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1 Introduction

1.1 Ultrasonic time delay measurement systems
Most ultrasonic measurement technologies rely on the time delay esti-
mation (TDE) of ultrasonic pulses. Depending on the context, the time
delay is also known as time-of-flight or transit-time. In other words, an
ultrasonic transducer generates a pulse, which propagates through a
medium and gets either reflected back to the transducer operating in
sensing mode or received by a different transducer. The resulting time
delay can then be estimated and used to infer the desired measurand,
e.g., the speed of sound (SoS), the distance to an object, or the veloc-
ity of a medium. Typical applications include, but are not limited to,
non-destructive testing (NDT) [66], sonar [1], parking sensors [125] and
ultrasonic flow measurements (UFM) [79]. As an example, figures 1.1(a)
and 1.1(b) show the different principles of parking sensors and UFM, re-
spectively. While UFM requires two transducers on opposite sides of the
pipe, parking sensors can be realized using a single transducer operating
alternatively as a transmitter and receiver.

(a) Ultrasonic flow measurement. (b) Parking sensors.

Figure 1.1 Ultrasonic transit-time estimation applications.

As there are a myriad number of possible ultrasonic applications, the
application-specific challenges are equally varied. However, all systems

1
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1 Introduction

have in common that their accuracy is mainly determined by the mea-
surement of the underlying time delay. The challenge of an accurate
TDE can be approached in two ways. Either the signals are improved
by adapting the design of the ultrasonic system, or the signals are sub-
sequently enhanced by using advanced signal processing methods—a
combination of both is also possible. Firstly, the possibilities by adapting
the design are considered. As the design of an ultrasonic measurement
system contains a lot of degrees of freedom, the following list outlines a
few key points that can be varied:

The measurement principle represents the most important aspect
in the design to get a strong measurement effect. While NDT for
hidden defect detection, sonar, and parking sensors are all based
on the pulse-echo method [1, 8, 17], other principles are using the
resonance of a system for TDE or the superposition of the SoS
with the velocity of the medium. For example, Figure 1.1(b) shows
that the ultrasonic waves transmitted by the sending transducers
are reflected at other cars. The echo can be recorded either by the
sending transducer, which can be switched to operate alternately in
sending and receiving mode, or by another receiving transducer. In
contrast, as shown in Fig. 1.1(a), UFM is based on the superposition
of the SoS with the velocity of flow (VoF). Here, waves sent in
upstream direction are slower than in downstream direction.

The operating frequency range is chosen depending on the medi-
um and the precision requirements. Higher frequencies are tech-
nically more expensive and lead to improved accuracy, but due
to the larger attenuation at higher frequencies, the signal-to-noise
ratio (SNR) deteriorates. If the medium is air, the used frequency is
typically limited to 50 kHz, because the attenuation at high frequen-
cies is significantly larger than in liquid media. Typical frequency
ranges for the diverse applications are summarized in Table. 1.1.

Finally, the choice of transducer type depends on the desired fre-
quency range and the type of ultrasonic waves to be generated.
Nowadays, most transducers are based on piezoelectric ceramics,
which convert an electrical charge to a mechanical displacement
and vice versa. They can be arranged in arrays and combined with

2



1.2 Influence of interfering signals

Table 1.1 Typical frequency ranges for a selection of ultrasonic applications.

Application Frequency range

Parking sensors 40 − 50 kHz [91]
Maritime sonar (mid-frequency) 2.6 − 50 kHz [22]
NDT (air-coupled) 0.75 − 2 MHz [8]
UFM (liquids) 0.5 − 4 MHz [103]
UFM (gas) 200 − 500 kHz [11]
Medical ultrasound imaging 2 − 15 MHz [51]

beamforming to reach better directional characteristics [1], or sim-
ply be connected with backing and electrodes and then placed
inside a metal case. In the case of non-invasive transit-time UFM,
so-called clamp-on sensors [114] that generate surface acoustic
waves are often preferred.

While the development and improvement of ultrasonic systems re-
quire a lot of iterations and are, therefore, very time-consuming and
expensive, the digital signal processing method can be easily adapted
using a software update, even in the late stage of the development. Hence,
the focus of this thesis lies on signal processing techniques for TDE in
ultrasonic systems. Furthermore, this thesis places a special focus on the
TDE accuracy and robustness against interfering signals and noise, as
these properties are usually of high importance.

From a signal processing point of view, ultrasonic time delay measure-
ments can be simplified into the question, how to get an accurate TDE
from a 1D measurement signal 𝑠d(𝑡) and a reference signal 𝑠r(𝑡). Besides
signal distortion due to the acoustic transmission system, the most likely
reasons that complicate the TDE are unwanted signals, such as noise or
interfering signals, which are discussed in more detail in the next section.

1.2 Influence of interfering signals
Unwanted signals in ultrasonic measurements can be separated into
external disturbances due to uncorrelated sound sources, interfering
signals due to multipath propagation, and stochastic noise such as addi-

3



1 Introduction

Rayleigh wave
Sending wedge transducer Receiving wedge transducer

Testing material
Backwall reflection

Breaking crack

Figure 1.2 Interfering signals (red) due to multipath propagation in an NDT scenario.

tive white Gaussian noise (AWGN). A typical scenario with unwanted
signals due to multipath propagation is depicted in Figure 1.2, where a
homogeneous material is tested for cracks or other defects. Due to the
impedance jump at the crack, the incident wave gets reflected towards
the receiving transducer, which in turn allows locating the crack by esti-
mating the time delay, if the SoS of the material is known. However, the
signal created by the crack, namely the target signal, is superposed by a
direct propagation between the transducers along the surface of the test
specimen and by back wall reflections. An external disturbance could
be caused by sound sources in the test environment, which makes them
uncorrelated to the target signal. Additionally, as with any measurement,
the recorded signals are subject to stochastic noise, caused by polariza-
tion noise or thermal noise of the piezoelectric ceramic as well as the
thermal noise of the measurement electronics.

While the influence of AWGN can be reduced by averaging and uncor-
related sound sources can be suppressed by using modulated excitation
signals, the separation of interfering signals is more difficult. Since they
are highly correlated with the target signal, a modulated excitation signal
shows the same effects on both the interfering and target signals, and
therefore introduces no information to separate them. Furthermore, the
interfering signals are in the same frequency range as the target signal
and stationary in the sense that they do not vary over multiple measure-
ments, which renders frequency filtering or averaging useless. If a short
pulse is used as excitation and the transducer bandwidth is sufficiently
high, the different signals can be separated by gating in the time domain
(see Fig. 1.3(a)). Otherwise, as it can be seen in Fig. 1.3(b), the interfering

4



1.2 Influence of interfering signals

40 50 60 70
Interfering Signals

𝑡 in µs
(a) Separable interfering signals.

40 50 60 70
Interfering range

𝑡 in µs
(b) Non-separable interfering signals.

Figure 1.3 Superposition scenarios of interfering signals (the measurement signals are
colored in blue and the target signals in red).

signals are located in the same time and frequency range resulting in a
distorted observed signal, in the literature often termed as non-separable
interfering signals [69, 102].

The main problem arising from the interfering signals is their influence
on the accuracy of the TDE. Since they show no measurement effect, the
actual time delay of the target signal may be hidden under the time delay
of the interfering signals, which induces a systematic estimation error.
Depending on the estimation method, the error can be significant, if
for example the target signal cannot be detected at all and the peak of
the interfering signals is taken for the time delay of the target signal.
Even if the level of the interfering signals is small compared to the target
signal, the accuracy is considerably reduced. To illustrate this, a thought
experiment of a TDE in the presence of interfering signals is conducted
in the following. For simplicity, pure sine signals are used as the target
and interfering signals, which is at the same time the worst case, because
the bandwidth of such a measurement is nearly zero. The time delay gets
estimated via the phase shift of the measurement signal since it describes
the time delay for pure sinusoidal signals. To describe the problem, the
measurement signal𝑠d(𝑡) = 𝑠t(𝑡 − 𝜏) + 𝑠i(𝑡) (1.1)

is composed of the target signal 𝑠t(𝑡) and additive interfering signals𝑠i(𝑡), which are defined by𝑠t(𝑡) = 𝐴t sin(𝜔0𝑡) , (1.2)𝑠i(𝑡) = 𝐴i sin(𝜔0𝑡 + 𝜑) . (1.3)
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0 1/𝑓00

1/𝑓0

𝜏

̂𝜏
ScNR = 10 dB
ScNR = 5 dB
ScNR = 3 dB
ScNR = 1 dB

Figure 1.4 Worst-case estimation error caused by the interfering signals with 𝜑 = 𝜋/2
depending on their level (ScNR = 20 lg(𝐴t/𝐴i)dB).

Given the equations (1.1)–(1.3), the observable time delay of the measure-
ment signal can be calculated using the harmonic addition of sine waves
for arbitrary phase shifts [12, p. 84] resulting in the estimated time delaŷ𝜏 = 1𝜔0 arctan ( 𝐴t sin(𝜔0𝜏) + 𝐴i sin(𝜑)𝐴t cos(𝜔0𝜏) + 𝐴i cos(𝜑)) . (1.4)

The results of this equation can be seen in Figure 1.4, where the esti-
mated time delays for different signal-to-correlated-noise ratios (ScNR)
are shown. This ratio must not be confused with SNR, as ScNR describes
the level of interfering signals and not the stochastic noise. It can be seen
that the error, oscillating with 𝑓0, is dependent on the real time delay 𝜏
and the ScNR. The absolute maximal deviation ̂𝜏 −𝜏 is determined by the
ScNR, while the phasing is determined by 𝜑, which has been set to 𝜋/2
in this example. Even for small levels of interfering signals, where the
amplitude of the target signal 𝐴t is about three times higher than the in-
terfering signals amplitude 𝐴i (ScNR = 10 dB), the estimation error can
be up to 5 % of the period duration 1/𝑓0. In summary, the errors induced
by the interfering signals are systematic, dependent on the phasing of
the superposition and can only be mitigated by increasing the excitation
frequency or damping the interfering signals mechanically.

Another source of error that occurs in the presence of interfering sig-
nals is the influence of process parameters, e.g., temperature or pressure.
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Since the estimation error is dependent on the superposition, any process
parameter that leads to a deviation of the SoS changes the phasing and,
therefore, the estimation quality.

One scenario, where interfering signals are especially problematic,
is ultrasonic flow metering, e.g., using clamp-on sensors, as shown in
Fig. 1.1(a). Here, the ultrasonic waves are transmitted into the fluid via the
pipe wall, whereby the interfering signals account for a significant pro-
portion of the measurement signals. The different approaches reported
by the literature to address this problem are based on either mechanical
damping or using flow statistics. However, their constraints limit their
applicability, since mechanical damping is usually temperature- and
frequency-dependent, and the assumed flow statistics are too restrictive.
Therefore, extended algorithmic methods for filtering the interfering
signals are proposed in this thesis, exploiting the property that the target
signals exhibit different dynamic behavior compared to the interfering
signals over multiple measurements. In contrast to the state-of-the-art
(SotA) methods, the presented algorithms require little dynamic behavior
of the target signals and also work over a wide temperature range.

1.3 Scope of the thesis
This thesis presents model-based algorithmic approaches for interference-
invariant TDE, which are specifically suited for the estimation of small
time-delay differences with a necessary resolution well below the sam-
pling time. Therefore, the methods can be applied particularly well for
transit-time UFM, since the problem of interfering signals is especially
prominent in this application. The main focus lies on how to use multiple
measurements with varying time delays or process parameters for the
separation of interfering signals in UFM, while maintaining good robust-
ness against AWGN and a high resolution. To this end, a signal model
is assumed that contains stationary interfering signals, which are not
dependent on changing time delays, and a target signal, which contains
the measuring effect.

Firstly, the signal model of an UFM and its dynamic behavior under
temperature or time delay variations is examined in Chapter 3. The aim is
to generate valid simulated data sets, which are used to test the developed
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methods both under the premise that the data fits to the signal model
perfectly and under the premise that model errors are present. In the
course of this, the properties of the signal model components, such as
bandwidth, stationarity and temperature dependency, are identified. For
this purpose, a new method to model the temperature dependence of
the interfering signals is presented. After the characterization of the total
measurement system, the signal model—adapted to UFM—is used as
the basis for two new methods whose objective is to reduce the impact
of the interfering signals.

The first proposed technique, described in Chapter 4, extends the dy-
namics-based approaches of the literature by weakening the constraints
on the needed variance of the time delays. To this end, a new representa-
tion of multiple measurement signals as point clouds is introduced. The
point clouds are then processed using the principal component analy-
sis (PCA) and B-splines, leading to either interference-invariant TDE or
estimated interfering signals. In this context, a novel joint B-spline and
misalignment approximation is developed to enhance the robustness.

The second approach consists of a regression-based estimation of the
time-delay differences by learning reasonable signal subspaces. These
subspaces are efficiently calculated by the analytic wavelet packet trans-
form (AWPT) before the resulting coefficients are transformed into fea-
tures that correlate well with time-delay differences. Furthermore, a novel
subspace training approach that works unsupervised is proposed and
compared to the conventional filter- and wrapper-based feature selection
methods.

Finally, both methods are tested in an experimental UFM system with
a high level of interfering signals present, where it is shown that they
are in most cases superior to the literature methods. The quality of the
methods is evaluated using the accuracy of the TDE, since the ground
truth for the interfering signals cannot be determined reliably. Different
data sets are used to analyze the dependencies on the hyperparameters,
the process conditions and, in the case of the regression-based method,
the training set.

8



2 State of the Art

In this chapter, an overview of the relevant literature concerning TDE,
transit-time UFM, and suppression of interfering signals is given. The
first section presents and categorizes SotA methods for TDE that will be
used in Chapter 6 as a reference for the newly developed methods. While
many of the methods are only described in a brief overview, the methods
that are to be used as a reference are explained in more detail with the
necessary equations. Since the focus of this thesis is the robustness against
interfering signals using the transit-time UFM as an application example,
sections 2.2 and 2.3 outline the SotA regarding transit-time UFM and
interfering signals suppression, respectively.

2.1 Time delay estimation
In TDE problems, the objective is to find the time delay between a refer-
ence signal and its delayed and attenuated echo in the presence of noise.
Let the general problem be modeled by𝑠r(𝑡) = 𝑠t(𝑡) + 𝑛r(𝑡) ,𝑠d(𝑡) = 𝐴t 𝑠t(𝑡 − 𝜏) + 𝑛d(𝑡) ,

(2.1)

with the reference signal 𝑠r(𝑡), the delayed signal 𝑠d(𝑡), the target signal𝑠t(𝑡), the attenuation 𝐴t , and the time delay 𝜏 [61]. In most cases, the
AWGN signals 𝑛r(𝑡) and 𝑛d(𝑡) are assumed to be uncorrelated with each
other and with 𝑠t(𝑡).

The different estimation methods that are reported in the literature can
be categorized into three classes according to Fang et al. [30]: time-based
[17], correlation-like [5] and waveform-fitting [3, 47, 87]. While time-
based methods are easier to implement and require little computational
effort, correlation-like methods yield better accuracy and robustness
against noise for low SNR [117]. If prior knowledge such as propagation
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Figure 2.1 Zero crossing estimation via linear approximation of the Hilbert angle 𝜙h . The
zero crossing to be selected must be defined by another criterion.

characteristics or transducer impulse response is available, the waveform
can be physically or empirically modeled to estimate the time delay
via an optimization approach. However, the necessary parameters are
often only known approximately which reduces the accuracy. For this
reason and the significant computational effort of physically modeling
the acoustic waves, waveform-fitting approaches are not widespread.

2.1.1 Time-based estimation methods
Let us first consider time-based methods, which are based on the determi-
nation of prominent points in the measurement signal, e.g., intersections
with thresholds [35], zero crossings [139] or envelope edges [4].

As early as 1974, Frederiksen and Howard [35] implemented a thresh-
old-based determination of the time of arrival of wave packets on a
monolithic chip. Via a specially developed analog circuit, an impulse
noise rejection has even been integrated, which discriminates against re-
ceived signals that are too short. Since a fixed threshold is not very robust
to fluctuating signal intensities, various extensions of the threshold-based
TDE to multiple thresholds [71] or variable thresholds [140] have been
introduced. However, thresholds cannot only be applied directly in the
time domain. For example, Duarte et al. [28] have presented the use of
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2.1 Time delay estimation

thresholds in spectrograms at a given frequency as a way to perform
TDE.

Alternatively to the threshold-based TDE, the zero crossing can be used
to determine the time delay—an easy algorithm for the zero-crossing
detection is given by Zhou et al. [139]. To get a more robust estimation of
the zero crossing, Kupnik et al. [63] use the Hilbert transform in combi-
nation with a linear approximation of the phase signal. The approach
is depicted in Figure 2.1. As it can easily be seen, narrow-band signals
lead to a linear behavior of the phase signal 𝜙h(𝑡), which results from
calculating the argument of the analytic signal 𝑠as(𝑡). The robust zero
crossing is then extracted as the intersection of the linear phase fit ̃𝜙h(𝑡)
with the time axis. The same approach is also presented by Roosnek
[99], where the linear approximation ̃𝜙h(𝑡) is calculated by the weighted
least squares using the signal envelope |𝑠d,as(𝑡)| as weights. This specific
method—in the following simply called the zero-crossing method—is
one of the SotA methods that are implemented as a reference to measure
the accuracy of the methods proposed in this dissertation. It has to be
noted that the zero-crossing method is ambiguous since in a sinusoidal
signal there are usually several zero crossings. A solution to always de-
termine the time delay of the same zero crossing is proposed by Fang
et al. [30], where finding the same zero crossing is guaranteed by first
estimating the signal onset using a classification.

In addition to the methods already listed, many more elaborate meth-
ods exist in the literature. They are based on, for example, features such
as the intersection of an envelope tangent with the time axis [4], or they
determine the time delay by tracking multiple sample points individually
[136].

2.1.2 Correlation-like time delay estimation
Correlation-based methods for TDE have been published since the early
1970s, as TDE is one of the main applications for cross-correlation. The
core of each method lies in the cross-correlation function𝑅CC𝑠d,𝑠r( ̃𝜏) = E{𝑠r(𝑡) 𝑠d(𝑡 + ̃𝜏)}≈ ∫∞−∞ 𝑠r(𝑡) 𝑠d(𝑡 + ̃𝜏)d𝑡 ,

(2.2)
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which shows a peak at the real time delay 𝜏 under ideal conditions [61, 89,
93]. A simple application of this function is the cross-correlation flowme-
ter, where two axially separated transmission paths are used to measure
the movement of bubbles, turbulence, or other clumps of particles [5].
However, the ideal conditions include the noise signals being indepen-
dent zero-mean stationary Gaussian and the available signal sequences
being ergodic and long enough to approximate the expectation value by
time integration. In real applications, the observation time, the sampling
rate and the bandwidth of the target signals 𝑠t(𝑡) are usually limited,
leading to a noise polluted spread out cross-correlation. Moreover, mul-
tipath propagations are neglected in the standard approach which can
further deteriorate the estimation quality. To cope with these problems,
several extensions of the classical method have been developed and
published over the years. These extensions range from pre-filtering the
signals to advanced approximation techniques based on the calculation
of weighted cross-correlations in the Fourier domain.

An important class of cross-correlation techniques that needs to be con-
sidered is the generalized cross-correlation. This class is characterized by
the fact that the cross-correlation calculation is carried out in the Fourier
domain with a frequency weighted spectrum. Knapp and Carter [61]
compared different frequency windows 𝐻𝑠r,𝑠d(𝑓) for the generalized
cross-correlation method, in which the time delay is estimated bŷ𝜏 = arg max̃𝜏 𝑅GCC𝑠d,𝑠r( ̃𝜏)= arg max𝜏 ∫∞−∞ 𝐻𝑠r,𝑠d(𝑓) 𝑆d(𝑓) 𝑆∗r(𝑓) ej2𝜋𝑓𝜏 d𝑓 , (2.3)

where 𝑆d(𝑓) and 𝑆r(𝑓) denote the Fourier transforms of 𝑠d(𝑡) and 𝑠r(𝑡),
respectively. The aim is to improve the estimation quality of the cross-
correlation by emphasizing frequencies with high SNR. This approach is
equivalent to pre-filtering the signals with ℎ𝑠d(𝑡) and ℎ𝑠r(𝑡), respectively,
before the cross-correlation is calculated. Since the choice of 𝐻𝑠r,𝑠d(𝑓)
influences both the robustness and accuracy of the estimation, a selection
of different weighting schemes, also known as processors, is listed below:

Roth’s processor𝐻𝑠r,𝑠d(𝑓) = 1𝑆r(𝑓) ⋅ 𝑆∗r(𝑓) (2.4)
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suppresses frequencies with low SNR but also spreads out the
cross-correlation �̃�𝑠d,𝑠r(𝜏) [101].

Using the phase transform processor𝐻𝑠r,𝑠d(𝑓) = 1|𝑆r(𝑓) ⋅ 𝑆∗d(𝑓)| , (2.5)

the cross power spectral density is normalized, which can sharpen
the peak of the generalized cross-correlation [16].

The Eckart filter𝐻𝑠r,𝑠d(𝑓) = 𝑆t(𝑓) 𝑆∗t(𝑓)𝑁r(𝑓) 𝑁∗r(𝑓) ⋅ 𝑁d(𝑓)𝑁∗d(𝑓) (2.6)

has been developed by Eckart [29] as a filter that maximizes the
deflection. In this context, deflection represents the ratio between
the filter’s response to the target signal compared to the response
to noise. It also has the property to suppress frequency bands with
low SNR, but the spectral densities of the target signal and the
noise have to be known beforehand.

The last spectral filter to be mentioned is the Hannan-Thomson
processor [42], for which the approximation𝐻𝑠r,𝑠d(𝑓) = |𝑆r(𝑓)| |𝑆∗d(𝑓)||𝑁r(𝑓)|2 |𝑁∗r(𝑓)|2 |𝑁d(𝑓)|2 |𝑁∗d(𝑓)|2 (2.7)

was proposed by Brandstein et al. [10]. Note that this filter leads to
the maximum likelihood estimate of the time delay, with an error
variance approaching the Cramér-Rao lower bound (CRLB) [61].

All above mentioned generalized cross-correlation methods need the
power spectral densities (PSD) of either the target signal, the noise signals,
the measurement signals, or all together. In practice, these densities are
approximated via the periodogram, Bartlett’s/Welch’s method, or other
spectral density estimators. Alternatively, a data-driven FIR filter design
approach, which does not rely on spectral densities, is presented in a
newer work [6]. Nevertheless, as already stated above, all methods are still
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limited by the bandwidth and the observation time, leading to a smeared
cross-correlation function with additive residual noise. If the peak of the
cross-correlation function is too broad or polluted by noise, Cabot [13]
has shown that the Hilbert transform can then be used to convert the
maximum of 𝑅𝑠d,𝑠r(𝜏) into a zero crossing. This technique could also be
combined with the pre-filters in the generalized cross-correlation.

In contrast to using the peak of the cross-correlation, other proper-
ties such as the phase of the cross power spectrum can also be used
to estimate the time delay, especially in cases where the noise signals𝑛d(𝑡) and 𝑛r(𝑡) are correlated with each other [93]. Since correlated noise
sources are a typical scenario and originate from external sources in the
environment, this problem was also addressed by Nikias and Pan [89]
by employing higher-order spectrum domains such as the bispectrum.
Their approach is based on the property that the third moment of a
zero-mean Gaussian process vanishes, which removes the influence of
the correlation between the noise signals. However, the term correlated
noise must not be confused with the interfering signals, the reduction of
which is the objective of this thesis, as these are not only correlated with
each other but also with the target signal.

While all methods based on the cross-correlation perform TDE by max-
imizing an adapted form of (2.2), an alternative correlation-like technique
is based on the minimization of the average square difference function
(ASDF)𝑅ASDF𝑠r,𝑠d ( ̃𝜏) = ∫∞−∞ (𝑠r(𝑡) − 𝑠d(𝑡 + ̃𝜏))2 d𝑡 (2.8)

or the average magnitude difference function (AMDF)𝑅ASMF𝑠r,𝑠d ( ̃𝜏) = ∫∞−∞ |𝑠r(𝑡) − 𝑠d(𝑡 + ̃𝜏)| d𝑡 , (2.9)

which were examined in the works of Jacovitti and Scarano [50] and Fert-
ner and Sjolund [31]. These techniques are also known in the literature as
the sum-of-squared-differences and sum-of-absolute-differences method,
respectively [36, 121]. Compared to the conventional cross-correlation,
ASDF and AMDF require less computational effort since there is no need
for multiplications and normalization. Furthermore, the variance of the
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estimation error is closer to the CRLB than the cross-correlation in a
white signal scenario [50].

A special challenge that has been neglected so far in the cross-corre-
lation methods is multipath propagation. If the difference of the time
delays between the system’s various propagation paths is large enough,
the cross-correlation shows distinct peaks that correspond to the time
delays of the different paths. The limiting factor for the necessary differ-
ence between the time delays is the available signal bandwidth which
is inversely proportional to the width of the correlation peaks [55]. For
high SNR, the resolution can be improved by whitening the spectrum
as shown by Khyam et al. [55]. The other approaches consist of using
pulsed-wave ultrasound as excitation in combination with a windowed
cross-correlation, where the signals are windowed in the time domain
before calculating the cross-correlation [9, 129]. While fixed rectangular
windows are often used [33, 45], Xu et al. [133] presented an algorithm
that calculates the cross-correlation in the wavelet domain with care-
fully selected scaling levels. A closer look into this algorithm leads to
the conclusion that this is a special case of a time-frequency windowed
cross-correlation showing similarities to a time-windowed generalized
cross-correlation.

The last step of each correlation-like approach is the subsample approx-
imation of the time delay since the signals are practically processed in the
discrete time domain. There exist different ideas on how to increase the
resolution beyond the sampling time, which can be separated into inter-
polation techniques in the time domain or the phase domain. While the
former category is more widespread, it needs a well-chosen interpolation
model. In contrast, phase-based approaches are built on the assumption
of narrow-band signals, which means that the measurement signals ap-
proximately only contain a single frequency. This assumption allows the
subsample TDE by using linear interpolation or approximation in the
phase domain to get the phase shifts or the slopes of the phase.

Let us first consider the interpolation in the time domain. Viola and
Walker [122] have given an overview of the possible strategies, which in-
clude interpolation of the signals or interpolation of the cross-correlation
function. If the signals are interpolated before the cross-correlation, they
must still be resampled at a higher sampling rate to calculate the cross-
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correlation. This results in a large computational effort and the estimated
time delay will still be quantized, though at a finer resolution. Alterna-
tively, the parameters of the interpolation model can be used to directly
estimate the time delay, e.g., the root of the analytic derivative of a spline
interpolation directly leads to an expression for the time delay [122]. In
the second strategy, the cross-correlation is directly interpolated in the
immediate neighborhood of the discrete global maximum. The interpo-
lation models depend on the used pattern-matching function such as
the cross-correlation, the ASDF, or the zero crossing curve presented
by Shaswary et al. [112, 113]. In most cases, the interpolations are based
on parabolic [50], cosine [26], or spline fitting [122], where cosine fitting
usually performs better than parabolic fitting [26]. Nandi [88] has shown
that the parabolic fit can also be applied to multiple points of the cross-
correlation function which offers significant improvements at low SNR.

For the second group of subsample approximation approaches, the
phase information is necessary, which can either be extracted by sine
fitting [95], transformation into the Fourier domain [117] or other model-
based fittings. For example, Grennberg and Sandell [41] used the cross-
correlation between the delay signal and the Hilbert transformed ref-
erence signal to get a direct estimator for the phase. Due to the phase
ambiguity, only small time delays are allowed if the result is required to
be unique. Therefore, the phase-based methods are typically combined
with rough estimators to obtain the integer number of period durations
contained in the time delay [95, 117].

To date, the correlation-based methods and its many variants are con-
sidered by many researchers as the “gold standard” for TDE [112, 122],
which is why recent publications still deal with its further improvement,
such as the frequency-sliding approach presented by Cobos et al. [18].

2.1.3 Model-based approaches
The last group of approaches for the estimation of time delays in acoustic
measurement systems is based on physical or empirical models for the
waveforms. Since the model-based approaches are the least common and
depend heavily on whether a valid signal model can be established, they
will only be briefly discussed here based on a few selected publications.
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Yan and Gu [134] proposed a physical model based on solving the
differential equation of mechanical vibrations. The rising edge envelope
of the signal model that solves the differential equation is then fitted
to the measurement signal to estimate the starting time of the recorded
ultrasonic pulse. A simpler fit of the rising edge is published by McMullen
et al. [87], where the rising edge was approximated as a parabola, which
could be fit using two threshold measurements.

Apart from that, a popular signal model used for the TDE of ultrasonic
signals is the Gaussian-modulated cosine signal, where the amplification,
time delay, and width of the Gaussian window as well as the frequency
and phase of the cosine are the free parameters of the model. Both Gho-
lami et al. [38] and Lu et al. [75] presented methods to fit multiple over-
lapping Gaussian modulated cosine signals. While Gholami et al. [38]
based the fitting on the expectation-maximization algorithm, Lu et al.
[75] developed a modified Gauss-Newton method.

In terms of fitting methods, successful applications of the unscented
Kalman filter [3], the genetic-ant colony optimization [47], or a weighted
Fourier transform and relaxation-based method [52] have been reported.

2.2 Transit-time ultrasonic flow meter
Ultrasonic flow meters, except for some less common types, can be di-
vided into two main classes: the transit-time UFM and the Doppler UFM.
Since the latter requires inhomogeneities to reflect the ultrasonic waves
and is based on estimating the Doppler frequency of the reflected signals,
it is not further considered in this thesis. In contrast to this, transit-time
flow meters work for homogeneous single-phase fluids. They are based
on the effect that an ultrasonic wave sent in upstream direction propa-
gates slower than in downstream direction. Other UFM variants, such
as the cross-correlation flow meters, are not considered because their
special signal processing requirements are only slightly related to the
topic of this thesis—the accurate TDE for very small time delays in the
presence of interfering signals.

The first flow meters based on the transit-time of ultrasonic pulses are
in use since the early 1950s [118]. Due to the non-existence of moving
parts, they are characterized by both low energy consumption and low
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maintenance requirements. Hence, their field of application ranges from
the food to energy industry, where large throughputs and, therefore,
large cross-sections are required. While the first UFMs used two paths
and were built completely analog [34], the systems have been further
improved to use multiple frequencies [90], phase-shift approaches [137]
and single path circuits [73]. In order to apply UFM for the measure-
ment of highly corrosive fluids or in a sanitary environment, so-called
clamp-on transducers, which allow excitation of the ultrasonic waves
through the pipe wall without contact to the fluid, were presented by
Tobin [120] in 1972. Soon after their introduction, Lynnworth reported
their accuracy limitation due to interfering signals [78]. After years of
constant improvement, a new chapter was opened in the 1990s with the
introduction of digital signal processing techniques to the field of TDE
in ultrasonic applications [32, 92]. Different methods, such as improving
the robustness of the zero crossing employing the Hilbert transform [99]
or reconstructing flow profiles using a parametric model [84], were pub-
lished. With the improved accuracy, the possible applications have also
further expanded. For example, Schwarz et al. [105] have shown that the
flow in partially filled drainage pipes can be measured with resolutions
of less than 1 cm s−1. To this end, the UFM system was built to provide
measurement signals with little noise and interference, and the time-
delay differences were measured using a high-precision TDE chip that
provides time-delay resolutions of 55 ps.

Three different aspects of UFM in which research is still being carried
out can be named: signal processing, flow profile considerations and
transducer technologies.

In the field of transducers for UFM, Li et al. [72] reported new
miniature clamp-on transducers, which contain two piezoelectric
elements, one for the measurement of the time-delay difference
and one for the measurement of the SoS.

The influence of flow profiles on the estimation of the average
VoF was investigated by Wiranata and Ardana [131]. In addition,
a reconstruction of the flow profile can also be made, as shown
in the work of Mandard et al. [84]. To this end, a parametric flow
profile model was fitted to the measurement data from a multipath
UFM.
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The latest research on the signal processing methods featured
the TDE via improved cross-correlation methods [81], local peak
fittings [80] similar to the envelope method, and cluster analysis
of local peaks by processing multiple measurements [126].

2.3 Interfering-signals suppression
As already mentioned in the introduction, the interfering signals limit
the accuracy of ultrasonic TDEs. If this limited accuracy is not tolerable
due to the requirements, an interfering-signals suppression must be
used. In the literature, a distinction is made between algorithmic and
mechanical suppression where the detailed procedure depends on the
application. Since the application example in this dissertation is the UFM,
the SotA suppression approaches for UFM are listed, even though not
many solutions to this problem have been published.

In the group of mechanical suppression falls the use of pipe materials
that are poor at transmitting structure-borne sound, e.g., the plastic pipes
used in the earliest UFM clamp-on measurements [54]. Apart from that,
the use of damping mats or other attenuation elements is reported by
Lynnworth and Liu [79].

In contrast, the algorithmic approaches proposed in the literature are
all based on the fundamental principle that the ultrasonic waves, which
are transmitted solely through the pipe wall, are stationary, whereas the
target signals exhibit dynamic behavior because they are dependent on
the flow [79]. There are several methods to exploit this principle. Roos-
nek’s approach [99] works by collecting different measurement signals
whose time delays uniformly cover a period duration to use destructive
interference for estimation of the stationary interfering signals, i.e., the tar-
get signals propagating in the fluid cancel each other out when averaged,
leaving only the interfering signals. However, this approach is highly
dependent on the availability of the measurement signals, since the time
delays are required to cover at least one-period duration. Another ap-
proach has been published by Jacobson et al. [49], where the suppression
of the non-varying interfering signals is realized by using a high-pass
with respect to a set of consecutive measurements. Mansfeld et al. [85]
proposed a similar method, where the signals of consecutive measure-
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ments are subtracted to remove the stationary signal components—this
is equivalent to a simple numerical differentiation according to the mea-
surement index, and thus this method also has a highpass characteristic.
Nevertheless, the methods proposed by Jacobson et al. [49] and Mans-
feld et al. [85] require highly fluctuating target signals to get sufficient
target signal levels, which in turn are necessary to be robust against
measurement noise.

In summary, the interfering signals suppression is based on either
attaching damping materials to the pipes, or using the assumption of
stationary interfering signals. In the case of the latter, the time delays of
the target signals must necessarily either follow a uniform distribution
or change permanently at a fast rate.

20



3 Measurement System
Identification

Since the transit-time UFM is used as an application example in this thesis,
the fundamentals of the measurement principle, the most important
process influences and the derived signal models are described in this
chapter. The focus of this chapter is to present a signal model of UFM
which describes the classification of the ultrasonic signals into target and
interfering signals, their sources and properties, and how the influencing
variables temperature and flow velocity are included.

Before the measurement system is investigated, an introduction to the
fundamentals of ultrasonic systems is given in Section 3.1. Based on this,
the signal model is derived in the following two sections (an overview
of the sections and their contents is given in Fig. 3.1). In Section 3.2 the
properties and sources of the target and interfering signals are presented
and the structure of the signal model is given. Subsequently, the influ-
ence of the temperature and the VoF on the target and interfering signals
is investigated in Section 3.3. This finally results in the complete signal
model with all components, their dependency on the VoF and the temper-
ature as well as a collection of the properties of the signal components,
e.g., bandwidth or distribution over the time range. All insights and

Section 3.2 Section 3.3

Signal model
target signals
interfering signals

Sources
propagation paths
Lamb waves

Properties
bandwidth
time delays

Influences
temperature
velocity of flow

Figure 3.1 Topics of Chapter 3.
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assumptions are supported by experimental tests, whose designs and
implementations are described in Section 3.2.1.

Finally, the knowledge gained on the properties, influences, and struc-
ture of the signal model is used in Section 3.4 to generate simulated
data sets. These can be used to validate the intermediate steps of the
developed filtering methods, which are presented in chapters 4 and 5.

3.1 Ultrasonic fundamentals

3.1.1 Ultrasonic flow metering
The principle of UFM is, as mentioned in the introduction, based on
the superposition of the SoS 𝑐M with the VoF 𝑣. To this end, two axially
distanced transducers UT 1 and UT 2 are used to transmit one ultrasonic
pulse each in the upstream and downstream direction. For this, the
transducers can be operated both as senders and receivers. Figure 3.2
depicts a sketch of this principle. The resulting propagation velocity
is dependent on the path angle 𝛼 given by the angle between the flow
vector and the propagation vector. Thereby, the waves in upstream and
downstream direction propagate with the velocities𝑣1 = 𝑐M − 𝑣 ⋅ cos(𝛼) , (3.1a)𝑣2 = 𝑐M + 𝑣 ⋅ cos(𝛼) , (3.1b)

respectively. Given the path length 𝐿, this results in the absolute time
delays𝜏a,1 = 𝐿𝑐M − 𝑣 ⋅ cos(𝛼) , (3.2a)𝜏a,2 = 𝐿𝑐M + 𝑣 ⋅ cos(𝛼) . (3.2b)

By resolving equations (3.2) to the VoF 𝑣, we can get the relation𝑣 = 𝜏a,1 − 𝜏a,2𝜏a,1𝜏a,2 ⋅ 𝐿2 cos(𝛼) , (3.3)
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𝑣
UT 1

UT 2

𝐿 Δ𝑥
𝐷

𝛼𝑠t(𝑡 − 𝜏2)
𝑠t(𝑡 − 𝜏1)

Figure 3.2 Setup for UFM with necessary system parameters (following [145]).

which simplifies to𝑣 = 𝜏𝐿 ⋅ 𝑐M 22 cos(𝛼) , 𝜏 = 𝜏a,1 − 𝜏a,2 , (3.4)

if the condition 𝑐M ≫ 𝑣 holds. In liquid fluids such as water with a SoS
around 1480 m s−1, this is mostly fulfilled. Otherwise the exact equation
is to be used, which requires the measurement of the absolute time
delays and not only the time-delay difference 𝜏 between upstream and
downstream direction.

Either way, only the average velocity of the flow along a single ultra-
sonic transmission path can be measured this way. To determine the
mass flow rate, the diameter, the density, and the flow profile have to be
considered. While the first two are defined by the medium and the pipe,
the latter depends on the Reynolds number and is usually included in
the measurement equation via multiplication with a hydraulic correction
factor. The following flow profile considerations are summarized from
Iooss et al. [48]. For fully turbulent flows with Reynolds numbers larger
than 4000 the flow profile can be described by Prandtl’s law [48]𝑣(𝑅) = 𝑣max (1 − 𝑅𝐷/2)𝑝

(3.5)

as a function of the maximum velocity in the middle of the pipe 𝑣max
and the distance to the center of the pipe 𝑅. Note that this flow profile is
only valid for a long enough inlet length. The parameter 𝑝 is dependent
on the Reynolds number and can be determined experimentally or by
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3 Measurement System Identification

an approximated equation. The integration along the diametral acoustic
path of the ultrasonic wave, whereby diametral means that it passes
through the center of the pipe, results in an average velocity𝑣 = 𝑣max1 + 𝑝 . (3.6)

Inserting (3.6) in the integration result over the pipe cross-section𝑣 = 𝑣max(1 + 𝑝)(1 + 𝑝2 ) (3.7)

yields the hydraulic correction factor𝑘h = 𝑣𝑣 = 1 + 𝑝2 . (3.8)

This correction factor can be used for all diametral acoustic paths. In
case of multipath UFM, where multiple ultrasonic transducer pairs are
attached to the pipe, a weighted average of the different single path
velocities𝑣 = 1𝑘h ∑𝑖 𝑤𝑖𝑣𝑖 (3.9)

is typically used [84]. Thereby, the weights have to be adapted to the
path configuration and the expected flow profile [131]. Finally, the pipe
cross-sectional average velocity can be used to calculate the mass flow
rate 𝑄 = 𝜌 ⋅ 𝜋 (𝐷2 )2 ⋅ 𝑣 . (3.10)

3.1.2 Transducers for ultrasonic waves excitation
Until now, only the application of ultrasonic waves for flow metering was
featured. However, the pre-condition of using ultrasonic waves is their
generation and sensing. To this end, ultrasonic transducers are employed,
which are mostly based on the piezoelectric effect for high frequencies.
The exact construction of a transducer depends on the waves to be excited,
but the core of all transducers is a piezoceramic with electrical connection,
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backing

electrodes

piezoceramic matching layers damping structurepiezoceramic
structure
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material

electrodes and
piezoceramic

mounting plate

Figure 3.3 Ultrasonic transducer structures for directional longitudinal radiation (left)
or guided waves excitation, as used for clamp-on UFM (right). The left figure is based on
[102].

backing, and acoustic matching layers. Since a complete listing of all
transducer types is beyond the scope of this thesis, only one prominent
type for both longitudinal wave and guided wave excitation is presented
in this section.

In Figure 3.3 on the left, a typical structure of an ultrasonic transducer
to generate pressure waves is depicted. The backing consists of a material
with a high attenuation that has a similar acoustic impedance as the
piezoceramic disc to reduce wave reflections. It usually is based on an
epoxy resin mixed with metal powder [104]. The high attenuation of
the backing provided by the epoxy resin is necessary to suppress the
ringing of the transducer which would reduce the bandwidth and affect
the accuracy, especially for TDE problems. The next few layers are the
piezoceramic disc and the two electrodes used for electrical connection.
Finally, several matching layers (for better visualization only two are il-
lustrated in the figure) with adapted thicknesses are used to transmit the
ultrasonic waves to the medium with as few reflections as possible [14].
However, the above-mentioned relationships of inner reflections, ideal
layer thicknesses, and attenuations are frequency-dependent functions.
Therefore, the total behavior of the transducer is highly frequency depen-
dent. In summary, the size of the layers and their material characteristics
determine the operational media, the frequency range, and the band-
width of the transducer. Furthermore, the directivity—consisting of the
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Figure 3.4 Multipath propagation examples. Depending on the objective to measure, the
path can be classified into the desired propagation path and the interfering multipath
propagation. In this scenario, the desired paths are drawn in blue, while the interfering
paths are drawn in red.

main and side lobes—is influenced by the diameter and the frequency. In
this context, a higher frequency or a larger diameter leads to a narrower
directivity angle [102].

The second transducer depicted in Figure 3.3(right) shows a wedge
transducer that is typically used for clamp-on UFM. Here, the waves
once again are generated by the mounted piezoceramic and propagate
as longitudinal waves. After traveling through the wedge material to the
interface between the transducer and the plate, they get converted to
shear or Lamb waves propagating in the pipe wall [72, 102]. By designing
the wedge angles to match the phase velocity of the wedge material only
to a certain wave mode in the pipe wall, the propagation of other wave
modes can be reduced. Possibly reflected waves get absorbed by the
damping structure at the top of the transducer. Subsequently, the shear
or Lamb waves in the pipe wall radiate into the fluid medium under
the angle 𝛼 according to Snell’s law of refraction [23]. In contrast to the
transducers for longitudinal waves excitation, the wedge transducers are
mainly used for the generation of guided waves in solid media.

3.1.3 Multipath propagation
In many cases, ultrasonic measurement systems are subject to multipath
propagation, which can be represented by a convolution of the excitation
signal with a sum of acoustic room impulse responses. This is because
the excited ultrasonic transducers form side lobes in the directional char-

26

SoS measurement liquid level metering



3.1 Ultrasonic fundamentals

𝑠u(𝑡) 𝑔T,0(𝑡)
𝑔T,1(𝑡)

𝑔A,0(𝑡)
𝑔A,1(𝑡) + 𝑠d(𝑡)

Figure 3.5 System theoretic description of multipath propagation.

acteristics or the waves can propagate as guided waves in solids, which
can furthermore lead to a continuous emission of waves.

Two example scenarios are depicted in Figure 3.4. On the left, a side
lobe leads to an acoustic path that gets reflected to the receiver by a solid
object, while on the right, the guided waves propagate in the bottom
plate, radiate into the liquid medium, and are reflected back. The multi-
ple acoustic paths obviously have different time delays and waveforms.
If the objective is liquid level metering, the guided waves propagating
solely in the plate have to be considered as interfering signals. In Fig-
ure 3.5, a system theoretic representation of the depicted scenarios is
shown. Each path is represented by its individual room impulse response
and the corresponding impulse responses for the sending and receiving
transducer.

A more general model of ultrasonic time delay measurements with
multipath propagations can thus be formulated as follows:𝑠d(𝑡) = 𝑠u(𝑡) ∗ 𝐼∑𝑖=0 (𝑔A,𝑖(𝑡) ∗ 𝑔T,𝑖(𝑡)) + 𝑛d(𝑡) . (3.11)

In (3.11) the acoustic room impulse response of the system and the sum-
marized transducer impulse responses for each path are denoted by𝑔A,𝑖(𝑡) and 𝑔T,𝑖(𝑡), respectively, and ∗ denotes the convolution. Note that
each path has its own transducer impulse response due to the direction-
specific excitation of ultrasonic waves. If only the time delay of the direct
path in a homogeneous non-dispersive medium is relevant, the direct
path impulse response 𝑔A,0(𝑡) becomes 𝛿(𝑡 − 𝜏) and the total impulse
response can be separated into𝑔(𝑡) = 𝑔T(𝑡 − 𝜏) + 𝐼∑𝑖=1 𝑔A,𝑖(𝑡) ∗ 𝑔T,𝑖(𝑡) , (3.12)
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where the multipath propagations are modeled by ∑ 𝑔A,𝑖(𝑡) ∗ 𝑔T,𝑖(𝑡).
Then, the signal components resulting from the convolution of 𝑠u(𝑡)
with any multipath impulse response can be considered as an interfering
signal, whose filtering is the main focus of this thesis.

3.1.4 Lamb waves propagation
In contrast to fluids, where the predominant mode of propagation is a
longitudinal wave, solid materials also feature the propagation of shear
waves [100], where the particle movement is orthogonal to the prop-
agation direction. Furthermore, the wave propagation is subjected to
boundary conditions if the solid material is not infinitely extended. A
particular waveform, that propagates in thin solid plates with thicknesses
around the magnitude of the wavelength is the Lamb wave, named after
Horace Lamb, who first presented an analytic description in 1917 [64].
Lamb waves can be classified into symmetric and antisymmetric modes
where in symmetric modes the particles to the left and right of the plate
center move in phase toward (or away) from the center, and in antisym-
metric modes, there is a phase shift of 180 degrees. Since the propagation
of these waves is constrained to solid media, they are a subtype of guided
waves. Depending on the frequency and thickness of the plate, higher-
order modes can also occur.

The analytic solution presented by Lamb can be summarized in the
characteristic equations that describe the relationship between the angu-
lar frequency 𝜔 and the wavenumber 𝑘w . The so-called Rayleigh-Lamb
equations [100]tan(𝑞𝑑/2)tan(𝑝𝑑/2) = − 4𝑘w2𝑝𝑞(𝑞2 − 𝑘w2)2 for symmetric modes and (3.13)tan(𝑝𝑑/2)tan(𝑞𝑑/2) = − 4𝑘w2𝑝𝑞(𝑞2 − 𝑘w2)2 for antisymmetric modes (3.14)

show that Lamb waves are dispersive, i.e., the phase and group velocities
are frequency dependent. Here 𝑑 describes the thickness of the plate,
while 𝑝 and 𝑞 have to be substituted by𝑝2 = ( 𝜔𝑐L )2 − 𝑘w2 and 𝑞2 = ( 𝜔𝑐T )2 − 𝑘w2 . (3.15)
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Figure 3.6 Lamb waves group and phase velocities of the first two symmetric and anti-
symmetric modes in a steel plate with a thickness of 4 mm.

In equations (3.15) the transverse wave speed 𝑐T and the longitudinal
wave speed 𝑐L are material constants that are influenced by Young’s
modulus, the density, and Poisson’s ratio. Thus, the exact dispersion
characteristic has to be either identified empirically or through precise
knowledge of the material properties. Note that (3.13) and (3.14) do not
have an analytical solution and, therefore, have to be solved numerically
for each frequency 𝜔. As the tangent is periodic, the Rayleigh-Lamb
equations can have multiple solutions for higher frequencies, which
explains the existence of higher-order modes. Given the solution of the
relationship between wavenumber and frequency, the phase velocity𝑣P(𝜔) = 𝜔𝑘w(𝜔) (3.16)

and the group velocity𝑣G(𝜔) = (𝜕𝑘w(𝜔)𝜕𝜔 )−1
(3.17)

can easily be calculated. The resulting phase and group velocities of the
first two symmetric and antisymmetric modes in a 4 mm stainless steel
plate with standard material properties are depicted in Figure 3.6. It can
be seen that the A1 and S1 mode can only propagate for 𝑓 > 0.5 MHz
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(a) Test setup for clamp-on UFM systems.

water

clamp-on transducer

basin
plate

(b) Simplified test setup for structural waves.

Figure 3.7 Setup of the measurement system.

and 𝑓 > 0.7 MHz, respectively. Furthermore, the dispersive character of
the Lamb waves reduces for very high frequencies.

3.2 Signal model
The following section introduces the measurement system together with
its measurement signals and the signal model consisting of the target
signals and the interfering signals. Measurement signals are recorded in
different scenarios and examined for their properties such as bandwidth,
multipath propagations and dispersion.

3.2.1 Measurement system
Firstly, the experimental setups used for the identification of the measure-
ment system are presented. Figure 3.7(a) shows a pair of two transducers
mounted opposite each other on a steel pipe with a wall thickness of4 mm and a diameter of 80 mm. Depending on the objective of the in-
vestigation, water or air is used as the medium. The other setup (see
Fig. 3.7(b)), used solely for the investigation of structural waves, consists
of a transducer pair on a 4 mm steel plate that is loaded half-sidedly
with water. Since the plate is from another manufacturer, the material
is not exactly the same as the pipe wall in the first scenario, but both
times stainless steel was used. Using the curvature of the plate due to its
own weight, it can be achieved that only the lower surface of the plate is
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loaded with water and not the edges or the top surface. This mimics the
situation in a water-filled pipe without disturbing multipath propaga-
tions. To this end, the basin is built deep enough and the quadratic plate
is chosen large enough (≈ 1 m2) so that all reflections from the bottom
or the edge of the plate are directly separable in the time domain. The
transducers are distanced 45 cm apart. In both setups, wedge transducers
as illustrated in Figure 3.3 were used.

The measurements were carried out using a PXIe-1062 station with
a PXIe-5171 ADC module and a PXI-5412 DAC module from National
Instruments. Both the ADC and DAC modules operate at a sampling rate
of 50 MHz, so all calculations could be performed in the digital domain.
Unless otherwise specified, the Gaussian modulated cosine signal𝑠u(𝑡) = 10 V ⋅ exp (− (𝑡 − 5 µs)22 ⋅ (1.5 µs)2 ) ⋅ cos (2𝜋𝑓0𝑡) (3.18)

was used as the electrical excitation, where the center frequency was set
to 700 kHz.

Three different data sets were acquired for the system identification
from the setups presented in Fig. 3.7. For the first data set DId,1, the
setup from Fig. 3.7(a) was installed in a water circulation system with
a pump to control the flow and a reference flow meter to get the VoF,
which is used to calculate the ground truth for the time-delay difference.
One measurement each was recorded for the VoFs 0.5 m s−1, 0.6 m s−1
and 0.7 m s−1, where each measurement consists of one recording for the
downstream waves 𝑠r(𝑡) and one recording for the upstream waves 𝑠d(𝑡).
In order to use a uniform terminology for the signals in UFM that is also
consistent with the SotA methods for TDE, the recordings are called
delayed and reference signal. As the upstream signal is obviously slower
than the downstream signal, it is denoted as the delayed signal, whereas
the downstream signal is denoted as the reference signal. Since the used
VoFs are quite high and a flow straightener with sufficient inlet length
was used, a fully developed turbulent flow profile resulted. For the sec-
ond data set DId,2, the empty pipe was placed in a temperature chamber
and while the temperature was increased, 72200 measurement signals
were continuously recorded, packaged in blocks of 100, and averaged, re-
sulting in 722 signals. Because there was no water or vacuum in the pipe
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Figure 3.8 Typical measurement signals of the pipe setup with water (left) and air (right)
as medium. Only the downstream direction is drawn since both signals are visually the
same at the present scaling.

during the experiment, the air is present as the medium. In contrast to the
first two data sets, the last data set DId,3 was not recorded from the pipe
setup, but from the plane plate setup shown in Fig. 3.7(b). Several mea-
surements were carried out, in which the excitation frequency in (3.18)
was increased step by step from 300 kHz to 1 MHz with an increment of10 kHz.

3.2.2 Target signals
All signal components that show the measuring effect—a time-delay dif-
ference between up- and downstream direction—are considered as target
signals in this thesis. However, for a better representation of the physical
interrelationships, the target signals have to be further subdivided based
on their respective propagation path and transducer impulse response.
To explain the different physical effects that characterize the UFM system,
an example signal from the data set DId,1 is depicted on the left in Fig. 3.8.
In contrast to the scenario where the pipe was filled with air (see right
diagram in Fig. 3.8), two major signal components starting at about 60 µs
and 100 µs stand out. Furthermore, other small but widely distributed
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signal components can also be seen, which already start at 30 µs. A closer
look at the difference signalΔ𝑠(𝑡) = 𝑠r(𝑡) − 𝑠d(𝑡) (3.19)

between downstream signal 𝑠r(𝑡) and upstream signal 𝑠d(𝑡) at a high
VoF yields that these small widespread signal components do not contain
any useful information, since Δ𝑠(𝑡) is nearly zero in their time ranges.
It is noticeable that the two major wave packets, both of which have a
significant time delay for high VoF, differ significantly in their envelope
and especially in their time of arrival. This leads to the conclusion that
these major wave packets result from a multipath propagation through
the fluid. As each path has its own path length 𝐿𝑖 and its own average
VoF 𝑣𝑖, a valid signal model for the target signals can be described by the
sum ∑𝑖 𝑠t,𝑖 (𝑡 − 𝐿𝑖𝑐M ± 𝜏𝑖2 ) . (3.20)

The sign of the time delay 𝜏𝑖 depends on whether the signals result from
the measurement in downstream or upstream direction. It is important
to note that the exact shape of each signal component 𝑠t,𝑖(𝑡) is not con-
strained through this model, although the individual signal components𝑠t,𝑖(𝑡) may very well be strongly correlated with each other. The num-
ber of propagation paths is dependent on the geometric relations of the
respective pipes and is, therefore, not yet determined here.

In addition to their propagation behavior, the target signals are charac-
terized by their bandwidth. That is why the PSD of the recorded signals
are calculated using Welch’s method [130]. As the window in Welch’s
method a Hamming window with length 60 µs for the target signals’
PSD and length 10 µs for the noise signals’ PSD was used. To improve
the noise PSD estimation, the noise signals can be isolated in the time
domain, since the ultrasonic waves need a minimum travel time, and
thus the measurement signal contains only noise in the beginning. The
results are plotted in Fig. 3.9. From this diagram, several conclusions can
be drawn:
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Figure 3.9 PSDs of the different measurement signals calculated by Welch’s method. The
PSD of the isolated noise signals (|𝑁r(𝑓)𝑁∗r(𝑓)|) was calculated using only the time ranges
that do not contain target or interfering signals. Since the interfering signals are suppressed
in the difference signal, the PSD of the difference signal (|𝑆Δ(𝑓)𝑆Δ∗(𝑓)|) shows the isolated
PSD of the target signals. Furthermore, the PSD |𝑆r(𝑓)𝑆∗d(𝑓)| removes the noise influence,
since 𝑛r(𝑡) and 𝑛d(𝑡) are uncorrelated.

The transducers show a nonlinear behavior to a small extent since
higher-order harmonics of the excitation frequency are visible in|𝑆r(𝑓)𝑆∗r(𝑓)| and |𝑆r(𝑓)𝑆∗d(𝑓)| [70].

The noise in the measurement signals can be assumed as white for
high frequencies because of its flat PSD. The increased values at
lower frequencies can be explained by either a lowpass character-
istic of the measurement electronics or residual reverberations of
ultrasonic waves from previous measurements.

Unfortunately, the transducer transfer function limits the possible
bandwidth, which can be concluded from the fact that the band-
width of the measurement signals is smaller than the bandwidth
of the electrical excitation function.

Lastly, the noise components in 𝑠r(𝑡) and 𝑠d(𝑡) are mostly stochas-
tically independent from each other, which is shown by the dif-
ference between the PSD |𝑆r(𝑓)𝑆∗r(𝑓)| and cross power spectral
density |𝑆r(𝑓)𝑆∗d(𝑓)|.
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To summarize, the target signals can be modeled by (3.20), where
each signal component is individual concerning its waveform 𝑠t,𝑖(𝑡),
its absolute time delay 𝜏a,𝑖 = 𝐿𝑖/𝑐M and its time-delay difference 𝜏𝑖.
Furthermore, every waveform is limited in its bandwidth.

3.2.3 Interfering signals
Apart from the target signals, the measurement signal contains further
signal components. These remaining signals do not contain the measur-
ing effect and are considered interfering signals. However, since both
the target and the interfering signals are always superpositioned in the
measurement signals, they are difficult to separate using conventional ap-
proaches. Therefore, a trick is needed to examine the interfering signals
in isolation. To this end, the fact is used that the attenuation of high-
frequency ultrasonic waves is significantly greater in air than in liquid
media [68, 123]. Furthermore, the acoustic coupling reduces through the
impedance mismatch, further enhancing the suppression of the waves
propagating through the medium. Using these relationships, the propa-
gation paths through the medium in the pipe can be almost completely
suppressed if the pipe is emptied. An example measurement signal re-
sulting from the data set DId,2, in which this trick was applied, can be
seen on the right side of Fig. 3.8. That it has worked can be seen from
the fact that the two major wave packets seen in DId,1 are no longer
present. Obviously, the present signal is caused solely by waves propa-
gating through the pipe wall, as this is the only path left when the paths
through the inside of the pipe are suppressed. Note that the amplitude
and shape of these structural waves cannot be directly compared to the
situation with water as the medium because the structural waves are
not attenuated by the water anymore and the automatic gain control
amplifies the received waves to take full advantage of the resolution of
the ADC.

From the data set DId,2 three properties of the interfering signals can
be deduced:

If the examination of the PSD using Welch’s method is repeated
for the isolated interfering signals, the same frequency range as
for the target signals can be observed. Therefore, the presence of
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3 Measurement System Identification

interfering signals leads to a spectral interference with the target
signals.

The interfering signal can be considered symmetric, i.e., the signal
component contained in the upstream signal is identical to the one
contained in the downstream signal. A quantitative evaluation of
this property can be obtained by the ratio of the signal energies in
decibel10 log10 ⎛⎜⎝ ‖𝑠d(𝑡) − 𝑠r(𝑡)‖22∥ 12 (𝑠d(𝑡) + 𝑠r(𝑡))∥22 ⎞⎟⎠ , (3.21)

which yields 940.5 dB for the present data set.

There is no time range in which the target signals are the only
active signals, because the interfering signals are extended over
the entire time domain.

The reasons for these properties and a concluding signal model of the
entire measurement signal, including the target and interfering signals,
are given in the following four paragraphs.

Interference with the target signals

The reason why the interfering signals are in the same frequency range
is easy to find. Both target and interfering signals are excited by the same
transducer with the same electrical excitation. This leads to a strong
correlation between both signal components. Without any nonlinear
element to provide a frequency shift of the structural waves or the target
signals, the basic frequency range cannot change. Therefore, the structural
waves interfere with the target signals.

Symmetry in up- and downstream direction

The symmetry of the structural waves follows from the reciprocity of
the whole transmission system, which can be modeled by a passive,
linear time-invariant four-terminal network [77]. It is only limited by
the nonlinear wave propagation in water, the nonlinear behavior of the
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3.2 Signal model

transducers, and the time-variance of the parameters, since the up- and
downstream signals cannot be recorded at the same instant. Even though
these effects are very small, the symmetry is limited to 940.5 dB in the
recorded data set.

Time extension of the interfering signals

The unusually long time extension of the interfering signals is difficult to
explain, especially since the excitation signal is time-limited to 9 µs. Even
considering a very long ringing of the transducer, this can only explain a
time extension in the range of tens of microseconds, but not up to 100 µs.
To further enhance the understanding of the structural waves, the data
set DId,3 was recorded. The dimensions, materials, and setup have been
chosen to mimic the situation in a water-filled pipe without any multipath
propagations. Because there is no moving medium and the reciprocity
property of the acoustic transmission system holds, the direction of the
wave propagation does not matter. Thus, only one propagation direction
is recorded and the resulting measurement signals are denoted as 𝑠r(𝑡).
According to Lamb wave theory (see Section 3.1.4), the structural waves
propagate as Lamb wave modes in the pipe wall, as the wall thickness
is similar to the wavelength. Therefore, in the time-frequency domain,
high signal energy is expected at the time-frequency coordinates that fit
the equation𝑡 = 𝐿𝑣G(𝑓) , with 𝐿 = 45 cm . (3.22)

This was also exploited by Kim et al. [57] for the validation of Lamb wave
modes.

The assumption is tested by transferring the measurement signals via
the short-time Fourier transform (STFT) into the time-frequency domain.
Although there are other methods to visualize the dispersion character-
istic, such as a 2D Fourier transform, a dense or at least a sparse spatial
sampling of the wave field would be needed [46, 138]. In order to cover
the entire frequency range without amplifying nonlinear effects, multiple
narrowband excitation signals 𝑠u(𝑡; 𝑓0) with stepwise increasing center
frequency 𝑓0 are used instead of only one broadband excitation. In order
to create an artifact-free detailed time-frequency representation from
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Figure 3.10 Preliminary study for the qualitative representation of Lamb waves using a
stacked spectrogram of the plane plate data set DId,3. For reference, the group delay at
the propagation distance 45 cm is drawn for the first two symmetric and antisymmetric
modes. Left: wide window with high frequency resolution. Right: short window with high
time resolution.

the multiple measurement signals, a multi-stage processing is necessary.
It can be divided into four steps: spectrogram calculation, frequency
response compensation, normalization, spectrogram fusion. Firstly, the
absolute square of the STFT, also known as spectrogram,𝑆𝑤𝑠r(𝑡, 𝑓; 𝑓0) = ∣∫∞−∞ 𝑤∗(𝜏 − 𝑡)𝑠r(𝜏; 𝑓0) e−j2𝜋𝑓𝜏 d𝜏∣2 (3.23)

is calculated, where 𝑠r(𝜏; 𝑓0) denotes the recorded measurement sig-
nal after using an excitation with center frequency 𝑓0. For the STFT a
Gaussian window 𝑤(𝑡) is used to get the best possible time-frequency
resolution. In the next step, the non-uniform frequency response of the
transducers is compensated by a weighting function 𝑊(𝑓) and subse-
quently normalized. Fusion of all pre-processed spectrograms is per-
formed by finding the maximum energy from all spectrograms for each
discrete time-frequency point. In summary, all obtained spectrograms
are frequency weighted, normalized, and then fused via the maximum
operation:𝑆𝑤𝑠r(𝑡, 𝑓) = max𝑓0

𝑊(𝑓) ⋅ 𝑆𝑤𝑠r(𝑡, 𝑓; 𝑓0)max𝑡,𝑓 𝑊(𝑓) ⋅ 𝑆𝑤𝑠r(𝑡, 𝑓; 𝑓0) . (3.24)
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The resulting time-frequency energy map for two different window
lengths is depicted in Fig. 3.10. Furthermore, the dispersion relations of
the first two symmetric and antisymmetric modes translated to (𝑡, 𝑓) by
equation (3.22) are plotted. Since the exact material parameters are not
known and can, except for the density, not be measured with reasonable
effort, they are, within the typical limits given in standard tables, chosen
by an optimization. The energy maxima show good agreement with the
dispersion relation of all four modes. Now it is also clear that due to the
highly dispersive S1 and A1 mode, the waves can extend very strongly
in time, even if there is no multipath propagation. Furthermore, if this
dispersion property is transferred to the situation in a pipe, where a
multipath propagation is present, the time extension can be even more
pronounced.

Final signal model

In conclusion, only a very general model of the interfering signals 𝑠i(𝑡)
can be assumed, where the symmetric interfering signals are interfering
with the target signals in the same time and frequency range, but are
independent from the SoS of the water and the VoF. Thus, the final signal
model is𝑠r(𝑡) = ∑𝑖 𝑠t,𝑖 (𝑡 − 𝜏a,𝑖 + 𝜏𝑖/2) + 𝑠i(𝑡) + 𝑛r(𝑡) , (3.25a)𝑠d(𝑡) = ∑𝑖 𝑠t,𝑖 (𝑡 − 𝜏a,𝑖 − 𝜏𝑖/2) + 𝑠i(𝑡) + 𝑛d(𝑡) . (3.25b)

Here, the absolute time delay and the time-delay difference𝜏a,𝑖 = 𝐿𝑖𝑐M , (3.26a)𝜏𝑖 = 2𝑣𝑖Δ𝑥𝑐M 2 (3.26b)

are determined by the individual path lengths 𝐿𝑖 and the average VoFs
along the propagation paths.
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3.3 Measurement influence of process
parameters

In the previous section, the signal model was presented under the as-
sumption of stationary process conditions. However, ultrasonic waves
are strongly dependent on the physical properties of the materials, such
as SoS or attenuation. These properties are in turn dependent on the tem-
perature, pressure, and other process influencing variables. In particular,
the VoF and the temperature are the two most important influencing
variables in UFM. Therefore, to get an estimation about the size of the ex-
pected effects, the influence of these two parameters on the measurement
signals is investigated in this section.

3.3.1 Velocity of flow
The VoF as the measurand should have a strong impact on the measure-
ment signals. To this end, the resulting time-delay difference 𝜏 should
be very sensitive to variations of the VoF, which, as (3.26b) implies, is
reached by a large axial distance of the transducers or by a small SoS.
The axial distance can be influenced, but as the angle at which the waves
can couple into the fluid from the pipe wall is constrained, the possibility
of influencing is limited. Furthermore, the SoS depends on the medium,
which is generally not desired to be affected by the measurement system.
To sum it up, the sensitivity can only be improved to a limited extent,
which leads to the point that the impact of the time-delay difference in
the measurement signals rather than the VoF should be investigated.

One way to evaluate the time-delay difference without the interfering
signals is the signal difference since the interfering signals can be consid-
ered symmetric. Figure 3.11 shows on the left the signal envelope of the
difference signal, calculated by the Hilbert transform, for three different
time-delay differences, and on the right the value of three local maxima
depending on the time-delay difference. In this evaluation, the data set
DId,1 was used, where the VoF was stepwise increased with multiple
recordings per step. Generally, a linear relationship of the envelopes’
local maxima is shown, but there is also a considerable variation for each
VoF step. Another point that stands out is the large differences in the
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Figure 3.11 Difference between delay and reference signals depending on the time-delay
difference.

slopes. This can be explained if the target signals are approximated by a
narrowband sine signal leading to the difference signalΔ𝑠(𝑡) = 𝑠t,𝑖(𝑡 + 𝜏𝑖/2 − 𝜏a,𝑖) − 𝑠t,𝑖(𝑡 − 𝜏𝑖/2 − 𝜏a,𝑖) (3.27)≈ 𝐴t ⋅ cos(𝜔0(𝑡 + 𝜏𝑖/2 − 𝜏a,𝑖))− 𝐴t ⋅ cos(𝜔0(𝑡 − 𝜏𝑖/2 − 𝜏a,𝑖)) (3.28)= 2𝐴t ⋅ cos (𝜔0(𝑡 − 𝜏a,𝑖)) ⋅ sin (𝜔0 𝜏𝑖2 ) , (3.29)

which is valid, if the observed time ranges are small enough (around
one period). Equation (3.29) proves that the relationship can only be
considered linear if 𝜏𝑖 ≪ 1/𝜔0 holds. It is also shown that the slope
depends on both the signal amplitude and the frequency of the ultrasonic
waves. This also explains, why a higher center frequency leads to an
improved accuracy of UFM systems. In summary, it can be assumed
that the information of the time-delay difference is contained in multiple
propagation paths with some paths being more sensitive than others.
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3.3.2 Temperature
The temperature affects the signals in many ways, e.g., the transducer im-
pulse response, the acoustic coupling or the attenuation in the medium,
each influence being of different significance. Since the proposed algo-
rithms in the later chapters do not require complicated temperature
models to perform reliably, the temperature influence on the signals is
reduced to a simple temperature-dependent absolute time delay. Simi-
lar to the target signals, a pulse-specific description of the temperature
influence for the interfering signals is chosen, leading to the simplified
signal model𝑠r(𝑡; 𝑣, 𝑇) = ∑𝑖 𝑠t,𝑖 (𝑡 − 𝜏a,𝑖(𝑇) + 𝜏𝑖(𝑣)/2) (3.30a)+ ∑𝑙 𝐴i,𝑙(𝑇)𝑠i ,𝑙(𝑡 − 𝜏a,𝑙(𝑇)) + 𝑛r(𝑡) ,𝑠d(𝑡; 𝑣, 𝑇) = ∑𝑖 𝑠t,𝑖 (𝑡 − 𝜏a,𝑖(𝑇) − 𝜏𝑖(𝑣)/2) (3.30b)+ ∑𝑙 𝐴i,𝑙(𝑇)𝑠i ,𝑙(𝑡 − 𝜏a,𝑙(𝑇)) + 𝑛d(𝑡) ,

which incorporates also the VoF, the temperature, and the multipath
propagations of both the target signals and the interfering signals. In the
following, the verification of the simplified description of the temperature
dependence (3.30) is presented. Furthermore, a quantitative evaluation
of the different time delay variations is given.

Temperature dependence of target signals

For the absolute time delay of the target signals, an analytic quadratic
expression for the SoS in water is reformed using the path length to get
an estimation for the absolute time delay variation per Kelvin. Using
one diameter as minimal and three times the diameter as maximal path
length, the absolute time delay sensitivity∣d𝜏ad𝑇 ∣ = 𝐿𝑐2M(𝑇) ⋅ d𝑐M(𝑇)d𝑇 (3.31)

can be enclosed in the interval [55 ns K−1, 347 ns K−1], if 𝑇 ∈ [19 °C, 40 °C].
The estimation with the help of an interval was chosen because the ge-
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3.3 Measurement influence of process parameters

ometrical dimensions of the setups vary slightly and only the order of
magnitude of the sensitivity is relevant. The choice of the temperature
range is motivated by the process conditions present in the later experi-
ments.

Temperature dependence of interfering signals

In contrast to the target signals, the interfering signals show a much
smaller temperature dependence, which is more difficult to model. The
literature reports several methods ranging from simple time-shifting and
time-scaling [21] to physically modeling the temperature dependence
of the whole system consisting of the piezoelectric transducer with all
acoustic couplings and Lamb waves [65]. Although time-scaling has
proven to be very popular, since it is easy to parameterize and compute
using the scale transform [43], it cannot handle multipath propagations.
To overcome this problem, the pulse-specific description of the interfer-
ing signals in (3.30) is introduced and implemented using the Matching
Pursuit (MP) algorithm followed by a second constrained MP algorithm
to track the small change induced by the temperature variation. The
method was adapted from Lu and Michaels [74], who used it to differen-
tiate between signal changes due to temperature variation and material
damages. Since the detailed results of the MP-based modeling of the
temperature effects have already been published in an own previous
work [142], the following paragraph only briefly outlines the approach.

For the investigation of the temperature influence, the measurement
signals from the data set DId,2 are used, as they contain isolated inter-
fering signals subjected to multipath propagation. The first step consists
of the free decomposition of the measurement signal using the MP al-
gorithm. The aim is to find a sparse representation of the signal 𝑠(𝑡)
such that the new signal representation compresses the signal energy in
as few coefficients 𝑐𝑘 as possible. Coefficients below a specified thresh-
old are omitted, which equals to them being set to zero. Each signal is
approximated by a weighted sum of basis functions:𝑠(𝑡) ≈ ̂𝑠(𝑡) = ∑𝑘 𝑐[𝑘] 𝜓𝑘(𝑡) . (3.32)
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The sparse representation problem is formulated by the optimization

minimize ∥𝑠(𝑡) − 𝐾∑𝑘=1 𝑐[𝑘] 𝜓𝑘(𝑡)∥2
2 w.r.t. 𝜓𝑘(𝑡) ∈ G , (3.33)

where, given a constant 𝐾, the best functions 𝜓𝑘(𝑡) have to be chosen
from an overcomplete function set G = Frame{𝜓𝑘(𝑡), 𝑘 = −∞, … , ∞}.
The optimization problem (3.33) is also known as sparse approximation,
which is NP-Hard. Optionally, the problem can be solved by a convex
relaxation leading to the basis pursuit algorithm or LASSO (least absolute
shrinkage and selection operator). However, in this case, it is solved by a
greedy algorithm, iteratively choosing the locally optimal function from
the frame. The solution may not be globally optimal, but the convergence
is ensured and the computational effort is reasonable. In summary, the
MP decomposition of a signal 𝑠(𝑡) can be formulated by the iterative
rules, which are modified from Xu et al. [132]:⎧{{{⎨{{{⎩

𝑟0(𝑡) = 𝑠(𝑡) ,𝜓𝑖(𝑡) = arg max𝜓𝑘(𝑡)∈G |⟨𝑟𝑖(𝑡), 𝜓𝑘(𝑡)⟩| ,𝑐[𝑖] = ⟨𝑟𝑖(𝑡), 𝜓𝑖(𝑡)⟩ ,𝑟𝑖+1(𝑡) = 𝑟𝑖(𝑡) − 2 ⋅ Re{𝑐[𝑖] ⋅ 𝜓𝑖(𝑡)} .

(3.34)

The decomposition is stopped after 𝐾 iterations.
The frame G is built up from energy normalized Gabor wavelets𝜓𝑘(𝑡) = 1√√𝜋𝜎 exp(−(𝑡 − 𝑡𝑘)22𝜎2𝑘 + j2𝜋𝑓𝑘𝑡) , (3.35)

with variable time delays 𝑡𝑘, modulation frequencies 𝑓𝑘 and time dura-
tions 𝜎𝑘. Note that using the complex Gabor wavelets in combination
with taking the real part of the projection during the update of the resid-
ual signal 𝑟(𝑡) leads to the optimal phase, which can be calculated by𝜑 = arctan( Im{⟨𝑟𝑖(𝑡), 𝜓𝑖(𝑡)⟩}

Re{⟨𝑟𝑖(𝑡), 𝜓𝑖(𝑡)⟩} ) . (3.36)
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Figure 3.12 Example residuals of the MP decomposition of interfering signals after differ-
ent iterations. For better visualization an offset was added to the different residuals.

The last problem to be solved is how to find the locally best function
from the frame in each iteration step. This can take up a lot of computa-
tional effort if a fine discretization of the parameters 𝜽𝑘 = [𝑡𝑘, 𝑓𝑘, 𝜎𝑘] is
required, since the discretization determines the cardinality of the frame,
and thus the number of inner products to be computed. A workaround,
which nevertheless yields a high resolution of the parameter space, is to
use an optimization method to solve a constrained optimization problem
instead of a brute force search through all frame functions. This also
allows for constraints to be set up on the parameter space by adding
regularization terms. The final optimization problem is defined as𝜽𝑘 = arg max𝜽𝑘 𝐽(𝜽𝑘) , 𝜽𝑘 = [𝑡𝑘, 𝑓𝑘, 𝜎𝑘] , (3.37)

with the quality function𝐽(𝜽𝑘) = |⟨𝑟𝑖(𝑡), 𝜓(𝑡, 𝜽𝑘)⟩|+ 𝑘f ⋅ (𝑓𝑘 − 𝑓set)2 + 𝑘𝜎 ⋅ (𝜎𝑘 − 𝜎set)2+ 𝑘t ⋅ (𝑡𝑘 − 𝑡set)2+ 𝑘t,max ⋅ (𝑡𝑘 − 𝑡max)2 ⋅ ℎ(𝑡𝑘 − 𝑡max) ,

(3.38)

where ℎ(𝑡) denotes the Heaviside step function, which is used to limit the
time range in which the decomposition should take place. The strength
of the regularization can be tuned by the multipliers 𝑘f, 𝑘𝜎, 𝑘t, 𝑘t,max
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allowing different combinations of constraints. It has to be noted that
all restrictions can lead to convergence problems. Therefore, the regu-
larization was used cautiously. An example decomposition of the first
signal from DId,2 can be observed in Fig. 3.12. Here, the process of the
MP decomposition is shown by plotting the residuals after 0, 7 and 60
iteration steps. The limitation of the parameter space to the time range𝑡max can be seen very well. In addition, the last residual energy shows,
that very high compression is possible.

After the free MP decomposition of one measurement signal, a re-
stricted MP decomposition of the remaining signals follows. The ob-
jective of the second constrained decomposition is to track the small
temperature-induced changes without allowing large jumps in the co-
efficients. This is important because the MP decomposition does not
result in orthogonal basis functions leading to large deviations of the
sparse representation if only the order of the basis functions is changed.
Therefore, the basis functions and their order resulting from the free MP
algorithm are fixed and used to repeat the iteration rules (3.34), omitting
the search for the maximum absolute inner product. Applying this ap-
proach to the analysis of the signals from the data set DId,2 results in
a set of coefficients 𝑐𝑘 for each signal, where each signal was recorded
at a specific temperature. Although the second MP decomposition is re-
stricted, the residual signal energy is still at −25 dB of the original energy,
if the temperature range of interest 𝑇 ∈ [19 °C, 40 °C] is considered (see
[142] for the model quality at all temperatures).

The absolute values and the phase values of the largest four coeffi-
cients 𝑐𝑘 are plotted against temperature in Fig. 3.13. Even though a
single decomposed signal component cannot fully represent a physical
propagation path, it is likely that some of the different signal components
originate from different paths. This is shown by the different slopes of
the absolute and phase values in Fig. 3.13. While the absolute values
correlate with the coupling, the attenuation, and other effects inside
the transducer, the phase values indicate the time delay of the compo-
nent, and thus the SoS. Note that in contrast to the interfering signals,
no temperature dependence of the absolute values could be observed
for the propagation paths through the fluid. This leads to two possible
conclusions: either it is a fictitious effect caused by the superposition of
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Figure 3.13 Temperature dependency of interfering signals in the MP space for the first
four basis functions.

different propagation modes with the subsequent MP decomposition,
or the attenuation is exclusively due to effects in the Lamb wave propa-
gation in the pipe wall. Either way, this effect has to be kept in mind for
the later algorithmic approaches. From Fig. 3.13 the maximum quantita-
tive effect of the temperature on the absolute value and the time shift is
shown to be 0.61 % K−1 and 11.9 ns K−1, respectively. These values are
calculated by the slopes of the red curve from the left plot and the purple
curve from the right plot. Since the phase values need to be converted to
time shifts via their frequency, the excitation frequency of 700 kHz was
assumed. Comparing the time shift of the interfering signals 11.9 ns K−1
to the minimum effect on the target signals’ time shift 55 ns K−1 shows
that the assumption of stationarity of the interfering signals can lead to
estimation errors if the temperature increases.

3.4 Simulated signals
In this section, the knowledge gained about the signal model and its
dependence on process conditions is turned into a simulated data set
to be used for the development of the filtering algorithms. There are
advantages and disadvantages of these simulated signals. On one hand,
the ground truth for the interfering signals and target signals is known.
On the other hand, the signals are only a simplified version of real mea-
surement signals and therefore, the performance of an algorithm on the
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simulated data can only be transferred to real measurement data to a
limited extent. Nevertheless, using simulated data is a good approach to
prove the concept of a model-based approach if the assumptions on the
signal model hold.

The simulated signals are composed of target signals with three prop-
agation paths through the fluid, the interfering signals, and artificial
AWGN. Firstly, a signal form for the target signals has to be designed.
For this purpose, a Gaussian modulated cosine signal with a center fre-
quency 𝑓0 = 700 kHz and a relative bandwidth of 0.25 is filtered by an
artificial impulse response of a transducer, which is generated using a
SPICE-simulated equivalent circuit of a piezoelectric transducer. The
time delays are set according to Eq. (3.2), with a path angle of 50.12°
and the three propagation distances 𝐿1 = 9.36 cm, 𝐿2 = 11.51 cm and𝐿3 = 14.68 cm. Additionally, different amplitudes are set for the different
paths to simulate a distance-dependent attenuation. Two types of data
sets are generated each consisting of 1000 signals: one with a constant
VoF and one with a rising and a falling ramp for the VoF as seen in
Fig. 3.14(a). For both types, the temperature is set to start at 19 °C and
to exponentially approach 40 °C. To calculate SoS in (3.2), Lubbers and
Graaff [76] presented the simple quadratic approximation𝑐M(𝑇) = 1404.3 m s−1 + 4.7m s−1°C ⋅ 𝑇 − 0.04m s−1°C2 𝑇2 . (3.39)

Although they only claimed a high precision for 𝑇 ∈ [15 °C, 35 °C] a com-
parison to the data from the NIST webbook [67] shows a good agreement
in the used temperature range 𝑇 ∈ [19 °C, 40 °C].

Subsequently to the simulation of the target signals, realistic inter-
fering signals have to be generated. To this end, a propagating wave
packet is defined once again by a Gaussian modulated cosine signal with𝑓0 = 700 kHz. This wave packet at 𝑥 = 0 is propagated in the Fourier
domain governed by the dispersion relation𝑠i(𝑡, 𝑥) = F−1{𝑆i(𝑓, 𝑥 = 0) ⋅ exp(−j𝑘w(𝜔)𝑥)} , (3.40)

with 𝑆i(𝑓, 𝑥 = 0) denoting the Fourier transform of 𝑠i(𝑡) at 𝑥 = 0. As
there are different Lamb wave modes, the signal energy of the wave
packet is distributed to the first two symmetric and antisymmetric modes,
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Figure 3.14 Simulated data set.

Table 3.1 Overview of the simulated data sets.

VoF constant VoF varying𝑠i(𝑡) stationary Dsim,1 Dsim,2𝑠i(𝑡) varying Dsim,3 Dsim,4
then individually propagated by (3.40) and finally superpositioned to
generate the final realization of the interfering signals. An example signal
from the generated data sets is drawn in Fig. 3.14(b). The three propaga-
tion paths through the fluid are easily recognizable. Furthermore, the
interfering signals are extended over the whole time range, as it was also
observable in real measurement signals.

In order to test the algorithms presented in this thesis once with
and without model errors, the interfering signals are simulated once
as stationary and once with a temperature-dependent amplification of0.61 % K−1 and time shift of 11.9 ns K−1. These values are chosen to match
the maximum observed amplification and time shifts in the measurement
data. This, together with the decision of whether to use a constant VoF
or a varying VoF, leads to a total of four data sets, which are summarized
in Table 3.1.
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4 Novel Separation Methods Based
on Signal Dynamics

In this chapter, the first proposed class of algorithms to filter the inter-
fering signals is presented. They are based on the assumption that the
interfering signals are stationary, while the target signals show a variable
time delay due to changes in the SoS induced by the temperature or the
VoF (see (3.25)). In this thesis, these properties are called signal dynam-
ics of the target signals. For this reason, the presented methods in this
chapter will be summarized under the term signal-dynamics method
(SDM). The first section, describing the requirements and the prelimi-
naries, contains a new representation of the signal dynamics in form of
point clouds. Subsequently, two methods to process the resulting point
clouds are introduced in the following two sections leading to several
methods for the estimation of the interfering signals. Both methods only
evaluate the direct propagation path. Finally, each method is tested on
the simulated data sets and concluded by a discussion of the advantages
and disadvantages of the respective method.

4.1 Point cloud representation of consecutive
measurements

4.1.1 Requirements and preliminaries
The precondition to use signal dynamics for filtering stationary inter-
fering signals is to have a package of multiple measurement signals.
Furthermore, this package needs to be recorded while the varying pro-
cess conditions lead to time-shifted target signals. In summary, let there
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4 Novel Separation Methods Based on Signal Dynamics

be 𝑀 measurements each for the reference 𝑠r(𝑡) and delayed signal 𝑠d(𝑡)
combined to the vectors𝐬r(𝑡) = [𝑠r(𝑡, 1), … , 𝑠r(𝑡, 𝑚), … , 𝑠r(𝑡, 𝑀)]T , (4.1a)𝐬d(𝑡) = [𝑠d(𝑡, 1), … , 𝑠d(𝑡, 𝑚), … , 𝑠d(𝑡, 𝑀)]T , (4.1b)

where the measurement index 𝑚 denotes a single signal within the pack-
age. In the following, the process conditions 𝑇, 𝑣 or the derived variables𝜏a, 𝜏 during a single measurement of the package are always denoted
by the measurement index, e.g., 𝑇𝑚, 𝑣𝑚, 𝜏a,𝑚. Since the processing takes
place in the digital domain, the signals are only available in the time-
discrete form𝐒r = (𝑠r(𝑡𝑛, 𝑚))𝑚𝑛 ∈ ℝ𝑀×𝑁 , (4.2a)𝐒d = (𝑠d(𝑡𝑛, 𝑚))𝑚𝑛 ∈ ℝ𝑀×𝑁 , (4.2b)

with 𝑡𝑛 = 𝑛𝑡s being the discrete time sampled at the sampling rate 1/𝑡s .
To highlight the difference between quantities with physical dimensions
such as 𝑡𝑛 and integer quantities such as 𝑛, round brackets are used in
the physical case and square brackets in the integer case. Furthermore,
multiple equal independent variables that influence a signal or function
are separated by comma in the argument, whereas hyperparameters or
process conditions are separated by semicolon.

The signal model used for SDMs is simplified to contain only a single
propagation path of the target signals, i.e., the sum in (3.25) is omitted.
Cutting out only a small time range, in which the direct propagation
path is included, is necessary to improve the validity of this model. To
this end, a preprocessing searches local maxima in the envelope of the
measurement signals and their difference signals Δ𝑠(𝑡). By introducing
several regularizations in combination with choosing the local maximum
with the smallest transit time leads to a robust detection of the correct
time range. The regularizations used are peak prominence, peak height,
necking in the envelope, and physically possible limits. The remainder
of this chapter assumes that the time range, which the SDMs have to
process, is known or determined by a preceding method.
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(a) Cutout of a simulated measurement sig-
nal and its Hilbert transform.
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(b) 2D representation of complex-valued an-
alytic signal.

Figure 4.1 Hilbert transform example and 2D representation of an analytic signal.

4.1.2 Fundamentals on the Hilbert transform
Real-valued signals are characterized by the fact that the absolute values
of their Fourier transform are symmetrical around 𝑓 = 0. In contrast,
the Fourier transform of analytic signals is non-zero only for 𝑓 ≥ 0.
For sinusoidal signals, this has multiple advantages, such as an easy
determination of the phase, the instantaneous frequency, or the instanta-
neous amplitude. For these reasons, the measurement signals are firstly
transformed into their analytic counterparts using the Hilbert transform
[53] 𝑠as(𝑡) = 𝑠(𝑡) + j ⋅ H{𝑠(𝑡)} (4.3)= 𝑠(𝑡) + j ⋅ 𝑠(𝑡) ∗ ℎ(𝑡) , with ℎ(𝑡) = 1𝜋𝑡 . (4.4)

However, since the signals are time-discrete, a discrete calculation of
the Hilbert transform is necessary. This can be realized by calculating
the discrete Fourier transform (DFT) of the signals, replacing the DFT
coefficients that correspond to negative frequencies with zeros and finally
transforming the resulting DFT values back to the discrete time domain
by using the inverse DFT [86].

The resulting analytic signal is complex-valued as (4.3) implies. There-
fore, in order to visualize the signal, it can be displayed either separately
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4 Novel Separation Methods Based on Signal Dynamics

by real and imaginary part or in a 2D area where the real and imaginary
part are the axes. Figure 4.1 shows an example of the Hilbert transform
applied to a signal from the simulated data set Dsim,1. It is easy to see that
the Hilbert transform produces a 90-degree shift of 𝑠(𝑡𝑛), which leads
to spiral trajectories in the complex area. Since the sampled values at
each point in time are projected onto their real and imaginary values, the
direct relation to the time vanishes in the complex area, which makes this
representation invariant to time scalings or time shifts. The formulation𝑠as(𝑡) = 𝐴(𝑡) ⋅ ej𝜙h(𝑡) (4.5)

shows that the phase position and the envelope can be calculated taking
the argument and the absolute value of the analytic signal. Note that if
the envelope is constant, the trajectory will form an ideal circle.

4.1.3 Point clouds
Applying the time-discrete Hilbert transform, introduced in the previ-
ous section, to each measurement signal from the given signal package
(4.2) leads to the complex-valued matrices 𝐒r,as, 𝐒d,as ∈ ℂ𝑀×𝑁. Subse-
quently, to interpret the signal package as point clouds, the real and
imaginary parts are considered as abscissa (𝑥-coordinate) and ordinate
(𝑦-coordinate), respectively, which yields one 2D point cloud per discrete
time index 𝑛 for both the reference and delay signals𝐏r[𝑛] = [Re{𝐞T𝑛𝐒Tr,as}Im{𝐞T𝑛𝐒Tr,as}] ∈ ℝ2×𝑀 , (4.6a)𝐏d[𝑛] = [Re{𝐞T𝑛𝐒Td,as}Im{𝐞T𝑛𝐒Td,as}] ∈ ℝ2×𝑀 , (4.6b)

where 𝐞𝑛 denotes the 𝑛-th unit vector and each point cloud consists of𝑀 points.
An example of the point cloud representation is shown in Fig. 4.2. If

the signals and their Hilbert transforms on the left side are sampled
at the four discrete time steps indicated by the dashed lines, the four
point clouds depicted on the right side are obtained. Each point cloud
consists of as many points as there are measurement signals. The length,
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Figure 4.2 Point cloud generation from measurement signals package.

curvature, and orientation of the point clouds is determined by the signal
dynamics, the frequency, the amplitude, and the instantaneous phase
at the corresponding time step. Although a high SNR was set in the
simulated data sets, the influence of measurement noise is shown by the
slight deviation of the point clouds from a perfect line.

Lastly, the origin of the effect that the point clouds of consecutive time
steps 𝑡𝑛 are misaligned is discussed. The following considerations apply
to both the reference and the delay signals. If the signal model (3.25) with
stationary interfering signals and varying time delays ̃𝜏𝑚 is assumed,
the signal package (4.1) can be reformulated to𝐬r(𝑡𝑛) = [𝑠t(𝑡𝑛 − ̃𝜏1), … , 𝑠t(𝑡𝑛 − ̃𝜏𝑀)]T + 𝟏𝑀1 ⋅ 𝑠i(𝑡𝑛) + 𝐧r(𝑡𝑛) . (4.7)

In (4.7), the 𝑀-by-1 column vector filled with ones 𝟏𝑀1 = {1}𝑀 indicates
that the interfering signals 𝑠i(𝑡𝑛) are identical in each measurement of
the package. Since the effect is the same, it does not matter if the time
delay ̃𝜏𝑚 is caused by a varying absolute time delay 𝜏a,𝑚, a varying time-
delay difference 𝜏𝑚 or a combination of both. Repeating the necessary
steps to get point clouds for this model results in𝐏r[𝑛] = 𝐏t[𝑛] + 𝐩i[𝑛] ⋅ 𝟏T𝑀1 + 𝐏𝑛r [𝑛] . (4.8)

This shows that each point cloud 𝐏r[𝑛] is composed of a shape influ-
encing component 𝐏t[𝑛], an offset 𝐩i[𝑛] determined by the interfering
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signals, and a noise-induced stochastic component 𝐏𝑛r [𝑛]. For further
investigation of the point cloud shape, suppose that the time delays ̃𝜏𝑚
in (4.7) cover the interval [𝑡lb, 𝑡ub]. Thus, the component 𝐏t[𝑛] can be
considered as a discrete sampling of the analytic target signal in the
interval 𝕥𝑛 = [𝑡𝑛 − 𝑡ub , 𝑡𝑛 − 𝑡lb]. For this reason, the shape of 𝐏t[𝑛]
is determined by the shape of the analytic target signal in the interval𝕥𝑛. Transferring this concept to other time steps, the next point cloud𝐏t[𝑛 + 1] shows the shape of the analytic target signal in the interval𝕥𝑛+1 = [𝑡𝑛+1 − 𝑡ub , 𝑡𝑛+1 − 𝑡lb] and so on. A sufficiently small sampling
time or a sufficiently large interval 𝜏 ∈ [𝑡lb, 𝑡ub] leads to a non-empty
intersection 𝕥 = 𝕥𝑛 ∩ 𝕥𝑛+1. In other words, the shapes of consecutive
point clouds overlap in cases where the offset 𝐩i[𝑛] is zero. Otherwise,
the misalignment𝐩Δi [𝑛] = 𝐩i[𝑛 + 1] − 𝐩i[𝑛] (4.9)

is present between the point clouds 𝐏r[𝑛] and 𝐏r[𝑛 + 1]. This concludes
all effects that are observable from the example point clouds.

4.2 PCA-based point cloud processing
This section describes how the point clouds presented in the previous sec-
tion are processed by the PCA to filter the interfering signals in TDE. The
point clouds can be processed in two ways: either they are used to first
geometrically estimate the interfering signals followed by a simple sub-
traction to improve conventional TDE methods, or the TDE is estimated
directly from the point clouds. Both methods assume a narrowband sig-
nal model with limited bandwidth, which was shown in Section 3.2.2 to
be in good agreement with the measurement signal properties.

4.2.1 Geometric estimation of interfering signals
The theoretical motivation to estimate the interfering signals geometri-
cally is based on the narrowband signal model in analytic signals form𝑠r,as(𝑡; 𝜏) = 𝐴t ej2𝜋𝑓0(𝑡+𝜏/2) +𝑠i,as(𝑡) + 𝑛r,as(𝑡) , (4.10a)𝑠d,as(𝑡; 𝜏) = 𝐴t ej2𝜋𝑓0(𝑡−𝜏/2) +𝑠i,as(𝑡) + 𝑛d,as(𝑡) , (4.10b)
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with the stationary interfering signals 𝑠i,as(𝑡). In (4.10), the absolute time
delay was omitted and a constant frequency was assumed, but neverthe-
less, the following argumentation for the interfering signals estimation
is still valid, since the only precondition is the presence of the signals’
derivative at two distinct time delays. In order to make the calculations
more manageable, the analytic signal components are transferred to the
2D area equivalent to the point cloud representation. To this end the
operation𝑣𝑒𝑐 ∶ ℂ ↦ ℝ2 , 𝑥 ↦ [Re{𝑥}Im{𝑥}] (4.11)

is introduced, which maps a complex number to a 2-by-1 vector. Applying
the 𝑣𝑒𝑐 operation to all components from (4.10)𝐩r(𝑡; 𝜏) = 𝑣𝑒𝑐 (𝑠r,as(𝑡; 𝜏)) , 𝐩d(𝑡; 𝜏) = 𝑣𝑒𝑐 (𝑠d,as(𝑡; 𝜏)) ,𝐩t(𝑡) = 𝑣𝑒𝑐 (𝐴t ej2𝜋𝑓0𝑡) , 𝐩i(𝑡) = 𝑣𝑒𝑐 (𝑠i,as(𝑡)) ,𝐩𝑛r(𝑡) = 𝑣𝑒𝑐 (𝑛r,as(𝑡)) , 𝐩𝑛d(𝑡) = 𝑣𝑒𝑐 (𝑛d,as(𝑡)) (4.12)

results in the 2D signal model representation𝐩r(𝑡; 𝜏) = 𝐩t(𝑡 + 𝜏/2) + 𝐩i(𝑡) + 𝐩𝑛r(𝑡) , (4.13a)𝐩d(𝑡; 𝜏) = 𝐩t(𝑡 − 𝜏/2) + 𝐩i(𝑡) + 𝐩𝑛d(𝑡) . (4.13b)

Remembering the point cloud representation of the signal package,
short sections of the target signals’ trajectory are given by the point clouds,
where the lengths of the sections are determined by the signal dynamics
contained in the package. Even if the true trajectory of the target signals
cannot be restored due to the sections being too short, it is possible to
calculate the tangents to the observable trajectory pieces. These tangents𝐯r, 𝐯d are proportional to the derivatives of the signals with respect
to the time delay 𝜏. By inserting the complex exponential function in
the derivative and using Euler’s formula, a relationship between the
derivatives and the target signals can be established:d𝐩r(𝑡; 𝜏)d𝜏 = 𝜋𝑓0 [0 −11 0 ] ⋅ 𝐩t(𝑡 + 𝜏/2) ∝ 𝐯r , (4.14a)d𝐩d(𝑡; 𝜏)d𝜏 = 𝜋𝑓0 [ 0 1−1 0] ⋅ 𝐩t(𝑡 − 𝜏/2) ∝ 𝐯d . (4.14b)
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The rotation matrices in (4.14) are caused by the multiplication of the
target signals with the imaginary units, resulting from the differentia-
tion. Subsequently, by inverting the rotation matrices, the normals to the
tangents𝐩t(𝑡 + 𝜏/2) = 𝑐r [ 0 1−1 0] ⋅ 𝐯r =⋅⋅ 𝑐r𝐯⊥r , (4.15a)𝐩t(𝑡 − 𝜏/2) = 𝑐d [0 −11 0 ] ⋅ 𝐯d =⋅⋅ −𝑐d𝐯⊥d (4.15b)

are given for both distinctive time delays 𝜏/2 and −𝜏/2. Note that for a
better overview, the time dependencies of the tangents 𝐯r, 𝐯d and the
normals 𝐯⊥r , 𝐯⊥d are not displayed. Finally, an estimation of the interfer-
ing signals can be obtained by inserting the normals (4.15) into (4.13),
neglecting the measurement noise, and reformulating the equation to𝐩i(𝑡). The resulting estimation is given by�̂�i(𝑡) = 𝐩r(𝑡; 𝜏) − [1, 0] ⋅ [𝐯⊥r , 𝐯⊥d ]−1 ⋅ (𝐩r(𝑡; 𝜏) − 𝐩d(𝑡; 𝜏)) ⋅ 𝐯⊥r , (4.16)

which leads to the estimated interfering signals ̂𝑠i(𝑡) = 𝐞T1 �̂�i(𝑡). Taking
into account the measurement noise, the estimation deviates from the
true interfering signals values according to�̂�i(𝑡) = 𝐩i(𝑡) + 𝐩𝑛r(𝑡)+ [1, 0] ⋅ [𝐯⊥r , 𝐯⊥d ]−1 ⋅ (𝐩𝑛d(𝑡) − 𝐩𝑛r(𝑡)) ⋅ 𝐯⊥r . (4.17)

From this equation, two conclusions can be drawn:

Due to the multiplication with the normals matrix and the projec-
tion onto the normal 𝐯⊥r , the 𝑥- and 𝑦-coordinate of the estimation
error are not uncorrelated anymore.

The variance of the noise gets amplified if the normals matrix
determinant tends to zero, i.e., the normals 𝐯⊥r and 𝐯⊥d need to
have distinct angles, which can be improved if the distinct time
delays 𝜏/2, −𝜏/2 are further apart.

This concludes the time-continuous formulation of an estimator for the
interfering signals based on the tangents to the trajectories.
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The following is the practical implementation of the estimation based
on the given discrete-time signals and their derived point clouds 𝐏r[𝑛],𝐏d[𝑛]. Instead of solving (4.16) for all times 𝑡, the interfering signals need
to be only estimated for the discrete time steps 𝑛. To further reduce the
effort, the time range can be limited to only the time range of the target
signals, where the SNR is higher than a predefined threshold. After
determining for which time steps (4.16) is to be solved, the next task is to
calculate the tangents. For this purpose, the point clouds are processed
using the PCA. The PCA adapted to the processing of 2D point clouds
can be summarized in two steps. At first, the point clouds at the discrete
time steps are processed via the rule�̃�[𝑛] = 𝐏[𝑛] ⋅ (𝐈𝑀 − 1𝑀 𝟏𝑀𝑀) , (4.18)

with 𝐈𝑀 denoting the 𝑀-by-𝑀 identity matrix, for the reference and
delay signals respectively, which leads to the offset-free point clouds�̃�r[𝑛] and �̃�d[𝑛]. In the second step, the eigenvalue decompositions𝚺r[𝑛] = 𝐕r[𝑛] ⋅ 𝚲r[𝑛] ⋅ 𝐕Tr [𝑛] , (4.19a)𝚺d[𝑛] = 𝐕d[𝑛] ⋅ 𝚲d[𝑛] ⋅ 𝐕Td [𝑛] (4.19b)

of the estimated covariance matrices𝚺r[𝑛] = 1𝑀 �̃�r[𝑛] ⋅ �̃�Tr [𝑛] ∈ ℝ2×2 , (4.20a)𝚺d[𝑛] = 1𝑀 �̃�d[𝑛] ⋅ �̃�Td [𝑛] ∈ ℝ2×2 (4.20b)

are calculated. For further information on the PCA and its multiple
applications see Beyerer et al. [7]. In the present case, the eigenvector
matrices 𝐕r[𝑛], 𝐕d[𝑛] are composed of two eigenvectors 𝐯 ∈ ℝ2 each.
The respective eigenvector with the largest corresponding eigenvalue,
i.e., the largest corresponding diagonal entry of 𝚲, is called the first
principal component and signifies the direction in the 2D area with the
largest variance of the point cloud. Therefore, the resulting matrices𝐕r[𝑛] and 𝐕d[𝑛] can be used to get an estimate for the tangents by using
the respective first principal components 𝐯r[𝑛] and 𝐯d[𝑛]. To complete the
necessary variables for the time-discrete variant of (4.16), only the vectors
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(a) Geometric estimation of interfering sig-
nals at 𝑡𝑛 using a constant amplitude as-
sumption.

70 72 74−0.05
0.00
0.05

𝑡𝑛/µs
𝑠 i(𝑡 𝑛)

𝑠i(𝑡𝑛)̂𝑠i(𝑡𝑛)̂𝑠corri (𝑡𝑛)

(b) Interfering signals estimation using the
PCA-based geometric estimation with
( ̂𝑠i) and without ( ̂𝑠corri ) constant ampli-
tude assumption for the data set Dsim,1.
Ground truth is drawn in dashed.

Figure 4.3 Example of the PCA-based interfering signals estimation.

𝐩r[𝑛; 𝜏] and 𝐩d[𝑛; 𝜏] are missing. These can be approximated using the
mean value of the respective point clouds𝐩r[𝑛; 𝜏] = 1𝑀 𝐏r[𝑛] ⋅ 𝟏𝑀1 , (4.21a)𝐩d[𝑛; 𝜏] = 1𝑀 𝐏d[𝑛] ⋅ 𝟏𝑀1 . (4.21b)

An example of the approach for a single time step is shown in Fig. 4.3(a).
There are four components shown: the interfering signals 𝐩i[𝑛] (green
arrow), the target signals of the reference and delay signals 𝐩r, 𝐩d (blue
and red arrows), their respective point cloud (blue and red points), and
the resulting first principal components (dashed lines). This figure also
explains why the solution of (4.16) can be interpreted as a geometric
intersection between two normal vectors. Repeating the estimation for
all time steps 𝑡𝑛 ∈ [70 µs, 75 µs] leads to the estimated interfering signalŝ𝑠i(𝑡𝑛) in Fig. 4.3(b). However, it is easily observable that the deviation
from the ground truth is not to be neglected. There are several sources
for the estimation errors: the measurement noise, non-uniform sampled
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point clouds, the tangent estimation, model errors such as the violation
of the constant amplitude assumption.

Since the assumption of constant amplitude is the most restrictive
condition, it is relaxed by adjusting the normals estimation. The proposed
normals correction is presented in the following paragraph, where due
to the redundancy of the equation only the equations for the reference
signals are displayed. The delay signals are processed equivalently. Again,
the derivation of the adjusted method is based on the signal model.
Adding a non-constant amplitude to the signal model (4.10) leads to the
extended model𝑠r,as(𝑡; 𝜏) = 𝐴(𝑡 + 𝜏/2) ej2𝜋𝑓0(𝑡+𝜏/2) +𝑠i,as(𝑡) + 𝑛r,as(𝑡) . (4.22a)

It follows that the derivative of the signalsd𝑠r,as(𝑡; 𝜏)d𝜏 = ( d𝐴(𝑡 + 𝜏/2)d𝜏 + j𝐴(𝑡 + 𝜏/2)𝜋𝑓0) ej2𝜋𝑓0(𝑡+𝜏/2) (4.23)

is extended by the derivative of the amplitude, whereby the rotation by90° in (4.14) becomes a rotation by the yet unknown angle 𝜑 leading tod𝐩r(𝑡; 𝜏)d𝜏 ∝ [cos(𝜑) − sin(𝜑)sin(𝜑) cos(𝜑) ] ⋅ 𝐩t(𝑡 + 𝜏/2) ∝ 𝐯r . (4.24)

Therefore, the definition of the normal vectors is changed to become the
multiplication of the tangent 𝐩r with the inverse rotation matrix, i.e.𝐩t(𝑡 + 𝜏/2) = 𝑐r [ cos(𝜑) sin(𝜑)− sin(𝜑) cos(𝜑)] ⋅ 𝐯r =⋅⋅ 𝑐r𝐯⊥r . (4.25)

From (4.23) the angle𝜑 = arctan (2𝜋𝑓0𝐴(𝑡 + 𝜏/2)𝐴′(𝑡 + 𝜏/2) ) (4.26)

can be deduced. However, since only the whole measurement signal with
all additive components can be observed, the amplitude is not known
before the interfering signals are subtracted. This can be solved by using
the signal difference between the analytic reference and delay signals.
The absolute value of this so calculated difference signal|Δ𝑠as(𝑡; 𝜏)| = |𝑠r,as(𝑡; 𝜏) − 𝑠d,as(𝑡; 𝜏)| ≈ 2| sin(𝜋𝑓0𝜏)| ⋅ |𝐴(𝑡)| (4.27)
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4 Novel Separation Methods Based on Signal Dynamics

is an approximation of the time-dependent amplitude curve, if the time
delay 𝜏 is very small compared to the time duration of the envelope𝐴(𝑡). Even though the absolute value of the amplitude curve remains
unknown, for the estimation of the angle 𝜑 only the ratio is needed.
Therefore, the angle is estimated by�̂� = arctan ( 2𝜋𝑓0|Δ𝑠as(𝑡; 𝜏)|d|Δ𝑠as(𝑡; 𝜏)|/ d𝑡 ) , (4.28)

where the derivation is performed in the discrete time by a first-order
divided difference.

In summary, for a non-constant amplitude, the approach is nearly the
same as using the constant amplitude assumption. The only difference
lies in the calculation of the normals, where an adapted angle 𝜑 is in-
troduced. The result of this relaxation to non-constant amplitudes is
displayed in Fig. 4.3(b) as ̂𝑠corri (𝑡𝑛). The expected improvement of the
adjusted estimation is proven, as the deviation from the ground truth is
significantly smaller than when assuming a constant amplitude.

4.2.2 Interference-invariant time delay estimation
Apart from the method of first estimating the interfering signals and then
simply subtracting them, the time delay between reference and delay
signals can also be calculated directly from the point clouds. To this end,
the stationary interfering signals are separated from the target signal by
transforming the measurement signals into a space that is invariant to
stationary signal components. Since this approach is already published
in [143], a brief description of this transformation and the subsequent
post-processing to determine the time-delay difference 𝜏 follows.

Stationary components in the point clouds have only an influence
on the offset as proven by (4.8) in Section 4.1.3 and therefore have no
influence on the shape or orientation of the point clouds. It follows that
the offset-free point clouds retain only the shape influencing components
and the orientation. Thus, by using the orientation of the offset-free point
clouds, expressed by an angle, the interfering signals can be suppressed.
However, since the measurement noise is also still included, a reliable
estimate can only be obtained if the time delay variation of either the
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Figure 4.4 PCA-based point cloud processing to get interference-invariant phase values
of an estimation of the interfering signal.

absolute time delay 𝜏a or the time-delay difference 𝜏 in the signal package
is significantly larger than the variance of the measurement noise.

In order to calculate the orientation of the point clouds for both the
reference and delay signals, the PCA is employed. From the respective
first principal components, given by the eigenvectors 𝐯r[𝑛], 𝐯d[𝑛] ∈ ℝ2
with the respective largest associated eigenvalues, the orientations are
determined by𝜙PCA,r[𝑛] = arctan (𝐯Tr [𝑛] ⋅ 𝐞2𝐯Tr [𝑛] ⋅ 𝐞1 ) , (4.29a)

𝜙PCA,d[𝑛] = arctan (𝐯Td [𝑛] ⋅ 𝐞2𝐯Td [𝑛] ⋅ 𝐞1 ) . (4.29b)

After solving the PCA equations (4.18)–(4.20) and calculating the an-
gle (4.29) for each time step 𝑛, the measurement signal is completely
transformed into a space invariant with respect to stationary signals.

However, the direction of each eigenvector is ambiguous, i.e., it is
not possible to influence the PCA whether the eigenvector is rotated by
180 degrees or not. Due to this problem, there are still random phase
jumps present in the phases calculated according to (4.29), which need
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to be removed before the phase values can be further processed. For this
reason, a case distinction is included in the phase calculation, adding𝜋 if 𝐯T[𝑛] ⋅ 𝐞2 < 0. Subsequently, the phases thus obtained are mapped
linearly to the range [−𝜋, 𝜋]. In summary, for both the reference and delay
signals, the phase calculations in (4.29) are adapted to

𝜙PCA [𝑛] = 2 ⋅ arctan (𝑣2[𝑛]𝑣1[𝑛]) + ⎧{⎨{⎩−𝜋 𝑣1[𝑛] ≥ 0, 𝑣2[𝑛] ≥ 0𝜋 𝑣1[𝑛] ≥ 0, 𝑣2[𝑛] < 00 𝑣1[𝑛] < 0 , (4.30)

where the components of the eigenvectors 𝐯T[𝑛] ⋅ 𝐞1 and 𝐯T[𝑛] ⋅ 𝐞2 are
abbreviated to 𝑣1[𝑛] and 𝑣2[𝑛], respectively.

The course of the orientations is shown in Fig. 4.4(a). It should be noted
that the orientations contain only a reliable information in time ranges
with a significant level of target signals. Outside these time ranges, these
orientations are determined only by the measurement noise and carry
no information about the time-delay difference. The time range shown
in Fig. 4.4(a) was selected on the basis of the transit time of the direct
propagation path. Furthermore, the phase values obtained by directly
using the Hilbert transform are included in the plot of the phase values.
It is observable that the solution for the ambiguity of the eigenvector
direction leads to double slope compared to the Hilbert phase 𝜙h[𝑛].

To extract the time-delay difference 𝜏 from the 𝜙PCA,r[𝑛], 𝜙PCA,d[𝑛]
orientations, they are separated by the procedure proposed by Kupnik
et al. [63] at the 2𝜋 jump points and approximated by linear regressions̃𝜙PCA,r(𝑛 𝑡s), ̃𝜙PCA,d(𝑛 𝑡s), as shown in Fig. 4.4(b). The best linear regres-
sion is selected based on the eigenvalue ratio of the associated orienta-
tions. This ensures that the linear regression with the best SNR is used.
The intersection points with the time axis can then be determined from
the linear regressions, and thus, by simply taking the difference, the
time-delay difference is calculated.

However, a closer look at the method shows that only one time-delay
difference per point cloud can be estimated, i.e., only the average time-
delay difference of a whole signal package results from this method.
Further information and a quantitative evaluation of the performance
can be found in [143].
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4.2 PCA-based point cloud processing

4.2.3 Discussion
Both PCA-based processing methods are tested on the simulated data
sets. Before they can be applied, compliance with the preconditions of the
SDMs has to be ensured, i.e., the measurement signals need to be sepa-
rated into signal packages. The included signal dynamics per package is a
free to choose hyperparameter that controls the robustness against noise,
but also limits the precision of the tangent estimation since the PCA is
designed for linearly shaped point clouds. Furthermore, the dynamic
behavior of a measurement system based on this concept is limited, since
the interfering signals can only be reliably filtered after the required num-
ber of measurements has been recorded. For the proof of concept, the
signal dynamics per package is set to 50 ns, which corresponds to a phase
shift of 12.6° at a center frequency of about 700 kHz. To obtain estimates
of the time delays for all measurements, the signal packages are selected
with overlap such that the entire range of measurements was uniformly
covered. Because the geometric approach estimates and subtracts the
interfering signals, before the zero-crossing-based TDE approach from
Kupnik et al. [63] is applied, this SDM enables a TDE for each signal
within the package. On the other hand, the interference-invariant SDM
yields only one TDE per package. Due to the overlapping signal packages,
the geometric SDM results in multiple TDEs for the same measurement,
which are therefore averaged to get comparable TDE curves. For easier
notation later in Chapter 6, the set of hyperparameters for the PCA-based
SDM 𝜽PCA = {Δ𝜏, 𝙲𝚘𝚗𝚜𝚝𝙰𝚖𝚙} (4.31)

is defined as the collection of a signal dynamics per package parameterΔ𝜏 and, in case of the geometric approach, a Boolean value 𝙲𝚘𝚗𝚜𝚝𝙰𝚖𝚙,
which indicates whether or not the constant-amplitude assumption is
used.

The results of the proposed PCA-based SDMs are pictured in Fig. 4.5.
As already expected, the interference-invariant approach performs badly
for data sets with fastly varying VoFs, e.g., Dsim,2, Dsim,4 since it can only
calculate one time delay per package, which limits the allowed dynamic
behavior. However, if the stationary interfering signals assumption holds
and the rate of change is slow enough, this approach is most precise and
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Figure 4.5 Results of TDEs using the PCA-based SDM for the simulated data sets
Dsim,1, … ,Dsim,4.

most robust against noise. The geometric approach can alleviate the lim-
ited dynamics, which is proven by the fact that the results also perform
well in data sets with varying VoF. However, the expected improvement
using the non-constant amplitude extension did not occur. One possible
explanation is that the incorrectly estimated interfering signals when
assuming a constant amplitude are phased in such a way that they have
only a small negative effect on the TDE. It is actually also the case that
the extended method often shows worse behavior both against noise and
against the systematic error. While the behavior against noise is to be
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expected, since the estimated correction angle 𝜑 depends on the noisy
difference signal, the systematic error can only be explained by the phas-
ing of the residual interfering signals after subtraction. A non-oscillating
constant positive TDE error indicates that the residual interfering signals
are after correction always in 180 degrees phase shift to the target signals.
This leads to the explanation that the amplitude estimation used for the
angle determination is the source of error, since the difference signal is an
input quantity moving with the process influence quantities to the same
extent as the target signals. The last insight that can be gained from the
figure is the quantitative influence of non-stationary interfering signals.
If the interfering-signals variations—with the quantitative descriptions
determined in Chapter 3—are assumed, the TDE error is within ≈ ±2 %
(see lower left of Fig. 4.5).

4.3 B-spline-based point cloud processing
The performance of PCA-based point cloud processing depends on the
extent to which the point clouds are linearly shaped. Therefore, the
maximal signal dynamics per package have to be limited, which can be
achieved by forming packages in which the phase of the target signals
changes only by a maximum of 25°. However, using higher signal dy-
namics would allow better robustness against noise. Since the shape of
the point clouds becomes more similar to sections of spirals, if the signal
dynamics are increased, a curved approximation becomes necessary. In
this thesis, this problem is solved by applying B-splines to the approxi-
mation problem. They are fast to calculate and can approximate every
multidimensional line as a parametric curve where the continuity of the
curve and its derivatives can be easily determined by manipulation of
the knot vector. Furthermore, the application of B-splines removes the
requirement of having uniformly distributed points within the point
clouds, which in fact only depends on the process conditions during the
available measurement signals. In this section, the B-spline-based SDM
that was briefly published in [141] is described in detail. The presenta-
tion of the approach is structured as follows. Firstly, the fundamentals of
B-splines are introduced, followed by two 2D approximation approaches
to get robustly estimated B-splines. Subsequently, one algorithm to es-
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timate the interfering signals and one algorithm to estimate the time
delays directly as in Section 4.2.2 are presented. Finally, the concept is
proven and discussed by application to the data sets Dsim,1, Dsim,2 where
the signal model holds, and also tested against signal model errors by
application to Dsim,3 and Dsim,4.

4.3.1 B-spline fundamentals
The following fundamentals on B-splines are a summary of selected
contents from [25]. B-splines, also known as basis splines, are piecewise
defined polynomial functions with limited support, whose derivatives
have adjustable continuity properties. Here, basis functions mean that
any other spline function can be expressed as a linear combination of
B-splines for the same polynomial order. A unique set of B-splines is
given by the B-spline order 𝑙 and a knot vector 𝐫k = [𝑟0, … , 𝑟𝐼−1]T with𝑟𝑖+1 ≥ 𝑟𝑖 defining the limits of the polynomial pieces. Using the given
order and knot vector, the B-splines can be defined by the Cox-de Boor
recursion formula [20, 25]𝑏𝑖,1(𝑟) = {1 𝑟 ∈ [𝑟𝑖, 𝑟𝑖+1)0 else

, (4.32a)

𝑏𝑖,𝑙+1(𝑟) = 𝑟 − 𝑟𝑖𝑟𝑖+𝑙 − 𝑟𝑖 𝑏𝑖,𝑙(𝑟) + 𝑟𝑖+𝑙+1 − 𝑟𝑟𝑖+𝑙+1 − 𝑟𝑖+1 𝑏𝑖+1,𝑙(𝑟) . (4.32b)

The resulting set of functions 𝑏𝑖,𝑙(𝑟) are called B-splines and fulfill the
sum-to-one property∑𝑖 𝑏𝑖,𝑙(𝑟) = 1 , ∀𝑟 ∈ [𝑟0, 𝑟𝐼−1) (4.33)

within the interval [𝑟0, 𝑟𝐼−1) spanned by the knot vector 𝐫k. Furthermore,
from the recursion formula (4.32) it can be seen that the number of
intervals [𝑟𝑖, 𝑟𝑖+1) in which a B-spline is non-zero depends on the order.
At order 𝑙 = 1 this is only one interval, and then the number of intervals
increases with the B-spline order 𝑙 at the same rate. This means that,
for example, B-splines consisting of quadratic polynomials (𝑙 = 3) are
spread over three intervals. From the same relation, it follows directly
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that for a B-spline of order 𝑙 at least 𝑙 + 1 knots have to be present, which
enclose 𝑙 intervals. To ensure that this is always the case, the first and the
last element are usually appended 𝑙 − 1 times to the given knot vector
resulting in

𝐫k = 𝑙−1⏞ 𝐼⏞⏞⏞⏞⏞⏞⏞⏞⏞ 𝑙−1⏞⏞⏞⏞⏞⏞⏞[𝑟0, … , 𝑟0, 𝑟0, 𝑟1⏟⏟⏟⏟⏟⏟⏟𝑙+1 , … , 𝑟𝐼−2, 𝑟𝐼−1, 𝑟𝐼−1, … , 𝑟𝐼−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑙+1 ]T . (4.34)

It should be noted that successive knots may be identical (𝑟𝑖 = 𝑟𝑖+1), i.e.,
the intervals can be empty. In summary, the properties of the B-splines
and its derivatives can be derived as follows based on the given knot
vector:

In non-empty intervals, the B-splines are polynomials of order𝑙 − 1.

If the end knots 𝑟0, 𝑟𝐼−1 of the given knot vector are unique and
appended 𝑙 − 1 times at both sides as in (4.34), there are a total
of 𝐹 = 𝐼 + 𝑙 − 2 B-splines, resulting in 𝐹 degrees of freedom for
subsequent interpolation or approximation tasks.

The B-splines are continuously differentiable at the knots up to the(𝑙 − 2)-th derivative, if the knots defining the B-spline are distinct.
For each repeated knot, the number of possible derivatives at the
corresponding value decreases by one.

An example of quadratic B-splines (𝑙 = 3) is shown in Fig. 4.6(a). It is
observable that in each interval three B-splines are non-zero. Due to the
given number of knots and the B-spline order, there are six different
B-splines present in this example (𝐹 = 𝐼 + 𝑙 − 2). Except for the end
points, the first derivatives of the B-splines are continuous at the knots,
i.e., at 𝑟 ∈ {1, 2, 3}. Additionally, this example illustrates the necessity to
add knots at the beginning and end of the knot vector, because without
these additional knots, the splines in the intervals [0, 1] and [3, 4] do not
have enough degrees of freedom to meet possible boundary conditions
such as slope or endpoints.

69



4 Novel Separation Methods Based on Signal Dynamics

0 1 2 3 40.00.20.40.60.81.0

𝑟

𝑏 𝑖,3(𝑟)

(a) Quadratic B-splines with knot vector𝑟k = [0, 0, 0, 1, 2, 3, 4, 4, 4].
−1 −0.5 0 0.5 1−0.4−0.20.00.20.4

𝑥(𝑟)
𝑦(𝑟)

(b) 2D approximation of points.

Figure 4.6 B-splines and application to an approximation of 2D points.

Finally, the B-splines can be used to generate any 2D spline curve
through a linear combination[𝑥(𝑟)𝑦(𝑟)] = 𝐹−1∑𝑖=0 [𝑐x,𝑖𝑐y,𝑖] ⋅ 𝑏𝑖,𝑙(𝑟) , (4.35)

with the control points [𝑐x,𝑖, 𝑐y,𝑖]T. Of course, curves can also be gener-
ated in only one or more dimensions, but since in this work B-splines
are used to approximate 2D point clouds, only the representation of 2D
spline curves will be discussed here. The results of applying B-splines to
approximate 2D points are depicted in Fig.4.6(b). Note that this curve
is only possible due to the representation as parametric curve, because
a conventional function 𝑦(𝑥) can only map a single 𝑦-value to a given𝑥-value.

Another advantage of B-splines lies in the possibility to calculate the
derivatives analytically. Since the B-splines are defined recursively by
(4.32), it follows that the derivatives of B-splines can be calculated using
the B-splines of order 𝑙 − 1:d𝑏𝑖,𝑙(𝑟)d𝑟 = 𝑙 ⋅ ( 𝑏𝑖,𝑙−1(𝑟)𝑟𝑖+𝑙 − 𝑟𝑖 − 𝑏𝑖+1,𝑙−1(𝑟)𝑟𝑖+𝑙+1 − 𝑟𝑖+1 ) . (4.36)
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4.3.2 2D B-spline approximation
Using the B-spline theory, the shapes of the point clouds calculated from
the measurement package according to (4.6) can be approximated with
more degrees of freedom compared to the PCA. Therefore, for each given
point cloud𝐏[𝑛] = [𝐩1[𝑛], … , 𝐩𝑚[𝑛], … , 𝐩𝑀[𝑛]] ∈ ℝ2×𝑀 , (4.37)

the task is to find a 2D curve �̂�(𝑟) by linear combination of 𝐹 B-splines,
which fits the given point cloud best in a least-squares (LS) sense. For
simpler notation, the dependency on the discrete time step 𝑛 will be
omitted for the remainder of this subsection. It is only important to keep
in mind that the presented approximation must be applied for each point
cloud of the reference signals 𝐏r[𝑛] and delay signals 𝐏d[𝑛].

The fitting problem of the spline curve to the 𝑀 given 2D points can
be reformulated in the matrix form⎡⎢⎣ 𝑝11 𝑝21⋮ ⋮𝑝1𝑀 𝑝2𝑀⎤⎥⎦⏟⏟⏟⏟⏟⏟⏟𝐏T∈ℝ𝑀×2

= ⎡⎢⎣ 𝑏0,𝑙(𝑟1) … 𝑏𝐹−1,𝑙(𝑟1)⋮ ⋱ ⋮𝑏0,𝑙(𝑟𝑀) … 𝑏𝐹−1,𝑙(𝑟𝑀)⎤⎥⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝐁(𝐫)∈ℝ𝑀×𝐹
⎡⎢⎣ 𝑐x,0 𝑐y,0⋮ ⋮𝑐x,𝐹−1 𝑐y,𝐹−1⎤⎥⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟𝐂∈ℝ𝐹×2

+𝐍 ,

(4.38)

with the approximation error 𝐍 ∈ ℝ𝑀×2 and the corresponding support
points𝐫 = [𝑟1, … , 𝑟𝑀]T , 𝑟𝑚 ∈ {ℝ | 0 ≤ 𝑟𝑚 ≤ 1} . (4.39)

The problem (4.38) can usually be solved using an LS estimator. However,
to build the Moore-Penrose inverse of 𝐁(𝐫), besides a set of B-splines, a
corresponding support point 𝑟𝑚 for each point within the point cloud is
necessary. In simplified terms, this means that the support points 𝐫 need
to be estimated first. Unfortunately, the determination of these support
points influences the precision of the approximation and the complexity
of the curves 𝑥(𝑟), 𝑦(𝑟) a lot. In order to get smooth curves with the
least possible curvature, the distance between two support points should
be proportional to the distance of the corresponding points along the
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spline curve, which in turn is only available after the support points are
determined.

Consequently, the problem of finding the support points and the spline
curve is solved jointly by the iterative method of Wang et al. [127]:⎧{{{⎨{{{⎩

𝐫(0) ∶ initial support points𝐂(𝑖+1) = (𝐁T(𝐫(𝑖))𝐁(𝐫(𝑖)))−1 𝐁T(𝐫(𝑖)) ⋅ 𝐏T𝐫(𝑖+1) = arg min𝐫 ∥𝐁(𝐫) ⋅ 𝐂(𝑖+1) − 𝐏T∥2F .

(4.40)

Finding the initial support points 𝐫(0) is realized by pre-ordering the
points 𝐩𝑚 using a projection onto an ordering curve. Furferi et al. [37]
presented an algorithm for ordering the points by piecewise progressing
along the line. The objective is to find ordered contour points along the
point cloud. In this approach, starting from a random point of the cloud,
the direction in which to search the next contour point is determined
using a PCA of the points in proximity. The radius of the circle to differ-
entiate between points lying in proximity and further distanced points is
gradually increased until the eigenvalues of the PCA reach a predefined
ratio. After the radius is fixed, the next contour point is calculated to be
the intersection of the first principal component with the circle. While the
idea of determining contour points to get an ordering curve was taken
up in this work, the PCA-based algorithm to find them could not keep
the robustness requirements.

Therefore, a simpler but more robust approach, which selects contour
points from the cloud, is developed. In the following context, contour
points �̃�𝑚 are distinguished from original points by a tilde. Firstly, the
number of contour points has to be set. Examination of different point
clouds from the simulated data sets has proven that it is favorable to
select ten contour points, thus, this hyperparameter is fixed to ten. Since
the trajectories do not have loops and are only slightly curved even for
higher signal dynamics (see Fig. 4.2), the two points with the maximal
distance between each other represent the start and end points{�̃�1, �̃�10} = arg max𝐩𝑖,𝐩𝑗 ∥𝐩𝑖 − 𝐩𝑗∥2 , 1 ≤ 𝑖, 𝑗 ≤ 𝑀 . (4.41)

72



4.3 B-spline-based point cloud processing

0.1 0.2 0.30.420.440.460.480.50

𝐞T1 𝐩

𝐞T 2𝐩
𝐩𝑚�̃�𝑚�̂�(0)(𝑟)�̂�(20)(𝑟)

(a) 2D points with contour points, initial ordering
curve �̂�(0)(𝑟) and final approximation �̂�(20)(𝑟).

0 5 10 15 200.900.920.940.960.981.00

number of iterations

(b) Normalized squared distance
of 2D points to B-spline curve
depending on the iteration.

Figure 4.7 Visual example of iterative 2D B-spline approximation.

The remaining eight support points �̃�𝑚 are selected in a way that they are
distributed as uniformly as possible over the maximum point distance:�̃�𝑚 = arg min𝐩𝑗 ∣∥𝐩𝑗 − �̃�1∥2 − 𝑚 − 19 𝑑max∣ , 2 ≤ 𝑚 ≤ 9 , (4.42)

with 𝑑max = ∥�̃�10 − �̃�1∥2 . (4.43)

After all contour points are found, their support points ̃𝑟𝑚 are esti-
mated using the normalized cumulative Euclidean distancẽ𝑟𝑚 = 1∑10𝑗=2 ∥�̃�𝑗 − �̃�𝑗−1∥2 ⋅ {0 𝑚 = 1∑𝑚𝑗=2 ∥�̃�𝑗 − �̃�𝑗−1∥2 𝑚 > 1 .

(4.44)

The scaling of the support points ̃𝑟𝑚 can be arbitrarily chosen because the
points to approximate are only given as 2D vectors, but the scaling needs
to be adapted to the interval spanned by the knot vector. For simplicity,
the scaling of the support points and correspondingly the knot vector
are set to the interval [0, 1]. Subsequently, a B-spline approximation of
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the contour points with the support points ̃𝑟𝑚 yields the ordering curve�̂�(0)(𝑟), which in turn is employed to find the initial support points 𝐫(0)
by orthogonal projection of the 2D points onto the ordering curve. Due to
the analytic derivatives and formulations of the B-splines, this projection
can be solved analytically by intersection of the normal vectors with the
points.

Figure 4.7 depicts the results of finding the contour points �̃�𝑚, the
ordering curve, and the final spline curve. On the right side the con-
vergence behavior of the summed squared orthogonal distances can be
observed. Due to well-chosen initial support points, the spline curve
converges after only a few iteration steps. The residual mean squared
error (MSE) should not be significantly less than the standard deviation
of the measurement noise, as this would indicate overfitting. In this case,
the degrees of freedom 𝐹 have to be reduced by using a knot vector with
fewer elements. For both the ordering curve and the iteratively approxi-
mated spline curve, the B-spline order and the knot vector are set to 𝑙 = 4
and 𝐫k = [0, 0.5, 1]T, respectively.

4.3.3 Interfering signals estimation
From the discussion about the misalignments of the point clouds in
Section 4.1.3 it is clear that determining these misalignments yields the
differential interfering signals in its vector form 𝐩Δi [𝑛]. However, there
are several problems to be solved. Firstly, the overlap between two point
clouds 𝐩[𝑛], 𝐩[𝑛+1] is influenced by the interval 𝕥 , which in turn depends
on the interval of the time delays. Hence, the length of the overlap is
not known beforehand. Secondly, the misalignment cannot be calculated
from the point clouds directly, because the distribution of the sampled
time delays in the interval 𝕥 may be non-uniform or even contain gaps
leading to points 𝐩𝑚[𝑛] with no corresponding point 𝐩�̃�[𝑛 + 1] in the
subsequent point cloud. This disqualifies the application of point set
registration approaches such as iterative closest point since they require
existing direct point correspondences. To circumvent this issue and to
be more robust against AWGN, the shapes of the points clouds are first
approximated by using B-splines as explained in the previous subsection,
instead of calculating the misalignment between the point clouds. For
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each time step 𝑛, this results in two trajectories represented by the spline
curves �̂�𝑛(𝑟) and �̂�𝑛+1(𝑟). As the shapes only overlap partially, finding
the misalignment results in the problem called partial shape matching (see
[141] for further reference).

To solve this problem, the trajectories �̂�𝑛(𝑟), �̂�𝑛+1(𝑟) are densely sam-
pled and the misalignment is determined by minimization of a mean
squared distance-based quality measure. Because the curves are only
partially overlapped, the crux in the quality measure is to classify which
points have a corresponding point in the other trajectory. To this end,
the advantage that sampling the B-splines creates ordered points is ex-
ploited. Considering the direction of the trajectory, the end point of �̂�𝑛(𝑟)
which is guaranteed to have a correspondence on �̂�𝑛+1(𝑟) is easy to de-
termine. Following from this approach, the misalignments used in the
optimization are reduced to the differences�̂�Δi,𝑛(𝑟𝑖) = �̂�𝑛+1(𝑟𝑖) − �̂�𝑛(0) (4.45)

at the sampled support points 𝑟𝑖. Without loss of generality, Equation
(4.45) assumes that the end point with guaranteed correspondence is�̂�𝑛(0), otherwise the control points of the spline curve can simply be
reversed. Thus, the 2D optimization is simplified to a 1D search.

Given 𝑁 densely sampled support points 𝑟𝑖 ∈ [0, 1] and the misalign-
ments from (4.45), the final estimation for the differential interfering
signals can be calculated via�̂�Δi [𝑛] = arg min�̂�Δi,𝑛(𝑟𝑖) 𝑁∑̃𝑖=𝑖 min𝑗 ∥�̂�𝑛+1(𝑟 ̃𝑖) − �̂�𝑛(𝑟𝑗) − �̂�Δi,𝑛(𝑟𝑖)∥2 . (4.46)

Equation (4.46) minimizes a quality measure formed by accumulating
the Euclidean distances of the respective nearest neighboring points,
where the starting index 𝑖 is responsible for classifying which points
have a correspondence.

The last step for estimating the interfering signals is the numerical
integration of �̂�Δi [𝑛] followed by offset correction. To this end, the rect-
angle rule is applied and the resulting cumulative sum is searched for
local maxima. Since the interfering signals are bandpass signals, the
average calculated over one period should be zero. This is exploited by
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Figure 4.8 Example estimation of the interfering signals. Upper left: all point clouds.
Upper right: B-Spline approximation of a single point cloud. Lower left: partial shape
matching between two trajectories. Lower right: estimated differential interfering signals𝑠Δi (𝑡𝑛) and their offset corrected integration. Figure adapted from previous publication
[141].

calculating and subtracting the average value of the range between the
found local maxima.

An example of the entire algorithm consisting of the point cloud gen-
eration, the B-spline approximation, the partial shape matching, and the
numerical integration with offset correction is shown in Figure 4.8. For
this illustration, a measurement package was extracted from the data
set Dsim,1. After clipping the time domain containing the target signals,
the point clouds of the reference signals are depicted for each time step𝑛 in the clipped time domain (upper left). Although not shown, each
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point cloud is subsequently approximated by a spline curve (upper right),
which in turn are used to calculate the misalignment for each time step𝑛 (lower left). On the lower right, the estimated differential interfering
signals are plotted in blue and their numerical integration in red. The
shaded area marks the range, where the average for the offset correction
was calculated. Due to the solution in the 2D area, the interfering signals
are estimated in form of analytic signals, but these can be easily converted
back to the real-valued interfering signals by simply taking the real part.

The last point to mention is which signals are to be used for the point
cloud generation since the B-spline-based approach works with both the
reference or delay signals. There are two options to deal with it: either
the interfering signals are estimated once using the reference signals and
once using the delay signals followed by averaging, or the point clouds
are generated by concatenating the reference signals and the delay signals
leading to 𝐏[𝑛] = [𝐏r[𝑛], 𝐏d[𝑛]]. For easier notation, the hyperparameter
set 𝜽BS = {Δ𝜏, 𝙿𝙲𝚐𝚎𝚗} , 𝙿𝙲𝚐𝚎𝚗 ∈ {individual, concatenated} (4.47)

is introduced, with the categorical variable 𝙿𝙲𝚐𝚎𝚗 which decides whether
the point clouds for the interfering signals estimation should be concate-
nated or the point clouds of the reference and delay signals are generated
and processed individually followed by an averaging.

4.3.4 Joint shape fit and interfering signals estimation
The B-spline-based SDM proposed in the previous two subsections has
two drawbacks. Firstly, using an individual B-spline approximation for
every time step 𝑡𝑛 yields slight deviations in the shapes of the trajectories
due to the noise 𝐧 leading to further errors when solving the partial
shape matching problem. Secondly, the solution of the partial shape
matching requires a lot of computational effort, since the approach is
based on sampling the splines, where the high precision requirement of
the misalignment requires a high sampling density. Therefore, a novel ap-
proximation method, named Joint B-Spline approximation, is presented
that considers the knowledge that the shapes of the trajectories at dif-
ferent time steps are constant except for the misalignment. By using a

77



4 Novel Separation Methods Based on Signal Dynamics

joint shape fit and misalignment estimation, a global optimum can be
reached. To accomplish this, the fitting problem (4.38) is extended by the
misalignment, leading to the formulation[ 𝐏T[𝑛]𝐏T[𝑛 + 1]]⏟⏟⏟⏟⏟�̃�T[𝑛]∈ℝ2𝑀×2

= [ 𝐁(𝐫[𝑛]) 𝟎𝑀1𝐁(𝐫[𝑛 + 1]) 𝟏𝑀1]⏟⏟⏟⏟⏟⏟⏟⏟⏟�̃�( ̃𝐫)∈ℝ2𝑀×(𝐹+1)
⋅ [ 𝐂𝐩Δ,Ti [𝑛]]⏟⏟⏟⏟⏟�̃�∈ℝ(𝐹+1)×2

+ [ 𝐍[𝑛]𝐍[𝑛 + 1]] , (4.48)

with the ones vector 𝟏𝑀1 ∈ {1}𝑀, the zeros vector 𝟎𝑀1 ∈ {0}𝑀 and the
transposed misalignment 𝐩Δi [𝑛]. Instead of fitting the B-splines to only
the point cloud 𝐏[𝑛], the same spline curve needs to approximate both
consecutive point clouds 𝐏[𝑛], 𝐏[𝑛 + 1], with the second point cloud
being shifted by the estimated misalignment. Inserting the modified
matrices �̃�[𝑛], �̃�( ̃𝐫) and �̃� into the iterative approach (4.40) results in
both the final spline curve and the differential interfering signals at the
time step 𝑛. Finally, the numerical integration with offset correction as
already explained in the previous subsection is repeated to obtain an
estimate for the interfering signals.

However, the quality of the initial support point estimation deteriorates
with increasing offset and the convergence is not guaranteed anymore
as Figure 4.9 illustrates. Since the convergence rate is rather low and the
LS estimation in (4.40) can be interpreted as the direction of a steepest-
descent approach, the learning rate could be increased. To this end, a
golden-section search was implemented, but the results showed that
manipulating the learning rate during the iterative optimization makes
the convergence unstable. For this reason, the line search was omitted
when applying the joint B-spline. Nevertheless, good results could be
achieved by increasing the iterations by factor 10 compared to the B-spline
approximation of each individual point cloud. Overall, the computational
effort was still below that of the individual approach, because the effort
for the partial shape matching could be saved.

4.3.5 B-spline-based direct time delay estimation
Equivalent to the direct TDE using the angle of the first principal compo-
nent vector, the spline curves can also provide a tangent line. Furthermore,
due to the estimation as a curved line, it is possible to determine distinct
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Figure 4.9 Visual example of iterative joint B-spline and misalignment approximation.

angles for each measurement within the package, instead of only one
orientation per point cloud. Because the B-splines can be derivated ana-
lytically, the angle calculation is fairly simple. The following steps must
each be applied once to the point clouds resulting from the reference
signals and the delay signals. At first, for each point 𝐩𝑚[𝑛] the support
point with the least Euclidean distancẽ𝑟[𝑚, 𝑛] = arg min𝑟∈[0,1] ∥�̂�𝑛(𝑟) − 𝐩𝑚[𝑛]∥2 (4.49)

has to be computed, with �̂�𝑛(𝑟) being the spline curve approximated to
the respective point cloud 𝐏[𝑛]. Secondly, the analytical derivative𝐯BS[𝑚, 𝑛] = d�̂�𝑛(𝑟)d𝑟 ∣𝑟= ̃𝑟[𝑚,𝑛] (4.50)
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4.3.6 Discussion
The B-spline-based point cloud processing has several advantages but
also disadvantages to the PCA-based SDMs. The first point to mention
is that the B-spline-based SDM can also be applied if only either the
reference or the delay signals are available. Furthermore, due to the
estimation via the differential signal, which needs to be integrated before
the interfering signals are acquired, the B-spline-based SDMs have a
better robustness against noise. The next advantage lies in the dynamic
behavior if the time delays are estimated directly from the tangent lines
of the spline curves. Here, the B-spline-based point cloud approximation
allows us to obtain an estimation for each signal within the measurement
package rather than just an averaged value per package. The last point to
mention is that the requirements on the point clouds are less restrictive.
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is calculated at the support points obtained in the previous step. As the
spline curve is a weighted sum of the B-splines, the analytical derivative
becomes

d�̂�𝑛(𝑟)
d𝑟

=
𝐹−1

∑
𝑖

[𝑐𝑥,𝑖
𝑐𝑦,𝑖

] ⋅
d𝑏𝑖,𝑙(𝑟)

d𝑟
, (4.51)

where the derivation of the B-splines needs to be substituted by the
expression given in (4.36). Finally, the angles

𝜙BS [𝑚, 𝑛] = atan2 (𝐞T
2 𝐯BS[𝑚, 𝑛], 𝐞T

1 𝐯BS[𝑚, 𝑛]) (4.52)

of both the reference and delay signals are sorted per measurement
index 𝑚, resulting in 𝜙BS

r,𝑚[𝑛] and 𝜙BS
d,𝑚[𝑛]. From these angles, again using

the same procedure already applied for the PCA-based direct TDE in
Subsection 4.2.2, the time-delay difference ̂𝜏𝑚 is determined for each
measurement index 𝑚.

Since this direct TDE is only based on the spline curves, it can be used
for both the individual B-spline and the joint B-spline approximation.
Furthermore, similar to the B-spline-based interfering signals estima-
tion, the hyperparameters specify the signal dynamics and whether the
point clouds for reference and delay signals should be concatenated or
processed individually (cf. the set defined by (4.47)).
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Figure 4.10 Results of TDEs using the B-spline-based SDM for the simulated data sets
Dsim,1, … ,Dsim,4.

The variations of the time delay within a package may be larger on the
one hand and on the other hand the distribution of the points within the
point clouds are not required to be uniform.

However, the computational effort is considerably higher than for
the PCA-based processing and due to the more complex algorithm, the
method is more susceptible to outlier signals, e.g., zero signals due to
loose contacts, fluctuating time shifts due to wrong trigger signals, etc. Es-
pecially, the performance of the joint-B-spline approach depends on the
quality of the signals, since the convergence is not guaranteed. Therefore,
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outliers would have to be filtered out beforehand to get reliable estimates.
The last expected disadvantage is the robustness against model errors.
Because the algorithm is based on the invariance of the shape against
time shifts of the target signals, any shape manipulating effect, such as
varying interfering signals, should have a strong impact on the misalign-
ment estimation. Of course, a changing amplitude of the target signals
could also have a negative effect, but during the measurement system
identification this effect was not observed and is therefore considered as
unlikely.

In order to investigate the discussed properties, the joint-B-spline- and
B-spline-based SDMs are applied to the four simulated data sets leading
to the results plotted in Figure 4.10. Same as for the PCA-based approach,
the signals are separated into packages with Δ𝜏 = 50 ns, but due to the
higher computational effort, the overlap was reduced to allow the calcu-
lations in reasonable time. From this follows the staircase-like curve that
can be observed in the upper and lower left of Fig. 4.10. Furthermore,
the estimate of the curvature of the splines at the endpoints of the trajec-
tories deteriorates, resulting in poor B-spline- and joint-B-spline-based
direct TDE at these points, which explains the discontinuities in the TDE
for signals at the edges of the signal packages. Regardless, the figure
shows that the spline-based approaches work in general but, as already
suspected, show stronger deviations than the PCA-based approaches in
case of model errors. The joint-B-spline-based processing can cope better
with model errors, but still not as good as the PCA-based processing. In
return, however, it is also allowed that strongly varying time delays are
present in the measurement package for the direct TDE (see the upper
and lower right in Fig. 4.10). Since the simulated data sets are generated
with a high SNR, the robustness against noise cannot be investigated
in this evaluation. Therefore, this point will be discussed later in the
experimental results.

4.4 Global interfering signals compensation
In practice, it would not be usual to recalculate the interfering signals
for each measurement package without taking into account the informa-
tion given by already existing estimates of the interfering signals. While,
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due to the interfering signals being slightly temperature dependent, it
is beneficial to have an individual estimation per package, the robust-
ness can be further improved using a globally valid estimation for all
measurement packages. To this end, all estimations obtained from evalu-
ation of the different packages are averaged after outliers were filtered
out. Subsequently, all measurement signals can be compensated globally
using the thus obtained interfering signals estimation, followed by the
conventional zero-crossing-based TDE. This approach is referred to as
global compensation SDM later in the results chapter, whereas the com-
pensation of each measurement package with its individual estimation
will be called local compensation SDM.

As already mentioned in the discussion of the B-spline-based process-
ing, outlier points in the point clouds can greatly impact the quality of the
estimation. To remove bad estimations, a new histogram-based outlier
detection algorithm is introduced in the following. Given �̃� different
estimated interfering signals ̂𝑠i[𝑛, �̃�], in the first step, a histogramℎ𝑛𝑖 = �̃�∑̃𝑚=1 {1 ̂𝑠i[𝑛, �̃�] ∈ [𝑏𝑛𝑖 , 𝑏𝑛𝑖+1)0 ̂𝑠i[𝑛, �̃�] ∉ [𝑏𝑛𝑖 , 𝑏𝑛𝑖+1) (4.53)

is calculated for each discrete time index 𝑛, where ℎ𝑛𝑖 denotes the number
of samples that fall within the interval [𝑏𝑛𝑖 , 𝑏𝑛𝑖+1). These intervals, also
called bins, are determined for each time index 𝑛 separately. For this,
the next lower power of ten to Scott’s normal reference rule [106] is
chosen as bin width. Then, the intervals are uniformly distributed over
the maximum interval [ min�̃� ̂𝑠i[𝑛, �̃�] , max�̃� ̂𝑠i[𝑛, �̃�]], determining the
time-index-specific interval limits 𝑏𝑛𝑖 and thereby the number of bins.
In other words, the interfering signals sampled at the time index 𝑛 are
treated as a collection of values, which is then used as input for an
automatic binning algorithm. Subsequently, the bins are applied to get a
histogram of the collection of values. As this procedure is repeated for
all time steps, a set of histograms is eventually obtained. With the help
of these histograms, a function

ℎ̃𝑛 ∶ ℝ ↦ ℕ , 𝑠 ↦ ⎧{⎨{⎩
ℎ𝑛𝑖 𝑠 ∈ [𝑏𝑛𝑖 , 𝑏𝑛𝑖+1]⋮ℎ𝑛𝑗 𝑠 ∈ [𝑏𝑛𝑗 , 𝑏𝑛𝑗+1] (4.54)
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84

can be defined for each time step, which assigns to a continuous value
𝑠 the number of observations that lie in the interval in which the value
also lies.

In the second step of the outlier filtering, the histogram mapping
function ℎ̃𝑛 is applied to create a quality measure that indicates which
signals are less likely to be outliers and which are more likely to be
outliers. Since a signal sample being in the bin with the highest number
of observations indicates that it belongs to the majority, a higher value
means a signal that is less likely to be an outlier. Obviously, the signals
do not consist of only one sample. Therefore, the number of observations
for each signal ̂𝑠i[𝑛, �̃�] are accumulated over the samples in the quality
measure

𝐽[�̃�] =
𝑁

∑
𝑛=1

ℎ̃𝑛( ̂𝑠i[𝑛, �̃�]) . (4.55)

Finally, a threshold determines for which 𝐽[�̃�] the signals are con-
sidered outliers. An automatic threshold estimation can be found by
sorting 𝐽[�̃�]. If the first and the last point of the found quality measure
are interpreted as two 2D points connected by a straight line, the point on
the quality curve with the largest Euclidean distance to this straight line
is taken as the threshold, i.e., the strongest bend in the curve is used as
separation point. The last task is to remove the outliers and average the
remaining signals to get a globally determined estimate of the interfering
signals ̂𝑠i(𝑡𝑛). The results of using this globally determined estimate will
be shown in the experimental results chapter.



5 Feature-Based Regression Method

A completely different approach, which is not based on compensating
the interfering signals but on estimating the time delays robustly against
interfering signals, is presented in the following. In principle, features
are extracted from a time-frequency representation of the signals, from
which the time-delay difference is subsequently estimated with the aid of
a regression. To present this method, the fundamentals of the used time-
frequency representation are given in the first section, followed by an
overview of the algorithm in the second section, the feature design in the
third section, and a feature subset selection in the fourth section. Finally,
the last section of this chapter examines different regression models and
the corresponding training approaches for both the supervised and the
unsupervised case.

5.1 Fundamentals on analytic wavelet packets
The analytic wavelet packet transform (AWPT) belongs to the class of
multirate filter banks, just like, e.g., the discrete wavelet transform (DWT)
[83]. The applications of these multirate filter banks include, but are
not limited to, speech processing, image processing, data compression,
and denoising as they are fast to calculate and invertible. Most of these
applications take advantage of the fact that the multirate filter banks
create a time-frequency representation of the input signal that provides
information about the signal energy in a certain time and frequency win-
dow. Since the time-frequency resolution of the DWT is fixed to have a
high frequency resolution at low frequencies and a high time resolution
at high frequencies, the more flexible wavelet packet transform [19] was
introduced. However, the drawback of the real-valued multirate filter
banks is the missing shift-invariance due to the downsampling operation
in the algorithm. Although many variants retaining the shift-invariance
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were investigated in the early 2000s, such as the undecimated wavelet
transform [116] or the double density DWT [108], this thesis uses the
analytic wavelet packet transform, which was published independently
by Selesnick [110] and Weickert et al. [128] at about the same time. There
are two main reasons for this decision. Unlike the undecimated wavelet
transform, the amount of data does not increase at each level, and more-
over, the use of analytic basis functions allows the determination of the
time shift based on the phase of the complex-valued coefficients just as
in the Fourier transform.

The following subsections explain the structure of the AWPT and the
principles to design the necessary tree-like multirate filters and filter
impulse responses. The presented fundamentals are summarized from a
collection of publications on the subject [24, 58, 107, 109–111, 128, 144].

5.1.1 Analytic wavelet packets in the context of
time-frequency representations

Basically, the AWPT can be classified as a basis transform for discrete sig-
nals. Representing signals in other basis systems to extract information
is a common technique. The most prominent basis transform is probably
the Fourier transform which allows the analysis of the frequency com-
position of signals. In the discrete version of the transform, harmonic
oscillations with different frequencies form an orthogonal basis, i.e., the
inner product, which measures the similarity of two functions, of two
distinct basis functions is zero. Other known basis transforms are the
wavelet transform or the STFT, whose main difference to the Fourier
transform is the compact support of the basis functions in the time range
allowing a time-dependent statement about the frequency composition.
Whereas the STFT can be interpreted as the Fourier transform of a time-
windowed signal, the wavelet transform is defined as the inner product
between a signal and a time-stretched and time-shifted mother wavelet.
In both cases, the form of the basic functions is determined by the window
function and the wavelet, respectively. Even though the time-frequency
resolutions can be adjusted by the window length for the STFT or the
bandwidth or center frequency of the mother wavelet, the general traits
regarding the time-frequency resolution of these transforms—the STFT
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has a constant time-frequency resolution and the wavelet transform has
a better frequency resolution at lower frequencies—are not changeable.
Furthermore, the product of the frequency resolution 𝜎f and the time
resolution 𝜎t is larger or equal to the Gabor limit 1/(4𝜋), where equality
only holds for the Gaussian window function.

In this context, the DWT is the implementation of the real-valued
wavelet transform for discrete signals by using filter banks with different
sampling levels to replicate the time stretching of the mother wavelet.
Therefore, it shares the same traits—better frequency resolution at lower
frequencies and oscillating coefficients in some cases even for signals with
a constant frequency. An extension of the DWT to use complex-valued
basis functions equivalent to the DFT is called the dual-tree complex
wavelet transform. This approach is already very close to the AWPT. The
only extension missing to get the AWPT is the adaptive time-frequency
resolution, i.e., different time-frequency resolutions can be set arbitrarily
for different frequency levels within the Gabor limit. Basically, however,
all presented time-frequency representations are still only basis trans-
forms where the basis functions have certain properties, e.g., bandwidth,
center frequency, time compactness.

Mathematically, a basis transform of a discrete signal 𝑠[𝑛], e.g., the DFT,
can be formulated as finding the coefficients 𝑐[𝑘] needed to decompose
it into the sum𝑠[𝑛] = 𝐾−1∑𝑘=0 𝑐[𝑘] 𝜓𝑘 [𝑛] . (5.1)

Although the signal 𝑠[𝑛] may in principle be real-valued or complex-
valued, this thesis only considers real-valued signals due to the origin
of the signals from ultrasonic measurements. To get the coefficients, the
Gram matrix of the new basis systemΦ = Basis {𝜓𝑘 [𝑛] , 𝑘 = 0 … 𝐾 − 1} (5.2)

is inverted and multiplied by the vector resulting from building the in-
ner product of the signal with each basis function 𝜓𝑘 [𝑛]. Note that the
decomposition in (5.1) is only unique if the number of basis functions 𝐾
is equal to the number of discrete samples 𝑁. For 𝐾 > 𝑁 the function
system, called frame or dictionary in this case, is overcomplete and the
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coefficients are determined by imposing additional constraints. Other-
wise (𝐾 < 𝑁), the system only spans a subspace of all possible signals
leading to the situation that only an approximation of the signal can be
found. In all cases, the inverse transform is simply building the sum (5.1).

A special case is given when the basis is orthonormal. Since the inner
product of distinct basis functions equals zero and the signal energy of
the basis functions equals one, the Gram matrix becomes an identity
matrix. Therefore, the coefficients can be determined directly through
projection of the signal onto the respective basis function

𝑐[𝑘] = ⟨𝑠[𝑛] , 𝜓𝑘 [𝑛]⟩
𝑛

=
𝑁−1

∑
𝑛=0

𝑠[𝑛] 𝜓𝑘 [𝑛] . (5.3)

Even if the basis is only orthogonal, normalizing the signal energy of
each basis function creates an orthonormal basis. Furthermore, for or-
thonormal bases applies: given the basis function 𝜓𝑘 [𝑘] the coefficient
𝑐[𝑘] not only provides information about how much signal energy is in
the time window around the mean time 𝑡𝑘, but also at the same time,
due to Parseval’s theorem, how much signal energy is around the mean
frequency 𝑓𝑘. Here, the mean time 𝑡𝑘, the mean frequency 𝑓𝑘, the time
duration 𝜎t,𝑘, and the bandwidth 𝜎f,𝑘 are defined by the relationships

𝑡𝑘 =
𝑁−1

∑
𝑛=0

𝑛𝑡s ⋅
|𝜓𝑘 [𝑛]|2

∥𝜓𝑘 [𝑛]∥2
2

, 𝜎t,𝑘 =
𝑁−1

∑
𝑛=0

(𝑛𝑡s − 𝑡𝑘)2
|𝜓𝑘 [𝑛]|2

∥𝜓𝑘 [𝑛]∥2
2

, (5.4)

𝑓𝑘 =
𝑁−1

∑
𝑛𝑘=0

𝑛𝑘

𝑁𝑡s

|Ψ𝑘 [𝑛𝑘]|2

∥Ψ𝑘 [𝑛𝑘]∥2
2

, 𝜎f,𝑘 =
𝑁−1

∑
𝑛𝑘=0

(
𝑛𝑘

𝑁𝑡s
− 𝑓𝑘)

2 |Ψ𝑘 [𝑛𝑘]|2

∥Ψ𝑘 [𝑛𝑘]∥2
2

,

(5.5)

where Ψ𝑘 [𝑛𝑘] denotes the DFT of the basis function 𝜓𝑘 [𝑛].
Summarizing the above-mentioned properties of basis transforms,

where the objective is to get information about the time-frequency energy
distribution of signals, the AWPT is designed to have the following
properties:

The transform should use complex-valued analytic basis functions



5.1 Fundamentals on analytic wavelet packets𝜓ℂ𝑘 [𝑛] = 𝜓Re𝑘 [𝑛]− j 𝜓Im𝑘 [𝑛] , with 𝜓Im𝑘 [𝑛] = −H{𝜓Re𝑘 [𝑛]} , (5.6)

where the real and the negative imaginary part build a Hilbert
pair, i.e., the negative imaginary part is the Hilbert transform of
the real part. Due to this property, the shift-invariance of the trans-
form is preserved, although the downsampling operations are still
included.

In order to calculate the coefficients efficiently as inner products—
later it will be shown that the AWPT applies discrete convolutions
to perform this task—the basis functions 𝜓ℂ𝑘 [𝑛] should be con-
straint orthonormal, i.e.⟨𝜓Re𝑖 [𝑛], 𝜓Re𝑗 [𝑛]⟩𝑛 = 0.5𝛿𝑖𝑗 ,⟨𝜓Im𝑖 [𝑛], 𝜓Im𝑗 [𝑛]⟩𝑛 = 0.5𝛿𝑖𝑗 , 0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1 ,⟨𝜓Re𝑘 [𝑛], 𝜓Im𝑘 [𝑛]⟩ ≈ 0 , 0 ≤ 𝑘 ≤ 𝑁 − 1 .

(5.7)

Note that if condition (5.6) does perfectly hold, the inner product
between the real and imaginary part is zero. However, in prac-
tice, as it will be shown later, the filter design using finite impulse
response filters can only approximately design the real and imagi-
nary parts as a Hilbert pair, since the Hilbert transform requires
an infinite impulse response. As the set of real-part and imaginary-
part basis functions each form a complete basis system, the inner
product between real and imaginary parts from different frequency
bands 𝑘 is not required to be zero.

In order to perform filtering or other processing tasks, the AWPT
needs to have a numerically stable inverse transform.

Each signal has its own time-frequency characteristic. Therefore,
a rigid time-frequency resolution is not optimal for every signal.
To this end, the time-frequency resolution of the AWPT should be
signal adaptive, where the resolution is chosen to be best under
certain boundary conditions such as minimal entropy [19].
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5.1.2 Dual-tree approach for multirate filter banks
A multirate filter bank such as the DWT or wavelet packet transform
is built as a full binary tree, i.e., each node can have exactly two or
zero children, where a node without children is called a leaf. In this
context, a node consists of a lowpass or bandpass filter followed by a
downsampling by two. Due to this, successive filtering steps lead to a
dyadic reduction of the sampling rate, which is why these structures are
also called multirate filter banks. Furthermore, the filtering influences
the frequency windows that the coefficients represent, i.e., the frequency
characteristic of the basis function corresponding to a node is determined
by the sequence of filters that leads to the respective node. In principle,
two main properties of this frequency characteristic are set. Firstly, as
each node reduces the sampling rate, the time resolution is halved while
the frequency resolution is doubled for each additional filter pair that
is passed through. Secondly, the order of the passed filters determines
the center frequency, e.g., a bandpass followed by a lowpass yields the
center frequency 𝑓𝑘 = 5/8𝑓N, with 𝑓N denoting the Nyquist frequency.

In summary, given the input coefficients 𝑐[𝑛] of a node, the coefficients
of the subsequent lowpass and bandpass children are calculated by

𝑐LP[𝑛] = (𝑐[�̃�] ∗ 𝑔LP[�̃�])∣
�̃�=2𝑛

, (5.8a)

𝑐BP[𝑛] = (𝑐[�̃�] ∗ 𝑔BP[�̃�])∣
�̃�=2𝑛

, (5.8b)

with the impulse responses of the lowpass filter 𝑔LP[𝑛] and the bandpass
filter 𝑔BP[𝑛]. Since the filtering results in two sequences of coefficients,
each of which is subsequently downsampled by two, the number of
coefficients at each level remains constant. Note that the information
lost due to discarding half of the samples after each filtering can only be
recovered if the impulse responses are designed to hold certain properties,
which will be discussed in the next subsection.

An example of a full multirate filter bank representing the AWPT is
depicted in Fig. 5.1. Additionally to the already mentioned relationships,
a dual tree responsible for calculating the imaginary part of the coeffi-
cients is included. This approach can be explained as follows. Recursive
application of (5.8) leads to the coefficient sequences of the nodes, which
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𝑠[𝑛]

Real-part tree

Imaginary-part tree

𝑔Re0,BP[𝑛]
𝑔Re0,LP[𝑛]

2

2

𝑔ImLP[𝑛]𝑔ImBP[𝑛] 2

2

𝑐Re2,3[𝑛]𝑐Re2,2[𝑛]
𝑔ReBP[𝑛]𝑔ReLP[𝑛] 2

2

𝑐Re2,1[𝑛]𝑐Re2,0[𝑛]
𝑔Im0,BP[𝑛]
𝑔Im0,LP[𝑛]

2

2

𝑔ReLP[𝑛]𝑔ReBP[𝑛] 2

2

𝑐Im2,3[𝑛]𝑐Im2,2[𝑛]
𝑔ImBP[𝑛]𝑔ImLP[𝑛] 2

2

𝑐Im2,1[𝑛]𝑐Im2,0[𝑛]
Figure 5.1 Dual-tree representation of the analytic wavelet packets. The filter pairs are
rearranged to obtain analytic basis functions and to order the center frequencies ascending
with the subband (see Section 5.1.3).

represent the inner products of the corresponding basis functions with
the input signal. However, since the calculations are performed all in the
real-valued domain, using a single tree yields only the real part of the
coefficients 𝑐Re[𝑘], or in other words, only the basis functions 𝜓Re𝑘 [𝑛] are
implemented by a single tree. The dual-tree approach adds a second tree
and slightly modifies the impulse responses to guarantee that the implicit
basis functions of the original tree 𝜓Re𝑘 [𝑛] and the dual tree 𝜓Im𝑘 [𝑘] build
a Hilbert pair—the order of the filter impulse responses is modified to
get the correct behavior with respect to the center frequency and analytic
basis functions, as explained in the following subsection. With this, the
final complex-valued coefficients can be obtained by𝑐[𝑘] = ⟨𝑠[𝑛] , 𝜓Re𝑘 [𝑛] − j 𝜓Im𝑘 [𝑛]⟩𝑛= ⟨𝑠[𝑛] , 𝜓Re𝑘 [𝑛]⟩𝑛 + j ⟨𝑠[𝑛] , 𝜓Im𝑘 [𝑛]⟩𝑛= 𝑐Re[𝑘] + j 𝑐Im[𝑘] . (5.9)
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𝑡

𝑓𝑓N
𝑓N/2𝑓N/4 𝑐1,0[0] 𝑐1,0[1] 𝑐1,0[2] 𝑐1,0[3]

𝑐3,4[0]𝑐3,5[0]𝑐2,3[0] 𝑐2,3[1]

𝑡

𝑓𝑓N
𝑓N/2𝑓N/4

𝑐1,1[0] 𝑐1,1[1] 𝑐1,1[2] 𝑐1,1[3]

𝑐3,0[0]𝑐3,1[0]𝑐2,1[0] 𝑐2,1[1]
Figure 5.2 Time-frequency resolutions of two different tree structures. The standard
time-frequency resolution of the DWT is shown on the right side.

Another important aspect that has been neglected so far is the nomen-
clature of the coefficient indices. Until now the coefficients were only
indexed by the discrete frequency step 𝑘. However, a detailed examina-
tion of the multirate filter bank shows that each node is uniquely defined
by its level and subband. Furthermore, each node contains multiple
coefficients due to the time index 𝑛.

Firstly, the node nomenclature used in this thesis—and in the previous
publication [144]—is explained. Each node is described by the tuple(𝑠

W
, 𝑘

W
) ∈ ℕ2 , with 𝑠

W
≥ 0 , 𝑘

W
∈ [0, 2𝑠W − 1] , (5.10)

where 𝑠
W

denotes the level of the node and 𝑘
W

denotes the subband within
this level. Starting from the root with the tuple (0, 0), the following nodes
are determined recursively by a parent-child relationship, in which the
children are defined as

lowpass child (𝑠
W

+ 1, 2𝑘
W

) , (5.11a)
bandpass child (𝑠

W
+ 1, 2𝑘

W
+ 1) , (5.11b)

if the parent node is given by (𝑠
W

, 𝑘
W

).
Secondly, the time index 𝑛 of the node coefficients is set in relation to

the time-frequency window that corresponds to each individual coeffi-
cient. While the mean frequency is completely determined by the node
identifier (𝑠

W
, 𝑘

W
), the mean time is determined by the time index of the
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coefficient sequence. Unfortunately, the coefficients cannot be arranged in
the form of a matrix, because the coefficient sequences 𝑐𝑠W,𝑘W

[𝑛] from dif-
ferent nodes are not always of the same length. Therefore, the coefficients
are vectorized into a linear arrangement by simple concatenation of the
different coefficient sequences and indexed by 𝑘, which in this context
specifies both the mean frequency and mean time. Due to this, a map
needs to be stored containing the level, the subband, and the time index
for each index 𝑘. Two examples for different tree structures, their coeffi-
cient notations 𝑐𝑠W,𝑘W

[𝑛], and their time-frequency resolutions indicated
by rectangular windows are depicted in Fig. 5.2. Due to the limited space
the time duration is shortened to include only eight samples, which can
be concluded from the number of coefficients in the first level (𝑠

W
= 1)

being four.

5.1.3 Filter design and arrangement
The desired properties of the AWPT stated in Subsection 5.1.1 and the
existence of its inverse transform are strongly dependent on the design
of the filters and their arrangement. Since the focus of this thesis does not
lie on the filter design, only the fundamental approaches are presented.
For further reference see the works of Daubechies [24], Selesnick [107,
109] and Kingsbury [58].

In the case of the conventional DWT without a dual tree and with
non-analytic basis functions, Smith and Barnwell [115] have proven that
a bandpass-lowpass filter pair with the relationship𝑔BP[𝑛] = (−1)𝑛𝑔LP[𝑁 − 𝑛] (5.12)

allows a perfect reconstruction, which is in this context the inverse trans-
form, if the perfect reconstruction condition𝐺LP(𝑧)𝐺LP(𝑧−1) + 𝐺LP(−𝑧−1)𝐺LP(−𝑧) = 2

❝

s

∑𝑖 𝑔LP[𝑖] 𝑔LP[𝑖 + 2𝑛] = 𝛿[𝑛] = {1 𝑛 = 00 𝑛 ≠ 0 (5.13)

is fulfilled. Such a filter pair is called conjugate-quadrature-filter and
leads to orthogonal filters. The reconstruction or synthesis filters ℎ[𝑛],
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which are used in the mirrored synthesis tree not shown in this thesis,
can then be derived from the lowpass filter according to:ℎLP[𝑛] = 𝑔LP[𝑁 − 𝑛] , (5.14a)ℎBP[𝑛] = (−1)𝑛+1𝑔LP[𝑛] . (5.14b)

In summary, a set of four filters is necessary to perform the DWT and its
inverse transform. Note that the perfect reconstruction condition (5.13)
still contains degrees of freedom. One option to design such a lowpass
filter is using Daubechies’ approach𝐺LP(𝑧) = (1 + 𝑧)𝐿𝑄(𝑧) , (5.15)

leading to the so-called Daubechies-N wavelet, where N denotes the
resulting length of the filters [24]. In this context, the number of vanishing
moments 𝐿 has to be set and a polynomial 𝑄(𝑧) has to be designed, which
can be done by a spectral factorization. Furthermore, there are several
more design methods, such as Symlets with improved symmetry or
Coiflets where the resulting scaling function also has vanishing moments
[82]. Whereas the standard Daubechies-N wavelets lead to a minimum-
phase system, the Symlets and Coiflets are nearly linear phase systems.

Until now, only the filter design for the real-valued DWT has been
addressed. However, the extension to the AWPT requires further filters
for the second tree and its reconstruction tree. Additionally to the perfect
reconstruction conditions, the resulting wavelets need to build a Hilbert
pair. As proven by Selesnick, this can be realized if the filters of both
trees satisfy the half-sample delay condition𝑔ImLP[𝑛] = 𝑔ReLP[𝑛 − 0.5] . (5.16)

Since the filter impulse responses are discrete, this condition is not as
trivial as it may seem and can only be solved approximately. Three promi-
nent design approaches are the q-shift wavelets [58] and the linear-phase
biorthogonal wavelets [59, 60] introduced by Kingsbury as well as the
common factor solution presented by Selesnick [109]. For the latter, the
vanishing moments of the resulting wavelets and the approximation
accuracy of the half-sample delay condition can be set independently by
two parameters.
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𝑠[𝑛] 𝑔BP[𝑛] 2
𝑠BP[𝑛] 𝑐BP[𝑛]

0 𝑓
L BLB L B LB

Figure 5.3 Reason for exchanging the bandpass and lowpass filters after bandpass node
in multirate filter bank (adapted from [56]).

However, Selesnick et al. [111] realized that even if the half-sample
delay condition (5.16) is met perfectly, the resulting wavelets are only
analytic if enough filters are passed through. This problem can be solved
by using different filters in the first level, which satisfy𝑔Im0,LP[𝑛] = 𝑔Re0,LP[𝑛 − 1] . (5.17)

Here, the different filters are highlighted by a subscripted 0. Because this
condition is a lot easier to satisfy, ordinary Daubechies wavelets can be
used in the first stage of the real-part tree and their one-sample delayed
version in the imaginary tree. The corresponding filters for the synthesis
trees can be calculated again by the relationships (5.12) and (5.14). In
summary, a total of eight analysis filters and eight synthesis filters is
necessary to implement the AWPT and its inverse.

Finally, the filter arrangement has to meet a few criteria to get analytic
basis functions and to order the center frequencies 𝑓𝑘 ascending with
the subband 𝑘

W
. As Figure 5.3 illustrates, the downsampling shifts the

bandpass parts 𝑠BP[𝑛] into the lower frequency band, but with swapped
lowpass (L) and bandpass (B) components. To account for this effect, the
bandpass and lowpass filters must be swapped in the next stage (see
Fig. 5.1). After another bandpass, the filters are swapped again. Due to
the same effect, the filters of the imaginary- and real-part tree have to
be swapped after the first bandpass (see Fig. 5.1). Otherwise, the basis
functions would have only energy at negative frequencies. The last point
to mention is that after reaching a node in the dual tree, where the basis
functions are already analytic signals, the subsequent nodes in both the
real and the imaginary trees need to have the same filters [110, 128]. For
simplicity, the filters of the real-part tree are used in this case.
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5.2 Algorithm design
The proposed approach for the robust time-delay difference estimation,
in the following called the feature-based regression method (FRM), is
inspired by classical machine learning methods. To this end, the data
set needs to be split into a training and test set. Subsequently, feature
vectors are extracted and, after a reduction of the dimensionality, used
for a regression to estimate the time-delay differences.

There are two general classes of this approach: supervised and unsu-
pervised. In both cases, the objective is to learn from a given training
set how to estimate the correct time-delay difference given a measure-
ment signal each for the reference and delay signal. However, in the
supervised case, the corresponding ground truth, also known as labels,
for the time-delay difference of the signals in the training set must be
known. In contrast, unsupervised machine learning methods only need
the training set without any corresponding labels. In practice, this means
that a calibration in a scenario with known ground truth is necessary for
the supervised approaches, whereas the unsupervised approaches can
collect the data during operation and learn the regression from it. As a
result, unsupervised approaches are closer to the SDMs or to conven-
tional TDE methods and have higher acceptance in practical applications.
For this reason, even though both supervised and unsupervised versions
of the FRM are proposed, the focus lies on the unsupervised version. A
supervised version of this class of approaches is already published in
an own previous publication [145]. This chapter takes up the approach
contained in [145] and extends it by adding further selection methods,
regressions, and a solution approach for the unsupervised training.

The principle of the supervised FRM is outlined in Fig. 5.4. By omitting
the label connections to the training of the feature selection and the
regression model, the approach is modified to get the outline of the
unsupervised FRM. Since the proposed feature extraction algorithm is
based on the AWPT, the resulting number of features is much too large to
get a stable regression. Therefore, a subsequent feature selection is added.
The remaining features represent the input variables for the regression
model. After the training, the selection mask for the features and the
regression model parameters are fixed. Given a measurement from the
test set, repeating the feature extraction, feature selection and regression
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Figure 5.4 The principle of the FRM.

steps with the fixed mask and the trained regression model parameters
leads to the final estimate of the time-delay difference.

A detailed description of the feature design, the feature selection ap-
proaches, and the regression model follows in the next three sections.

5.3 Feature design
As the system identification in Chapter 3 has shown, the measurement sig-
nals are band-limited and the contained information is time-dependent.
Therefore, the signals can be sparsely represented in a different basis, e.g.,
the basis obtained by employing the AWPT. Since the AWPT coefficients
represent a corresponding time-frequency window, they can be used
to incorporate only relevant frequency parts and time ranges. In this
section, three types of features are presented, two of which are used for
the subsequent regression and one of which is an auxiliary variable used
for the feature selection. Since the features are grouped in the form of
matrices, the value range of the discrete frequency index 𝑘 is changed
from [0, 𝐾 − 1] to [1, 𝐾] to be consistent with the matrix indices.
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To begin with, the first step of the feature design is the AWPT of the
reference and delay signals to get the corresponding coefficients𝑐r[𝑘] = ⟨𝑠r[𝑛] , 𝜓ℂ𝑘 [𝑛]⟩𝑛 , (5.18a)𝑐d[𝑘] = ⟨𝑠d[𝑛] , 𝜓ℂ𝑘 [𝑛]⟩𝑛 . (5.18b)

Even though (5.18) implies that the coefficients are calculated via the
inner product, the practical implementation is based on the dual-tree
presented in Section 5.1.2, as the calculation using multirate filter banks
reduces the computational effort significantly. To fully define the trans-
form, both the filter types and the tree nodes must be specified. A prelim-
inary study [151] has shown that, given the measurement signals with
the excitation frequency 700 kHz and the sampling rate 50 MHz, the best
results can be obtained by using nodes with a level 𝑠

W
∈ [5, 6, 7]. Fur-

thermore, the study has shown good results if the filters of the first level
(𝑔0,LP[𝑛]) and the subsequent levels (𝑔LP[𝑛]) are set to the Daubechies-20
wavelets and the common factor solution of Selesnick with one vanishing
moment and an approximation order of five, respectively.

Using the calculated AWPT coefficients of the measurement signals,
the features𝜉𝛿[𝑘] = ∣𝑐r[𝑘] − 𝑐d[𝑘]∣ , (5.19a)𝜉𝜙[𝑘] = arg { 𝑐r[𝑘] + 𝜖𝑐d[𝑘] + 𝜖} , 0 < 𝜖 ≪ 1 , (5.19b)𝜉a[𝑘] = 12 (|𝑐r[𝑘]| + |𝑐d[𝑘]|) (5.19c)

are calculated for each coefficient. Here, the coefficient index 𝑘 repre-
sents the time-frequency window—also known as the subspace—of the
signal. In other words, after the signals have been transformed into the
time-frequency representation, the three calculation rules (5.19) are ap-
plied to each time-frequency window denoted by 𝑘. Note that taking the
argument of the quotient of two complex values is equivalent to taking
the difference of the arguments. The small constant 𝜖 is added to the
quotient to increase numerical stability on one hand and to improve the
robustness against noise on the other hand, but it should be chosen well
below the expected signal energy level of the target signals. Additionally,
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note that the third feature (5.19c) is only used during the feature selec-
tion and not for the regression, which is why in the following solely the
features (5.19a), (5.19b) are examined in more detail.

The motivation to use the mean absolute coefficient (5.19c) is that this
feature represents the square root of the signal energy fraction within
the respective time-frequency window, which can be used to decide
whether the SNR is high enough to allow reliable information extraction.
The other two types of features are chosen since they are approximately
linearly correlated with the time-delay difference 𝜏, which can be proven
by the insertion of the narrowband assumption into the inner product.
As (3.29) shows, the difference signal between the reference and delay
signal is proportional to the time-delay difference 𝜏 if 𝜏 is sufficiently
small. The projection of this difference signal onto the basis function,⟨𝑠d[𝑛] − 𝑠r[𝑛] , 𝜓ℂ𝑘 [𝑛]⟩𝑛≈ ⟨𝐴t𝜔0𝜏 ⋅ cos (𝜔0(𝑡s𝑛 − 𝜏a)) , 𝜓ℂ𝑘 [𝑛]⟩𝑛≈ 𝐴t𝜔0𝜏 ⋅ ⟨cos (𝜔0(𝑡s𝑛 − 𝜏a)) , 𝜓ℂ𝑘 [𝑛]⟩𝑛∝ 𝜏 ,

(5.20)

is equivalent to the difference between the coefficients, since the transform
is linear. Moreover, calculating the difference removes the symmetric
interfering signals. The motivation to use the phase-difference feature
is based upon the fact that a time delay of the target signal corresponds
to a phase shift of the respective complex-valued coefficients. For this
relation to hold, the basis function has to be analytic. A proof can be
given by applying Parseval’s theorem to the inner product (5.18). If the
target signal is a pure sinusoidal signal with circular frequency 𝜔0, taking
the time-delay difference leads to the phase-shifted coefficients⟨𝑠t[𝑛 ± 𝑓𝑠𝜏/2] , 𝜓ℂ𝑘 [𝑛]⟩𝑛 ≈ e±j𝜔0𝜏/2⟨𝑠t[𝑛] , 𝜓ℂ𝑘 [𝑛]⟩𝑛 . (5.21)

It is easy to see that the two coefficients are out of phase with each
other by exactly 𝜔0𝜏. The difference of the phases is consequently linear
with respect to the time delay 𝜏. However, it must be noted that, firstly,
the target signals are only approximately pure sinusoidal signals and,
secondly, the interfering signals have not been taken into account here,
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Figure 5.5 Dependency of the two proposed feature types with respect to the time delays𝜏𝑚 of the different measurements. The curves are created by plotting the features (5.19a)
and (5.19b) for the subspace with the highest energy over the time delays for data set
Dsim,2. Each point represents one measurement contained in the data set.

which leads to a distortion of both the slope of the linear relationship
and the linearity itself when working with real measurement data.

A visual example of the relationship between the features and the time
delay is shown in Figure 5.5. Here, the absolute- and phase-difference
features of the subspace with the largest energy are shown for the simu-
lated signals from the data set Dsim,2. Due to the varying temperature,
the absolute time delay 𝜏a also varies, which influences the slope of the
straight lines through the varying amplitude of the signals within the
time window spanned by the corresponding basis function. Nevertheless,
the graphs are in good agreement with the desired linear relationship
between the time delay and the features. Furthermore, the linearity can
be improved by restricting the temperature variation within the measure-
ment package, which is used for training. It must be taken into account
that the regression may then only provide good estimates in the process
conditions range in which it was trained. A quantitative study on the
generalizability will be given in Section 6.6.5.

Finally, the absolute and phase-difference features for every subspace
are concatenated into a single feature vector𝝃 = [𝝃𝛿𝝃𝜙] ∈ ℝ2𝐾 (5.22)

to enable further analysis in a vector-matrix notation.
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5.4 Feature selection
According to Section 5.3, the number of features is two times the number
of samples in the input signal since the basis transforms of the reference
and delay signals yield 𝐾 = 𝑁 coefficients 𝑐r[𝑘], 𝑐d[𝑘], respectively. Using
all features would not result in a stable regression that generalizes well.
Furthermore, due to the sparsity of the signals in the AWPT basis, many
coefficients are nearly zero, which in turn means that the corresponding
features contain little information. Therefore, a feature selection has
to be performed before the remaining features are further processed
by the regression. This section describes in the first subsection several
SotA methods for feature selection, which are implemented and will be
tested in the algorithm for the TDE problem. In addition, a new iterative
selection method is proposed—this method is characterized by the fact
that multiple quality criteria for the features can be combined in an easy
manner.

Firstly, a few preparatory definitions are introduced:

Since one feature vector results from one of 𝑀 measurements, the
feature vectors from multiple measurements, indexed by 𝑚, can
be grouped into the feature matrix𝚵 = [𝝃1, … , 𝝃𝑚, … , 𝝃𝑀] = (𝜉𝑘𝑚) ∈ ℝ2𝐾×𝑀 . (5.23)

A feature selection is fully described by the set M containing the
discrete indices 𝑘 that have to be chosen from the feature vector.
Consequently, the cardinality |M| determines the number of se-
lected features 𝐾s .

In vector-matrix notation, the selection mask 𝐌 ∈ {0, 1}𝐾s×2𝐾
yields the selected features from the feature matrix by the multi-
plication𝚵s(𝐾s, 𝑀) = 𝐌(𝐾s, 2𝐾) ⋅ 𝚵(2𝐾, 𝑀) . (5.24)

To this end, the selection mask is constructed from M by concate-
nating 𝐾s = |M| rows, where each row consists of a unit vector𝐞T𝑘 ∈ {0, 1}1×𝐾 with exactly one 1 at the 𝑘-th position. This also
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ensures that there is no more than one 1 per column to avoid a mul-
tiple selection of the same features. The resulting feature matrix𝚵s contains the remaining features after the selection.

A selection is usually performed by specifying a threshold 𝛾 or by
taking the best 𝐾s features. For a more compact representation
of the latter, Top𝐾s(Ω) ⊂ Ω defines the operation, that selects the
highest 𝐾s values from a set Ω where each element Ω𝑖 ∈ Ω is a
real number.

Since there are two types of features for the same subspace 𝑘, it
can be distinguished whether to select each feature individually
independent of the subspace or to specify subspace-specifically
whether to select both or neither of the features of a subspace.
Therefore, two selection constraints are considered in the following:
Firstly, if the features are selected independently from the subspace,
this is referred to as individual feature selection (IFS). Secondly, if
only the subspaces and consequently both features of the respective
subspaces are selected, this is referred to as subspace selection (SS).
The number of selected subspaces is half the number of the selected
features when using the SS approach.

5.4.1 State-of-the-art feature selection methods
Feature selection methods can be divided into three categories: filter
methods, wrapper methods, and embedded methods [39]. In this thesis,
representatives of all three types are presented and implemented to
test their performance in feature-based regression of time delays. An
overview of the evaluated methods with the corresponding references is
given in Table 5.1. A more detailed description of the individual methods
follows in the remainder of this subsection.

Without modifications, the presented SotA feature selection methods
perform the IFS. To adapt these methods to the SS, the quality measures
of both features per subspace are averaged and a new threshold or top-N
strategy is used to decide which subspaces to select. However, in addition
to the constraints imposed on the selection, the averaging approach can
lead to worse selection performances, due to the nonlinearity of some
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quality measures. Moreover, some methods can only be used with the
top-N strategy.

Filter methods

The filter methods are characterized by the fact that each feature is evalu-
ated individually by a quality measure. A selection can then be obtained
by setting a threshold 𝛾 or by taking the features with the 𝐾s highest
quality measures. In this context, the threshold or the number of features
to select is a hyperparameter of the selection method. Since the subse-
quently used regression model is not taken into account in the evaluation,
the computational effort is generally lower than for wrapper and embed-
ded methods. In this thesis, four filter methods are investigated for their
applicability to feature-based regression of time-delay differences: the
Pearson correlation coefficient (PCC), the F-test, the Laplacian score, and
the RReliefF algorithm. Except for the Laplacian score, all these meth-
ods are supervised, i.e., the labels 𝜏𝑚 of the training set are used in the
selection algorithm.

The PCC—more precisely, the sample PCC—is the covariance between
two variables normalized by their multiplied standard deviations. In
other words, it is a measure of correlation between two quantities. There-
fore, the PCC [98]𝑟𝜉𝜏[𝑘] = 𝑀∑𝑚=1 (𝜉𝑘𝑚 − 𝜉𝑘)(𝜏𝑚 − 𝜏)�̃�𝑚{𝜉𝑘𝑚} ⋅ �̃�𝑚{𝜏𝑚} (5.25)

Table 5.1 Overview of the used feature selection methods.

Filter methods Wrapper methods Embedded methods

Pearson correlation
coefficient (PCC) [98]
F-test [94]
Laplacian Score [44]
RReliefF [97]

Wrapper with
linear regression
[62]

Gaussian process
regression (GPR) [96]
Least absolute shrink-
age and selection opera-
tor (LASSO) [119]
Neighborhood compo-
nent analysis (NCA) [2]
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is well suited to be a quality measure that ranks the importance of the
features. In (5.25), the operator �̃�𝑚{⋅} denotes the sample standard de-
viation with regard to 𝑚 and 𝜉𝑘, 𝜏 denote the average feature and time
delay over all 𝑀 measurements, respectively.

Another similar measure is given by the 𝐹-test, where a test statistic,
which follows an 𝐹-distribution, is set up for each individual feature. In
this selection method, a large 𝐹-value of the test statistic represents an
important feature. According to Pirbazari et al. [94] the 𝐹-value for each
feature,𝐽F[𝑘] = 𝑟2𝜉𝜏[𝑘]1 − 𝑟2𝜉𝜏[𝑘] ⋅ (𝑀 − 2) , (5.26)

can be calculated based on its respective PCC 𝑟𝜉𝜏[𝑘] and the number of
samples 𝑀. If desired, the 𝑝-value can be derived from the cumulative
distribution function of the 𝐹-distribution at 𝐽F[𝑘].

The only unsupervised method in the selection methods under inves-
tigation, the Laplacian score, is based on a k-nearest neighbors (k-NN)
similarity graph. Basically, for each feature vector, the k-NN feature vec-
tors in terms of the Euclidean distance are determined. Subsequently,
the pairwise Euclidean distances ∥𝝃𝑖 − 𝝃𝑗∥22 are inserted into a Gaussian
kernel function to create the similarity matrix 𝐒 = (𝑠𝑖𝑗) ∈ ℝ𝑀×𝑀, with𝑠𝑖𝑗 = exp(− ∥𝝃𝑖 − 𝝃𝑗∥22). The entries in the similarity matrix that corre-
spond to unconnected nodes are set to zero. Finally, given the similarity
matrix, the Laplacian scores are defined as

𝐽L[𝑘] = 1 − ∑𝑀𝑖=1 ∑𝑀𝑗=1 𝑠𝑖𝑗 ̃𝜉𝑘𝑖 ̃𝜉𝑘𝑗∑𝑀𝑚=1 𝐞T𝑚𝐒 𝟏𝑀1 ⋅ ̃𝜉2𝑘𝑚 , (5.27)

with the centered features ̃𝜉𝑘𝑚. It has to be noted that a weighted arith-
metic mean is used to center the features, where the weights are the row
sums of the similarity matrix. A detailed description of Laplacian scores
can be found in the paper by He et al. [44].

The last filter method, the RReliefF (regressional ReliefF) algorithm
proposed by Robnik-Šikonja and Kononenko [97], is an extension of the
original Relief algorithm to regression problems. It is based on rewarding
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features whose values differ when the labels are different and punishing
features whose values differ when the labels are similar. For each feature,
the following steps are performed to get the quality measure. Firstly, a
random observation is selected, and the k-NN in terms of the Euclidean
distances of the feature vectors are determined. Secondly, the rewards and
penalties of these k-NN are calculated and weighted by their respective
Euclidean distance to update the quality measure. Lastly, these steps are
repeated for further observations resulting in the final quality measure
for each feature. More details about the algorithm can be found in the
publication of Robnik-Šikonja and Kononenko [97].

By specifying the constraints of the selection—IFS or SS—and a thresh-
old value 𝛾 or the number of features to select 𝐾s , the selection mask M

and its matrix counterpart 𝐌 are obtained. In the case of SS, the selection
matrix has a block diagonal matrix shape, i.e., the second half of the lower
rows with the row indices 𝐾s/2 + 1 … 𝐾s is identical to the first half of
the upper rows with the indices 1 … 𝐾s . This is due to the concatenation
of the features to a total feature vector.

Wrapper methods

Contrary to the filter methods, where the features are evaluated indi-
vidually without considering the regression model, wrapper methods
iteratively select subsets of the features and train the regression model.
Consequently, the subset of features resulting in the least regression error
is returned as optimal feature selection. However, since the amount of
all subsets is the same as the cardinality of the power set, evaluating
all subsets would require too much computational effort. Therefore, a
greedy approach is usually used, where the features either are added or
removed incrementally or a combination of both. In the literature, these
approaches are called forward selection, backward elimination or step-wise
selection [62]. Due to the greedy nature, the selection in each step is al-
ways only locally optimal and the final selection does not represent the
globally best solution. Furthermore, the chances of overfitting are high.

As an example, the forward selection applied in this thesis is briefly de-
scribed here. The algorithm starts with an empty set of selected features.
Subsequently, for each feature, a simple regression model with only one
independent variable is trained. The feature with the best regression
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performance in terms of MSE or other performance criteria such as 𝑅2
is added to the selected feature subset. These steps are repeated, where
the trained regression model has an incrementally increasing number of
independent variables, until a preset number of features is selected. Even
if the number of regression models to be trained is greatly reduced in this
way compared to the evaluation of all possible subsets, the computational
effort is usually still significantly greater than with filter methods, espe-
cially when a large number of features is to be selected. Due to the linear
relationship of the features with the response variable (the time-delay
difference), the linear regression model is chosen for the implementation
of the sequential forward selection.

Since the selection procedure is iterative and differs from the quality-
measure-based filter methods, the SS cannot be obtained by averaging
the quality measures. Therefore, the wrapper method is performed sepa-
rately for both feature types and then, via a union and intersection of both
selection sets, a subspace ranking is generated from which the subspaces
are then selected via the top-N strategy. Threshold-based selection is not
possible by means of wrapper methods.

Embedded methods

The last group of selection methods, the embedded methods, perform
the regression training with a built-in feature selection method. From a
computational point of view, they rank between the filter and wrapper
methods. Again, the regression model is taken into account jointly with
the feature selection, but it is also possible to specify a model for the
feature selection and then discard it and use a different model for the
actual regression. The three different examined embedded methods are
the LASSO, the neighborhood component analysis (NCA), which was
adapted to regressions, and the Gaussian process regression (GPR).

Generally, the regression model parameters are penalized if they get
too large. This restricts the regression model so that it is less prone to
overfitting. A simple approach is the combination of a linear LS regression
with a regularization leading to the objective of LASSO [119]{ ̂𝐚, ̂𝑜} = arg min𝑜,𝐚 ( 1𝑀 𝑀∑𝑚=1 (𝜏𝑚 − 𝑜 − 𝝃T𝑚𝐚)2 + 𝜆L ‖𝐚‖1) , (5.28)
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where the Lagrange multiplier 𝜆L ensures that ‖𝐚‖1 ≤ 𝛾 for some thresh-
old 𝛾. Higher Lagrange multipliers reduce the threshold resulting from
the optimization, and can, therefore, be used to adjust the method to
select fewer features, since more parameters 𝑎𝑘 are close to or directly at
zero. An optimal Lagrange multiplier can be found by cross-validation,
but to allow the number of selected features 𝐾s to be given as a hyper-
parameter, the highest possible Lagrange multiplier is chosen such that
the number of non-zero parameters is still greater than the specified
number of features to select 𝐾s . Because the magnitude of the model
parameters 𝑎𝑘 is dependent on the data set and the Lagrange multiplier,
the LASSO-based feature selection can only be made via a top-N strategy.
Furthermore, the SS-based feature selection is obtained by averaging the
two normalized parameter sets that result when the LASSO is performed
once each for the absolute and the phase features.

The second embedded method is the NCA. Originally, it was proposed
by Goldberger et al. [40] and applied as a feature selection method for
classification by Yang et al. [135]. To make the NCA applicable to re-
gression, the extension presented by Amankwaa-Kyeremeh et al. [2] is
used in this thesis. The NCA is a non-parametric algorithm that aims
at minimizing the average leave-one-out performance by learning the
feature weights 𝑎𝑘, i.e., the average quality, if the label of a feature vector
is predicted by consensus of its k-NN, is maximized. Due to the length of
the derivation and since the approach is not the focus of this work, only
the objective function is stated here. The NCA finds the feature weights
by the optimization [135]̂𝐚 = arg min𝐚∈ℝ2𝐾 1𝑀 𝑀∑𝑚=1

𝑀∑𝑗=1 (𝑝𝑚𝑗(𝐚) ⋅ (𝜏𝑚 − 𝜏𝑗)2) + 𝜆L ‖𝐚‖1 , (5.29)

where 𝑝𝑚𝑗(𝐚) is the probability that the feature vector 𝝃𝑗 is chosen as
the reference point for the label prediction of the feature vector 𝝃𝑚. For𝑚 ≠ 𝑗, it is calculated by

𝑝𝑚𝑗(𝐚) = exp (−𝜎−1 ∑2𝐾𝑘=1 𝑎2𝑘|𝜉𝑘𝑚 − 𝜉𝑘𝑗|)∑𝑀𝑗=1,𝑗≠𝑚 exp (−𝜎−1 ∑2𝐾𝑘=1 𝑎2𝑘|𝜉𝑘𝑚 − 𝜉𝑘𝑗|) . (5.30)
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The weights ̂𝐚 resulting from the optimization (5.29) represent the quality
measures and can again be used to select the features by thresholding
or by the top-N strategy. The SS-based selection is implemented in the
same way as for the LASSO method.

Finally, the last embedded method used is the GPR. In order to fit the
Gaussian process to the training feature vectors and the corresponding
labels, three practical assumptions are made: stationarity of the variance,
the zero expectation value for all features, and a squared exponential
covariance function with feature-specific variances as kernel [96]. The
learned length scales of the automatic relevance detection kernel are
used as quality measures of the respective features.

5.4.2 Iterative subspace selection
In this section, a novel iterative method for SS-based feature selection is
presented, which is motivated by the fact that the information content in
a subspace affects both feature types. The new method—in the following
called the iterative subspace selection (ISS)—combines several problem-
adapted quality measures in an iterative manner. The presented method
uses only unsupervised quality measures and, thus, allows for a feature
selection without ground-truth labels.

Firstly, the quality measures are presented. Due to the design of linear
features and the transform into a basis where the signals are sparse, three
objectives stand out: a good SNR, as linear as possible features without
distortions, and high sensitivity. Therefore, the three quality measures

𝐽𝑖[𝑘] = ⎧{{{⎨{{{⎩
∑𝑀𝑚=1 (𝜉𝜙[𝑘,𝑚]−𝜉𝜙[𝑘])(𝜉𝛿[𝑘,𝑚]−𝜉𝛿[𝑘])�̃�𝑚{𝜉𝜙[𝑘,𝑚]}⋅�̃�𝑚{𝜉𝛿[𝑘,𝑚]} 𝑖 = 1 ,1𝑀 ∑𝑀𝑚=1 𝜉a[𝑘, 𝑚] 𝑖 = 2 ,�̃�2𝑚 {𝜉𝜙[𝑘, 𝑚]} 𝑖 = 3 (5.31)

are introduced, with the features averaged over the measurements 𝜉𝜙[𝑘],𝜉𝛿[𝑘] and the sample variance �̃�2𝑚{⋅}. Note that even though the mean
absolute coefficients 𝜉a[𝑘, 𝑚] (see (5.19c)) are not used as features for
regression, they can be well used here to select subspaces with high SNR.
In order to keep the indices of the features short, the feature iteration
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indices are denoted in brackets and not in matrix notation. The first qual-
ity measure 𝐽1[𝑘] is the PCC between the absolute and phase-difference
features 𝝃𝛿 and 𝝃𝜙, where the measurements denoted by the index 𝑚 are
considered the observations. Due to the missing labels in unsupervised
approaches, the linearity between the features and the labels cannot be
assessed directly by calculating the PCC between the features and the la-
bels. However, the distortions that can occur in the features, if interfering
signals are present, differ in nature for the absolute and phase-difference
feature types, since the absolute value follows a root function and the
phase follows an arctangent. Due to the suppression of interfering sig-
nals in the absolute-difference features and their linear correlation with
the labels, it is assumed that a strong linearity between 𝝃𝛿 and 𝝃𝜙 also
indicates a good corresponding subspace. The evaluations of the ISS
later in Section 6.6.2 will show the usability of this approach. The second
quality measure 𝐽2[𝑘] represents the average absolute coefficient values
of a subspace over all measurement signals. Due to the orthogonality of
the AWPT, the absolute value of a coefficient can be interpreted as the
root of the signal energy in the corresponding subspace. Therefore, this
quality measure is ideal to assess the SNR, since the noise is considered
to be uniformly distributed over all subspaces due to the assumption
as AWGN. Lastly, the third quality measure 𝐽3[𝑘] is the variance of the
phase-difference signal. This measure has been chosen because the phase
of the coefficients is independent of the signal energy and a high value
indicates a high sensitivity of the subspace to the measurement effect.
However, the variance of the phase-difference features is very high in sub-
spaces with low SNR. This and the strong sensitivity to signal distortions
make this quality measure the least robust.

Figure 5.6 shows an example of the three quality measures resulting
from the measurement data set used in Section 3.3.1 for the identification
of the measurement system. In order to visually improve the quality
maps, they are displayed in logarithmic scale. Furthermore, the sub-
spaces are ordered according to their time-frequency representation.
From this example, several conclusions can be drawn, which emphasize
the presumed properties.

Firstly, the inter-feature PCC (Fig. 5.6 on the left) has a hard edge, be-
ginning exactly at the absolute time delay 𝜏a at which the target signals
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Figure 5.6 Normalized quality maps for time-frequency coefficients (in logarithmic scale).
Left: PCC between phase-shift feature and absolute-difference feature. Middle: averaged
absolute coefficient values. Right: variance of the phase-shift feature.

of the direct propagation path are expected. In the time-frequency repre-
sentation, another hard edge can be observed at about 12 MHz, which is
caused by the constant 𝜖 in the phase-difference calculation (5.19b). This
can be explained by the fact, that above 12 MHz the coefficient values in
the subspaces are lower than the constant, which means that no correla-
tion can be measured anymore and the PCC tends to zero. However, apart
from this, a distinction between the quality of the subspaces contained
within this boundary is hardly possible. The remaining speckle noise
is a display effect resulting from the use of the logarithmic scale. The
absolute values (Fig. 5.6 in the middle) indicate multiple higher-order
harmonics, resulting from the frequency responses of the basis functions.
Additionally, at about 30 µs—the time delay of the interfering signals
due to the Lamb waves—an increase of the coefficient energy can be
observed. Lastly, the variance of the phase-difference feature (see Fig. 5.6
on the right) shows good agreement with the variance becoming high
exactly when a target signal is present, e.g., between 60 µs and 80 µs, or
when only noise is present, e.g., in the time range 0 − 30 µs.

In order to combine the advantages of the different quality measures
and solve the robustness problem of the variance measure �̃�2𝑚{𝜉𝜙[𝑘, 𝑚]},
the ISS is proposed. Compared to a weighted mean, the iterative approach
allows more flexibility such as combining the top-N strategy with a
thresholding. Moreover, the approach is generally easier to parameterize.
As the name implies, the quality measures are used iteratively to select a
subset M(𝑖) of the 𝐾 subspaces in each iteration step, which then gets
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further reduced in the next iteration. In total, there are three iteration
steps specified by the rule

M(1) = {𝑘 ∈ ℕ | 1 ≤ 𝑘 ≤ 𝐾} , (5.32a)

M(2) = {𝑘 ∈ M(1) | 𝐽1[𝑘] > 𝛾1} , (5.32b)

M(3) = {𝑘 ∈ M(2) | 𝐽2[𝑘] > 𝛾2} , (5.32c)

M(4) = {𝑘 ∈ M(3) | 𝐽3[𝑘] ∈ Top𝐾s({𝐽3[𝑘]}𝑘∈M(3))} . (5.32d)

The first selection is based on the most robust but least discriminating
quality measure, the inter-feature PCC. The necessary threshold param-
eter 𝛾1 for this can be calculated by sorting the quality measures and
taking the point of the strongest curvature—the same approach as for the
automatic threshold estimation in Section 4.4. After this step, all signal
subspaces containing only interfering signals are removed. The next se-
lection step aims to separate the subspaces with low SNR. To this end, the
VISU shrink threshold for denoising proposed by Donoho and Johnstone
[27] is applied to identify all subspaces that are considered as noise. The
AWGN standard deviation is estimated by the median absolute devi-
ation of a measurement signal with only noise contained. In practice,
this can be realized either by recording a signal without excitation or by
observing subspaces known to contain only noise, such as the beginning
of the measurement signals. Finally, the last step sorts the remaining
subspaces and takes the top 𝐾s subspaces. Since subspaces with only
noise or interfering signals are already removed, the robustness problem
of this quality measure is mitigated. It is assumed that any remaining
interfering signal components in the subspaces are reduced due to the
feature design or can cancel out by using multiple subspaces. Neverthe-
less, this is largely dependent on the number of features 𝐾s to select,
which is at the same time the hyperparameter to choose most carefully.

A visual example of the iterative selection process is given in Fig. 5.7. A
reduction from the initial 7500 subspaces—determined by the 7500 dis-
crete time samples—to the final 50 subspaces is shown from left to right.
The negative PCC values of the first quality measure are a numeric effect
and can be considered physically illogical. They are therefore removed by
the threshold value 𝛾1, which has been found by the automatic algorithm
here to be approximately 0.95. The final time-frequency mask shows
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Figure 5.7 Iterative selection of coefficients. From left to right: linearity between features,
absolute value of coefficients, variance of phase-shift feature. Top row: quality maps. Middle
row: sorted and squeezed quality map. Bottom row: resulting mask after selection step.

are good agreement with the measurement signal composition, since
the commonly selected frequency is near to the excitation frequency
(700 kHz) and three accumulation points can be observed in the time
axis, which can be well explained by the three propagation paths of the
ultrasonic signals.

Since only subspaces are selected by the ISS, a post-processing is neces-
sary to get the selection mask 𝐌. The final selection mask M(4) resulting
from the ISS may be denoted in matrix notation as follows:�̃� = [𝐞1, … , 𝐞𝐾s/2]T ∈ {0, 1} 𝐾s2 ×𝐾 . (5.33)
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5.5 Robust time-delay difference estimation

Because the ISS selects from 𝐾 subspaces and the total number of selected
features 𝐾s should be consistent with the other selection approaches,
the dimensionality is (𝐾s/2, 𝐾). As already mentioned, the entire selec-
tion mask 𝐌 is obtained by taking both feature types for the selected
subspaces resulting in𝐌 = [�̃� 𝟎𝟎 �̃�] ∈ {0, 1}𝐾s×2𝐾 . (5.34)

5.5 Robust time-delay difference estimation
The last component of the FRM is the regression model. As the features
are designed to be linear with respect to the time-delay differences, linear
regression models are chosen. Here, the features selected with the proce-
dures described in the previous section represent the input variables. In
addition, just as with the selection procedures, another alternative model,
the GPR, is introduced. Subsequently, different training strategies to de-
termine the parameters of the regression models are derived. Finally, an
optimization-based approach is introduced to obtain the corresponding
labels in order to use the FRM in an unsupervised fashion.

5.5.1 Regression model
In regression problems, a high-dimensional input vector, which is also
known as independent variables or predictors, has to be mapped to the
labels such that the estimation error is minimal. In the present problem,
the input vector corresponds to the feature vector and the labels are the
time-delay differences. Let the feature vector 𝝃s,𝑚 ∈ ℝ𝐾s be the vector
that results from the feature selection of the 𝑚-th measurement. Then
the three regression modelŝ𝜏𝑚 = 𝝃Ts,𝑚𝐚 + 𝑜 , (5.35a)̂𝜏𝑚 = 𝝃Ts,𝑚𝐚 , (5.35b)̂𝜏𝑚 = GPR{𝝃s,𝑚; 𝚵s, 𝝉} (5.35c)

allow an estimation of the time-delay difference 𝜏𝑚 of the 𝑚-th measure-
ment. While the former two models are both linear—the only difference
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being the offset—the latter is a more complex model that can be best
described as using the expectation value of a multivariate Gaussian
distribution for the estimation. The Gaussian distribution is thereby de-
termined by the given feature matrix 𝚵s and the labels 𝝉 of the training
data set.

Physically, the model (5.35b) makes the most sense, since the features
are designed to be zero for 𝜏 = 0. However, this is only valid in the case
without noise. Especially, the absolute-difference feature 𝜉𝛿 shows that
even if the target signals and the interfering signals are suppressed due
to the difference operation, the feature still contains the signal energies
of the noise signals 𝑛r(𝑡), 𝑛d(𝑡) projected onto the respective subspace.
Even though only subspaces with a high SNR should be selected, they
still contain noise because the noise signals are distributed uniformly
across all subspaces. Therefore, adding an offset may improve the over-
all performance across the entire range of possible time-delay differ-
ences. Nevertheless, the linear models are based on the assumption of
linearly correlated features, which in turn depend on the assumption that𝜏 ≪ 1/𝑓0 and on the neglect of noise. In summary, the linear models may
be too restrictive and are expected to perform better in the center of the
time delay range covered by the training data than near the boundaries,
but at the same time due to the restrictive model the risk of overfitting of
the regression is reduced to a minimum.

Since the linear models may be too restrictive, the GPR is also investi-
gated and compared to the linear models. It has more degrees of freedom
and also allows for an embedded feature importance ranking—called
the automatic relevance detection—if the different features are weighted
differently in the kernel function. However, training a GPR requires much
more computational effort, which is why the model is combined with a
preceding feature selection.
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5.5 Robust time-delay difference estimation

5.5.2 Training strategies
The parameters of the used regression models have to be estimated
during training. For the linear models, three parameterization methods
are proposed, all based on a variant of𝝉(𝑀,1) = 𝚵Ts(𝑀,𝐾s) ⋅ 𝐚(𝐾s,1) + 𝑜 ⋅ 𝟏𝑀1(𝑀,1) + 𝐧(𝑀,1) . (5.36)

The first approach is to simply solve (5.36) globally via the LS estimator[𝐚𝑜] = [ 𝚵s𝚵Ts 𝚵s𝟏𝑀1𝟏T𝑀1𝚵Ts 𝑀 ]−1 [ 𝚵s𝟏T𝑀1] ⋅ 𝝉 . (5.37)

It follows, of course, that this method of parameter estimation has the
lowest mean squared deviations on the training data set. In the second ap-
proach, the auxiliary variables ̃𝑎𝑘 and ̃𝑜𝑘 are introduced, which represent
the slopes and the offsets if each feature is considered individually. Sub-
sequently, the individual features 𝜉s,𝑘𝑚 are mapped onto the time-delay
differences domain by�̃� = ( ̃𝜏𝑘𝑚)𝑘=1…𝐾s,𝑚=1…𝑀 , with ̃𝜏𝑘𝑚 = ̃𝑎𝑘 ⋅ 𝜉s,𝑘𝑚 + ̃𝑜𝑘 . (5.38)

Finally, the individual slopes ̃𝑎𝑘 and offsets ̃𝑜𝑘 are weighted to get the
final model parameters𝐚 = 𝐰 ⊙ ̃𝐚 , (5.39a)𝑜 = 𝐰T �̃� , (5.39b)

using the Hadamard product ⊙ and the weight vector 𝐰 = 𝐯1/ ‖𝐯1‖1,
with 𝐯1 ∈ ℝ𝐾s being the first eigenvector of the eigenvalue decompo-
sition of the covariance matrix cov(�̃�) = 𝐕𝚲𝐕T. This is motivated by
the fact that the PCA finds the direction in which the most variance of
the data can be observed. Therefore, less important features are automat-
ically given a lower weighting factor. The last open question is how to
find the individual slopes and offsets. One approach is once again the
LS estimation, when only the observations of a single feature, denoted
by the feature row vector 𝝃Ts,𝑘 ∈ ℝ1×𝑀, are considered. This leads to 𝐾s
separate LS estimations[ ̃𝑎𝑘̃𝑜𝑘] = [𝝃Ts,𝑘𝝃s,𝑘 𝝃Ts,𝑘𝟏𝑀1𝟏T𝑀1𝝃s,𝑘 𝑀 ]−1 [𝝃Ts,𝑘𝟏T𝑀1] ⋅ 𝝉 . (5.40)
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Alternatively, the slopes and the offsets can be estimated using the
median-based approach̃𝑎𝑘 = median𝑚 ⎧{⎨{⎩ 𝜏𝑚 − 𝜏𝜉s,𝑘𝑚 − 𝜉s[𝑘]⎫}⎬}⎭ , (5.41a)̃𝑜𝑘 = 𝜏 − ̃𝑎𝑘 ⋅ 𝜉s,𝑘 , (5.41b)

which is more robust to outliers than the LS-based estimation. In (5.41),
the average of the time-delay differences and the features over the mea-
surements are denoted by 𝜏 and 𝜉s,𝑘, respectively. Both the median- and
the LS-based estimation of the slopes ̃𝑎𝑘 can also be adapted to the
more restricted model without offset (5.35b). To do this, simply remove
from equation (5.40) the columns and rows containing the all-one matrix𝟏𝑀1 and from (5.41) the average values 𝜏, 𝜉s,𝑘. In the following, these
weighted regression training strategies are abbreviated as the weighted
least squares (WLS) regression and the weighted median (WM) regres-
sion.

Compared to the linear models, the GPR model (5.35c) is harder to
train. The parameters that have to be estimated are the kernel function
and the noise variance. As fitting a Gaussian process to training data is
not the focus of this thesis, only a short description of the assumptions
and the optimization are given here. For a more detailed explanation, see
the work of Rasmussen and Williams [96]. Firstly, no prior is given, i.e.,
the expectation values of the weights in the Bayesian linear regression
model are set to zero and the variance is assumed to be stationary—this is
also known as simple kriging. Secondly, the squared exponential kernel
is used as the covariance kernel function. Based on these assumptions,
the log marginal likelihood is minimized using a quasi-Newton method
with the Symmetric Rank 1 method to approximate the Hessian matrix.
Cross-validation is not used as the training takes several hours for only
one run.

5.5.3 Unsupervised time delay estimation
In practical applications, the requirement of having a training data set
with corresponding labels is a hard constraint that severely limits the
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applicability of the previously discussed methods. However, there is no
known method to train a regression model without access to the labels
of the training data set. Therefore, another approach for the TDE, which
is based on the optimization of an extended AMDF, is presented. The
aim is to estimate the time-delay differences solely from the selected
feature matrix 𝚵s, which is why, in principle, this approach could be
used without the FRM. Nevertheless, the approach presented in the
following is only used to generate the labels to the training data set,
which are subsequently used for the training of the regression models.
There are two main reasons for this. First, solving the optimization prob-
lem package-wise limits the dynamics of the measurement system in
an online—also called real-time—application and requires much more
computational effort than the simpler linear regression. Second, while,
through the regression-based method, the TDE can be performed on
a single measurement consisting of a delay and reference signal, the
optimization approach only allows the estimation of multiple time-delay
differences for an entire measurement package.

In the following, the objective function to minimize is derived. The
idea is to get an estimate of the target signals from both the reference
and the delay signals̃𝑠dt (𝑛𝑡s) = 𝑠d(𝑛𝑡s + ̃𝜏𝑚/2; 𝑚) − ̃𝑠i(𝑛𝑡s + ̃𝜏𝑚/2) , (5.42a)̃𝑠rt(𝑛𝑡s) = 𝑠r(𝑛𝑡s − ̃𝜏𝑚/2; 𝑚) − ̃𝑠i(𝑛𝑡s − ̃𝜏𝑚/2) , (5.42b)

which are obtained by removing the estimated interfering signals ̃𝑠i(𝑛𝑡s)
followed by a time shift with the estimated time-delay difference ̃𝜏𝑚.
As these two estimated target signals should be identical, if the interfer-
ing signals and the time-delay differences are estimated correctly, the
objective function to minimize can be set to𝐽 ( ̃𝜏𝑚, ̃𝑠i(𝑛𝑡s)) = 𝑁−1∑𝑛=0 | ̃𝑠dt (𝑛𝑡s) − ̃𝑠rt(𝑛𝑡s)| , (5.43)

which can be interpreted as the time-discrete AMDF with the input sig-
nals freed from interfering signals beforehand (cf. (2.9)). However, using
the objective (5.43) has several drawbacks. As the signal model (3.25)
has already shown, the time-delay difference differs for different time
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ranges, i.e., the model is not globally valid. Furthermore, the frequency
characteristics of the target signals are not taken into account and the
optimization is too high-dimensional to converge due to each interfering
signals sample ̃𝑠i[𝑛] being a parameter to optimize. These drawbacks are
alleviated by the adaption that the objective is solved in the subspace
spanned by the best basis function 𝜓ℂ𝑘 [𝑛]. Thus the objective function is
reformulated as𝐽( ̃𝜏𝑚, ̃𝑠i[𝑛]) = ∣𝑁−1∑𝑛=0 ̃𝑠dt [𝑛]𝜓ℂ𝑘 [𝑛] − ̃𝑠rt[𝑛]𝜓ℂ𝑘 [𝑛]∣= ∣⟨ ̃𝑠dt [𝑛] , 𝜓ℂ𝑘 [𝑛]⟩𝑛 − ⟨ ̃𝑠rt[𝑛] , 𝜓ℂ𝑘 [𝑛]⟩𝑛∣ . (5.44)

Similar to before, the inner products of the basis function with the input
signals represent the AWPT coefficients 𝑐d[𝑘], 𝑐r[𝑘] of the respective
subspace. Since the basis function has compact support in the time-
frequency range, only the frequency and time range of the target signals
are considered by the objective function (5.44). Moreover, due to the
orthogonality of the AWPT, only interfering signals of the form̃𝑠i[𝑛] = ̃𝑐iRe𝜓Re𝑘 [𝑛] + ̃𝑐iIm𝜓Im𝑘 [𝑛] (5.45)

result in non-zero coefficients if the problem is projected onto the sub-
space. This reduces the degrees of freedom of the interfering signals to
two. In order to estimate the time shift 𝜏𝑚 with subsample precision,
the inner products are evaluated via Parseval’s theorem in the Fourier
domain. Inserting (5.42) and (5.45) into the objective function (5.44) and
transforming the result into the Fourier domain leads to𝐽( ̃𝜏𝑚, ̃𝑐iRe, ̃𝑐iIm) =∣ ⟨𝑆d[𝑛𝑘; 𝑚] , Ψℂ𝑘 [𝑛𝑘] e−j𝜋 𝑛𝑘𝑁𝑡s ̃𝜏𝑚⟩𝑛𝑘− ⟨𝑆r[𝑛𝑘; 𝑚] , Ψℂ𝑘 [𝑛𝑘] ej𝜋 𝑛𝑘𝑁𝑡s ̃𝜏𝑚⟩𝑛𝑘− ̃𝑐iRe𝑘Re( ̃𝜏𝑚) − ̃𝑐iIm𝑘Im( ̃𝜏𝑚)∣ ,

(5.46)
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with the time-shift-dependent factors𝑘Re( ̃𝜏𝑚) = ⟨ΨRe𝑘 [𝑛𝑘] , −2j Ψℂ𝑘 [𝑛𝑘] sin(𝜋 𝑛𝑘𝑁𝑡s ̃𝜏𝑚)⟩𝑛𝑘 , (5.47a)𝑘Im( ̃𝜏𝑚) = ⟨ΨIm𝑘 [𝑛𝑘] , −2j Ψℂ𝑘 [𝑛𝑘] sin(𝜋 𝑛𝑘𝑁𝑡s ̃𝜏𝑚)⟩𝑛𝑘 . (5.47b)

In these equations, capital letters represent the DFT of the respective
signals. A closer look at the objective function shows that three unknown
variables have to be solved while only one measurement is available,
rendering the problem underdetermined.

Due to this, the objective function for multiple measurements are
combined. The stationary-interfering-signals-assumption means that the
factors ̃𝑐iRe, ̃𝑐iIm are constant for different measurements—assumed that
the process conditions do not vary to a large extent. However, while the
interfering signals are constant, the time-delay difference differs from
measurement to measurement. A solution to this problem can be ob-
tained from the PCA of the part of the feature matrix 𝚵s that contains only
the absolute-difference features 𝜉𝛿 , since these features are unaffected
by interfering signals. Even though their sensitivity is dependent on the
signal amplitude in the time range of the corresponding basis function,
the first eigenvector of the PCA 𝐯1 = (𝑣𝑚)𝑚=1…𝑀 is a good approxima-
tion of the relative relationships between the time-delay differences of
different measurements.

Finally, the derivation of the objective function leads to the three-
dimensional minimization problem( ̂𝜏0, ̂𝑐iRe, ̂𝑐iIm) = arg miñ𝜏0, ̃𝑐iRe, ̃𝑐iIm

𝑀∑𝑚=1 𝐽 ( ̃𝜏0𝑣𝑚‖𝐯1‖2 , ̃𝑐iRe, ̃𝑐iIm) , (5.48)

which can be solved by the interior point algorithm. Consequently, the
labels of the entire training data set can be obtained by ̃𝜏𝑚 = ̃𝜏0 𝑣𝑚/ ‖𝐯1‖2.
These labels are then used to train the regression models with the pre-
viously presented methods. If the chosen selection method works in an
unsupervised fashion and the labels are estimated through the optimiza-
tion approach, the entire FRM is also unsupervised, rendering this class
of TDE methods directly comparable to the SDMs and the SotA TDE
methods.
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The methods presented in the chapters 4 and 5 are based exclusively
on the signal model and can be applied to a wide range of ultrasonic
systems, where the objective is to get a high-precision estimate of very
small time delays and the interfering signals are the main influence that
limit the precision. The only constraint is that the assumptions on the
stationarity of the interfering signals must hold and the target signals
must show a varying time delay, when an entire measurement package
is observed.

In order to evaluate the proposed methods on experimental data, the
following presents how the methods perform in an UFM setup. To this
end, the measurement setup with six different data sets and the eval-
uation metrics are described in the first three sections. Subsequently,
the performances of the SotA methods are evaluated and the methods
that perform best on the respective evaluation metrics will be used as
baseline for the new methods—SDM and FRM. After the novel methods
are evaluated in terms of systematic and stochastic errors for different
hyper parameter constellations, the chapter is concluded with an overall
discussion and comparison of the different methods.

6.1 Measurement setup
For the UFM system, eight ultrasonic clamp-on transducers (UT1,…,UT8)
are connected to a pipe, which was made of 4 mm stainless steel with8 cm diameter. The transducers are arranged in two circles, i.e., four
transducers per circle, with the circles being 6 cm apart in axial direction.
Four transducer pairs (TP1,…,TP4), which show a measuring effect, i.e.,Δ𝑥 ≠ 0, can be built with this configuration. In order to obtain a data set
with a physical damping of the interfering signals, another identical pipe
with the same transducer configuration but an additional damping mat

121



6 Experimental Results

Figure 6.1 Setup of the UFM system. For better illustration, in axial direction (left) the
cross-sectional view is given and in radial direction (middle) only the transducers that
build a TP are drawn, i.e., the ultrasonic transducers 3, 4, 7, 8 are not visible in the axial
cross section and the ultrasonic transducers 5, 6, 7, 8 are not visible in the radial view.

is constructed. As damping material aluminum butyl—a self-adhesive
butyl rubber with an aluminum carrier foil—is used. The transducer and
pipe setup with an overview of the dimensions is depicted in Fig. 6.1. For
better illustration, only four of the eight transducers are shown in both
the axial and radial view. Additionally, possible ultrasonic propagation
paths are included in the setup, e.g., the direct path (violet), an axial
reflection (dashed green), and a radial reflection (green). Note that the
interfering signals propagate through the pipe wall (see the dashed red
path in the radial view) and that the direct path’s radiation angle into
the medium is subjected to Snell’s law.

The pipe prepared in this way, also called measurement section, was
inserted into a circular flow with a pump to control the flow, a heating
element to control the temperature and a reference flow meter to get the
ground truth for the VoF. By installing a flow straightener in combina-
tion with a sufficient inlet length right before the measurement section,
a fully developed turbulent flow profile was achieved. This system is
filled with water or ethanol, depending on the data set to be recorded,
and any remaining air is removed as best as possible via a bubble sepa-
rator. Sometimes, especially at the beginning of the experiments, a few
remaining stuck bubbles may come loose during the experiment, which
distorts the measurement signals due to the scattering of the ultrasonic
waves. The measurements recorded during these incidents are removed
before the evaluation, which is why sometimes a few data samples are
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6.1 Measurement setup
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Figure 6.2 Typical measurement signal with highlighted signal composition.

missing. In terms of temperature, the experiments are set in such a way
that the measurements go up to about 30 °C, since the overall system can
then be considered safe, even if, for example, ethanol is used as medium.
As starting temperature, the lowest possible value is chosen, which is
dependent on the room temperature since no cooling element was in-
stalled. The exact temperature curve during the experiments depends
on the specific heat capacity of the medium, since the heating element
was not installed in closed-loop control.

The data acquisition was performed at a sampling rate of 𝑓s = 50 MHz
using a preamplifier and a PXIe-1062 station with a PXIe-5171 ADC
module and a PXI-5412 DAC module, which also controlled the pump
and the heating element. Combining all controls, the excitation, and
the recording of the ultrasonic waves into a single system allowed hav-
ing synchronized measurement readings and reduced jitter. In order
to get the ultrasonic recordings of the downstream (reference signal)
and upstream (delay signal) direction as simultaneously as possible,
and in addition, to perform measurements with multiple TPs under the
same process conditions, the excitation and recording order is as fol-
lows: UT1/UT2; UT2/UT1; UT3/UT4; UT4/UT3; UT5/UT6; UT6/UT5;
UT7/UT8; UT8/UT7. In this notation, the first transducer is operated
as sender and the second transducer as receiver, respectively. Since the
reverberation of the ultrasound in the pipe should not affect the next
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measurement, the time between two consecutive measurements is set to10 ms even though the absolute recorded time of a single measurement is
only 150 µs. An example measurement is depicted in Fig. 6.2, where the
estimated composition of the measured signal is highlighted. Note that
this highlighted composition is only manually estimated based on the
signal envelope, the geometric relationships, and the present time-delay
differences. As for all ultrasonic measurements in this thesis, the sending
transducer was electrically excited using (3.18), with the center frequency
being 700 kHz and the bandwidth being 245 kHz.

6.2 Data sets
Six different data sets were recorded to cover a wide range of scenarios.
The data sets can be classified according to whether the pump was set to
create a constant flow or a varying flow. Furthermore, data sets with two
different media—water and ethanol—are recorded, once in an undamped
pipe and once in a damped pipe. An overview of the data sets can be
found in Table 6.1. The separation of the data sets in constant and varying
VoF is important since the FRM requires a variable time-delay difference
in the training data set, which is why only data sets with varying VoF are
later used to train the FRM. The media influence on one hand the absolute
time delay 𝜏a due to their different SoSs and on the other hand the
acoustic load of the ultrasonic system, causing the level of the interfering
signals to change. The last distinguishing point of the data sets, the
damping mat, reduces the interfering signals by a certain factor but also

Table 6.1 Overview of the used data sets and their properties.

Data set ID Medium Pipe Type of VoF

D1c water undamped 𝑣 constant
D1v water undamped 𝑣 variations
D2c water damped 𝑣 constant
D2v water damped 𝑣 variations
D3c ethanol undamped 𝑣 constant
D3v ethanol undamped 𝑣 variations
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Figure 6.3 Time delay and temperature process conditions of the recorded data sets.

causes the remaining interfering signals to be no longer stationary since
the attenuation of the selected material is temperature-dependent.

Figure 6.3 shows the time-delay differences and the temperature values
during the measurements. For the constant flow data sets, the VoF was
set to 1 m s−1 and for the varying flow data sets, the three flow velocity
levels 0.3 m s−1, 0.6 m s−1, 1.2 m s−1 were repeated cyclically. Since the
experiments were terminated at about 30 °C and the different media
and pump control strategies resulted in temperature rises of different
degrees, the number of measurements in the data sets is not consistent.
Furthermore, the time-delay difference varies even in the case of constant
flow, because varying temperature leads to varying SoS and this, in turn,
affects the time-delay difference, cf. Eq. (3.26b). Especially for the medium
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ethanol (D3c, D3v), the temperature increases rapidly due to the lower
specific heat capacity, which is why the data sets for ethanol contain only
less than 1500 measurements, while the data sets for water contain more
than 2000 measurements. Also the time-delay differences of the ethanol
data set are generally larger due to the smaller SoS.

Contrary to the ethanol data sets D3c and D3v, the water data sets with
the damping mat attached to the pipe D2c and D2v do not differ in terms
of process conditions from the water data sets without damping mat.
The only difference is the level of interfering signals and the fact that the
assumption on their stationarity is not met.

The last point to mention is that for each measurement in the data sets
there are ultrasonic measurements from four independent TPs, each of
which can be considered as a realization of the stochastic process that
determines the shape of the ultrasonic signals. Here, the exact shape of
the ultrasonic signals is considered random because they are sensitive
to minute variations in material parameters, acoustic coupling, and the
geometric arrangement of the transducers. Therefore, the probability to
obtain exactly the same ultrasonic signals for two different TPs is nearly
zero, even if the same transducers are removed from the pipe once and
reattached to the pipe. However, the basic properties of the ultrasonic
signals, such as the time of arrival of the target signals or the time-delay
difference, are preserved.

Finally, the notation of the data sets is explained: each used data set
is completely defined by the notation D1c|TP1, where the symbol before
the vertical bar denotes which data set and the number after the vertical
bar denotes which TP to use. In this example, the first TP of the constant
flow water data set in the undamped pipe is meant.

6.3 Preliminaries and evaluation metrics
The performances of the proposed TDE methods are evaluated in terms
of accuracy, robustness against noise, and possible requirements for
training data sets or necessary signal dynamics. For this purpose, several
metrics are introduced to describe the performance. Furthermore, the
performances are investigated while varying the available signal dynam-
ics, training data sets, and SNR. Before the methods can be compared,
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𝜏 = 2𝑘h(𝑣, 𝑇) ⋅ 𝑣 ⋅ 𝐿 ⋅ cos(𝛼)𝑐2M(𝑇) , (6.1)

with the hydraulic correction factor [48]𝑘h(𝑣, 𝑇) = 1.125 − 0.0115 ⋅ log10 (Re(𝑣, 𝑇)) , (6.2)

which in turn depends on the Reynolds numberRe(𝑣, 𝑇) = 𝑣 ⋅ 𝐷 ⋅ 𝜌(𝑇)𝜂(𝑇) . (6.3)

The geometric sizes, such as path length 𝐿 and beam angle 𝛼 in (6.1)
are calculated by Snell’s law, the transducer placement, and the pipe
geometry. The other fluid properties —the SoS, the density 𝜌(𝑇) and the
dynamic viscosity 𝜂(𝑇)—are determined according to the NIST webbook
[67]. Note that since the Reynolds number is Re > 104 for all temperatures
and all VoFs during the experiments, the flow is always fully turbulent.

Next, the expected effects of the interfering signals on the systematic
error of the TDE and a good metric that reflects the interfering signal level,
in this thesis called ScNR, are discussed. Once again, the narrowband
assumption is used to derive the expected estimation errors. As already
shown in the introduction, the additive interfering signals lead to a phase-
dependent error of the TDE, if the narrowband assumption holds (cf.
Fig. 1.4). However, these results are only valid for large variations of the
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a few preliminary tasks have to be solved. In addition to determining
the ground truth, this also includes estimating the time ranges to be
evaluated for the time-based methods—which essentially include all
SotA methods and the SDMs—or characteristic values such as the SNR
or the CRLB.

To begin with, the ground truth is to be determined. To this end, a
reference measurement system from Endress+Hauser yields the aver-
age VoF 𝑣, which has to be converted into a time-delay difference via
reformulation of (3.4) to the time delay 𝜏. Additionally, the hydraulic
correction factor (3.8) has to be multiplied by the average VoF to get the
average velocity of the flow along the ultrasonic transmission path. In
summary, the ground truth is calculated by
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Figure 6.4 Relative estimation error depending on the absolute time-delay difference for
different ScNRs and time-delay differences.

time delay, such as for the absolute time delay in the UFM application.
When small time delays are present, such as the time-delay differences
in UFM, the effects on the systematic error of the time-delay difference
estimate can be described by calculating (1.4) once for the reference and
the delay signal and then taking the difference between the results. This
is equivalent to calculating the gradient of the curves shown in Fig. 1.4
by the secant approximation. Mathematically, the estimation error can be
expressed via the difference of the arctangent functions and simplified by
a Taylor series expansion, which is terminated after the linear member,
leading tô𝜏 − 𝜏 = ̂𝜏a (𝜏2 , 𝜏a) − ̂𝜏a (−𝜏2, 𝜏a) − 𝜏≈ 𝐶 (𝜏a, 𝜑, 𝐴t𝐴i ) ⋅ 𝜏 , (6.4)

with a phase and ScNR-dependent constant 𝐶 and the respective esti-
mated absolute time delayŝ𝜏a (𝜏, 𝜏a) = 1𝜔0 arctan ( 𝐴t sin(𝜔0(𝜏a + 𝜏)) + 𝐴i sin(𝜑)𝐴t cos(𝜔0(𝜏a + 𝜏)) + 𝐴i cos(𝜑)) . (6.5)

Figure 6.4 shows a numerical evaluation of the estimation error derived
in (6.4) for two different ScNRs, each with three different time-delay
differences. There are three insights to take from this figure. Firstly, the
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different time-delay differences lead to the same relative error, which jus-
tifies the use of the percentage error as the evaluation measure. Secondly,
the percentage error is dependent on the absolute time delay, which
is why the evaluation of a TDE method in UFM may only be done by
looking at the percentage errors over all absolute time delays covering
one period 1/𝑓0. Thirdly, even for very small interfering signal levels
(ScNR = 40 dB), the estimation error amounts up to 1 %. In summary,
when considering the estimation error plot as a function of temperature,
an oscillating error is expected, whose amplitude depends on the ScNR,
since a varying temperature leads to a varying absolute time delay.

Due to the estimation error being approximately proportional to the
ground truth of the time-delay difference, the performance of the TDE
methods is evaluated in terms of percentage error for each measurement𝐸[𝑚] = 100 % ⋅ ̂𝜏𝑚 − 𝜏𝑚𝜏𝑚 . (6.6)

Following the argumentation above, to get the performance of a method
independently from the current phase between target and interfering
signals, the mean absolute percentage errorMAPE = 1�̃� ∑𝜏a,𝑚∈𝕥g |𝐸[𝑚]| (6.7)

is calculated, with the absolute time delays of the test measurements𝜏a,𝑚 being drawn uniformly from the interval𝕥g = [𝜏a,0 , 𝜏a,0 + 1/𝑓0] , (6.8)

which contains approximately one period of the signals. In equations
(6.7)–(6.8), the measurement with the smallest available absolute time
delay in the data set is considered the beginning of the interval 𝜏a,0 and
the number of measurements taken into account for the MAPE is �̃�. A
special case, that will be later used, is the evaluation of the FRM. Since
it is a learning-based method, a distinction should be made between
a global quality and a local quality when examining the performance.
For the local quality, the MAPE includes only test measurements, whose
absolute time delay is contained in the interval𝕥t = [min(𝜏Traina,𝑚 ) , max(𝜏Traina,𝑚 )] , (6.9)
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which is spanned by the absolute time delays contained in the used
training data.

Additionally to the MAPE, which evaluates the estimation error on the
entire test data set regardless of its origin, the standard deviation of the
stochastic percentage error (STDSPE) is introduced as a metric to assess
the stochastic error decoupled from the systematic error. To this end, after
the systematic error is removed via subtraction of the lowpass filtered
component, the STDSPE is defined as the sample standard deviationSTDSPE = �̃�𝑚{𝐸[𝑚] − LP{𝐸[𝑚]}} . (6.10)

Since the low-pass filtering should not result in a delay of the estimation
error curve and should be robust against outliers, a moving median
filter of order 41—where the odd order is advantageous to obtain a
symmetric filter—was chosen. If this stochastic error is not expressed as
a percentage, a theoretical lower bound, called the Cramér-Rao lower
bound (CRLB), can be calculated. Although Carter [15] presented the
equation to calculate the CRLB for TDE problems, the PSDs of the noise
and target signals must be estimated with sufficient accuracy, which is
not possible due to the measurement signals being too short. Therefore,
the simplified formula according to Walker and Trahey [124]CRLB = √1 + 2SNRSNR2 ⋅ 32𝜋2𝑡obs ⋅ 112 𝜎f𝑓20 + 𝜎3f , (6.11)

which assumes flat spectra with constant SNR and limited bandwidth,
is applied to estimate the CRLB. Equation (6.11) is dependent on the
observation time 𝑡obs, the bandwidth 𝜎f, the center frequency 𝑓0 and the
SNR. Unfortunately, these quantities are also not directly known and
must be estimated from the measurement signals. Consequently, the
PSDs are approximated via Welch’s method using the same hyperparam-
eters as for the investigation of the target signals’ spectral characteristics
in Chapter 3. Based on the PSDs, the 3 dB bandwidth is obtained, i.e.,
the frequency range in which the PSD is above half its maximum value.
Furthermore, the center frequency is chosen as the midpoint of the 3 dB
frequency band. Since the AWGN is distributed over the entire time
and frequency range, but the target signals are only present in a small
time range and frequency band, the SNR is calculated as the ratio of
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the signal energies in the considered time range and frequency band of
the target signals. This has the advantage that only the part of the noise
that interferes with the target signals is considered since the remaining
part can theoretically be removed by filtering. It should be noted that
the different methods each use a slightly different observation window
and therefore the CRLB must be calculated separately for each method
to obtain comparable results.

The last preliminary task is to find the time range of the target signals.
This time range is only necessary for the SotA methods and the SDMs,
because the training-based FRM implicitly finds its useful time ranges
through the feature selection. For simplicity and since the evaluation is
based on the time-delay differences, whose ground truth is given by (6.1)
only for the diametral path, only the direct propagation will be used.
Because the algorithm to detect the time range needs to be very robust,
several conditions are imposed on the algorithm to ensure that only
meaningful time ranges are returned. However, a complete description
of the algorithm would distract from the focus of the work, which is why
only the basic approach is discussed here. Further details can be found
in [157]. The basic principles of the algorithm can be summarized by the
following steps:

First, the difference signal Δ𝑠[𝑛] and the average signal of the
reference and delay signals are formed. Basing the time range
detection on the difference signal would be advantageous since the
symmetrical interfering signals are eliminated, but the difference
signal can only be used, if its signal energy is sufficient, i.e., the
time-delay difference should not be too small. Otherwise, the time
range detection is based on the average signal—the decision can
be made through a threshold for the signal energy. Subsequently
to the decision which signal to use, the envelope for that signal is
calculated via a spline interpolation of the maxima, as this is more
robust than applying the Hilbert transform.

In the next step, all local maxima and minima of the envelope
are determined. When detecting the extrema, threshold values
must be set for the absolute height, the peak prominence, and the
distance between two peaks in order to be robust against signal
interferences or distortions.
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Finally, the local maximum, which is closest to the theoretical
time delay calculated by the path length and the SoS, is taken
to be the wave packet of the direct propagation path. Based on
this rough determination, the upper limit of the time range is
the next consecutive local minimum of the envelope, as this is
considered the time, when the next wave packet starts. Either the
local minimum before the determined local maximum, the time at
which the envelope falls below a certain threshold or the minimum
limit, which depends on the upper limit and the determined local
maximum, is selected as the lower limit of the time range. The
decision which lower limit to choose is made in such a way that
the resulting time range is as small as possible.

6.4 State-of-the-art methods
In this section the baseline for the proposed TDE methods is determined.
For each data set, the time-delay differences of the direct propagation
path are estimated by using the time-based zero-crossing method (ZCM),
and four different correlation-like methods, namely the cross-correlation
(CC), the generalized cross-correlation (GCC) with the phase transform
processor, the AMDF, and the ASDF. Since the time-delay difference has
to be estimated with subsample precision and depends on the observed
time range, the SotA methods are combined with the time range detec-
tion presented in the previous section and with an interpolation. For
the interpolation of the zero crossing, the method proposed by Kupnik
et al. [63] is applied. In contrast, the CC, the GCC, and the ASDF use a
quadratic interpolation around the maximum of the correlation function.
Among the correlation-like methods, only the AMDF method is an excep-
tion, since here the objective is to find a minimum of the AMDF, whose
shape looks like the absolute value of a sine wave around its minimum.
Therefore, a double linear interpolation is applied for the AMDF-based
subsample TDE.

The results of the ZCM, the CC and the AMDF for the four transducer
pairs of data set D1c are shown in Fig. 6.5. As already expected, the
estimation error shows an oscillation with a period in the range 1−1.5 µs,
which shows a good agreement with the theory as a period duration of
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Figure 6.5 Error curves of some selected SotA methods. The respective MAPE is given in
brackets. Although the estimation error of all measurement signals contained in the data
set D1c is shown here, the evaluation metric MAPE was only calculated on the set covering
one period cycle according to (6.8).

1/𝑓0 ≈ 1.4 µs was predicted theoretically. The different period durations
for the different transducer pairs can be explained by the slightly varying
material characteristics of each transducer. Only the local frequency
of the target signals and the interfering signals in the evaluated time
range are relevant. Therefore, the local frequencies may deviate from the
excitation frequency. Furthermore, this figure shows that even the level
of the interfering signals may differ from transducer pair to transducer
pair, since, e.g., the amplitude of the oscillating estimation error 𝐸[𝑚]
for TP4 is significantly smaller than for TP3. Apart from that, all SotA
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Table 6.2 MAPE results of the different SotA TDE methods for all data sets.MAPE/% ZCM CC GCC AMDF ASDF

D1c TP1 6.1 5.6 5.3 5.2 5.6TP2 4.5 2.9 2.9 3.3 2.9TP3 6.2 7.0 5.4 6.8 7.0TP4 2.0 2.6 1.7 2.5 2.6
Average 𝟒.𝟕 𝟒.𝟓 𝟑.𝟖 𝟒.𝟓 𝟒.𝟓

D2c TP1 1.6 1.1 1.2 1.3 1.1TP2 1.3 1.2 0.8 1.9 1.2TP3 1.8 2.1 1.3 2.3 2.1TP4 0.9 1.0 1.0 1.5 1.0
Average 𝟏.𝟒 𝟏.𝟑 𝟏.𝟏 𝟏.𝟖 𝟏.𝟑

D3c TP1 18.3 18.7 18.3 18.7 18.7TP2 7.7 6.9 5.5 8.1 6.9TP3 7.8 7.8 6.5 9.0 7.8TP4 13.0 13.9 12.7 13.9 13.9
Average 𝟏𝟏.𝟕 𝟏𝟏.𝟖 𝟏𝟎.𝟖 𝟏𝟐.𝟒 𝟏𝟏.𝟖

methods investigated here perform essentially the same with only slight
differences. While the ZCM is best in terms of MAPE for two of the
transducer pairs, the AMDF and the CC are better for the other two
transducer pairs. Normally, the zero-crossing-based TDE would be more
noisy, but using the approach of Kupnik et al. [63], the information of
a whole period can be taken into account to get a zero crossing that is
more robust against noise. For this reason, no obvious difference in the
stochastic estimation error can be observed.

The MAPE results of the remaining SotA methods on all data sets are
listed in Table 6.2. While the MAPEs of the respective best methods are
highlighted in green, the average values over all transducer pairs are
printed in bold. The best values of the respective data sets represent the
baseline when, in the further course, the results of the SDMs or FRMs
are given for individual transducer pairs or are averaged over an entire
data set. It is noticeable that the damping mat has significantly reduced
the interfering signals, because the MAPE values of the data set D2c are
significantly lower compared to the data set without damping mat D1c.
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Table 6.3 STDSPE results of the different SotA TDE methods for all data sets.STDSPE/% ZCM CC GCC AMDF ASDF

D1c TP1 0.60 0.58 0.59 0.56 0.58TP2 0.56 0.56 0.57 0.53 0.56TP3 0.59 0.57 0.59 0.51 0.57TP4 0.62 0.60 0.61 0.56 0.60
Average 𝟎.𝟓𝟗 𝟎.𝟓𝟖 𝟎.𝟓𝟗 𝟎.𝟓𝟒 𝟎.𝟓𝟖

D2c TP1 0.58 0.57 0.57 0.55 0.57TP2 0.57 0.56 0.56 0.53 0.56TP3 0.59 0.58 0.58 0.55 0.58TP4 0.61 0.59 0.60 0.56 0.59
Average 𝟎.𝟓𝟗 𝟎.𝟓𝟖 𝟎.𝟓𝟖 𝟎.𝟓𝟓 𝟎.𝟓𝟖

D3c TP1 0.70 0.67 0.77 0.64 0.67TP2 0.89 0.83 0.86 0.83 0.83TP3 0.71 0.69 0.81 0.71 0.69TP4 1.38 1.55 1.41 1.22 1.55
Average 𝟎.𝟗𝟐 𝟎.𝟗𝟒 𝟎.𝟗𝟕 𝟎.𝟖𝟓 𝟎.𝟗𝟒

Furthermore, the ethanol data set D3,c seems to have the highest level of
interfering signals, which can be explained by the worse acoustic cou-
pling between the pipe wall and the liquid. Once again large differences
can be observed between the different transducer pairs of the same data
set. In summary, all SotA methods are in the same order of magnitude,
with the GCC method showing slight advantages on average for all data
set.

Complementary to the MAPE, which mainly evaluates the system-
atic error—except in the case when the systematic error is significantly
smaller than the stochastic error—the STDSPEs for all data sets as a
quality measure for the stochastic errors are given in Table 6.3. Here, it
can be seen that, as already suspected from the error curves in Fig. 6.5,
the stochastic errors of the methods are very similar, with the AMDF
being slightly better than the other methods. Interestingly, the difference-
based correlation of the AMDF can handle noise better, but against the
interfering signals, it performs rather averagely.
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6.5 Signal-dynamics method
The SDMs can be separated into the PCA-based, the B-spline(BS)-based
and the joint-B-spline(JBS)-based point cloud processing, each of which
can be further separated into the direct TDE estimation approach, the
local interfering signals compensation and the global interfering signals
compensation. The difference between the latter two is that in the lo-
cal case, the interfering signals are compensated for each measurement
package individually, while in the global case, all estimated interfering
signals are combined, freed from outliers, and then averaged to get an
estimate that is used for the interfering signals compensation of all mea-
surement packages equally. Firstly, the direct TDE methods on a single
data set are investigated, examining both the expected properties and the
dependency on the process conditions. In the next step, the concept of
compensating the interfering signals locally and globally is proven. Fur-
thermore, visual examples of the estimated interfering signals, the outlier
detection, and the globally estimated interfering signals are shown. This
section concludes by examining how to specify the hyperparameters. To
this end, the approaches are applied to the water data sets using all hy-
perparameter combinations. Then, using the optimized hyperparameter
set, the performances of the SDMs are averaged over all data sets and TPs
and compared with the GCC method—the best SotA method in terms of
MAPE.

As in the rest of the thesis, for the SDMs to be applicable, the mea-
surement signals of the data sets were divided into packages with a
signal dynamic of 50 ns, i.e., within the package there are measurement
signals whose absolute time delays cover an interval of the width 50 ns.
An exception to this is the investigation of the influence of the signal
dynamics in Section 6.5.3. Furthermore, the packages were selected from
the entire data set with a variable overlap such that they uniformly cover
the entire data set.

6.5.1 Direct time delay estimation
In the first evaluation, the direct TDE methods are applied to the water
data set with constant flow D1,c|TP1 to check whether the approach
can also be applied to real data. After the signals were separated into

136



6.5 Signal-dynamics method

68.5 69 69.5 704050607080

𝜏a/µs

̂𝜏/ns
PCA-based

68.5 69 69.5 70𝜏a/µs

BS-based

68.5 69 69.5 70𝜏a/µs

JBS-based

Ground truth
SDM

Figure 6.6 Results of the direct TDE using the SDM for the data set D1c|TP1. The signal
dynamics of the packages are set to Δ𝜏a = 50 µs. The median absolute time delay 𝜏a,𝑚 of
each signal package was distributed uniformly on the whole process condition range.

packages and the relevant time ranges were extracted package-wise by
the method described at the end of Sec. 6.3, the time-delay differences are
estimated using the PCA-based, the BS-based, and the JBS-based point
cloud processing, respectively. While for all methods the same signal
dynamics (50 ns) were specified, the overlap for the PCA-based TDE was
increased to get a densely sampled error curve comparable to the BS- and
JBS-based SDMs. This is necessary since the PCA-based direct TDE can
only estimate one average time-delay difference per package. The last
hyperparameter to specify is the point cloud generation for the BS- and
the JBS-based approaches. According to Equation (4.47), there are two
possibilities: either the point clouds of the delay and reference signals are
generated and processed separately, or the delay and reference signals
are concatenated to get a combined point cloud. In this evaluation, the
point clouds were concatenated.

The results are depicted in Fig. 6.6. Although all three methods basi-
cally estimate the time-delay difference well, there are slight differences,
which can be explained by the different properties. The PCA-based SDM
is less noisy. This is to be expected because the time-delay differences
are averaged over the whole signal package, which can be interpreted as
an individual estimation with subsequent moving average filtering. Fur-
thermore, the joint estimation of the BSs for two consecutive time steps
obviously also reduces the stochastic component of the TDE. However,
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Figure 6.7 Results of the direct TDE using the SDM for the data set D1v|TP1 with varying
time delay. The signal dynamics of the packages are set to Δ𝜏a = 50 µs. The performance
of the PCA-based SDM deteriorates significantly because the requirement—a constant
time-delay difference—is not met at all.

in terms of systematic error, the BS-based SDM shows better results than
the PCA-based and the JBS-based SDMs. The larger systematic error of
the PCA-based SDM can be explained by the fact that the constant time
delay assumption does not perfectly hold, since the time-delay difference
varies even in constant flow scenarios due to the varying SoS (see Fig. 6.3).
Contrary to this, the JBS-based approach relies more on the assumption
that the interfering signals are stationary, i.e., they do not vary with vary-
ing temperature or varying VoF, compared to the BS-based SDM. This
requirement is also not quite met, which is why probably the JBS-based
SDM shows a slightly higher systematic error.

If the methods are evaluated for a data set with varying flow D1,v|TP1,
as shown by the results in Fig. 6.7, the situation is quite different. While
the spline-based methods still work well, the PCA-based SDM is no longer
applicable because the requirement—a constant time-delay difference—
is not met at all. Contrary to the PCA-based SDM, a visual comparison
of the spline-based methods with each other is hardly possible in this
presentation form. Only for high absolute time delays, corresponding
to low temperatures in the water data sets, where air bubbles are more
often present in the experimental setup, the JBS-based approach shows
more outliers, but further evaluations are needed for a general statement.

138



6.5 Signal-dynamics method

68 69 70 71 72−0.10−0.050.000.050.10

𝑡/µs

̂𝑠 i(𝑡)/V
PCA-based

68 69 70 71 72𝑡/µs

BS-based

68 69 70 71 72𝑡/µs

JBS-based

Figure 6.8 Estimated interfering signals for the data set D1c|TP1. The different interfering
signals result from different signal packages, which were created using a signal dynamic
of 50 ns with an adaptive overlap as described in the introduction to Section 6.5.

6.5.2 Interfering signals compensation
In the alternative approach, the interfering signals are first determined
and removed, and then the time-delay differences are estimated using
a state-of-the-art (SotA) method, instead of estimating the time-delay
differences directly. As already mentioned in Section 4.2.3, the ZCM
according to Kupnik et al. [63] is used for the subsequent TDE after the
interfering signals compensation. In Figure 6.8 all estimated interfering
signals are shown that result when the interfering signals are estimated
separately for each of the signal packages. Equally to the evaluation
of the direct TDE, the data set is D1c|TP1, the signal dynamics are set
to 50 ns per package, the point clouds are concatenated for the spline-
based approaches, and the PCA-based SDM uses the constant amplitude
assumption. Although most signals are estimated to be quite similar
for all methods, some differences occur that cannot be explained by the
nonstationarity of the interfering signals. The JBS-based approach, which
is expected to be the most robust method, shows the least variation of
the estimated interfering signals. Therefore, it is likely that the reasons
for the variation are the noise influence and outliers in the point clouds
that deteriorate the individual BS-based shape fit of the point cloud.
Furthermore, an incorrect assumption of the signal model, e.g., that the
amplitude of the target signals does not depend on the temperature,
could be the cause.
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Figure 6.9 TDE results using the local interfering signals compensation for the undamped
water data sets with constant and varying VoF. Overlapping TDEs between the signal
packages are resolved by averaging.

If each signal package is compensated by the respective estimated
interfering signals, application of the zero-crossing-based TDE yields
the time-delay differences for all signals in the package—this is called
the local interfering signals compensation. Any overlapping estimates
resulting from the overlap of the signal packages can be resolved by
averaging. The results for the data sets D1c|TP1, D1v|TP1 can be observed
in Fig. 6.9(a) and Fig. 6.9(b), respectively. In Fig. 6.9(a) it can be seen that
the PCA-based SDM continues to perform well for the constant flow
data set. However, the BS-based point cloud processing does not work in
combination with the local interfering signals compensation (red curve).
The inconsistency at 69.7 µs is caused by a gap in the measurement signals,
which results from the automatic outlier removal of signals degraded
by bubbles in the experiment. Figure 6.9(b) shows that the PCA is still
not comparable to the spline-based methods for varying flow data sets.
This is due to the fact that the abrupt changes of the flow lead to non-
compact point clouds, which cannot be correctly processed by the PCA.
In contrast, the spline-based methods show that they are suitable for
data sets with highly varying flow velocity because the curved form of
the BSs is flexible enough to fit even point clouds with large gaps.
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Figure 6.10 Automatic outlier detection to remove bad estimations of interfering signals
from Fig. 6.8. For better visualization, an offset has been added to the results from the
PCA and the JBS-based method. Left: the detected outliers are shown in dots. On the right,
the final estimated interfering signals can be seen, resulting from averaging after outlier
removal.

In the global interfering signals compensation, for each signal pack-
age the same interfering signals estimate is used for compensation. This
can reduce the effect of bad estimates of the interfering signals, which
result from outliers in some of the point clouds. To this end, the different
estimates are collected and outlier signals are removed by applying the
outlier detection algorithm proposed in Section 4.4. The remaining esti-
mates for the interfering signals are averaged to obtain the globally valid
estimate—in the following, using this globally valid estimate will be re-
ferred to as global interfering signals compensation. A visual example of
this procedure can be observed in Fig. 6.10. On the left side, all estimates
for the interfering signals are plotted for each point cloud processing
method—an offset has been added for better visualization. While the
remaining estimates after the outlier detection are drawn solid, all signals
classified as outliers are drawn dotted. It is easy to observe that due to
the adaptive histogram the limit that defines which signals are identified
as outliers is dependent on the variability of the estimates. In the case of
lower variability, such as for the JBS-based SDM, even small deviations
lead to a classification as outlier, while a higher overall variability, such as
for the PCA- or BS-based SDM, does not classify signals as outliers even
with larger deviations. The averaged results are then depicted on the
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Figure 6.11 TDE results of the global interfering signals compensation for the undamped
water data sets with constant and varying VoF, resulting if all measurement signals are
compensated by subtracting the same averaged interfering signal.

right side. It shows that the resulting averages of the BS- and JBS-based
SDM are quite close, leading to the expectation that the subsequent TDE
based on this estimate will perform similarly.

Application of the global interfering signals compensation to the TDE
for the water data sets D1c|TP1, D1v|TP1 yields the estimation errors de-
picted in Fig. 6.11. Through the usage of a global estimate for the interfer-
ing signals, the SDM now produces similar results for the constant and
varying flow data sets. Only slightly increased stochastic components
at measurements with low time-delay differences can be observed (see
the small ripples in Fig. 6.11(b)). Moreover, the expected similar behavior
of the BS- and the JBS-based SDMs is confirmed. An important point
to notice is that even a small phase shift in the estimated noise signals
(Fig. 6.10 on the right) can lead to large estimation errors. This is shown
by the larger errors of the PCA-based SDM in Fig. 6.11, whereas the inter-
fering signals estimate exhibited by the PCA-based SDM is only slightly
phase-shifted compared to the BS- and JBS-based SDM.

In summary, each of the SDMs has its own advantages and disadvan-
tages. The PCA-based point cloud processing, regardless of whether
direct TDE, local or global compensation is used, can only be applied
with sufficient estimation quality to constant flow data sets. For data
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sets with varying flow velocity, the spline-based methods are generally
better. In addition, the spline-based SDM using the global interfering
signals compensation has been shown to have the lowest estimation error,
regardless of whether the method was applied to a constant or a varying
flow data set.

6.5.3 Hyperparameter optimization and overall results
The previous two sections only represent a proof-of-concept of the SDMs
with a standard set of hyperparameters using the water data sets as an
example. While the results could be used to make simple statements
about the different approaches, they were neither evaluated quantita-
tively, nor tested on all data sets with all hyperparameter combinations,
nor compared to the SotA methods. Therefore, in this section, the SDMs
are firstly tested for all hyperparameter combinations, where a focus lies
on the available signal dynamics and their interaction with the available
SNR. Finally, all SDMs in their best hyperparameter configurations are
applied to the water and ethanol data sets, evaluated in terms of MAPE,
and then compared to the best SotA method—the GCC.

To begin with, the different hyperparameter combinations are tested.
Figure 6.12 shows the performance of all SDMs in the form of a star
plot where the categorical hyperparameters are varied for the water
data sets D1c|TP1, D1v|TP1. A list of the investigated hyperparameter
sets are found in Table 6.4. Note that for the PCA-based SDMs only
the individual point cloud generation is possible since the geometric

Table 6.4 Combinations of hyperparameters available in the SDMs.

hyperparam-
eter set

signal
dynamics

point cloud
generation assumptions𝜽PCA1 Δ𝜏a = 50 ns individual constant flow𝜽PCA2 Δ𝜏a = 50 ns individual constant amplitude𝜽PCA3 Δ𝜏a = 50 ns individual varying amplitude𝜽BS1 Δ𝜏a = 50 ns concatenated -𝜽BS2 Δ𝜏a = 50 ns individual -
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Figure 6.12 MAPE results of all three major point cloud processing methods in direct,
local compensation and global compensation form for both data sets D1c|TP1 and D1v|TP1.
The MAPE is coded as the distance from the origin for D1c|TP1 and D1v|TP1 in green and
blue, respectively. Each angle in the star graph represents a hyperparameter configuration
of the respective processing method. The baseline in its best configuration (best SotA
method) is drawn dashed. For better visualization MAPE values are capped to 7.5 %.

interfering signals estimation requires the PCA of two distinct point
clouds to triangulate the interfering signals. Since the computational
effort to calculate the hyperparameter combinations full factorial is too
high, the signal dynamics are fixed to 50 ns in this first hyperparameter
investigation. The subsequent signal dynamics evaluation will show that
this setting is justified. Furthermore, the BS- and JBS-based SDMs share
the same hyperparameter sets, denoted by 𝜽BS1/2, because they only differ
in the way the splines and the misalignments are estimated, but not in
the way the point clouds are generated. The results from Fig. 6.12 once
again shows, that the constant flow data set is a lot easier to manage and
that the PCA cannot be applied in the varying flow case with sufficient
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Figure 6.13 Interaction between used signal dynamics Δ𝜏a and measurement noise for
the data set D1c|TP1. Two different noise levels were examined: the original SNR (85.3 dB,
solid lines) and the deteriorated SNR by adding artificial AWGN (62.9 dB, dashed lines).

accuracy. Nevertheless, the varying amplitude assumption (𝜽PCA3 ) shows
slightly better results compared to the constant amplitude assumption,
which is why it will be used in the following investigations for the PCA-
based SDMs. For both spline-based approaches, the concatenated point
clouds are preferable on average. However, even if the hyperparameter
combination 𝜽BS1 is used, both spline-based methods are still better than
the baseline, except for the direct estimation with individual point clouds.

Based on these hyperparameter configurations, the influence of the
available signal dynamics is investigated. To this end, the evaluation of
each method on the data set D1c|TP1 is repeated with different signal
packaging strategies, where the package size was adapted such that the
signal packages contain the specified signal dynamics. Starting from
the minimum 20 ns, the signal dynamics were increased in steps of 5 ns,10 ns, and 20 ns, depending on the required computational effort of the
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respective method and the expected variation in the results—for higher
signal dynamics the step size was consequently increased. Figure 6.13 de-
picts the results of this investigation. Since the graphic examines several
aspects of the different SDMs, the results are interpreted step by step.

Firstly, the MAPE representing the systematic error is investigated. As
can be easily seen, except for the BS-based SDM using the local compensa-
tion, the systematic errors are not significantly reduced further for signal
dynamics greater than 50 ns. The JBS-based SDM would even allow lower
signal dynamics with only minor degradation of the MAPE. To investi-
gate the relationship to the available SNR, artificial AWGN is added to
simulate a lower SNR. The MAPE curve for the lower SNR (drawn as
dashed line) shows that the lower limit of the signal dynamics, below
which the SDMs can no longer be used with sufficient quality, shifts
towards higher signal dynamics. Furthermore, the lower robustness of
direct TDE is revealed, which is concluded from the fact that the MAPE
varies much more with different signal dynamics and requires larger
signal dynamics to perform comparably. Summarizing the dependence
of the systematic error on the available signal dynamics, it can be said
that the influence is small as long as the signal dynamics are above the
lower limit, which is SNR dependent.

Secondly, the STDSPE representing the stochastic error is investigated.
Except for the direct estimation form of the SDMs, the stochastic error
is again hardly dependent on the available signal dynamics. Similar to
the systematic error, the lower limit of the signal dynamics, below which
the SDMs can no longer be used, increases. However, additionally to the
influence on the lower limit, a lower SNR leads to an increased offset of
the stochastic error. The only exception to these statements is the direct
estimation. Due to the averaging effect, the PCA-based direct estimation
SDM can reduce the STDSPE with increasing signal dynamics, but as
already mentioned this is bought by an increased response time of a
measurement system based on this algorithm. The other spline-based
SDMs do not show that they can reduce the stochastic error below the
thresholds approached by the local, and global compensation methods.
In summary, as long as the signal dynamics are higher than the SNR-
dependent limit, further increasing the signal dynamics provides no
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Figure 6.14 MAPE performance of all SDMs averaged over the different TPs. The results
achieved with the best SotA method is drawn as a dashed line. The error bars indicate the
respective best and worst results received if the TPs are investigated individually.

advantage, except for the direct estimation methods, since they are less
robust to noise.

Based on the hyperparameter influences presented above, the final
overall evaluation of the SDMs is done using signal dynamics of 50 ns, the
constant amplitude assumption for the PCA-based SDM in its interfering
signals compensation variants, and the individual point cloud generation
for the spline-based SDMs. Since the systematic error is more significant
in the scope of this thesis due to its correlation with the level of the
interfering signals, the results are compared in terms of MAPE in Fig. 6.14.
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Here, the averaged MAPE is depicted for the water and ethanol data
sets without damping mat. Averaged MAPE means that the value is
determined by averaging the MAPEs of the four transducer pairs per
data set. Therefore, the basis for comparison—the performance of the
GCC—is also averaged over all four respective transducer pairs. Note that
the water data set with damping mat is not included in this evaluation
since the temperature-dependent damping violates the assumption of
stationary interfering signals. The results show that the PCA-based SDMs
cannot be successfully applied to data sets with a strongly varying flow.
In contrast, using the local or global compensation, the JBS-based SDM
is significantly better than the best SotA for all data sets. Especially, the
global compensation works well for both constant and varying flow data
sets. Although the BS-based SDM is also often better than the GCC,
some combinations, such as the direct estimation for D1c, or the local
compensation for D1,v, perform worse. The last point worth mentioning
here is the range of systematic errors between the transducer pair with
the largest and smallest MAPE. Some SDMs can significantly reduce this
range, e.g., the JBS-based global compensation reduces the initial MAPE
range for the ethanol data set D3c from about 11 % to about 3 %.

In summary, except for the PCA-based and some variants of the BS-
based SDM, all SDMs perform significantly better than the respective
best SotA method in terms of averaged systematic error. Furthermore, the
interfering signals compensation does not induce an increased stochastic
error.

6.6 Feature-based regression method
Unlike the SDMs, the FRM requires a training data set, but it also allows
to obtain an estimate for each signal individually without having to sep-
arate the signals into packages with some signal dynamics. Since the
training set should contain varying time-delay differences and different
process conditions, such as the temperature, the training data set for this
approach is always chosen from the varying flow data sets. Accordingly,
the corresponding constant flow data sets, whose time-delay differences
are not included in the training data set, are used as test data sets to
predict the time-delay differences of measurement signals that were not
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seen by the model during the training steps. For a compact represen-
tation, a simple notation is introduced, to indicate which data sets are
used as training and test data set, respectively. Exemplary, the notation
D1v|TP1/D1c|TP1, denotes that the first TP of the varying flow data set
D1v is used for training and the corresponding TP of the constant flow
data D1c set is used to test the estimation performance.

However, due to the large number of options to select the features,
the available regression models and their training strategies, the FRM
requires the specification of much more hyperparameters than the SDM,
where only the signal dynamics and the point cloud generation are impor-
tant. A full factorial evaluation takes to much computational effort. For
this reason, starting bottom-up from the regression model, the hyperpa-
rameters are investigated consecutively and then fixed to their respective
best choices in the first two subsections.

Subsequently to the determination which regression model, train-
ing strategy, and feature selection method to use, the properties and
performances of the FRM are evaluated in different scenarios. Firstly,
the robustness against AWGN is tested, followed by an investigation if
frames—in this case an overcomplete AWPT tree structure—can further
improve the results. Finally, the overfitting and the generalizability are
evaluated, since these properties are highly important in learning-based
approaches.

All performances of the FRMs in this section are expressed in terms of
the MAPE (6.7) for the systematic and the STDSPE (6.10) for the stochastic
error in order to reduce the entire evaluation of a specific hyperparameter
set to a single value.

6.6.1 Selection of the best regression model
To begin with, the different regression models are investigated. However,
since the evaluation of the FRM depends not only on the regression model
but also on the feature selection, the regression models are evaluated
according to how well they perform on average when using different
feature selections. Thereby, not all feature selections can be considered
in the average evaluation, because there are too many combinations of
feature selections possible, i.e., the quality measure (F-test, PCC, …), the
SS or the IFS, and the number of remaining features or thresholds can
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Table 6.5 Average MAPEs using the three different regression models and their corre-
sponding training strategies. The averaged MAPE values are obtained by using
different numbers of selected features from 𝐾s = 10 … 100. Here, the data sets
D1v|TP1/D1c|TP1 are used for the training and the test.

(a) Supervised.E{MAPE}(𝜎{MAPE})
in % Training strategies

LS WLS WM Simple
kriging

Model (5.35a) 0.3 (0.02) 1.5 (0.35) 1.3 (0.39) -
Model (5.35b) 0.3 (0.04) 1.3 (0.56) 3.8 (0.86) -

GPR (5.35c) - - - 4.7 (3.53)
(b) Unsupervised.E{MAPE}(𝜎{MAPE})

in % Training strategies

LS WLS WM Simple
kriging

Model (5.35a) 2.0 (0.14) 1.2 (0.49) 1.0 (0.48) -
Model (5.35b) 2.0 (0.14) 1.4 (0.63) 2.5 (0.42) -

GPR (5.35c) - - - 2.0 (0.18)
be combined almost arbitrarily. Therefore, the type of feature selection
is fixed to the ISS where the parameter of the remaining features 𝐾s is
varied.

According to sections 5.4 and 5.5, a complete hyperparameter set for
the FRM contains the following parameters:

the feature selection method in combination with the decision
whether to use the SS or IFS, and a threshold 𝛾 or top-N value 𝐾s ;

the regression model with its training strategy;

the decision whether the regression is to be trained using the
ground-truth values for the time-delay differences (called the su-
pervised FRM), or using the estimated time-delay differences from
the optimization approach described in Sec. 5.5.3 (called the unsu-
pervised FRM).
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Additionally, in order to apply the method, the data sets for training and
testing also need to be specified.

Table 6.5 shows the resulting average MAPEs of all available regression
models and training strategies, if the FRM is applied multiple times with
a differing number of selected features 𝐾s and the individual MAPEs
are averaged. Note that the parameters of the GPR cannot be trained
using the least-squares or median-based approaches, so simple kriging
is used here to fit the GPR. To simultaneously evaluate the dependence
of the results on the number of features 𝐾s , the standard deviation over
the results of the different feature numbers is given in round brackets.
Comparing the GPR with the linear regression approaches, it performs
worst in the supervised case and only average in the unsupervised case.
Therefore, and due to the fact that it requires the highest computational
effort, this regression approach is not pursued further. Furthermore, it
is noticeable that while the LS training yields the best results for the
supervised FRM, the performance in the unsupervised FRM is signifi-
cantly worse, suggesting that this type of training is less robust to errors
in the labels. In contrast, the weighted training methods (WLS, WM)
show similar behavior for both the true labels and the estimated labels.
A comparison between the regression models indicates that the decision
whether the model should include an offset or not is only relevant for the
WM training. The application of this strategy leads on the one hand to
the best results on average, if combined with the linear model with offset
(5.35a), and on the other hand to nearly the worst results on average, if
combined with the linear model without offset (5.35b). Observing the
standard deviation shows that the dependence on the number of selected
features is similar for all weighted training strategies, independently of
the regression model. Only the LS method is significantly less dependent
on 𝐾s .

In summary, the use of Gaussian processes for regression is not appro-
priate for the regression of ultrasonic TDE in this algorithmic context.
Since the WM method in combination with model (5.35a) performs best
on average and the LS method has both the least dependence on the num-
ber of selected features 𝐾s and the best results for the supervised FRM,
these two strategies are further investigated. Here, the LS method is used
without offset, because the model without offset physically makes more
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Table 6.6 Evaluation of different methods to select the subset of features to be used for
the supervised regression. The averaged MAPE values are obtained by using
different numbers of selected features from 𝐾s = 10 … 180. The regression
model (5.35a) was chosen and trained using the WM strategy. As training set
and test set, D1v|TP1 and D1c|TP1 were used, respectively.

Selection method Average MAPE (SS) Average MAPE (IFS)

ISS 1.3 % -
PCC 0.7 % 0.4 %
NCA 1.7 % 3.3 %
F-Test score 4.8 % 4.6 %
RReliefF 12.8 % 17.7 %
Laplacian scores 1.9 % 116.4 %
Wrapper 3.4 % 15.9 %
LASSO 1.9 % 2.2 %
GPR 1.4 % 1.4 %

sense when the features are designed to yield zero without time-delay
difference.

6.6.2 Feature selection evaluation
After setting the regression model to the linear model trained by the
WM or LS method, the different feature selection methods can be quan-
titatively evaluated. Given the stable results for both supervised and
unsupervised FRM, all available feature selection methods are tested
by keeping the regression fixed to the linear model (5.35a) with the
WM-trained parameters. Again, the different FRM setups are applied
exemplarily to the water data sets D1v|TP1/D1c|TP1 and the results are
averaged over different top-N values 𝐾s to become invariant to this hy-
perparameter.

The results of this evaluation are listed in Tab. 6.6. For all methods,
except for the ISS, where only the subspaces can be selected and not
the feature individually, the MAPE is given once for the SS and once
for the IFS. Among the tested methods, only the ISS, the NCA, and the
Laplacian scores allow feature selection without knowledge of the labels.
Therefore, these methods are preferable if the MAPEs are comparable.

152



6.6 Feature-based regression method

0 50 100 15002
46

MAPE
/%

Subspace selection

ISS PCC NCA LASSO GPR

0 50 100 15002
46

Individual feature selection

0 50 100 1500.20.30.40.50.6

𝐾s

STDSP
E/%

Subspace selection

0 50 100 1500.20.30.40.50.6

𝐾s

Individual feature selection

Figure 6.15 Dependence of the best five feature selection methods on the number of
selected features 𝐾s , if the WM parametrized linear regression with offset is applied. The
regression is trained with the ground truth for the labels.

Since the RReliefF, the wrapper method, and the Laplacian and F-test
scores perform significantly worse on average, only the ISS, the PCC,
the NCA, the LASSO, and the GPR are further investigated. An inter-
esting fact is that, although the Gaussian processes were not suitable
as a regression model, the learned length scales in the kernel function
could be used well as a quality measure for the feature selection. The last
point that can be seen from this study is that—for the feature selection
in this specific learning-based TDE approach—the simple PCC is the
best supervised method and the ISS proposed in this thesis is the best
unsupervised method.

In order to determine the number of selected features that yields the
best overall results, the performances of the five best feature selection
methods with respect to MAPE and STDSPE are plotted against 𝐾s in
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Fig. 6.15. While the IFS using the NCA or the LASSO becomes unstable
at high numbers of features, the SS is stable for all methods and all 𝐾s .
However, even though the IFS is unstable for some methods, there are
also combinations, such as the PCC or the LASSO for a low number
of features, that result in the best MAPEs that can be achieved overall.
Since the feature selection should yield a good robustness against noise,
a low systematic error, and as few selected features as possible to save
computational effort, the number of features will be fixed to 𝐾s = 100
in the following studies. Figure 6.15 shows that using 100 features is a
good compromise between the objective to have few features and high
robustness against noise (see the subfigure at the bottom on the left
side). The LASSO and the NCA selection methods are not considered
further, because in some configurations their systematic error is too high.
Furthermore, the GPR is also discarded due to the significantly larger
computational effort with only comparable results.

6.6.3 Robustness against additive white Gaussian noise
In the previous section, the many possible combinations of feature selec-
tion methods, regression models, training strategies and label choices
for the training were evaluated and reduced to a few remaining possi-
ble combinations. The FRM with one of these remaining configurations
can now be investigated regarding robustness against noise. Since the
unsupervised FRM is most comparable to the SotA, which also assumes
no known labels, the features are selected by the ISS (𝐾s = 100) and
the linear regression model trained with estimated labels (and the WM
strategy) is applied to the TDE. Although the present SNR cannot be
further increased, the performance of the FRM can be investigated for
decreased SNR by adding artificial AWGN to the training data set, the
test data set, or both.

To this end, the water data sets D1v|TP1/D1c|TP1 are selected and de-
teriorated by adding noise. If the level of added AWGN is varied and
the results of the FRM are plotted over the respective noise level, the
diagram in Fig. 6.16 is obtained. Depending on which data set the AWGN
is added to or if the data is smoothed by a prefilter, the different curves
result. Note that the MAPE of the baseline (AMDF) is not drawn, since its
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Figure 6.16 Impact of AWGN in the training and test data on the regression accuracy.
Left: Influence on the systematic error evaluated by the MAPE. Right: Influence on the
stochastic error evaluated by the STDSPE. The level of the added noise is specified by 𝜎,
where the subscripts (⋅)Tr and (⋅)Ts denote whether the noise is added to the training data
set, the test data set, or both. For reference, the STDSPE of the best SotA method in terms
of robustness against AWGN (the AMDF) is given.

systematic error is higher than the visible range. Some interesting effects
can be observed in Fig. 6.16:

Firstly, if the noise is only added during training a slight improve-
ment of the stochastic error on the test set occurs (see STDSPE
of the red curve). This can be explained by the fact that this pre-
sumably shifts the feature selection toward subspaces with higher
SNR during training. At the same time, however, the systematic
error increases significantly, which is why the noise level should
nevertheless be kept as low as possible in the training set.

Secondly, a bad SNR in the training data set is worse for the sys-
tematic error than a bad SNR in the test data set, which can be
concluded by the MAPE of the red and green curve compared
to the MAPE of the blue curve, where the noise is only added
to the test data set. The purple curve shows that prefiltering of
the measurement signals using a digital filter can alleviate this
problem, but this is only effective up to a certain limit.

Lastly, even without prefiltering, the stochastic error is always
smaller than the best SotA method. Note that although not drawn

155



6 Experimental Results

here, the systematic error of the AMDF method is almost indepen-
dent of the added noise level, leading to the fact that the FRM is
only better than the SotA if the SNR during training is sufficient.

6.6.4 Application of frames in the feature generation
As the evaluation of the different feature selection methods and the de-
pendence on the hyperparameter 𝐾s has shown, the features, which are
available for the regression, are an important influencing factor. There-
fore, not only the selection process is relevant, but also the initial set of
all features. Remembering Section 5.3, the features used in the regres-
sion are created by the absolute and phase differences of the coefficients
that result from the AWPT of the measurement signals. However, the
AWPT also requires the filter types and tree structure to be uniquely
defined. Since the two preliminary studies [151, 159] have shown that
the 6th level of the AWPT tree provides a good compromise between
time and frequency resolution, all previous FRM evaluations are based
on the coefficients of the 6th level in the tree. Nevertheless, the valida-
tion of this choice is verified again in this section. To this end, the set
of available initial features is extended by using all coefficients of the
5th, 6th and 7th level in the AWPT to generate the features. This has
the special effect that the subspaces covered by the coefficients are now
overlapping in the time-frequency domain, which induces a redundancy
in the representation—also called frame. Furthermore, the information
is redundant, since, e.g., the coefficients from the 7th level contain all
the information that is already contained in the coefficients from the 6th
level.

The bar graph in Figure 6.17 visualizes the MAPEs—averaged over
all TPs and the respective best and worst results—for the differently
configured FRMs both when using only the 6th level coefficients and
when using the redundant coefficients of the 5th, 6th and 7th level, which
build a frame. In order to make the set of selected features comparable,
the number of features is set to 𝐾s = 100 for all selection methods.
Except for the ISS in combination with the LS regression and estimated
labels, using frames yields similar or worse results. There are several
possible explanations for this behavior, which have to take into account
the different characteristics of the feature selection methods, the choice
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Figure 6.17 Average MAPEs over all TPs of the data sets D1v/D1c when using the 6th
level AWPT coefficients (𝑠

W
= 6) to generate the features, and when using all coefficients of

the 5th, 6th and 7th level (𝑠
W

∈ {5, 6, 7}) to generate the features. The error bars indicate
the respective best and worst result received if the TPs are investigated individually. For all
feature selection methods, 𝐾s = 100 applies.

of the labels, and the training strategy of the regression. Firstly, the PCC
is considered, where the features are selected according to how well
they are linearly correlated with the ground truth. Here, the results
are very similar regardless of regression training or selection strategy,
which in this context means, whether to use SS or IFS. This suggests that
the selected features of the 6th level already contain the best features,
confirming the validity of the initial choice of coefficients for the feature
generation. In fact, a detailed examination of the resulting selection
masks (not shown here due to the poor visual evaluability) reveals that 32
features between the initial feature set with 𝑠

W
= 6 and with 𝑠

W
∈ {5, 6, 7}

are equal.
Next, the ISS is considered, where after several iterative selection steps,

the features with the largest variances are selected. Here, the application
of frames for the feature generation leads to worse results when the WM
regression is used, and to better or similar results when the LS regression
is used (cf. the red and blue bars with the ISS labels in Fig. 6.17). Two
interesting conclusions can be drawn from this behavior. Firstly, even
though the LS regression is not very robust to errors in the labels, as
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shown in Sec. 6.6.1, it can better balance different feature selections by
suppressing features with low or poor influence in regression. This state-
ment is based on the fact that the MAPEs of the LS-based regression
with ISS and supervised training are significantly better than the MAPEs
of the WM-based regression. Secondly, the ISS returns a worse perform-
ing selection of features when the initial feature set is larger due to the
frames. Obviously, the objective to search for the maximum variance
cannot perfectly represent the quality measure that as much information
as possible should be contained in the selected subspaces.

The conclusion of this investigation is that in the problem at hand
the use of frames does not improve the performance, since a sufficient
number of good features can already be derived from the coefficients of
the 6th level given the sampling rate 50 MHz.

6.6.5 Generalizability of the learning approach
Since it is the nature of learning-based methods that the quality of the
training data set significantly affects the performance of the prediction,
this section presents a quantitative assessment of the generalizability
of the FRM. The effect that the systematic error on the training data
set is much lower than that on the test data set is called overfitting. It
indicates that the model may be too complex and, therefore, can perfectly
interpolate the training data but hardly predict values not contained in
the training data. The opposite of this, which means that the performance
on the test data set is comparable to the performance on the training data
set, is called generalizability.

For this reason, first, the performance on the test data set is compared
with the performance on the training data set, and second, the resulting
MAPEs are examined when the training data is restricted to include only
a subset of the process conditions.

Performance on training data set vs. test data set

Figure 6.18 shows both the MAPE of the approximation of the trained
FRM on the training set and the prediction error on the test set. In all
selection and training scenarios (unsupervised/supervised), the perfor-
mance on the training data set is worse than or similar to the performance
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Figure 6.18 Average MAPEs over all TPs with the WM-trained linear regression model
(5.35a). Blue bars: the MAPEs calculated on the training data set D1v. Red bars: the MAPEs
calculated on the test data set D1c. From left to right, the hyperparameter combinations for
feature selection and the used labels are plotted. The error bars indicate the respective best
and worst results received if the TPs are investigated individually. For all feature selection
methods, 𝐾s = 100 applies.

on the test data set. While the MAPEs are quite similar for the PCC-based
selection, the ISS yields a smaller systematic error on the test sets. From
these results, two conclusions can be drawn. Firstly, the linear regression
model is probably too simple to accurately approximate the time-delay
differences on the training data set. This can be explained by the fact that
the time-delay differences of the training data set are highly varying and
have three clustering points due to the design of the experiment. Both
properties make the training data set more complex than the test data
set. Secondly, the PCC-based selections yield in general better feature
sets, which can also be applied to the estimation of time delays that are
closer to the boundaries of the process conditions that the FRM was
trained with. However, this is to be expected since the PCC directly ranks
the features according to their correlation with the labels and the ISS
can only make use of quality measures that work without knowledge
of the labels, such as the signal energy or the variance. Whether the
ground truth is used for the training of the regression or the labels are
estimated using the optimization approach seems to have no influence
in this investigation.
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Generalizability to different process conditions

In contrast to the investigation of the MAPE difference between the train-
ing and test data sets, the influence of constraining the training sets is
investigated in Fig. 6.19. The aim is to evaluate the extent to which the
FRM can be used for TDE if the process conditions of the test set are out-
side the process conditions used for training. To this end, the MAPEs are
given for the subsets of the test data set, which only contain process condi-
tions that are also included in the training data set, and for the entire test
data set. In the following, the MAPEs on the subsets of the test set, which
contain only the process conditions present in the training data set, are
referred to as local MAPEs whereas the MAPEs on the entire test set are
referred to as global MAPEs. Note that, if range{𝕥t}/range{𝕥g} = 1, the
process conditions of the training and test data set are identical, resulting
in the local and global MAPEs yielding the same values. Furthermore,
the results show that the LS-trained regression is less generalizable to
other process conditions. This can be inferred from the global MAPEs,
which demonstrate degradation in performance relative to the respective
best SotA method if the training data set is constrained to contain less
than half of the available absolute time delay variations. In contrast, the
local MAPEs are equally good for all regression methods. Note that the
scale of the plots for the LS-based regressions goes up to 9 % due to the
larger systematic errors. An interesting fact is that the unsupervised
WM-trained regression shows little dependence on the available train-
ing set. This can be seen from the behavior of the average and standard
deviation of the MAPEs, which show a similar magnitude regardless of
the available training data set.

In summary, the supervised WM-trained regression generalizes best to
different process conditions. Furthermore, even though the unsupervised
WM-trained regression has a higher variance, it can be applied with
only little degradation if the available training set contains less varying
process conditions. However, note that WM-trained regression is better
than the best SotA method—here the GCC—regardless of the available
training set or whether the labels used for training are the ground truth
or estimated by the approximation approach.
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Figure 6.19 Performance of the FRM on the test data set D1c|TP1 (blue), if the range of𝜏a that is available during training is constrained. In red the performance on the local test
data set D1cl = {D ⊂ D1c|TP1 | 𝜏a,𝑚 ∈ 𝕥t}, which only contains process conditions that
are contained in the constrained training data set, is given. In order to get the constrained
training data sets, different subsets are sampled from the entire training data set. On the
x-axis, the ranges of the absolute time delays 𝜏a,𝑚 , which are contained in the used subset
of the training data set, normalized by the maximum range of the entire data set D1v|TP1
are given. Since not only the range of the available 𝜏a,𝑚 but also their location influences
the result, subsets with equal range are sampled at ten different locations each. The result
of each used subset is represented by a blue cross mark for the performance on the entire
test data set and a red dot mark for the performance on the local test data set. The solid
lines represent the respective average values and the shaded area represents the one-sigma
range, both calculated based on the results of the ten subsets per given range. The LS- and
the WM-trained regression are combined with the linear model without offset and with
offset, respectively. For each method, the features are selected by the ISS with 𝐾s = 100.
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6.6.6 Domain adaption to different media and attenuation
characteristics

In the previous section, the generalizability to other process conditions
was discussed. However, another interesting question is whether the
training using the data of a specific pipe and medium can also be trans-
ferred to other media or to other attenuation characteristics. For example,
the medium can be changed to ethanol or a damping mat can be installed.
In the field of machine learning, this process of transferring the trained
model to other domains—different media or attenuation situations in
this thesis—is called domain adaption. Usually, the trained parameters
are adapted or fine-tuned to the new domain by considering a small set
of labeled measurement signals of the target domain. Since this would
require further calibration measurements, which are not desirable, this
section investigates the extent to which an already trained FRM can be
applied to other media and damping properties without fine-tuning or
parameter adaptation.

To this end, Figure 6.20 shows the MAPEs of the unsupervised FRM
that result when different combinations of the available training and test
data sets are used. Note that for the training data sets, only the varying-
flow data sets, and for the test data sets only the constant-flow data sets
are used, since varying time-delay differences have to be present in the
training data sets. Due to there being three varying-flow data sets and
three constant-flow data sets, nine different combinations of training and
test data sets exist. Because the previous investigation only considered
the water data sets without a damping mat, the necessary initial feature
set may deviate. Therefore, the results are given for different AWPT tree
levels.

It is easy to realize that a transfer from water to ethanol and vice versa
is not possible (see the bottom row and the right column of Fig. 6.20). In
contrast to that, regardless of whether the FRM is trained on the water
data set with or without a damping mat, it can be applied to all water
data sets with similar quality. The explanation for this behavior is that the
different SoS means that the learned time ranges cannot be transferred to
other media. The fact that the unsupervised FRM still shows significantly
lower MAPEs for ethanol than the best SotA method (10.8 %) shows that
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Figure 6.20 Domain adaptability of the unsupervised FRM, using the ISS (𝐾s = 100) and
the WM-trained linear regression model (5.35a). Here, the MAPE values of the different
TPs using the initial feature sets of the 4th to 9th AWPT tree levels are investigated. In order
to test the transferability of the training to situations with different media or attenuation
characteristics, all available training data sets are combined with all available test data sets.
After training, the FRM is not fine-tuned to adapt to the other domain, i.e., it is evaluated
to which extent the parameters trained on a specific data set can be applied for the TDE
of a data set with a different medium or attenuation characteristic. For the baseline, the
MAPE values, when test and training are performed on the same medium and with the
same attenuation characteristic, are also included and shown on the diagonal. The data set
identifiers can be found in Table 6.1.
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the proposed method also works for other media—provided it is also
trained on the other medium.

Another interesting parameter to observe is the AWPT-tree level used
to generate the initial feature set. For the present ultrasonic system with
its sampling rate and bandwidth, the AWPT-tree level does not have
too much influence on the results as long as it is chosen smaller than9. If the level is chosen too high, the resulting basis function will be
too extended in the time domain, which will prevent the resolution of
different propagation paths.

The last point to notice is the MAPE of the combination D2v/D2c, i.e.,
using water as medium in a pipe with a damping mat installed. Com-
parison with the SotA shows that the FRM cannot further improve the
systematic error. One possible explanation is the complexity of this data
set. Even though the damping mat reduces the interfering signals, the
temperature-dependent damping leads to a violation of the assumption
that the interfering signals are stationary. Therefore, a regression with
constant parameters cannot adequately estimate the delay differences
over the wide temperature range of the test data set.

6.7 Estimator performances compared with the
Cramér-Rao lower bound

The errors in TDE can be separated into systematic errors and stochas-
tic errors. While the systematic errors arise due to wrong model as-
sumptions, interfering signals, or calibration errors, the stochastic errors
originate from measurement noise, jitter, or in this particular case, flow
fluctuations since the flow is fully turbulent. The systematic errors, which
in the considered UFM scenario are mainly caused by the interfering
signals, have been extensively studied and compared to the SotA in the
previous sections by determination of the MAPEs. Therefore, this section
focuses on the stochastic errors of the SDM and FRM. To this end, the
stochastic errors of the respective best SDM and FRM are compared to
the CRLB—a theoretical lower bound for the variance of unbiased esti-
mators. Note that the CRLB is a valid theoretical lower bound only if the
estimators are unbiased and the signal properties such as PSD and ob-
served time range are accurately known. Furthermore, it only represents
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a lower limit for stochastic errors that arise due to measurement noise
and not due to flow fluctuations. Nevertheless, the CRLB can be used
as a reference point to evaluate the magnitude of the stochastic errors in
the UFMs. For comparison, the obtained stochastic errors of two SotA
methods are also examined.

As the input of the SDM and the FRM are measurement signals with
the aim to estimate a time-delay difference, both methods can be consid-
ered time delay estimators. Although they are not unbiased due to the
existence of interfering signals, the stochastic error can nevertheless be as-
sessed by removing the systematic error beforehand. Similarly, the ZCM
and the CC method also represent time delay estimators that are biased
due to the interfering signals and whose stochastic errors can be com-
pared to the CRLB. These two methods are specifically chosen because
they are representative of a time-based TDE and a correlation-based TDE,
respectively.

For the investigation of the stochastic error, artificial AWGN of different
levels is added to the measurement signals of the data set D1c|TP1. The
level of the artificial AWGN is gradually increased in 20 steps to reduce
the initially available SNR stepwise from about 85 dB to about 63 dB. Note
that the actual SNR slightly differs for each measurement, since only
the amplification of the AWGN can be specified and therefore the actual
signal energy of the AWGN is random around its specified mean value.
After applying each method under test to the data set at each noise level,
the stochastic errors are calculated via removing the systematic errors
with the median-based lowpass similar to (6.10). The only difference is
that the errors are not processed as percentages but as absolute errors𝐸a[𝑚] = ̂𝜏𝑚 − 𝜏𝑚, leading to the standard deviation of the stochastic
error 𝜎( ̂𝜏 − 𝜏).

The resulting stochastic errors depending on the SNR are depicted in
Fig. 6.21 on the left side. The time ranges used in the ZCM and CC are
calculated according to the algorithm described at the end of Sec. 6.3.
For the FRM, which is trained on D1v|TP1, the hyperparameters are as
follows: ISS (𝐾s = 100) for the feature selection, approximated labels
for the training, WM-trained linear model with offset for the regression.
Furthermore, the results of the SDM in its JBS-based global compensation
form are plotted. It is easy to observe that the ZCM and the CC method
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Figure 6.21 Considerations on the standard deviation of the proposed estimation methods
compared with two SotA methods. As a reference, the results were plotted against the
CRLB for the present TDE problem.

perform equally well at high SNR, but the CC method can still be used
at low SNR without much degradation. Since the SDM is essentially
the same as the ZCM only with a preprocessing step that removes the
estimated interfering signals, the stochastic errors are determined by
the stochastic components in the estimated interfering signals and the
original stochastic errors of the ZCM. From the fact that the SDM and the
ZCM perform equally it can be shown that the interfering signals com-
pensation does not add any stochastic components to the measurement
signals. The second proposed method, the FRM, can even significantly
improve the stochastic error. This can be explained by two properties
of the approach. On the one hand, the feature selection leads to a time-
frequency selection mask that considers in sum a larger time range for
the estimation of the time-delay differences. On the other hand, the com-
bination of several time ranges also achieves an averaging effect over
different propagation paths, which also reduces the influence of the flow
fluctuation.

Since the different methods use different time ranges of the measure-
ment signal, the CRLB is also different according to (6.11). Therefore, the
results are shown again as a function of the CRLB in Fig. 6.21 on the right
side. This plot underlines that the FRM not only performs best in terms
of stochastic errors but also has the smallest distance to the CRLB, which
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can be seen from the fact that for a fixed SNR, the absolute distance to
the dashed line is the smallest. The other investigated methods have
essentially the same Cramér-Rao efficiency.

6.8 Comparison and discussion
All presented methods for TDE (including the SotA) differ in their re-
quirements, such as labeled or unlabeled training sets, signal packages
with sufficient signal dynamics, or simply a reference and delay signal.
Furthermore, the many hyperparameters of the methods, which all lead
to varying results, make an objective and direct comparison of the meth-
ods difficult. Therefore, the methods are compared with respect to their
requirements: the number of hyperparameters, the necessary preprocess-
ing steps, the achievable measurement dynamics, the practicality, and
the results. Finally, it is discussed which method is considered the best
overall in the example application presented—the UFM scenario.

Firstly, the requirements are discussed. The SotA methods used as
baselines in this dissertation usually only require a single measurement
consisting of a reference and delay signal. In contrast to that, the SDM
requires a signal package consisting of multiple measurements with
varying signal dynamics, i.e., the absolute time delay, the time-delay
difference, or both have to vary within the signal package. Then, the time-
delay difference can be estimated for each signal within the package.
Similarly, the FRM requires such a signal package for the training, for
which even the ground truth for the time-delay differences must be
known as labels in the case of the supervised FRM.

These requirements on the available measurement signals primarily
influence the practicality and the measurement dynamics of a measure-
ment system based on the respective algorithm. The SotA methods, the
FRM and the SDMs in global compensation form only need one measure-
ment for the actual TDE, and thus the measurement dynamics are not
limited by the algorithm. In contrast, the SDMs in local compensation
form or in direct estimation form can only provide estimates after all sig-
nals of a signal package have been recorded. This delays the availability
of an estimation result on average by half of the time needed to record a
signal package with sufficient signal dynamics. Since the signal dynamics
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are purely process-driven, this can sometimes be very long. Although
the FRM and the SDMs in global compensation form can estimate a time-
delay difference individually for each measurement, and thus do not
limit the measurement dynamics, they both require a training data set
beforehand for training in the case of the FRM and for the globally valid
estimation of the interfering signals in case of the SDM. Therefore, in
practice, a calibration procedure would be performed before use. While
the unsupervised FRM and the SDM can be calibrated without knowl-
edge of the ground truth, the supervised FRM needs the ground truth,
which can be provided either by another measuring device or by prepar-
ing the time-delay differences in a calibration environment. However,
both calibration methods are costly, which is why the unsupervised FRM
and the SDMs are preferable in practice.

The next distinguishing feature is the number of hyperparameters. The
FRM has the most hyperparameters of all methods, because the AWPT,
the feature selection, the regression model and its training strategy must
be defined in order to uniquely define the FRM. Nevertheless, the inves-
tigations have shown that only certain combinations of hyperparameters
lead to very good results, and many hyperparameters, such as the num-
ber of features have little effect on quality if they are chosen within certain
limits. This can significantly reduce the number of possible hyperparam-
eter combinations. In contrast, the ZCM has only two parameters, namely
which zero crossing is to be used and the time range used for the linear
approximation of the phase signal. Between the ZCM and the FRM, the
rest of the methods fall in line, with the correlation-like SotA methods
having more hyperparameters than the ZC method—namely the win-
dow type and the processor—and fewer than the SDMs. The SDMs can
also be differentiated even more finely. Here, the JBS method has clearly
more hyperparameters since the optimization for the spline fit is more
complex.

Finally, the quality of the estimates is compared in terms of systematic
and stochastic errors. For this purpose, it is assumed that the basic re-
quirements of all methods are met. Then, the supervised FRM leads to
the smallest systematic error on average, followed by the unsupervised
FRM and the SDM in its global compensation form. The SotA methods
all yield approximately similar systematic errors, which are significantly
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worse than the SDMs and the FRMs on all data sets. However, this is to
be expected, as they are not specifically designed to suppress or filter
interfering signals. While the FRM is a separate learning-based approach,
those SDMs based on the estimation and subtraction of the interfering
signals need to be combined with the SotA methods to perform the TDE.
Although the SDMs are combined only with the ZCM in this dissertation,
the combination with the other correlation-like methods is also possible,
but since the results are expected to be similar, this study was not per-
formed. Regarding the stochastic error, the results show that, again, the
FRM performs best and the SDM neither improves nor worsens the SotA
methods.

In summary, the unsupervised FRM and the SDM with global compen-
sation are considered to be the best methods because the training data
can be collected during normal operation, the measurement dynamics
is not limited and the interfering signals are significantly suppressed
without the stochastic error becoming worse.

Here, it should be noted briefly that since the successful application of
a learning-based approach to TDE, such as the FRM, suggests that TDE
can also be accurately performed using approaches from deep learning,
various network architectures were tested in a Bachelor thesis [150] to
determine the extent to which they can be applied for the present problem.
However, the thesis has shown that due to the lacking training data
even the deep neural network trained in a supervised fashion is not
comparable to the unsupervised FRM, unless a lot of time and effort is
invested into developing an adapted network architecture and a targeted
augmentation strategy. For these reasons, deep learning approaches were
not considered in this dissertation.
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7.1 Summary
In this thesis, two TDE techniques for ultrasonic measurement systems
have been presented, which are specifically designed to filter or be robust
against interfering signals in scenarios where very small time-delay dif-
ferences have to be estimated with high accuracy. Since these challenges
arise in transit-time UFM systems, where the objective is to accurately
measure the VoF, the experimental evaluation of the proposed TDE meth-
ods is based on a transit-time UFM setup. For the quantitative evaluation,
the VoFs in the experiments are converted into the time-delay differ-
ences that are to be estimated from the ultrasonic measurement signals.
Based on these ground truths of the time-delay differences, the proposed
methods can be evaluated in terms of systematic and stochastic error.

Firstly, a signal model has been presented that describes the TDE
problem and the origin of the interfering signals in transit-time UFMs.
Both presented approach classes—the SDM and the FRM—are based
on this signal model, although their principles differ, as the FRM is a
learning-based method for the interference-invariant estimation of the
time-delay differences and the SDM is a method to estimate and remove
the interfering signals before applying a SotA method for TDE.

The requirements of the approaches are that multiple measurements
with varying time delays are available, where each measurement signal
needs to have a small bandwidth. Furthermore, the additive interfering
signals have to be stationary, i.e., they do not vary between consecutive
measurements, and symmetric, i.e., they are additively superimposed
equally on both the reference and delay signals. Evidence that these
requirements are met has been provided by a system identification, which
also quantitatively evaluates the extent to which the assumptions of
stationarity and symmetry hold. It has been shown that the amplitude
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and the time delay of the interfering signals are slightly temperature-
dependent, which limits the accuracy of the interfering signals estimation,
and thus the achievable reduction of the systematic errors.

For the separation of the interfering signals, the SDM employs the
principle that the time delays of the target signals vary when multiple
measurements are considered, while the interfering signals are station-
ary. Therefore, this class of methods represents a generalization of the
methods proposed by Roosnek [99], where it was assumed that the time
delays in the considered measurement package uniformly cover one pe-
riod of the fundamental oscillation. The proposed SDM can significantly
mitigate the boundary condition, so that the time delays can be arbitrarily
distributed within the measurement package and the variation of the
time delays only needs to be large enough to outweigh the measurement
noise. Within the scope of this work, different variants of the SDM have
been presented, with the JBS-based global compensation performing the
best in the exemplary UFM scenario. The JBS-based SDM in its global
compensation form reduced the systematic error on all considered data
sets to less than half compared to the best SotA methods. This leads to the
conclusion that although the interfering signals could not be completely
removed due to their minor non-stationarity, they can be significantly
reduced using the proposed SDM.

The FRM uses the AWPT to get a complex-valued time-frequency
representation of the measurement signals, which is subsequently used
to generate features that correlate with the time delay. After an adapted
feature selection, the remaining features are used as input for a regression
to directly estimate the time delay differences. The experimental results
have shown that the FRM works on different media and is always better
than the best SotA method both in terms of systematic and stochastic
error. Especially for the stochastic errors, the method is closest to the
CRLB. With regard to the dependence on the available training data,
the FRM has been shown to estimate the time-delay difference very
well even outside the process conditions with which it was trained. In
addition, an extension of the FRM has been proposed that also allows an
unsupervised training, i.e., the ground truth of the labels for the training
data set does not need to be known. Thus, the learning-based approach
is directly comparable to the SotA method in terms of practicality, since
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a measurement system can easily be adapted to store past measurement
signals.

In summary, the objective to reduce the influence of interfering sig-
nals in ultrasonic TDEs using the UFM as the application example was
achieved. The residual estimation errors of the proposed methods in the
experimental results can be explained by the deviation of the signals
from the assumed signal model in case of the SDM and by the constraints
imposed on the regression model in the case of the FRM.

7.2 Outlook
The presented SDM puts a strong focus on the representation of the
signal dynamics as point clouds and their processing. However, this
limits the approach to the fact that only variable time delays can be used.
Using an alternative approach as a Bayesian estimation problem, where
the dependence of amplitudes and time delays on process conditions
are learned as functions, the interfering signals estimation can then be
generalized to determine those interfering signals which have the highest
probability, given an observed signal package.

In contrast, the FRM is limited to small time delays due to the feature
design—where small means that the transit time is small relative to the
period duration of the ultrasonic transducer’s operating frequency. This
limitation can be overcome by defining other features that combine mul-
tiple scales in the AWPT tree to be unambiguous over larger transit times.
This in turn requires abandoning the restriction to linear regressions, so
other regression types have to be considered in the extended case.

Apart from improving the proposed methods, there are three direc-
tions for further research: the application of the proposed TDE algorithm
to other applications such as the ultrasonic liquid level metering, the
implementation of the improved path-specific TDE for flow profile imag-
ing in UFMs and the extension of the FRM to other machine learning
concepts.

While the application to other ultrasonic measurement tasks falls into
the category of further validation of the methods, and flow profile imag-
ing is an extension of UFM, from a signal processing perspective, the
extension of the methodology to modern learning techniques is most
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interesting. Here, different neural network architectures can be explored
that can efficiently estimate a time delay on one hand and reduce the
influence of interfering signals on the other hand. For this purpose, con-
cepts have to be developed on how to reduce the requirements on the
amount of training data as well as on how to design suitable augmenta-
tion strategies.
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