255 research outputs found

    Filter Bank Multicarrier Modulation for Spectrally Agile Waveform Design

    Get PDF
    In recent years the demand for spectrum has been steadily growing. With the limited amount of spectrum available, Spectrum Pooling has gained immense popularity. As a result of various studies, it has been established that most of the licensed spectrum remains underutilized. Spectrum Pooling or spectrum sharing concentrates on making the most of these whitespaces in the licensed spectrum. These unused parts of the spectrum are usually available in chunks. A secondary user looking to utilize these chunks needs a device capable of transmitting over distributed frequencies, while not interfering with the primary user. Such a process is known as Dynamic Spectrum Access (DSA) and a device capable of it is known as Cognitive Radio. In such a scenario, multicarrier communication that transmits data across the channel in several frequency subcarriers at a lower data rate has gained prominence. Its appeal lies in the fact that it combats frequency selective fading. Two methods for implementing multicarrier modulation are non-contiguous orthogonal frequency division multiplexing (NCOFDM)and filter bank multicarrier modulation (FBMC). This thesis aims to implement a novel FBMC transmitter using software defined radio (SDR) with modulated filters based on a lowpass prototype. FBMCs employ two sets of bandpass filters called analysis and synthesis filters, one at the transmitter and the other at the receiver, in order to filter the collection of subcarriers being transmitted simultaneously in parallel frequencies. The novel aspect of this research is that a wireless transmitter based on non-contiguous FBMC is being used to design spectrally agile waveforms for dynamic spectrum access as opposed to the more popular NC-OFDM. Better spectral containment and bandwidth efficiency, combined with lack of cyclic prefix processing, makes it a viable alternative for NC-OFDM. The main aim of this thesis is to prove that FBMC can be practically implemented for wireless communications. The practicality of the method is tested by transmitting the FBMC signals real time by using the Simulink environment and USRP2 hardware modules

    Wavelet methods in speech recognition

    Get PDF
    In this thesis, novel wavelet techniques are developed to improve parametrization of speech signals prior to classification. It is shown that non-linear operations carried out in the wavelet domain improve the performance of a speech classifier and consistently outperform classical Fourier methods. This is because of the localised nature of the wavelet, which captures correspondingly well-localised time-frequency features within the speech signal. Furthermore, by taking advantage of the approximation ability of wavelets, efficient representation of the non-stationarity inherent in speech can be achieved in a relatively small number of expansion coefficients. This is an attractive option when faced with the so-called 'Curse of Dimensionality' problem of multivariate classifiers such as Linear Discriminant Analysis (LDA) or Artificial Neural Networks (ANNs). Conventional time-frequency analysis methods such as the Discrete Fourier Transform either miss irregular signal structures and transients due to spectral smearing or require a large number of coefficients to represent such characteristics efficiently. Wavelet theory offers an alternative insight in the representation of these types of signals. As an extension to the standard wavelet transform, adaptive libraries of wavelet and cosine packets are introduced which increase the flexibility of the transform. This approach is observed to be yet more suitable for the highly variable nature of speech signals in that it results in a time-frequency sampled grid that is well adapted to irregularities and transients. They result in a corresponding reduction in the misclassification rate of the recognition system. However, this is necessarily at the expense of added computing time. Finally, a framework based on adaptive time-frequency libraries is developed which invokes the final classifier to choose the nature of the resolution for a given classification problem. The classifier then performs dimensionaIity reduction on the transformed signal by choosing the top few features based on their discriminant power. This approach is compared and contrasted to an existing discriminant wavelet feature extractor. The overall conclusions of the thesis are that wavelets and their relatives are capable of extracting useful features for speech classification problems. The use of adaptive wavelet transforms provides the flexibility within which powerful feature extractors can be designed for these types of application

    Spectrally and Energy Efficient Wireless Communications: Signal and System Design, Mathematical Modelling and Optimisation

    Get PDF
    This thesis explores engineering studies and designs aiming to meeting the requirements of enhancing capacity and energy efficiency for next generation communication networks. Challenges of spectrum scarcity and energy constraints are addressed and new technologies are proposed, analytically investigated and examined. The thesis commences by reviewing studies on spectrally and energy-efficient techniques, with a special focus on non-orthogonal multicarrier modulation, particularly spectrally efficient frequency division multiplexing (SEFDM). Rigorous theoretical and mathematical modelling studies of SEFDM are presented. Moreover, to address the potential application of SEFDM under the 5th generation new radio (5G NR) heterogeneous numerologies, simulation-based studies of SEFDM coexisting with orthogonal frequency division multiplexing (OFDM) are conducted. New signal formats and corresponding transceiver structure are designed, using a Hilbert transform filter pair for shaping pulses. Detailed modelling and numerical investigations show that the proposed signal doubles spectral efficiency without performance degradation, with studies of two signal formats; uncoded narrow-band internet of things (NB-IoT) signals and unframed turbo coded multi-carrier signals. The thesis also considers using constellation shaping techniques and SEFDM for capacity enhancement in 5G system. Probabilistic shaping for SEFDM is proposed and modelled to show both transmission energy reduction and bandwidth saving with advantageous flexibility for data rate adaptation. Expanding on constellation shaping to improve performance further, a comparative study of multidimensional modulation techniques is carried out. A four-dimensional signal, with better noise immunity is investigated, for which metaheuristic optimisation algorithms are studied, developed, and conducted to optimise bit-to-symbol mapping. Finally, a specially designed machine learning technique for signal and system design in physical layer communications is proposed, utilising the application of autoencoder-based end-to-end learning. Multidimensional signal modulation with multidimensional constellation shaping is proposed and optimised by using machine learning techniques, demonstrating significant improvement in spectral and energy efficiencies

    Inpainting of Missing Audio Signal Samples

    Get PDF
    V oblasti zpracování signálů se v současné době čím dál více využívají tzv. řídké reprezentace signálů, tzn. že daný signál je možné vyjádřit přesně či velmi dobře aproximovat lineární kombinací velmi malého počtu vektorů ze zvoleného reprezentačního systému. Tato práce se zabývá využitím řídkých reprezentací pro rekonstrukci poškozených zvukových záznamů, ať už historických nebo nově vzniklých. Především historické zvukové nahrávky trpí zarušením jako praskání nebo šum. Krátkodobé poškození zvukových nahrávek bylo doposud řešeno interpolačními technikami, zejména pomocí autoregresního modelování. V nedávné době byl představen algoritmus s názvem Audio Inpainting, který řeší doplňování chybějících vzorků ve zvukovém signálu pomocí řídkých reprezentací. Zmíněný algoritmus využívá tzv. hladové algoritmy pro řešení optimalizačních úloh. Cílem této práce je porovnání dosavadních interpolačních metod s technikou Audio Inpaintingu. Navíc, k řešení optimalizačních úloh jsou využívány algoritmy založené na l1-relaxaci, a to jak ve formě analyzujícího, tak i syntetizujícího modelu. Především se jedná o proximální algoritmy. Tyto algoritmy pracují jak s jednotlivými koeficienty samostatně, tak s koeficienty v závislosti na jejich okolí, tzv. strukturovaná řídkost. Strukturovaná řídkost je dále využita taky pro odšumování zvukových nahrávek. Jednotlivé algoritmy jsou v praktické části zhodnoceny z hlediska nastavení parametrů pro optimální poměr rekonstrukce vs. výpočetní čas. Všechny algoritmy popsané v práci jsou na praktických příkladech porovnány pomocí objektivních metod odstupu signálu od šumu (SNR) a PEMO-Q. Na závěr je úspěšnost rekonstrukce poškozených zvukových signálů vyhodnocena.Recently, sparse representations of signals became very popular in the field of signal processing. Sparse representation mean that the signal is represented exactly or very well approximated by a linear combination of only a few vectors from the specific representation system. This thesis deals with the utilization of sparse representations of signals for the process of audio restoration, either historical or recent records. Primarily old audio recordings suffer from defects like crackles or noise. Until now, short gaps in audio signals were repaired by interpolation techniques, especially autoregressive modeling. Few years ago, an algorithm termed the Audio Inpainting was introduced. This algorithm solves the missing audio signal samples inpainting using sparse representations through the greedy algorithm for sparse approximation. This thesis aims to compare the state-of-the-art interpolation methods with the Audio Inpainting. Besides this, l1-relaxation methods are utilized for sparse approximation, while both analysis and synthesis models are incorporated. Algorithms used for the sparse approximation are called the proximal algorithms. These algorithms treat the coefficients either separately or with relations to their neighbourhood (structured sparsity). Further, structured sparsity is used for audio denoising. In the experimental part of the thesis, parameters of each algorithm are evaluated in terms of optimal restoration efficiency vs. processing time efficiency. All of the algorithms described in the thesis are compared using objective evaluation methods Signal-to-Noise ratio (SNR) and PEMO-Q. Finally, the overall conclusion and discussion on the restoration results is presented.

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Model-based Filtering of Interfering Signals in Ultrasonic Time Delay Estimations

    Get PDF
    In dieser Arbeit werden modellbasierte algorithmische Ansätze zur Interferenz-invarianten Zeitverschiebungsschätzung vorgestellt, die speziell für die Schätzung kleiner Zeitverschiebungsdifferenzen mit einer notwendigen Auflösung, die deutlich unterhalb der Abtastzeit liegt, geeignet sind. Daher lassen sich die Verfahren besonders gut auf die Laufzeit-basierte Ultraschalldurchflussmessung anwenden, da hier das Problem der Interferenzsignale besonders ausgeprägt ist. Das Hauptaugenmerk liegt auf der Frage, wie mehrere Messungen mit unterschiedlichen Zeitverschiebungen oder Prozessparametern zur Unterdrückung der Interferenzsignale in Ultraschalldurchflussmessungen verwendet werden können, wobei eine gute Robustheit gegenüber additivem weißen Gauß\u27schen Rauschen und eine hohe Auflösung erhalten bleiben sollen. Zu diesem Zweck wird ein Signalmodell angenommen, welches aus stationären Interferenzsignalen, die nicht von wechselnden Zeitverschiebungen abhängig sind, und aus Zielsignalen, die den Messeffekt enthalten, besteht. Zunächst wird das Signalmodell einer Ultraschalldurchflussmessung und sein dynamisches Verhalten bei Temperatur- oder Zeitverschiebungsschwankungen untersucht. Ziel ist es, valide Simulationsdatensätze zu erzeugen, mit denen die entwickelten Methoden sowohl unter der Prämisse, dass die Daten perfekt zum Signalmodell passen, als auch unter der Prämisse, dass Modellfehler vorliegen, getestet werden können. Dabei werden die Eigenschaften der Signalmodellkomponenten, wie Bandbreite, Stationarität und Temperaturabhängigkeit, identifiziert. Zu diesem Zweck wird eine neue Methode zur Modellierung der Temperaturabhängigkeit der Interferenzsignale vorgestellt. Nach der Charakterisierung des gesamten Messsystems wird das Signalmodell -- angepasst an die Ultraschalldurchflussmessung -- als Grundlage für zwei neue Methoden verwendet, deren Ziel es ist, die Auswirkungen der Interferenzsignale zu reduzieren. Die erste vorgeschlagene Technik erweitert die auf der Signaldynamik basierenden Ansätze in der Literatur, indem sie die Voraussetzungen für die erforderliche Varianz der Zeitverschiebungen abschwächt. Zu diesem Zweck wird eine neue Darstellung von mehreren Messsignalen als Punktwolken eingeführt. Die Punktwolken werden dann mithilfe der Hauptkomponentenanalyse und B-Splines verarbeitet, was entweder zu Interferenz-invarianten Zeitverschiebungsschätzungen oder geschätzten Interferenzsignalen führt. In diesem Zusammenhang wird eine neuartige gemeinsame B-Spline- und Registrierungsschätzung entwickelt, um die Robustheit zu erhöhen. Der zweite Ansatz besteht in einer regressionsbasierten Schätzung der Zeitverschiebungsdifferenzen durch das Erlernen angepasster Signalunterräume. Diese Unterräume werden effizient durch die Analytische Wavelet Packet Transformation berechnet, bevor die resultierenden Koeffizienten in Merkmale transformiert werden, die gut mit den Zeitverschiebungssdifferenzen korrelieren. Darüber hinaus wird ein neuartiger, unbeaufsichtigter Unterraum-Trainingsansatz vorgeschlagen und mit den konventionellen Filter- und Wrapper-basierten Merkmalsauswahlmethoden verglichen. Schließlich werden beide Methoden in einem experimentellen Ultraschalldurchflussmesssystem mit einem hohen Maß an vorhandenen Interferenzsignalen getestet, wobei sich zeigt, dass sie in den meisten Fällen den Methoden aus der Literatur überlegen sind. Die Qualität der Methoden wird anhand der Genauigkeit der Zeitverschiebungsschätzung bewertet, da die Grundwahrheit für die Interferenzsignale nicht zuverlässig bestimmt werden kann. Anhand verschiedener Datensätze werden die Abhängigkeiten von den Hyperparametern, den Prozessbedingungen und, im Falle der regressionsbasierten Methode, dem Trainingsdatensatz analysiert

    Model-based Filtering of Interfering Signals in Ultrasonic Time Delay Estimations

    Get PDF
    This work presents model-based algorithmic approaches for interference-invariant time delay estimation, which are specifically suited for the estimation of small time delay differences with a necessary resolution well below the sampling time. Therefore, the methods can be applied particularly well for transit-time ultrasonic flow measurements, since the problem of interfering signals is especially prominent in this application
    corecore