451 research outputs found

    Enabling technologies for precise aerial manufacturing with unmanned aerial vehicles

    Get PDF
    The construction industry is currently experiencing a revolution with automation techniques such as additive manufacturing and robot-enabled construction. Additive Manufacturing (AM) is a key technology that can o er productivity improvement in the construction industry by means of o -site prefabrication and on-site construction with automated systems. The key bene t is that building elements can be fabricated with less materials and higher design freedom compared to traditional manual methods. O -site prefabrication with AM has been investigated for some time already, but it has limitations in terms of logistical issues of components transportation and due to its lack of design exibility on-site. On-site construction with automated systems, such as static gantry systems and mobile ground robots performing AM tasks, can o er additional bene ts over o -site prefabrication, but it needs further research before it will become practical and economical. Ground-based automated construction systems also have the limitation that they cannot extend the construction envelope beyond their physical size. The solution of using aerial robots to liberate the process from the constrained construction envelope has been suggested, albeit with technological challenges including precision of operation, uncertainty in environmental interaction and energy e ciency. This thesis investigates methods of precise manufacturing with aerial robots. In particular, this work focuses on stabilisation mechanisms and origami-based structural elements that allow aerial robots to operate in challenging environments. An integrated aerial self-aligning delta manipulator has been utilised to increase the positioning accuracy of the aerial robots, and a Material Extrusion (ME) process has been developed for Aerial Additive Manufacturing (AAM). A 28-layer tower has been additively manufactured by aerial robots to demonstrate the feasibility of AAM. Rotorigami and a bioinspired landing mechanism demonstrate their abilities to overcome uncertainty in environmental interaction with impact protection capabilities and improved robustness for UAV. Design principles using tensile anchoring methods have been explored, enabling low-power operation and explores possibility of low-power aerial stabilisation. The results demonstrate that precise aerial manufacturing needs to consider not only just the robotic aspects, such as ight control algorithms and mechatronics, but also material behaviour and environmental interaction as factors for its success.Open Acces

    Control algorithm implementation for a redundant degree of freedom manipulator

    Get PDF
    This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior. The control algorithms are subjected to a dynamic simulation before implementation

    Model reference adaptive control of a two axes hydraulic manipulator

    Get PDF
    Dissertation submitted for obtain the degree of Doctor, at the University of Bat

    Aerial Manipulators for Contact-based Interaction

    Get PDF

    A brain-machine interface for assistive robotic control

    Get PDF
    Brain-machine interfaces (BMIs) are the only currently viable means of communication for many individuals suffering from locked-in syndrome (LIS) – profound paralysis that results in severely limited or total loss of voluntary motor control. By inferring user intent from task-modulated neurological signals and then translating those intentions into actions, BMIs can enable LIS patients increased autonomy. Significant effort has been devoted to developing BMIs over the last three decades, but only recently have the combined advances in hardware, software, and methodology provided a setting to realize the translation of this research from the lab into practical, real-world applications. Non-invasive methods, such as those based on the electroencephalogram (EEG), offer the only feasible solution for practical use at the moment, but suffer from limited communication rates and susceptibility to environmental noise. Maximization of the efficacy of each decoded intention, therefore, is critical. This thesis addresses the challenge of implementing a BMI intended for practical use with a focus on an autonomous assistive robot application. First an adaptive EEG- based BMI strategy is developed that relies upon code-modulated visual evoked potentials (c-VEPs) to infer user intent. As voluntary gaze control is typically not available to LIS patients, c-VEP decoding methods under both gaze-dependent and gaze- independent scenarios are explored. Adaptive decoding strategies in both offline and online task conditions are evaluated, and a novel approach to assess ongoing online BMI performance is introduced. Next, an adaptive neural network-based system for assistive robot control is presented that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. Exploratory learning, or “learning by doing,” is an unsupervised method in which the robot is able to build an internal model for motor planning and coordination based on real-time sensory inputs received during exploration. Finally, a software platform intended for practical BMI application use is developed and evaluated. Using online c-VEP methods, users control a simple 2D cursor control game, a basic augmentative and alternative communication tool, and an assistive robot, both manually and via high-level goal-oriented commands

    Activity Report: Automatic Control 2011

    Get PDF

    Activity Report: Automatic Control 2009

    Get PDF

    Nonlinear Modeling and Control of Driving Interfaces and Continuum Robots for System Performance Gains

    Get PDF
    With the rise of (semi)autonomous vehicles and continuum robotics technology and applications, there has been an increasing interest in controller and haptic interface designs. The presence of nonlinearities in the vehicle dynamics is the main challenge in the selection of control algorithms for real-time regulation and tracking of (semi)autonomous vehicles. Moreover, control of continuum structures with infinite dimensions proves to be difficult due to their complex dynamics plus the soft and flexible nature of the manipulator body. The trajectory tracking and control of automobile and robotic systems requires control algorithms that can effectively deal with the nonlinearities of the system without the need for approximation, modeling uncertainties, and input disturbances. Control strategies based on a linearized model are often inadequate in meeting precise performance requirements. To cope with these challenges, one must consider nonlinear techniques. Nonlinear control systems provide tools and methodologies for enabling the design and realization of (semi)autonomous vehicle and continuum robots with extended specifications based on the operational mission profiles. This dissertation provides an insight into various nonlinear controllers developed for (semi)autonomous vehicles and continuum robots as a guideline for future applications in the automobile and soft robotics field. A comprehensive assessment of the approaches and control strategies, as well as insight into the future areas of research in this field, are presented.First, two vehicle haptic interfaces, including a robotic grip and a joystick, both of which are accompanied by nonlinear sliding mode control, have been developed and studied on a steer-by-wire platform integrated with a virtual reality driving environment. An operator-in-the-loop evaluation that included 30 human test subjects was used to investigate these haptic steering interfaces over a prescribed series of driving maneuvers through real time data logging and post-test questionnaires. A conventional steering wheel with a robust sliding mode controller was used for all the driving events for comparison. Test subjects operated these interfaces for a given track comprised of a double lane-change maneuver and a country road driving event. Subjective and objective results demonstrate that the driver’s experience can be enhanced up to 75.3% with a robotic steering input when compared to the traditional steering wheel during extreme maneuvers such as high-speed driving and sharp turn (e.g., hairpin turn) passing. Second, a cellphone-inspired portable human-machine-interface (HMI) that incorporated the directional control of the vehicle as well as the brake and throttle functionality into a single holistic device will be presented. A nonlinear adaptive control technique and an optimal control approach based on driver intent were also proposed to accompany the mechatronic system for combined longitudinal and lateral vehicle guidance. Assisting the disabled drivers by excluding extensive arm and leg movements ergonomically, the device has been tested in a driving simulator platform. Human test subjects evaluated the mechatronic system with various control configurations through obstacle avoidance and city road driving test, and a conventional set of steering wheel and pedals were also utilized for comparison. Subjective and objective results from the tests demonstrate that the mobile driving interface with the proposed control scheme can enhance the driver’s performance by up to 55.8% when compared to the traditional driving system during aggressive maneuvers. The system’s superior performance during certain vehicle maneuvers and approval received from the participants demonstrated its potential as an alternative driving adaptation for disabled drivers. Third, a novel strategy is designed for trajectory control of a multi-section continuum robot in three-dimensional space to achieve accurate orientation, curvature, and section length tracking. The formulation connects the continuum manipulator dynamic behavior to a virtual discrete-jointed robot whose degrees of freedom are directly mapped to those of a continuum robot section under the hypothesis of constant curvature. Based on this connection, a computed torque control architecture is developed for the virtual robot, for which inverse kinematics and dynamic equations are constructed and exploited, with appropriate transformations developed for implementation on the continuum robot. The control algorithm is validated in a realistic simulation and implemented on a six degree-of-freedom two-section OctArm continuum manipulator. Both simulation and experimental results show that the proposed method could manage simultaneous extension/contraction, bending, and torsion actions on multi-section continuum robots with decent tracking performance (e.g. steady state arc length and curvature tracking error of 3.3mm and 130mm-1, respectively). Last, semi-autonomous vehicles equipped with assistive control systems may experience degraded lateral behaviors when aggressive driver steering commands compete with high levels of autonomy. This challenge can be mitigated with effective operator intent recognition, which can configure automated systems in context-specific situations where the driver intends to perform a steering maneuver. In this article, an ensemble learning-based driver intent recognition strategy has been developed. A nonlinear model predictive control algorithm has been designed and implemented to generate haptic feedback for lateral vehicle guidance, assisting the drivers in accomplishing their intended action. To validate the framework, operator-in-the-loop testing with 30 human subjects was conducted on a steer-by-wire platform with a virtual reality driving environment. The roadway scenarios included lane change, obstacle avoidance, intersection turns, and highway exit. The automated system with learning-based driver intent recognition was compared to both the automated system with a finite state machine-based driver intent estimator and the automated system without any driver intent prediction for all driving events. Test results demonstrate that semi-autonomous vehicle performance can be enhanced by up to 74.1% with a learning-based intent predictor. The proposed holistic framework that integrates human intelligence, machine learning algorithms, and vehicle control can help solve the driver-system conflict problem leading to safer vehicle operations

    Modeling and Control for Vision Based Rear Wheel Drive Robot and Solving Indoor SLAM Problem Using LIDAR

    Get PDF
    abstract: To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several critical modeling, design, control objectives for rear-wheel drive ground vehicles. Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how to build low-cost multi-capability robot platform that can be used for conducting FAME research. A TFC-KIT car chassis was augmented to provide a suite of substantive capabilities. The augmented vehicle (FreeSLAM Robot) costs less than 500butoffersthecapabilityofcommerciallyavailablevehiclescostingover500 but offers the capability of commercially available vehicles costing over 2000. All demonstrations presented involve rear-wheel drive FreeSLAM robot. The following summarizes the key hardware demonstrations presented and analyzed: (1)Cruise (v, ) control along a line, (2) Cruise (v, ) control along a curve, (3) Planar (x, y) Cartesian Stabilization for rear wheel drive vehicle, (4) Finish the track with camera pan tilt structure in minimum time, (5) Finish the track without camera pan tilt structure in minimum time, (6) Vision based tracking performance with different cruise speed vx, (7) Vision based tracking performance with different camera fixed look-ahead distance L, (8) Vision based tracking performance with different delay Td from vision subsystem, (9) Manually remote controlled robot to perform indoor SLAM, (10) Autonomously line guided robot to perform indoor SLAM. For most cases, hardware data is compared with, and corroborated by, model based simulation data. In short, the thesis uses low-cost self-designed rear-wheel drive robot to demonstrate many capabilities that are critical in order to reach the longer-term FAME goal.Dissertation/ThesisDefense PresentationMasters Thesis Electrical Engineering 201
    • …
    corecore