

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Thesis for the Degree of Master of Science

Application of Machine and Deep Learning

to Mooring, Dynamic Positioning, and Ship

Berthing Systems

Daesoo Lee

August 2020

Department of Naval Architecture and Ocean Systems Engineering

Graduate School

Korea Maritime and Ocean University

[UCI]I804:21028-200000342184[UCI]I804:21028-200000342184[UCI]I804:21028-200000342184

Application of Machine and Deep Learning

to Mooring, Dynamic Positioning, and Ship

Berthing Systems

by

Daesoo Lee

Advised by

Prof. Seungjae Lee

A Thesis Submitted to the Graduate School of

Korea Maritime and Ocean University in the partial fulfillment

Of the requirements for degree of

Master of Science

Dissertation Committee

Chairman Prof. Sungwook Lee

Prof. Seungjae Lee

Prof. Minjoo Choi

i

Table of Contents

List of Tables ... iv

List of Figures.. vi

Abstract .. xii

1. Introduction

2. Background of Machine and Deep Learning

2.1 Machine Learning... 4

2.2 Deep Learning.. 9

2.2.1 Types of Deep Learning Layers ... 9

2.2.2 Activation Function and Weight Initialization Methods.. 18

2.2.3 Optimizers .. 19

2.2.4 Training Dataset Scaling.. 26

2.2.5 Transfer Learning.. 28

2.3 Reinforcement Learning ... 28

3. Machine Learning-Based Mooring Line Tension Prediction System

3.1 Introduction.. 39

3.2 Brief Comparison Between Conventional and Proposed Mooring Line Tension Prediction
Systems ... 40

3.3 Proposed K-Means-Based Sea State Selection Method .. 41

3.3.1 Padding... 42

3.3.2 K-Means ... 44

3.3.3 K-Means-Based Monte Carlo Method.. 45

3.3.4 Feature Vector Generation... 47

ii

3.3.5 Clustering of Relevant Sampled Sea States with K-Means...................................... 48

3.4 Proposed Hybrid Neural Network Architecture ... 50

3.4.1 Architecture .. 50

3.4.2 Training Procedure.. 54

3.5 Simulation and Result Discussion ... 55

3.5.1 Simulation Conditions ... 55

3.5.2 Overall Hs-focused NN model ... 56

3.5.3 Effectiveness of Batch Normalization .. 59

3.5.4 Low Hs-focused NN model ... 60

3.5.5 Proposed Hybrid Neural Network Architecture .. 61

4. Motion Predictive Control for DPS Using Predicted Drifted Ship Position Based on Deep
Learning and Replay Buffer

4.1 Introduction.. 65

4.2 PID Feed-Back System and Wind Feed-Forward System... 66

4.3 Proposed Motion Predictive Control ... 69

4.4 Numerical Modeling of Target Ship’s Behavior .. 73

4.4.1 Target Ship and DPS ... 73

4.4.2 Equation of Motion of Target Ship... 74

4.5 Effectiveness of Proposed Algorithms... 76

4.5.1 Simulation Conditions ... 76

4.5.2 Types of Deep Learning Layers ... 77

4.5.3 Real-Time Normalization Method.. 78

4.5.4 Replay Buffer.. 80

4.6 Simulation and Result Discussion ... 81

4.6.1 Simulation Under One Environmental Condition ... 81

4.6.2 Simulation Under Two Different Sequential Environmental Conditions.................. 84

5. Reinforcement Learning-Based Adaptive PID Controller for DPS

5.1 Introduction.. 88

5.2 Target Ship and DPS .. 90

5.2.1 PID Control in DPS... 91

5.2.2 Hydrodynamics Associated with a Drifting Motion of a Ship 93

iii

5.3 Proposed Adaptive Fine-Tuning System for PID Gains in DPS...................................... 95

5.4 Simulation Results.. 99

5.4.1 Effectiveness of the Proposed Adaptive Fine-Tuning System 99

5.4.2 Overall Performance Assessment... 103

5.5 Discussion.. 107

6. Application of Recent Developments in Deep Learning To ANN-based Automatic Berthing
System

6.1 Introduction.. 111

6.2 Mathematical Model of Ship Maneuvering.. 112

6.2.1 Mathematical Model for Ship-Maneuvering Problem ... 113

6.2.2 Modeling of Propeller and Rudder ... 114

6.3 Artificial Neural Network and Important Factors in Training the Network 115

6.3.1 Artificial Neural Network.. 115

6.3.2 Optimizer .. 117

6.3.3 Input Data Scaling... 117

6.3.4 Number of Hidden Layers ... 118

6.3.5 Overfitting Prevention ... 118

6.4 Application of Recent Developments in Deep Learning to Automatic Berthing............ 119

6.5 Simulation and Result Discussion ... 125

7. Conclusion

7.1 Machine Learning-Based Mooring Line Tension Prediction System 131

7.2 Motion Predictive Control for DPS Using Predicted Drifted Ship Position Based on Deep
Learning and Replay Buffer .. 132

7.3 Reinforcement Learning-Based Adaptive PID Controller for DPS 133

7.4 Application of Recent Developments in Deep Learning to ANN-Based Automatic Berthing
System .. 134

iv

List of Tables

Table 1 Procedure of the batch normalization during the training... 18

Table 2 Brief procedure of the RL based on the Q function.. 31

Table 3 Overall learning process of the DQN .. 36

Table 4 Overall learning process of the DDPG .. 37

Table 5 Procedure of the K-means-based Monte Casrlo method... 45

Table 6 Procedure of finding the representative sea state in each cluster................................... 49

Table 7 Detailed procedure of training the proposed hybrid neural network architecture........... 54

Table 8 Principal dimension of the target ship ... 55

Table 9 Properties of the mooring lines ... 56

Table 10 Parameter settings for the K-means-based sea state selection method......................... 56

Table 11 Principal dimension of the FPSO .. 73

Table 12 Locations and thrust limits of the azimuth thrusters... 74

Table 13 Settings of the parameters in the proposed motion predictive control 77

Table 14 Environmental condition for the simulations for the effectiveness test 77

Table 15 Details of the three DNNs... 78

Table 16 Statistics of the ship motion time histories with respect to the wind feed-forward and the

proposed motion predictive control (under one environmental condition) 82

Table 17 Two different sequential environmental conditions.. 84

Table 18 Statistics of the ship motion time histories with respect to the wind feed-forward and the

proposed motion predictive control (under two environmental conditions).................................... 86

Table 19 Principal dimension of the FPSO ship... 90

Table 20 Details of DP thrusters.. 91

Table 21 Definition of sea states.. 99

v

Table 22 Environmental condition for the effectiveness test..100

Table 23 Environmental condition for the overall performance test ...104

Table 24 Principal particulars of a target ship ...112

Table 25 List of input data-scaling methods..117

Table 26 Details of training models with respect to activation and weight initialization methods

..119

Table 27 Details of training models with respect to activation and weight initialization methods

..120

Table 28 Procedure for obtaining berthing performance history ..121

Table 29 Details of training models with respect to number of hidden layers...........................122

Table 30 Details of training models when BN is used ...123

Table 31 Trained model selection algorithm for a neural network for automatic ship berthing .125

vi

List of Figures

Fig. 1 Overall configuration of machine learning ... 4

Fig. 2 Example of the labeled training data .. 5

Fig. 3 Illustration of the data clustering.. 6

Fig. 4 Illustration of the dimensionality reduction .. 6

Fig. 5 Illustration of the RL learning.. 7

Fig. 6 Definitions of the machine learning and deep learning.. 8

Fig. 7 Illustration of the ANN and DNN .. 8

Fig. 8 Calculation in one node of the ANN .. 10

Fig. 9 Activation function of the tanh... 10

Fig. 10 Configuration of the DNN ... 11

Fig. 11 Configuration of the RNN layer ... 12

Fig. 12 Configuration of RNN cell... 13

Fig. 13 Example of the long-term dependency ... 13

Fig. 14 Configuration of the LSTM layer ... 14

Fig. 15 Configuration of the LSTM cell ... 14

Fig. 16 Configuration of the GRU layer ... 15

Fig. 17 Configuration of the GRU cell ... 15

Fig. 18 Illustration of the overfitting problem compared to underfitting and appropriate fitting . 16

Fig. 19 Illustration of the dropout .. 17

Fig. 20 Illustration of the gradient descent ... 21

Fig. 21 Illustration of the gradient descent with respect to two weights..................................... 21

Fig. 22 Effects of the learning rate ... 21

Fig. 23 Illustration of the backpropagation in one neuron in the last hidden layer compared to

vii

forward-propagation.. 22

Fig. 24 Illustration of the backpropagation in the DNN .. 23

Fig. 25 Illustration of the effect of different distribution and scale of the input feature vector during

the training.. 27

Fig. 26 Comparison between the traditional learning and the transfer learning.......................... 28

Fig. 27 Diagram of the major RL algorithms.. 29

Fig. 28 Learning process of an agent with MDP... 30

Fig. 29 Common applications of the value-based RL algorithm and the policy-based RL algorithm

... 33

Fig. 30 Illustration of the policy in the value-based RL algorithms ... 34

Fig. 31 Illustration of the policy in the policy-based RL algorithms.. 34

Fig. 32 Illustration of the replay buffer in the DQN.. 36

Fig. 33 Architecture of the actor in the DDPG.. 38

Fig. 34 Brief diagram of the conventional ANN-based mooring line tension prediction system . 40

Fig. 35 Plain ANN model used in the conventional ANN-based mooring line tension prediction

systems ... 41

Fig. 36 Brief diagram of the proposed DL-based mooring line tension prediction system.......... 41

Fig. 37 Detailed diagram of the proposed K-means-based sea state selection method................ 42

Fig. 38 Brief diagram of the CNN’s convolution operation in one layer 43

Fig. 39 Illustration of application of the padding .. 43

Fig. 40 Application of the padding to the wave scatter diagram .. 44

Fig. 41 Examples of data clustering by the K-means .. 45

Fig. 42 Comparison between the typical Monte Carlo method and the K-means-based Monte Carlo

method.. 46

Fig. 43 Application of the K-means-based Monte Carlo method to the padded valid sea state area

... 46

viii

Fig. 44 Comparison between the typical Monte Carlo method and the K-means-based Monte Carlo

method on the padded valid sea state area .. 47

Fig. 45 Example of the FFTCG� .. 48

Fig. 46 Illustration of the clustering of the relevant sampled sea states with the K-means.......... 49

Fig. 47 Illustration of the selected sea states by the representative sea states 50

Fig. 48 Architecture of the proposed hybrid neural network ... 51

Fig. 49 Architecture of the overall Hs-focused NN model .. 52

Fig. 50 Architecture of the low Hs-focused NN model ... 52

Fig. 51 Architecture of the proposed soft-binary attention module.. 53

Fig. 52 Mooring configuration of the target ship .. 56

Fig. 53 Test sea states.. 56

Fig. 54 Selected sea states obtained by the manual sea state selection and the proposed K-means-

based sea state selection method .. 57

Fig. 55 R-squared and MAE scores of the trained overall Hs-focused NN model on the test sea

states... 58

Fig. 56 Predicted tension time histories of the overall Hs-focused NN model trained on the sea

states obtained by the proposed K-means-based sea state selection method................................... 59

Fig. 57 R-squared and MAE scores of the trained overall Hs-focused NN models with and without

the BN on the test sea states... 60

Fig. 58 Sampled low Hs-sea states for ��... 60

Fig. 59 R-squared and MAE scores of the trained low Hs-focused NN model on the test sea states

... 61

Fig. 60 R-squared and MAE scores of the trained hybrid neural network architecture on the test sea

states... 62

Fig. 61 Tension time histories along with the attention value time histories of the trained hybrid

neural network architecture ... 64

ix

Fig. 62 Coordinate system of a ship ... 67

Fig. 63 Structure of the PID feed-back system in the DPS.. 68

Fig. 64 Structure of the PID feed-back system with the wind feed-forward system 69

Fig. 65 Structure of the PID feed-back system with the proposed motion predictive control...... 69

Fig. 66 Structure of the DNN... 71

Fig. 67 Overall training process of the proposed motion predictive control 72

Fig. 68 Arrangement of the azimuth thrusters... 74

Fig. 69 Environmental loads contributing to the drifting motion ... 75

Fig. 70 Ship motion time histories of the three different DNNs based on the ANN, LSTM, and

GRU ... 78

Fig. 71 Ship motion time histories with respect to the use of the real-time normalization method

... 80

Fig. 72 Loss time histories with respect to the use of the real-time normalization method 80

Fig. 73 Ship motion time histories with respect to the use of the replay buffer 80

Fig. 74 Loss time histories with respect to the use of the replay buffer...................................... 81

Fig. 75 Ship motion time histories with respect to the wind feed-forward and the proposed motion

predictive control (under one environmental condition).. 82

Fig. 76 Comparison between the actual and predicted ship motion time histories (under one

environmental condition)... 83

Fig. 77 Thrust time histories with respect to the wind feed-forward and the proposed motion

predictive control (under one environmental condition).. 84

Fig. 78 Ship motion time histories with respect to the wind feed-forward and the proposed motion

predictive control (under two environmental conditions) .. 85

Fig. 79 Comparison between the actual and predicted ship motion time histories (under two

environmental conditions) ... 85

Fig. 80 Global and local coordinate systems .. 91

x

Fig. 81 Arrangement of DP thrusters.. 91

Fig. 82 Structure of the PID control system in the DPS .. 92

Fig. 83 Environmental loads contributing to the drifting motion ... 93

Fig. 84 Difference between the 1st order and 2nd order wave loads .. 94

Fig. 85 Overall structure of the proposed adaptive fine-tuning system 95

Fig. 86 Illustration of the drifting side (direction of an environmental load: right to left)........... 97

Fig. 87 Example of the wave drift load time history (sea state: very rough, environmental direction

to a ship: 40°) ... 97

Fig. 88 Illustration of the large rebound motion caused by the drastic increase of the integral of

error.. 98

Fig. 89 Architectures of the actor and critic.. 98

Fig. 90 Effects of the adaptive PD gains ...101

Fig. 91 Effects of the adaptive I gain and the update gate of the integral of error......................103

Fig. 92 The overall performance assessment of the adaptive fine-tuning system.......................106

Fig. 93 Wave drift loads with respect to the environmental directions (sea state: ‘high’)107

Fig. 94 Directionality of thrust in the control system ...109

Fig. 95 Coordinate system ..112

Fig. 96 Basic architecture of neural network, and concept of imaginary line115

Fig. 97 Teaching dataset...116

Fig. 98 Flowchart for ANN-based ship berthing system ..117

Fig. 99 Loss function histories with respect to activation and weight initialization methods119

Fig. 100 Loss function histories with respect to input data-scaling methods121

Fig. 101 Loss function and berthing performance histories with respect to number of hidden layers

..123

Fig. 102 Set of new initial positions for berthing performance history to verify universal berthing

xi

performance...123

Fig. 103 Loss function and berthing performance histories when BN is used124

Fig. 104 Berthing trajectories with initial positions from training dataset (red: with BN, blue:

without BN) ...127

Fig. 105 Berthing trajectories with interpolated initial positions (red: with BN, blue: without BN)

..128

Fig. 106 Berthing trajectories with extrapolated initial positions, Type 1 (red: with BN, blue:

without BN) ...129

Fig. 107 Berthing trajectories with extrapolated initial positions, Type 2 (red: with BN, blue:

without BN) ...129

Fig. 108 Berthing trajectories with extrapolated initial positions, Type 3 (red: with BN, blue:

without BN) ...130

xii

Application of Machine and Deep Learning

to Mooring, Dynamic Positioning, and Ship Berthing Systems

Daesoo Lee

Department of Naval Architecture and Ocean Systems Engineering

Graduate School of Korea Maritime and Ocean University

Abstract

In recent years, there have been a surge of advances in machine and deep learning due to

accessibility to a large amount of digital data, developments in computer hardware, and state-of-the-

art machine and deep learning algorithms proposed. The robust performance of the recent machine

and deep learning algorithms have been proven in many applications such as natural language

processing, computer vision, market research, self-driving car, autonomous shipping, and so on. The

application of machine and deep learning is very powerful in a sense that one does not need to build

such a complex and hard-coded system to implement sophisticated functionality. Instead, a machine

and deep learning-based system can be trained on a collected training dataset and the trained system

can robustly perform as desired. There are two main advantages of the use of machine and deep

learning-based systems over the traditional hard-coded systems. First, as mentioned, the machine and

deep learning-based systems do not require such complex and hard-coded algorithms, therefore, such

learning systems are less prone to errors and faster to implement without much debugging. Second,

the machine and deep learning-based systems can adapt to varying circumstances through re-training

based on collected data. An example of the varying circumstance can be a varying purchase trend

impacted by the media. Therefore, even if the input distribution from the circumstance changes over

time, the machine and deep learning-based systems can easily adapt. In this paper, the machine and

deep learning algorithms are applied to various applications such as a mooring system, dynamic

positioning system (DPS), and ship berthing system. Specifically, the machine and deep learning

algorithms are utilized to build a mooring line tension prediction system, a feed-forward system for

xiii

DPS, an adaptive proportional-integral-derivative (PID) controller for DPS, and an automatic ship

berthing system.

KEY WORDS: Machine learning, Deep learning, Mooring system, Dynamic positioning system

(DPS), Automatic berthing system

1

Chapter 1 Introduction

Traditionally, the machine and deep learning algorithms were not as widely used as now due to

their limited performance for practical applications. However, in the past decades, there have been

major changes that contributed to wide applications of the machine and deep learning. First, a huge

amount of digital data such as texts, images, and numerical data, became available, which is called

big data in the deep learning literature. Second, an efficient computational approach was developed

for matrix calculation of neural networks by utilizing a Graphics Processing Unit (GPU) instead of a

Central Processing Unit (CPU) in which the neural networks are the main component in the deep

learning. This utilization of the GPU could extraordinarily speed up the neural network training. Third,

the state-of-the-art deep learning algorithms have been proposed for a learning algorithm (optimizer),

a neural network architecture, and a neural network layer. The robust performance of the recent

machine and deep learning algorithms have been proven in many applications such as natural

language processing (NLP), computer vision, market research, self-driving, and so on. For example,

in a domain of language translation in the NLP, it was very difficult to process texts in one language

to another because there are so many things to consider such as different grammar rules, nuance, non-

matching words, words with multiple meanings, gender-dependency, and so on. But, with the help of

the deep learning and the big data, now there are deep-learning-based translators that perform nearly

as good as a human translator. In the computer vision, an image processing is done using something

called a filter which is a � × � matrix and it filters an input image to process to obtain a desired output.

But the filter used to be manually designed by experts in the domain, which made the computer vision

system hard to build. Nonetheless, with the deep learning algorithm called a convolutional neural

network (CNN), the manual design of the filter is no longer needed but the CNN can learn to design

the filter to efficiently process an input image for a given task. There are two main advantages of the

use of machine and deep learning-based systems over the traditional hard-coded systems. First, the

machine and deep learning-based systems do require the hard coding to implement some functionality

for a specific task. Instead, they are just trained to perform the given task. This way, the time to build

a system for the given task can be shortened because building the system is completed once the

training is completed, the developed learning system is less prone to errors, which provides robustness

to the system, and the performance of the system is likely to be better than the hard-coded systems

because the deep learning can learn how to do the task very efficiently beyond human understanding

and intuition on the given task. Second, the machine and deep learning-based systems have

2

adaptability to a varying circumstance which provides a varying input to the system. For hard-coded

systems, it can perform well for a target input data distribution which was set when designed.

However, if the input data distribution changes, the hard-coded system is likely to poorly perform

because it was not designed for the different input data distribution and now requires additional codes

to cope with the change, which is not efficient in terms of maintenance. In case of the machine and

deep learning-based systems, although the input data distribution changes a bit, they can still yield

good performance because the machine and deep learning algorithms have a good extrapolation

ability based on the understanding learned from the training dataset. Even if the input data distribution

changes significantly, the system can be re-trained to adjust to the changed input data distribution,

which makes the machine and deep learning-based systems easier to maintain in the long term.

In this paper, the machine and deep learning algorithms are applied to various applications such as

a mooring system, dynamic positioning system (DPS), and ship berthing system. Specifically, the

machine and deep learning algorithms are utilized to build a mooring line tension prediction system,

a motion predictive control for DPS, a reinforcement learning (RL)-based adaptive proportional-

integral-derivative (PID) controller for DPS, and an automatic ship berthing system.

The proposed mooring line tension prediction system is a system that predicts mooring line top

tension at every timestep given a previous ship motion history based on the deep learning algorithm.

The mooring line tension prediction system has been developed in several previous studies to speed

up dynamic simulation and fatigue analysis on mooring lines by replacing the dynamic simulation

process for the mooring tension calculation with the proposed tension prediction system. This speed-

up can be achieved because the mooring line tension prediction system can calculate the tension very

quickly, while the dynamic simulation requires a huge amount of numerical calculation to represent

the actual system’s dynamic behavior. The quick calculation of the mooring line tension prediction

system is possible because it only requires matrix calculation of the neural network.

The proposed motion predictive control for DPS is a control algorithm for the DPS to reduce the

ship drifting motion. The reduction of the drifting motion is achieved by utilizing a predicted drifted

ship position. The prediction of the drifted ship position is performed by the deep learning algorithm

with its input of ship positions, velocities, acceleration, thrust force, and estimated wind force. A

proportional term in the conventional PID is replaced with the predicted drifted ship position and this

replacement allows the DPS to counteract the future drifting motion in advance, which results in the

reduction of the drifting motion.

3

The proposed RL-based adaptive PID controller for DPS is a PID controller with its gains that

adaptively changes at every timestep. Therefore, the main difference between the RL-based adaptive

PID controller and the conventional PID is the changeability of the gains. The gain change is

performed by the RL algorithm given its input of ship positions, velocities, and thrust force. The RL

algorithm is adopted to perform the adaptive gain change because the RL algorithm does not require

any prior knowledge in ship dynamics or the DPS, but it can still learn an optimal policy for the

adaptive gain control through an interaction with a given environment.

The proposed automatic ship berthing system is an automatic ship berthing system based on the

deep learning system. The deep learning system takes an input of ship positions, velocities, and

perpendicular distances between a target berthing point and a current ship position and outputs a target

rudder angle and a target revolution per second (RPS). Traditionally, the berthing was performed by

an experienced captain because it was a difficult task to automate the berthing due to non-linear

characteristics in a ship motion occurring while berthing, where the non-linear characteristics in the

ship motion during the berthing occurs because of sudden changes in the rudder angle, RPS, and the

slow speed of the ship. However, by the proposed automatic ship berthing system utilizing the deep

learning algorithms, it can effectively automate the berthing process.

In the following chapters, backgrounds of the machine learning, deep learning are first introduced.

Then, details of each proposed system are presented.

4

Chapter 2 Background of Machine and Deep Learning

2.1. Machine Learning

An overall configuration of the machine learning is shown in Fig. 1. The machine learning consists

of three main components: a) supervised learning, b) unsupervised learning, c) reinforcement learning.

Fig. 1 Overall configuration of machine learning

The supervised learning is a type of machine learning where the machine learning system is trained

to yield an appropriate output given an input. Depending on the type of output, the supervised learning

is performed to do either a classification task or a regression task. In the classification task, the type

of output is an integer that refers to a classification index. In the regression task, the type of output is

usually a real number. For example, if the machine learning system is trying to classify whether an

image is a dog or a cat, it is solving the classification problem, and if the machine learning system is

trying to predict a today’s fine dust concentration given an image of the sky, it is solving the regression

problem. When the machine learning is trained by the supervised learning, it requires a labeled

training dataset. The labeled training dataset is the training dataset consisting of pairs of an input and

output (label). An example of the labeled training data is shown in Fig. 2 where the input images are

converted to numeric matrices and the output of the word for the classification is converted to the

5

classification index number for the training. Then, the labeled training dataset is simply a large

number of the input-output pairs stacked.

(a) classification (b) regression

Fig. 2 Example of the labeled training data

The unsupervised learning is a type of machine learning where the machine learning system is

trained with an unlabeled training dataset. Unlike the labeled training dataset, the unlabeled training

dataset does not have the output label but input only. This unlabeled training dataset can be used to

conduct data clustering or dimension reduction. The data clustering is basically grouping scattered

data into multiple groups. Some examples of the data clustering are grouping customers based on

their purchase items and grouping online users based on their search histories. The data clustering

helps to find patterns behind the data. The dimensionality reduction is a technique to effectively

reduce a dimension of input feature vector in which the input feature vector is the input vector that is

fed into the machine learning system. By doing so, the size of the machine learning system can be

reduced as the input feature vector is downsized, which results in faster implementation to yield the

output given the input. Illustrations of the data clustering and dimensionality reduction are shown in

Fig. 3 and Fig. 4, respectively. In Fig. 3, the scattered data is clustered into two groups given the

features of income and spending. It can be seen that a spending pattern can be found through the data

clustering. In Fig. 4, the dimension of a circle in a three-dimension is projected to a two-dimension,

which reduces the dimension of the circle. In the same concept as Fig. 4, the machine learning-based

dimensionality reduction is performed to reduce the dimension of the input feature vector.

6

Fig. 3 Illustration of the data clustering

Fig. 4 Illustration of the dimensionality reduction

The reinforcement learning is a type of machine learning where the machine learning system does

not require any pre-obtained training dataset. But the learning process is performed through an

interaction with a given environment by experiencing trial-and-errors. A unit that interacts with the

given environment is called an agent and the interaction with the environment is done by the agent

taking actions. After the agent takes action in one state in the environment, the agent is given the next

state and a reward in which the reward is a measurement for how good your action was in the previous

state. The agent gets to learn a better and better policy to take appropriate actions to maximize the

rewards. The RL learning is completed when the rewards that the agent can receive are maximized

throughout an episode. The policy that can maximize the rewards is called an optimal policy. An

illustration of the RL learning is shown in Fig. 5 where a penalty is equal to a negative reward.

7

Fig. 5 Illustration of the RL learning

There are two main advantages of the RL. First, the RL algorithm does not need any pre-obtained

training dataset which is often costly to obtain. Without any pre-obtained training dataset, the RL

algorithm can find the optimal policy. Second, the RL algorithm does not require any understanding

of dynamics lying in the environment but the RL algorithm can learn the dynamics through the

interaction with the environment.

So far, a concept of the machine learning has been addressed but not the deep learning. The concept

or definition of the deep learning is often confused with the machine learning. The definitions of the

machine learning and deep learning are shown in Fig. 6 to clarify the definition of each. The machine

learning algorithms refer to algorithms whose performance increases as more and more data is fed to

train. The simplest machine learning algorithm is a linear regression model. Among the machine

learning algorithms, there is one algorithm called an artificial neural network (ANN). Unlike the rest

of the machine learning algorithms whose performance does not increase over a certain amount of

training data, the multi-layered ANN showed an outstanding performance when a vast amount data

is used to train, where the multi-layered ANN is called a multi-layer perceptron (MLP) or a deep

neural network (DNN). Due to its outstanding performance, the DNN became very popular and the

term “deep learning” is given to the DNN-based learning. Illustration of the ANN and DNN are shown

in Fig. 7 where the caret in the output layer refers to a predicted value. The ANN was developed

8

inspired by a neuron in a human brain. Multiple ANNs form an ANN hidden layer and stacked ANN

hidden layers make the DNN. As for the RL, the learning performance of the RL significantly

improved when the RL was conducted based on the DNN.

Fig. 6 Definitions of the machine learning and deep learning

(a) ANN (b) DNN

Fig. 7 Illustration of the ANN and DNN

As mentioned earlier, there are four studies performed in this paper: a) the mooring line tension

prediction system, b) the feed-forward system for DPS, c) the RL-based adaptive PID controller for

DPS, d) the automatic ship berthing system. In the mooring line tension prediction system, one data

clustering machine learning algorithm and deep learning algorithms are used. In the feed-forward

system for DPS, the deep learning algorithms are used. In the RL-based adaptive PID controller, the

9

deep learning algorithms and an RL algorithm are used. In the automatic berthing system, the deep

learning algorithms are used. In the next subchapter, details of the deep learning algorithms used in

these studies are presented.

2.2. Deep Learning

The deep learning algorithms mainly consist of deep learning layers and the optimizers. One deep

learning layer consists of multiple nodes and each node has an activation function that adds non-

linearity in the system. Between the layers, the nodes are connected by edges which consist of

learnable parameters that are updated by the optimizer during the training. The nodes and edges can

be seen in Fig. 7 (b) where calculation of the connecting edges between the two layers is performed

by simple matrix calculation. To make a deep learning system, first, the deep learning system is built

using the deep learning layers with appropriate activation function and weight initialization, then, it

is trained with a training dataset using the optimizer. In this subchapter, the types of deep learning

layers, activation function and weight initialization methods, and the optimizers are introduced. Then,

important deep learning techniques such as a training dataset scaling and transfer learning are

introduced.

2.2.1. Types of Deep Learning Layers

The most common deep learning layer is the ANN layer. Aside from it, other common types of

layers are long short-term memory (LSTM) proposed by Hochreiter and Schmidhuber (1997), gated

recurrent unit (GRU) proposed by Cho et al. (2014), convolutional neural network (CNN) proposed

by Fukushima (1980). The LSTM and GRU layers are often used for sequential data processing and

the CNN layer is often used for image processing. However, since only the ANN, LSTM, and GRU

are used in the studies in this paper, only these three layers are explained in detail except for the CNN.

To explain the details of the ANN layer, first, calculation in one node of the ANN is shown in Fig.

8, Eq. (1) and Eq. (2), where �, � and � denote an input, the weight, and bias, respectively, � denotes

the activation function, and ∘ denotes a dot product. One of the common activation functions is a

tangent hyperbolic (tanh) which is shown in Fig. 9. The final output of one ANN node is �. The role

of weight is to adjust steepness of the activation function and the role of bias is to shift the activation

function in its x-axis.

10

Fig. 8 Calculation in one node of the ANN

� = [�� �� ��] ∘ [�� �� ��]� + [��] (1)

� = �(�) (2)

Fig. 9 Activation function of the tanh

Calculation of the multiple ANN hidden layers which form the DNN is presented in Fig. 10 and

Eqs. (3)-(6) where �, �, and � are shown in Eqs (7)-(13). The dimensions of �, �, and � are

determined by (batch size, a number of input features), (size of a current layer, size of a next layer),

and (batch size, size of the next layer), respectively. In Fig. 10, the batch size is one to consider one

data only for a better understanding of the ANN. Depending on applications, the size of the hidden

layer and the number of the hidden layers can be much larger, which would have a large number of

weights and biases. The DNN is known to be capable of learning a good approximate function that

relates an input and output by being trained with a large number of training data even when a relation

between the input and output is highly non-linear. The size and depth of the DNN model determine

how much complexity the model has to approximate the input-output relation, where the size refers

to the size of hidden layers and the depth refers to the number of hidden layers. The higher complexity

means the higher capability to learn at the cost of higher computational load for the training.

11

Fig. 10 Configuration of the DNN

�� = ��� ∘ � [�] + �[�]� (3)

�� = ���� ∘ � [�] + �[�]� (4)

�� = ���� ∘ � [�] + �[�]� (5)

�� = �� (6)

� = [�� �� ��] (7)

� [�] = �

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

� (8)

�[�] = ���
[�]

��
[�]

��
[�]

��
[�]� (9)

� [�] =

⎣
⎢
⎢
⎢
⎢
⎡���

[�]
���

[�]
���

[�]
���

[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

���
[�]

⎦
⎥
⎥
⎥
⎥
⎤

(10)

�[�] = ���
[�]

��
[�]

��
[�]

��
[�]� (11)

� [�] =

⎣
⎢
⎢
⎢
⎢
⎡���

[�]

���
[�]

���
[�]

���
[�]

⎦
⎥
⎥
⎥
⎥
⎤

(12)

12

�[�] = ���
[�]� (13)

The ANN is a very powerful learning algorithm. However, when it comes to processing the

sequential data, it is somewhat limited. For example, if an input is the sequential data with its length

of 100, the size of the ANN hidden layer must be large enough to process the sequential input data.

If the length of the sequential input data is even longer such as 500, the size of the ANN hidden layer

must be even larger. Therefore, the ANN is inefficient in terms of the model size when processing the

sequential data. Another main disadvantage is that once the ANN model is built and trained, the

model’s architecture cannot be changed, meaning that the length of the sequence that the ANN model

can process is fixed. It can be quite inefficient because a flexible length may be required in some

applications such as text generation where a length of sentence varies. To overcome these limitations,

the LSTM and GRU are often used.

Before introducing the details of the LSTM and GRU layers, their base layer called a recurrent

neural network (RNN) is first introduced in detail. The LSTM and GRU were developed to improve

the RNN’s performance. Therefore, the basic concept of the LSTM, and GRU can easily be explained

in the RNN. Configurations of the RNN layer and RNN cell are shown in Fig. 11 and Fig. 12,

respectively. The subscript < � > denotes a timestep, � denotes the end of the timestep, � is called a

hidden state which carries the temporal information throughout the RNN cells. Equations for the RNN

cell are shown in Eqs. (14)-(15). In Eq. (14), [������ , ����] is a concatenated vector of ������ and

����. An activation function can be added to ���� to yield a desired output range or the ANN layer

can be added to ���� to give higher learning capability to the RNN model when outputting �����.

Fig. 11 Configuration of the RNN layer

13

Fig. 12 Configuration of RNN cell

���� = tanh(�� ∘ [������ , ����] + ��) (14)

����� = ���� (15)

One main disadvantage of the RNN is that it cannot process long sequential data, meaning that it

cannot learn a long-term dependency in the sequential data. An example of the long-term dependency

is shown in Fig. 13. To overcome this limitation, the LSTM was developed and it is capable of

learning the long-term dependency.

Fig. 13 Example of the long-term dependency

The overall structure of LSTM layer is quite similar to the RNN. The LSTM layer is a collection

of LSTM cells that are connected in sequential order. The sequentially connected LSTM cells process

a sequential input to yield an output or a sequential output while maintaining its hidden state and a

cell state. The cell state was introduced in addition to the hidden state to provide an ability to process

long sequential data better. Configurations of the LSTM layer and the LSTM cell are shown in Fig.

14 and Fig. 15, respectively, where � and � refer to the hidden state and cell state of the LSTM,

respectively. In Fig. 15, it is well shown that the cell state goes straight from the left side to the right

side. By doing so, the cell state plays an important role in carrying the temporal information over a

long sequence. Equations for the LSTM cell are shown in Eqs. (16)-(22) where ∗ denotes element-

wise multiplication. � ĩs a cell state candidate, and, Γ�, Γ�, and Γ� are an update gate, forget gate, and

output gate, respectively. The important components in the LSTM cell are Γ� , Γ� , and Γ� . Γ�

14

determines how much current information to keep because the new temporal information may be

important for the future reference. Γ� determines how much past information to forget because some

temporal information from the past may no longer be important. Γ� determines how much cell state

to output. Finally, similar to the RNN, an activation function can be added to ���� to yield a desired

output range or the ANN layer can be added to ���� to give higher learning capability to the LSTM

model when outputting �����.

Fig. 14 Configuration of the LSTM layer

Fig. 15 Configuration of the LSTM cell

�̃��� = tanh(�� ∘ [������, ����] + ��) (16)

Γ� = �(�� ∘ [������, ����] + ��) (17)

Γ� = ���� ∘ [������, ����] + ��� (18)

Γ� = �(�� ∘ [������, ����] + ��) (19)

���� = Γ� ∗ �̃��� + Γ� ∗ ������ (20)

���� = Γ� ∗ tanh(����) (21)

15

����� = ���� (22)

In many applications, the LSTM showed great performance for processing the long-term sequential

data. But its architecture was quite complex and the complex architecture caused a high computational

cost for the training and took a large computational memory. To simplify the LSTM’s architecture,

the GRU was developed. The main advantage of the GRU over the LSTM is a simpler architecture

which reduces computational cost and memory. In theory, performance of the GRU is lower than that

of the LSTM due to its simpler architecture. But, in practice, the performance of the GRU is mostly

the same as that of the LSTM in most of the applications although the LSTM outperforms the GRU

in some applications. Configuration of the GRU layer and the GRU cell are shown in Fig. 16 and Fig.

17, respectively. Equations for the GRU cell are shown in Eqs. (23)-(27). Γ� is the update gate and

decides what information to throw away and what new information to add. Γ� is a reset gate which

decides how much past information to forget. Unlike the LSTM having the three gates (update gate,

forget gate, output gate), the GRU has only two gates (update gate, reset gate) and it shows that the

GRU has a simpler architecture than the LSTM. Finally, similar to the RNN and LSTM, an activation

function can be added to ���� to yield a desired output range or the ANN layer can be added to ����

to give higher learning capability to the GRU model when outputting �����.

Fig. 16 Configuration of the GRU layer

Fig. 17 Configuration of the GRU cell

16

�̃��� = tanh(�� ∘ [Γ� ∗ ������, ����] + ��) (23)

Γ� = �(�� ∘ [������, ����] + ��) (24)

Γ� = �(�� ∘ [������, ����] + ��) (25)

���� = Γ� ∗ �̃��� + (1 − Γ�) ∗ ������ (26)

����� = ���� (27)

Aside from the ANN, LSTM, and GRU layers, there is a special type of layer that can prevent an

overfitting problem. That layer is called a dropout layer proposed by Srivastava et al. (2014). The

overfitting problem is a problem that the deep learning system becomes too fit to its training dataset

during the training and results in poor performance on a test dataset. An illustration of the overfitting

problem compared to underfitting and appropriate fitting is shown in Fig. 18. It is shown that when

the overfitting problem occurs, the learning system loses its generalization over the data. The dropout

can prevent this overfitting problem. The main functionality of the dropout is to randomly ignore

some neurons in the neural network layers during the training. By doing so, the dropout forces the

neural network to learn more robust features that are useful in conjunction with many different random

subsets of the other neurons and it leads the neural network to general understanding in a given dataset.

Due to its simplicity for implementation and robustness, it has been widely adopted in many

applications of the neural network. An illustration of the dropout is shown in Fig. 19.

(a) underfitting (b) appropriate fitting (c) overfitting

Fig. 18 Illustration of the overfitting problem compared to underfitting and appropriate fitting

17

(a) standard DNN (b) standard DNN with the dropout

Fig. 19 Illustration of the dropout

There is another type of layer that is designed to prevent an internal covariance shift problem. That

layer is called a batch normalization (BN) layer proposed by Ioffe and Szegedy (2015). The internal

covariate shift problem is a problem that the input distribution in each hidden layer varies much,

which may cause the unstable training such as a gradient vanishing or gradient exploding. Before the

BN was proposed, methods such as careful weight initialization and small learning rate were used to

prevent the unstable training. The main functionality of the BN is to normalize, re-scale, and re-center

an output from a previous hidden layer. A procedure of the BN during the training is shown in Table

1 where � is a small number such as 1e-3. During the test and inference, the BN works a bit differently.

Instead of using the mini-batch mean and mini-batch variance to normalize, a moving mean and

moving variance are used, where the moving mean and variance can be obtained by applying a moving

average filter on the mini-batch means and mini-batch variances over epochs. There are two main

advantages of the BN. First, the training with the BN tends to converge faster and more stably, and

the faster training with a higher learning rate is possible without falling into the unstable training

because the input distribution in the hidden layers is stabilized by the normalization. Second, the BN

prevents the overfitting problem to some extent since a constant change of the mini-batch mean and

variance depending on the selected mini-batch at every training step provides a noise in the learning

system during the training, which forces the learning system to learn robust features that can

generalize the given training data.

18

Table 1 Procedure of the batch normalization during the training

Input:

- Values of � over a mini-batch: ℬ = {��, ��, ⋯ , ��}

- Output from a previous hidden layer: �

- Parameters to be learned: �, �

Output: �� = BN�,�(z)�

�ℬ ←
�

�
∑ ��

�
��� // mini-batch mean

�ℬ
� ←

�

�
∑ (�� − �ℬ)��

��� // mini-batch variance

� ←̂
� − �ℬ

��ℬ
� + �

// normalize

� ← �� +̂ � ≡ BN�,�(z) // scale and shift

2.2.2. Activation Function and Weight Initialization Methods

Choosing both an appropriate activation function and weight initialization method is quite

important in building the deep learning system. The training performance and training speed can be

greatly affected by these two parameters. For the activation function, many previous studies used a

sigmoid function. However, it is known that the sigmoid function intrinsically has some disadvantages

in training neural networks. The drawbacks of the sigmoid function are sharp damp gradients during

backpropagation, gradient saturation, slow convergence, and nonzero-centered output. Thus, many

studies have been conducted to develop better activation functions to overcome the problems of the

sigmoid function. The activation functions that are popularly used these days are the tangent

hyperbolic and rectified linear unit (ReLU) functions proposed by Hahnioser et al. (2000). The tangent

hyperbolic function solves the problem of the limitation in the gradient update direction that exists in

the sigmoid function, and results in faster training speed. The ReLU function avoids the gradient

vanishing problem and lowers the complexity of the calculations as its derivative function is relatively

simple. The equations for the sigmoid, tangent hyperbolic, and ReLU functions are shown in Eqs.

(28)-(30):

sigmoid(�) = 1/(1 + ���) (28)

tanh(�) = (�� − ���)/(�� + ���) (29)

19

relu(�) = �
�; if � ≥ 0

0; otherwise
(30)

For the weight initialization method, a normal distribution with a mean of zero and a standard

deviation of 0.01 was mostly used. Later, however, many studies showed that the weight initialization

method could greatly affect the training performance, and several other weight initialization methods

have been proposed. Currently, the two most popular methods are a Xavier (Glorot) weight

initialization method (Glorot and Bengio, 2010) and a He weight initialization method (He et al.,

2015). The Xavier initialization is known to result in good training performance with the sigmoid and

tanh functions and the He initialization is known to be very compatible with the ReLU function. The

equations for the Xavier and He initialization methods are based on a normal distribution where a

mean value is set to zero and variance is set to Eq. (31) for the Xavier initialization and Eq. (32) for

the He initialization. ��� and ���� represent the numbers of nodes in the previous and next layers.

2.2.3. Optimizers

The optimizers are used to train the deep learning system by updating the weights and biases. The

update is performed based on a loss value that comes from a loss function, where the loss value acts

as a guide for the optimizer to decide how to update. One of the most common loss functions is a

mean squared error (MSE) which is used for the regression task mostly. The equation of MSE is

shown in Eq. (33) where � denotes a number of data, �� and ��� denote an actual output value and a

predicted output value, respectively. It can be seen that the larger the gap between �� and ��� is, the

greater the MSE value becomes. The optimizer updates the weights and biases by minimizing the

MSE loss function in case of the regression task. This updating process is the training process of the

deep learning system.

MSE =
1

�
�(�� − ���)

�

�

���

(33)

The most basic optimizer is a gradient descent algorithm. The gradient descent minimizes the loss

value by iteratively updating the parameters (weights and biases) in a direction of a negative gradient

�������
� = �2/(��� + ����) (31)

���
� = �2/���

(32)

20

of the loss function. The parameter update by the gradient descent is shown in Eq. (34) where �

denotes the parameter, � denotes time, � denotes a learning rate, and ∇��(�; �, �) denotes the gradient

of the loss function with respect to the parameter � given the training data (�, �) . To help

understanding in the gradient descent, an illustration of the gradient descent is shown in Fig. 20 where

there is one weight � to update in an � axis and the loss function with respect to �, ��(�), is

represented in an � axis. In Fig. 20, starting from the initial point, the first step is taken in the direction

of negative gradient of the loss function with respect to � , −∇��(�). Then, the next steps are

continuously taken in the same fashion to reach a global loss minimum, where the loss value is

minimized. The minimized loss value means the minimized gap between the actual data and predicted

data, therefore, the training of the learning system is completed when the loss is minimized. The

length of each step which is represented as an orange arrow is determined by multiplication of the

gradient of the loss function and the learning rate. Thus, the learning rate determines how much update

is conducted in one step, and the amount of update decreases as the loss value gets close to the global

loss minimum because the loss gradients nearby the global loss minimum are small. Another

illustration of the gradient descent is shown in Fig. 21 where there are two weights �� and �� and

the global loss minimum is located in the very center. In both Fig. 20 and Fig. 21, it takes multiple

steps to reach the global loss minimum and one might want to increase the learning rate so that the

convergence occurs faster. However, the learning rate must be determined appropriately because

some learning problems may happen otherwise as shown in Fig. 22. When the learning rate is too

low, the learning requires many update steps before reaching the global loss minimum. When the

learning rate is too large, it causes the dramatic updates which leads to divergent behaviors. That is

the reason that the learning rate must be set appropriately so that the learning can be conducted as Fig.

22 (b).

���� = �� − �∇��(��; �, �) (34)

21

Fig. 20 Illustration of the gradient descent

Fig. 21 Illustration of the gradient descent with respect to two weights

(a) too low (b) just right (c) too large

Fig. 22 Effects of the learning rate

The parameters (weights, biases) are updated by the gradient descent in the direction of the negative

gradient of the loss function with respect to each parameter, and there are a large number of

parameters in the deep learning system. It means the gradient of the loss function with respect to every

parameter must be known for the update. An algorithm to calculate ∇��(�) for all parameters is called

22

backpropagation. The backpropagation does it by backpropagating ∇��(�) in the last hidden layer

based on a chain rule. An illustration of the backpropagation in one neuron in the last hidden layer

compared to forward-propagation is shown in Fig. 23 where the forward-propagation is the simple

matrix calculation to yield the predicted output ��, and ��/�� is the same as ∇��(�). ��/�� is called

a first-order partial derivative of the loss function with respect to the weight. Through the forward-

propagation, a loss function value � can be calculated. Using the calculated loss value,
��

����
can be

calculated. Then,
��

����
can be calculated by redefining it to

��

����

����

����
using the chain rule, where

��

����

is already calculated in the previous step and
����

����
can be obtained by calculating

��(���)

����
since ��� is

equal to �(���). And then,
��

����
(�) and

��

����
(�) can be calculated by redefining them to

��

����

����

����

����

����
(�) and

��

����

����

����

����

����
(�), respectively, where

��

����
and

����

����
are already calculated in the previous steps, and

����

����
(�)

and
����

����
(�) can be obtained by calculating

�����
(�)

�������
(�)

����

����
(�) and

�����
(�)

�������
(�)

����

����
(�) , respectively.

Finally, the weight updates for ���
(�)

and ���
(�)

can be performed as Eq. (35) and Eq. (36), respectively,

where the first-order partial derivatives in the learning rate terms can be represented as Eq. (37) and

Eq. (38), respectively. It is how the learning is performed in the neural network in general. As shown

in Fig. 23 (b), the calculation of the first-order partial derivative is conducted backwards, from the

right side to the left side in order. That is the reason why the backpropagation has “back” in its term.

To help understanding in the backpropagation in the DNN, an illustration of the backpropagation in

the DNN is shown in Fig. 24.

(a) forward-propagation (b) backpropagation

Fig. 23 Illustration of the backpropagation in one neuron in the last hidden layer compared to

forward-propagation

23

���
(�)

= ���
(�)

− �
��

����
(�) (35)

���
(�)

= ���
(�)

− �
��

����
(�) (36)

��

����
(�)

=
��

����

����

����

����

����
(�) (37)

��

����
(�)

=
��

����

����

����

����

����
(�) (38)

Fig. 24 Illustration of the backpropagation in the DNN

Using the backpropagation, the training of the deep learning system can be described as follows:

1) calculate the loss function through the forward-propagation, 2) update the parameters by the

gradient descent using ��/�� obtained by the backpropagation. For the big DNN, a lot of calculation

for ��/�� is required because there are a large number of parameters. This can be very difficult to do

manually. Therefore, automatic differentiation is typically used. One of the popular open-source

libraries that provides the powerful automatic differentiation is Tensorflow developed by a Google

Brain team.

As mentioned earlier, one deep learning system has thousands or sometimes millions of parameters,

which means that the optimizer needs to find the global minimum in a very high � dimensional space

where there are � parameters. In that case, the learning can be difficult for the basic gradient descent.

To improve the learning performance of the gradient descent, many other optimizers were developed

24

such as the gradient descent with momentum (Rumelhart, Hinton and Williams, 1986), Adagrad

(Duchi, Hazan and Singer, 2011), RMSProp (Hinton, Srivastava and Swersky, 2012), and Adam

(Kingma and Ba, 2015). Among the developed optimizers, the Adam is the most popular one and

only this optimizer is used in the studies in this paper. However, the Adam was developed based on

several previous optimizers such as the gradient descent with momentum, Adagrad, and RMSProp.

Therefore, the momentum, Adagrad, and RMSProp must be understood to understand the Adam.

The gradient descent with the momentum is basically the basic gradient descent with the

momentum applied. A basic notion of the momentum is to give a kind of inertia force to the parameter

update by the gradient descent so that the parameter update goes a bit further in the direction it was

headed to. The parameter update by the gradient descent with the momentum is represented as Eqs.

(39)-(40) where � is a momentum value and it is usually set to 0.9. The detailed effect of �� can be

seen in Eq. (41). It can be seen that the use of �� allows the parameter update to be conducted

considering the weighted previous gradients. The advantages of the momentum are a reduction of

oscillations and high variance of the parameters during the update and the faster training.

���� = �� − �� (39)

�� = ����� + �∇��(��) (40)

�� = �∇��(��)� + ��∇��(����)��� + ���∇��(����)��� + ⋯ (41)

Unlike the basic gradient descent where the learning rate is the same for all the parameters, the

Adagrad adaptively changes its learning rate. The basic idea in the Adagrad is that the low learning

rate is applied to the parameters that have been updated much, and the high learning rate is applied to

the parameters that have not been updated much because the parameters that have been updated much

are likely to be nearby their optimum points, whereas, the parameters that have not been updated

much are likely to need to be updated a lot to reach their optimum points. The parameter update by

the Adagrad is represented as Eqs. (42)-(43) where �� is a sum of squares of the previous gradients

and � is a small number such as 1e-8. It can be seen that the learning rate is adaptively changed by

1/��� + � . During the training by the Adagrad, each parameter is updated to some extent, then, ��

increases accordingly. Given the magnitude of �� of each parameter, the learning rate �/��� + � for

each parameter is determined. If the magnitude of �� of one parameter is high, the learning rate is low,

whereas, if the magnitude of �� of one parameter is low, the learning rate is high. There are three

main advantages of the Adagrad. First, the learning rate adaptively changes for each parameter.

25

Second, the learning rate does not have to be tuned manually. Third, the training can be effectively

performed even on sparse data.

���� = �� −
�

��� + �
∙ ∇��(��) (42)

�� = ���� + �∇��(��)�
� (43)

Despite the advantages of the Adagrad, it has a limitation. For the Adagrad, as the training continues,

�� continues to increase because the squares of the previous gradients do not decay over time but stay

in �� . This makes the learning almost stop by the time �� is too big. The stop of learning occurs

inevitably in the Adagrad. To overcome this limitation, the RMSProp was proposed. In the RMSProp,

the way of calculating �� is different. It is changed in a way that the squares of the previous gradients

decay over time so that the learning rate �/��� + � does not converge to almost zero over time. The

parameter update by the RMSProp is represented as Eqs. (44)-(45) where � is an exponential decay

rate which is usually set to 0.9, and the way of calculation for �� is different from the Adagrad. The

calculation form of Eq. (45) is from an exponential moving average. By calculating �� as Eq. (45),

�� does not become excessively big, and different significances can be put to the squares of the

previous gradients where higher significances are applied to the recent gradients and lower

significances are applied to the past gradients.

���� = �� −
�

��� + �
∙ ∇��(��) (44)

�� = ����� + (1 − �)�∇��(��)�
� (45)

The Adam can be viewed as a combination of the RMSProp and the momentum. In the Adam, there

are two important components that are shown in Eq. (46) and Eq. (47), respectively. �� and �� are

called a biased first moment estimate and a biased second moment estimate, respectively, and �� and

�� are the exponential decay rates for �� and ��, respectively. For settings of the parameters, �� and

�� are initialized to zero, and �� and �� are usually set to 0.9 and 0.999, respectively. The calculation

of �� is similar to that of the momentum from Eq. (40), and the calculation of �� is similar to that of

the RMSProp from Eq. (45). But, since the two biased moment estimates are initialized to zero, they

are too small at the beginning of the training. A bias-corrected first moment estimate and a bias-

corrected first moment estimate compensate for that issue. The two bias-corrected moment estimates

26

are shown in Eq. (48) and Eq. (49), respectively. It should be noted that ��
� denotes �� to the power

of time �. Using the two bias-corrected moment estimates, the parameter update by the Adam can be

represented as Eq. (50). The learning performance of the Adam has been proven to be very robust in

a variety of applications. Therefore, the Adam is adopted as the optimizer for the studies in this paper.

�� = ������ + (1 − ��)∇��(��) (46)

�� = ������ + (1 − ��)�∇��(��)�
�

(47)

��� = ��/(1 − ��
�) (48)

��� = ��/(1 − ��
�) (49)

���� = �� −
�

���� + �
∙ ��� (50)

2.2.4. Training Dataset Scaling

The training dataset consists of multiple sets of the input and output data in which the input and

output data are the feature vectors as shown in Eq. (51) and Eq. (52), where �� and �� denote the i-th

input feature vector and output feature vector, respectively, and �� and �� are the features in the

feature vectors. Thus, the training dataset can be represented by Eq. (53) and Eq. (54) where �� and

�� denote the training dataset for the input and output, respectively. Thus, the training dataset scaling

refers to application of some scaling method to the training dataset (��, ��).

�� = {��, ��, ⋯ , ��} (51)

�� = {��, ��, ⋯ , ��} (52)

�� = {��, ��, ⋯ , ��} (53)

�� = {��, ��, ⋯ , ��} (54)

There are very strong reasons that the training dataset should be scaled. The first reason is to match

the distributions and scales of the features in the input and output vectors. The different distributions

and scale in the feature vector deteriorate the learning process because the parameters in the neural

network get to react more sensitively toward one feature than another. An example of the input feature

vector with the different distribution and scale can be {age, #hairs} where the #hairs denotes a

number of hairs. An illustration of the effect of different distribution and scale of the input feature

27

vector during the training is shown in Fig. 25 where the circles and elongated circles represent a

contour of the loss function value, the black circle denotes the initial point, and the green arrow

denotes the parameter update direction. It is shown that the training is more difficult when the input

feature vector is not scaled, whereas the training is easier when the input feature vector is properly

scaled.

(a) on an unscaled input feature vector (b) on a scaled input feature vector

Fig. 25 Illustration of the effect of different distribution and scale of the input feature vector

during the training

The second reason for the scaling is to make the scale of input and output vectors small so that the

weights and biases are updated to small values. If the scale of the input or output vectors is large, it

causes the weights and biases to be updated to large values, which causes the unstable learning and

poor performance because the neural network is now too sensitive to changes of the input. In terms

of the backpropagation for the parameter update, if the scale of the output vector is large, it can result

in the large loss value, then this causes a dramatic update of the parameters because the large loss

value is backpropagated to the parameters to update them. In turn, this dramatic update of the

parameters is likely to make the learning process unstable. For these reasons, the scaling of the

training dataset is almost always conducted in practice.

There are mainly two types of scaling method. The first one is a standard scaling method, and the

second one is a min-max scaling method. An equation of each scaling method is shown in Eq. (55)

and Eq. (56), respectively, where � and � denote a mean and standard deviation, respectively. It

should be noted that �(.), �(.), min(.), max(.) are calculated for each feature across the entire

dataset, therefore, the size of output by these operations is (1 × a number of features in the feature

28

vector). These two scaling methods can be applied to the training dataset for the output in the same

way.

�������
� =

�� − �(��)

�(��)
(55)

�������
� =

�� − min(��)

max(��) − min(��)
(56)

2.2.5. Transfer Learning

The transfer learning is the deep learning technique that utilizes learned weights from a trained

neural network to train a new neural network faster with a much smaller training dataset. A

comparison between the traditional learning and the transfer learning is shown in Fig. 26. With the

traditional learning, a large amount of training dataset is required to train each learning system,

therefore, if there are two learning systems, two large amounts of training datasets are required. But,

with the transfer learning, a new learning system can be trained by utilizing the learned knowledge

(learned weights and biases) from the trained learning system, and it results in faster training of the

new learning system and requires a much smaller training dataset.

(a) Traditional learning (b) Transfer learning

Fig. 26 Comparison between the traditional learning and the transfer learning

2.3. Reinforcement Learning

There are a large number of RL algorithms. Fig. 27 shows a diagram of the major RL algorithms,

where the green oval denotes a category of the RL algorithms and the yellow rectangle denotes a type

29

of the RL algorithm. Aside from the RL algorithms presented in the figure, there are more RL

algorithms such as a distributional DQN, rainbow DQN, D4PG, ACER, ACTKR, and so on. Since

the RL algorithms are still actively studied and developed, there will certainly be more advanced RL

algorithms in the future. This subchapter is mostly focused on explaining the DDPG (Lillicrap et al.,

2016) because it is the RL algorithm used in one of the studies in this paper. To explain the DDPG,

the base RL algorithms of the DDPG are first introduced, then, the details of DDPG are addressed.

Fig. 27 Diagram of the major RL algorithms

In the standard reinforcement learning, there is an agent, A, and an environment, �, that that the

agent interacts with in discrete time steps. At every timestep, the agent receives a state �� , and takes

an action �� , and obtains a reward ���� , forming a sequential transition

(�� , �� , ����, ����, ����, ����, ⋯) throughout an episode. An action �� is determined by a policy �

which maps a state �� to probabilistic values of each action �(��) because an environment � may be

stochastic. The learning process of the agent can be defined mathematically using a Markov Decision

Process (MDP). A generic flowchart of the process is shown in Fig. 28. In the figure, as the agent

continues to interact with an environment, the policy � eventually converges to an optimal policy �∗.

30

Fig. 28 Learning process of an agent with MDP

In many RL algorithms, an action-value function, so-called Q function, is used in the learning

process. The Q function describes the expected return value �� which is expressed as Eq. (57) where

� is a discounting factor to consider influence of uncertainties towards the future after taking an action

�� in a state �� and thereafter following the policy �. Thus, the Q function simply tells how good a

certain action is at a certain state. The Q function can be written in a recursive form as Eq. (58) where

�[.] denotes an expectation value. This recursive form is called a Bellman equation, and Eq. (58) is

called the Bellman equation of the Q function. If a deterministic policy � that maps a state �� to

deterministic values of each action �� is used, Eq. (58) can be rewritten as Eq. (59). If the deterministic

policy is to take ���� that maximizes the Q function at ����, Eq. (59) can be rewritten as Eq. (60).

The recursive form in Eq. (60) is called a Bellman optimality equation.

�� = � �(���)�(�� , ��)

�

���

(57)

��(�� , ��) = ���,����~� ��(�� , ��) + ������~�[��(����, ����)]� (58)

��(�� , ��) = ���,����~���(�� , ��) + ��������, �(����)�� (59)

��(�� , ��) = ���,����~� ��(�� , ��) + � max ���(����, ����)�� (60)

The RL based on the Q function can be briefly explained using Eq. (60) as Table 2 where the policy

that takes action to go to the next state that provides the highest Q function is called a greedy policy.

The greedy policy can be expressed as Eq. (61) where �(�, �) is a vector that consist of multiple Q

functions with respect to different actions, which is shown in Eq. (62). As the loop continues, more

and more Q functions at various states are continuously updated. Eventually, the Q functions at

various states converge. Then, the RL is completed and the optimal policy is found. By taking the

actions according to the greedy policy, the agent can maximize the rewards. This way of learning the

Q function is called Q-learning proposed by Watkins and Dayan (1992). Although the greedy policy

31

is used in Table 2 for simplicity, the greedy policy is usually not ideal for the RL because it

discourages the agent from exploring which is important to find the optimal policy that is optimal

globally, not locally. Therefore, a stochastic behavior policy is often used as Eq. (63) which is called

an epsilon-greedy policy where � is a random value ranging from zero to one and � is criteria to

determine whether to take the action according to the greedy policy or a random action. The stochastic

random action encourages the agent to explore the environment which helps to find the global optimal

policy. � is usually initialized as a high value such as one and is decayed over time so that the agent

is encouraged to explore at the beginning but take the greedy actions later.

Table 2 Brief procedure of the RL based on the Q function

Environment �

Starts from an initial state ��

while optimal policy is found do

Take action �� to go to the next state that provides the highest

Q function

Obtain reward ���� and next state ���� from �

Calculate the Bellman optimality equation of the Q function

Update the Q function with {�� , �� , ����, ����}

end while

�(�|�) = argmax��(�, �)� (61)

�(�, �) = ����, �(�)�, ���, �(�)�, ⋯ , ���, �(�)�� (62)

�(�|�) = �argmax��(�, �)�

random action

if � ≥ �
if � < �

(63)

However, the RL has difficulties in learning when the environment is complex because the complex

environment has too many states and the states may have non-linearity. Therefore, it is common to

use the neural network as a function approximator to calculate the Q function. This neural network-

based approximator is parameterized by ��, and �� can be optimized by minimizing the following

loss function Eq. (64) by the optimizer, where �� denotes a state visitation distribution by the

stochastic behavior policy which is represented as � and �� is shown in Eq. (65). It should be noted

that the loss function Eq. (64) is quite similar to the loss function for the regression task as Eq. (33).

In Eq. (33), �� and ��� denote the actual output and the predicted output, respectively. Matching Eq.

32

(33) and Eq. (64), it can be seen that �(�� , ��|��) is the predicted output and �(�� , ��) +

� max��(����, ����|��)� is the actual output. Since �(�� , ��|��) is predicted by the neural network,

it is a predicted output, but �(�� , ��) + � max��(����, ����|��)� is semi-actual output because

�(�� , ��) is an actual value but �(����, ����|��) is a predicted value by the neural network. It might

seem a bit odd that the true Q function can be learned by minimizing the loss function Eq. (64), but it

is possible by conducting the Q-learning from Table 2 long enough with the epsilon-greedy policy.

The Q-learning using the neural network to approximate the Q function is called Deep Q-learning.

One important term in the Q-learning is bootstrapping. The bootstrapping is the way of updating the

Q function where the semi-actual output consisting of the reward and predicted Q function is used as

the actual output in the loss function. The bootstrapping is used to be able to update the Q function at

�� at every timestep. The bootstrapping is utilized in most of the RL algorithms.

�(��) = ���~��,��~�,��~� ���� − �(�� , ��|��)�
�

� (64)

�� = �(�� , ��) + � max��(����, ����|��)� (65)

There are two RL algorithm categories as shown in Fig. 28. The first one is the value-based RL

algorithm, and the second one is the policy-based RL algorithm. The value-based RL algorithms are

the RL algorithms whose policy is implicitly determined by the Q function as Eq. (61). In other words,

there is no explicit policy but the policy is determined based on the Q function approximated by the

neural network. Unlike the value-based RL algorithms, in the policy-based RL algorithms, the policy

is explicitly determined in which the policy is directly approximated by the neural network. The

advantages and disadvantages of the policy-based RL algorithms compared to the value-based RL

algorithms are as follows: The policy-based RL algorithms can output multiple continuous actions at

one timestep, while the value-based RL algorithms can only output one discrete action. Therefore, the

policy-based RL algorithms are more suitable for applications such as robot control. However, the

policy-based RL algorithm is prone to falling into the local optimal policy and its evaluation process

for the policy is typically inefficient with high variance. Common applications of the value-based RL

algorithm and the policy-based RL algorithm are shown in 오류! 참조원본을찾을수없습니다.

where 오류! 참조 원본을 찾을 수 없습니다. (a) and 오류! 참조 원본을 찾을 수 없습니다. (b)

shows one of Atari games called breakout and autonomous car driving, respectively. The action and

the action space of each application in 오류! 참조원본을 찾을 수없습니다. (a) and 오류! 참조

원본을찾을수없습니다. (b) is shown in Eq. (66) and Eq. (67), respectively. The action space in

33

Eq. (66) has three discrete actions and only one action is available at one time. The action space in

Eq. (67) has two continuous actions where the angle of the steering wheel and the car speed can range

from 0.0° to �° and from 0.0 km/h to � km/h, respectively. It can also be seen that multiple actions

can be taken at one time by using the policy-based RL algorithm.

(a) value-based RL algorithm (b) policy-based RL algorithm

Fig. 29 Common applications of the value-based RL algorithm and the policy-based RL

algorithm

� = argmax({left, nothing, right}) (66)

� = {angle of steering wheel, car speed} (67)

Illustrations of the policies in the value-based RL algorithms and policy-based RL algorithms are

shown in Fig. 30 and Fig. 31, respectively, where HL stands for the hidden layer, softmax denotes a

softmax activation layer, � denotes a probability, � denotes mean, � denotes standard deviation, and

� denotes a normal distribution. The softmax activation layer allows to yield probabilistic outputs in

which the sum of the outputs is one. Also, in Fig. 30 and Fig. 31 (a), the greedy policy is used. In Fig.

30, it is shown that the HL outputs the approximated Q functions, and the action that maximizes the

Q function is selected. In Fig. 31, two types of the policy-based RL algorithm are shown according to

their action spaces. In the policy-based RL algorithm with the discrete action space, a probability of

each action is output from the HL and one action with the highest probability is chosen. In the policy-

based RL algorithm with the continuous action space, the mean and standard deviation of each action

is output from the HL and the normal distribution of each action is formed. The action is taken by

sampling from the normal distribution of each action, which results in a vector of three values for

three actions.

34

Fig. 30 Illustration of the policy in the value-based RL algorithms

(a) for discrete action space

(b) for continuous action space

Fig. 31 Illustration of the policy in the policy-based RL algorithms

The learning process of the neural network in the policy-based RL algorithm is conducted by

“maximizing” an objective function, Eq. (68) where ��(s) is the Bellman equation of a state value

function which is expressed as Eq. (69). The Bellman equation of the state value function is quite

similar to that of the Q function from Eq. (58). The Q function tells how good �� is at �� , whereas the

state value function tells how good �� is. Therefore, it can be said that the Q function is a subset of

the state value function. Seeing Eq. (68), the learning process can be intuitively explained: The

parameters of the neural network in the policy-based RL algorithm updated in a direction that

maximizes ��(s), which is equal to the maximization of the rewards. The detailed parameter update

can be expressed as Eq. (70) where � is the parameter of the neural network for the policy and the

gradient of the loss function with respect to � is expressed as Eq. (71). Eq. (71) is called policy

35

gradient proposed by Sutton et al. (2000).

�(�) = ��(s) (68)

��(��) = ��� ,����~���(�� , ��) + ��[��(����)]� (69)

� = � + �∇��(�) (70)

∇��(�) = �[∇� log(��(� |�)) ��(�, �)] (71)

However, there is one problem in Eq. (71). The Q function ��(�, �) in that equation cannot be

obtained because there is only one neural network for the policy not for the Q function in the basic

notion of the policy-based RL algorithm. To resolve this problem, the Q function in Eq. (71) is often

obtained by using another neural network. In this case, the policy-based RL algorithm has two neural

networks. One is for the policy, and another is for the Q function. The first policy-based RL algorithm

that took this approach is called actor-critic. In the actor-critic, the actor represents the neural network

for the policy and the critic represents the neural network for the Q function. The update of critic is

conducted the same way as the update of the Q-function in the deep Q-learning, and the update of

actor is conducted using the policy gradient.

Before addressing the details of the DDPG, there is one more RL algorithm that the DDPG is based

on, which is called the DQN proposed by Mnih et al. (2013). The DQN was proposed to improve the

learning performance of the deep Q-learning. The deep Q-learning has two main limitations. First,

the constant update of the Q function makes the learning unstable, which results in the unstable policy.

Second, the Q function is updated with correlated data, which results in failure of the generalization.

An example of the two correlated data are {�� , �� , ����, ����} and {����, ����, ����, ����}. In order for

the learning system to be generalized well, a diversity of data should be ensured in the training data.

The DQN overcomes these two limitations by introducing a replay memory (replay buffer), an

experience replay, and a target neural network. The replay buffer is a kind of storage for

{�� , �� , ����, ����}, the experience replay is a way of the training with a random mini-batch of �

transitions {�� , �� , ����, ����} from the replay buffer, and the target neural network is a duplicate of the

original neural network from the deep Q-learning in which the original neural network is called the

training neural network in the DQN. The target neural network is updated by its parameters being

replaced with those of the training neural network every � steps. The replay buffer and experience

replay ensure the diversity of the training data which helps the generalization, and the target neural

network provides the stable training of the training neural network. A loss function to train the training

36

neural network in the DQN is expressed as Eq. (72) where �� is shown in (73). It should be noted that

�(�� , ��|��) and �������, ����|���
� are obtained by the training neural network and the target neural

network, respectively. An illustration of the replay buffer in the DQN is shown in Fig. 32 and an

overall learning process of the DQN is shown in Table 3.

�(��) = ���~��,��~�,��~� ���� − �(�� , ��|��)�
�

� (72)

�� = �(�� , ��) + � max ��������, ����|���
�� (73)

Fig. 32 Illustration of the replay buffer in the DQN

Table 3 Overall learning process of the DQN

Environment �

Replay buffer �

Starts from an initial state ��

while optimal policy is found do

Take action ��

Obtain reward ���� and next state ���� from �

Store transition (�� , �� , �� , ����) in �

Sample a random mini-batch of � transitions

{�� , �� , ����, ����} from �

Train the training neural network by minimizing the loss

function Eq. (72)

Update the target neural network by replacing its parameters

with those of the training neural network every � steps

end while

37

The DDPG is the RL algorithm based on the DQN and actor-critic combined. The characteristics

of the DDPG are as follows. First, the DDPG has four neural networks in which the first two neural

networks are the actor and critic from the actor-critic, and the other two neural networks are a target

actor and a target critic. The target actor and target critic are duplicates of the actor and critic. This

notion is from the target neural network in the DQN. Second, the DDPG utilizes the replay buffer

from the DQN. Third, the target actor and target critic are updated by being replaced with a small

percentage of parameters of the actor and critic every step instead of being completely replaced every

� steps. This way of target neural network update is called soft update. Fourth, the actor in the DDPG

is learned by using a deterministic policy gradient (Silver et al., 2014) instead of the policy gradient.

The deterministic policy is a deterministic version of the policy gradient from Eq. (71) and is known

to outperform the policy gradient in high-dimensional action space. An equation of the deterministic

policy is shown in Eq. (74) where �� denotes the parameter of the actor for its deterministic policy �,

and �� denotes the parameter of the critic.

∇���(�) = ��∇��(�, �|��)|����,���(��)∇���(�|��)|����
� (74)

In the DDPG, the use of the actor-critic allows to output the multiple continuous actions, the use

of target actor and target critic provides the learning stability which is additionally enhanced by the

soft update, the use of replay buffer eliminates the correlated training data problem, and the

deterministic policy gradient improves the learning performance. An overall learning process of the

DDPG is shown in Table 4. An architecture of the actor in the DDPG is shown in Fig. 33. It should

be noted that the actions are deterministically taken.

Table 4 Overall learning process of the DDPG

Environment �

Replay buffer �

Starts from an initial state ��

while optimal policy is found do

Take action ��

Obtain reward ���� and next state ���� from �

Store transition (�� , �� , �� , ����) in �

Sample a random mini-batch of � transitions

{�� , �� , ����, ����} from �

Update the critic by minimizing the loss function Eq. (72)

38

Update the actor by using the deterministic policy gradient

Eq. (74)

Update the target critic and target actor by being replaced

with a small percentage of parameters of the actor and critic

end while

Fig. 33 Architecture of the actor in the DDPG

39

Chapter 3 Machine Learning-Based Mooring Line Tension

Prediction System

3.1. Introduction

Typically, dynamic simulation for a moored floating structure and fatigue analysis on mooring lines

takes a long computational time because it requires a huge amount of numerical calculation to

represent the actual system’s dynamic behavior. To speed up the dynamic simulation and fatigue

analysis, several studies have been conducted. Simões, Tiquilloca and Morishita (2002) proposed a

neural network architecture to predict the top tension on mooring lines and a hawser in a system where

a turret-FPSO is connected with a shuttle tanker by the hawser. Guarize et al. (2007) proposed a hybrid

artificial neural network (ANN)-finite element method (FEM) approach where the ANN is trained

with short motion and top tension time histories generated by a FEM-based time-domain simulation

and the trained ANN calculates the rest of top tension history with an input of a prescribed motion

time history. Christiansen et al. (2013) proposed an ANN-based mooring line fatigue analysis

approach for the fast fatigue analysis and a procedure for the fatigue analysis based on the proposed

approach. Sidarta et al. (2017) proposed an ANN-based mooring line top tension prediction system

that receives previous motion time histories only as an input unlike Christiansen et al. (2013) where

the ANN receives previous motion time histories as well as previous predicted top tension histories

as the input. Despite all the previous developments, there are two main limitations in the previous

studies. First, there has not been any standardized method for selecting sea states to obtain a training

dataset on which the ANN is trained. Instead, the previous studies manually selected the sea states to

obtain the training dataset. However, this manual sea state selection can be problematic because the

appropriate sea state selection requires expertise in the ANN domain, and even the careful selection

might not be optimal because it is still based on human intuition. Second, the ANN-based mooring

line tension prediction system showed relatively low tension prediction performance when a variety

of sea states from a wave scatter diagram are considered (Christiansen et al., 2013). In this study, to

overcome these two limitations, a K-means-based sea state selection method and a hybrid neural

network architecture are proposed. The K-means (Macqueen, 1967) is one of the machine learning

algorithms for data clustering and the K-means-based sea state selection method can efficiently select

the sea states by clustering relevant sea states with the K-means and finding the nearest sea state to a

cluster center in each cluster. The hybrid neural network architecture can provide the robust tension

40

prediction performance across the various sea states in the wave scatter diagram. The hybrid neural

network architecture improves the tension prediction performance by using the recent deep learning

(DL) algorithms and techniques such as the deep neural network, batch normalization and transfer

learning. Finally, it is shown that the proposed K-means-based sea state selection removes the manual

selection by standardizing the sea state selection procedure and it results in high sampling and

selection efficiency, and the proposed hybrid neural network architecture results in the robust tension

prediction system across the entire wave scatter diagram. In the following subchapters, the

conventional mooring line tension prediction system is introduced compared to the proposed mooring

line tension prediction system, and the proposed K-means-based sea state selection method and hybrid

neural network architecture are presented in detail. Finally, simulation conditions and simulation

results are presented and discussed.

3.2. Brief Comparison Between Conventional and Proposed Mooring

Line Tension Prediction Systems

A brief diagram of the conventional ANN-based mooring line tension prediction system is shown

in Fig. 34. It should be noted that the sea state selection is conducted manually and a plain ANN is

used. The plain ANN is composed of several hidden layers and its architecture is shown in Fig. 35

where HL stands for hidden layer. For the input, the previous ship motion time histories are used

instead of the ship motion at a previous timestep to consider the memory effect in the motion dynamics.

The details of the input and output are shown in Eq. (75) and Eq. (76), respectively. In Eq. (75), �, �,

and � denote surge, sway, and heave motions, respectively, ∆� and � denote a timestep and length of

the previous ship motion time histories, respectively. In Eq. (76), �(�) denotes the mooring line top

tension at time � and � denotes a number of mooring lines.

Fig. 34 Brief diagram of the conventional ANN-based mooring line tension prediction system

41

Fig. 35 Plain ANN model used in the conventional ANN-based mooring line tension prediction

systems

�(�) = �

�(� − �), �(� − (� − ∆�)), �(� − (� − 2∆�)), ⋯ , �(�),

�(� − �), �(� − (� − ∆�)), �(� − (� − 2∆�)), ⋯ , �(�),

�(� − �), �(� − (� − ∆�)), �(� − (� − 2∆�)), ⋯ , �(�),

� (75)

�(�) = {�1(�), �2(�), ⋯ , ��(�)} (76)

A brief diagram of the proposed DL-based mooring line tension prediction system is shown in Fig.

36. The two main differences between Fig. 34 and Fig. 36 are the use of the proposed K-means-based

sea state selection method instead of the manual sea state selection and the use of the proposed hybrid

neural network architecture instead of the plain ANN. The details of the proposed K-means-based sea

state selection method and hybrid neural network architecture are addressed in later subchapters.

Fig. 36 Brief diagram of the proposed DL-based mooring line tension prediction system

3.3. Proposed K-Means-Based Sea State Selection Method

A detailed diagram of the proposed K-means-based sea state selection method is shown in Fig. 37.

The details of the components in the K-means-based sea state selection method are presented in this

subchapter.

42

Fig. 37 Detailed diagram of the proposed K-means-based sea state selection method

3.3.1. Padding

There are many types of neural networks aside from the ANN. One of them is the convolutional

neural network (CNN) which is often used in DL-based computer vision systems. A brief diagram of

the CNN’s convolution operation in one layer is shown in Fig. 38 where the input refers to a small

image, the filter consists of the learnable parameters, and the asterisk denotes the convolution

operation. As shown in Fig. 38, dimensions of the input and output are different due to characteristics

of the convolution operation, and this dimension reduction causes data loss which may be undesirable.

To compensate for the data loss during the convolution operation, padding is often used. An

illustration of application of the padding is shown in Fig. 39. The padding is basically adding zero

cells around the input so that even after the convolution operation, the dimension of the output can

remain the same as that of the input. In the proposed K-means-based sea state selection method, the

padding is applied to the wave scatter diagram. The application of the padding to the wave scatter

diagram is shown in Fig. 40. The wave scatter diagram is from DNV-GL (2018), Hs and Tz refer to

significant wave height and zero-crossing period, respectively, and the blue area and grey area denote

a valid sea state area and a padded area, respectively. An output of application of the padding to the

wave scatter diagram is the padded valid sea state area in which the valid sea state area is added with

an extra surrounding area by the padding. This padded valid sea state area is fed into the K-means-

based Monte Carlo method. By using the padded valid sea state area, the data loss can be prevented

during the use of the K-means-based Monte Carlo method.

43

(a) Convolution operation (step1) (b) Convolution operation (step2)

(c) Convolution operation (finished)

Fig. 38 Brief diagram of the CNN’s convolution operation in one layer

Fig. 39 Illustration of application of the padding

44

(a) Wave scatter diagram used in this study (b) Padded valid sea state area

Fig. 40 Application of the padding to the wave scatter diagram

3.3.2. K-Means

The K-means is one of the most popular data clustering algorithms in machine learning and used

in various domains such as pattern recognition, marketing research, fraud detection, and so on.

Examples of the data clustering by the K-means are shown in 오류! 참조원본을찾을수없습니다.

where scattered data is clustered to three groups and a cluster center in each cluster is presented as a

cross mark. The K-means basically clusters scattered data to � clusters given their features in which

� is a parameter and is determined depending on how many clusters are desired. The clustering of the

K-means is achieved by minimizing an objective function ℒ defined in Eq. (77) where � is a number

of clusters, � is a cluster number, �� is a set of data in �-th cluster, and �� is a cluster center of �-th

cluster. Eq. (78) is used for the calculation of Eq. (77) and the output from Eq. (78) is called a

Euclidean distance that is a distance between two �-dimensional vectors. Seeing Eq. (77), it should

be noted that the data clustering with the K-means is possible even when a dimension of vectors is

very high. When using the K-means, it is also important to note that the input � should be normalized

over its features if a distribution of each feature varies much so that each (�� − ��) in Eq. (78) can

have equal significance to the output ‖� − ��‖�. This K-means is efficiently utilized for the K-means-

based Monte Carlo method and the clustering of relevant sampled sea states with the K-means.

45

(a) 2D (b) 3D

Fig. 41 Examples of data clustering by the K-means

ℒ = ∑ ∑ ‖� − ��‖��∈��

�
��� (77)

‖� − ��‖� = �(�� − ��)
� + (�� − ��)

� + ⋯ + (�� − ��)
� (78)

3.3.3. K-Means-Based Monte Carlo Method

The K-means-based Monte Carlo method is proposed in this study to provide efficient sampling

than a typical Monte Carlo method. A procedure of the K-means-based Monte Carlo method is

presented in Table 5 where the large number should large enough for generated data to be distributed

uniformly within the specified area.

Table 5 Procedure of the K-means-based Monte Carlo method

1. Randomly generate a large number of data within a

specified area

2. Obtain � clusters with the K-means

3. Obtain � cluster centers → sampled data

To examine the effectiveness of the proposed K-means-based Monte Carlo method, a comparison

between the typical Monte Carlo method and the K-means-based Monte Carlo method is presented in

Fig. 42 where data is generated within the black square. It can be observed that the K-means-based

Monte Carlo method generates random data much more uniformly. This uniform random data

46

generation is important when it is necessary to sample data evenly to ensure a diversity of the sampled

data with respect to its features. The application of the K-means-based Monte Carlo method to the

padded valid sea state area is shown in Fig. 43 and a comparison between the typical Monte Carlo

method and the K-means-based Monte Carlo method on the padded valid sea state area is shown in

Fig. 44, where � is 50. In Fig. 43, it is shown that the sea states are sampled very evenly by the K-

means-based Monte Carlo method which ensures the diversity of the sea states and the padded valid

sea state area allows the K-means-based Monte Carlo method to sample the sea states even at the edge

of the valid sea state area. In Fig. 44, the effectiveness of the K-means-based Monte Carlo method is

clearly shown compared to the typical Monte Carlo method on the padded valid sea state area.

(a) number of samples: 9 (b) number of samples: 20

Fig. 42 Comparison between the typical Monte Carlo method and the K-means-based Monte

Carlo method

(a) 50,000 randomly generated sea states (b) 50 sampled sea states by the K-means

Fig. 43 Application of the K-means-based Monte Carlo method to the padded valid sea state area

47

(a) Typical Monte Carlo method (b) K-means-based Monte Carlo method

Fig. 44 Comparison between the typical Monte Carlo method and the K-means-based Monte

Carlo method on the padded valid sea state area

After the sea states are sampled by the K-means-based Monte Carlo method, the quasi-static

simulations are conducted on the sampled sea states. Then, ship motion and mooring line tension time

histories are obtained for each sampled sea state. The motion and tension time histories are processed

into feature vectors through the feature vector generation.

3.3.4. Feature Vector Generation

The feature vector generation processes the ship motion and mooring line tension time histories

into the feature vector. The feature vector is used to cluster the relevant sampled sea states with the

K-means which is the last step in the proposed K-means-based sea state selection method. A

configuration of the feature vector for one sea state is defined as Eq. (79) where the feature vector is

represented as ℱ. ��, ��, ��, ���, ���, and ��� refer to normalized six degree-of-freedom ship motion

time histories (surge, sway, heave, roll, pitch, yaw), �� and � refer to a normalized mooring line

tension time history and a number of mooring lines, respectively. � and � refer to a mean and standard

deviation, respectively. FFT��� refers to a center of gravity of an FFT graph in an x-axis where FFT

stands for Fast Fourier Transform. An example of FFT��� is shown in Fig. 45 where its argument is

sin(40�) + 0.5 sin(90�), a blue line represents the FFT graph, and a red dotted line represents a value

of the FFT���. The size of the feature vector is determined by Eq. (80), therefore, if there are 16

mooring lines, the size of the feature vector is 66. The components in the feature vector were carefully

chosen to distinguish different sea states since the different sea states can be distinguished considering

overall amplitudes and periods of the ship motions and mooring line tensions. The overall amplitudes

48

are represented by the � and � terms in the feature vector, and the overall periods are represented by

FFT��� terms in the feature vector.

ℱ =

⎩
⎪⎪
⎨

⎪⎪
⎧

�(��), �(��), �(��), �(���), �(���), �(���),

�(��), �(��), �(��), �(���), �(���), �(���),
FFT���(��), FFT���(��), FFT���(��), FFT���(���), FFT���(���), FFT���(���),

�(��1), �(��2), ⋯ , �(���),

�(��1), �(��2), ⋯ , �(���),
FFT���(��1), FFT���(��2), ⋯ , FFT���(���), ⎭

⎪⎪
⎬

⎪⎪
⎫

(79)

Size(ℱ) = (18 + 3�) (80)

Fig. 45 Example of the FFT���

3.3.5. Clustering of Relevant Sampled Sea States with K-Means

The clustering of relevant sampled sea states with K-means is conducted by clustering the sampled

sea states with the K-means based on their feature vectors. Because the feature vector can represent

overall characteristics of each sampled sea state, the K-means can cluster the relevant sea states

together. An illustration of the clustering of the relevant sampled sea states with the K-means is shown

in Fig. 46 where the number of clusters � is nine and the sea states that are in the same cluster are

colored in the same color, otherwise, in different colors.

49

Fig. 46 Illustration of the clustering of the relevant sampled sea states with the K-means

The final goal of the proposed K-means-based sea state selection method is to output the selected

sea states which are used to generate the training dataset with the dynamic simulation. The sea state

selection is conducted by selecting a representative sea state in each cluster based on the obtained

clusters and their cluster centers. A procedure of finding the representative sea state in each cluster is

shown in Table 6. By selecting the representative sea state in each cluster, a number of the sampled

sea states can be reduced to a number of the clusters. This way of sea state selection is very efficient

because it significantly reduces a number of sea states to run the dynamic simulation on while it can

maintain the diversity of the sea states’ features in the wave scatter diagram to ensure the tension

prediction performance of a trained neural network model. Ultimately, it results in a large reduction

of simulation time. An illustration of the selected sea states by the representative sea states is shown

in Fig. 47.

Table 6 Procedure of finding the representative sea state in each cluster

1. Obtain a cluster center in one cluster

2. Find the sampled sea state whose feature vector has the lowest

Euclidean distance to the cluster center’s feature vector in the cluster

→ a representative sea state

3. Repeat the above steps for all the other clusters

50

(a) Relevant sampled sea states clustered by K-

means
(b) Representative sea states from the clusters

Fig. 47 Illustration of the selected sea states by the representative sea states

The final output from the proposed K-means-based sea state selection method is the selected sea

states by selecting the representative sea states in the clusters. The selected sea states are used to

generate the training dataset of the motion and tension time histories with the dynamic simulation,

and the obtained motion and tension time histories are used to train the proposed hybrid neural

network architecture.

3.4. Proposed Hybrid Neural Network Architecture

The proposed hybrid neural network is proposed to improve the tension prediction performance for

various sea states in the wave scatter diagram. It utilizes several modern DL algorithms and techniques

such as the deep neural network (DNN), batch normalization (BN), and transfer learning.

3.4.1. Architecture

(a)

51

(b) for continuous action space

Fig. 48 Architecture of the proposed hybrid neural network

�(�) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

�(� − 10), ��� − (9.8)�, ��� − (9.6)�, ⋯ , �(�),

�(� − 10), ��� − (9.8)�, ��� − (9.6)�, ⋯ , �(�),

�(� − 10), ��� − (9.8)�, ��� − (9.6)�, ⋯ , �(�),

��(� − 10), ���� − (9.8)�, ���� − (9.6)�, ⋯ , ��(�),

��(� − 10), ���� − (9.8)�, ���� − (9.6)�, ⋯ , ��(�),

��(� − 10), ���� − (9.8)�, ���� − (9.6)�, ⋯ , ��(�), ⎭
⎪
⎪
⎬

⎪
⎪
⎫

(81)

The architecture of the proposed hybrid neural network is presented in Fig. 48 where NN stands

for neural network, �� �(�) and ��(�) denote the scaled predicted tension and the predicted tension at

time �, respectively. �� �(�) is output from the NN models because the tension histories in the training

dataset are scaled before used for the training to ensure the training stability. The subscripts �, �, and

� denote an overall Hs-focused NN model, low Hs-focused NN model, and a soft-binary attention

module, respectively. ��(�) is a scaled �(�) with a min-max scaling and �(�) is the input of the

previous ship motion time histories and its configuration is shown in Eq. (81) where ��, ��, and ��

denote pitch, roll, and yaw motions. A length of �(�) is 10s, and the timestep is 0.2s. The overall Hs-

focused NN model is a NN model trained on the training dataset generated from overall sea states in

which the overall sea states are the selected sea states by the proposed K-means-based sea state

selection method. The low Hs-focused NN model is another NN model trained on the training dataset

generated from low Hs-sea states in which the low Hs-sea states are defined as the sea states with the

Hs lower than 4m. The un-scaling layer is a layer that un-scales �� �(�) to ��(�). To bind the two NN

models, the soft-binary attention module is proposed in this study. The proposed soft-binary attention

module determines how much attention to pay between the overall Hs-focused NN model and the low

Hs-focused NN model given a concatenated vector of ��(�) , ���(�) , ���(�) , ���(�) − ���(�) , and

52

abs ����(�) − ���(�)�. A well-trained soft-binary attention module should output high attention to the

low Hs-focused NN model and low attention to the overall Hs-focused NN model when the sea state

has the low Hs. When the sea state has the high Hs, the high attention should be paid to the overall

Hs-focused NN model and the low attention to the low Hs-focused NN model. When the Hs is

somewhere between low and high, the appropriate amounts of attention should be paid to each of the

NN models. This fusion of the two NN models by the soft-binary attention module improves the

tension prediction performance because the overall Hs-focused NN model can make good tension

predictions overall but yields relatively poor prediction performance on the low Hs-sea states and this

limitation can be backed up by the low Hs-focused NN model. It is supposed that the overall Hs-

focused NN model results in the relatively poor prediction performance because of characteristics of

backpropagation. Typically, the weights in the NN model is updated through the backpropagation

based on a loss value from a loss function. For the NN-based mooring line tension prediction system,

the loss values on the low Hs-sea states are much smaller than on the medium or high Hs-sea states

due to the scale of the tension amplitudes, therefore, a majority of the weight update is focused on the

medium or high Hs-sea states.

Fig. 49 Architecture of the overall Hs-focused NN model

Fig. 50 Architecture of the low Hs-focused NN model

53

Fig. 51 Architecture of the proposed soft-binary attention module

Architectures of the overall Hs-focused NN model, low Hs-focused NN model, and the soft-binary

attention module are shown in Fig. 49, Fig. 50, and Fig. 51, respectively. The numbers right next to

the HL and BN denote layer index numbers and the numbers in parenthesis next to the HL denote the

size of the HL. In Fig. 51, the sigmoid denotes a sigmoid activation layer, the pink circles represent a

point-wise operation. Importantly, �� and �� represent amounts of the attention for ���(�) and ���(�),

respectively. � is called an attention value in this study. The attention values range from zero to one

due to the characteristics of the sigmoid. The attention values can be visualized to examine how much

attention is paid between the overall Hs-focused NN model and the low Hs-focused NN model during

inference of the proposed hybrid neural network. For the un-scaling layers 1 and 2, their calculations

are conducted by Eq. (82) and Eq. (83), respectively, where �� denotes the entire tension time

histories the overall Hs-focused NN model is trained on and �� denotes the entire tension time

histories the low Hs-focused NN model is trained on. In the proposed hybrid neural network

architecture, the overall Hs-focused NN model and low Hs-focused NN model are set to non-trainable,

meaning their weights are not updated during the training of the proposed hybrid neural network

architecture but used to conduct the inference only. Only the soft-binary attention module is trained

during the training of the proposed hybrid neural network architecture. The overall Hs-focused NN

model and low Hs-focused NN model are trained before the training of the proposed hybrid neural

network architecture. This utilization of the trained NN models is a kind of the transfer learning. The

detailed procedure of training the proposed hybrid neural network architecture is shown in the next

���(t) = ���
�(�)(max(��) − min(��)) + min(��) (82)

���(t) = ���
�(�)(max(��) − min(��)) + min(��) (83)

54

sub-subchapter.

3.4.2. Training Procedure

The detailed procedure of training the proposed hybrid neural network architecture is presented in

Table 7. In the steps 2 and 5, the obtained training datasets �� and �� are scaled with the min-max

scaling. In the step 4, � should be large enough to ensure enough training data for �� and the low Hs-

sea state area refers to the padded valid sea state area with its Hs below 4m. In the step 6, the weights

of the low Hs-focused NN model are initialized with the learned weights from the trained overall Hs-

focused NN model. This weight initialization is a kind of transfer learning and it helps the low Hs-

focused NN model speed up the training process by utilizing the pre-learned knowledge (learned

weights and biases). In the steps 7 and 8, by setting the overall Hs-focused NN model and low Hs-

focused NN model to non-trainable, these two NN models are not trained during the training of the

proposed hybrid neural network architecture in which only the soft-binary attention module is trained.

Table 7 Detailed procedure of training the proposed hybrid neural network architecture

1. Obtain the selected sea states with the proposed K-means-based sea state

selection method

2. Obtain the training dataset �� with the motion and tension time histories from

the dynamic simulations on the selected sea states and scale ��

3. Train the overall Hs-focused NN model with the scaled ��

4. Sample � low Hs-sea states within the low Hs-sea state area with the proposed

K-means-based Monte Carlo method

5. Obtain the training dataset �� with the motion and tension time histories from

the dynamic simulations on the sampled low Hs-sea states and scale ��

6. Train the low Hs-focused NN model with the scaled ��

7. Set the overall Hs-focused NN model and low Hs-focused NN model to non-

trainable

8. Train the proposed hybrid neural network architecture on �� and ��

55

3.5. Simulation and Result Discussion

3.5.1. Simulation Conditions

A target ship used in the simulations is a floating production unit (FPU) and its principal dimension

is shown in Table 8. A mooring configuration of the target ship is shown in Fig. 52 where the OBA

(outer bundle angle) and IBA (inner bundle angle) are set to 50° and 4°, respectively. The small

numbers at the ends of the mooring lines indicate the mooring line numbers which start from an

upper left side and count counterclockwise. Properties of the mooring lines are shown in Fig. 52

Mooring configuration of the target ship

Table 9. An attack angle of environmental direction is 20° to the target ship. Parameter settings for

the K-means-based sea state selection method are shown in Table 10. In the neural network training,

the Adam is used for an optimizer with a learning rate of 1e-3. The learning rate begins to be decayed

to 1e-7 by an exponential learning decay with a decay rate of 0.996 when the training’s loss history

reaches a plateau. The test sea states are shown in Fig. 53. The dynamic simulations on the test sea

states are conducted with a different random seed from the training sea states.

Table 8 Principal dimension of the target ship

LBP

[m]

Breath

[m]

Draft

[m]

Volume

[m3]

GM

[m]

XCG

[m]

YCG

[m]

VCG

[m]

���

[m]

���

[m]

���

[m]

244 50 18.6 169,614 1.99 117.7 0 19.5 17.4 59.3 60

(a) Top (b) Profile

56

Fig. 52 Mooring configuration of the target ship

Table 9 Properties of the mooring lines

Type
Length

[m]

Diameter

[mm]

Weight in air

[kg/m]

Weight in

water [kg/m]

MBL

[kN]

Segment 1
R4 studless

chain
62 130 336 292 15,559

Segment 2
Spiral strand

wire
900 120 57 50 9,120

Segment 3
R4 studless

chain
1800 130 336 292 15,559

Table 10 Parameter settings for the K-means-based sea state selection method

� in the K-means-based

Monte Carlo method

� in the clustering of

relevant sampled sea state

with K-means

50 10

Fig. 53 Test sea states

3.5.2. Overall Hs-focused NN Model

The sea states for the training were manually selected in the previous studies, but they are selected

by the proposed K-means-based sea state selection method in this study. Then, the selected sea states

are used to obtain the ship motion and tension time histories by the dynamic simulation and the

training dataset �� can be obtained from the motion and tension time histories. Finally, the overall

Hs-focused NN model is trained with the scaled ��. The tension prediction performance of the trained

57

overall Hs-focused NN model and the effectiveness of the proposed sea state selection method

compared to the manual sea state selection are investigated by the r-squared and mean average error

(MAE) scores of the overall Hs-focused NN models trained on the sea states obtained by manual sea

state selection and the proposed sea state selection method, respectively. The selected sea states

obtained by the manual sea state selection and the proposed sea state selection method are shown in

Fig. 54. The r-squared and MAE scores of the trained overall Hs-focused NN models on the test sea

states are shown in Fig. 55. The r-squared score is a common measurement for regression tasks.

Typically, prediction performance for the regression task is considered good if the r-squared score is

around 0.9, the performance is considered very good if the score is around 0.95, and the performance

is considered excellent if the score is higher than 0.98. Through Fig. 54 and Fig. 55, it can be observed

that a number of sea states required to train the NN model can be significantly reduced by using the

proposed K-means-based sea state selection method while maintaining the tension prediction

performance. The reduction of the number of sea states can result in a large reduction in computational

time for the dynamic simulations. Predicted tension time histories of the overall Hs-focused NN

model trained on the sea states obtained by the proposed K-means-based sea state selection method

are shown in Fig. 56 where the tension time histories of the mooring line number 16 are presented

and the last 1800s time histories are presented for visual clarity. It can be seen that the tension

prediction performance is excellent when the r-squared score is 1.0 and the performance is still very

good when the r-squared score is 0.95.

(a) Manual sea state selection

(35 sea states)

(b) Proposed K-means-based sea state selection

method

(10 sea states)

Fig. 54 Selected sea states obtained by the manual sea state selection and the proposed K-means-

based sea state selection method

58

(a) Manual sea state selection (r-squared)
(b) Proposed K-means-based sea state selection

method (r-squared)

(c) Manual sea state selection (MAE)
(d) Proposed K-means-based sea state selection

(MAE)

Fig. 55 R-squared and MAE scores of the trained overall Hs-focused NN model on the test sea
states

(a) Hs: 0.5m, Tz: 6.5s (r-squared score: 0.95)

(b) Hs: 8.5m, Tz: 14.5s (r-squared score: 1.0)

59

Fig. 56 Predicted tension time histories of the overall Hs-focused NN model trained on the sea

states obtained by the proposed K-means-based sea state selection method

3.5.3. Effectiveness of Batch Normalization

The BN is utilized in the NN models in this study. One of the advantages of the BN is to improve

the generalization, which leads to better performance on test data. The effectiveness of the BN is

investigated with respect to the r-squared scores of the trained overall Hs-focused NN models with

and without the BN. The overall Hs-focused NN model with the BN consists of three pairs of HL-BN

layers, but the overall Hs-focused NN model without the BN consists of three HL layers only. The r-

squared and MAE scores of the trained overall Hs-focused NN models with and without the BN on

the test sea states are shown in Fig. 57. It is obvious that the use of BN improves the prediction

performance, which makes the BN an essential component in the NN model.

(a) without BN (r-squared) (b) with BN

(c) without BN (MAE) (d) with BN (MAE)

60

Fig. 57 R-squared and MAE scores of the trained overall Hs-focused NN models with and without

the BN on the test sea states

3.5.4. Low Hs-focused NN Model

The low Hs-focused NN model is used in the proposed hybrid neural network architecture to back

up the overall Hs-focused NN model for the better prediction performance. The low Hs-focused NN

model is trained on the scaled �� in which �� is obtained from the dynamic simulations on the

sampled low Hs-sea states sampled by the proposed K-means-based Monte Carlo method. The

sampled low Hs-sea states for �� are shown in Fig. 58. The prediction performance of the trained low

Hs-focused NN model is investigated by the r-squared and MAE scores on the test sea states. It can

be observed that the low Hs-focused NN model provides the excellent prediction performance on the

low Hs-sea states.

Fig. 58 Sampled low Hs-sea states for ��

61

(a) r-squared (b) MAE

Fig. 59 R-squared and MAE scores of the trained low Hs-focused NN model on the test sea states

3.5.5. Proposed Hybrid Neural Network Architecture

The proposed hybrid neural network architecture mainly consists of the overall Hs-focused NN

model, the low Hs-focused NN model, and the soft-binary attention module. The tension prediction

is made by appropriately fusing the output tensions from the overall Hs-focused NN model and low

Hs-focused NN model with the attention values �� and �� which are obtained by the soft-binary

attention module. The r-squared and MAE scores of the trained hybrid neural network architecture on

the test sea states are shown in Fig. 60 where the tension and attention value time histories of the

mooring line number 16 are presented and the last 1800s time histories are presented for visual clarity.

The tension time histories along with the attention value time histories of the proposed hybrid neural

network architecture are shown in Fig. 61. In Fig. 60, it is shown that the hybrid neural network

architecture results in the excellent prediction performance across the entire sea states. In Fig. 61, the

attention value for the low Hs-focused NN model �� is dominant when the sea state has the low Hs.

As the sea state becomes more and more severe, the attention value for the overall Hs-focused NN

model �� becomes more and more dominant. Fig. 61 clearly shows that the soft-binary attention

module can provide the appropriate amount of attention to efficiently fuse the overall Hs-focused NN

model and the low Hs-focused NN model, which yields the excellent tension prediction performance

across the entire wave scatter diagram.

62

(a) r-squared (b) MAE

Fig. 60 R-squared and MAE scores of the trained hybrid neural network architecture on the test sea

states

(a) Hs: 0.5m, Tz: 3.5s

(b) Hs: 2.5m, Tz: 4.5s

63

(c) Hs: 2.5m, Tz: 12.5s

(d) Hs: 4.5m, Tz: 9.5s

(e) Hs: 6.5m, Tz: 9.5s

(f) Hs: 10.5m, Tz: 14.5s

64

(g) Hs: 16.5m, Tz: 15.5s

Fig. 61 Tension time histories along with the attention value time histories of the trained hybrid

neural network architecture

65

Chapter 4 Motion Predictive Control for DPS Using Predicted

Drifted Ship Position Based on Deep Learning and Replay

Buffer

4.1. Introduction

Dynamic positioning (DP) of a ship refers to a process of automatically controlling a ship’s

thrusters to maintain the ship at a reference position and reference heading. Conventionally, a dynamic

positioning system (DPS) uses a proportional-integral-derivate (PID) controller to calculate its

required thrust to maintain the ship position. The PID controller calculates the required thrust for a

current timestep �� based on an error at a current timestep �� , where the error is calculated by

difference between a reference position and a ship position. Then, the DPS interacts with a given

environment with �� and it results in the ship position at the next timestep. Then again, the error at

the next timestep ���� is calculated based on the reference position and the ship position, which results

in ���� through the PID controller. This way, it forms a feed-back loop and is called a feed-back

system. Normally, the feed-back system stabilizes the station-keeping process of the DPS. To improve

the station-keeping process of the DPS, the PID feed-back system often takes a feed-forward system.

The feed-forward system cancels disturbance such as wind before the disturbance affects a ship’s

response by providing additional thrust based on a magnitude of the disturbance to cope with the

disturbance. Typically, a wind feed-forward system which is the feed-forward system that considers

the wind disturbance has been widely adopted because it is straightforward to measure a direction and

speed of wind, which makes the wind feed-forward easy to implement. Although the wind feed-

forward system can improve the station-keeping performance of the PID feed-back system to some

extent, there are still other factors contributing to a ship’s drifting motion such as current and wave

drift loads. Therefore, considering not only wind load but also current and wave drift loads would be

more effective for the feed-forward system design. However, according to (Aalbers et al., 2004),

current and wave drift loads cannot be directly measured in the conventional DP control system. In

an attempt to consider all the contributing factors to the drifting motion by wind, wave, and current

for the feed-forward system, (Song et al., 2016) proposed a feed-forward system that utilizes a

predicted drifted ship position in the future because a drifting ship motion contains information about

the drifting loads by wind, wave, and current. The feed-forward system proposed by (Song et al.,

2016) does the feed-forwarding by replacing the error in the PID controller with a predicted future

66

error in which the predicted future error is calculated as difference between a reference ship position

and a predicted drifted ship position in the future. Although (Song et al., 2016) showed some

improvement in the station-keeping performance, because the prediction was based on a kind of

smoothing method, the prediction accuracy was not sufficient enough to yield the apparent

improvement in the station-keeping performance. In this study, a motion predictive control for the

PID controller of the DPS is proposed based on the notion of the feed-forward system from (Song et

al., 2016). The concept of the control system is the same as (Song et al., 2016), but the major

difference lies in the algorithm for the prediction for the drifted ship position. In our proposed motion

predictive control, the prediction performance is improved by the following approaches: 1) deep

learning (DL) algorithms such as Artificial Neural Network (ANN), Long Short-Term Memory

(LSTM) proposed by Hochreiter and Schmidhuber (1997), Gated Recurrent Unit (GRU) proposed by

Cho et al. (2014), and dropout proposed by Srivastava et al. (2014) are considered. 2) an online

machine learning system is utilized to provide the proposed motion predictive control with

adaptability to a varying sea environment and inexpensive computational load for neural network

training. 3) a neural network training method using a replay buffer and a real-time normalization

method is proposed to ensure consistently high performance for the prediction, where the replay

buffer was proposed by Mnih et al. (2013).

In the following chapters, details of the deep learning algorithms and replay buffer, the PID feed-

back system with the wind feed-forward system, the proposed motion predictive control, and the

numerical modeling of a target ship’s behavior are first presented. Then, the effectiveness of the

algorithms in the proposed motion predictive control and the simulation results with result discussion

are presented.

4.2. PID Feed-Back System and Wind Feed-Forward System

Before introducing the PID feed-back system and the wind feed-forward system, a coordinate

system of a ship is first presented in Fig. 62. In the figure, {�} and {�} are the origins of global and

local coordinate systems, respectively. � is a heading angle of the ship in degrees. The global and

local positions of the ship are in meters and denoted as (�, �) and (�� , ��), respectively.

67

Fig. 62 Coordinate system of a ship

A control law of a single PID controller is shown in Eq. (84) where �� is the controller’s output at

time �, �� is an error which is defined as a reference position subtracted by a current position, �� , �� ,

and �� are the proportional, integral, and derivative gains of the PID controller, respectively.

�� = ���� + �� � ��

�

�

�� + ��

���

��
(84)

In case of the PID controller in the DPS, since there are three directional motions (surge, sway, and

yaw) that need to be maintained by the DPS, three PID controllers are used in the DP’s PID feed-back

system. A structure of the PID feed-back system in the DPS is shown in Fig. 63. In this figure, ���� is

a vector of reference positions of a ship in the surge, sway, and yaw directions. �� is a vector of the

errors in the surge, sway, and yaw directions at time �, ��
(.) is a required thrust in each direction where

the direction is denoted in the superscript parenthesis, and each �� denotes the same as ��. �� is a

vector of the allocated thrusts for each thruster, and ���� is a vector of ship positions in the surge,

sway, and yaw directions at time � + 1. The details of ����, ��. ��, and ���� are shown in Eqs. (85)-

(88). In ��, the number next to � represents a thrust number. For ����, it should be noted that the ship

positions are the positions filtered by a Kalman filter which is used to remove the ship motion

components induced by the 1st-order wave load (Fossen and Perez, 2009).

68

Fig. 63 Structure of the PID feed-back system in the DPS

���� = {����
� , ����

� , ����}
(85)

�� = ���� − �� = {(����
� − ��

�), (����
� − ��

�), (���� − ��)} = ���

����
, ��

����
, ��

(�)
� (86)

�� = ��1�

����
, �1�

����
, �2�

����
, �2�

����
, ⋯ �

(87)

���� = {����
� , ����

� , ����} (88)

In Fig. 63, the flow of the control system is as follows: First, �� is calculated based on ���� and ��,

and it is fed into each of the three PID controllers according to their directions. Then, each PID

controller outputs ��
(.) and it is fed into the thrust allocation algorithm to output ��. For the thrust

allocation algorithm for the DP thrust, a Lagrange Multiplier method is used (De Wit, 2009).

As mentioned earlier, the conventional PID feed-back system in the DPS often adopts the wind

feed-forward system. The PID feed-back system with the wind feed-forward system is expressed as

Eq. (89) where the direction is denoted in the parentheses, and ��̂���(�) is an estimated wind load at

time � (Fossen and Perez, 2009). It should be noted that the terms in the square brackets denote the

PID feed-back system and −��̂���(�) denotes the wind feed-forward system. A structure of the PID

feed-back system with the wind feed-forward system is presented in Fig. 64 where ������ denotes a

vector of the estimated wind loads in the surge, sway, and yaw directions.

��
(.) = ���

(.)��
(.) + ��

(.) � ��
(.)

�

�

�� + ��

���
(.)

��
� − ��̂���

(.) (�) (89)

69

Fig. 64 Structure of the PID feed-back system with the wind feed-forward system

4.3. Proposed Motion Predictive Control

Fig. 65 Structure of the PID feed-back system with the proposed motion predictive control

In Fig. 65, a structure of the PID feed-back system with the proposed motion predictive control is

presented. The main characteristic is the use of the DNN in which the DNN stands for a deep neural

network. The DNN takes the input �� and outputs �����, where �� is based on ��, ��
(.), and ������(�),

and ����� consists of the predicted drifted ship positions in the future. The details of �� and ����� are

presented in Eqs. (90)-(92). In Eq. (90), �� denotes a state vector at time �, and � and � represent

length of past data to consider and a sampling rate for �, respectively, in which � must be a factor of

�. In Eq. (91), the dot represents the time derivative. In Eq. (92), ���, ���, and �� denote the predicted

drifted ship positions in the surge, sway, and yaw directions, and � represents the length of the

prediction for the drifted ship motion in the future. It should be noted that the ship positions shown in

Eqs. (91)-(92) are filtered by the Kalman filter as the same as in Eq. (88).

70

�� = ����� , ������ , ������� , ⋯ , ��� (90)

�� =

⎩
⎪⎪
⎨

⎪⎪
⎧

��
� , ��

� , �� ,

��̇
� , ��̇

� , ��̇ ,

��̈
� , ��̈

� , ��̈ ,

����

����
, ����

����
, ����

����
,

�
�̂���

����
(�), �

�̂���

����
(�), ��̂���

(�)
(�)⎭

⎪⎪
⎬

⎪⎪
⎫

(91)

����� = ������
� , �����

� , ������ (92)

With �����, the PID controller in Fig. 65 can be expressed as Eq. (93) where ��̂��
(.) is the predicted

future error in one direction and is shown in Eq. (94) in detail. The essence of the proposed motion

predictive control lies in the use of ����� instead of ��. As the PID controller with the proposed motion

predictive control utilizes the predicted future error, it can prevent the drifting motion that would

occur in the future in advance to some extent.

��
(.) = ��

(.)��̂��
(.) + ��

(.) � ��
(.)

�

�

�� + ��

���
(.)

��

(93)

����� = ���� − ����� = ������
� − �����

� �, �����
� − �����

� �, ����� − �������

= ���̂��
(��)

, ��̂��
(��)

, ��̂��
(�)�

(94)

Since the station-keeping performance improvement is derived from the use of �����, the prediction

accuracy of ����� is important. To achieve the high prediction accuracy of ����� , the DNN is adopted

as shown in Fig. 65. A structure of the DNN is presented in Fig. 66 where the number in the

parenthesis next to the LSTM denotes the size of the cell states and hidden states in the LSTM, and

the percentage next to the Dropout denotes a dropout rate. The decision for a type of the neural

network layer was made based on simulation assessment which is presented in the next chapter. For

the weight initialization in the LSTM, a Xavier initialization method (Glorot and Bengio, 2010) is

used. For the weight training, an optimizer called Adam (Kingma and Ba, 2015) is used because it is

known to be robust in a variety of areas and the most-used optimizer in the DL literature. For a loss

function, mean error squared (MSE) is used.

71

Fig. 66 Structure of the DNN

As briefly introduced in the introduction chapter, the training of the proposed motion predictive

control is conducted using the online machine learning system, the replay buffer, and the real-time

normalization method. The overall training process is shown in Fig. 67 in which the components

related to the training process are in color only for visual clarity. In the figure, � denotes the size of

the replay buffer, � denotes an arbitrary positive number that is not greater than �, ���� is a vector of

ship positions at time � − � as shown in Eq. (95), the ‘Real-Time Normalization’ refers to the real-

time normalization method, and the ‘Update normalizing factor’ refers to an updating process for the

normalizing factors {��, ��, ��, ��} used in the ‘Real-Time Normalization’. The flow of the training

process is as follows: 1) obtained ���� is stored in the replay buffer, 2) a mini-batch of ������� , �����

is obtained by randomly sampling from the replay buffer, 3) the mini-batch is normalized by the real-

time normalization method with the updated normalizing factors, 4) the DNN is trained with the

normalized mini-batch by one epoch. As to the normalizing factors, �� and �� refer to feature-wise

mean and standard deviation of ��(���)�� , �(���)����, ⋯ , �(���)�, respectively, and �� and �� refer

to feature-wise mean and standard deviation of {���� , ������, ⋯ , ��}, respectively. The update

equations of the normalizing factors for ��, ��, ��, and �� are shown in Eqs. (96)-(99). By using the

iterative equations for calculation of the normalizing factors, a significant amount of computational

cost can be saved. As to the normalization of the mini-batch, the normalization is conducted as Eqs.

(100)-(101) where Eq. (100) and Eq. (101) normalize � and � in the mini-batch, respectively, and ��

and �� denote the normalized � and �, respectively.

72

Fig. 67 Overall training process of the proposed motion predictive control

���� = {����
� , ����

� , ����}
(95)

�� = (1/�)����� + (� − 1)��� (96)

�� = �(� − 2)/(� − 1)��
� + (1/�)����� − ���

� (97)

�� = (1/�)[�� + (� − 1)��] (98)

�� = �(� − 2)/(� − 1)��
� + (1/�)(�� − ��)� (99)

�� = (� − ��)/��
(100)

�� = (� − ��)/��
(101)

In the training process of the proposed motion predictive control, the online machine learning

system, the replay buffer, and the real-time normalization method play important roles. First, the

online machine learning system refers to a system that trains a neural network with both existing and

new data periodically so that the neural network can adapt to the new data’s distribution. It is generally

adopted in areas where new data continuously comes in such as market analysis. For the DPS, it faces

73

the sea environment where the environmental condition constantly changes over time with respect to

a sea state and an environmental direction. Therefore, the DNN in the proposed motion predictive

control needs to make the accurate predictions for the drifted ship position in the various sea

environmental conditions. To do so, the DNN can be trained and used in the following two ways: 1)

trained with data from all the possible environmental conditions and used without further training

after deployed, 2) continuously trained with data from recent environmental conditions while being

used, which refers to the online machine learning system that the proposed motion predictive control

uses. The first way is very inefficient in this case because the DNN has to be trained with data from

all the possible environmental conditions, which would require a lot of computational time and put a

large load on the DNN for having to generalize all the given data from all the environmental

conditions at once. That is why the proposed motion predictive control adopts the online machine

learning system. Second, to make the online machine learning system robust, the online machine

learning system is adopted with the replay buffer, in which the DNN is continuously trained with both

existing data from the replay buffer and new data from the interaction with the sea environment. The

training with the existing data from the replay buffer ensures the robust prediction performance, and

the training with the new data allows the DNN to make the robust prediction when the new data is

fed into the DNN from the new environmental condition as the sea state varies. Third, the real-time

normalization method is used to stabilize and improve the neural network training process. It is well

known that the training process can be very inefficient if distributions of features in training data are

largely different, therefore, the normalization of training data is considered to be one of the critical

steps in the neural network training (Lee, Lee and Seo, 2020a).

4.4. Numerical Modeling of Target Ship’s Behavior

4.4.1. Target Ship and DPS

A target ship used in this paper is a FPSO and its principal dimension is shown in Table 11 (Lee,

2008). For the DP system of the target ship, six azimuth thrusters are used. The arrangement and

details of the azimuth thrusters are shown in Fig. 68 and Table 12, respectively.

Table 11 Principal dimension of the FPSO

Item Principal dimension

LBP 285 m

74

Longitudinal
COG

142.26 m

B 63 m
T 13 m

Δ 225,518 ton

Fig. 68 Arrangement of the azimuth thrusters

Table 12 Locations and thrust limits of the azimuth thrusters

Azimuth
thruster

�� [m] �� [m]
Maximum thrust limit

[kN]

no.1 128 26 2000

no.2 128 -26 2000

no.3 -128 -26 2000

no.4 -128 26 2000

no.5 -121 0 2000

no.6 135 0 2000

4.4.2. Equation of Motion of Target Ship

A ship’s equation of motion can be expressed as Eq. (102) (Fossen and Perez, 2009).

�(�, �) + �(�, �) + �(�) = �(�, �, �) (102)

where �(�, �) is the system inertia load, �(�, �) is the system damping load, �(�) is the system

stiffness load, �(�, �, �) is the external load, �, �, and � are the position, velocity, and acceleration,

respectively, and � is time. For the DPS, the external load �(�, �, �) is equal to Eq. (103) (Fossen and

Perez, 2009).

�(�, �, �) = ����� + �������� + ����� − ����������
(103)

75

where � represents external loads and subscripts represent sources of the external forces.

There are three types of environmental loads contributing to the drifting motion of a ship such as

wind, current, and wave drift loads. The environmental loads contributing to the drifting motion are

presented in Fig. 69 (Song et al., 2016).

Fig. 69 Environmental loads contributing to the drifting motion

In order for the DPS to compensate for the drifting motion caused by the wind, current, and wave

drift loads, azimuth thrusters need to counteract the environmental loads. This relation can be

expressed as Eq. (104) in which the DPS maintains a ship’s position by trying to satisfy this equation

(Fossen and Perez, 2009).

(����� + �������� + ����� �����) − ���������� = 0 (104)

The wind and current loads can be expressed as Eqs. (105)-(108) (Fossen and Perez, 2009), and the

wave drift load can be expressed as Eq. (109) (Orcina, 2019).

����� =
1

2
������

� �

������������

����������

��������

� (105)

���� = ��������
(106)

�������� =
1

2
��������

� �

������������

����������

��������

� (107)

���� = ���
� � (108)

where ����� and �������� are wind and current loads, respectively, ������, �����, ���� are the surge,

sway and yaw coefficients with respect to the wind or current direction relative to a ship heading, �

denotes density, �� is a relative velocity of wind or current past a ship, ������, ����� are the exposed

areas above the waterline for ����� and the submerged areas for �������� . ��� is length between

76

perpendiculars, and � is a draft.

����� ����� = � � Re�QTF���� �������� , �� , �� , ������� exp����� − ����
�

���

�

���

− ��� − �����

(109)

where � is the number of the regular wave components for describing irregular sea state, Re denotes

the real part of a complex number, QTF���� ����� is the wave drift quadratic transfer function which

can be obtained from a diffraction analysis in the frequency domain on the target ship, � is the

direction of the regular wave component relative to the ship’s heading, �, �, �, � are the wave period,

amplitude, frequency, and phase lag of the regular wave component. Eq. (109) shows that

QTF���� ����� is applied to each pair of the regular wave components to yield each pair’s contribution

to the wave drift load.

4.5. Effectiveness of Proposed Algorithms

The proposed motion predictive control utilizes the DNN to make the accurate prediction for the

drifted ship motion. For the DNN, there are three types of the DL layers considered such as the ANN,

LSTM, and GRU. Then, the DNN needs to be properly trained in the online machine leaning system-

manner. To make the training process of the DNN robust and result in the accurate predictions, the

following two algorithms are used: 1) the replay buffer, 2) the real-time normalization method. In this

chapter, comparative simulation results with respect to a type of the DL layer, the use of the replay

buffer, and the use of the real-time normalization method are presented. In the simulations, the

equation of ship motion is solved by using a marine dynamic simulation software, OrcaFlex,

developed by Orcina.

4.5.1. Simulation Conditions

In the simulations, the settings of the parameters in the proposed motion predictive control such �,

�, �, and � are presented as in Table 13 where ∆� is a timestep for the time domain simulation. In the

table, � and � were determined considering periods of the low-frequency three-DOF ship motions

(surge, sway, yaw) where the periods of the 3-DOF ship motions are determined by magnitude of the

PID gains and environmental load. The length of � should be long enough to consider the memory

effect (Yeung, 1983), but should not be too long since data from far in the past is irrelevant to a current

timestep. The length of � should not be zero since � of zero eliminates the effects of using the

77

proposed motion predictive control. The length of � should be just long enough to counteract an

upcoming drifting motion. � should be greater than 0.1s and lower than 1s since low � yields low

efficiency in terms of computation memory and high � yields data loss between timesteps. The size

of the replay buffer � should be big enough to capture statistical characteristics of a current

environmental condition but not too big so that data stored in the replay buffer can efficiently adapt

to a varying environment.

Table 13 Settings of the parameters in the proposed motion predictive control

�� ����� The replay buffer

Length of past
data �

5 s
Prediction
length �

10 s
Size of the replay

buffer �
3600
× (1/∆�)

Sampling rate � 0.5 s

The environmental condition for the simulations in this chapter is defined in Table 14 according

to the IMCA standard (IMCA, 2000) since it provides the wind-wave relationship table for the DP

validation. Finally, the PID gains of the PID feed-back system is set based on a Ziegler-Nichols (ZN)

method (Ziegler and Nathaniel, 1942).

Table 14 Environmental condition for the simulations for the effectiveness test

Duration

Wave Wind Current Wind,
wave,
current

directions

Attack angle of
environments to a

ship
Type of

spectrum
Hs Tz Vw Vc

0 ~ 10800
s

JONSWAP
6.12
m

9.07
m

17.5
m/s

1 m/s co-linear 40∘

4.5.2. Types of Deep Learning Layers

Three different DNNs based on the ANN, LSTM, and GRU, respectively, are examined in terms

of station-keeping performance. Details of the three DNNs are shown in Table 15. In the table, the

hyperparameters are determined heuristically. A fine hyperparameter search algorithm such as k-fold

cross validation is not utilized because of two reasons. First, the prediction performance was

consistent over different hyperparameter settings based on common neural network architectures.

Second, because the DNN of the proposed motion predictive control is trained on data collected from

the dynamic simulations, conducting the fine hyperparameter search is computationally too expensive.

78

Table 15 Details of the three DNNs

Hidden layer
size

Size of cell
states

Size of hidden
states

Number of hidden
layers

Dropout rate

ANN 64 10 40 %

LSTM 64 64 2 40 %

GRU 64 2 40 %

Ship motion time histories of the three DNNs are shown in Fig. 70. It is shown that there is almost

no difference in the station-keeping performance between the ANN, LSTM, and GRU. It is assumed

that because the future drifted ship position is mostly affected by current and near past data, the LSTM

and GRU do not have the advantage over the ANN in terms of the long-term sequential data

processing, therefore, they result in the similar performance as the ANN. In this paper, the LSTM is

used in the DNN of the proposed motion predictive control because it still shows the slightly better

performance and much more commonly used than the GRU.

Fig. 70 Ship motion time histories of the three different DNNs based on the ANN, LSTM, and GRU

4.5.3. Real-Time Normalization Method

Effectiveness of the use of the real-time normalization method is examined. The following two

cases are compared: 1) the PID feed-back system with the proposed motion predictive control as

shown in Chapter 4.3, 2) the PID feed-back system with the proposed motion predictive control which

does not use the real-time normalization method. The two cases are comparatively presented with the

ship motion time histories and loss time histories in Fig. 71 and Fig. 72, respectively. In Fig. 71, Fig.

79

71 (a) shows the overall graph and Fig. 71 (b) shows the zoomed graph. Fig. 71 shows that the station-

keeping performance is much better when the real-time normalization method is used, and its

performance difference comes from the training performance difference as shown in Fig. 72. As

shown in Fig. 72, when the real-time normalization method is used, the training loss is much lower,

which means that the predicted ship motion is very close to the actual ship motion during the training

process. Thus, the low training loss means the high prediction accuracy of the DNN in the proposed

motion predictive control, and the high prediction accuracy guarantees the station-keeping

performance improvement as mentioned in Chapter 4.3.

(a) overall

(b) zoomed

80

Fig. 71 Ship motion time histories with respect to the use of the real-time normalization method

Fig. 72 Loss time histories with respect to the use of the real-time normalization method

4.5.4. Replay Buffer

Effectiveness of the use of the replay buffer is examined. The following two cases are compared:

1) the PID feed-back system with the proposed motion predictive control as shown in Chapter 4.3, 2)

the PID feed-back system with the proposed motion predictive control which does not use the replay

buffer. In the second case, the DNN is trained with the latest data only. The two cases are

comparatively presented with the ship motion time histories and loss time histories in Fig. 73 and Fig.

74, respectively. Fig. 73 shows that the station-keeping performance is better when the replay buffer

is used. Same as in the previous subchapter, this station-keeping performance difference comes from

the training performance. Fig. 74 shows that the training loss is much lower and stable when the

replay buffer is used, which ensures the prediction accuracy of the DNN in the proposed motion

predictive control.

Fig. 73 Ship motion time histories with respect to the use of the replay buffer

81

Fig. 74 Loss time histories with respect to the use of the replay buffer

4.6. Simulation and Results Discussion

To validate the proposed motion predictive control, simulation results from the following two

systems are compared: 1) the PID feed-back system with the wind feed-forward system, 2) the PID

feed-back system with the proposed motion predictive control. In Chapter 4.6.1, the two systems are

simulated under one environmental condition to present performance difference and adaptability to a

given environment from scratch. The adaptability is defined as an ability to adapt to a new sea

environment by learning to make the good predictions for the drifted ship positions, which eventually

leads to the better station-keeping. To compare the two systems in terms of the station-keeping

performance, ship motion time histories are presented with their statistical result. And, predicted

drifted ship position histories of the motion predictive control are presented to examine the prediction

performance for the future drifted ship positions. Lastly, thrust time histories are presented. In Chapter

4.6.2, the two systems are simulated under two different sequential environmental conditions to

present performance difference and the adaptability of the proposed motion predictive control from

one environmental condition to another. Similar to Chapter 4.6.1, ship motion time histories are

presented with their statistical result, and predicted drifted ship position histories of the proposed

motion predictive control are presented. For simulations in this chapter, the parameter settings of the

proposed motion predictive control are the same as in Chapter 4.5.1.

4.6.1. Simulation Under One Environmental Condition

In this chapter, the environmental condition is the same as Table 14. Ship motion time histories

and their statistics are shown in Fig. 75 and Table 16, respectively. In Fig. 75, the ‘with the wind

feed-forward’ refers to the PID feed-back system with the wind feed-forward system, and the ‘with

the proposed motion predictive control’ refers to the PID feed-back system with the proposed motion

predictive control. In Table 16, the std stands for standard deviation, and ���� refer to �(��)� + (��)�.

For the statistics of the motion time histories, the first 2000s motion histories are excluded considering

the initial training process of the proposed motion predictive control. Fig. 75 shows that the better

82

station-keeping performance is achieved by the ‘with the proposed feed-forward’ than ‘with the wind

feed-forward’. Especially, the ‘with the proposed feed-forward’ has the smaller peaks which are equal

to the smaller drifting ship motions. The better station-keeping performance of the ‘with the proposed

feed-forward’ can also be seen in Table 16 from the statistical point of view.

Fig. 75 Ship motion time histories with respect to the wind feed-forward and the proposed motion

predictive control (under one environmental condition)

Table 16 Statistics of the ship motion time histories with respect to the wind feed-forward and the

proposed motion predictive control (under one environmental condition)

std(����)
max(����)

[m]
std(�)

max(|�|)
[deg]

With the wind feed-forward
system

1.65 12.30 0.31 3.87

With the proposed motion
predictive control

1.32 9.94 0.21 2.17

For the proposed motion predictive control, the prediction accuracy for the drifted ship position in

the future is important. To examine the prediction performance, predicted ship motion time histories

by the proposed motion predictive control and actual ship motion time histories from the simulation

are compared in Fig. 76. For the clear visual comparison, the predicted ship motion time histories are

shifted to the left by the prediction length � to align the timestep with the actual ship motion time

histories. Fig. 76 shows that the prediction performance of the proposed motion predictive control is

not completely stable yet before around 1700s. It is mainly because the weights of the DNN in the

83

proposed motion predictive control are randomly initialized at 0s and start to be trained from 0s. In

other words, because the DNN is not trained enough before around 1700s, the prediction performance

is poor in some sections. But from around 1700s to the end of the simulation, the prediction is quite

accurate and robust. This accurate prediction is directly reflected in the station-keeping performance

as Fig. 75 where most of the peaks of the ‘with the proposed motion predictive control’ in ��, ��, and

� directions are lower than those of the ‘with the wind feed-forward’ after around 1700s.

Fig. 76 Comparison between the actual and predicted ship motion time histories (under one

environmental condition)

Finally, thrust time histories of the two systems are compared in Fig. 77 where the mean thrust

denotes the mean thrust from the six azimuth thrusters and the dotted-line denotes a mean value of

the whole thrust time history. It can be observed that the two thrust time histories are quite similar

and the mean values of the two thrust histories are almost the same since the two dotted-lines are

overlapped. Therefore, it can be said that the PID feed-back system with the proposed motion

predictive control is capable of learning to adapt to a given environment from scratch and yields the

better the station-keeping performance than the PID feed-back system with the wind feed-forward

system.

84

Fig. 77 Thrust time histories with respect to the wind feed-forward and the proposed motion

predictive control (under one environmental condition)

4.6.2. Simulation Under Two Different Sequential Environmental Conditions

In Chapter 4.6.1, it is shown that the PID feed-back system with the proposed motion predictive

control can adapt to a given environment from scratch, improving its prediction performance as well

as the station-keeping performance. The capability of adapting to a given environment is important,

but capability of adapting from one environment to another is also equally important because a sea

state varies over time.

In this subchapter, two environmental conditions are sequentially placed, where the two

environmental conditions are different in both harshness and attack angle. The environmental

conditions are shown in Table 17.

Table 17 Two different sequential environmental conditions

Time
Wave

spectrum
Hs Tz Vw Vc

Wind, wave,
current

directions

Attack angle of
environments to a

ship

0 ~ 10800
s

JONSWAP
4.09

m
7.41

m
12.5
m/s

1 m/s co-linear 20∘

10800 ~
21600 s

JONSWAP
6.12

m
9.07

m
17.5
m/s

1 m/s co-linear 40∘

First, ship motion time histories are shown in Fig. 78, and the actual and predicted ship motion

time histories are shown in Fig. 79 to examine the effects of the prediction accuracy on the station-

keeping performance. For the clear visual comparison, the predicted ship motion time histories are

shifted to the left by the prediction length � to align the timestep with the actual ship motion time

histories. In Fig. 78 and Fig. 79, the red-dotted line represents the transition point from the first

environmental condition to the second.

85

Fig. 78 Ship motion time histories with respect to the wind feed-forward and the proposed motion

predictive control (under two environmental conditions)

Fig. 79 Comparison between the actual and predicted ship motion time histories (under two

environmental conditions)

As shown in Fig. 78, the station-keeping performance of the ‘with the proposed motion predictive

control’ in the first environmental condition is better than the ‘with the wind feed-forward’ from the

beginning unlike Fig. 75. This is because the first environmental condition in Fig. 78 is relatively

milder than the environmental condition in Fig. 75 and the training process of the DNN is easier due

to the smaller motion amplitudes. It tells that the adaptability of the proposed motion predictive

control is more efficient when a sea state is relatively milder. In the early stage of the second

environmental condition (around 10800s-12500s), the station-keeping performance of the ‘with the

proposed motion predictive control’ is poorer than ‘with the wind feed-forward’ as shown in Fig. 78.

86

This poor station-keeping performance of the ‘with the proposed motion predictive control’ occurs

due to the poor prediction accuracy at around 10800s to 12500s as shown in Fig. 79. In detail, since

the predicted drifted ship positions are underestimated at the peaks, and it results in the smaller future

error, then, the smaller future error causes the smaller thrust and it eventually leads to the further

drifting ship motion. This underestimated prediction occurs because the DNN of the proposed motion

predictive control trained in the first environmental condition is not accustomed to the second

environmental condition at first, therefore, it underestimates the future ship position in the early stage

of the second environmental condition. However, as the DNN gets trained with data from the second

environmental condition, it starts making very accurate predictions around 1700s after the transition

to the second environment. With such accurate predictions by the DNN, the ‘with the proposed motion

predictive control’ achieves the better station-keeping performance than ‘with the wind feed-forward’

until the end of the simulation in the second environmental condition.

The statistics of the ship motion time histories in Fig. 78 are shown in Table 18 in which the first

2200s ship motion histories in both environmental conditions are excluded considering the initial

training process of the proposed motion predictive control in each environmental condition. Table 18

ensures the better station-keeping performance of the ‘with the proposed motion predictive control’

from the statistical point of view.

Table 18 Statistics of the ship motion time histories with respect to the wind feed-forward and the

proposed motion predictive control (under two environmental conditions)

Time 2200 ~ 10800s

std(����)
max(����

[m]
std(�)

max(|�|)
[deg]

With the wind feed-
forward system

0.38 2.86 0.024 0.17

With the proposed motion
predictive control

0.30 2.08 0.019 0.16

Time 13000 ~ 21600s

std(����)
max(����

[m]
std(�)

max(|�|)
[deg]

With the wind feed-
forward system

1.66 12.29 0.31 3.87

87

With the proposed motion
predictive control

1.31 9.95 0.20 1.72

In this subchapter, the two different environmental conditions are sequentially placed, where the

transition from one environmental condition to another occurs instantly. This instant transition of the

environmental condition is used to result in the conservative results in terms of the adaptability of the

proposed motion predictive control. In other words, if the transition is set to be slow and gradual, it

becomes much easier for the proposed motion predictive control to adapt to the new environmental

condition and it becomes difficult to assess the maximum adaptability of the proposed motion

predictive control. Therefore, by using the instant transition in the simulation, the maximum

adaptability of the proposed motion predictive control can be assessed. It should be noted that because

the proposed motion predictive control can even adapt to an instantly-varying sea environment, it is

expected that the proposed motion predictive control can adapt to a gradually-varying sea

environment well without deterioration in the prediction performance.

88

Chapter 5 Reinforcement Learning-Based Adaptive PID

Controller for DPS

5.1. Introduction

Dynamic positioning of a vessel refers to a process of automatically controlling a vessel’s thrusters

to maintain the vessel at a fixed position and heading. Conventionally, dynamic positioning system

(DPS) uses a proportional-integral-derivative (PID) controller (Harbonn, 1971; Nguyen, Sørensen

and Tong Quek, 2007; Van ’t Veer and Gachet, 2011; Jeon et al., 2017). However, there are two main

limitations in a conventional PID controller. First, a PID controller has P, I, and D gains in its structure

and they need to be adjusted as parameters. Those gains are usually tuned manually by trial-and-error.

However, such manual gain tuning may not result in optimal values for the gains since the gain tuning

is based on trial-and-error and human intuition. To automate the PID gain tuning process, many

studies have been conducted. The most common and easiest PID tuning method is a Ziegler-Nichols

(ZN) method (Ziegler and Nichols, 1942), and this ZN method was adopted in many previous studies

for the DPS (Van ’t Veer and Gachet, 2011; Koschorrek et al., 2015; Jeon et al., 2017). Aside from

the ZN method, other PID gain tuning methods such as Davison method (Davison, 1976), Penttinen

method (Penttinen and Koivo, 1980), and Maciejowski method (Maciejowski, 1989) were analyzed

for the PID gain tuning for the DPS in (Martin and Katebi, 2005). However, no matter how the PID

gains are tuned with the tuning methods introduced above, the tuned gains remain fixed. It is well

known that performance of a conventional PID controller is somewhat limited when there is a time-

varying load (Teoh and Yee, 1991), which is the second main limitation of a conventional PID

controller. In case of the DPS, since it needs to maintain a vessel’s position at the open sea, it faces

environmental loads such as wind, wave, and current loads which vary over time. Thus, a PID

controller with the fixed gains cannot yield efficient station-keeping performance for the DPS. To

cope with the time-varying loads, an adaptive PID controller was introduced (Teoh and Yee, 1991).

The main advantage of an adaptive PID controller is that it adaptively tunes the gains to cope with

the varying loads. For the DPS, many adaptive PID controllers were developed based on fuzzy logic

(Yamamoto and Morooka, 2005; Jeon et al., 2017; Xu et al., 2019). In the previous studies of the

fuzzy-based adaptive PID controller for the DPS, the controller adaptively tuned the gains considering

a position and velocity of a ship at every timestep, and it achieved better station-keeping performance.

But since this fuzzy-based adaptive PID controller used fuzzy logic, it had intrinsic limitations of

89

manual definition of fuzzy rules and fuzzy variables of the system, both of which require human

expertise in the application domain and can result in different performance by different individuals.

Also, the fuzzy-based adaptive PID controller’s fuzzy rule was designed to increase the P and D gains

when a ship starts being drifted or is far away from a target position. This gain-tuning strategy

certainly increases the station-keeping performance, but it comes with the cost of aggressive thrust

control (Xu et al., 2019), which is undesirable in terms of control efficiency (Jon and Breivik, 2009).

In this paper, a concept of an adaptive PID controller is used and its gains are tuned by the adaptive

fine-tuning system proposed in this study instead of the fuzzy logic. The proposed adaptive fine-

tuning system is based on the following two notions: 1) it should not be dependent of human intuition-

based adaptive gain-tuning strategy, 2) it should be able to achieve the better station-keeping

performance without further DP thrust consumption or a higher rate of the thrust change, which

represent the control efficiency. To achieve the first notion, one of the deep reinforcement learning

(DRL) algorithms, deep deterministic policy gradient (DDPG) (Lillicrap et al., 2016), is utilized since

it does not require any prior knowledge about the dynamics of a ship or DPS to learn an efficient

adaptive gain-tuning strategy by interacting with a given environment. To achieve the second notion,

the proposed adaptive fine-tuning system is restricted for its available gain range to [0, �����] where

����� represents a base gain. The base gain is a pre-tuned gain by PID gain-tuning methods such as

manual tuning method, ZN method, or any PID gain-tuning method. Because the available gain range

is restricted, the proposed adaptive fine-tuning system is restricted in overusing the DP thrust to

increase the station-keeping performance. With the two notions, the adaptive fine-tuning system is

forced to learn how to efficiently tune the adaptive gains to increase the station-keeping performance

while its choice for the gain is restricted not to overuse the thrust. The term “fine-tuning” in the

proposed system comes from the fine-tuning for a convolutional neural network in deep learning (Guo

et al., 2019).

As to the application of the DRL to an adaptive PID controller, there have been many studies

conducted for robots (Gloye et al., 2005; Carlucho, De Paula and Acosta, 2019, 2020). In Carlucho

et al., (2020, 2019) and Gloye et al. (2005), the robots with the DRL successfully learned to achieve

a fast reference tracking with the fast convergence by adaptively tuning the gains. The main

differences between those previous works and the work in this paper are a target of the application

and the environment. In this work, unlike Carlucho et al., (2020, 2019) and Gloye et al. (2005), a

285m FPSO (Floating Production Storage and Offloading) ship is used as a target of the application

which has a much slower response to a control signal than a small robot, and the environmental load

90

is far greater which causes a high magnitude of drifting motions (Van ’t Veer and Gachet, 2011). For

the proposed adaptive fine-tuning system, the main goal is the same as the fast convergence to the

tracking reference, but instead of converging to a varying reference quickly, it needs to converge to a

constant reference position quickly after the ship is drifted by the environmental load.

In the following subchapters, a target ship and the DPS, and the proposed adaptive fine-tuning

system are presented. Then, simulation results and discussion are followed.

5.2. Target Ship and DPS

The target ship and DPS introduced here are the ship and DPS used for the simulations in the result

subchapter. Properties of the target ship and DPS are presented in detail. Principal dimension of the

target ship and its coordinate system are shown in Table 19 and Fig. 80, respectively. In Fig. 80, {�}

and {�} are the origins of global and local coordinate systems, respectively. � is a heading angle of

the ship in degrees. The global and local positions of the ship are in meters and denoted as (�, �) and

(�� , ��), respectively. The target ship is equipped with six azimuth thrusters. Their arrangement and

details are shown in Fig. 81 and Table 20, respectively.

Table 19 Principal dimension of the FPSO ship

Item Principal dimension

Length Between Perpendiculars (LBP) 285 m

Longitudinal Center of Gravity 142.26 m

Breadth 63 m

Draught 13 m

Weight 225,518 ton

91

Fig. 80 Global and local coordinate systems

Fig. 81 Arrangement of DP thrusters

Table 20 Details of DP thrusters

Azimuth
Thruster

From ��

[m]
From ��

[m]
Maximum Thrust Limit

[kN]

no.1 128 26 2000

no.2 128 -26 2000

no.3 -128 -26 2000

no.4 -128 26 2000

no.5 -121 0 2000

no.6 135 0 2000

5.2.1. PID Control in DPS

A control law of a single PID controller is shown in Eq. (110) where �� is the low-level controller

output at time �, �� is an error which is defined as a reference position subtracted by a current position,

��, �� , and �� are the proportional, integral, and derivative gains of the PID controller, respectively.

92

�� = ���� + �� � ��

�

�

�� + ��

���

��
(110)

In case of the PID controller in the DPS, since there are three directional motions (surge, sway, and

yaw) that need to be maintained by the DPS, three PID controllers are used in the DP’s PID control

system. The structure of the PID control system in the DPS is shown in Fig. 82. In this figure, ���� is

a vector of reference ship positions in the surge, sway, and yaw directions. �� is a vector of the errors

in the surge, sway, and yaw directions at time �, ��
(.)

is a required thrust in each direction where the

direction is denoted in the superscript parenthesis, and each �� denotes the same as ��. �� is a vector

of the allocated thrusts for each thruster, and ���� is a vector of current ship positions in the surge,

sway, and yaw directions at time � + 1. The details of ����, ��. ��, and ���� are shown in Eqs. (111)-

(114). In ��, the number next to � represents a thrust number. For ����, it should be noted that the

ship positions are the positions filtered by a Kalman filter which is used to remove the ship motion

components induced by the 1st-order wave load (Fossen and Perez, 2009).

Fig. 82 Structure of the PID control system in the DPS

���� = {����
� , ����

� , ����}
(111)

�� = ���� − �� = {(����
� − ��

�), (����
� − ��

�), (���� − ��)} = ���

����
, ��

����
, ��

(�)
� (112)

�� = ��1�

����
, �1�

����
, �2�

����
, �2�

����
, ⋯ , �6�

����
, �6�

����
� (113)

���� = {����
� , ����

� , ����} (114)

In Fig. 82, the flow of the control system is as follows: First, �� is calculated based on ���� and ��,

93

and it is fed into each of the three PID controllers according to their directions. Then, each PID

controller outputs ��
(.)

and it is fed into the thrust allocation algorithm to output ��. For the thrust

allocation algorithm for the DP thrust, a Lagrange Multiplier method is used (De Wit, 2009).

5.2.2. Hydrodynamics Associated with a Drifting Motion of a Ship

This sub-subchapter is present to provide an understanding of the environmental loads that

contribute to the ship’s drifting motion, and how the DP thrust counteract the environmental loads.

The mathematical model of the ship motion can be expressed as Eq. (115) (Fossen and Perez,
2009),

�(�, �) + �(�, �) + �(�) = �(�, �, �) (115)

where �(�, �) is the system inertia load, �(�, �) is the system damping load, �(�) is the system

stiffness load, �(�, �, �) is the external load, �, � and � are the position, velocity and acceleration,

respectively, and � is time. For the DPS, the external load �(�, �, �) is equal to Eq. (116),

�(�, �, �) = ����� + �������� + ����� − ����������
(116)

where � represents external loads and subscripts represent sources of the external loads.

There are three types of environmental loads contributing to the drifting motion of a ship such as

wind, current, and wave drift loads. The environmental loads contributing to the drifting motion are

presented in Fig. 83. The wave load is divided into the 1st order and 2nd order wave loads. The

difference between these two loads is shown by ship motions affected by these two loads in Fig. 84

(Hassani and Pascoal, 2015).

Fig. 83 Environmental loads contributing to the drifting motion

94

Fig. 84 Difference between the 1st order and 2nd order wave loads

For the DPS to compensate for the drifting motion caused by the wind, current, and wave drift

loads, the DP thrusters need to counteract the environmental loads. This relation can be expressed as

Eq. (117) in which the DPS basically maintains a ship’s position by trying to satisfy this equation.

(����� + �������� + ����� �����) − ���������� = 0 (117)

The wind and current loads can be expressed as Eqs. 오류! 참조원본을찾을수없습니다.-(121)

(Fossen and Perez, 2009), and the wave drift load can be expressed as Eq. (122) (Orcina, 2019).

����� =
1

2
������

� �

������������

����������

��������

� (118)

���� = ��������
(119)

�������� =
1

2
��������

� �

������������

����������

��������

� (120)

���� = ���
� � (121)

where ����� and �������� are wind and current loads, respectively, ������, �����, ���� are the surge,

sway and yaw coefficients with respect to the wind or current direction relative to a ship heading, �

denotes density, �� is a relative velocity of wind or current past a ship, ������, ����� are the exposed

areas above the waterline for ����� and the submerged areas for �������� . ��� is length between

95

perpendiculars, and � is a draft.

����� ����� = � � Re�QTF���� �������� , �� , �� , ������� exp����� − ����
�

���

�

���

− ��� − �����

(122)

where � is the number of the regular wave components for describing irregular sea state, Re

denotes the real part of a complex number, QTF���� ����� is the wave drift quadratic transfer function

which can be obtained from a diffraction analysis in the frequency domain on the target ship, � is the

direction of the regular wave component relative to the ship’s heading, �, �, �, � are the wave period,

amplitude, frequency, and phase lag of the regular wave component. Eq. (122) shows that

QTF���� ����� is applied to each pair of the regular wave components to yield each pair’s contribution

to the wave drift load.

5.3. Proposed Adaptive Fine-Tuning System for PID Gains in DPS

Fig. 85 Overall structure of the proposed adaptive fine-tuning system

An overall structure of the proposed adaptive fine-tuning system is shown in Fig. 85. For the

intuitive understanding, Fig. 85 is drawn on the top of 오류! 참조원본을찾을수없습니다.. In this

figure, the state �� is an input vector for the actor and critic, �� is a vector of the adaptive PID gains,

and �� is an update-gate for the integral of the errors. A configuration of �� is shown in Eq. (123).

The previous motion time histories are used in �� to consider a memory effect in which a fluid load

is determined in part by previous motions at any instant (Yeung, 1983). The integrals of the errors are

also included in �� since they are influential terms for the mean station-keeping position, and also

needed to provide enough information to output the update-gate for the integral of the errors ��.

During the training of the actor and critic, a normalized �� is used to ensure the training stability (Lee,

96

Lee and Seo, 2020b). For the normalization of ��, the error terms in �� are normalized by Eq. (124)

where � is all the states stored in the replay buffer and the std stands for standard deviation, and the

integral of the error terms in �� are normalized by dividing them by 100 to make them small enough

for the stable neural network training. The integral of the error terms are differently normalized

because these terms usually increase and gradually decrease over time unlike the error terms which

go around their mean values with certain standard deviations since the ship position goes around its

reference position by the DPS.

�� =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ����

����
, ����

����
, ⋯ , ��

����
,

����

����
, ����

����
, ⋯ , ��

����
,

����
(�)

, ����
(�)

, ⋯ , ��
(�)

��� ��
(��)

��
�

�

� , ��� ��

(��)
��

�

�

� , ��� ��

(�)
��

�

�

�
⎭
⎪
⎪
⎬

⎪
⎪
⎫

(123)

��
� = ��� − mean(�)�/ std(�) (124)

The actor basically outputs �� and ��, at every timestep. �� consist of the adaptive PID gains for

the surge, sway, and yaw directions. The details of �� is shown in Eq. (125) where each ��
(.) consist

of the adaptive P, I, and D gains in each direction as shown in Eq. (126). ����� is a vector of the base

gains determined based on the ZN method, and �� is the output vector from the actor’s output layer.

In this paper, the actor uses a sigmoid activation function in its output layer. The sigmoid activation

function is shown in Eq. (127). Therefore, ranges of each component in �� and �� are [0,1] and

[0, �����], respectively. With ��, the PID controller with the adaptive gains is expressed as Eq. (128)

where the direction is denoted in the superscript parenthesis.

�� = ���

����
, ��

����
, ��

(�)
� = �� × �����

(125)

��
(.)

= ���
(.)(�), ��

(.)(�), ��
(.)(�)� (126)

�(�) = 1/(1 + ���) (127)

��
(.) = ��

(.)(�)��
(.) + ��

(.)(�) � ��
(.)

�

�

�� + ��
(.)(�)

���

��
(128)

The update-gate for integral of the errors �� determines how much error to update for the integral

97

of the errors which is in the integral terms in the PID controllers. The update equation of the integral

of errors by �� is shown in Eq. (129) where �� ∈ [0,1]. The concept of �� was inspired by gated

recurrent units (GRU) (Chung et al., 2014).

� ��

�

�

�� = � ��

���

�

�� + (�� × ��) (129)

�� = ���

����
, ��

����
, ��

(�)
� (130)

�� is designed to prevent a large rebound motion of a ship. When a sea state is severe, a ship

experiences large drifting motions on a drifting side mostly due to aggressive wave drift loads. An

illustration of the drifting side and an example of the wave drift load time history are shown in Fig.

86 and Fig. 87, respectively. While a ship is drifted greatly due to the very large wave drift load, the

integral of the error increases drastically as well. Due to the drastically-increased integral of the error

over many drifting motions, the large rebound ship motions are caused. The large rebound ship

motions caused by the increased integral of the error are illustrated in Fig. 88.

Fig. 86 Illustration of the drifting side (direction of an environmental load: right to left)

Fig. 87 Example of the wave drift load time history (sea state: very rough, environmental direction

to a ship: 40°)

98

Fig. 88 Illustration of the large rebound motion caused by the drastic increase of the integral of error

As to the adaptive gains from the actor, the I gain is fixed when a ship is on the drifting side, while

the P and D gains are adaptively selected by the actor. The I gain is fixed on the drifting side to ensure

the convergence of the station-keeping. On the other side of the drifting side, the I gain is adaptively

selected. The drifting side can easily be identified by the integral of the error.

Architectures of the actor and critic are shown in Fig. 89 where the HL stands for a hidden layer,

the BN stands for batch normalization (BN) proposed by Ioffe and Szegedy (2015), and the numbers

below the HL refer to the size of the HL. Unlike the original DDPG implementation from Lillicrap et

al. (2016) that uses the BN in both the actor and critic, the BN is used in the critic only for the proposed

adaptive fine-tuning system. The choice of application of the BN to the actor and critic was made

based on the station-keeping performance assessment in simulations. Given the study by Bhatt et al.

(2019), it is natural that application of the BN does not always increase the RL learning performance

but the performance may increase or decrease depending on application domains.

(a) actor (b) critic

Fig. 89 Architectures of the actor and critic

The reward function that is needed to train the actor and critic is defined as Eq. (131). It should be

noted that the station-keeping in the yaw direction is implicitly designed since the good station-

keeping of the surge and sway motions requires the good station-keeping of the yaw motion. To

99

further stabilize the RL learning, �� is clipped to [0,2] and �� is normalized as Eq. (132) where ℛ

denotes all the rewards stored in the replay buffer. For the action noise, a Gaussian action noise with

the std of 0.1 is used instead of an Ornstein-Uhlenbeck process since they result in the similar learning

performance (Plappert et al., 2018). Finally, the other hyper-parameters for the DDPG are set the

same as in the original DDPG implementation (Lillicrap et al., 2016).

�� = −����
(��)

�
�

+ ���

(��)
�

� (131)

��
� = ��� − mean(ℛ)�/std(ℛ)

(132)

5.4. Simulation Results

In the simulations, the equation of ship motion is solved by using a marine dynamic simulation

software, OrcaFlex, developed by Orcina. As to the sea states, because the station-keeping

performance by the gain change does not vary much in calm or moderate sea states due to small

drifting motions, the simulations were conducted in ‘very rough’, ‘high’, and ‘very high’ sea states

according to Table 21 (Nguyen, Sørensen and Tong Quek, 2007). For the station-keeping, its

reference positions (surge ��, sway ��, yaw �) are set to (0, 0, 0).

Table 21 Definition of sea states

Sea states Significant wave height �� [m]

Calm 0 - 0.1

Moderate 1.25 - 2.5

Rough 2.5 – 4.0

Very rough 4.0 – 6.0

High 6.0 – 9.0

Very high 9.0 – 14.0

5.4.1. Effectiveness of the Proposed Adaptive Fine-Tuning System

In the simulations in this sub-subchapter, the sea state is set to ‘very rough’. The details of the

environmental condition of the sea state are shown in Table 22 where ��, �� , and �� denote a zero-

crossing period, mean current speed, and mean wind speed, respectively. The specific values for the

environmental condition are determined by a IMCA standard (IMCA, 2000).

100

Table 22 Environmental condition for the effectiveness test

Sea
state

Wave
spectrum

��

[m]
��

[m]
��

[m/s]
��

[m/s]

Wind, wave,
current

direction

Environmental
direction to the

ship

Very
rough

JONSWAP 5.0 8.16 14.75 1 co-linear 40∘

First, the effects of the use of the adaptive P, D gains are presented with ship motion and the gain

time histories in Fig. 90 where a PID controller with the base gain (fixed) and a PID controller with

the proposed adaptive fine-tuning system are compared. For the adaptive fine-tuning system in Fig.

90, one adaptive fine-tuning system is not allowed to tune the PD gains but the I gain only, and the

other is allowed to tune all the PID gains. For the gain histories, since a significant difference lies in

the sway motion in Fig. 90, the gain histories regarding the sway direction are presented only, and the

gain histories are normalized by division by �����. For the training of the adaptive fine-tuning systems,

they are trained for 12-hour timesteps in the simulation. In Fig. 90, the ‘fixed base gain’ represents

the PID controller with the fixed base gain, the ‘adaptive PD gain: not used’ represents the PID

controller with the adaptive fine-tuning system that tunes the I gain only, and the ‘adaptive PD gain:

used’ represents the PID controller with the adaptive fine-tuning system that tunes all the PID gains.

In Fig. 90, the distinct difference between ‘adaptive PD gain: not used’ and ‘adaptive PD gain: used’

is the convergence speed. In case of the ‘adaptive PD gain: used’, it tends to approach the reference

position faster than ‘adaptive PD gain: not used’ and it has smaller rebound motions, especially in the

sway direction. As observed in Fig. 90 (c)-(d), in case of the ‘adaptive PD gain: used’, when the ship

is drifted, the PD gains are increased to prevent the drifting motion, and while the ship approaches

the reference position, the P gain is drastically decreased and the D gain is slightly decreased, which

makes the fast convergence possible. Because the drastic reduction of the P gain contributes to the

prevention for the rebound motion while the D gain which is relatively lower than the base gain by

ranging from 0.4 to 0.6 of the base gain allows the fast approach to the reference position.

101

(a) adaptive PD gain: not used
(b) gain histories of ‘adaptive PD gain: not

used’

(c) adaptive PD gain: used (d) gain histories of ‘adaptive PD gain: used’

Fig. 90 Effects of the adaptive PD gains

Second, the effects of the adaptive I gain and the update-gate for the integral of the errors �� are

analyzed in Fig. 91 where ��(�) represents the adaptive I gain. In Fig. 91, the ship motion time

histories are presented on the left side, and the time histories of the adaptive gains and �� are

presented on the right side. Same as in Fig. 90, the gain histories are normalized by division by �����,

and the training of the adaptive fine-tuning systems is conducted for 12-hour timesteps in the

simulation. In Fig. 91 (a), it is clearly seen that the rebound motion is reduced when ��(�) and �� are

used. In Fig. 91 (c) and (g), the pattern of �
�

����
can be observed, in which �

�

����
are tuned to around

102

0.5 while the ship experiences the rebound motion. This is a reasonable control for �
�

����
because the

drifting side is in the positive direction in the sway motion, then its integral of the error is negative.

Thus, the small �
�

����
helps the ship to reach the reference position faster while the ship is in the

rebound side (negative) by reducing the negative thrust contributed by the integral of the error. Fig.

91 (e) shows that the adaptive fine-tuning system does not learn the adaptive gain-tuning strategy well

when ��(�) is not used and �� are used.

(a) ship motion time histories

[with respect to ��(�) and �(�)]

(b) time histories of the adaptive gain and ��

[��(�): not used | �(�): not used]

(c) ship motion time histories

[with respect to �(�)]

(d) time histories of the adaptive gain and ��

[��(�): used | �(�): not used]

103

(e) ship motion time histories

[with respect to ��(�)]

(f) time histories of the adaptive gain and ��

[��(�): not used | �(�): used]

(g) ship motion time histories

[��(�): used | �(�): used]

(h) time histories of the adaptive gain and ��

[��(�): used | �(�): used]

Fig. 91 Effects of the adaptive I gain and the update gate of the integral of error

5.4.2. Overall Performance Assessment

The overall performance of the adaptive fine-tuning system is presented with respect to the station-

keeping performance and the control efficiency. The higher control efficiency means the lower thrust

consumption and a lower rate of the thrust change. The sea states considered here are ‘very rough’,

‘high’, and ‘very high’. The details of the environmental conditions are shown in Table 23. For the

104

environmental directions, the maximum environmental directions in each sea state are determined

based on a watch circle with its radius of 10m (Weingarth, 2006).

Table 23 Environmental condition for the overall performance test

Sea
state

Wave
spectrum

��

[m]
��

[m]
��

[m/s]
��

[m/s]

Wind,
wave,
current

direction

Environmental
direction to the ship

Very
rough

JONSWAP 5.0 8.16 14.75 1 co-linear 0∘, 15∘, 30∘, 40∘, 45∘

High JONSWAP 7.5 9.87 20.0 1 co-linear 0∘, 15∘, 30∘, 35∘

Very
high

JONSWAP 9.06 11.04 23.75 1 co-linear 0∘, 15∘, 30∘, 35∘

The performance assessment is conducted with respect to each environmental condition

considering the sea states and environmental directions to examine the proposed system’s learning

capability on each environmental condition. Then, a total number of the environmental conditions for

the performance assessment is 13 (= 5 + 4 + 4). For the training of the adaptive fine-tuning system,

the training is conducted for 12-hour timesteps in each environmental condition individually. The

overall performance assessment of the adaptive fine-tuning system compared to the PID controller

with the fixed base gain is presented in Fig. 92. The station-keeping performance assessment is

presented with the line graphs with the IAE performance index. The IAE stands for the integral

absolute error and it is a traditional performance index (Jon and Breivik, 2009). The control efficiency

assessment is presented with violin graphs to present the distributions of the thrust and a rate of thrust

change. In Fig. 92, the ‘fixed base gain’ and ‘adaptive gain’ refer to the PID controller with the fixed

base gain and the PID controller with the adaptive fine-tuning system, respectively. IAE(����) is

equal to IAE��(��)� + (��)��. �� and ���/�� denote a mean absolute value of � from Eq. (113) and

a time derivative of �� , respectively. The performances indices IAE(����), IAE(�), �� , and ���/��

indicate the station-keeping performance in the surge and sway directions, the station-keeping

performance in the yaw direction, the DP thrust consumption, and a rate of the thrust change,

respectively. The results in Fig. 92 are obtained from five 1h-simulations with different seeds. Finally,

in the line graphs for the IAE, the dots denote the mean values and shaded area denotes a 95%

confidence interval.

105

(a) IAE(����)

[sea state: ‘very rough’]

(b) IAE(�)

[sea state: ‘very rough’]

(c) distribution of ��

[sea state: ‘very rough’]

(d) distribution of ���/��

[sea state: ‘very rough’]

(e) IAE(����)

[sea state: ‘high’]

(f) IAE(�)

[sea state: ‘high’]

106

(g) distribution of ��

[sea state: ‘high’]

(h) distribution of ���/��

[sea state: ‘high’]

(i) IAE(����)

[sea state: ‘very high’]

(j) IAE(�)

[sea state: ‘very high’]

(k) distribution of ��

[sea state: ‘very high’]

(l) distribution of ���/��

[sea state: ‘very high’]

Fig. 92 The overall performance assessment of the adaptive fine-tuning system

There are two distinct characteristics in the results in Fig. 92. First, when the environmental

direction is below around 15°, there is almost no performance difference between the ‘fixed base gain’

107

and ‘adaptive gain’. This is because when the environmental direction to the ship is small, the ship

experiences the relatively small wave drift loads than when the environmental direction to the ship is

large, and the small wave drift loads result in the small drifting motions. The small drifting motions

are equal to the small error. Therefore, no matter how the gains are tuned by the adaptive fine-tuning

system, the output DP thrust does not change much, which corresponds to the no performance change.

For the intuitive understanding of the wave drift load with respect to the environmental directions,

the wave drift loads with respect to the environmental directions in the ship’s equilibrium position in

the ‘high’ sea state are presented in Fig. 93 where ��� , ��� , and �� denote the load in the surge

direction, the load in the sway direction, and the load in the yaw direction, respectively.

Fig. 93 Wave drift loads with respect to the environmental directions (sea state: ‘high’)

Second, when the environmental direction is over around 15°, the difference in the station-keeping

performance becomes apparent. Overall, when the environmental direction is over around 15 deg, the

adaptive fine-tuning system results in the better station-keeping performance in the surge and sway

directions and the equal station-keeping performance in the yaw direction with the similar thrust

consumption distribution and the similar rate of the thrust change. Since the goal of the proposed

system is to learn the efficient adaptive gain-tuning strategy to increase the station-keeping

performance without deterioration in the control efficiency, the proposed system achieves its goal.

5.5. Discussion

The proposed adaptive fine-tuning system achieves its goal of learning the efficient adaptive gain-

tuning strategy to increase the station-keeping performance without deterioration in the control

efficiency. However, while the station-keeping performance increases in the surge and sway

directions, the performance in the yaw direction remains almost the same. We originally thought that

it is because the reward function does not have explicit information on the station-keeping for the yaw

motion. Therefore, we tried adding a penalty term for the yaw motion error in the existing reward

108

function. However, it only made the yaw motion somewhat aggressively oscillating, which made the

station-keeping in the surge and sway directions unstable as well. To solve that issue, we needed to

add time derivates of the surge, sway, and yaw motion errors, and additional efforts for the weight

tuning for each term. At that point, the reward function became too complicated. Therefore, we kept

the reward function as simple as possible as presented in this paper.

The proposed adaptive fine-tuning system allows the ship to converge to the reference position

quickly after drifted. However, the magnitudes of the ‘peaky’ drifting motions remain the same. These

peaky drifting motions are caused when the wave drift load is suddenly strong as shown in Fig. 87.

To reduce the magnitude of the peak drifting motions, we tried adopting a machine learning-based

anomaly detection algorithm to detect the moment when the peaky drifting motion is about to happen,

and when detected, the base gain multiplied by a multiplying factor of 10 was set to be used to reduce

the magnitude of the peaky drifting motion as a part of the adaptive fine-tuning system. Although the

anomaly detection algorithm worked well for the detection, when the wave drift loads were suddenly

strong, this approach did not help much. We suppose that utilization of a feed-forward system would

be much more effective to reduce the magnitude of the peaky drifting motion.

The proposed adaptive fine-tuning system utilizes a PID controller and thrust allocation algorithm

to yield the DP thrusts from the six azimuth thrusters, which is designed to cope with the varying

environmental loads more efficiently than using the fixed gains. Then, one might have this question:

‘what if the deep reinforcement learning algorithm learns to control the DP thrusts directly so that the

ship can cope with the varying environmental loads efficiently as an end-to-end learning system?’ We

had this exact idea and experimented it in simulations. However, the end-to-end learning did not

perform well. Here are the reasons why we suppose did not go well: 1) In the end-to-end learning, a

number of actor’s output increases in proportion to a number of thrusters. In other words, one thruster

needs to be controlled by a magnitude of thrust and thruster angle, therefore, six thrusters require 12

actions. But if we impose the PID structure, a number of the output is fixed to nine. (three gains for

the surge motion, three gains for the sway motion, and three gains for the yaw motion). This gives the

end-to-end learning a higher dimension in the action space. 2) When a PID structure is used with a

thrust allocation algorithm, the thrust allocation algorithm can take care of the change rates of thrust

and angle of each thruster. However, in case of the end-to-end learning, the deep reinforcement

learning algorithm needs to learn not to drastically change the thrust and an angle of each thruster, or

the change rate limit can be imposed on the action of the actor but this would discourage the

exploration process. 3) When a PID structure is used with a thrust allocation algorithm, the allocation

109

algorithm can ensure that a target total thrust is well distributed over the available thrusters not to give

one thruster a lot of load and let other thrusters to be idle. However, in case of the end-to-end learning,

the deep reinforcement learning algorithm needs to learn the thrust allocation from scratch, which

adds the complexity in learning. 4) With a PID structure, the directionality in the control system for

the thrust is simpler as shown in Fig. 94 and Eqs. (133)-(134), where the red star denotes a reference

position and PID(.) represents a PID controller. It should be noted that only P gain is considered in

the sway direction for the example’s simplicity in Fig. 94. In case of the PID controller, the same

thrust with its proper direction can be output with the same gain as shown in Eq. (133). But in case of

the end-to-end learning, the deep reinforcement learning algorithm needs to learn the directionality

of the thrust, which adds the additional complexity in learning as shown in Eq. (134).

Fig. 94 Directionality of thrust in the control system

��⃗ = PID��, ��� (133)

��⃗ = �
+� = [�cos(�), �sin(�)]

−� = [�cos(� + 2�), �sin(� + 2�)]
(134)

Finally, this study shows that the adaptive fine-tuning system can learn the effective adaptive gain-

tuning strategy in each environmental condition. Therefore, it is important that the proposed system

should be further developed to perform well in various environmental conditions. We suggest the

following two feasible approaches: 1) training the proposed system on all the environmental

conditions at once, 2) utilizing a switching control system. The first approach might be possible, but

since there can be a lot of environmental conditions depending on a sea site, the training might be

difficult. The second approach was proposed by Nguyen et al. (2007). In the scheme with the second

approach, multiple adaptive fine-tuning systems with respect to the sea states are trained first. Then,

they are integrated by using the switching control system which determines which adaptive fine-

tuning system to use in a current state. Since the learning complexity can be distributed over several

adaptive fine-tuning systems with the second approach, the second approach seems more feasible than

110

the first one.

111

Chapter 6 Application of Recent Developments in Deep Learning

To ANN-based Automatic Berthing System

6.1. Introduction

When a ship approaches a port or harbor, which is called a “berth operation,” slow speeds cause

nonlinear characteristics in a ship’s motion, and the ship undergoes sudden changes in its rudder angle

and engine revolutions per second (RPS). For this reason, unlike ship navigation, where ships sail

almost at a constant speed, the ship berthing problem is a challenging one. In order to overcome these

difficulties, many intelligent control algorithms have been proposed, and one of them is the artificial

neural network (ANN) or simply the neural network (NN). With the rapid development of deep

learning (DL), systems based on neural networks have drastically increased and demonstrate

extraordinary performance. Therefore, many studies on the application of neural networks to ship

berthing systems have been conducted.

Im and Hasegawa (2001) proposed the “Parallel Neural Network,” which makes the neural network

focus on each task by changing the ordinary neural network architecture. Im and Hasegawa (2002)

attempted to use another neural network to identify ship motions so that the neural network system

could cope with wind disturbances. Im (2007) proposed an algorithmic method using a neural network

to allow ships to berth safely, even when they approached from unusual directions. Bae et al. (2008)

compared two neural networks with different input configurations and showed that both input

configurations led to a similar performance. Ahmed and Hasegawa (2013) used a virtual window

concept and nonlinear programming method to generate teaching data consistently. Im and Nguyen

(2018) tried solving the problem in which a neural network trained with a ship berthing dataset at one

port can only be used at that particular port but not at others. The researchers adopted a head-up

coordinate system instead of a north-up coordinate system, and the head-up coordinate system

allowed the neural network trained with a ship berthing dataset at one port to be used at another port

as well.

However, although many studies on ANN-based automatic berthing have been conducted to date,

they have missed to address several important issues. First, they neither considerd to use recent

activation functions nor mentioned about weight initialization methods. Second, they used an

inefficient optimizer, although, there are other optimizers with higher performance that have been

112

proposed and verified. Third, there are no consistent method for input data scaling, and some previous

studies scaled their input data in inefficient ways. Fourth, no regularization methods have been

considered. Fifth, owing to the overfitting problem caused by the lack of a regularization method,

poor berthing performance occurred when neural networks were given extrapolated initial positions.

Therefore, most of the previous studies showed berthing trajectories with initial positions from

training datasets and interpolated or slightly extrapolated initial positions only.

In this study, recent activation functions, weight initialization methods, optimizers, input scaling

methods, neural networks with a higher number of hidden layers, and the batch normalization (BN)

are applied to the ANN-based automatic berthing. Then, their effectiveness is verified based on the

loss functions, berthing performance histories, and berthing trajectories.

6.2. Mathematical Model of Ship Maneuvering

To build a mathematical model of ship maneuvering, a definition of a coordinate system and

principal particulars of a ship are first presented in Fig. 95 and

Table 24, respectively. Then, a mathematical model of ship maneuvering and modeling of a

propeller and rudder are presented. In Fig. 95, � and � are the actual positions of the ship in meters,

and � and � are the normalized positions of �, � by the length of the ship.

Fig. 95 Coordinate system

Table 24 Principal particulars of a target ship

HULL

Length overall ��� [m] 188.0

Length between perpendiculars � [m] 175.0

113

Breath � [m] 25.4

Draft � [m] 8.50

Block coefficient �� 0.559

RUDDER

Height �� 7.70

Area ratio ��/(��) 1/45.8

Aspect ratio � 1.827

PROPELLER

Diameter � [m] 6.5

Pitch ratio �/� 1.055

Expanded area ratio 0.730

6.2.1. Mathematical Model for Ship-Maneuvering Problem

In the ship-maneuvering problem, a planar motion includes only surge, sway and yaw motions,

which are considered out of six-degree-of-freedom motions. The basic equations of motion for ship

maneuvering can be expressed as follows:

�(�̇ − ��) = ������ (135)

�(� +̇ ��) = ����� (136)

��� =̇ ���� (137)

where � is the mass, and �, �, � are the velocities in the surge, sway, yaw directions, respectively. ��

is the moment of inertia with respect to the z-axis, and ������ ,  ����� , ���� are the surge and sway

forces and yaw moment, respectively. The dot represents the time derivative. The right terms in Eqs.

(135)-(137) can be dealt with using the established procedure from (Newman, 2019), and Eqs. (135)-

(137) can be expressed as Eqs. (138)-(140).

(� + ��)�̇ − (� + ��)�� = � (138)

(� + ��)� +̇ (� + ��)�� = � (139)

(�� + ��)� =̇ � − ��� (140)

where �� ,  �� ,  �� are the added mass in the surge and sway directions and the added moment of

inertia, respectively. �,  � are the hydrodynamic forces, and � is the hydrodynamic moment. �� is

the distance from the midship to the center of gravity. The hydrodynamic forces and moment are

114

generally expressed as Eqs. (141)-(143), which were proposed by the Maneuvering Modeling Group

(MMG).

� = �� + �� + �� + �� + �� (141)

� = �� + �� + �� + �� + �� (142)

� = �� + �� + �� + �� + �� (143)

where subscripts �, �, �, �, � refer to the hull, propeller, rudder, wind and tug, respectively.

However, because this study focuses on the application of recent developments in DL, the external

forces such as the wind and tug are not considered.

A ship’s maneuvering displacements and velocities can be calculated numerically by integrating

Eqs. (144)-(146) using the Runge–Kutta 4th-order method.

�̇ =
� + (� + ��)��

(� + ��)
(144)

� =̇
� − (� + ��)��

(� + ��)
(145)

� =̇
� − ���

�� + ��

(146)

6.2.2. Modeling of Propeller and Rudder

Owing to the kinematics of the mechanical system of the rudder and engine, time delays between

commands of operation and the resultant mechanical response may occur. The equations from (Sohn,

1992) to consider this physical time-delay effect are used here. First, the equation to consider the

time-delay effect for the propeller RPS is Eq. (147).

�̇ = (�∗ − �)/�� (147)

where � is the RPS, �̇ is a derivative of RPS with respect to time, and �∗ is the target RPS. �� is a

time-delaying constant for the RPS, and this variable is set to 15 s in this study. Next, equations to

consider the time-delay effect for a rudder are Eqs. (148)-(149).

� =̇ (�∗ − �)/�� ; if |�∗ − �| ≤ �� ���̇��� (148)

115

� =̇ sign(�∗ − �)���̇���; if |�∗ − �| > �����̇��� (149)

where �∗ is the target rudder angle, �� is the time-delaying constant for the rudder, and ��̇�� is the

maximum angular velocity of the rudder. In this study, �� is set to 2.5 s, and ��̇�� is set to 3.0°/s.

6.3. Artificial Neural Network and Important Factors in Training the

Network

6.3.1. Artificial Neural Network

The basic architecture of the neural network used in this study is illustrated in Fig. 96, � is � /L,

and � is � /L, in which �,  � are the relative positions of the ship from the target berthing point, and �

is the LBP of the ship. �,  �,  � are the velocities of the ship in the surge, sway, and yaw directions,

respectively, and � is the heading angle of the ship. In the output layer, �������,  ������� are the target

rudder angle and target RPS, respectively. This input layer configuration has been used in several

studies such as (Im and Hasegawa, 2001; Ahmed and Hasegawa, 2013). The number of hidden layers

and the size of the neural network will be addressed in Chapter 6.3.4.

(a) (b)

Fig. 96 Basic architecture of neural network, and concept of imaginary line

The imaginary line shown in Fig. 96 is used as a guideline during berthing. It is known that as the

116

imaginary line provides the additional input variables of �� and ��, which can improve the berthing

performance by the neural network. The angle between the x-axis and the imaginary line is set to 20°

in this study.

For the teaching data preparation, the patterns of the berthing trajectories, rudder angle, and RPS

control from (Bae et al., 2008; Nguyen, Do and Im, 2018) are referred. The teaching dataset used in

this study is shown in Fig. 97, where the red crosses are the initial positions in the teaching data, the

target berthing facility is drawn in blue, and the orange straight line is the imaginary line.

Fig. 97 Teaching dataset

The end of the berthing operation is defined as a status meeting and the following three conditions

according to Ahmed and Hasegawa (2012). First, the aim is to berth at a distance of around the length

of 1.5 times farer than where the ship is from the berthing facility. Second, the relative heading angle

to the berthing facility should be smaller than 30°. Third, the velocity of the ship should be slower

than 0.2 m/s.

The overall flowchart for the automatic ship berthing with a neural network is shown in Fig. 98,

the left side of the dotted line is the preparation step for the neural network model, and the right side

is a processing loop with the trained neural network. In this study, building and training the neural

networks are carried out with the open-source software library Tensorflow.

117

Fig. 98 Flowchart for ANN-based ship berthing system

6.3.2. Optimizer

In previous studies, such as (Im and Hasegawa, 2001; Im and Hasegawa, 2002; Ahmed and

Hasegawa, 2013; Im and Nguyen, 2018) adopted the Levenberg–Marquardt (Levenberg, 1944) as an

optimizer. However, according to (Bazzi, Ismail and Zohdy, 2018), that analyzed the training

performance of several popular optimizers including the Levenberg–Marquardt, the RMSProp turned

out to be faster and computationally more efficient, and required fewer hyperparameters than

Levenberg–Marquardt. Furthermore, Kingma and Ba (2015) showed that the Adam optimizer

outperforms the RMSprop. Therefore, the Adam is adopted as an optimizer in this study. The learning

rate of the Adam is set to 1e-3, which results in robust training performance in general. For the loss

function, the MSE is used.

6.3.3. Input Data Scaling

Table 25 List of input data-scaling methods

Scaling method

Scaling #1 0 to 1 Min-Max Scaling Scales inputs to range of 0 to 1

Scaling #2 -1 to 1 Min-Max Scaling Scales inputs to range of -1 to 1

Scaling #3 Standard Scaling
Standardizes inputs by removing mean and scaling
to unit variance

Because the input data of a ship berthing dataset for neural network contains variables of different

units, the weights are likely to be updated in an unstable way during training when input data scaling

is not applied because of the different scales of each input variable. However, among the previous

studies on ANN-based automatic berthing, some did not employ a scaling method for their input data,

118

and some applied a scaling method on some input variables only. A few of the studies scaled the input

data to between 0 and 1. The commonly used input data-scaling methods are presented in Table 25.

Equations for the Scaling #1 and the Scaling #2 are shown in Eq. (150) and Eq. (151), respectively.

�� = (� − min(�))/(max(�) − min(�)) (150)

�� = (� − 2 min(�))/(max(�) − min(�)) (151)

where � is the sampled data, �� is the scaled sampled data, and � is a set of data.

6.3.4. Number of Hidden Layers

The number of hidden layers has a close relationship with the neural network model’s system

capacity. It is commonly known that if a neural network model has a large number of hidden layers,

it has a large capacity to understand the complexity of a given training dataset and to have a complex

system. However, simply using many hidden layers does not guarantee the neural network’s good

performance. Numbers of hidden layers of 5, 10, 20, 30, and 40 are considered and investigated in

Chapter 6.4. The hidden layer size is also an important factor in the neural network architecture, but

in order to build a neural network model for a complex system, the number of hidden layers is more

influential. Generally, the hidden layer size is set to 2n. n is 3 for relatively simple systems, 6 for

slightly complex systems, and 8–9 for complex systems. In this study, the hidden layer size is set to

26.

6.3.5. Overfitting Prevention

Overfitting may occur when a neural network is trained with a given training dataset over many

epochs because the weights become too fit to the given dataset only. Then, the performance of the

neural network fails with new input data. In an automatic berthing using a neural network, if the

overfitting occurs, the neural network will show poor berthing performance when a new initial

position is given. The poor performance with the overfitting issue occurs more clearly when new input

data is extrapolated rather than interpolated by the neural network. In previous studies on ANN-based

automatic berthing, no regularization methods to prevent overfitting were considered. Some studies

such as (Bae et al., 2008) showed that poor berthing performance occurs owing to an extrapolated

initial position. In order to deal with the poor performance caused by the extrapolation, the BN is

adopted in this study.

119

6.4. Application of Recent Developments in Deep Learning to Automatic

Berthing

In this subchapter, the effects of the activation function, weight initialization method, input data-

scaling method, number of hidden layers, and the BN are investigated in terms of the neural network’s

training performance and berthing performance.

As to the activation functions and weight initialization methods, nine different neural network

models with nine combinations from three activation functions of the sigmoid, tangent hyperbolic

(tanh), and ReLU; and three weight initialization methods of the normal distribution, Xavier, and He

are built. In order to show the training progress over epochs, a loss function history graph is presented

in Fig. 99. Details of the training models are listed in Table 26 for better reproducibility.

Fig. 99 Loss function histories with respect to activation and weight initialization methods

Table 26 Details of training models with respect to activation and weight initialization methods

Hidden
layer
size

Number
of

hidden
layers

Optimizer,
learning

rate

Number
of

epochs

Batch
size

Activation
function

Weight
initialization

Input data-
scaling
method

26 10
Adam,
1e-3

1000 27
sigmoid,

tanh,
ReLU

normal
distribution,
Xavier, He

-1 to 1
Min-Max
Scaling

The number of hidden layers is set to 10 to make use of the DNN. The effect of the number of

120

hidden layers is investigated later in this subchapter. The batch size is set to 27 because this is usually

set to 2n, where n is generally 5 to the minimum and 10 to the maximum.

In Fig. 99, the models with weight initialization by normal distribution led to a slow training speed

and poor convergence. The models using the sigmoid function show a slow training speed as well. It

is shown that the traditional activation function and weight initialization method are inefficient in

terms of training the DNN for automatic ship berthing. The best combination of the activation function

and weight initialization method is ReLU-He.

For the input data-scaling methods, the effect of each input data-scaling method is analyzed with a

loss function history. The loss function history is shown in Fig. 100, and details of the training models

with respect to the input data-scaling method are listed in Table 27.

Table 27 Details of training models with respect to activation and weight initialization methods

Hidden
layer
size

Number of
hidden
layers

Optimizer,
learning

rate

Number
of

epochs

Batch
size

Activation
function

Weight
initialization

Input data-scaling
method

26 10
Adam,
1e-3

1000 27 ReLU He

No Scaling,
x y-Only Scaling,
0 to 1 Min-Max

Scaling,
-1 to 1 Min-Max

Scaling,
Standard Scaling

In Table 27, the training model with No Scaling means that the input data of

{�,  �,  �,  �,  �,  �, ��,  ��}, where �, � are the actual �,  � coordinates of the ship from the berthing

facility, are used for the neural network. The training model with the x y-Only Scaling means that the

input data of {�,  �,  �,  �,  �,  �, ��,  ��} are used for the model.

In Fig. 100, the significance of application of the input data-scaling method is clearly seen by its

training speed and convergence. Standard Scaling shows the fastest training speed and best

convergence with the least oscillation, while No Scaling resulted in poor training performance.

121

Fig. 100 Loss function histories with respect to input data-scaling methods

Next, the effect of the number of hidden layers is analyzed based on the loss function history and

berthing performance history with initial positions from the training dataset. The berthing

performance history is obtained as in Table 28.

Table 28 Procedure for obtaining berthing performance history

Set a period for a berthing performance test ← ����������������� ����

Set initial positions of the ship for a berthing performance test ← �����

Initialize an array to store berthing performance history ← �������

for epoch = 1, 2, ... do

Train the neural network with a given training dataset

if epoch % ����������������� ����= 0 then

Test the neural network with �����

Measure the distance between the target berthing point and the arrival

position of the ship

Store the distance value in �������

end if

end for

return �������

The loss function history and berthing performance history with initial positions of the ship from

the training dataset with respect to the number of hidden layers are shown in Fig. 101. Details of the

training models are listed in Table 29. In Fig. 101 (a), n_hidden_layer of 5 and 10 result in the most

stable training, whereas the others show somewhat unstable training with fluctuations. In Fig. 101 (b),

the y-axis of the distance represents the distance gap between the target berthing point and arrival

position of the ship, as shown in Table 28. Thus, when the distance is zero, this indicates the highest

value and thus the highest performance. The edges of the shaded areas in Fig. 101 (b) represent the

122

actual data. It is shown that the training model with the n_hidden_layer of 10 shows the highest

performance, and an unnecessarily complex neural network model with many hidden layers decreases

the performance.

Table 29 Details of training models with respect to number of hidden layers

Hidden
layer
size

Number
of hidden

layers

Optimizer,
learning

rate

Number
of

epochs

Batch
size

Activation
function

Weight
initialization

Input data-
scaling
method

26 5, 10, 20,
30, 40

Adam,
1.0e-3

1000 27 ReLU He
Standard
Scaling

(a) Loss function histories

(b) Berthing performance histories with initial positions from training dataset

123

Fig. 101 Loss function and berthing performance histories with respect to number of hidden layers

Finally, to verify the model’s universal berthing performance, the effect of using the BN to prevent

overfitting and to improve the neural network’s performance is analyzed by the loss function history

and berthing performance history with initial positions from the training dataset and a set of new

initial positions that are not included in the training dataset. The set of new initial positions is shown

in Fig. 102, where the red crosses are the initial positions in the teaching data and the blue ships

represent the new initial positions.

Fig. 102 Set of new initial positions for berthing performance history to verify universal berthing

performance

The loss function and berthing performance histories, and details of the training models with

respect to the use of the BN, are shown in Fig. 103 and Table 30, respectively.

Table 30 Details of training models when BN is used

hidden
layer
size

number
of hidden

layers

optimizer,
learning

rate

number
of

epochs

batch
size

activation
function

weight
initialization

input data-
scaling
method

use
of

BN

26 10
Adam,
1e-3

1000 27 ReLU He
Standard
Scaling

True,
False

124

(a) Loss function histories

(b) Berthing performance histories

Fig. 103 Loss function and berthing performance histories when BN is used

In Fig. 103 (a), it can be seen that the BN prevents overfitting and stabilizes the training process.

The performances in Fig. 103 (b) show that the model with the BN outperforms the model without

the BN not only for the initial positions from the training dataset but also for the new initial positions

that are not included in the training dataset.

125

Table 31 Trained model selection algorithm for a neural network for automatic ship berthing

Initialize an array to store harmonic mean values ← ���� �

Set the berthing performance history data with the initial positions from the training

dataset ← �

Set the berthing performance history data with the new initial positions out of the

training dataset ← �

for each � ∈ � and � ∈ � do

Concatenate � and � ← ��

�� =
� − min(��)

max(��) − min(��)

�� =
� − min(��)

max(��) − min(��)

ℎ� = (2����)/(�� + ��) // harmonic mean

Store ℎ� in �����

end for

return argmax(�����)

Although the trained model with the BN shows good and stable performance over epochs, it is ideal

to select the best-trained model of them all. In order to select the best-trained model, a trained model

selection algorithm for neural network models for automatic berthing using the harmonic mean is

proposed. The trained model selection algorithm is shown in Table 31.

We adopted the harmonic mean to penalize cases where the gap between the berthing performances

with the initial positions from and out of the training dataset is high, meaning that the model is overfit

to the given training dataset and has a poor universal berthing performance. It has been shown that

the use of the recent activation functions, weight initialization method, and input data-scaling methods

resulted in faster training speeds and better convergence of the loss function. In addition, the BN

improved the actual berthing performance for universal use and stabilized the training process. With

the trained model selection algorithm, the two best-trained models were selected for the final

simulation in Chapter 6.5. One is from the trained models with the BN, and the other is from the

trained models without the BN. The significance of application of the BN is shown and discussed in

the next subchapter.

6.5. Simulation and Results Discussion

In this subchapter, the berthing trajectories by two different trained models with and without the

BN are presented to show how the BN improves the neural network for ship berthing and solves the

126

extrapolation problem. First, berthing trajectories with the initial positions from the training dataset

are presented. And then, the berthing trajectories with interpolated and extrapolated initial positions

are presented next, respectively. In the berthing simulations in this subchapter, the initial � is set to

1.5, and the initial � is set to 0.5 for all cases.

To validate if the two trained neural network models perform efficiently when initial positions from

a training dataset are given, berthing trajectories with initial positions from a training dataset are

presented in Fig. 104. As expected from the berthing performance history in Fig. 103 (b), similar

berthing performance and trajectories are shown with the initial positions from the training dataset as

shown in Fig. 104 (a)-(i), meaning that both trained models are trained well for the given training

dataset.

(a) (�, �, �): (7, 7, 250°) (b) (�, �, �): (9, 7, 210°) (c) (�, �, �): (11, 7, 250°)

(d) (�, �, �): (7, 5, 220°) (e) (�, �, �): (9, 5, 220°) (f) (�, �, �): (11, 5, 250°)

127

(g) (�, �, �): (7, 3, 270°) (h) (�, �, �): (9, 3, 270°) (i) (�, �, �): (11, 3, 270°)

Fig. 104 Berthing trajectories with initial positions from training dataset

(red: with BN, blue: without BN)

To validate if the two trained neural network models perform efficiently when interpolated initial

positions are given, berthing trajectories with the interpolated initial positions are presented in Fig.

105. It can be observed that when the interpolated initial positions are given, both trained models

showed successful berthing performances with similar berthing trajectories as shown in Fig. 105 (a)-

(f).

(a) (�, �, �): (6, 6, 220°) (b) (�, �, �): (8, 6, 240°) (c) (�, �, �): (10, 6, 240°)

128

(d) (�, �, �): (6, 4, 240°) (e) (�, �, �): (8, 4, 250°) (f) (�, �, �): (10, 4, 240°)

Fig. 105 Berthing trajectories with interpolated initial positions (red: with BN, blue: without BN)

In the following simulations, the trained models are given three types of extrapolated initial

positions. The types of extrapolated initial positions differ by the magnitude of extrapolation.

Berthing trajectories with the first type of extrapolated initial position are shown in Fig. 106. It can

be observed that although the trained model without the BN shows good berthing performance in a

few cases such as Fig. 106 (a) and Fig. 106 (b), it also shows poor performance as shown in Fig. 106

(c)-(d), while the model with the BN performs successfully in all the cases. In addition, it can be seen

that the two trained models control quite differently to reach the target berthing point, as seen in Fig.

106 (e)-(f).

(a) (�, �, �): (8, 2, 280°) (b) (�, �, �): (8, 8, 240°) (c) (�, �, �): (12, 4, 260°)

129

(d) (�, �, �): (10, 2, 270°) (e) (�, �, �): (10, 8, 240°) (f) (�, �, �): (12, 6, 250°)

Fig. 106 Berthing trajectories with extrapolated initial positions, Type 1

(red: with BN, blue: without BN)

(a) (�, �, �): (14, 2, 280°) (b) (�, �, �): (14, 4, 260°) (c) (�, �, �): (8, 10, 210°)

(d) (�, �, �): (10, 10, 230°) (e) (�, �, �): (12, 10, 250°) (f) (�, �, �): (14, 6, 250°)

Fig. 107 Berthing trajectories with extrapolated initial positions, Type 2

(red: with BN, blue: without BN)

Next, berthing trajectories with the second type of extrapolated initial position are shown in Fig.

130

107. As the more extrapolated initial positions are given in the cases in Fig. 107, the trained model

without the BN suffers from the extrapolation issue even more as shown in Fig. 107 (a)-(e). The only

case where the trained model without the BN performs well is when it berths in a straight line as

shown in Fig. 107 (f).

Finally, berthing trajectories with the third type of extrapolated initial position are shown in Fig.

108, in which the extrapolation of initial positions is the greatest in order to clearly see the effect of

the BN. In Fig. 108. The model without the BN performs poorly overall owing to the extrapolation

problem. The effectiveness of application of the BN is clear, as the BN improves the neural network

model for more general use.

(a) (�, �, �): (18, 4, 270°) (b) (�, �, �): (14, 6, 260°) (c) (�, �, �): (18, 6, 230°)

(d) (�, �, �): (8, 14, 180°) (e) (�, �, �): (10, 14, 190°) (f) (�, �, �): (14, 14, 210°)

Fig. 108 Berthing trajectories with extrapolated initial positions, Type 3
(red: with BN, blue: without BN)

131

Chapter 7 Conclusion

In this paper, the following four studies were conducted: 1) machine learning-based mooring line

tension prediction system, 2) feed-forward system for DPS using predicted drifted ship position based

on deep learning and replay buffer, 3) reinforcement learning-based adaptive PID controller for DPS,

4) application of recent developments in deep learning to ANN-based automatic berthing system.

7.1. Machine Learning-Based Mooring Line Tension Prediction System

The machine learning-based mooring line tension prediction system mainly consists of the

proposed K-means-based sea state selection method and the proposed hybrid neural network

architecture.

The proposed K-means-based sea state selection method provides a standardized way of the sea

state selection to obtain the training dataset by utilizing the K-means algorithm. The proposed sea

state selection method eliminates the manual sea state selection which was a limitation in the previous

studies, and it can reduce a number of sea states for the dynamic simulations to obtain the training

dataset by efficiently selecting the representative sea states, which saves a large amount of

computational cost. In the simulation, it was shown that a number of sea states could be reduced by

3.5 times by using the proposed K-means-based sea state selection method while maintaining the

tension prediction performance on the test sea states.

The proposed hybrid neural network architecture provides the excellent tension prediction

performance across the entire sea states. This high prediction performance was achieved by the use

of BN and the fusion of the overall Hs-focused NN model and the low Hs-focused NN model with

the proposed soft-binary attention module in which the soft-binary attention module pays the

appropriate amount of attention to each NN model given its input at every timestep. In the simulation,

it was shown that the use of BN clearly improved the tension prediction performance and the soft-

binary attention module could learn to efficiently output the attention values, which results in the

excellent prediction performance.

Since the proposed machine learning-based mooring line tension prediction system shows the

excellent prediction performance on various sea states in one main environmental direction, a further

study can be conducted by considering multiple environmental directions for a broader use such as a

mooring line tension monitoring system that can replace physical sensors for the mooring line tension

132

as a digital twin system. When multiple environmental directions are considered, a number of

directional sea states increases drastically, which significantly increases the computational cost for

the dynamic simulation. However, it is strongly supposed that this problem can be resolved by the

proposed K-means-based sea state selection method while the proposed hybrid neural network

architecture may provide the excellent prediction performance for various directional sea states.

7.2. Motion Predictive Control for DPS Using Predicted Drifted Ship

Position Based on Deep Learning and Replay Buffer

The conventional PID feed-back system for the DPS is integrated with the proposed motion

predictive control to improve the station-keeping performance by reducing magnitudes of the ship

drifting motions. The proposed motion predictive control is designed based on the DL layer, dropout,

online machine learning system, and the replay buffer.

The DL layers and dropout form the DNN, and the DNN is used to output the predicted drifted ship

motion in the future. By using the DNN, the prediction accuracy for the predicted drifted ship motions

is ensured, which guarantees the station-keeping performance improvement of the proposed motion

predictive control.

The online machine learning system provides the proposed motion predictive control with the

adaptability to a new/varying sea environment, therefore, it can eliminate necessity of training the

DNN for all the possible environmental conditions before deployment, which saves a lot of

computational time and large load on the DNN for having to generalize all the given data from all the

environmental conditions at once.

The replay buffer allows the DNN to be trained with a variety of data from various timesteps to

make the time-independent learning possible which helps the DNN have a better understanding of

ship dynamics. In the comparative simulation with respect to the replay buffer, it was shown that the

use of the replay buffer resulted in the better the station-keeping performance throughout the entire

simulation, which makes the replay buffer one of the crucial components in the proposed motion

predictive control.

The real-time normalization method ensures robustness of the neural network training process by

adaptively normalizing training data. The main difference between the ordinary normalization method

and the proposed real-time normalization method is that the ordinary normalization method calculates

normalizing factors before the training and uses the factors for the neural network training as constants.

133

However, the proposed real-time normalization method constantly updates the normalizing factors

with the incoming data to the replay buffer, which makes the normalization be able to normalize

training data properly and adaptively with new data distribution from varying environmental

conditions.

Finally, the PID feed-back system with the wind feed-forward system and the PID feed-back

system with the proposed motion predictive control were compared in the simulations. The simulation

results showed that the proposed motion predictive control resulted in the better station-keeping

performance than the wind feed-forward system with the same amount of thrust consumption.

7.3. Reinforcement Learning-Based Adaptive PID Controller for DPS

In this paper, an adaptive PID controller for the DPS is developed with the proposed adaptive fine-

tuning system for the PID gains. The main goal of the proposed adaptive fine-tuning system is to learn

an efficient adaptive gain-tuning strategy to increase the station-keeping performance without

deterioration in the control efficiency. To achieve the goal, one of the deep reinforcement learning

algorithms, deep deterministic policy gradient (DDPG), was adopted. The main characteristics of the

proposed adaptive fine-tuning system is as follows:

First, a target of the application is a 285m FPSO ship and the environment is the open sea where

the sea state can become severe. The ships have a much slower response to a control signal unlike

small robots, and the environmental loads a ship undergoes when the sea state is severe are far greater

than wind disturbance that small robots experience.

Second, the input is previous ship motions, and the output is the adaptive PID gains and the update-

gate for the integral of the errors. For the input, previous ship motions are used instead of a ship

motion at a current timestep to help the neural networks understand the ship dynamics better by

considering the memory effect. The adaptive PID gains allow the PID controller to cope with the

varying environmental loads better, and the update-gate for the integral of the errors allows to prevent

the unconditional accumulation for the integral of the errors, which leads to the smaller rebound ship

motions.

Third, the proposed adaptive fine-tuning system is likely to learn an adaptive-gain tuning strategy

that simply increases the gains to increase the station-keeping performance if there is no restriction in

the available adaptive gain range. However, this strategy is inefficient because it comes with the cost

of higher thrust consumption and aggressive thrust control. To encourage the proposed system to learn

134

the adaptive-gain tuning strategy that results in the better station-keeping performance without

deterioration in the control efficiency, its available adaptive gain range is set to [0, �����] where �����

refers to the base gain pre-tuned by a PID gain-tuning method.

In the simulation results, it was shown that the proposed adaptive fine-tuning system could learn

the efficient adaptive gain-tuning strategy which results in the better station-keeping performance

without deterioration in the control efficiency. In the discussion subchapter, the advantages and

limitations of the proposed system are discussed, and the room for further study is also discussed.

7.4. Application of Recent Developments in Deep Learning to ANN-

Based Automatic Berthing System

In the study of the application of recent developments in deep learning to ANN-based automatic

berthing system, it was shown that the faster training speed and better training convergence could be

achieved with the application of recent activation functions, weight initialization methods, input data-

scaling methods, and a higher number of hidden layers. In order to observe the progress of the berthing

performance over epochs and select the best-trained model, the algorithm for obtaining the berthing

performance history and the model selection algorithm were proposed. Lastly, the use of the BN could

stabilize the training process and solve the extrapolation problem by preventing overfitting. A neural

network model with the BN was able to perform successfully, not only with interpolated and slightly

extrapolated initial positions but also with greatly extrapolated initial positions. This could make the

neural network models more universal for automatic berthing.

135

Acknowledgements

I would like to express my deepest gratitude to my supervisor Professor Seung-Jae Lee for always

guiding me to the right direction for my researches at every step of the way with his insightful advice

and kindness, and for being my role model as a researcher and a person. I also would like to thank

Professor Seong-Uk Lee for conveying his knowledge to me with his lecture and advice and for being

always welcoming for any question.

A special thanks to my wife Senida Kakeš for her unchanged support towards my decisions and for

giving me a strength everyday with her love and smile. Many thanks for my parents, my father Cheol-

Ho Lee, my mother Sook-Ja Kim. Lastly, my old friend and colleague Byeong-Cheon Kim should be

thanked for sharing his inspiration and passion towards the further academic career as a researcher.

136

References

Van ’t Veer, R. and Gachet, M. (2011) ‘Dynamic Positioning - Early design, capability and offsets,

a novel approach’, in Proceedings of the International Conference on Offshore Mechanics and Arctic

Engineering - OMAE, pp. 755–764. doi: 10.1115/OMAE2011-49354.

Aalbers, A. et al. (2004) ‘Wave feed forward DP and the effect on shuttle tanker operation’, in

Dynamic Positioning Conference. Available at: http://dynamic-

positioning.com/proceedings/dp2004/abstract_design_aalbers.pdf (Accessed: 19 December 2019).

Ahmed, Y. A. and Hasegawa, K. (2012) ‘Automatic ship berthing using artificial neural network

based on virtual window concept in wind condition’, in Proceedings of 13th IFAC Symposium on

Control in Transportation Systems, pp. 286–291. doi: 10.3182/20120912-3-BG-2031.00059.

Ahmed, Y. A. and Hasegawa, K. (2013) ‘Automatic ship berthing using artificial neural network

trained by consistent teaching data using nonlinear programming method’, Engineering Applications

of Artificial Intelligence, 26(10), pp. 2287–2304. doi: 10.1016/j.engappai.2013.08.009.

Bae, C.-H. et al. (2008) ‘A Study of the Automatic Berthing System of a Ship Using Artificial

Neural Network’, Journal of Korean navigation and port research, 32(8), pp. 589–596. doi:

10.5394/kinpr.2008.32.8.589.

Bazzi, T., Ismail, R. and Zohdy, M. (2018) ‘Comparative Performance of Several Recent

Supervised Learning Algorithms’, International Journal of Computer and Information Technology,

7(2). Available at: www.ijcit.com49 (Accessed: 22 April 2020).

Bhatt, A. et al. (2019) ‘CrossNorm: Normalization for off-policy TD reinforcement learning’, in

arXiv preprint arXiv:1902.05605. Available at: http://arxiv.org/abs/1902.05605 (Accessed: 11

December 2019).

Carlucho, I., De Paula, M. and Acosta, G. G. (2019) ‘Double Q-PID algorithm for mobile robot

control’, Expert Systems with Applications, 137, pp. 292–307. doi: 10.1016/j.eswa.2019.06.066.

Carlucho, I., De Paula, M. and Acosta, G. G. (2020) ‘An adaptive deep reinforcement learning

approach for MIMO PID control of mobile robots’, ISA Transactions. doi:

10.1016/j.isatra.2020.02.017.

Cho, K. et al. (2014) ‘Learning phrase representations using RNN encoder-decoder for statistical

machine translation’, in arXiv preprint arXiv:1406.1078, pp. 1724–1734. doi: 10.3115/v1/d14-1179.

137

Chung, J. et al. (2014) ‘Empirical Evaluation of Gated Recurrent Neural Networks on Sequence

Modeling’, pp. 1–9. Available at: http://arxiv.org/abs/1412.3555.

Davison, E. J. (1976) ‘Multivariable tuning regulators: the feedforward and robust control of a

general servomechanism problem’, IEEE Transactions on Automatic Control, 21(4), p. 631. doi:

10.1109/TAC.1976.1101251.

DNV-GL (2018) Class Guideline (DNVGL-CG-0130): Wave loads.

Duchi, J., Hazan, E. and Singer, Y. (2011) ‘Adaptive subgradient methods for online learning and

stochastic optimization’, Jornal of Machine Learning Research.

Fossen, T. I. and Perez, T. (2009) ‘Kalman filtering for positioning and heading control of ships

and offshore rigs: Estimating the effects of waves, wind, and current’, IEEE Control Systems, 29(6),

pp. 32–46. doi: 10.1109/MCS.2009.934408.

Glorot, X. and Bengio, Y. (2010) ‘Understanding the difficulty of training deep feedforward neural

networks’, in Journal of Machine Learning Research, pp. 249–256. Available at:

http://www.iro.umontreal. (Accessed: 21 April 2020).

Gloye, A. et al. (2005) ‘Learning to drive and simulate autonomous mobile robots’, in Lecture

Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), pp. 160–171. doi:

10.1007/978-3-540-32256-6_13.

Guarize, R. et al. (2007) ‘Neural networks in the dynamic response analysis of slender marine

structures’, Applied Ocean Research, 29(4), pp. 191–198. doi: 10.1016/j.apor.2008.01.002.

Guo, Y. et al. (2019) ‘Spottune: Transfer learning through adaptive fine-tuning’, in Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE

Computer Society, pp. 4800–4809. doi: 10.1109/CVPR.2019.00494.

Hahnioser, R. H. R. et al. (2000) ‘Digital selection and analogue amplification coexist in a cortex-

inspired silicon circuit’, Nature. Nature Publishing Group, 405(6789), pp. 947–951. doi:

10.1038/35016072.

Harbonn, J. (1971) ‘The Terebel dynamic positioning system - Results of five years of field work

and experiments’, in Proceedings of the Annual Offshore Technology Conference, pp. 813–821. doi:

10.4043/1499-ms.

Hassani, V. and Pascoal, A. M. (2015) ‘Wave filtering and dynamic positioning of marine vessels

138

using a linear design model: Theory and experiments’, Operations Research/ Computer Science

Interfaces Series. Springer New York LLC, 58, pp. 315–343. doi: 10.1007/978-3-319-16133-4_17.

He, K. et al. (2015) ‘Delving deep into rectifiers: Surpassing human-level performance on imagenet

classification’, in Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–

1034. doi: 10.1109/ICCV.2015.123.

Hinton, G., Srivastava, N. and Swersky, K. (2012) Lecture 6e rmsprop: Divide the gradient by a

running average of its recent magnitude, COURSERA: Neural Networks for Machine Learning.

Available at:

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf%0Ahttp://www.cs.toronto

.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (Accessed: 21 April 2020).

Hochreiter, S. and Schmidhuber, J. (1997) ‘Long Short-Term Memory’, Neural Computation. MIT

Press Journals, 9(8), pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

Im, N.-K. and Hasegawa, K. (2002) ‘Motion Identification using Neural Networks and Its

Application to Automatic Ship Berthing under Wind’, Jornal of Ship and Ocean Technology, 6(1),

pp. 16–26. Available at: http://www.naoe.eng.osaka-u.ac.jp/~hase/cv/papers/075.pdf (Accessed: 22

April 2020).

Im, N. (2007) ‘All Direction Approach Automatic Ship Berthing Controller Using ANN (Artificial

Neural Networks)’, Journal of Institute of Control, Robotics and Systems. Available at:

http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JOJDCV_2007_v13n4_304

(Accessed: 22 April 2020).

Im, N. and Hasegawa, K. (2001) ‘Automatic Ship Berthing Using Parallel Neural Controller’, IFAC

Proceedings Volumes. Elsevier BV, 34(7), pp. 51–57. doi: 10.1016/s1474-6670(17)35058-9.

Im, N. K. and Nguyen, V. S. (2018) ‘Artificial neural network controller for automatic ship berthing

using head-up coordinate system’, International Journal of Naval Architecture and Ocean

Engineering. Elsevier Ltd, 10(3), pp. 235–249. doi: 10.1016/j.ijnaoe.2017.08.003.

IMCA (2000) Specification for DP capability plots. Available at: www.imca-int.comAB (Accessed:

19 December 2019).

Ioffe, S. and Szegedy, C. (2015) ‘Batch normalization: Accelerating deep network training by

reducing internal covariate shift’, in 32nd International Conference on Machine Learning, ICML

2015. International Machine Learning Society (IMLS), pp. 448–456.

139

Jeon, M.-R. et al. (2017) ‘A Study on the Dynamic Positioning Control Algorithm Using Fuzzy

Gain Scheduling PID Control Theory’, Journal of the Society of Naval Architects of Korea. The

Society of Naval Architects of Korea, 54(2), pp. 102–112. doi: 10.3744/snak.2017.54.2.102.

Jon, A. and Breivik, M. (2009) ‘Autotuning Aspects for Dynamic Positioning Systems’, in 8th

IFAC International Conference on Manoeuvring and Control of Marine Craft. Elsevier, pp. 334–339.

doi: 10.3182/20090916-3-br-3001.00054.

Kingma, D. P. and Ba, J. L. (2015) ‘Adam: A method for stochastic optimization’, in 3rd

International Conference on Learning Representations. International Conference on Learning

Representations, ICLR.

Koschorrek, P. et al. (2015) ‘Dynamic positioning with active roll reduction using Voith Schneider

Propeller’, in IFAC-PapersOnLine. Elsevier, pp. 178–183. doi: 10.1016/j.ifacol.2015.10.277.

Lee, D., Lee, S. J. and Seo, Y. J. (2020a) ‘Application of recent developments in deep learning to

ANN-based automatic berthing systems’, International Journal of Engineering and Technology

Innovation, 10(1), pp. 75–90. doi: 10.46604/ijeti.2020.4354.

Lee, D., Lee, S. J. and Seo, Y. J. (2020b) ‘Application of recent developments in deep learning to

ANN-based automatic berthing systems’, International Journal of Engineering and Technology

Innovation, 10(1), pp. 75–90. Available at: https://sci-

hub.si/http://search.proquest.com/openview/8d72093a7a3a6859cb91e4c16c8d0190/1?pq-

origsite=gscholar&cbl=4365211 (Accessed: 20 March 2020).

Lee, S. J. (2008) The effects of LNG-Sloshing on the global responses of LNG-Carriers. Texas

A&M University.

Levenberg, K. (1944) ‘A method for the solution of certain non-linear problems in least squares’,

Quarterly of Applied Mathematics, 2(2), pp. 164–168. doi: 10.1090/qam/10666.

Lillicrap, T. P. et al. (2016) ‘Continuous control with deep reinforcement learning’, in 4th

International Conference on Learning Representations. Available at: https://goo.gl/J4PIAz

(Accessed: 11 December 2019).

Maciejowski, J. M. (1989) Multivariable feedback design, Electronic Systems Engineering Series.

Available at: https://sci-hub.st/https://ui.adsabs.harvard.edu/abs/1989mfd..book.....M/abstract

(Accessed: 7 July 2020).

140

Macqueen, J. (1967) ‘Some methods for classification and analysis of multivariate observations’,

in Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability.

Martin, P. and Katebi, R. (2005) ‘Multivariable PID tuning of dynamic ship positioning control

systems’, Journal of Marine Engineering and Technology, 4(2), pp. 11–24. doi:

10.1080/20464177.2005.11020190.

Mnih, V. et al. (2013) ‘Playing atari with deep reinforcement learning’, in arXiv preprint

arXiv:1312.5602.

Newman, J. N. (2019) Marine Hydrodynamics, Marine Hydrodynamics. MIT press. doi:

10.7551/mitpress/4443.001.0001.

Nguyen, T. D., Sørensen, A. J. and Tong Quek, S. (2007) ‘Design of hybrid controller for dynamic

positioning from calm to extreme sea conditions’, Automatica. Pergamon, 43(5), pp. 768–785. doi:

10.1016/j.automatica.2006.11.017.

Orcina (2019) Vessel Theory : Wave Drift and Sum Frequency Loads. Available at:

https://www.orcina.com/webhelp/OrcaFlex/Content/html/Vesseltheory,Wavedriftandsumfrequencyl

oads.htm (Accessed: 12 July 2020).

Penttinen, J. and Koivo, H. N. (1980) ‘Multivariable tuning regulators for unknown systems’,

Automatica, 16(4), pp. 393–398. doi: 10.1016/0005-1098(80)90023-0.

Plappert, M. et al. (2018) ‘Parameter space noise for exploration’, in 6th International Conference

on Learning Representations, ICLR 2018 - Conference Track Proceedings.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) ‘Learning representations by back-

propagating errors’, Nature. Nature Publishing Group, 323(6088), pp. 533–536. doi:

10.1038/323533a0.

Sidarta, D. E. et al. (2017) ‘Prediction of offshore platform mooring line tensions using artificial

neural network’, in Proceedings of the 27th International Ocean and Polar Engineering Conference,

pp. 1–11.

Silver, D. et al. (2014) ‘Deterministic policy gradient algorithms’, in 31st International Conference

on Machine Learning, ICML 2014, pp. 605–619.

Simões, M. G., Tiquilloca, J. L. M. and Morishita, H. M. (2002) ‘Neural-Network-based prediction

of mooring forces in floating production storage and offloading systems’, IEEE Transactions on

141

Industry Applications, 38(2), pp. 457–466. doi: 10.1109/28.993167.

Sohn, K.-H. (1992) ‘Hydrodynamic Forces and Maneuvering Characteristics of Ships at Low

Advance Speed’, Journal of the Society of Naval Architects of Korea, 29(3), pp. 90–101. Available

at: https://sci-

hub.si/http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=DHJSCN_1992_v29n3_90

(Accessed: 22 April 2020).

Song, S. S. et al. (2016) ‘A study on the feedforward control algorithm for dynamic positioning

system using ship motion prediction’, Journal of the Korean Society of Marine Environment and

Safety, 22(1), pp. 129–137. doi: 10.7837/kosomes.2016.22.1.129.

Srivastava, N. et al. (2014) ‘Dropout: A simple way to prevent neural networks from overfitting’,

Journal of Machine Learning Research, 15, pp. 1929–1958.

Sutton, R. S. et al. (2000) ‘Policy gradient methods for reinforcement learning with function

approximation’, in Advances in Neural Information Processing Systems, pp. 1057–1063.

Teoh, E. K. and Yee, Y. E. (1991) ‘Implementation of adaptive controllers using digital signal

processor chips’, in IFAC Symposia Series, pp. 109–113. doi: 10.1016/s1474-6670(17)51305-1.

Watkins, C. J. C. H. and Dayan, P. (1992) ‘Q-learning’, Machine Learning. Springer Science and

Business Media LLC, 8(3–4), pp. 279–292. doi: 10.1007/bf00992698.

Weingarth, L. (2006) ‘Refining the DP Watch Circle’, in MTS Dynamic Position Conference.

Available at: https://sci-hub.st/http://dynamic-

positioning.com/proceedings/dp2006/abstract_op_procedures_weingarth.pdf (Accessed: 13 July

2020).

De Wit, C. (2009) Optimal thrust allocation methods for dynamic positioning of ships, Delft

University of Technology, Netherlands.

Xu, S. et al. (2019) ‘A fuzzy rule-based PID controller for dynamic positioning of vessels in

variable environmental disturbances’, Journal of Marine Science and Technology (Japan). Springer

Tokyo. doi: 10.1007/s00773-019-00689-2.

Yamamoto, M. and Morooka, C. K. (2005) ‘Dynamic positioning system of semi-submersible

platform using fuzzy control’, Journal of the Brazilian Society of Mechanical Sciences and

Engineering. Brazilian Society of Mechanical Sciences and Engineering, 27(4), pp. 449–455. doi:

142

10.1590/S1678-58782005000400014.

Yeung, R. W. (1983) International Workshop on Ship and Platform Motions. Available at:

https://books.google.co.kr/books?id=11hJAQAAIAAJ&printsec=frontcover&hl=ko#v=onepage&q

&f=false (Accessed: 1 July 2020).

Ziegler, J. G. and Nathaniel, N. B. (1942) ‘Optimum settings for automatic controllers’, ASME.

Available at:

www.driedger.ca...IIthankktheeASMEEforrallowinggthissimportanttworkktoobeesoofreelyyavailabl

e... (Accessed: 19 December 2019).

	1. Introduction
	2. Background of Machine and Deep Learning
	2.1 Machine Learning
	2.2 Deep Learning
	2.2.1 Types of Deep Learning Layers
	2.2.2 Activation Function and Weight Initialization Methods
	2.2.3 Optimizers
	2.2.4 Training Dataset Scaling
	2.2.5 Transfer Learning

	2.3 Reinforcement Learning

	3. Machine Learning-Based Mooring Line Tension Prediction System
	3.1 Introduction
	3.2 Brief Comparison Between Conventional and Proposed Mooring Line Tension Prediction Systems
	3.3 Proposed K-Means-Based Sea State Selection Method
	3.3.1 Padding
	3.3.2 K-Means
	3.3.3 K-Means-Based Monte Carlo Method
	3.3.4 Feature Vector Generation
	3.3.5 Clustering of Relevant Sampled Sea States with K-Means

	3.4 Proposed Hybrid Neural Network Architecture
	3.4.1 Architecture
	3.4.2 Training Procedure

	3.5 Simulation and Result Discussion
	3.5.1 Simulation Conditions
	3.5.2 Overall Hs-focused NN model
	3.5.3 Effectiveness of Batch Normalization
	3.5.4 Low Hs-focused NN model
	3.5.5 Proposed Hybrid Neural Network Architecture

	4. Motion Predictive Control for DPS Using Predicted Drifted Ship Position Based on Deep Learning and Replay Buffer
	4.1 Introduction
	4.2 PID Feed-Back System and Wind Feed-Forward System
	4.3 Proposed Motion Predictive Control
	4.4 Numerical Modeling of Target Ship’s Behavior
	4.4.1 Target Ship and DPS
	4.4.2 Equation of Motion of Target Ship

	4.5 Effectiveness of Proposed Algorithms
	4.5.1 Simulation Conditions
	4.5.2 Types of Deep Learning Layers
	4.5.3 Real-Time Normalization Method
	4.5.4 Replay Buffer

	4.6 Simulation and Result Discussion
	4.6.1 Simulation Under One Environmental Condition
	4.6.2 Simulation Under Two Different Sequential Environmental Conditions

	5. Reinforcement Learning-Based Adaptive PID Controller for DPS
	5.1 Introduction
	5.2 Target Ship and DPS
	5.2.1 PID Control in DPS
	5.2.2 Hydrodynamics Associated with a Drifting Motion of a Ship

	5.3 Proposed Adaptive Fine-Tuning System for PID Gains in DPS
	5.4 Simulation Results
	5.4.1 Effectiveness of the Proposed Adaptive Fine-Tuning System
	5.4.2 Overall Performance Assessment

	5.5 Discussion

	6. Application of Recent Developments in Deep Learning To ANN-based Automatic Berthing System
	6.1 Introduction
	6.2 Mathematical Model of Ship Maneuvering
	6.2.1 Mathematical Model for Ship-Maneuvering Problem
	6.2.2 Modeling of Propeller and Rudder

	6.3 Artificial Neural Network and Important Factors in Training the Network
	6.3.1 Artificial Neural Network
	6.3.2 Optimizer
	6.3.3 Input Data Scaling
	6.3.4 Number of Hidden Layers
	6.3.5 Overfitting Prevention

	6.4 Application of Recent Developments in Deep Learning to Automatic Berthing
	6.5 Simulation and Result Discussion

	7. Conclusion
	7.1 Machine Learning-Based Mooring Line Tension Prediction System
	7.2 Motion Predictive Control for DPS Using Predicted Drifted Ship Position Based on Deep Learning and Replay Buffer
	7.3 Reinforcement Learning-Based Adaptive PID Controller for DPS
	7.4 Application of Recent Developments in Deep Learning to ANN-Based Automatic Berthing System

<startpage>17
1. Introduction 1
2. Background of Machine and Deep Learning 4
 2.1 Machine Learning 4
 2.2 Deep Learning 9
 2.2.1 Types of Deep Learning Layers 9
 2.2.2 Activation Function and Weight Initialization Methods 18
 2.2.3 Optimizers 19
 2.2.4 Training Dataset Scaling 26
 2.2.5 Transfer Learning 28
 2.3 Reinforcement Learning 28
3. Machine Learning-Based Mooring Line Tension Prediction System 39
 3.1 Introduction 39
 3.2 Brief Comparison Between Conventional and Proposed Mooring Line Tension Prediction Systems 40
 3.3 Proposed K-Means-Based Sea State Selection Method 41
 3.3.1 Padding 42
 3.3.2 K-Means 44
 3.3.3 K-Means-Based Monte Carlo Method 45
 3.3.4 Feature Vector Generation 47
 3.3.5 Clustering of Relevant Sampled Sea States with K-Means 48
 3.4 Proposed Hybrid Neural Network Architecture 50
 3.4.1 Architecture 50
 3.4.2 Training Procedure 54
 3.5 Simulation and Result Discussion 55
 3.5.1 Simulation Conditions 55
 3.5.2 Overall Hs-focused NN model 56
 3.5.3 Effectiveness of Batch Normalization 59
 3.5.4 Low Hs-focused NN model 60
 3.5.5 Proposed Hybrid Neural Network Architecture 61
4. Motion Predictive Control for DPS Using Predicted Drifted Ship Position Based on Deep Learning and Replay Buffer 65
 4.1 Introduction 65
 4.2 PID Feed-Back System and Wind Feed-Forward System 66
 4.3 Proposed Motion Predictive Control 69
 4.4 Numerical Modeling of Target Ship’s Behavior 73
 4.4.1 Target Ship and DPS 73
 4.4.2 Equation of Motion of Target Ship 74
 4.5 Effectiveness of Proposed Algorithms 76
 4.5.1 Simulation Conditions 76
 4.5.2 Types of Deep Learning Layers 77
 4.5.3 Real-Time Normalization Method 78
 4.5.4 Replay Buffer 80
 4.6 Simulation and Result Discussion 81
 4.6.1 Simulation Under One Environmental Condition 81
 4.6.2 Simulation Under Two Different Sequential Environmental Conditions 84
5. Reinforcement Learning-Based Adaptive PID Controller for DPS 88
 5.1 Introduction 88
 5.2 Target Ship and DPS 90
 5.2.1 PID Control in DPS 91
 5.2.2 Hydrodynamics Associated with a Drifting Motion of a Ship 93
 5.3 Proposed Adaptive Fine-Tuning System for PID Gains in DPS 95
 5.4 Simulation Results 99
 5.4.1 Effectiveness of the Proposed Adaptive Fine-Tuning System 99
 5.4.2 Overall Performance Assessment 103
 5.5 Discussion 107
6. Application of Recent Developments in Deep Learning To ANN-based Automatic Berthing System 111
 6.1 Introduction 111
 6.2 Mathematical Model of Ship Maneuvering 112
 6.2.1 Mathematical Model for Ship-Maneuvering Problem 113
 6.2.2 Modeling of Propeller and Rudder 114
 6.3 Artificial Neural Network and Important Factors in Training the Network 115
 6.3.1 Artificial Neural Network 115
 6.3.2 Optimizer 117
 6.3.3 Input Data Scaling 117
 6.3.4 Number of Hidden Layers 118
 6.3.5 Overfitting Prevention 118
 6.4 Application of Recent Developments in Deep Learning to Automatic Berthing 119
 6.5 Simulation and Result Discussion 125
7. Conclusion 131
 7.1 Machine Learning-Based Mooring Line Tension Prediction System 131
 7.2 Motion Predictive Control for DPS Using Predicted Drifted Ship Position Based on Deep Learning and Replay Buffer 132
 7.3 Reinforcement Learning-Based Adaptive PID Controller for DPS 133
 7.4 Application of Recent Developments in Deep Learning to ANN-Based Automatic Berthing System 134
</body>

