34 research outputs found

    State of the Art Lower Limb Robotic Exoskeletons for Elderly Assistance

    Get PDF
    https://ieeexplore.ieee.org/document/8759880/keywords#keywordsThe number of elderly populations is rapidly increasing. Majority of elderly people face difficulties while walking because the muscular activity or other gait-related parameters start to deteriorate with aging. Therefore, the quality of life among them can be suffered. To make their life more comfortable, service providing robotic solutions in terms of wearable powered exoskeletons should be realized. Assistive powered exoskeletons are capable of providing additional torque to support various activities, such as walking, sit to stand, and stand to sit motions to subjects with mobility impairments. Specifically, the powered exoskeletons try to maintain and keep subjects' limbs on the specified motion trajectory. The state of the art of currently available lower limb assistive exoskeletons for weak and elderly people is presented in this paper. The technology employed in the assistive devices, such as actuation and power supply types, control strategies, their functional abilities, and the mechanism design, is thoroughly described. The outcome of studied literature reveals that there is still much work to be done in the improvement of assistive exoskeletons in terms of their technological aspects, such as choosing proper and effective control methods, developing user friendly interfaces, and decreasing the costs of device to make it more affordable, meanwhile ensuring safe interaction for the end-users

    Robotic design and modelling of medical lower extremity exoskeletons

    Get PDF
    This study aims to explain the development of the robotic Lower Extremity Exoskeleton (LEE) systems between 1960 and 2019 in chronological order. The scans performed in the exoskeleton system’s design have shown that a modeling program, such as AnyBody, and OpenSim, should be used first to observe the design and software animation, followed by the mechanical development of the system using sensors and motors. Also, the use of OpenSim and AnyBody musculoskeletal system software has been proven to play an essential role in designing the human-exoskeleton by eliminating the high costs and risks of the mechanical designs. Furthermore, these modeling systems can enable rapid optimization of the LEE design by detecting the forces and torques falling on the human muscles

    SDIO robotics in space applications

    Get PDF
    Robotics in space supporting the Strategic Defense System (SDS) program is discussed. Ongoing initiatives which are intended to establish an initial Robotics in Space capability are addressed. This is specifically being referred to as the Satellite Servicing System (SSS). This system is based on the NASA Orbital Maneuvering Vehicle (OMV) with a Robotic Manipulator(s) based on the NASA Flight Telerobotic Servicer (FTS) and other SSS equipment required to do the satellite servicing work attached to the OMV. Specific Robotics in Space Requirements which have resulted from the completion of the Robotics Requirements Study Contract are addressed

    Tuning and evaluation of a control strategy of an exoskeleton for sit-to-stand motion

    Get PDF
    The mobility of the lower extremities may be affected by neurological conditions such as stroke or spinal cord injury. When, motor function, gait coordination and muscle strength are impaired. Rehabilitation can improve the autonomy of legs movement in order to carry out everyday tasks such as walking or stand up, also known as a Sit-To-stand. Sit-To-Stand is a task that requires considerable effort for those who have suffered a stroke or other type of injury. To perform the Sit-To-stand movement there are variables such as force, velocities, position angles, among others that can be modeled with the use of robotic exoskeletons. This project develops a Sit-To-Stand control strategy implemented in a robotic exoskeleton. This is based on previous work on the development of control strategies for the rehabilitation of the Sit-ToStand. Where Sit-To-Stand transition phases combined with position and admittance control strategies are used. The objectives of this project are to find optimal values of the angles of the joints involved in the transition of the phases and to propose an improvement in the control strategy to assist people with lower extremities movements.Incomin

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes

    Ekonomicky dostupný aktivní exoskeleton pro dolní končetiny pro paraplegiky

    Get PDF
    After a broad introduction to the medical and biomechanical background and detailed review of orthotic devices, two newly developed lower limbs exoskeletons for paraplegics are presented in this study. There was found out the main challenges of designing devices for paraplegic walking can be summarized into three groups, stability and comfort, high efficiency or low energy consumption, dimensions and weight. These all attributes have to be moreover considered and maintained during manufacturing of affordable device while setting a reasonable price of the final product. A new economical device for people with paraplegia which tackles all problems of the three groups is introduced in this work. The main idea of this device is based on HALO mechanism. HALO is a compact passive medial hip joint orthosis with contralateral hip and ankle linkage, which keeps the feet always parallel to the ground and assists swinging the leg. The medial hip joint is equipped with one actuator in the new design and the new active exoskeleton is called @halo. Due to this update, we can achieve more stable and smoother walking patterns with decreased energy consumption of the users, yet maintain its compact and lightweight features. It was proven by the results from preliminary experiments with able-bodied subjects during which the same device with and without actuator was evaluated. Waddling and excessive vertical elevation of the centre of gravity were decreased by 40% with significantly smaller standard deviations in case of the powered exoskeleton. There was 52% less energy spent by the user wearing @halo which was calculated from the vertical excursion difference. There was measured 38.5% bigger impulse in crutches while using passive orthosis, which produced bigger loads in upper extremities musculature. The inverse dynamics approach was chosen to calculate and investigate the loads applied to the upper extremities. The result of this calculation has proven that all main muscle groups are engaged more aggressively and indicate more energy consumption during passive walking. The new @halo device is the first powered exoskeleton for lower limbs with just one actuated degree of freedom for users with paraplegia.První část práce je věnována obsáhlému úvodu do zdravotnické a biomechanické terminologie a detailnímu souhrnnému představení ortopedických pomůcek. Následně jsou představeny dva nově vyvinuté exoskelety aplikovatelné na dolní končetiny paraplegiků. Bylo zjištěno, že hlavní úskalí konstrukčního návrhu asistenčních zařízení pro paraplegiky lze shrnout do tří hlavních skupin, jako první je stabilita a komfort, druhá je vysoká účinnost a nízká energetická náročnost uživatele a do třetí lze zahrnout rozměry a hmotnost zařízení. Toto všechno je navíc podmíněno přijatelnou výslednou cenou produktu. Nový ekonomicky dostupný exoskelet pro paraplegiky, který řeší problematiku všech tří zmíněných skupin je představen v této práci. Hlavní myšlenka tohoto zařízení je postavena na mechanismu HALO ortézy. HALO je kompaktní pasivní ortéza s mediálním kyčelním kloubem umístěným uprostřed mezi dolními končetinami. Speciální mediální kyčelní kloub je kontralaterálně propojen s kotníkem soustavou ocelových lanek což zajištuje paralelní polohu chodidla se zemí v každém okamžiku chůze a navíc asistuje zhoupnutí končetiny. Tento mediální kyčelní kloub je redesignován a v novém provedení je vybaven jedním aktuátorem, nové řešení aktivního exoskeletu dostalo název @halo. Díky tomuto vylepšení lze dosáhnout stabilnější a plynulejší chůze s výrazně redukovanou energetickou náročností uživatele přičemž dochází k zachování nízké hmotnosti a kompaktnosti zařízení. Toto bylo dokázáno během předběžných experimentů se zdravými subjekty, během kterých byla testována aktivní chůze se zařízením vybaveným odnímatelnou pohonnou jednotkou a pasivní chůze se stejným zařízením bez této aktivní jednotky. Nadměrné naklánění se během chůze ze strany na stranu a nadměrná výchylka pohybu těžiště těla ve vertikálním směru byly sníženy o necelých 40% s velmi významně menšími standardními odchylkami v případě chůze s pohonem. Z rozdílu výchylky pohybu těžiště těla ve vertikální poloze bylo vypočítáno snížení energetické náročnosti uživatele o 52% při chůzi s aktivní konfiguraci @halo. Při pohybu s pasivní ortézou byl naměřen o 38,5% větší reakční silový impuls v berlích, což znamená nárůst zátěže pro svalový aparát horních končetin. Pro podrobné vyšetření zátěže ramenních kloubů byl aplikován model inverzní dynamiky. Výsledek tohoto výpočtu jednoznačně indikuje agresivnější a hlubší zapojení všech svalových skupin ramenního kloubu a tím vyšší spotřebu energie uživatelem během pasivní chůze. Nové asistenční zařízení @halo je prvním exoskeletem svého druhu pro paraplegiky s jediným poháněným stupněm volnosti.354 - Katedra robotikyvyhově

    Design and simulation analysis of an improved lower limb exoskeleton

    Get PDF
    The lower extremity exoskeleton robot is a type of power assisted robot which can enhance the human walking function. A fundamental problem in the development of the exoskeleton is the choice of lightweight actuators. Thus in the mechanical structure design in this paper, the linear motor is selected as it greatly reduces the complexity of the mechanical structure. Furthermore, the limit switch inside the motor improves the safety performance. Based on the last version of the exoskeleton, the band positions, length adjusting holes and mechanical limit structures are increased. In addition, a control system based on DSP is designed. Furthermore, a kinematics analysis is carried out using the D-H parameter method and a dynamic analysis is developed using the Newton-Euler method. The driving force of every joint is obtained during the simulation using ADAMS software

    Hierarchical Shared Control of Cane-Type Walking-Aid Robot

    Get PDF
    corecore