1,859 research outputs found

    Modular Customizable ROS-Based Framework for Rapid Development of Social Robots

    Full text link
    Developing socially competent robots requires tight integration of robotics, computer vision, speech processing, and web technologies. We present the Socially-interactive Robot Software platform (SROS), an open-source framework addressing this need through a modular layered architecture. SROS bridges the Robot Operating System (ROS) layer for mobility with web and Android interface layers using standard messaging and APIs. Specialized perceptual and interactive skills are implemented as ROS services for reusable deployment on any robot. This facilitates rapid prototyping of collaborative behaviors that synchronize perception with physical actuation. We experimentally validated core SROS technologies including computer vision, speech processing, and GPT2 autocomplete speech implemented as plug-and-play ROS services. Modularity is demonstrated through the successful integration of an additional ROS package, without changes to hardware or software platforms. The capabilities enabled confirm SROS's effectiveness in developing socially interactive robots through synchronized cross-domain interaction. Through demonstrations showing synchronized multimodal behaviors on an example platform, we illustrate how the SROS architectural approach addresses shortcomings of previous work by lowering barriers for researchers to advance the state-of-the-art in adaptive, collaborative customizable human-robot systems through novel applications integrating perceptual and social abilities

    FPGA for Robotic Applications: from Android/Humanoid Robots to Artificial Men

    Get PDF
    Researches on home robots have been increasing enormously. There has always existed a continuous research effort on problems of anthropomorphic robots which is now called humanoid robots. Currently, robotics has evolved to the point that different branches have reached a remarkable level of maturity, that neural network and fuzzy logic are the main artificial intelligence as intelligent control on the robotics. Despite all this progress, while aiming at accomplishing work-tasks originally charged only to humans, robotic science has perhaps quite naturally turned into the attempt to create artificial men. It is true that artificial men or android humanoid robots open certainly very broad prospects. This “robot” may be viewed as a personal helper, and it will be called a home-robot, or personal robot

    Towards Inferring Users' Impressions of Robot Performance in Navigation Scenarios

    Full text link
    Human impressions of robot performance are often measured through surveys. As a more scalable and cost-effective alternative, we study the possibility of predicting people's impressions of robot behavior using non-verbal behavioral cues and machine learning techniques. To this end, we first contribute the SEAN TOGETHER Dataset consisting of observations of an interaction between a person and a mobile robot in a Virtual Reality simulation, together with impressions of robot performance provided by users on a 5-point scale. Second, we contribute analyses of how well humans and supervised learning techniques can predict perceived robot performance based on different combinations of observation types (e.g., facial, spatial, and map features). Our results show that facial expressions alone provide useful information about human impressions of robot performance; but in the navigation scenarios we tested, spatial features are the most critical piece of information for this inference task. Also, when evaluating results as binary classification (rather than multiclass classification), the F1-Score of human predictions and machine learning models more than doubles, showing that both are better at telling the directionality of robot performance than predicting exact performance ratings. Based on our findings, we provide guidelines for implementing these predictions models in real-world navigation scenarios

    Deep reinforcement learning for soft, flexible robots : brief review with impending challenges

    Get PDF
    The increasing trend of studying the innate softness of robotic structures and amalgamating it with the benefits of the extensive developments in the field of embodied intelligence has led to the sprouting of a relatively new yet rewarding sphere of technology in intelligent soft robotics. The fusion of deep reinforcement algorithms with soft bio-inspired structures positively directs to a fruitful prospect of designing completely self-sufficient agents that are capable of learning from observations collected from their environment. For soft robotic structures possessing countless degrees of freedom, it is at times not convenient to formulate mathematical models necessary for training a deep reinforcement learning (DRL) agent. Deploying current imitation learning algorithms on soft robotic systems has provided competent results. This review article posits an overview of various such algorithms along with instances of being applied to real-world scenarios, yielding frontier results. Brief descriptions highlight the various pristine branches of DRL research in soft robotics

    Human-aware space sharing and navigation for an interactive robot

    Get PDF
    Les méthodes de planification de mouvements robotiques se sont développées à un rythme accéléré ces dernières années. L'accent a principalement été mis sur le fait de rendre les robots plus efficaces, plus sécurisés et plus rapides à réagir à des situations imprévisibles. En conséquence, nous assistons de plus en plus à l'introduction des robots de service dans notre vie quotidienne, en particulier dans les lieux publics tels que les musées, les centres commerciaux et les aéroports. Tandis qu'un robot de service mobile se déplace dans l'environnement humain, il est important de prendre en compte l'effet de son comportement sur les personnes qu'il croise ou avec lesquelles il interagit. Nous ne les voyons pas comme de simples machines, mais comme des agents sociaux et nous nous attendons à ce qu'ils se comportent de manière similaire à l'homme en suivant les normes sociétales comme des règles. Ceci a créé de nouveaux défis et a ouvert de nouvelles directions de recherche pour concevoir des algorithmes de commande de robot, qui fournissent des comportements de robot acceptables, lisibles et proactifs. Cette thèse propose une méthode coopérative basée sur l'optimisation pour la planification de trajectoire et la navigation du robot avec des contraintes sociales intégrées pour assurer des mouvements de robots prudents, conscients de la présence de l'être humain et prévisibles. La trajectoire du robot est ajustée dynamiquement et continuellement pour satisfaire ces contraintes sociales. Pour ce faire, nous traitons la trajectoire du robot comme une bande élastique (une construction mathématique représentant la trajectoire du robot comme une série de positions et une différence de temps entre ces positions) qui peut être déformée (dans l'espace et dans le temps) par le processus d'optimisation pour respecter les contraintes données. De plus, le robot prédit aussi les trajectoires humaines plausibles dans la même zone d'exploitation en traitant les chemins humains aussi comme des bandes élastiques. Ce système nous permet d'optimiser les trajectoires des robots non seulement pour le moment présent, mais aussi pour l'interaction entière qui se produit lorsque les humains et les robots se croisent les uns les autres. Nous avons réalisé un ensemble d'expériences avec des situations interactives humains-robots qui se produisent dans la vie de tous les jours telles que traverser un couloir, passer par une porte et se croiser sur de grands espaces ouverts. La méthode de planification coopérative proposée se compare favorablement à d'autres schémas de planification de la navigation à la pointe de la technique. Nous avons augmenté le comportement de navigation du robot avec un mouvement synchronisé et réactif de sa tête. Cela permet au robot de regarder où il va et occasionnellement de détourner son regard vers les personnes voisines pour montrer que le robot va éviter toute collision possible avec eux comme prévu par le planificateur. À tout moment, le robot pondère les multiples critères selon le contexte social et décide de ce vers quoi il devrait porter le regard. Grâce à une étude utilisateur en ligne, nous avons montré que ce mécanisme de regard complète efficacement le comportement de navigation ce qui améliore la lisibilité des actions du robot. Enfin, nous avons intégré notre schéma de navigation avec un système de supervision plus large qui peut générer conjointement des comportements du robot standard tel que l'approche d'une personne et l'adaptation de la vitesse du robot selon le groupe de personnes que le robot guide dans des scénarios d'aéroport ou de musée.The methods of robotic movement planning have grown at an accelerated pace in recent years. The emphasis has mainly been on making robots more efficient, safer and react faster to unpredictable situations. As a result we are witnessing more and more service robots introduced in our everyday lives, especially in public places such as museums, shopping malls and airports. While a mobile service robot moves in a human environment, it leaves an innate effect on people about its demeanor. We do not see them as mere machines but as social agents and expect them to behave humanly by following societal norms and rules. This has created new challenges and opened new research avenues for designing robot control algorithms that deliver human-acceptable, legible and proactive robot behaviors. This thesis proposes a optimization-based cooperative method for trajectoryplanning and navigation with in-built social constraints for keeping robot motions safe, human-aware and predictable. The robot trajectory is dynamically and continuously adjusted to satisfy these social constraints. To do so, we treat the robot trajectory as an elastic band (a mathematical construct representing the robot path as a series of poses and time-difference between those poses) which can be deformed (both in space and time) by the optimization process to respect given constraints. Moreover, we also predict plausible human trajectories in the same operating area by treating human paths also as elastic bands. This scheme allows us to optimize the robot trajectories not only for the current moment but for the entire interaction that happens when humans and robot cross each other's paths. We carried out a set of experiments with canonical human-robot interactive situations that happen in our everyday lives such as crossing a hallway, passing through a door and intersecting paths on wide open spaces. The proposed cooperative planning method compares favorably against other stat-of-the-art human-aware navigation planning schemes. We have augmented robot navigation behavior with synchronized and responsive movements of the robot head, making the robot look where it is going and occasionally diverting its gaze towards nearby people to acknowledge that robot will avoid any possible collision with them. At any given moment the robot weighs multiple criteria according to the social context and decides where it should turn its gaze. Through an online user study we have shown that such gazing mechanism effectively complements the navigation behavior and it improves legibility of the robot actions. Finally, we have integrated our navigation scheme with a broader supervision system which can jointly generate normative robot behaviors such as approaching a person and adapting the robot speed according to a group of people who the robot guides in airports or museums

    Swarm Robotics: An Extensive Research Review

    Get PDF
    • …
    corecore