10 research outputs found

    Supervisory Control of Line Breakage for Thruster-Assisted Position Mooring System

    Get PDF
    Thruster-assisted position mooring (TAPM) is an energy-efficient and reliable stationkeeping method for deep water structures. Mooring line breakage can significantly influence the control system, and ultimately reduce the reliability and safety during operation and production. Therefore, line break detection is a crucial issue for TAPM systems. Tension measurement units are useful tools to detect line failures. However, these units increase the building cost of the system, and in a large portion of existing units in operation line tension sensors are not installed. This paper presents a fault-tolerant control scheme based on estimator-based supervisory control methodology to detect and isolate a line failure with only position measurements. After detecting a line break, a supervisor switches automatically a new controller into the feedback loop to keep the vessel within the safety region. Numerical simulations are conducted to verify the performance of the proposed technique, for a turret-based mooring system.© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. This is the authors’ accepted and refereed manuscript to the articl

    Review of dynamic positioning control in maritime microgrid systems

    Get PDF
    For many offshore activities, including offshore oil and gas exploration and offshore wind farm construction, it is essential to keep the position and heading of the vessel stable. The dynamic positioning system is a progressive technology, which is extensively used in shipping and other maritime structures. To maintain the vessels or platforms from displacement, its thrusters are used automatically to control and stabilize the position and heading of vessels in sea state disturbances. The theory of dynamic positioning has been studied and developed in terms of control techniques to achieve greater accuracy and reduce ship movement caused by environmental disturbance for more than 30 years. This paper reviews the control strategies and architecture of the DPS in marine vessels. In addition, it suggests possible control principles and makes a comparison between the advantages and disadvantages of existing literature. Some details for future research on DP control challenges are discussed in this paper

    Design of hybrid controller for dynamic positioning from calm to extreme sea conditions

    No full text
    10.1016/j.automatica.2006.11.017Automatica435768-785ATCA

    Application of Machine and Deep Learning to Mooring, Dynamic Positioning, and Ship Berthing Systems

    Get PDF
    In recent years, there have been a surge of advances in machine and deep learning due to accessibility to a large amount of digital data, developments in computer hardware, and state-of-the-art machine and deep learning algorithms proposed. The robust performance of the recent machine and deep learning algorithms have been proven in many applications such as natural language processing, computer vision, market research, self-driving car, autonomous shipping, and so on. The application of machine and deep learning is very powerful in a sense that one does not need to build such a complex and hard-coded system to implement sophisticated functionality. Instead, a machine and deep learning-based system can be trained on a collected training dataset and the trained system can robustly perform as desired. There are two main advantages of the use of machine and deep learning-based systems over the traditional hard-coded systems. First, as mentioned, the machine and deep learning-based systems do not require such complex and hard-coded algorithms, therefore, such learning systems are less prone to errors and faster to implement without much debugging. Second, the machine and deep learning-based systems can adapt to varying circumstances through re-training based on collected data. An example of the varying circumstance can be a varying purchase trend impacted by the media. Therefore, even if the input distribution from the circumstance changes over time, the machine and deep learning-based systems can easily adapt. In this paper, the machine and deep learning algorithms are applied to various applications such as a mooring system, dynamic positioning system (DPS), and ship berthing system. Specifically, the machine and deep learning algorithms are utilized to build a mooring line tension prediction system, a feed-forward system for DPS, an adaptive proportional-integral-derivative (PID) controller for DPS, and an automatic ship berthing system.1. Introduction 1 2. Background of Machine and Deep Learning 4 2.1 Machine Learning 4 2.2 Deep Learning 9 2.2.1 Types of Deep Learning Layers 9 2.2.2 Activation Function and Weight Initialization Methods 18 2.2.3 Optimizers 19 2.2.4 Training Dataset Scaling 26 2.2.5 Transfer Learning 28 2.3 Reinforcement Learning 28 3. Machine Learning-Based Mooring Line Tension Prediction System 39 3.1 Introduction 39 3.2 Brief Comparison Between Conventional and Proposed Mooring Line Tension Prediction Systems 40 3.3 Proposed K-Means-Based Sea State Selection Method 41 3.3.1 Padding 42 3.3.2 K-Means 44 3.3.3 K-Means-Based Monte Carlo Method 45 3.3.4 Feature Vector Generation 47 3.3.5 Clustering of Relevant Sampled Sea States with K-Means 48 3.4 Proposed Hybrid Neural Network Architecture 50 3.4.1 Architecture 50 3.4.2 Training Procedure 54 3.5 Simulation and Result Discussion 55 3.5.1 Simulation Conditions 55 3.5.2 Overall Hs-focused NN model 56 3.5.3 Effectiveness of Batch Normalization 59 3.5.4 Low Hs-focused NN model 60 3.5.5 Proposed Hybrid Neural Network Architecture 61 4. Motion Predictive Control for DPS Using Predicted Drifted Ship Position Based on Deep Learning and Replay Buffer 65 4.1 Introduction 65 4.2 PID Feed-Back System and Wind Feed-Forward System 66 4.3 Proposed Motion Predictive Control 69 4.4 Numerical Modeling of Target Ship's Behavior 73 4.4.1 Target Ship and DPS 73 4.4.2 Equation of Motion of Target Ship 74 4.5 Effectiveness of Proposed Algorithms 76 4.5.1 Simulation Conditions 76 4.5.2 Types of Deep Learning Layers 77 4.5.3 Real-Time Normalization Method 78 4.5.4 Replay Buffer 80 4.6 Simulation and Result Discussion 81 4.6.1 Simulation Under One Environmental Condition 81 4.6.2 Simulation Under Two Different Sequential Environmental Conditions 84 5. Reinforcement Learning-Based Adaptive PID Controller for DPS 88 5.1 Introduction 88 5.2 Target Ship and DPS 90 5.2.1 PID Control in DPS 91 5.2.2 Hydrodynamics Associated with a Drifting Motion of a Ship 93 5.3 Proposed Adaptive Fine-Tuning System for PID Gains in DPS 95 5.4 Simulation Results 99 5.4.1 Effectiveness of the Proposed Adaptive Fine-Tuning System 99 5.4.2 Overall Performance Assessment 103 5.5 Discussion 107 6. Application of Recent Developments in Deep Learning To ANN-based Automatic Berthing System 111 6.1 Introduction 111 6.2 Mathematical Model of Ship Maneuvering 112 6.2.1 Mathematical Model for Ship-Maneuvering Problem 113 6.2.2 Modeling of Propeller and Rudder 114 6.3 Artificial Neural Network and Important Factors in Training the Network 115 6.3.1 Artificial Neural Network 115 6.3.2 Optimizer 117 6.3.3 Input Data Scaling 117 6.3.4 Number of Hidden Layers 118 6.3.5 Overfitting Prevention 118 6.4 Application of Recent Developments in Deep Learning to Automatic Berthing 119 6.5 Simulation and Result Discussion 125 7. Conclusion 131 7.1 Machine Learning-Based Mooring Line Tension Prediction System 131 7.2 Motion Predictive Control for DPS Using Predicted Drifted Ship Position Based on Deep Learning and Replay Buffer 132 7.3 Reinforcement Learning-Based Adaptive PID Controller for DPS 133 7.4 Application of Recent Developments in Deep Learning to ANN-Based Automatic Berthing System 134Maste

    INTELLIGENT ESTIMATION IN DYNAMIC POSITIONING SYSTEMS OF MARINE VESSELS

    Get PDF
    Sustavi za dinamičko pozicioniranje plovnih objekata koriste se za održavanje njihove pozicije, smjera napredovanja i brzine, održavanje unaprijed definirane putanje gibanja, potpomognuto sidrenje i sl. Da bi se ove operacije uopće mogle provoditi, nužno je, između ostalog, omogućiti i određivanje precizne estimacije niskofrekventne pozicije, smjera napredovanja i brzine plovnog objekta, te estimaciju vjetrovnog i sporopromjenjivog opterećenja koje uzrokuju ostali vanjski poremećaji. U realnim sustavima za pozicioniranje plovnih objekata funkciju observera, tj. estimatora, ima neka od inačica Kalmanovog filtra koji ima već dugu tradiciju u brodskim sustavima upravljanja. U radu su analizirani klasični koncepti na kojima su temeljeni postojeći sustavi za dinamičko pozicioniranje te su istražene značajke dinamičkog pozicioniranja plovnih objekata s teoretske i praktične strane, posebno u dijelu koji se odnosi na problematiku filtriranja, identifikacije, estimacije i predikcije. Uočene su brojne prednosti, ali i nedostaci postojećih rješenja koji se mogu otkloniti primjenom novijih računalnih tehnologija kao što su algoritmi strojnog učenja i računalne inteligencije. Iz navedenih razloga, predložene su i konstruirane strukture statičkih, dinamičkih i hibridnih inteligentnih identifikatora i estimatora za potrebe identifikacije i estimacije u sustavima za dinamičko pozicioniranje. Od posebnog značaja su predloženi hibridni sustavi inteligentnih identifikatora i estimatora s proširenim Kalmanovim filtrom te inteligentni identifikatori za fuziju senzorskih informacija i rekonstrukciju signala u prekidu. Predloženi inteligentni identifikatori i estimatori su verificirani na realnim mjerenjima DP Log arhive dizaličara i cjevopolagača Saipem 7000 tijekom postupka polaganja cijevi na Projektu Ormen Lange (Norveška, 2006.).Dynamic positioning (DP) systems are used for maintaining position, heading and speed of the vessels, but also a predefined motion path, position mooring, etc. To ensure performing of these operations, it is necessary, among other things, to determine an accurate estimation of low-frequency position, heading and speed of the vessel. Additionally, it is necessary to ensure the estimation of wind and slowly-varying loads caused by other environmental disturbances. In actual DP systems, the vessel observer is usually an extended Kalman filter (EKF) which is traditionally used in marine control systems. In this doctoral thesis the classical base concepts of the existing commercial DP systems are analysed. Furthermore, the characteristics of DP systems are analysed both from the theoretical and practical point of view, especially in the part which is closely related to filtering, identification, estimation and prediction. Numerous advantages of existing solutions are identified, but also the several disadvantages which can be eliminated by using modern computational technologies such as machine learning and computational intelligence algorithms are pointed out. For these reasons, structures based on static, dynamic and hybrid intelligent identifiers and estimators have been proposed for the purpose of intelligent identification and estimation in DP systems. Proposed hybrid system of intelligent identifiers and estimators combined with EKF, as well as the intelligent identifiers for the sensor fusion and reconstruction of lost signals, are of particular interest. Intelligent identifiers and estimators are further adjusted, tested, and verified with real measurements from the DP Log archive of the heavy-lift and J-lay pipe vessel Saipem 7000

    INTELLIGENT ESTIMATION IN DYNAMIC POSITIONING SYSTEMS OF MARINE VESSELS

    Get PDF
    Sustavi za dinamičko pozicioniranje plovnih objekata koriste se za održavanje njihove pozicije, smjera napredovanja i brzine, održavanje unaprijed definirane putanje gibanja, potpomognuto sidrenje i sl. Da bi se ove operacije uopće mogle provoditi, nužno je, između ostalog, omogućiti i određivanje precizne estimacije niskofrekventne pozicije, smjera napredovanja i brzine plovnog objekta, te estimaciju vjetrovnog i sporopromjenjivog opterećenja koje uzrokuju ostali vanjski poremećaji. U realnim sustavima za pozicioniranje plovnih objekata funkciju observera, tj. estimatora, ima neka od inačica Kalmanovog filtra koji ima već dugu tradiciju u brodskim sustavima upravljanja. U radu su analizirani klasični koncepti na kojima su temeljeni postojeći sustavi za dinamičko pozicioniranje te su istražene značajke dinamičkog pozicioniranja plovnih objekata s teoretske i praktične strane, posebno u dijelu koji se odnosi na problematiku filtriranja, identifikacije, estimacije i predikcije. Uočene su brojne prednosti, ali i nedostaci postojećih rješenja koji se mogu otkloniti primjenom novijih računalnih tehnologija kao što su algoritmi strojnog učenja i računalne inteligencije. Iz navedenih razloga, predložene su i konstruirane strukture statičkih, dinamičkih i hibridnih inteligentnih identifikatora i estimatora za potrebe identifikacije i estimacije u sustavima za dinamičko pozicioniranje. Od posebnog značaja su predloženi hibridni sustavi inteligentnih identifikatora i estimatora s proširenim Kalmanovim filtrom te inteligentni identifikatori za fuziju senzorskih informacija i rekonstrukciju signala u prekidu. Predloženi inteligentni identifikatori i estimatori su verificirani na realnim mjerenjima DP Log arhive dizaličara i cjevopolagača Saipem 7000 tijekom postupka polaganja cijevi na Projektu Ormen Lange (Norveška, 2006.).Dynamic positioning (DP) systems are used for maintaining position, heading and speed of the vessels, but also a predefined motion path, position mooring, etc. To ensure performing of these operations, it is necessary, among other things, to determine an accurate estimation of low-frequency position, heading and speed of the vessel. Additionally, it is necessary to ensure the estimation of wind and slowly-varying loads caused by other environmental disturbances. In actual DP systems, the vessel observer is usually an extended Kalman filter (EKF) which is traditionally used in marine control systems. In this doctoral thesis the classical base concepts of the existing commercial DP systems are analysed. Furthermore, the characteristics of DP systems are analysed both from the theoretical and practical point of view, especially in the part which is closely related to filtering, identification, estimation and prediction. Numerous advantages of existing solutions are identified, but also the several disadvantages which can be eliminated by using modern computational technologies such as machine learning and computational intelligence algorithms are pointed out. For these reasons, structures based on static, dynamic and hybrid intelligent identifiers and estimators have been proposed for the purpose of intelligent identification and estimation in DP systems. Proposed hybrid system of intelligent identifiers and estimators combined with EKF, as well as the intelligent identifiers for the sensor fusion and reconstruction of lost signals, are of particular interest. Intelligent identifiers and estimators are further adjusted, tested, and verified with real measurements from the DP Log archive of the heavy-lift and J-lay pipe vessel Saipem 7000

    INTELLIGENT ESTIMATION IN DYNAMIC POSITIONING SYSTEMS OF MARINE VESSELS

    Get PDF
    Sustavi za dinamičko pozicioniranje plovnih objekata koriste se za održavanje njihove pozicije, smjera napredovanja i brzine, održavanje unaprijed definirane putanje gibanja, potpomognuto sidrenje i sl. Da bi se ove operacije uopće mogle provoditi, nužno je, između ostalog, omogućiti i određivanje precizne estimacije niskofrekventne pozicije, smjera napredovanja i brzine plovnog objekta, te estimaciju vjetrovnog i sporopromjenjivog opterećenja koje uzrokuju ostali vanjski poremećaji. U realnim sustavima za pozicioniranje plovnih objekata funkciju observera, tj. estimatora, ima neka od inačica Kalmanovog filtra koji ima već dugu tradiciju u brodskim sustavima upravljanja. U radu su analizirani klasični koncepti na kojima su temeljeni postojeći sustavi za dinamičko pozicioniranje te su istražene značajke dinamičkog pozicioniranja plovnih objekata s teoretske i praktične strane, posebno u dijelu koji se odnosi na problematiku filtriranja, identifikacije, estimacije i predikcije. Uočene su brojne prednosti, ali i nedostaci postojećih rješenja koji se mogu otkloniti primjenom novijih računalnih tehnologija kao što su algoritmi strojnog učenja i računalne inteligencije. Iz navedenih razloga, predložene su i konstruirane strukture statičkih, dinamičkih i hibridnih inteligentnih identifikatora i estimatora za potrebe identifikacije i estimacije u sustavima za dinamičko pozicioniranje. Od posebnog značaja su predloženi hibridni sustavi inteligentnih identifikatora i estimatora s proširenim Kalmanovim filtrom te inteligentni identifikatori za fuziju senzorskih informacija i rekonstrukciju signala u prekidu. Predloženi inteligentni identifikatori i estimatori su verificirani na realnim mjerenjima DP Log arhive dizaličara i cjevopolagača Saipem 7000 tijekom postupka polaganja cijevi na Projektu Ormen Lange (Norveška, 2006.).Dynamic positioning (DP) systems are used for maintaining position, heading and speed of the vessels, but also a predefined motion path, position mooring, etc. To ensure performing of these operations, it is necessary, among other things, to determine an accurate estimation of low-frequency position, heading and speed of the vessel. Additionally, it is necessary to ensure the estimation of wind and slowly-varying loads caused by other environmental disturbances. In actual DP systems, the vessel observer is usually an extended Kalman filter (EKF) which is traditionally used in marine control systems. In this doctoral thesis the classical base concepts of the existing commercial DP systems are analysed. Furthermore, the characteristics of DP systems are analysed both from the theoretical and practical point of view, especially in the part which is closely related to filtering, identification, estimation and prediction. Numerous advantages of existing solutions are identified, but also the several disadvantages which can be eliminated by using modern computational technologies such as machine learning and computational intelligence algorithms are pointed out. For these reasons, structures based on static, dynamic and hybrid intelligent identifiers and estimators have been proposed for the purpose of intelligent identification and estimation in DP systems. Proposed hybrid system of intelligent identifiers and estimators combined with EKF, as well as the intelligent identifiers for the sensor fusion and reconstruction of lost signals, are of particular interest. Intelligent identifiers and estimators are further adjusted, tested, and verified with real measurements from the DP Log archive of the heavy-lift and J-lay pipe vessel Saipem 7000

    Automatic marine: a review from a control point of view.

    Get PDF
    [EN] Automatic control is an horizontal subject and many of their branches are applied in the marine fields: robotics, control engineering, artificial intelligence, modeling and simulation, sensors and actuators. The paper presents an overview of some of the major advances that have taken place from the point of view of marine vehicles modeling, identification and control.[ES] La Automática es una disciplina horizontal muchos de cuyos temas se aplican en el campo del sector marítimo, como son: la robótica, la ingeniería de control, la inteligencia artificial, el modelado y la simulación, los sensores y los actuadores. En este trabajo hacemos una revisión de los avances que han tenido lugar en los últimos años desde el punto de vista del modelado, la identificación y el control de los vehículos marinos.Este trabajo ha sido desarrollado gracias al apoyo de la Secretaría de Estado de Investigación, Desarrollo e Innovación mediante los proyectos coordinados DPI2009-14552-C02-01 y DPI2009-14552-C02-02.De La Cruz García, JM.; Aranda Almansa, J.; Girón Sierra, JM. (2012). Automática marina: una revisión desde el punto de vista del control. Revista Iberoamericana de Automática e Informática industrial. 9(3):205-218. https://doi.org/10.1016/j.riai.2012.05.001OJS20521893ABS, 2006. Guide for Vessel Maneuverability. American Bureau of Shipping. ABS Plaza 16855 Northchase Drive, Houston, TX 77060 USA.Aguiar et al., Aguiar, A.P., Hespanha, J.P. and Kokotović, P. 2005.Path-following for non- minimum phase systems removes performance limitations. IEEE Trans. Autom. Control, vol. 50, 2, pp. 234-239.Aguiar, A.P. and Hespanha, J.P. 2007. Trajectory-Tracking and Path- Following of Underactuated Autonomous Vehicles with Parametric Modeling Uncertainty. IEEE Trans. Autom. Control, vol. 52, 8, pp. 1362-1379.ANSYS, 2012. http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics.(acceso marzo 2012).Aranda, J., de la Cruz, J.M., Diaz, J.M., de Andrés, B, Ruiperez, P., Esteban, S., Girón, J.M., 2000. Modelling of a High Speed Craft by a Nonlinear Least Squares Method with Constraints. Proceedings of the 5th IFAC Conference on Maneuvring and Control of Marine Craft (MCMC’2000). Aalborg, Denmark. Pp. 227-232.Aranda, J., de la Cruz, J.M., Diaz,J.M., 2004. Identification of multivariable models of fast ferries. European Journal of Control, 10 (2), pp. 187-198.Aranda, J., de la Cruz, J.M.,,Diaz, J.M., 2005a. Design of a multivariable robust controller to decrease the motion sickness incidence in fast ferries. Control Engineering Practice 13 (8), pp. 985-999.Aranda, J., Muñoz-Mansilla, R., Dıaz, J.M., 2005b. Robust control for the coupling of lateral and longitudinal dynamics in high-speed crafts. In: Proceedings of the 16th World Congress of the IFAC, Prague.Ashrafiuon, H., and Muske, K.R., 2008. Sliding Mode Tracking Control of Surface Vessels. 2008 American Control Conference, pp.-558-561.Ǻström, K.J., Källström, C.G., 1976. Identification of ship steering dynamics. Automatica12 (1), pp. 9-22.Barros, E.A., Pascoal, A. and de Sa, E., 2008. Investigation of a method for predicting AUV derivatives. Ocean Engenieering, vol. 35, pp. 1627-1636.Behal, A., Dawson, D., Dixon, W. and Fang, Y. 2002. Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. Autom. Control, vol. 47, 3, pp. 495-500.Bhattacharyya, S.K. and Haddara M. R., 2006. Parametric Identification for Nonlinear Ship Maneuvering. Journal of Ship Research, Vol. 50, No. 3, September 2006, pp. 197-207.Bennet, S., 1979. A History of Control Engineering 1800-1930. Peter Peregrinus. London.Bennet, S., 1984. Nicolas Minorsky and the Automatic Steering of Ships. IEEE Control Systems Magazine, vol. 4, 4, pp.10-15.Blanke, M., Knudsen, M., 2006. Efficient parameterization for grey-box model identification of complex physical systems. In: 14th IFAC Symposium on System Identification, SYSID 2006, NewCastle, Australia, pp. 338-343.Casado, M.H. and Ferreiro, R, 2005. Identification of the nonlinear ship model parameters based on the turning test trial and the backstepping procedure. Ocean Engineering, vol. 32, pp.1350-1369.Casado, M.H., Ferreiro, R. and Velasco, F.J., 2007. Identification of Nonlinear Ship Model Parameters Based Turning Circle Test. Journal of Ship Research, vol. 51, 2, pp. 174-181.CFDShip, 2012. http://old.iihr.uiowa.edu/∼shiphydro/cfdshipiowa.htm.(acceso marzo 2012).CEHIPAR, 2012. http://www.cehipar.es/.(acceso marzo, 2012).Chwa, D., 2011. Global Tracking Control of Underactuated Ships With Input and Velocity Constraints Using Dynamic Surface Control Method. IEEE Trans. Control Syst. Techno., vol. 19, 6, pp. 1357-1370.Cummins, W.E., 1962. The impulse response funtion and ship motions. Schiffstechnik 9, 47, pp. 101-109.De la Cruz, J.M., Aranda, J., Ruiperez, P., Diaz, J.M., Marón, A, 1998. Identification of the Vertical Plane Motion Model of a High Speed Craft by Model Testing in Irregular Waves. Proceedings of the IFAC Conference on Control Applications in Marine Systems (CAMS’98) Fukuoka, Japan. Pp. 257-262.De la Cruz, J.M., Aranda, J., Giron-Sierra, J.M., Velasco, F., Esteban, S.,Diaz, J.M. and Andres-Toro, B., 2004. Improving the Confort of a Fast Ferry. IEEE Control Systems Magazine, April, 2004, pp. 47-60.Do, K.D. 2002. Universal controllers for stabilization and tracking of underactuated ships, Syst. Control Lett., vol. 47, pp. 299-317.Do, K.D., Jiang, Z.P. and J. Pan, J. 2002. Underactuated ship global tracking under relaxed conditions. IEEE Trans. Autom. Control, vol. 47, no. 9, pp. 1529-1536.Do, K.D., Jiang, Z.P., & Pan, J. 2003. Robust global stabilization of underactuated ships on a linear course: State and output feedback. International Journal of Control, 76, pp. 1-17.Do, K.D., Pan, J., 2003. Global way point tracking control of underactuated ships under relaxed assumptions. In: Proceedings of the 42 nd IEEE Conference on Decision and Control, pp. 1244-1249.Do, K.D., Jiang, Z.P. and Pan, J. 2004. Robust adaptive path following of underactuated ships, Automatica, vol. 40, no. 6, pp. 929-944.Do, K.D., Pan, J. and Jiang, Z.P. 2004. Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Engineering, vol. 31, pp. 1967-1997.Do, K.D., Pan, J., 2005. Global tracking of underactuated ships with nonzero off- diagonal terms. Automatica 41, 87-95.Do, K.D., Pan, J., 2009. Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems. Springer, London.Do, K.D., 2010. Practical control of underactuated ships. Ocean Engineering, vol. 37, pp. 1111-1119.Encarnaçao, P., Pascoal, A., Arcak, M., 2000a. Path following for autonomous marine craft. In: Proceedings of the 5th IFAC Conference on Manoeuvring and Control of Marine Craft, pp. 117-122.Encarnaçao, P. and A. M. Pascoal, 2000b. 3D path following control of autonomous underwater vehicles. In: Proc. 39th Conf. Decision Control, Sydney, Australia, Dec. 2000.Encarnaçao, P., and Pascoal, A. 2001. Combined trajectory tracking and path following: An application to the coordinated control of autonomous marine craft. In: Proceedingsof the 40th IEEE Conference on Decision and Control, Orlando, FL, vol 1, pp. 964-969.Esteban, S., De la Cruz, J.M., Girón-Sierra, J.M., Andrés, B., Diaz, J.M., Aranda, J., 2000. Fast Ferry Vertical Acceleration Reduction with Active Flaps and T-Foil. In: Proceedings of the 5th IFAC Conference on Maneuvring and Control of Marine Craft (MCMC’2000). Aalborg, Denmark. pp. 233-238.Faltinsen, O.M., 1990. Sea loads on ships and offshore structures. Cambridge University Press.Faltinsen, O.M., 2005. Hydrodynamics of high-speed marine vehicles. Cambridge University Press, New York.Fang M.C. and Luo J.H., 2008a, “The Ship Track Keeping with Roll Reduction Using a Multiple-states PD Controller on the Rudder Operation”, Marine Technology, 2008, 45(1), pp. 21-27.France, W.M, Levadou, M, Treakle, T.W., Paulling, J.R., Michel, K. and Moore, C., 2003. An Investigation of Head-Sea Parametric Rolling and its Influence on Container Lashing Systems, Marine Technology¸ Vol. 40, 1. pp. 1-19.Francescutto, A., G. Bulian, G. and & Lugni, C., 2004. Nonlinear and stochastic aspects of parametric rolling. Marine Technology, 41, 2.Fedyaevsky,K, K. and Sobolev G.V., 1963. Control and stability in ship design. State Union Shipbuilding House.Fredriksen, E., Pettersen, K.Y., 2006. Global K–exponential way-point maneuvering of ships: Theory and experiments. Automatica 42, pp.677-687.Fossen, T.I., 1994. Guidance and Control of Ocean Vehicles. Wiley.Fossen, T.I., Sagatun, S.I. and Sorensen, A.J. 1996. Identification of dynamically positioned ships. Modeling, Identification and Control, vol 17, 2, pp.153-165.Fossen, T.I., 2002. Marine Control Systems. Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics.Fossen, T.I., Breivik, M., & Skjetne, R. (2003). Line-of-Sight Path Following of Underactuated Marine Craft. Proceedings IFAC MCMC’03.Fossen, T.I., 2011. Marine craft hydrodynamics and motion control. John Wiley & Sons.Galeazzi, R. and Perez, T., 2011. A Nonlinear Observer for Estimating K Transverse Stability Parameters of Marine Surface Vessels. In Proc. of the 18th IFAC World Congress, Milan Italy.Galeazzi, R., Holden, C., Blanke, M. and; Fosse n, T.I., 2009a. Stabilisation of Parametric Roll Resonance by Combined Speed and Fin Stabiliser Control. Proc. of the European Control Conference, pp. 4895-4900.Galeazzi, R., Blanke, M. and Poulsen, N.K., 2009b. Detection of Parametric Roll Resonance on Ships from Indication of Nonlinear Energy Flow. In: 7th IFAC Symp. on Fault Detection, Supervision and Safety of Technical Processes. Sants Hotel, Spain.Conference Maneuvering and Control of Marine Craft (MCMC’03) Girona, Spain.Krstic, M., Kanellakopoulos, I., Kokotovic, P., 1995. Nonlinear and Adaptive Control Design. Wiley, New York.Lamb, H., 1932. Hydrodynamics, 6th Edition. Dover, New York, Chapter VI.Lloyd, A.E.J.M., 1989. Seakeeping; ship behavior in rough water. Ellis Horwood Ltd.Levadou, M and van’t Veer R., 2011. Parametric roll and ship design. In: M.A.S. Neves et al. (eds). Contemporary Ideas on Ship Stability and Capsizing in Waves. Fluid Mechanics and Its applications 96, pp.307-330. Springer. DOI 10 1007/978-94-007-1482-3_18.Lewis, E.V., 1989. Principles of Naval Architecture, Society of Naval Architects & Marine Engineers (SNAME), New Jersey, 1989.Liao, Y., Wan, L. and Zhuang, J., 2011. aBackstepping dynamical sliding. mode control method for the path following of the underactuated surface. vessel. Procedia Engineering 15, pp. 256-263.Luo W. L. and Zou Z. J., 2009. Parametric Identification of Ship Maneuvering Modelsby Using Support Vector Machines.Journal of Ship Research, Vol. 53, 1, pp. 19-30.Mahfouz, A.B., and Haddara, M.R. 2003. Effects of the damping and excitation on the identification of the hydrodynamic parameters for an underwater robotic vehicle, Ocean Engineering, 30, pp. 1005-1025.Mahfouz, A.B., 2004. Identification of the nonlinear ship rolling motion equation using the measured response at sea, Ocean Engineering, 31, pp. 2139-2156.MARIN, 2012. http://www.marin.nl/web/Facilities-Tools/Software/CFD.htm.(acceso, marzo 2012).MARINTEK, 2012. http://www.sintef.no/home/MARINTEK/Software-developed-at-MARINTEK/VERES/.(acceso marzo 2012).Muñoz-Mansilla R., Aranda J., Diaaz J.M.,, de la Cruz, J.M., 2009. Parametric Model Identification of High-Speed Craft Dynamics. Ocean Engineering, 36, pp. 1025-1038.Newman, J.N., 1977. Marine Hydrodynamics. MIT Press.Nguyen, T.D., Sorensen, A.J., & Quek, S.T. (2007). Design of hybrid controller for dynamic positioning from calm to extreme sea conditions. Automatica, 43(5), pp.768-785.O’Brien, J., 2009. Multi-path nonlinear dynamic compensation for rudder roll tabilization. Control Engineering Practice, vol. 17, pp. 1405-1414.Ogilvie, T.F., 1964. Recent progress toward the understanding and prediction of ship motions. In: The Fifth Symposium on Naval Hydrodynamics. pp. 3-128.Ohtsu, K., Horigome, M. and G. Kitagawa, 1979. A New Ship's Auto Pilot Design Through a Stochastic Model. Automatica, 15,3, pp 255-268, May 1979.Panneer Selvam, R., Bhattacharyya, S.K. and Haddara M. R., 2005. A frequency domain system identification method for linear ship maneuvering. International Shipbuilding Progrress, 52, no. 1, pp. 5-27.Perez, T., 2005. Ship Motion Control. Course Keeping and Roll Stabilization Using Rudder and Fins. Springer Verlag.Perez, T., & Goodwin, G. (2007). Constrained predictive control of ship fin stabilizers to prevent dynamic stall. Control Engineering Practice, 16(4), 482-494.Perez, T. and Fossen, T.I., 2008. Time- vs. Frequency-domain Identification of Parametric Radiation Force Models for Marine Structures at Zero Speed. Modeling, Identification and Control, Vol. 29, 1, pp. 1-19. Open source, http://www.mic-journal.no.Perez, T. and Fossen, T.I., 2009. A Matlab Toolbox for Parametric Identification of Radiation-Force Models of Ships and Offshore Structures. Modeling, Identification and Control, Vol. 30, 1, pp. 1-15. Open source, http://www.mic-journal.no.Perez, T. and Revestido-Herrero, E. (2010). Structure selection in nonlinear Ship manoeuvring models. In: 8th IFAC CAMS2010, Conference on Control Applications in Marine Systems. Warnemnde (Rostock).Revestido-Herrero, E., Velasco, J., López, El and Moyano, E., 2012. Diseño de Experimentos para la Estimación de Parámetros de Modelos de Maniobra Lineales de Buques. Revista Iberoamericana de Automática e Informática.Rueda, T.M., Velasco, F.J., Moyano, E., López, E. and de la Cruz, J.M., 2005. Application of a robust qft linear control method to the course changing manoeuvring of a ship. Journal of Maritime Research, Vol. 2, pp. 69-86.Santos, M., López, R. and de la Cruz, J.M., 2004. Fuzzy control of the vertical acceleration of fast ferries. Control Engineering Practice, 13, pp. 305-313.SEAWAY, 2012. http://www.shipmotions.nl/DUT/Software/index.html.(acceso, marzo 2012).Sellars F.H. and Martin, J.P., 1992. Selection and evaluation ofship roll stabilization systems. SNAME, 29, 2, pp. 84-101.SNAME Transactions, 109, pp. 1-51. (2001).Sørensen, A.J. (2005). Structural issues in the design and operation of marine control systems. Annual Reviews in Control, 29(1), pp. 125-149.Sørensen, A.J. (2011). A survey of dynamic positioning control systems. Annual Reviews in Control, 35(1), pp. 123-136.Toussaint, G.J., Basar, T., & Bullo, F. (2000). H∞-optimal tracking control techniques for nonlinear underactuated systems. IEEE Conf. Decision and Control. pp. 2078-2083.Van Amerongen, J. and Udink Ten Cate, 1975. Model reference adaptive autopilots for ships Original Research Article Automatica, 11, 5, pp. 441-449.Van Amerongen, J, 1984. Adaptive Steering of Ships-A Model Reference Approach. Automatica, 20, 1, pp. 3-14.Velasco, F.J., Revestido, E., López, E. and Moyano, E. (2010). Remote laboratory for marine vehicles experimentation. Computer Applications in Engineering Education. doi:10.1002/cae.20444.WAMIT, 2012. http://www.wamit.com/.(acceso marzo 2012).Yoon, H.K., and Rhee, K.P. 2003 Identification of hydrodynamic coefficients in ship maneuvering equations of motion by estimation-before-modeling technique, Ocean Engineering, 30, 2379-2404.Zhou, W.W. and Blanke, M., 1987. Nonlinear Recursive Prediction Error Method Applied to Identification of Ship Steering Dynamics. Proceedings of 8th Ship Control Systems Symposium. The Hague, Oct. 1987.Zhou, W.W. and Blanke, M. 1989. Identification of a class of nonlinear state- space models using RPE techniques, IEEE Transactions on Automatic Control, 34, 3, pp. 312-316
    corecore