under-screened passengers
(i.e., sick passengers assigned to the non-selectee category).

Ust(Φ)
Expected number of social contacts covered by contact tracing
(only incurred by under-screened passengers).

tion problem as follows.

Multi-objective Sequential Stochastic Assignment Problem (MOSSAP)

Instance:

T passengers;

pA(α), the probability mass function for passengers’ primary risk value;

pB(β), the probability mass function for passengers’ secondary risk value;

ηo ∈ Z+, the capacity of the selectee category.

Random Variables:

A(t), the assessed primary risk value for the tth passenger for t = 1, 2, . . . , T ,

with A(t) ∈ {A1, A2, . . . , AM} and 0 < A1 < A2 < . . . < AM < 1;

B(t), the assessed secondary risk value for the tth passenger, with B(t) ∈
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{B1, B2, . . . , BK} ⊂ Z+ and B1 < B2 < . . . < BK .

Assignment Variables:

XΦ
t , the binary assignment of the tth passenger under policy Φ: if XΦ

t = 1(0),

then the passenger is assigned to the selectee (non-selectee) category.

Objective: Find an admissible on-line policy Φ (may be a mixed policy) that

assigns passengers to one of the two categories {XΦ
t ∈ {0, 1}}Tt=1, such that

the expected number of passengers assigned to the correct category is maxi-

mized, the expected number of passengers assigned to the wrong category is

minimized, and the expected number of social contacts covered by contact

tracing is minimized. More precisely, the on-line policy Φ optimizes

Wns(Φ) = E[
T∑
t=1

(1−XΦ
t )(1−A(t))] (max

Φ∈Ψ
),

Ws(Φ) = E[
T∑
t=1

XΦ
t A(t)] (max

Φ∈Ψ
),

V (Φ) = E[
T∑
t=1

XΦ
t (1−A(t))] (min

Φ∈Ψ
),

U(Φ) = E[
T∑
t=1

(1−XΦ
t )A(t)] (min

Φ∈Ψ
),

Ust(Φ) = E[
T∑
t=1

(1−XΦ
t )A(t)B(t)] (min

Φ∈Ψ
),

(2.1)

where (maxΦ∈Ψ) and (minΦ∈Ψ) specify whether the optimization is a max-

imization or a minimization for each objective function. Ψ denotes the set

of admissible policies, referred to as feasible region. Let SL(Φ) ,
∑T

t=1X
Φ
t

denote the total number of passengers assigned to the selectee category under

policy Φ, then

Ψ , {Φ : SL(Φ) ≤ ηo} = ∪ηoη=0Ψη, (2.2)

i.e., the feasible region consists of ηo + 1 mutually exclusive and exhaustive

sub-feasible regions, defined as Ψη , {Φ : SL(Φ) = η}, indexed by η =

0, 1, . . . , ηo.

MOSSAP has multiple objectives that typically do not admit the same

optimal policy. Therefore, the feasible region of MOSSAP consists of Pareto

optimal policies, as defined by Definition 1.
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Definition 1. A policy Φ ∈ Ψ is said to be Pareto optimal for MOSSAP

if there does not exist another policy Φ′ ∈ Ψ such that Wns(Φ) ≤ Wns(Φ
′),

Ws(Φ) ≤ Ws(Φ
′) and V (Φ) ≥ V (Φ′), U(Φ) ≥ U(Φ′), Ust(Φ) ≥ U s(Φ′), with

at least one strict inequality.

For multi-objective optimization problems, Pareto optimal solutions are

typically not unique. In Chapter 3, we provide an approach for generating

the set of Pareto optimal policies for MOSSAP.
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CHAPTER 3

STRUCTURAL PROPERTIES AND AN
APPROACH FOR MOSSAP

This chapter presents the structural properties of MOSSAP, which will be

used to derive Pareto optimal policies. First, we show that in each sub-

feasible region Ψη, the five objective functions in (2.1) are reduced to two

objective functions. Then, we prove that the set of Pareto optimal policies for

MOSSAP can be obtained from Pareto optimal policies for a sequence of bi-

objective sequential stochastic assignment problems (or simply, bi-objective

optimization problems). Lastly, weighted sum method is used to generate

Pareto optimal policies for each bi-objective optimization problem by solving

a sequence of weighted objective sequential stochastic assignment problems.

3.1 MOSSAP and Bi-objective Optimization Problems

Theorem 1 states that the five objective functions of MOSSAP can be sim-

plified in each sub-feasible region.

Theorem 1. MOSSAP can be reduced to a bi-objective sequential stochas-

tic assignment problem in each sub-feasible region Ψη, η = 0, 1, . . . , ηo. The

two objective functions to be maximized are Rs(Φ) , E[
∑T

t=1X
Φ
t A(t)] and

Rd(Φ) , E[
∑T

t=1X
Φ
t A(t)B(t)].

Proof. In each sub-feasible region Φη, the capacity constraint is active with

η (i.e., SL(Φ) =
∑T

t=1X
Φ
t = η), which implies

max
Φ∈Ψη

Wns(Φ)⇔ min
Φ∈Ψη

V (Φ) = max
Φ∈Ψη

E[
T∑
t=1

XΦ
t A(t)]− η,

max
Φ∈Ψη

Ws(Φ)⇔ min
Φ∈Ψη

U(Φ) = max
Φ∈Ψη

E[
T∑
t=1

XΦ
t A(t)].
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Rewrite the objective function Ust(Φ) defined by (2.1) as

min
Φ∈Ψη

Ust(Φ) = min
Φ∈Ψη

E[
T∑
t=1

A(t)B(t)−
T∑
t=1

XΦ
t A(t)B(t)] = max

Φ∈Ψη
E[

T∑
t=1

XΦ
t A(t)B(t)].

Define

Rs(Φ) , E[
T∑
t=1

XΦ
t A(t)], Rd(Φ) , E[

T∑
t=1

XΦ
t A(t)B(t)]. (3.1)

Thus, the original MOSSAP is reduced to maximizing the two objective

functions defined by (3.1) in each sub-feasible region.

By Theorem 1, dividing the feasible region Ψ into mutually exclusive and

exhaustive sub-feasible regions results in (ηo + 1) bi-objective optimization

problems

max
Φ∈Ψη

Rs(Φ), max
Φ∈Ψη

Rd(Φ), (3.2)

for η = 0, 1, 2, . . . , ηo. Each of these problems is referred to as a bi-objective

optimization problem indexed by η. Considering that maxΦ∈Ψη Rs(Φ) and

maxΦ∈Ψη Rd(Φ) typically do not admit the same optimal policy, we seek

Pareto optimal policies for each bi-objective optimization problem indexed

by η, as defined by Definition 2.

Definition 2. A policy Φ ∈ Ψη is said to be Pareto optimal for the bi-

objective optimization problem indexed by η if there does not exist another

policy Φ′ ∈ Ψη such that Rs(Φ) ≤ Rs(Φ
′), Rd(Φ) ≤ Rd(Φ

′) with at least one

strict inequality, for η = 0, 1, 2, . . . , ηo.

Theorem 2 shows the mapping relation between Pareto optimal policies

for MOSSAP and Pareto optimal policies for the sequence of bi-objective

optimization problems.

Theorem 2. The set of Pareto optimal policies for MOSSAP is a subset of

the set of Pareto optimal policies for the sequence of bi-objective optimization

problems, indexed by η = 0, 1, . . . , ηo.

Proof. We prove this by contradiction. Let Φ be a Pareto optimal pol-

icy for MOSSAP and suppose that Φ is not Pareto optimal for any bi-

objective optimization problem indexed by η = 0, 1, . . . , ηo. From the ex-

clusive and exhaustive divisions of the feasible region (2.2), there exists some
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η ∈ {0, 1, . . . , ηo} such that Φ ∈ Ψη. Then there exists Φ′ ∈ Ψη such that

Rs(Φ
′) ≥ Rs(Φ), Rd(Φ

′) ≥ Rd(Φ) with at least one strict inequality. Using

these two inequalities in (2.1) leads to

Wns(Φ
′) ≥ Wns(Φ), Ws(Φ

′) ≥ Ws(Φ),

V (Φ′) ≤ V (Φ), U(Φ′) ≤ U(Φ), Ust(Φ
′) ≤ Ust(Φ),

with at least one strict inequality, which is a contradiction. Therefore, Φ is

Pareto optimal for the bi-objective optimization problem indexed by η.

For the reverse direction, not every Pareto optimal policy for the sequence

of bi-objective optimization problems is Pareto optimal for MOSSAP. How-

ever, if certain conditions are satisfied, a bijection between Pareto optimal

policies for MOSSAP and Pareto optimal policies for the sequence of bi-

objective optimization problems can be established. We provide such a con-

dition (not necessarily tight) in Propositions 1 and 2. Proposition 1 shows

that each bi-objective optimization problem generates at least one Pareto

optimal policy for MOSSAP, and hence, the division of feasible region Ψ into

ηo + 1 sub-feasible regions is not redundant. Moreover, Proposition 1 is a

sufficient condition for determining whether a Pareto optimal policy for some

bi-objective optimization problem is Pareto optimal for MOSSAP.

Proposition 1. If a Pareto optimal policy Φ∗η ∈ Ψη for the bi-objective

optimization problem indexed by η satisfies Rs(Φ
∗
η) = maxΦ∈Ψη Rs(Φ) for

any η = 0, 1, . . . , ηo, then Φ∗η is a Pareto optimal policy for MOSSAP.

Proof. See Appendix A.1.

Proposition 2 provides a sufficient condition under which all Pareto op-

timal policies for the sequence of bi-objective optimization problems satisfy

the condition given in Proposition 1. Therefore, a bijection between these

two sets of Pareto optimal policies can be established under this condition,

and hence, MOSSAP may be transformed into a sequence of bi-objective

optimization problems.

Proposition 2. If realized values of A(t) and B(t) (i.e., {Am}Mm=1 and

{Bk}Kk=1) satisfy the following condition:

AmBK ≤ Am+1B1, for all m = 1, 2, . . . ,M − 1, (3.3)
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then every Pareto optimal policy for the bi-objective optimization problem

indexed by η achieves maxΦ∈Ψη Rs(Φ), for all η = 0, 1, . . . , ηo.

Proof. See Appendix A.2.

Note that condition (3.3) is not a necessary condition. Theorem 3 formally

states the bijection between Pareto optimal policies for MOSSAP and Pareto

optimal policies for the sequence of bi-objective optimization problems under

condition (3.3). Since bi-objective optimization problems are easier to solve

and analyze compared to multi-objective optimization problems, we propose

to generate the set of Pareto optimal policies for MOSSAP by solving the

sequence of bi-objective optimization problems in (3.2).

Theorem 3. If condition (3.3) is satisfied, then every Pareto optimal pol-

icy for the sequence of bi-objective optimization problems indexed by η =

0, 1, . . . , ηo, is a Pareto optimal policy for MOSSAP.

Proof. The result is immediate from Propositions 1 and 2.

3.2 Bi-objective Optimization Problems and WOSA

We use the weighted sum method to generate Pareto optimal policies for each

bi-objective optimization problem. The weighted sum method scales the two

objective functions by a non-negative weight vector and sums them up into

a weighted objective function.

Let w = (w1, w2) denote the non-negative weight vector for Rs(Φ) and

Rd(Φ) of the bi-objective optimization problem indexed by η, with w1 ≥
0, w2 ≥ 0, w1 + w2 > 0 (with abuse of notation, denote this by w ≥ 0).

Using the weighted sum method, Rs(Φ) and Rd(Φ) are combined into a single

weighted objective function. The maximization of this objective function over

the sub-feasible region Ψη is referred to as the weighted objective sequential

assignment problem (WOSA) indexed by η and w:

max
Φ∈Ψη

Rw(Φ) = max
Φ∈Ψη

(w1Rs(Φ) + w2Rd(Φ)) = max
Φ∈Ψη

E[
T∑
t=1

XΦ
t (w1A(t)+w2A(t)B(t))],

(3.4)

for η = 0, 1, . . . , ηo and w ≥ 0. If one of the weight vector components is zero,

then Rw(Φ) reduces to Rs(Φ) (w2 = 0) or Rd(Φ) (w1 = 0). The sequence
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of WOSA indexed by η and all w ≥ 0 is referred to as WOSA-η. A policy

Φ ∈ Ψη that maximizes the objective function (3.4) for some w ≥ 0 is said

to be optimal for WOSA-η.

Note that the weighted sum method in general does not guarantee a bijec-

tion between Pareto optimal policies for the bi-objective optimization prob-

lem indexed by η and optimal policies for WOSA-η. If the two objective

functions are both affine and the feasible region is convex, then such a bi-

jection holds [20]. Since neither redundant nor omitted policies are desired,

if we are to benefit from the single objective optimization in WOSA-η, it is

essential to establish a bijection. In the following, we use a straightforward

pruning method to exclude redundant policies from the set of optimal poli-

cies for WOSA-η. Convexity of mixed policies in each sub-feasible region Ψη

and affinity of Rs(Φ) and Rd(Φ) are provided to guarantee that no policies

are omitted using the weighted sum method.

Definition 3 limits the set of optimal policies for WOSA-η to a subset,

referred to as M-optimal policies for WOSA-η.

Definition 3. A policy Φ ∈ Ψη is said to be M-optimal for WOSA-η if one

of the following mutually exclusive and exhaustive conditions is satisfied, for

η = 0, 1, . . . , ηo:

(a) policy Φ maximizes the objective function (3.4) for some w > 0;

(b) policy Φ maximizes the objective function (3.4) for w = (w1, 0), w1 > 0,

and

Rd(Φ) = max
Φ′∈Ληs

Rd(Φ
′), with Λη

s , {Φ′ ∈ Ψη : Rs(Φ
′) = Rs(Φ)};

(c) policy Φ maximizes the objective function (3.4) for w = (0, w2), w2 > 0,

and

Rs(Φ) = max
Φ′∈Ληd

Rs(Φ
′), with Λη

d , {Φ
′ ∈ Ψη : Rd(Φ

′) = Rd(Φ)}.

Moreover, a policy Φ ∈ Ψ is said to be M-optimal for WOSA if there exists

some η ∈ {0, 1, . . . , ηo} such that Φ is M-optimal for WOSA-η.
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3.2.1 Mixed Policies for Stochastic Sequential Assignment
Problems

Since the formulation of MOSSAP defined in (2.1) is discrete and policy

Φ consists of a sequence of binary passenger assignments, the convexity of

the set of pure policies is not straightforward. Instead, we consider the

set of mixed policies in each sub-feasible region, which will be shown to

be a convex set (pure policies are considered as a special kind of mixed

policies, and hence, included in the set of mixed policies). We will also

show that Rs(Φ) and Rd(Φ) defined in (3.1) of the bi-objective optimization

problem are both affine functions of Φ. Therefore, a bijection between Pareto

optimal policies for the bi-objective optimization problem indexed by η and

M-optimal policies for WOSA-η can be established.

First, we extend the sub-feasible region Ψη of MOSSAP to Ψη+ , {Φ :

E[
∑T

t=1 X
Φ
t ] = η} for η = 0, 1, . . . , ηo, where the expectation is taken with

respect to the randomness of the policy assignments XΦ
t (i.e., E[

∑T
t=1 X

Φ
t ] =

η holds for any sequence of passenger risk vectors). Note that for Φ ∈ Ψη,∑T
t=1X

Φ
t = η, and hence, Ψη ⊂ Ψη+. Moreover, if Φ is a pure policy,

then E[
∑T

t=1X
Φ
t ] = η and

∑T
t=1X

Φ
t = η are equivalent, which means {Φp :

Φp is pure and Φp ∈ Ψη} = {Φp : Φp is pure and Φp ∈ Ψη+}. In Chapter 4,

we will show that optimal policies for WOSA are all pure policies, and hence,

maximizing Rs(Φ) and Rd(Φ) over Ψη and Ψη+ are equivalent. Therefore,

the extension of Ψη+ will not result in redundant policies. We only use Ψη+

given its convexity.

Next, we do a small example as a warm-up for the formal definition of

mixed policies.

Example 1. Suppose there are T = 6 passengers to be assigned with an

active selectee capacity of η = 2. Consider a particular sequence of real-

ized passenger risk vectors {(A(t),B(t))}6
t=1 = {(αt, βt)}6

t=1. A mixed policy

Φ ∈ Ψ2+ is determined by a sequence of probabilities, for example, χΦ =

{χΦ
t }6

t=1 = {0, 0.7, 0, 0.5, 0.5, 0.3} for the particular sequence of {(αt, βt)}6
t=1.

Each component of χΦ is the probability of XΦ
t = 1. In this example, for

instance, P
(
XΦ

2 = 1|{(A(t),B(t))}2
t=1 = {(αt, βt)}2

t=1

)
= χ2 = 0.7 (at time

t = 2, only risk vectors of the first two passengers have been revealed). Since

E[
∑6

t=1 X
Φ
t |{(A(t),B(t))}6

t=1 = {(αt, βt)}6
t=1] =

∑6
t=1 P(XΦ

t = 1|{(A(t′),B(t′))}tt′=1 =

{(αt′ , βt′)}tt′=1) = 0.7 + 0.5 + 0.5 + 0.3 = 2, then Φ ∈ Ψ2+.

15



In the following, we will define mixed policies in Ψη+ using χΦ. The profile

of a mixed policy Φ is defined by a sequence of T random variables XΦ
t ∈

[0, 1], and is denoted by PΦ = {XΦ
t }Tt=1. Since the passenger assignment is

sequential, at each time t, only the realized risk vectors of passengers that

have arrived up to time t are known. Therefore,

XΦ
t , P(XΦ

t = 1|{(A(t′),B(t′))}tt′=1), for t = 1, 2, . . . , T. (3.5)

That is, XΦ
t is the probability of the tth passenger to be assigned to the

selectee category under policy Φ, given the sequence of passenger risk vectors

till time t. The realized value of PΦ is a sequence of T probabilities, denoted

by χΦ = {χΦ
t }Tt=1, where

χΦ
t , P(XΦ

t = 1|{(A(t′),B(t′))}tt′=1 = {(αt′ , βt′)}tt′=1), for t = 1, 2, . . . , T.

(3.6)

Clearly, χΦ
t ∈ [0, 1]. The profile PΦ = {XΦ

t }Tt=1 is dependent on the sequence

of passenger risk vectors {(A(t),B(t))}Tt=1. The realizations of {XΦ
t }Tt=1 for

all sequences of realized passenger risk vectors determine a mixed policy Φ.

There are two levels of randomness in a mixed policy Φ, which are the ran-

domness of the sequence of passenger risk vectors generated by the joint dis-

tribution of {(A(t),B(t))}Tt=1 and the randomness of the policy assignments

generated by χΦ. Consider a sequence of realized passenger risk vectors

{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1. Let the corresponding realization of PΦ be

χΦ = {χΦ
t }Tt=1. Then, there exists a corresponding pure policy Φp with de-

terministic assignments X
Φp
t = 1χΦ

t >0 for t = 1, 2, . . . , T , where 1χΦ
t >0 is the

indicator function. Then, conditioning on {(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1,

P
(
XΦ
t = 1

)
=

χΦ
t if X

Φp
t = 1,

0, if X
Φp
t = 0,

(3.7)

and hence, the non-zero χΦ
t is the conditional probability of the XΦ

t = 1 given

that X
Φp
t = 1 (if XΦ

t = 0, then X
Φp
t = 0 and the conditional probability is not

well-defined) for {(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1. Therefore, χ captures the

randomness of the policy assignments. If χΦ
t ∈ {0, 1}, then the assignment

XΦ
t becomes deterministic. If χΦ

t ∈ {0, 1} for all t = 1, 2, . . . , T and all

{(αt, βt)}Tt=1, then policy Φ becomes pure.
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Next, we characterize the set of all admissible mixed policies in Ψη+ by

giving constraints for PΦ. For χΦ, since Φ ∈ Ψη+, then E[
∑T

t=1 X
Φ
t ] = η.

Therefore, from (3.6),

T∑
t=1

χΦ
t =

T∑
t=1

P(XΦ
t = 1|{(A(t′),B(t′))}tt′=1 = {(αt′ , βt′)}tt′=1)

=E[
T∑
t=1

XΦ
t |{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1] = η,

which holds for any sequence of realized passenger risk vectors {(αt, βt)}Tt=1.

Therefore, profiles for all admissible mixed policies in Ψη+ form a convex set

defined by

Ξη ,
{
PΦ = {XΦ

t }Tt=1 :
T∑
t=1

XΦ
t = η, for XΦ

t ∈ [0, 1]
}
. (3.8)

Let Φ1 ∈ Ψη+ and Φ2 ∈ Ψη+ denote two mixed policies. Then for any

0 < λ < 1, Φλ = λΦ1 + (1− λ)Φ2 is defined by the profile PΦλ = {XΦλ
t }Tt=1,

PΦλ , λPΦ1 + (1− λ)PΦ2 , (3.9)

where PΦ1 and PΦ2 denote the profiles for Φ1 and Φ2, respectively. It is

clear to see that PΦλ ∈ Ξη and Φλ ∈ Ψη+. Therefore, Ψη+ is convex for all

η = 0, 1, . . . , ηo.

We need Proposition 3 for establishing the bijection between Pareto op-

timal policies for the bi-objective optimization problem indexed by η and

M-optimal policies for WOSA-η.

Proposition 3. The objective functions Rs(Φ) and Rd(Φ) of the bi-objective

optimization problem are both affine functions of Φ ∈ Ψη+, for η = 0, 1, . . . , T .

Proof. See Appendix A.3.

Theorem 4 formally states the bijection between Pareto optimal policies for

the bi-objective optimization problem indexed by η and M-optimal policies

for WOSA-η.

Theorem 4. There is a bijection between the set of Pareto optimal policies

for the bi-objective optimization problem indexed by η and the set of M-

optimal policies for WOSA-η.
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Proof. See Appendix A.4.

3.3 An Approach for MOSSAP

Given these two bijections in Theorems 3 and 4, MOSSAP may be solved

as follows. First, MOSSAP is broken down into a sequence of bi-objective

optimization problems, indexed by η = 0, 1, . . . , ηo. Then, each bi-objective

optimization problem indexed by η is solved by generating M-optimal policies

for WOSA-η. Theorem 5 guarantees this method will return Pareto optimal

policies for MOSSAP by establishing a bijection between such policies and

the set of M-optimal policies for WOSA under condition (3.3).

Theorem 5. If condition (3.3) is satisfied, then there is a bijection between

the set of Pareto optimal policies for MOSSAP and the set of M-optimal

policies for WOSA.

Proof. The result is immediate from Theorems 3 and 4.

If condition (3.3) is not satisfied, M-optimal policies for WOSA include

the Pareto optimal policies for MOSSAP, as well as some redundant policies.

In this case, an extra pruning step is needed to extract the Pareto optimal

policies for MOSSAP from the set of M-optimal policies for WOSA. The

discussion of such a pruning algorithm is not covered in this thesis and is left

for future work. Instead, we provide an optimal policy for WOSA indexed

by η and w. Additionally, values of the objective functions of MOSSAP

under such policies are provided in Chapter 5. These results can be used

by brute-force pruning. For brute-force pruning, values of multiple objective

functions under all possible policies are enumerated for comparison.
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CHAPTER 4

OPTIMAL POLICIES FOR WOSA

This chapter provides optimal policies for WOSA indexed by η and w by

formulating WOSA as a Markov decision process (MDP) and a sequential

stochastic assignment problem (SSAP), respectively. We prove that opti-

mal policies for WOSA in Ψη+ are pure policies when T is fixed and finite.

Therefore, they lie in Ψη for η = 0, 1, . . . , T , when T is fixed and finite. By

Definition 3, if the weight vector w is positive, then the optimal policy for

WOSA indexed by η and w is M-optimal for WOSA. If one of the weight vec-

tor components is zero, an extra pruning step is needed to select M-optimal

policies for WOSA.

4.1 Markov Decision Process Model for WOSA

WOSA indexed by η and w can be formulated as a T + 1 stage MDP, for

which the state at each stage, denoted by the random variable S(t), is defined

as the remaining selectee capacity before the tth passenger assignment for

t = 1, 2, . . . , T + 1. By this definition, the realized state at each stage is

s(t) ∈ S = {0, 1, 2, . . . , η}, with s(1) = η. Stage T + 1 is the final stage after

all passenger assignments.

For a mixed policy Φ ∈ Ψη+ with profile PΦ, passenger assignments are

determined by PΦ = {XΦ
t }Tt=1, which depends on the sequence of passenger

risk vectors {(A(t),B(t))}Tt=1. In the MDP formulation, XΦ only depends

on the state at stage t and the risk vector of the tth passenger. That is,

XΦ
t = P

(
XΦ
t = 1|S(t), (A(t),B(t))

)
. Moreover, the transition probability of
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the Markov chain is given by

P (S(t+ 1)|S(t)) =


XΦ
t , if S(t+ 1) = S(t)− 1,

1−XΦ
t , if S(t+ 1) = S(t),

0, otherwise,

for t = 1, 2, . . . , T . Therefore, state transitions only occur if XΦ
t = 1, which

happens with probability XΦ, otherwise, states remain the same.

The objective function Rw(Φ) in (3.4) accumulates a reward at each stage

over a finite horizon T . Define the assignment reward as

κt(S(t), (A(t),B(t)), XΦ
t ) , XΦ

t (w1A(t)+w2A(t)B(t))1S(t)>0, t = 1, 2, . . . , T,

(4.1)

where 1S(t)>0 is the indicator function. Thus, if a passenger is assigned to

the non-selectee category or there is no selectee capacity, the reward is zero.

Define the value function Πt(s(t)) at stage t = 1, 2, . . . , T as the optimal

expected reward given the realized state S(t) = s(t), which is the maximum

of the immediate expected reward for assignment XΦ
t plus the optimal ex-

pected reward for assignments of the remaining T − t passengers given by

the recursive value functions,

Πt(s(t)) = max
Φ∈Ψη

E

[
T∑
j=t

κj(S(j), (A(j),B(j)), XΦ
j )|S(t) = s(t)

]

= max
Φ∈Ψη

E

[
κt(s(t), (A(t),B(t)), XΦ

t ) +
T∑

j=t+1

κj(S(j), (A(j),B(j)), XΦ
j )|S(t) = s(t)

]
= max
XΦ
t ∈[0,1]

E
[
XΦ
t (w1A(t) + w2A(t)B(t)) + Πt+1(s(t)−XΦ

t )
]
. (4.2)

Consider the tth passenger with a realized risk vector as (A(t),B(t)) = (αt, βt)

and denote the realized value of XΦ
t by χΦ

t . Then from (4.2),

Πt (s(t)|(A(t),B(t)) = (αt, βt)) = max
χΦ
t ∈[0,1]

E
[
XΦ
t (w1αt + w2αtβt) + Πt+1(s(t)−XΦ

t )
]

= max
χΦ
t ∈[0,1]

(
χΦ
t (w1αt + w2αtβt + Πt+1(s(t)− 1)) + (1− χΦ

t )Πt+1(s(t))
)

= max
χΦ
t ∈[0,1]

(
χΦ
t (w1αt + w2αtβt + Πt+1(s(t)− 1)− Πt+1(s(t))) + Πt+1(s(t))

)
.

(4.3)
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Note that if χΦ
t = 0 or 1, then XΦ

t = 0 or 1 is a deterministic passenger

assignment. Value functions at each stage are computed using dynamic pro-

gramming, with the optimal value for Rw(Φ) given by Π1(η), and boundary

conditions given by

ΠT+1(s(T + 1)) = 0, for all s(T + 1) ∈ S,

Πt(0) = 0, for all t = 1, 2, . . . , T + 1.

The value functions are zero at stage T+1 and realized state s(t) = 0. Taking

the derivative with respect to χΦ
t on the right-hand side of (4.3) leads to the

optimal value of χΦ
t at each stage

χΦ
t =

1, if w1αt + w2αtβt > Πt+1(s(t))− Πt+1(s(t)− 1),

0, if w1αt + w2αtβt ≤ Πt+1(s(t))− Πt+1(s(t)− 1),
(4.4)

which indicates the optimal mixed policy is pure. Therefore, the optimal

passenger assignment at each stage is deterministic and binary, and hence,

the optimal policy is in the sub-feasible region Ψη. From (3.6), the optimal

passenger assignment is given by

XΦ
t =

1, if w1αt + w2αtβt > Πt+1(s(t))− Πt+1(s(t)− 1) and s(t) > 0,

0, if w1αt + w2αtβt ≤ Πt+1(s(t))− Πt+1(s(t)− 1) or s(t) = 0.

(4.5)

Denote the combined risk value for the tth passenger by the random variable

G(t), defined as

G(t) , w1A(t) + w2A(t)B(t). (4.6)

Then, the realized combined risk value of the tth passenger is given by

γt , w1αt + w2αtβt. Equation (4.5) reveals that the optimal policy is deter-

mined by thresholds for the passenger’s combined risk at each stage, which

are computed using the value functions (4.3) for a fixed and finite T . To

see the computational effort based on this MDP for WOSA indexed by η

and w, note that both A(t) and B(t) are discrete random variables, and

hence, the two-dimensional risk vector for each passenger can only take on a

value from a finite set, {A1, A2, . . . , AM}×{B1, B2, . . . , BK}, with cardinality

bounded above by M × K. Therefore, the time complexity for computing

the expectations in value functions is O(MK) (since the optimal policy is

21



pure). Moreover, capacity η is bounded above by T . Therefore, the compu-

tational efforts for solving the MDP using dynamic programming will grow

in O(T 2MK) time and O(T 2) space.

4.2 Sequential Stochastic Assignment Problem Model

for WOSA

[19] introduces the sequential stochastic assignment problem, where T work-

ers with known success rates τ1 ≤ τ2 ≤ . . . ≤ τT are to be assigned to T

sequentially arriving tasks with values {Ct}Tt=1 (random variables) revealed

upon arrival. The objective is to maximize the total expected reward E[
∑T

t=1 τjtCt],
where jt is the index of the worker assigned to perform the tth task with value

Ct. The authors propose an optimal pure policy based on recursive equations

to compute threshold values for each task assignment. This policy motivated

the optimal policy proposed in this work, which considers a more general

type of mixed policies.

To model WOSA admitting mixed policies as an SSAP, first we introduce

the extension of SSAP with a fixed success rate sum to show that optimal

mixed policies for WOSA are pure policies. For the SSAP with a fixed suc-

cess rate sum, the sum of success rates of T workers is fixed as
∑T

j=1 τj = Υ

for 0 ≤ Υ ≤ T , while individual success rates can be reallocated upon every

task arrival, with constraints 0 ≤ τj ≤ 1, j = 1, 2, . . . , T . Moreover, there

exists a corresponding SSAP with almost-binary success rates for each SSAP

with a fixed success rate sum Υ, where bΥc workers have a success rate one,

one worker has a success rate Υ − bΥc, and T − 1 − bΥc workers have a

success rate zero (b·c denoting the floor function, bxc = maxn∈Z n ≤ x).

Proposition 4 shows the relation between the optimal policy for the SSAP

with a fixed success rate sum and the optimal policy for the corresponding

SSAP with almost-binary success rates.

Proposition 4. The optimal policy for the SSAP with a fixed success rate

sum as
∑T

j=1 τj = Υ for 0 ≤ Υ ≤ T is the same as the optimal policy for the

corresponding SSAP with almost-binary success rates.

Proof. See Appendix A.5.
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WOSA indexed by η and w may be modeled as an SSAP as follows. The tth

passenger with the combined risk G(t) corresponds to an arriving task with

value G(t). The objective of WOSA is to maximize the expected reward for

the T passenger assignments, E[
∑T

t=1X
Φ
t G(t)]. For a mixed policy Φ ∈ Ψη+

with profile PΦ = {XΦ
t }Tt=1 ∈ Ξη, from the definition of Rw(Φ) (3.4),

Rw(Φ) = E[
T∑
t=1

XΦ
t (w1A(t) + w2A(t)B(t))]

= E

[
E[

T∑
t=1

XΦ
t (w1A(t) + w2A(t)B(t))|{(A(t),B(t))}Tt=1]

]

= E

[
T∑
t=1

P
(
XΦ
t = 1|{(A(t′),B(t′))}tt′=1

)
(w1A(t) + w2A(t)B(t))

]
(3.5),(4.6)

= E

[
T∑
t=1

XΦ
t G(t)

]
, (4.7)

where for the second equality, the inner and outer expectations are taken

with respect to {XΦ
t }Tt=1 and the joint distribution of {(A(t),B(t))}Tt=1, re-

spectively. Let XΦ
t for t = 1, 2, . . . , T correspond to the success rates of T

workers. Hence, from (4.7), assignment of the tth passenger under policy Φ

corresponds to the tth task with value G(t) being assigned to a worker with

the success rate XΦ
t . Since

∑T
t=1XΦ

t = η, then the optimal expected reward

given by (4.7) is the same as the optimal expected reward under the SSAP

with a fixed success rate sum as η. From Proposition 4, the optimal policy

is the same as the optimal policy for the corresponding SSAP with almost-

binary success rates. Since η ∈ Z+, then the optimal policy for WOSA

indexed by η and w is a pure policy with binary assignments, and hence lies

in the sub-feasible region Ψη.

Denote the cumulative distribution function (cdf) for G(t) by FG(γ). Since

A(t) and B(t) are discrete, G(t) is also discrete. Denote these discrete values

by 0 < G1 < G2 < . . . < GL (G0 = 0 and FG(GL) = 1). Applying the law of

total probability, pmf pG(γ) for G(t) is

pG(γ) =
∑
α

P(A(t) = α)P(G(t) = γ|A(t) = α)

=
∑
α

pA(α)pB(
1

w2

(
γ

α
− w1)), for w2 > 0. (4.8)
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Let η(t) denote the remaining selectee capacity before the tth passenger as-

signment for t = 1, 2, . . . , T , with η(1) = η. Now we can apply the optimal

policy given by [19] to obtain the optimal policy for WOSA. We state the

optimal policy in a way that is trimmed particularly for the SSAP with dis-

crete distributions. For the tth passenger assignment, there exist threshold

values

−∞ = a0,t ≤ a1,t ≤ . . . ≤ aT−t+1,t = +∞, (4.9)

obtained using the recursive equations

ai,t = (

gli,t+1∑
γ=gui−1,t+1

γpG(γ)) + ai−1,t+1FG(ai−1,t+1) + ai,t+1(1−FG(ai,t+1)), (4.10)

where

gui−1,t+1 , min
l′∈{1,2,...,L}

Gl′ > ai−1,t+1, gli,t+1 , max
l′∈{1,2,...,L}

Gl′ ≤ ai,t+1,

(4.11)

for i = 1, 2, . . . , T − t and t = 0, 1, 2, . . . , T (t = 0 has no passenger arrival

and describes the initial stage with T passengers to be assigned). If G(t) ∈
(ai−1,t, ai,t] for some i ≥ T − t − η(t) + 2, then the tth passenger is assigned

to the selectee category. Specifically, this policy denoted by Φ1 is given by

XΦ1
t =

1, if G(t) > aT−t−η(t)+1,t,

0 otherwise,
(Φ1)

η(t+ 1) = η(t)−XΦ1
t , t = 1, 2, . . . , T.

Theorem 6 states that policy (Φ1) is optimal for WOSA indexed by η and

w.

Theorem 6. Policy (Φ1) with threshold values defined by (4.10) maximizes

the objective function of WOSA indexed by η and w defined in (3.4), when

T passengers are to be assigned. Moreover, the threshold values in the initial

stage, {ai,0}Ti=1, are the expected combined risk values for the T passengers.

Proof. See Appendix A.6.

Policy (Φ1), referred to as the SSAP optimal policy, reveals that the op-

timal policy for WOSA is determined by thresholds for each passenger’s
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combined risk value, which is consistent with the optimal policy from the

MDP model (4.5). Corollary 1 provides the optimal value of the weighted

objective function of WOSA indexed by η and w.

Corollary 1. The threshold values in the initial stage, {ai,0}Ti=T−η+1 (4.10),

are the expected combined risk values for the η passengers assigned to the

selectee category, when T passengers are to be assigned. Therefore,

max
Φ∈Ψη

Rw(Φ) = max
Φ∈Ψη

E[
T∑
t=1

XΦ
t G(t)] =

T∑
i=T−η+1

ai,0. (4.12)

Proof. The result follows from Theorem 6, where passengers with the η

largest combined risk values are expected to be assigned to the selectee cat-

egory under policy (Φ1).

Since each passenger’s combined risk value is discrete and can only assume

one of the L values {G1, G2, . . . , GL} (L ≤ MK), the time complexity to

compute each threshold value in (4.10) for the SSAP optimal policy is O(L).

For the tth passenger out of T passengers, T −t threshold values are required.

Therefore, the total time complexity is O(T 2L) and the space requirement is

O(T 2).
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CHAPTER 5

MOSSAP UNDER THE SSAP OPTIMAL
POLICY

This chapter provides values of the five objective functions of MOSSAP under

the SSAP optimal policy (Φ1). We compute values of the two objective

functions of the bi-objective optimization problems under policy (Φ1) with

different η and w, which will be used to compute values of the five objective

functions of MOSSAP. These values of the objective functions capture the

trade-off between Pareto optimal policies for MOSSAP.

5.1 Bi-objective Optimization Problems under Policy

(Φ1)

Denote the ith smallest combined risk value of T passengers to be assigned

by the random variable Ĝ(i)
T . Then from Theorem 6, E[Ĝ(i)

T ] = ai,0, for i =

1, 2, . . . , T with {ai,0}Ti=1 defined by (4.10). Denote the primary risk value

resulting in Ĝ(i)
T by the random variable Â(i)

T , with the subscript indicating

the number of passengers to be assigned. Define bi,t , E[Â(i)
T−t], for i =

1, 2, . . . , T − t and t = 0, 1, . . . , T − 1. Therefore,

bi,0 = E[Â(i)
T ] = E

[
E[Â(i)

T |Ĝ
(i)
T ]
]
, (5.1)

and {bi,0}Ti=1 are the expected primary risk values of T passengers to be

assigned.

Proposition 5 gives the recursive equations for computing {bi,t}.

Proposition 5. The expected value of Â(i)
T−t, denoted by bi,t, is given by the
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recursive equations

bi,t = (

gli,t+1∑
γ′=gui−1,t+1

E[A(t)|G(t) = γ′]pG(γ
′))+bi−1,t+1FG(ai−1,t+1)+bi,t+1(1−FG(ai,t+1)),

(5.2)

with b0,t = 0 and bT−t+1,t = 1 for i = 1, 2, . . . , T − t and t = 0, 1, 2, . . . , T − 1.

Here, {ai,t} are defined by (4.10) and gui−1,t+1, g
l
i,t+1 are defined by (4.11),

respectively.

Proof. See Appendix A.7.

Recall that Corollary 1 provides the optimal value of the weighted objective

function Rw(Φ) for WOSA indexed by η and w. However, policy (Φ1) does

not necessarily maximize Rs(Φ) and Rd(Φ) at the same time. Since MOSSAP

has multiple objectives, the value of Rw(Φ1) alone is not enough to capture

the performance of policy (Φ1). Corollary 2 provides the values of Rs(Φ1)

(3.1) under the SSAP optimal policy for WOSA indexed by η and w.

Corollary 2.

Rs(Φ1) = E[
T∑
t=1

XΦ1
t A(t)] =

T∑
i=T−η+1

bi,0. (5.3)

Proof. The result follows from Theorem 6 and the definition of {bi,t}.

Similarly, for the objective function Rd(Φ) (3.1), the same arguments can

be applied. Denote the expected value of A(t)B(t) in Ĝ(i)
T−t of T−t passengers

to be assigned by ci,t, for i = 1, 2, . . . , T − t and t = 0, 1, . . . , T − 1. We state

the following Proposition without proof, since the results follow from the

same arguments as Proposition 5 and Corollary 2 with A(t) substituted by

A(t)B(t).

Proposition 6. {ci,t} are given by the recursive equations

ci,t = (

gli,t+1∑
γ′=gui−1,t+1

E[A(t)B(t)|G(t) = γ′]pG(γ
′))+ci−1,t+1FG(ai−1,t+1)+ci,t+1(1−FG(ai,t+1)),

(5.4)
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with c0,t = 0 and cT−t+1,t = BK. Here, {ai,t} are defined by (4.10) and

gui−1,t+1, g
l
i,t+1 are defined by (4.11), respectively. Moreover,

Rd(Φ1) = E[
T∑
t=1

XΦ1
t A(t)B(t)] =

T∑
i=T−η+1

ci,0. (5.5)

5.2 MOSSAP under the SSAP Optimal Policy

We consider the expected rewards per passenger for the five objective func-

tions of MOSSAP under the SSAP optimal policy (Φ1). The expected reward

per passenger for an objective function is defined as the value of the objective

function normalized by the total number of passengers, which is consistent

with the classic asymptotic settings. Denote the expected rewards per pas-

senger for Rs(Φ1) and Rd(Φ1) for WOSA indexed by η and w by rηs (w) and

rηd(w), respectively. Then

rηs (w) ,
1

T
Rs(Φ1) =

1

T

T∑
i=T−η+1

bi,0 and rηd(w) ,
1

T
Rd(Φ1) =

1

T

T∑
i=T−η+1

ci,0.

(5.6)

From (2.1),

1

T
Wns(Φ1) = rηs (w)− η

T
+ 1− E[A(t)],

1

T
Ws(Φ1) = rs(w),

1

T
V (Φ1) = −rs(w) + 1− η

T
,

1

T
U(Φ1) = −rs(w) + E[A(t)],

(5.7)

1

T
Ust(Φ1) = −rd(w) + E[A(t)B(t)],

with rηs (w) and rηd(w) given by (5.6). The expressions in (5.7) show that

the expected rewards per passenger for MOSSAP are functions of the active

capacity constraint η of the sub-feasible region Ψη and the weight vector w.

Brute-force pruning is feasible using expressions in (5.7). Therefore, even if

condition (3.3) is not satisfied, Pareto optimal policies for MOSSAP may be

extracted by enumerating values of the five objective functions of MOSSAP

under all optimal policies for WOSA.
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5.3 Trade-off between Pareto Optimal Policies for

MOSSAP

The trade-off between Pareto optimal policies for MOSSAP is captured by

(5.7). For SSAP optimal policies in the same sub-feasible region (η is con-

stant, w is different), the five objective functions of MOSSAP can be re-

duced to Rs(Φ) and Rd(Φ) as shown in Theorem 1. This also follows from

(5.7). Therefore, we focus on rηs (w) and rηd(w) when comparing perfor-

mance of SSAP optimal policies for WOSA indexed by the same η and

different w. Note that from the definition of Rw(Φ) (3.4), if w = (1, 0),

then Rw(Φ) = Rs(Φ) and the resulting Rw(Φ1) given by Corollary 1 is the

optimal value of Rs(Φ) in the sub-feasible region Ψη. Similarly, if w = (0, 1),

then Rw(Φ) = Rd(Φ) and the resulting Rw(Φ1) is the optimal value of Rd(Φ)

in Ψη. Define the achievement ratios for Rs(Φ) and Rd(Φ) under the SSAP

optimal policy for WOSA indexed by η and w in Ψη as

δηs (w) ,
Rs(Φ1)

maxΦ∈Ψη Rs(Φ)
=

rηs (w)

rηw((1, 0))
and δηd(w) ,

Rd(Φ1)

maxΦ∈Ψη Rd(Φ)
=

rηd(w)

rηw((0, 1))
,

where rηw(w) , Rw(Φ1)/T = (
∑T

i=T−η+1 ai,0)/T from Corollary 1. That is,

for an SSAP optimal policy for WOSA indexed by η and w, δηs (w) is the

ratio of the value of Rs(Φ) under this policy to the optimal value of Rs(Φ)

in Ψη and δηd(w) is the ratio of the value of Rd(Φ) under this policy to the

optimal value of Rd(Φ) in Ψη. In general, the magnitude of δηs (w) and δηd(w)

measures the closeness of Rs(Φ1) and Rd(Φ1) under an SSAP optimal policy

Φ1 to their optima (the larger the closer), respectively, with 0 ≤ δηs (w) ≤ 1

and 0 ≤ δηd(w) ≤ 1. It can be proved that if w1 = 1 is fixed, then δηs (w)

decreases with w2 while δηd(w) increases with w2.

For SSAP optimal policies in different sub-feasible regions (η and w are

both different), from Corollary 2 and Proposition 6, rηs (w) and rηd(w) both

increase with the active capacity constraint η when w is fixed. However,

from (5.7), the trends of the expected rewards per passenger for the five

objective functions of MOSSAP with η cannot be concluded theoretically.

We show the trade-off between different SSAP optimal policies by presenting

simulation results in Chapter 6.
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CHAPTER 6

SIMULATION STUDY

This chapter illustrates how the SSAP optimal policy (Φ1) would operate

in practice using available data from Ebola entry screening at airports and

public health sources. The trade-off between Pareto optimal policies for

MOSSAP is shown by providing expected rewards per passenger for the bi-

objective optimization problem rηs (w) and rηd(w), and the expected rewards

per passenger for the five objectives of MOSSAP. Sensitivity analysis is pro-

vided to identify how variations in the weight vector w and the distributions

of the two risk measures influence the performance of the SSAP optimal pol-

icy. No extra pruning step is implemented in these simulation experiments to

select M-optimal policies for WOSA or Pareto optimal policies for MOSSAP.

6.1 An Illustrative Example with Application in Ebola

We use the Ebola entry screening as an illustrative application example for

MOSSAP. The incubation period for Ebola is 21 days [5], and hence, T is set

as the total number of passengers entering the United States coming from

epidemic West African countries over a 21-day period. The average daily

number of passengers arriving to the five international airports originating

in the three West African countries (Guinea, Liberia and Sierra Leone) was

approximately 150 [21]. Therefore, T = 150 × 21 = 3150. Nine selected

medical facilities in the United States have a capacity of at least 10 patients

for Ebola quarantine monitoring [22], and hence, ηo = 9 × 10 = 90. For

pA(α), a four-level primary risk measure was used in the simulations, which

is consistent with the current risk levels used by the CDC [5]. pA(α) was

estimated using statistics from [23]. There were a total of 10,344 passengers

monitored for a 21-day period from November 3, 2014, to March 8, 2015 (125

days), with the average daily number of passengers monitored estimated as
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b10, 344/125c = 82. None of these monitored passengers became sick with

Ebola. Since passengers assessed with No identifiable primary risk were not

monitored, then the average daily number of passengers assessed with No

identifiable primary risk was estimated as 150− 82 = 68. Among those pas-

sengers monitored, the average daily number of passengers assessed with Low

(but not zero) primary risk was estimated as b82 × 0.97c = 79; the average

daily number of passengers assessed with Some primary risk was estimated

as 82 − 79 = 3; we assumed that 1 out of these 3 passengers was assessed

with High primary risk.

There was no publicly available data to estimate the realized values of A(t)

(i.e., {Am}4
m=1). Similarly to the aviation security screening problem [10], a

truncated exponential distribution with parameter λ > 10 was used to ap-

proximate the primary risk distribution, where 1/λ represented the average

primary risk value (and hence, a larger λ indicated a lower average primary

risk value). In these simulations, we assume passengers assessed with dif-

ferent primary risk levels have a probability of being sick no greater than

0.1, and they differ among each other by at least one order of magnitude.

Therefore, three points were selected between (0, 0.1), and these three points

together with 0.1 defined the values {Am}4
m=1. Thus, they divided the pri-

mary risk value range (0, 0.1) into 4 disjoint intervals. The probability mass

for each Am was estimated as the probability of each interval (Am−1, Am], for

m = 1, 2, 3, 4 (with A0 = 0) following the truncated exponential distribution.

In this way, each Am represented the maximal probability of a passenger

being sick with Ebola if the passenger was assessed with primary risk level i.

Then to approximate the monitoring statistics reported by the [23], we chose

λ = 100 and three points {10−5, 10−4, 10−2} (with A4 = 0.1). Table 6.1 lists

the primary risk distribution pA(α) used in the simulations.

For pB(β), there was no available data from public health sources; the only

available case for reference was the first confirmed Ebola case in the United

States, in which approximately 100 social contacts had been covered by con-

tact tracing [24]. Since Ebola can only be transmitted through direct contact

rather than airborne [5], vulnerable contacts of a sick person are limited to

family members (2 to 20), friends (5 to 40), co-workers (5 to 40) and other

close contacts (5 to 100), with a variation caused by occupation and personal

lifestyle. A three-level secondary risk measure with {Bk}3
k=1 = {20, 100, 200}

was used in the simulations and Table 6.2 lists the estimated secondary risk
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distribution pB(β).

Table 6.3 provides the expected rewards per passenger, rηs (w) and rηd(w),

Table 6.1: pA(α), pmf for the primary risk random variable A(t) (×10−2).

α A1(10−5) A2(10−4) A3(10−2) A4(10−1)

pA(α) 45.3 52.7 1.3 0.7

Table 6.2: pB(β), pmf for the secondary risk random variable B(t) (×10−2).

β B1(20) B2(100) B3(200)

pB(β) 5 85 10

under the SSAP optimal policy for WOSA indexed by η = 30, 60, 90 and

w = (1, 0), (0, 1), (1, 1), (1, 1000), (1000, 1). These results were computed

from Corollary 2 and Proposition 6 following the two risk distributions of

pA(α) and pB(β). rηs (w)’s in the (1, 0) column are the optimal expected

rewards per passenger for Rs(Φ) and rηd(w)’s in the (0, 1) column are the

optimal expected rewards per passenger for Rd(Φ) in the corresponding Ψη.

Both rηs (w) and rηd(w) increase as η increases. However, rηs (w) and rηd(w)

remained unchanged with variations in the positive weight vector when η is

fixed since pA(α) and pB(β) in Tables 6.1 and 6.2 satisfy condition (3.3).

Table 6.3 also shows that an extra pruning step is necessary to obtain

Pareto optimal policies for MOSSAP. To see this, consider the SSAP opti-

mal policy with η = 30, w = (1, 0) in Table 6.3. This policy is not M-optimal

for WOSA by Definition 3 (by comparing with the SSAP optimal policy with

η = 30, w = (1, 1)). However, every SSAP optimal policy with a positive

weight vector is M-optimal for WOSA by Definition 3. Moreover, since con-

dition (3.3) is satisfied, then every M-optimal policy for WOSA is Pareto

optimal for MOSSAP from Theorem 5.

Table 6.4 provides estimates for the expectations and standard devia-

tions of rηs (w) and rηd(w) and Table 6.5 is for the five objective functions

of MOSSAP, under the SSAP optimal policy (Φ1). These estimates were

computed by averaging the results of 10,000 independently seeded replica-

tions for each η = 30, 60, 90 and w = (1, 0), (0, 1), (1, 1), (1, 1000), (1000, 1)

(w = (1, 0), (0, 1), (1, 1) for MOSSAP). In each replication, a sequence of

passenger risk vectors following distributions pA(α) and pB(β) was simulated,
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Table 6.3: Expected rewards per passenger rηs (w) and rηd(w) (×10−2).

w = (w1, w2) (1, 0) (0, 1) (1, 1) (1000, 1) (1, 1000)

r30
s (w) 0.070 0.070 0.070 0.070 0.070
r30
d (w) 7.4 7.5 7.5 7.5 7.5
r60
s (w) 0.079 0.079 0.079 0.079 0.079
r60
d (w) 8.5 8.5 8.5 8.5 8.5
r90
s (w) 0.080 0.080 0.080 0.080 0.080
r90
d (w) 8.5 8.5 8.5 8.5 8.5

and the SSAP optimal policy was applied to the sequence of passenger risk

vectors. The threshold values for each passenger assignment for the SSAP

optimal policy were computed using MATLAB R2011a on an Intel i7-2600

3.4 GHz processor with 8 GB RAM, which took 41.2-second CPU time for

T = 3150. These threshold values were computed in advance and used in all

replications. rηs (w) and rηd(w) for the SSAP optimal policy in Table 6.4 are

close to the corresponding values in Table 6.3, which indicates the effective-

ness of Corollary 2 and Proposition 6. Moreover, the results in Table 6.5 are

consistent with those computed from (5.7) using values provided in Table 6.4.

Table 6.4: Expectations (standard deviations) of rηs (w) and rηd(w) under
the SSAP optimal policy (×10−2).

w = (w1, w2) (1, 0) (0, 1) (1, 1) (1000, 1) (1, 1000)

r30
s (w)(std) 0.069(0.013) 0.068(0.012) 0.069(0.012) 0.069(0.013) 0.069(0.012)
r30
d (w)(std) 7.3(1.4) 7.4(1.4) 7.4(1.4) 7.4(1.4) 7.4(1.4)
r60
s (w)(std) 0.078(0.013) 0.078(0.014) 0.078(0.014) 0.078(0.013) 0.078(0.014)
r60
d (w)(std) 8.3(1.5) 8.3(1.5) 8.3(1.5) 8.3(1.5) 8.3(1.5)
r90
s (w)(std) 0.080(0.015) 0.080(0.015) 0.080(0.015) 0.080(0.015) 0.080(0.015)
r90
d (w)(std) 8.5(1.6) 8.5(1.6) 8.5(1.6) 8.5(1.6) 8.5(1.6)

Table 6.5: Expectations (standard deviations) of rewards per passenger for
MOSSAP (×10−2).

η = 30 η = 60 η = 90
w = (w1, w2) (1, 0) (0, 1) (1, 1) (1, 0) (0, 1) (1, 1) (1, 0) (0, 1) (1, 1)

W η
ns(std) 99(0) 99(0) 99(0) 98(0) 98(0) 98(0) 97(0) 97(0) 97(0)

W η
s (std) 0.069(0.013) 0.068(0.012) 0.069(0.012) 0.078(0.013) 0.078(0.013) 0.078(0.013) 0.080(0.015) 0.080(0.014) 0.080(0.015)

V η(std) 0.88(0.01) 0.88(0.01) 0.88(0.01) 1.83(0.01) 1.83(0.01) 1.83(0.01) 2.78(0.01) 2.78(0.01) 2.78(0.01)
Uη(std) 0.017(0.003) 0.018(0.004) 0.018(0.004) 0.008(0.002) 0.008(0.002) 0.008(0.002) 0.006(0) 0.006(0) 0.006(0)
Uη
st(std) 1.8(0.3) 1.7(0.4) 1.7(0.4) 0.81(0.24) 0.77(0.20) 0.77(0.20) 0.60(0.01) 0.60(0.01) 0.60(0.01)
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6.2 Sensitivity Analysis for the SSAP Optimal Policy

This section presents a sensitivity analysis for the SSAP optimal policy with

respect to variations in the distributions of the two risk measures. First, we

show how the weight vector influences the performance of the SSAP optimal

policy when condition (3.3) is not satisfied. Then we show variations in the

values of objective functions with variations in the distributions of the two

risk measures. Since the expected rewards per passenger for the five objec-

tive functions of MOSSAP can be easily derived from (5.7) using rηs (w) and

rηd(w), we present the values of rηs (w) and rηd(w) for comparing the perfor-

mance of SSAP optimal policies for simplicity.

Tables 6.6 and 6.7 give two risk distributions, pA(α)1 and pB(β)1, with

{Am}4
m=1 and {Bk}3

k=1 not satisfying condition (3.3) (not necessarily realis-

tic). Table 6.8 provides estimates for the expectations and standard devia-

tions of rηs (w) and rηd(w), under the SSAP optimal policy for WOSA indexed

by η = 30, 60, 90 and w = (1, 0), (0, 1), (1, 1), (10, 1), (20, 1), (1, 10). The esti-

mates were computed by averaging the results of 10,000 independently seeded

replications for each η and w. In each replication, a sequence of passenger

risk vectors following distributions pA(α)1 and pB(β)1 was simulated and the

corresponding SSAP optimal policy was applied. When w1 = 1, w2 > 0,

rηs (w) and rηd(w) do not increase with w2. However, when w1 > 0, w2 = 1,

rηs (w) increases and rηd(w) decreases as w1 increases. Note that w1 is the

scaling weight for A(t) and w2/w1 is the scaling weight for B(t), and the re-

alized values of B(t) are much larger than those of A(t). Therefore, only by

scaling the values of A(t) to be comparable or even larger than those of B(t)

will there be differences in rηs (w) and rηd(w). Moreover, when η is fixed, the

variations in rηs (w) and rηd(w) are not proportional to the variations in w1 or

w2. This is consistent with the well-known drawbacks of the weighted sum

method for multi-objective optimization problems, where evenly distributed

weight vectors cannot generate evenly distributed Pareto optimal solutions

in the objective value space [25].

Next, we show the sensitivity of the SSAP optimal policy with respect

to the distributions of the two risk measures. Table 6.9 lists five primary

risk distributions pA(α)λ, indexed by λ = 40, 100, 200, 300, 400, which were

estimated using truncated exponential distributions with parameter λ. Ta-
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Table 6.6: pA(α)1, pmf for the primary risk random variable A(t) (×10−2).

α A1(0.005) A2(0.01) A3(0.05) A4(0.1)

pA(α)1 45.3 52.7 1.3 0.7

Table 6.7: pB(β)1, pmf for the secondary risk random variable B(t) (×10−2).

β B1(1) B2(10) B3(100)

pB(β)1 5 85 10

Table 6.8: Expectations (standard deviations) of rηs (w) and rηd(w) under
the optimal SSAP policy (×10−2).

w = (w1, w2) (1, 0) (0, 1) (1, 1) (10, 1) (20, 1) (1, 10)

r30
s (w) 0.081(0.010) 0.027(0.006) 0.070(0.011) 0.071(0.011) 0.078(0.007) 0.069(0.010)
r30
d (w) 1.5(0.4) 2.1(0.5) 2.1(0.5) 2.1(0.5) 2.0(0.5) 2.1(0.5)
r60
s (w) 0.13(0.01) 0.045(0.008) 0.081(0.013) 0.082(0.013) 0.12(0.01) 0.080(0.013)
r60
d (w) 2.3(0.5) 3.0(0.5) 3.0(0.5) 3.0(0.5) 2.5(0.5) 3.0(0.5)
r90
s (w) 0.14(0.01) 0.063(0.009) 0.090(0.013) 0.092(0.013) 0.14(0.02) 0.090(0.013)
r90
d (w) 2.6(0.6) 4.0(0.5) 4.0(0.5) 4.0(0.5) 3.4(0.5) 4.0(0.5)

ble 6.10 lists five secondary risk distributions pB(β)h, indexed by h = 50, 70−,

70, 70+, 90, where h(×10−2) captures the fraction of passengers assessed with

a medium secondary risk level (the majority fraction). Note that pA(α)λ and

pB(β)h do not satisfy condition (3.3), which captures a more general case. In

this sensitivity analysis, T = 5000, η = 50 and w = (100, 1). The SSAP op-

timal policy Φ∗ was computed following the estimated distributions (i.e., the

primary and secondary risk distributions as pA(α)200 and pB(β)70) and used

in the simulations for all pairs of realized distributions (i.e., the primary and

secondary risk distributions as {(pA(α)λ, pB(β)70)}, λ = 40, 100, 200, 300, 400

and {(pA(α)200, pB(β)h)}, h = 50, 70−, 70, 70+, 90).

Table 6.11 provides estimates for the expectations and standard devi-

ations of r50
s (w) and r50

d (w) under policy Φ∗ with realized distributions

{(pA(α)λ, pB(β)70)}, λ = 40, 100, 200, 300, 400 and Table 6.12 with realized

distributions {(pA(α)200, pB(β)h)}, h = 50, 70−, 70, 70+, 90. For each pair of

realized distributions (pA(α)λ, pB(β)h), the estimated values were computed

by averaging the results of 10,000 independently seeded replications, where a

sequence of passenger risk vectors following the primary and secondary risk

distributions pA(α)λ and pB(β)h was simulated and policy Φ∗ was applied in

each replication. The corresponding optima (i.e., r50
s (w)opt and r50

d (w)opt) for
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Table 6.9: pA(α)λ, λ = 40, 100, 200, 300, 400, pmf’s for the primary risk
random variable A(t) (×10−2).

α A1(0.005) A2(0.01) A3(0.05) A4(0.1)

pA(α)40 18.2 14.8 65.2 1.8
pA(α)100 39.4 23.9 36.0 0.7
pA(α)200 63.2 23.3 13.0 0.5
pA(α)300 77.7 17.3 4.8 0.2
pA(α)400 86.5 11.7 1.8 0

Table 6.10: pB(β)h, h = 50, 70−, 70, 70+, 90, pmf’s for the secondary risk
random variable B(t) (×10−2).

β B1(1) B2(10) B3(100)

pB(β)50 25 50 25
pB(β)70− 20 70 10
pB(β)70 15 70 15
pB(β)70+ 10 70 20
pB(β)90 5 90 5

each pair of realized distributions (pA(α)λ, pB(β)h) are also provided in Tables

12 and 13, which were computed from Corollary 2 and Proposition 6 following

the realized distributions pA(α)λ and pB(β)h. When the estimated distribu-

tions for the two risk measures are accurate, r50
s (w) and r50

d (w) achieve their

corresponding optima, respectively (see the pA(α)200 column in Table 6.11

and the pB(β)70 column in Table 6.12). When the estimated primary risk dis-

tribution has a lower average risk value than the realized value, then r50
s (w)

and r50
d (w) are close to their corresponding optima. In this case, passengers

have higher realized risk values than the estimated risk values, and hence,

the threshold values for policy Φ∗ are relatively low and passengers assessed

with high risk values were assigned to the selectee category. However, when

the estimated primary risk distribution has a higher average risk value than

the realized value, then r50
s (w) and r50

d (w) deviate from their corresponding

optima (r50
s (w) and r50

d (w) achieve 0.93 and 0.83 of their corresponding op-

tima in the pA(α)300 column, and r50
s (w) and r50

d (w) achieve 0.50 and 0.82

of their corresponding optima in the pA(α)400 column in Table 6.11). In this

case, passengers have lower realized risk values than the estimated risk val-

ues, and hence, the threshold values for policy Φ∗ are relatively high and

passengers were not assigned to the selectee category until the latter part of
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passenger arrivals. The larger the error in the estimation for the primary risk

distribution, the larger the deviation in r50
s (w) and r50

d (w) from their corre-

sponding optima. However, differences between the estimated and realized

secondary risk distributions result in small deviations in both r50
s (w) and

r50
s (w) from their corresponding optima (r50

s (w) and r50
d (w) achieve 0.99 and

1.00 of their corresponding optima in the pB(β)50 column, and r50
s (w) and

r50
d (w) achieve 0.99 and 0.87 of their corresponding optima in the pB(β)90

column in Table 6.12). This indicates that the SSAP optimal policy is less

sensitive to variations in the secondary risk distribution than variations in

the primary risk distribution.

Table 6.11: Expectations (standard deviations) of r50
s (w) and r50

d (w) under
the SSAP optimal policy Φ∗ (×10−2), with the realized distributions

{(pA(α)λ, pB(β)70)}, λ = 40, 100, 200, 300, 400.

pA(α)40 pA(α)100 pA(α)200 pA(α)300 pA(α)400

r50
s (w)(std) 0.10(0.00) 0.082(0.006) 0.076(0.005) 0.056(0.005) 0.025(0.003)
r50
s (w)opt 0.10 0.084 0.077 0.060 0.050

r50
d (w)(std) 3.0(0.5) 3.2(0.5) 3.6(0.4) 3.3(0.5) 1.4(0.3)
r50
d (w)opt 3.5 3.1 3.5 4.0 1.7

Table 6.12: Expectations (standard deviations) of r50
s (w) and r50

d (w) under
the SSAP optimal policy Φ∗ (×10−2), with the realized distributions

{(pA(α)200, pB(β)h)}, h = 50, 70−, 70, 70+, 90.

pB(β)50 pB(β)70− pB(β)70 pB(β)70+ pB(β)90

r50
s (w)(std) 0.076(0.005) 0.076(0.005) 0.076(0.005) 0.076(0.005) 0.076(0.005)
r50
s (w)opt 0.077 0.077 0.077 0.077 0.077

r50
d (w)(std) 4.0(0.5) 3.3(0.4) 3.6(0.4) 3.8(0.4) 2.7(0.4)
r50
d (w)opt 4.0 3.3 3.5 3.8 3.1
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CHAPTER 7

OPERATIONAL IMPLICATIONS AND
LIMITATIONS

The simulation results indicate that assessing each passenger with a two-

dimensional risk vector has advantages over a one-dimensional risk value.

If passengers are assessed with a one-dimensional risk value, then Rs(Φ)

becomes the only objective function, as in the classic SSAP setting studied

by [19]. In this case, consider Rs(Φ) as the single objective function and

Rd(Φ) as an additional performance evaluation metric (the larger the better).

With some proper positive weight vector for some η, the SSAP optimal policy

for WOSA (passenger assignments with two-dimensional risk vectors, see the

w = (1000, 1) and η = 30 cell in Table 6.4, and the w = (20, 1) and η = 90

cell in Table 6.8) can achieve the optimum for Rs(Φ) and a larger value for

Rd(Φ), compared with those achieved under the SSAP optimal policy for the

single objective function Rs(Φ) (passenger assignments with one-dimensional

risk values, see the w = (1, 0) and η = 30 cell in Table 6.4, and the w = (1, 0)

and η = 90 cell in Table 6.8). Therefore, assessing each passenger with

an extra dimension of risk measure may improve the process for managing

quarantine assignments for Ebola entry screening. A comparison between

policies using the one-dimensional risk values and the two-dimensional risk

vectors in different scenarios is provided by [26].

MOSSAP for the Ebola entry screening problem has several limitations.

We assume passenger assignments to be irrevocable in MOSSAP. Therefore,

if a passenger with high primary and secondary risk values arrives after the

quarantine capacity has been reached, quarantine space will not be available.

If this passenger becomes sick with Ebola, high contact tracing cost will be

incurred. However, if passenger assignments are revocable, we can replace one

passenger being quarantined that has lower primary and secondary risk values

with this passenger. The resulting model is currently under investigation.
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CHAPTER 8

CONCLUSIONS

This thesis formulates a mathematical model for multi-objective sequential

stochastic assignment problem (MOSSAP), motivated by Ebola entry screen-

ing and quarantine assignments at airports in the United States. Each pas-

senger is assessed with a two-dimensional risk vector, with Pareto optimal

policies determining on-line binary passenger assignments (selectee or non-

selectee) to maximize the expected number of passengers assigned to the

correct category, subject to the selectee capacity constraint. When a certain

condition is satisfied, the set of Pareto optimal policies for MOSSAP can

be generated by solving a sequence of bi-objective optimization problems.

Each of these bi-objective optimization problems can then be solved using

the weighted sum method, with SSAP optimal policies provided. Moreover,

values of the multiple objective functions under the SSAP optimal policy for

discrete risk distributions are provided with recursive equations. Our pro-

posed MOSSAP generates the classic single-objective SSAP, and the analysis

techniques in this work can be directly applied to the general type of product-

form MOSSAP. Simulation results using publicly available Ebola data are

provided to illustrate practical implications of the proposed policies.

There are several directions to extend this work. First, this assignment

problem can be generalized to include more than two assignment categories.

In this case, the results in this work still apply with minor changes on de-

cision thresholds, while recursive equations for the thresholds and values of

objective functions remain unchanged. Another direction to be considered

is MOSSAP with revocable passenger assignments. Moreover, an efficient

pruning algorithm rather than the brute-force enumerating needs to be con-

sidered to select Pareto optimal policies for MOSSAP. Last but not least,

although the weighted sum method works well for MOSSAP, it may not be

the only approach to multi-objective on-line optimization problems. Develop-

ing other exact and approximation algorithms to solve multi-objective on-line
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optimization problems is yet another direction for future consideration.
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APPENDIX A

PROOFS OF THEOREMS AND
PROPOSITIONS

A.1 Proof of Proposition 1

We prove this by contradiction. Suppose that policy Φ∗η is not Pareto optimal

for MOSSAP. Then there exists another Pareto optimal policy for MOSSAP

Φ′ ∈ Ψη′ , where η′ ∈ {0, 1, . . . , ηo} and

Wns(Φ
′) ≥ Wns(Φ

∗
η), Ws(Φ

′) ≥ Ws(Φ
∗
η),

V (Φ′) ≤ V (Φ∗η), U(Φ′) ≤ U(Φ∗η), Ust(Φ
′) ≤ Ust(Φ

∗
η), (A.1)

with at least one strict inequality. Then from Theorem 2, policy Φ′ is Pareto

optimal for the bi-objective optimization problem indexed by η′.

If η′ = η, then from Theorem 1 and (A.1), Rs(Φ
′) ≥ Rs(Φ

∗
η), Rd(Φ

′) ≥
Rd(Φ

∗
η) with at least one strict inequality. This is contradictory to Pareto

optimality of Φ∗η by Definition 2.

If η′ > η, then since 0 < A(t) < 1, from (2.1)

E[
T∑
t=1

XΦ′

t A(t)|
T∑
t=1

XΦ′

t = η′] < max
Φ∈Ψη

E[
T∑
t=1

XΦ
t A(t)|

T∑
t=1

XΦ
t = η] + η′ − η

= E[
T∑
t=1

X
Φ∗η
t A(t)|

T∑
t=1

X
Φ∗η
t = η] + η′ − η

⇒ Ws(Φ
′) < Ws(Φ

∗
η)+η

′−η, V (Φ∗η)−V (Φ′) = (η−Ws(Φ
∗
η))−(η′−Ws(Φ

′)) < 0,
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which is a contradictory to (A.1).

If η′ < η, then since 0 < A(t) < 1, (2.1) leads to

Ws(Φ
′) = E[

T∑
t=1

XΦ′

t A(t)|
T∑
t=1

XΦ′

t = η′]

< max
Φ∈Ψη

E[
T∑
t=1

XΦ
t A(t)|

T∑
t=1

XΦ
t = η] = Ws(Φ

∗
η),

which is contradictory to (A.1).

Therefore, Φ∗η is Pareto optimal for MOSSAP.

A.2 Proof of Proposition 2

We prove this by contradiction. Let Φη denote the Pareto optimal pol-

icy for the bi-objective optimization problem indexed by η with Rs(Φη) =

maxΦ∈Ψη Rs(Φ) = E[
∑T

t=1X
Φη
t A(t)]. Suppose Φ′ ∈ Ψη is another Pareto op-

timal policy for the bi-objective optimization problem but Rs(Φ
′) < Rs(Φη).

Since condition (3.3) is satisfied, then it further implies that if m < m′ ∈
{1, 2, . . . ,M}, inequality

AmBk ≤ Am′Bk′ (A.2)

holds for all k, k′ ∈ {1, 2, . . . , K}. Therefore,

Rs(Φ
′) = E[

T∑
t=1

XΦ′

t A(t)] < E[
T∑
t=1

X
Φη
t A(t)] = Rs(Φη)

⇒Rd(Φ
′) = E[

T∑
t=1

XΦ′

t A(t)B(t)] ≤ E[
T∑
t=1

X
Φη
t A(t)B(t)] = Rd(Φη),

which is contradictory to the Pareto optimality for Φ′. Therefore, Rs(Φ
′) =

Rs(Φη).
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A.3 Proof of Proposition 3

We show that for any 0 < λ < 1,

Rs(Φλ) = λRs(Φ1) + (1− λ)Rs(Φ2) and Rd(Φλ) = λRd(Φ1) + (1− λ)Rd(Φ2),

(A.3)

where Φλ = λΦ1 + (1− λ)Φ2. Thus, Rs(Φ) and Rd(Φ) are both convex and

concave functions of Φ. Therefore, Rs(Φ) and Rd(Φ) are both affine functions

of Φ. In the following, we consider Rs(Φλ) first. The derivation for Rd(Φλ)

follows the same arguments, with A(t) substituted by A(t)B(t).

Rewrite the objective function Rs(Φλ) by conditioning on the sequence of

{(A(t),B(t))}Tt=1 as

Rs(Φλ) = E[
T∑
t=1

XΦλ
t A(t)] = E

[
E[

T∑
t=1

XΦλ
t A(t)|{(A(t),B(t))}Tt=1]

]
, (A.4)

where the outer expectation is taken with respect to the joint distribution of

{(A(t),B(t))}Tt=1 and the inner expectation is taken with respect to {XΦλ
t }Tt=1.

Consider E[
∑T

t=1 X
Φλ
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]. Then,

E[
T∑
t=1

XΦλ
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]

=
T∑
t=1

E[XΦλ
t |{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]αt

=
T∑
t=1

P(XΦλ
t = 1|{(A(t′),B(t′))}tt′=1 = {(αt′ , βt′)}tt′=1)αt, (A.5)

where (A.5) follows from XΦλ
t being a sequential passenger assignment with

information of passenger risk vectors till time t. From (3.6) and (3.9),

P(XΦλ
t = 1|{(A(t′),B(t′))}tt′=1 = {(αt′ , βt′)}tt′=1) = χΦλ

t = λχΦ1
t + (1− λ)χΦ1

t ,

for t = 1, 2, . . . , T , where {χΦ1
t }Tt=1, {χΦ2

t }Tt=1 and {χΦλ
t }Tt=1 denote the realized

profiles of policy Φ1, Φ2 and Φλ with respect to {(αt, βt)}Tt=1, respectively.
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Moreover, substituting Φλ with Φ1 and Φ2 in (A.5) respectively, we have

E[
T∑
t=1

XΦ1
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]

=
T∑
t=1

P(XΦ1
t = 1|{(A(t′),B(t′))}tt′=1 = {(αt′ , βt′)}tt′=1)αt =

T∑
t=1

χΦ1
t αt,

E[
T∑
t=1

XΦ2
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1] =

T∑
t=1

χΦ2
t αt.

Therefore,

E[
T∑
t=1

XΦλ
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1] =

T∑
t=1

χΦλ
t αt

=
T∑
t=1

(
λχΦ1

t + (1− λ)χΦ1
t

)
αt

=λE[
T∑
t=1

XΦ1
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]

+ (1− λ)E[
T∑
t=1

XΦ2
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1], (A.6)

which holds for any sequence of realized passenger risk vectors {(αt, βt)}Tt=1.

Substituting (A.6) into (A.4) leads to

Rs(Φλ) =λE

[
E[

T∑
t=1

XΦ1
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]

]

+ (1− λ)E

[
E[

T∑
t=1

XΦ2
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]

]
=λRs(Φ1) + (1− λ)Rs(Φ2),

where the last equality follows from substituting Φλ with Φ1 and Φ2 in (A.4),

respectively. Therefore, Rs(Φ) is an affine function of Φ.

Following the same arguments with A(t) substituted by A(t)B(t), we have

Rd(Φ) is an affine function of Φ, which finishes the proof.
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A.4 Proof of Theorem 4

First, we show every M-optimal policy for WOSA-η is a Pareto optimal policy

for the bi-objective optimization problem indexed by η, for η = 0, 1, . . . , ηo.

Let Φ1 be an M-optimal policy for WOSA-η, then Φ1 must satisfy one of the

three conditions in Definition 3. If Φ1 satisfies Definition 3(a), then w > 0,

and hence, Φ1 is a Pareto optimal policy for the bi-objective optimization

problem by Theorem 3.1.2 [20, p. 78].

If Φ1 satisfies Definition 3(b), then w = (w1, 0) with w1 > 0 and

maxΦ∈Ψη Rw(Φ) ⇔ maxΦ∈Ψη Rs(Φ) = Rs(Φ1). If Φ1 is the unique policy

that maximizes Rs(Φ) in Ψη, then Φ1 is a Pareto optimal policy for the bi-

objective optimization problem by Theorem 3.1.3 [20, p. 79]. Otherwise, Φ1

is not unique and we prove Φ1 is Pareto optimal for the bi-objective optimiza-

tion problem by contradiction. Suppose Φ1 is not Pareto optimal, then there

exists another policy Φ′ ∈ Ψη such that Rs(Φ
′) ≥ Rs(Φ), Rd(Φ

′) ≥ Rd(Φ)

with at least one strict inequality. Since Rs(Φ1) = maxΦ∈Ψη Rs(Φ), then

Rs(Φ
′) ≤ Rs(Φ1), and hence, Rs(Φ

′) = Rs(Φ1), Rd(Φ
′) > Rd(Φ1). However,

this is contradictory to M-optimality of Φ1. Therefore, Φ1 is a Pareto opti-

mal policy for the bi-objective optimization problem.

If Φ1 satisfies Definition 3(c), similar arguments can be applied.

For the reverse direction, we show every Pareto optimal policy for the bi-

objective optimization problem indexed by η is M-optimal for WOSA-η, for

η = 0, 1, . . . , ηo. Let Φ2 ∈ Ψη+ be a mixed policy, which is Pareto optimal

for the bi-objective optimization problem indexed by η. Then, by Propo-

sition 3, Ψη+ is convex and the objective functions Rs(Φ) and Rd(Φ) are

affine functions of Φ. Then from Theorem 3.1.4 [20, p. 79], there exists a

non-negative weight vector w such that Φ2 maximizes Rw(Φ), which is the

objective function of WOSA indexed by η and w defined in (3.4). From § 4,

optimal policies for WOSA are all pure policies, and hence, Φ2 ∈ Ψη. We are

left to show Φ2 satisfies one of the three conditions in Definition 3 to prove

Φ2 is M-optimal for WOSA-η.

If w > 0, then Definition 3(a) is satisfied and Φ is M-optimal for WOSA-

η.

If w = (w1, 0) with w1 > 0, then Rs(Φ2) = maxΦ∈Ψη Rs(Φ). We prove

Rd(Φ2) = maxΦ∈Ληs Rd(Φ) with Λη
s defined by Definition 3(b) by contradic-

tion. Suppose Rd(Φ2) 6= maxΦ∈Ληs Rd(Φ), then there exists Φ′ ∈ Λη
s such that
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Rd(Φ
′) = maxΦ∈Ληs Rd(Φ). Therefore, Rs(Φ

′) = Rs(Φ2), Rd(Φ
′) > Rd(Φ2),

which is a contradictory to the Pareto optimality of Φ2. Therefore, Φ2 is

M-optimal for WOSA-η.

If w = (0, w2) with w2 > 0, similar arguments can be applied, which

finishes the proof.

A.5 Proof of Proposition 4

The proof is based on induction on T . First, we consider the corresponding

SSAP with almost-binary success rates for T tasks. In this case, the SSAP

optimal policy, denoted by ΦB, is a direct application of Theorem 1 given by

[19].

Theorem 7 (Theorem 1, [19]). For the tth task arrival with the task value

Ct, there are T − t + 1 workers available for t = 1, 2, . . . , T . The thresholds

for Ct are given by −∞ = a0,t ≤ a1,t ≤ . . . ≤ aT−t+1,t = +∞, obtained based

on the recursive equations

ai,t =

∫ ai,t+1

ai−1,t+1

xdFC(x) + ai−1,t+1FC(ai−1,t+1) + ai,t+1(1− FC(ai,t+1)), (A.7)

for i = 1, 2, . . . , T − t. If the tth task value Ct ∈ (ai−1,t, ai,t], then the worker

with the ith smallest success rate among the T −t+1 available workers will be

assigned to the tth task under the optimal policy. Moreover, ai,t is the expected

task value that will be assigned to the worker with ith smallest success rate

among the T − t available workers for i = 1, 2, . . . , T − t.

Let ai,t denote the threshold values defined by (A.7) for T , with i =

1, 2, . . . , T − t and t = 0, 1, . . . , T − 1. Then, the first task assignment under

policy ΦB is

τΦB
j1

=


1, if C1 > aT−bΥc,1,

Υ− bΥc, if aT−bΥc−1,1 < C1 ≤ aT−bΥc,1,

0, if C1 ≤ aT−bΥc−1,1.

(A.8)

Moreover, the optimal expected assignment reward is achieved under policy

ΦB as E[
∑T

t=2 τ
ΦB
jt
Ct] =

∑T
i=T−bΥc+1 ai,0 + aT−bΥc,0(Υ− bΥc).
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When T = 1, there is only one task to be assigned to one worker, and

hence, ΦB is trivially optimal for the SSAP with the fixed success rate sum.

Suppose Proposition 4 holds for T ′ ≤ T −1. When there are T tasks to be

assigned, we need to show τΦB
j1

is optimal for the first task assignment in the

fixed success rate sum scenario, and the remaining T − 1 task assignments

are optimal under policy ΦB by the induction assumption. Let a′i,t denote

the threshold values defined by (A.7) for T ′ = T − 1, with i = 1, 2, . . . , T − t
and t = 0, 1, . . . , T−2. We compute the optimal conditional expected reward

for T tasks assignments given the first task value,

max
{τjt}

T
t=1

E[
T∑
t=1

τjtCt|
T∑
t=1

τjt = Υ, C1 = x1]

= max
{τjt}

T
t=1

E[τj1x1 +
T∑
t=2

τjtCt|
T∑
t=1

τjt = Υ, C1 = x1]

= max
0≤τj1≤1

(τj1x1 + max
{τjt}

T
t=2

E[
T∑
t=2

τjtCt|
T∑
t=2

τjt = Υ− τj1 ]), (A.9)

where x1 denotes the realized value of the first task.

The second term on the right-hand side of (A.9) is the optimal expected

reward for T −1 task assignments with the success rate sum of T −1 workers

as Υ− τj1 , and

bΥ− τj1c =

bΥc − 1, if τj1 > Υ− bΥc,

bΥc, if τj1 ≤ Υ− bΥc.
(A.10)

Then by the induction assumption, the maximum of the second term on the

right-hand side of (A.9) is achieved under the SSAP optimal policy for the
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almost-binary success rate scenario with T − 1 workers. Therefore,

max
{τjt}

T
t=2

E[
T∑
t=2

τjtCt|
T∑
t=2

τjt = Υ− τj1 ]

=
T−1∑

i=T−bΥ−τj1c

a′i,0 + a′T−bΥ−τj1c−1,0(Υ− τj1 − bΥ− τj1c)

=


∑T−1

i=T−bΥc+1 ai,1 + aT−bΥc,1(Υ− τj1 − bΥc+ 1), if τj1 > Υ− bΥc,∑T−1
i=T−bΥc ai,1 + aT−bΥc−1,1(Υ− τj1 − bΥc), if τj1 ≤ Υ− bΥc,

(A.11)

where the second equality follows from (A.10) and the recursive definitions of

threshold values (i.e., a′i,0 = ai,1 for i = 1, 2, . . . , T − 1). Then, we substitute

(A.11) into (A.9) and compute the optimal expected conditional reward (A.9)

for two cases: (a) τj1 > Υ − bΥc and (b) τj1 ≤ Υ − bΥc, respectively, and

then combine them together to obtain the optimal assignment for the first

task. Note that (A.9) is an affine function of τj1 in both cases, and hence,

the maximum of (A.9) is achieved at the boundary point of τj1 . Therefore,

in each case, we take derivative with respect to τj1 and if the derivative is

positive, the maximum (supremum) of (A.9) is achieved when τj1 takes the

maximum (supremum) value. Otherwise, the maximum (supremum) of (A.9)

is achieved when τj1 takes the minimum (infimum) value. Therefore, for case

(a), τj1 > Υ− bΥc,

max
{τjt}

T
t=1

E[
T∑
t=1

τjtCt|
T∑
t=1

τjt = Υ, C1 = x1]

=


∑T−1

i=T−bΥc+1 ai,1 + x1 + aT−bΥc,1(Υ− bΥc), if x1 > aT−bΥc,1,∑T−1
i=T−bΥc+1 ai,1 + x1(Υ− bΥc) + aT−bΥc,1, if x1 ≤ aT−bΥc,1,

(A.12)

where the second line is the supremum of the left-hand side and

τj1 =

1, if x1 > aT−bΥc,1,

Υ− bΥc, if x1 ≤ aT−bΥc,1,

with the second line being the infimum of the left-hand side.
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For case (b), τj1 ≤ Υ− bΥc,

max
{τjt}

T
t=1

E[
T∑
t=1

τjtCt|
T∑
t=1

τjt = Υ, C1 = x1]

=


∑T−1

i=T−bΥc ai,1 + x1(Υ− bΥc), if x1 > aT−bΥc−1,1,∑T−1
i=T−bΥc ai,1 + aT−bΥc−1,1(Υ− bΥc), if x1 ≤ aT−bΥc−1,1,

(A.13)

where

τj1 =

Υ− bΥc, if x1 > aT−bΥc−1,1,

0, if x1 ≤ aT−bΥc−1,1.

Combining cases (a) and (b) together by comparing (A.13) and (A.12) leads

to the optimal first task assignment as

τj1 =


1, if x1 > aT−bΥc,1,

Υ− bΥc, if aT−bΥc−1,1 < x1 ≤ aT−bΥc,1,

0, if x1 ≤ aT−bΥc−1,1,

which is the same as the SSAP optimal policy assignment τΦB
j1

in the almost-

binary success rate scenario given by (A.8). By the induction assumption,

the optimal expected reward for assigning the remaining T −1 tasks to T −1

workers with a fixed success rate sum Υ − τj1 is achieved under the SSAP

optimal policy ΦB. This completes the proof.

A.6 Proof of Theorem 6

The proof is by induction on T , using similar techniques as in [19] but specif-

ically trimmed for WOSA with discrete risk distributions.

Let f(η, T ) denote the optimal expected reward for T passenger assign-

ments with an active selectee capacity η. Further, let f(η, T |γ1) denote the

optimal conditional expected reward for T passenger assignments with an

active selectee capacity η given the first passenger combined risk G(1) = γ1,
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then

f(η, T ) = max
Φ∈Ψη

E[
T∑
t=1

XΦ
t G(t)],

f(η, T |γ1) = max
Φ∈Ψη

E[
T∑
t=1

XΦ
t G(t)|G(1) = γ1].

When T = 1, there is only one passenger to be assigned and a0,1 =

−∞, a1,1 = +∞. Then, under policy (Φ1), this passenger will be assigned

to the selectee category if η = 1 and to the non-selectee category if η = 0.

Therefore, policy (Φ1) is trivially optimal for T = 1. Moreover, the expected

combined risk value of this passenger is the expected value of G(1), and from

(4.10),

ai,t =

GL∑
γ=G1

γpG(γ) = E[G(1)].

Therefore, Theorem 6 holds for T = 1.

Suppose Theorem 6 holds for T ′ ≤ T−1. Then, policy (Φ1) with threshold

values defined by (4.10) maximizes the objective function Rw(Φ) (3.4) for

T ′ = T −1 passengers. Let {a′i,0}T
′

i=1 denote the threshold values in the initial

stage for T ′ passengers, which are the expected combined risk values for T ′

passengers to be assigned by the induction assumption. Let {ai,t} denote the

threshold values defined by (4.10) for T passengers, for i = 1, 2, . . . , T − t

and t = 0, 1, . . . , T − 1. We show the first passenger assignment under policy

(Φ1) is optimal for T passengers, and optimal assignments for the remaining

T − 1 passengers follow from the induction assumption. When there are T

passengers to be assigned, conditional on the combined risk value of the first

passenger,

f(η, T |γ1) = max
XΦ

1 ∈{0,1}
(γ1X

Φ
1 + f(η −XΦ

1 , T − 1)). (A.14)

Note that f(η−XΦ
1 , T−1) is the optimal expected reward for T−1 passenger

assignments with an active selectee capacity η−XΦ
1 . Then, by the induction

assumption, the optimal expected reward for T − 1 passenger assignments is

achieved under policy (Φ1). Since {a′i,0}T
′

i=1 are monotonically increasing by
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(4.9), and hence,

f(η −XΦ
1 , T − 1) =

T−1∑
i=(T−1)−(η−XΦ

1 )+1

a′i,0, (A.15)

where the (η −X1) largest expected passenger combined risk values are as-

signed to the selectee category to maximize (3.4). Substitute (A.15) into

(A.14); the optimal policy assigns X1 = 1 if

γ1 +
T−1∑

i=(T−1)−(η−1)+1

a′i,0 >

T−1∑
i=(T−1)−η+1

a′i,0,

or equivalently,

γ1 > a′(T−1)−η+1,0 = a′T−η,0 = aT−η,1, (A.16)

where the last equality follows from the recursive definitions of threshold val-

ues (4.10), ai,1 = a′i,0 for i = 1, 2, . . . , T − 1 (the first stage for T passengers

{ai,1}T−1
i=1 are equal to the threshold values in the initial stage for T − 1 pas-

sengers). Therefore, the optimal first passenger assignment given by (A.16)

is the same as that given by policy (Φ1). By the induction assumption, the

remaining T − 1 passengers can be assigned under policy (Φ1) to maximize

the objective function Rw(Φ) (3.4). Therefore, policy (Φ1) is optimal for T

passengers.

Next, we compute the expected combined risk values for the T passengers

to be assigned. By the monotonicity of the threshold values and the induc-

tion assumption, ai,1 = a′i,0, i = 1, 2, . . . , T − 1 is the ith smallest expected

combined risk value for the T − 1 passengers to be assigned. Let Ĝ(i)
T (ran-

dom variable) denote the ith smallest combined risk value for T passengers,
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i = 1, 2, . . . , T . Conditioning on the value of G(1) leads to

E[Ĝ(i)
T ] = E[E[Ĝ(i)

T |G(1)]]

=E[G(1)|ai−1,1 < G(1) ≤ ai,1]P(ai−1,1 < G(1) ≤ ai,1) + . . .

+ E[Ĝ(i−1)
T−1 |G(1) ≤ ai−1,1]P(G(1) ≤ ai−1,1) + E[Ĝ(i)

T−1|G(1) > ai,1]P(G(1) > ai,1)

=

 gli,1∑
γ′=gui−1,1

γ′pG(γ
′)

+ ai−1,1FG(ai−1,1) + ai,1(1− FG(ai,1))

=ai,0,

with gli,1 and gui−1,1 given by (4.11). Therefore, the threshold values in the ini-

tial stage {ai,0}Ti=1 are the expected combined risk values for the T passengers

to be assigned. This completes the proof.

A.7 Proof of Proposition 5

The proof is based on induction on T . When T = 1, there is only one

passenger to be assigned, and hence, i = 1, t = 0. The expected value of

Â(1)
1 is just the expectation of A(t). From Proposition 5, only b1,0 is defined

by (5.2) when T = 1, which is given by

b1,0 =

GL∑
γ′=G1

E[A(t)|G(t) = γ′]pG(γ
′) = E[A(t)]. (A.17)

Therefore, Proposition 5 holds for T = 1.

Suppose Proposition 5 holds for T ′ ≤ T − 1 and {b′i,t} are defined by (5.2)

for T−1, for i = 1, 2, . . . , T−1−t and t = 0, 1, . . . , T−2. Then we show that

(5.2) holds for T with {bi,t}, for i = 1, 2, . . . , T − t and t = 0, 1, . . . , T − 1.

From the recursive definitions of {ai,t} and (5.2), {bi,t} are the same as {b′i,t−1}
for t = 1, 2, . . . , T − 1. We are left with {bi,0}, i = 1, 2, . . . , T , which need to

be verified as the expected value of Â(i)
T for T passengers. Since the threshold

values {ai,t} are monotonically increasing with respect to i, then conditioning
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on the combined risk value of the first passenger G(1) leads to

E[Â(i)
T ] = E[E[Â(i)

T |G(1)]]

=E[Â(i)
T |ai−1,1 < G(1) ≤ ai,1]P(ai−1,1 < G(1) ≤ ai,1) + . . .

+ E[Â(i)
T |G(1) ≤ ai−1,1]P(G(1) ≤ ai−1,1) + E[Â(i)

T |G(1) > ai,1]P(G(1) > ai,1)

(a)
=E [E[A(1)|G(1)]|ai−1,1 < G(1) ≤ ai,1]P(ai−1,1 < G(1) ≤ ai,1) + . . .

+ bi−1,1P(G(1) ≤ ai−1,1) + bi,1P(G(1) > ai,1)

(b)
=

 gli,1∑
γ′=gui−1,1

E[A(t)|G(t) = γ′]

+ bi−1,1FG(ai−1,1) + bi,1(1− FG(ai,1))

=bi,0,

where: equality (a) follows from the induction assumption; and equality (b)

follows from the fact that A(t) and G(t) are both IID. Therefore, bi,0 defined

by (5.2) is the expected value of Â(i)
T for i = 1, 2, . . . , T , which completes the

proof.
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