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to Mooring, Dynamic Positioning, and Ship Berthing Systems

Daesoo Lee
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Abstract

In recent years, there have been a surge of advances in machine and deep learning due to 

accessibility to a large amount of digital data, developments in computer hardware, and state-of-the-

art machine and deep learning algorithms proposed. The robust performance of the recent machine 

and deep learning algorithms have been proven in many applications such as natural language 

processing, computer vision, market research, self-driving car, autonomous shipping, and so on. The 

application of machine and deep learning is very powerful in a sense that one does not need to build 

such a complex and hard-coded system to implement sophisticated functionality. Instead, a machine 

and deep learning-based system can be trained on a collected training dataset and the trained system 

can robustly perform as desired. There are two main advantages of the use of machine and deep 

learning-based systems over the traditional hard-coded systems. First, as mentioned, the machine and 

deep learning-based systems do not require such complex and hard-coded algorithms, therefore, such 

learning systems are less prone to errors and faster to implement without much debugging. Second, 

the machine and deep learning-based systems can adapt to varying circumstances through re-training 

based on collected data. An example of the varying circumstance can be a varying purchase trend 

impacted by the media. Therefore, even if the input distribution from the circumstance changes over 

time, the machine and deep learning-based systems can easily adapt. In this paper, the machine and 

deep learning algorithms are applied to various applications such as a mooring system, dynamic 

positioning system (DPS), and ship berthing system. Specifically, the machine and deep learning 

algorithms are utilized to build a mooring line tension prediction system, a feed-forward system for 
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DPS, an adaptive proportional-integral-derivative (PID) controller for DPS, and an automatic ship 

berthing system.

KEY WORDS: Machine learning, Deep learning, Mooring system, Dynamic positioning system 

(DPS), Automatic berthing system
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Chapter 1 Introduction

Traditionally, the machine and deep learning algorithms were not as widely used as now due to 

their limited performance for practical applications. However, in the past decades, there have been 

major changes that contributed to wide applications of the machine and deep learning. First, a huge 

amount of digital data such as texts, images, and numerical data, became available, which is called 

big data in the deep learning literature. Second, an efficient computational approach was developed 

for matrix calculation of neural networks by utilizing a Graphics Processing Unit (GPU) instead of a 

Central Processing Unit (CPU) in which the neural networks are the main component in the deep 

learning. This utilization of the GPU could extraordinarily speed up the neural network training. Third, 

the state-of-the-art deep learning algorithms have been proposed for a learning algorithm (optimizer), 

a neural network architecture, and a neural network layer. The robust performance of the recent 

machine and deep learning algorithms have been proven in many applications such as natural 

language processing (NLP), computer vision, market research, self-driving, and so on. For example, 

in a domain of language translation in the NLP, it was very difficult to process texts in one language 

to another because there are so many things to consider such as different grammar rules, nuance, non-

matching words, words with multiple meanings, gender-dependency, and so on. But, with the help of 

the deep learning and the big data, now there are deep-learning-based translators that perform nearly 

as good as a human translator. In the computer vision, an image processing is done using something 

called a filter which is a � × � matrix and it filters an input image to process to obtain a desired output. 

But the filter used to be manually designed by experts in the domain, which made the computer vision 

system hard to build. Nonetheless, with the deep learning algorithm called a convolutional neural 

network (CNN), the manual design of the filter is no longer needed but the CNN can learn to design 

the filter to efficiently process an input image for a given task. There are two main advantages of the 

use of machine and deep learning-based systems over the traditional hard-coded systems. First, the 

machine and deep learning-based systems do require the hard coding to implement some functionality 

for a specific task. Instead, they are just trained to perform the given task. This way, the time to build 

a system for the given task can be shortened because building the system is completed once the 

training is completed, the developed learning system is less prone to errors, which provides robustness 

to the system, and the performance of the system is likely to be better than the hard-coded systems 

because the deep learning can learn how to do the task very efficiently beyond human understanding 

and intuition on the given task. Second, the machine and deep learning-based systems have
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adaptability to a varying circumstance which provides a varying input to the system. For hard-coded 

systems, it can perform well for a target input data distribution which was set when designed. 

However, if the input data distribution changes, the hard-coded system is likely to poorly perform 

because it was not designed for the different input data distribution and now requires additional codes 

to cope with the change, which is not efficient in terms of maintenance. In case of the machine and 

deep learning-based systems, although the input data distribution changes a bit, they can still yield 

good performance because the machine and deep learning algorithms have a good extrapolation

ability based on the understanding learned from the training dataset. Even if the input data distribution 

changes significantly, the system can be re-trained to adjust to the changed input data distribution, 

which makes the machine and deep learning-based systems easier to maintain in the long term. 

In this paper, the machine and deep learning algorithms are applied to various applications such as 

a mooring system, dynamic positioning system (DPS), and ship berthing system. Specifically, the 

machine and deep learning algorithms are utilized to build a mooring line tension prediction system, 

a motion predictive control for DPS, a reinforcement learning (RL)-based adaptive proportional-

integral-derivative (PID) controller for DPS, and an automatic ship berthing system. 

The proposed mooring line tension prediction system is a system that predicts mooring line top 

tension at every timestep given a previous ship motion history based on the deep learning algorithm. 

The mooring line tension prediction system has been developed in several previous studies to speed 

up dynamic simulation and fatigue analysis on mooring lines by replacing the dynamic simulation 

process for the mooring tension calculation with the proposed tension prediction system. This speed-

up can be achieved because the mooring line tension prediction system can calculate the tension very 

quickly, while the dynamic simulation requires a huge amount of numerical calculation to represent 

the actual system’s dynamic behavior. The quick calculation of the mooring line tension prediction 

system is possible because it only requires matrix calculation of the neural network.

The proposed motion predictive control for DPS is a control algorithm for the DPS to reduce the 

ship drifting motion. The reduction of the drifting motion is achieved by utilizing a predicted drifted 

ship position. The prediction of the drifted ship position is performed by the deep learning algorithm 

with its input of ship positions, velocities, acceleration, thrust force, and estimated wind force. A

proportional term in the conventional PID is replaced with the predicted drifted ship position and this 

replacement allows the DPS to counteract the future drifting motion in advance, which results in the 

reduction of the drifting motion.
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The proposed RL-based adaptive PID controller for DPS is a PID controller with its gains that 

adaptively changes at every timestep. Therefore, the main difference between the RL-based adaptive 

PID controller and the conventional PID is the changeability of the gains. The gain change is 

performed by the RL algorithm given its input of ship positions, velocities, and thrust force. The RL 

algorithm is adopted to perform the adaptive gain change because the RL algorithm does not require 

any prior knowledge in ship dynamics or the DPS, but it can still learn an optimal policy for the 

adaptive gain control through an interaction with a given environment. 

The proposed automatic ship berthing system is an automatic ship berthing system based on the 

deep learning system. The deep learning system takes an input of ship positions, velocities, and 

perpendicular distances between a target berthing point and a current ship position and outputs a target 

rudder angle and a target revolution per second (RPS). Traditionally, the berthing was performed by 

an experienced captain because it was a difficult task to automate the berthing due to non-linear 

characteristics in a ship motion occurring while berthing, where the non-linear characteristics in the 

ship motion during the berthing occurs because of sudden changes in the rudder angle, RPS, and the 

slow speed of the ship. However, by the proposed automatic ship berthing system utilizing the deep 

learning algorithms, it can effectively automate the berthing process.

In the following chapters, backgrounds of the machine learning, deep learning are first introduced. 

Then, details of each proposed system are presented.
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Chapter 2 Background of Machine and Deep Learning

2.1. Machine Learning

An overall configuration of the machine learning is shown in Fig. 1. The machine learning consists

of three main components: a) supervised learning, b) unsupervised learning, c) reinforcement learning. 

Fig. 1 Overall configuration of machine learning

The supervised learning is a type of machine learning where the machine learning system is trained 

to yield an appropriate output given an input. Depending on the type of output, the supervised learning 

is performed to do either a classification task or a regression task. In the classification task, the type 

of output is an integer that refers to a classification index. In the regression task, the type of output is 

usually a real number. For example, if the machine learning system is trying to classify whether an 

image is a dog or a cat, it is solving the classification problem, and if the machine learning system is 

trying to predict a today’s fine dust concentration given an image of the sky, it is solving the regression 

problem. When the machine learning is trained by the supervised learning, it requires a labeled 

training dataset. The labeled training dataset is the training dataset consisting of pairs of an input and 

output (label). An example of the labeled training data is shown in Fig. 2 where the input images are 

converted to numeric matrices and the output of the word for the classification is converted to the 
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classification index number for the training. Then, the labeled training dataset is simply a large 

number of the input-output pairs stacked. 

(a) classification (b) regression

Fig. 2 Example of the labeled training data

The unsupervised learning is a type of machine learning where the machine learning system is 

trained with an unlabeled training dataset. Unlike the labeled training dataset, the unlabeled training 

dataset does not have the output label but input only. This unlabeled training dataset can be used to 

conduct data clustering or dimension reduction. The data clustering is basically grouping scattered 

data into multiple groups. Some examples of the data clustering are grouping customers based on 

their purchase items and grouping online users based on their search histories. The data clustering 

helps to find patterns behind the data. The dimensionality reduction is a technique to effectively 

reduce a dimension of input feature vector in which the input feature vector is the input vector that is 

fed into the machine learning system. By doing so, the size of the machine learning system can be 

reduced as the input feature vector is downsized, which results in faster implementation to yield the 

output given the input. Illustrations of the data clustering and dimensionality reduction are shown in 

Fig. 3 and Fig. 4, respectively. In Fig. 3, the scattered data is clustered into two groups given the 

features of income and spending. It can be seen that a spending pattern can be found through the data 

clustering. In Fig. 4, the dimension of a circle in a three-dimension is projected to a two-dimension, 

which reduces the dimension of the circle. In the same concept as Fig. 4, the machine learning-based 

dimensionality reduction is performed to reduce the dimension of the input feature vector.
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Fig. 3 Illustration of the data clustering

Fig. 4 Illustration of the dimensionality reduction

The reinforcement learning is a type of machine learning where the machine learning system does 

not require any pre-obtained training dataset. But the learning process is performed through an 

interaction with a given environment by experiencing trial-and-errors. A unit that interacts with the 

given environment is called an agent and the interaction with the environment is done by the agent 

taking actions. After the agent takes action in one state in the environment, the agent is given the next 

state and a reward in which the reward is a measurement for how good your action was in the previous 

state. The agent gets to learn a better and better policy to take appropriate actions to maximize the 

rewards. The RL learning is completed when the rewards that the agent can receive are maximized 

throughout an episode. The policy that can maximize the rewards is called an optimal policy. An 

illustration of the RL learning is shown in Fig. 5 where a penalty is equal to a negative reward.
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Fig. 5 Illustration of the RL learning

There are two main advantages of the RL. First, the RL algorithm does not need any pre-obtained 

training dataset which is often costly to obtain. Without any pre-obtained training dataset, the RL 

algorithm can find the optimal policy. Second, the RL algorithm does not require any understanding 

of dynamics lying in the environment but the RL algorithm can learn the dynamics through the 

interaction with the environment.

So far, a concept of the machine learning has been addressed but not the deep learning. The concept 

or definition of the deep learning is often confused with the machine learning. The definitions of the 

machine learning and deep learning are shown in Fig. 6 to clarify the definition of each. The machine 

learning algorithms refer to algorithms whose performance increases as more and more data is fed to 

train. The simplest machine learning algorithm is a linear regression model. Among the machine 

learning algorithms, there is one algorithm called an artificial neural network (ANN). Unlike the rest 

of the machine learning algorithms whose performance does not increase over a certain amount of 

training data, the multi-layered ANN showed an outstanding performance when a vast amount data 

is used to train, where the multi-layered ANN is called a multi-layer perceptron (MLP) or a deep 

neural network (DNN). Due to its outstanding performance, the DNN became very popular and the 

term “deep learning” is given to the DNN-based learning. Illustration of the ANN and DNN are shown 

in Fig. 7 where the caret in the output layer refers to a predicted value. The ANN was developed 
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inspired by a neuron in a human brain. Multiple ANNs form an ANN hidden layer and stacked ANN 

hidden layers make the DNN. As for the RL, the learning performance of the RL significantly 

improved when the RL was conducted based on the DNN. 

Fig. 6 Definitions of the machine learning and deep learning

(a) ANN (b) DNN

Fig. 7 Illustration of the ANN and DNN

As mentioned earlier, there are four studies performed in this paper: a) the mooring line tension 

prediction system, b) the feed-forward system for DPS, c) the RL-based adaptive PID controller for 

DPS, d) the automatic ship berthing system. In the mooring line tension prediction system, one data 

clustering machine learning algorithm and deep learning algorithms are used. In the feed-forward 

system for DPS, the deep learning algorithms are used. In the RL-based adaptive PID controller, the 
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deep learning algorithms and an RL algorithm are used. In the automatic berthing system, the deep 

learning algorithms are used. In the next subchapter, details of the deep learning algorithms used in 

these studies are presented.

2.2. Deep Learning

The deep learning algorithms mainly consist of deep learning layers and the optimizers. One deep 

learning layer consists of multiple nodes and each node has an activation function that adds non-

linearity in the system. Between the layers, the nodes are connected by edges which consist of 

learnable parameters that are updated by the optimizer during the training. The nodes and edges can 

be seen in Fig. 7 (b) where calculation of the connecting edges between the two layers is performed 

by simple matrix calculation. To make a deep learning system, first, the deep learning system is built 

using the deep learning layers with appropriate activation function and weight initialization, then, it 

is trained with a training dataset using the optimizer. In this subchapter, the types of deep learning 

layers, activation function and weight initialization methods, and the optimizers are introduced. Then, 

important deep learning techniques such as a training dataset scaling and transfer learning are 

introduced. 

2.2.1. Types of Deep Learning Layers

The most common deep learning layer is the ANN layer. Aside from it, other common types of 

layers are long short-term memory (LSTM) proposed by Hochreiter and Schmidhuber (1997), gated 

recurrent unit (GRU) proposed by Cho et al. (2014), convolutional neural network (CNN) proposed 

by Fukushima (1980). The LSTM and GRU layers are often used for sequential data processing and 

the CNN layer is often used for image processing. However, since only the ANN, LSTM, and GRU 

are used in the studies in this paper, only these three layers are explained in detail except for the CNN.

To explain the details of the ANN layer, first, calculation in one node of the ANN is shown in Fig. 

8, Eq. (1) and Eq. (2), where �, � and � denote an input, the weight, and bias, respectively, � denotes 

the activation function, and ∘ denotes a dot product. One of the common activation functions is a 

tangent hyperbolic (tanh) which is shown in Fig. 9. The final output of one ANN node is �. The role 

of weight is to adjust steepness of the activation function and the role of bias is to shift the activation 

function in its x-axis. 
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Fig. 8 Calculation in one node of the ANN

� = [�� �� ��] ∘ [�� �� ��]� + [��] (1)

� = �(�) (2)

Fig. 9 Activation function of the tanh

Calculation of the multiple ANN hidden layers which form the DNN is presented in Fig. 10 and 

Eqs. (3)-(6) where �, �, and � are shown in Eqs (7)-(13). The dimensions of �, �, and � are 

determined by (batch size, a number of input features), (size of a current layer, size of a next layer), 

and (batch size, size of the next layer), respectively. In Fig. 10, the batch size is one to consider one 

data only for a better understanding of the ANN. Depending on applications, the size of the hidden 

layer and the number of the hidden layers can be much larger, which would have a large number of 

weights and biases. The DNN is known to be capable of learning a good approximate function that 

relates an input and output by being trained with a large number of training data even when a relation 

between the input and output is highly non-linear. The size and depth of the DNN model determine 

how much complexity the model has to approximate the input-output relation, where the size refers 

to the size of hidden layers and the depth refers to the number of hidden layers. The higher complexity 

means the higher capability to learn at the cost of higher computational load for the training. 
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Fig. 10 Configuration of the DNN
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�[�] = ���
[�]� (13)

The ANN is a very powerful learning algorithm. However, when it comes to processing the 

sequential data, it is somewhat limited. For example, if an input is the sequential data with its length 

of 100, the size of the ANN hidden layer must be large enough to process the sequential input data. 

If the length of the sequential input data is even longer such as 500, the size of the ANN hidden layer 

must be even larger. Therefore, the ANN is inefficient in terms of the model size when processing the 

sequential data. Another main disadvantage is that once the ANN model is built and trained, the 

model’s architecture cannot be changed, meaning that the length of the sequence that the ANN model 

can process is fixed. It can be quite inefficient because a flexible length may be required in some 

applications such as text generation where a length of sentence varies. To overcome these limitations, 

the LSTM and GRU are often used.

Before introducing the details of the LSTM and GRU layers, their base layer called a recurrent

neural network (RNN) is first introduced in detail. The LSTM and GRU were developed to improve 

the RNN’s performance. Therefore, the basic concept of the LSTM, and GRU can easily be explained 

in the RNN. Configurations of the RNN layer and RNN cell are shown in Fig. 11 and Fig. 12, 

respectively. The subscript < � > denotes a timestep, � denotes the end of the timestep, � is called a 

hidden state which carries the temporal information throughout the RNN cells. Equations for the RNN 

cell are shown in Eqs. (14)-(15). In Eq. (14), [������ , ����] is a concatenated vector of ������ and 

����. An activation function can be added to ���� to yield a desired output range or the ANN layer 

can be added to ���� to give higher learning capability to the RNN model when outputting �����.

Fig. 11 Configuration of the RNN layer
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Fig. 12 Configuration of RNN cell

���� = tanh(�� ∘ [������ , ����] + ��) (14)

����� = ���� (15)

One main disadvantage of the RNN is that it cannot process long sequential data, meaning that it 

cannot learn a long-term dependency in the sequential data. An example of the long-term dependency 

is shown in Fig. 13. To overcome this limitation, the LSTM was developed and it is capable of 

learning the long-term dependency. 

Fig. 13 Example of the long-term dependency

The overall structure of LSTM layer is quite similar to the RNN. The LSTM layer is a collection 

of LSTM cells that are connected in sequential order. The sequentially connected LSTM cells process 

a sequential input to yield an output or a sequential output while maintaining its hidden state and a 

cell state. The cell state was introduced in addition to the hidden state to provide an ability to process 

long sequential data better. Configurations of the LSTM layer and the LSTM cell are shown in Fig. 

14 and Fig. 15, respectively, where � and � refer to the hidden state and cell state of the LSTM, 

respectively. In Fig. 15, it is well shown that the cell state goes straight from the left side to the right 

side. By doing so, the cell state plays an important role in carrying the temporal information over a 

long sequence. Equations for the LSTM cell are shown in Eqs. (16)-(22) where ∗ denotes element-

wise multiplication. � ĩs a cell state candidate, and, Γ�, Γ�, and Γ� are an update gate, forget gate, and 

output gate, respectively. The important components in the LSTM cell are Γ� , Γ� , and Γ� . Γ�
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determines how much current information to keep because the new temporal information may be 

important for the future reference. Γ� determines how much past information to forget because some 

temporal information from the past may no longer be important. Γ� determines how much cell state 

to output. Finally, similar to the RNN, an activation function can be added to ���� to yield a desired 

output range or the ANN layer can be added to ���� to give higher learning capability to the LSTM 

model when outputting �����. 

Fig. 14 Configuration of the LSTM layer

Fig. 15 Configuration of the LSTM cell

�̃��� = tanh(�� ∘ [������, ����] + ��) (16)

Γ� = �(�� ∘ [������, ����] + ��) (17)

Γ� = ���� ∘ [������, ����] + ��� (18)

Γ� = �(�� ∘ [������, ����] + ��) (19)

���� = Γ� ∗ �̃��� + Γ� ∗ ������ (20)

���� = Γ� ∗ tanh(����) (21)
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����� = ���� (22)

In many applications, the LSTM showed great performance for processing the long-term sequential 

data. But its architecture was quite complex and the complex architecture caused a high computational 

cost for the training and took a large computational memory. To simplify the LSTM’s architecture, 

the GRU was developed. The main advantage of the GRU over the LSTM is a simpler architecture 

which reduces computational cost and memory. In theory, performance of the GRU is lower than that 

of the LSTM due to its simpler architecture. But, in practice, the performance of the GRU is mostly 

the same as that of the LSTM in most of the applications although the LSTM outperforms the GRU 

in some applications. Configuration of the GRU layer and the GRU cell are shown in Fig. 16 and Fig. 

17, respectively. Equations for the GRU cell are shown in Eqs. (23)-(27). Γ� is the update gate and 

decides what information to throw away and what new information to add. Γ� is a reset gate which 

decides how much past information to forget. Unlike the LSTM having the three gates (update gate, 

forget gate, output gate), the GRU has only two gates (update gate, reset gate) and it shows that the 

GRU has a simpler architecture than the LSTM. Finally, similar to the RNN and LSTM, an activation 

function can be added to ���� to yield a desired output range or the ANN layer can be added to ����

to give higher learning capability to the GRU model when outputting �����.

Fig. 16 Configuration of the GRU layer

Fig. 17 Configuration of the GRU cell
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�̃��� = tanh(�� ∘ [Γ� ∗ ������, ����] + ��) (23)

Γ� = �(�� ∘ [������, ����] + ��) (24)

Γ� = �(�� ∘ [������, ����] + ��) (25)

���� = Γ� ∗ �̃��� + (1 − Γ�) ∗ ������ (26)

����� = ���� (27)

Aside from the ANN, LSTM, and GRU layers, there is a special type of layer that can prevent an 

overfitting problem. That layer is called a dropout layer proposed by Srivastava et al. (2014). The 

overfitting problem is a problem that the deep learning system becomes too fit to its training dataset 

during the training and results in poor performance on a test dataset. An illustration of the overfitting 

problem compared to underfitting and appropriate fitting is shown in Fig. 18. It is shown that when 

the overfitting problem occurs, the learning system loses its generalization over the data. The dropout 

can prevent this overfitting problem. The main functionality of the dropout is to randomly ignore 

some neurons in the neural network layers during the training. By doing so, the dropout forces the 

neural network to learn more robust features that are useful in conjunction with many different random 

subsets of the other neurons and it leads the neural network to general understanding in a given dataset. 

Due to its simplicity for implementation and robustness, it has been widely adopted in many 

applications of the neural network. An illustration of the dropout is shown in Fig. 19.

(a) underfitting (b) appropriate fitting (c) overfitting

Fig. 18 Illustration of the overfitting problem compared to underfitting and appropriate fitting
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(a) standard DNN (b) standard DNN with the dropout

Fig. 19 Illustration of the dropout

There is another type of layer that is designed to prevent an internal covariance shift problem. That 

layer is called a batch normalization (BN) layer proposed by Ioffe and Szegedy (2015). The internal 

covariate shift problem is a problem that the input distribution in each hidden layer varies much, 

which may cause the unstable training such as a gradient vanishing or gradient exploding. Before the 

BN was proposed, methods such as careful weight initialization and small learning rate were used to 

prevent the unstable training. The main functionality of the BN is to normalize, re-scale, and re-center 

an output from a previous hidden layer. A procedure of the BN during the training is shown in Table 

1 where � is a small number such as 1e-3. During the test and inference, the BN works a bit differently. 

Instead of using the mini-batch mean and mini-batch variance to normalize, a moving mean and 

moving variance are used, where the moving mean and variance can be obtained by applying a moving 

average filter on the mini-batch means and mini-batch variances over epochs. There are two main 

advantages of the BN. First, the training with the BN tends to converge faster and more stably, and 

the faster training with a higher learning rate is possible without falling into the unstable training

because the input distribution in the hidden layers is stabilized by the normalization. Second, the BN

prevents the overfitting problem to some extent since a constant change of the mini-batch mean and 

variance depending on the selected mini-batch at every training step provides a noise in the learning 

system during the training, which forces the learning system to learn robust features that can 

generalize the given training data.
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Table 1 Procedure of the batch normalization during the training

Input: 

- Values of � over a mini-batch: ℬ = {��, ��, ⋯ , ��}

- Output from a previous hidden layer: �

- Parameters to be learned: �, �

Output: �� = BN�,�(z)�

�ℬ ←
�

�
∑ ��

�
��� // mini-batch mean

�ℬ
� ←

�

�
∑ (�� − �ℬ)��

��� // mini-batch variance

� ←̂
� − �ℬ

��ℬ
� + �

// normalize

� ← �� +̂ � ≡ BN�,�(z) // scale and shift

2.2.2. Activation Function and Weight Initialization Methods

Choosing both an appropriate activation function and weight initialization method is quite 

important in building the deep learning system. The training performance and training speed can be 

greatly affected by these two parameters. For the activation function, many previous studies used a 

sigmoid function. However, it is known that the sigmoid function intrinsically has some disadvantages 

in training neural networks. The drawbacks of the sigmoid function are sharp damp gradients during 

backpropagation, gradient saturation, slow convergence, and nonzero-centered output. Thus, many 

studies have been conducted to develop better activation functions to overcome the problems of the 

sigmoid function. The activation functions that are popularly used these days are the tangent 

hyperbolic and rectified linear unit (ReLU) functions proposed by Hahnioser et al. (2000). The tangent 

hyperbolic function solves the problem of the limitation in the gradient update direction that exists in 

the sigmoid function, and results in faster training speed. The ReLU function avoids the gradient 

vanishing problem and lowers the complexity of the calculations as its derivative function is relatively 

simple. The equations for the sigmoid, tangent hyperbolic, and ReLU functions are shown in Eqs.

(28)-(30):

sigmoid(�) = 1/(1 + ���) (28)

tanh(�) = (�� − ���)/(�� + ���) (29)
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relu(�) = �
�; if � ≥ 0

0; otherwise
(30)

For the weight initialization method, a normal distribution with a mean of zero and a standard 

deviation of 0.01 was mostly used. Later, however, many studies showed that the weight initialization 

method could greatly affect the training performance, and several other weight initialization methods 

have been proposed. Currently, the two most popular methods are a Xavier (Glorot) weight 

initialization method (Glorot and Bengio, 2010) and a He weight initialization method (He et al., 

2015). The Xavier initialization is known to result in good training performance with the sigmoid and 

tanh functions and the He initialization is known to be very compatible with the ReLU function. The 

equations for the Xavier and He initialization methods are based on a normal distribution where a 

mean value is set to zero and variance is set to Eq. (31) for the Xavier initialization and Eq. (32) for 

the He initialization. ��� and ���� represent the numbers of nodes in the previous and next layers.

2.2.3. Optimizers

The optimizers are used to train the deep learning system by updating the weights and biases. The 

update is performed based on a loss value that comes from a loss function, where the loss value acts 

as a guide for the optimizer to decide how to update. One of the most common loss functions is a 

mean squared error (MSE) which is used for the regression task mostly. The equation of MSE is 

shown in Eq. (33) where � denotes a number of data, �� and ��� denote an actual output value and a 

predicted output value, respectively. It can be seen that the larger the gap between �� and ��� is, the 

greater the MSE value becomes. The optimizer updates the weights and biases by minimizing the 

MSE loss function in case of the regression task. This updating process is the training process of the 

deep learning system.

MSE =
1

�
�(�� − ���)

�

�

���

(33)

The most basic optimizer is a gradient descent algorithm. The gradient descent minimizes the loss 

value by iteratively updating the parameters (weights and biases) in a direction of a negative gradient 

�������
� = �2/(��� + ����) (31)

���
� = �2/���

(32)
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of the loss function. The parameter update by the gradient descent is shown in Eq. (34) where �

denotes the parameter, � denotes time, � denotes a learning rate, and ∇��(�; �, �) denotes the gradient 

of the loss function with respect to the parameter � given the training data (�, �) . To help 

understanding in the gradient descent, an illustration of the gradient descent is shown in Fig. 20 where 

there is one weight � to update in an � axis and the loss function with respect to �, ��(�), is 

represented in an � axis. In Fig. 20, starting from the initial point, the first step is taken in the direction 

of negative gradient of the loss function with respect to � , −∇��(�). Then, the next steps are 

continuously taken in the same fashion to reach a global loss minimum, where the loss value is 

minimized. The minimized loss value means the minimized gap between the actual data and predicted 

data, therefore, the training of the learning system is completed when the loss is minimized. The 

length of each step which is represented as an orange arrow is determined by multiplication of the 

gradient of the loss function and the learning rate. Thus, the learning rate determines how much update 

is conducted in one step, and the amount of update decreases as the loss value gets close to the global 

loss minimum because the loss gradients nearby the global loss minimum are small. Another 

illustration of the gradient descent is shown in Fig. 21 where there are two weights �� and �� and 

the global loss minimum is located in the very center. In both Fig. 20 and Fig. 21, it takes multiple 

steps to reach the global loss minimum and one might want to increase the learning rate so that the 

convergence occurs faster. However, the learning rate must be determined appropriately because 

some learning problems may happen otherwise as shown in Fig. 22. When the learning rate is too 

low, the learning requires many update steps before reaching the global loss minimum. When the 

learning rate is too large, it causes the dramatic updates which leads to divergent behaviors. That is 

the reason that the learning rate must be set appropriately so that the learning can be conducted as Fig. 

22 (b).

���� = �� − �∇��(��; �, �) (34)
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Fig. 20 Illustration of the gradient descent

Fig. 21 Illustration of the gradient descent with respect to two weights

(a) too low (b) just right (c) too large

Fig. 22 Effects of the learning rate

The parameters (weights, biases) are updated by the gradient descent in the direction of the negative 

gradient of the loss function with respect to each parameter, and there are a large number of 

parameters in the deep learning system. It means the gradient of the loss function with respect to every 

parameter must be known for the update. An algorithm to calculate ∇��(�) for all parameters is called 
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backpropagation. The backpropagation does it by backpropagating ∇��(�) in the last hidden layer 

based on a chain rule. An illustration of the backpropagation in one neuron in the last hidden layer 

compared to forward-propagation is shown in Fig. 23 where the forward-propagation is the simple 

matrix calculation to yield the predicted output ��, and ��/�� is the same as ∇��(�). ��/�� is called 

a first-order partial derivative of the loss function with respect to the weight. Through the forward-

propagation, a loss function value � can be calculated. Using the calculated loss value, 
��

����
can be 

calculated. Then, 
��

����
can be calculated by redefining it to 

��

����

����

����
using the chain rule, where 

��

����

is already calculated in the previous step and 
����

����
can be obtained by calculating 

��(���)

����
since ��� is 

equal to �(���). And then, 
��

����
(�) and 

��

����
(�) can be calculated by redefining them to 

��

����

����

����

����

����
(�) and 

��

����

����

����

����

����
(�), respectively, where 
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����
and 
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����
are already calculated in the previous steps, and 

����

����
(�)

and 
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����
(�) can be obtained by calculating 
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(�)

����

����
(�) and 

�����
(�)

�������
(�)

����

����
(�) , respectively. 

Finally, the weight updates for ���
(�)

and ���
(�)

can be performed as Eq. (35) and Eq. (36), respectively, 

where the first-order partial derivatives in the learning rate terms can be represented as Eq. (37) and 

Eq. (38), respectively. It is how the learning is performed in the neural network in general. As shown 

in Fig. 23 (b), the calculation of the first-order partial derivative is conducted backwards, from the 

right side to the left side in order. That is the reason why the backpropagation has “back” in its term. 

To help understanding in the backpropagation in the DNN, an illustration of the backpropagation in 

the DNN is shown in Fig. 24.

(a) forward-propagation (b) backpropagation

Fig. 23 Illustration of the backpropagation in one neuron in the last hidden layer compared to 

forward-propagation
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���
(�)

= ���
(�)

− �
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����
(�) (35)
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(�) (37)

��
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=
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����

����
(�) (38)

Fig. 24 Illustration of the backpropagation in the DNN

Using the backpropagation, the training of the deep learning system can be described as follows: 

1) calculate the loss function through the forward-propagation, 2) update the parameters by the 

gradient descent using ��/�� obtained by the backpropagation. For the big DNN, a lot of calculation 

for ��/�� is required because there are a large number of parameters. This can be very difficult to do 

manually. Therefore, automatic differentiation is typically used. One of the popular open-source 

libraries that provides the powerful automatic differentiation is Tensorflow developed by a Google 

Brain team.

As mentioned earlier, one deep learning system has thousands or sometimes millions of parameters, 

which means that the optimizer needs to find the global minimum in a very high � dimensional space 

where there are � parameters. In that case, the learning can be difficult for the basic gradient descent. 

To improve the learning performance of the gradient descent, many other optimizers were developed 
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such as the gradient descent with momentum (Rumelhart, Hinton and Williams, 1986), Adagrad

(Duchi, Hazan and Singer, 2011), RMSProp (Hinton, Srivastava and Swersky, 2012), and Adam

(Kingma and Ba, 2015). Among the developed optimizers, the Adam is the most popular one and 

only this optimizer is used in the studies in this paper. However, the Adam was developed based on 

several previous optimizers such as the gradient descent with momentum, Adagrad, and RMSProp. 

Therefore, the momentum, Adagrad, and RMSProp must be understood to understand the Adam.

The gradient descent with the momentum is basically the basic gradient descent with the 

momentum applied. A basic notion of the momentum is to give a kind of inertia force to the parameter 

update by the gradient descent so that the parameter update goes a bit further in the direction it was 

headed to. The parameter update by the gradient descent with the momentum is represented as Eqs. 

(39)-(40) where � is a momentum value and it is usually set to 0.9. The detailed effect of �� can be 

seen in Eq. (41). It can be seen that the use of �� allows the parameter update to be conducted 

considering the weighted previous gradients. The advantages of the momentum are a reduction of 

oscillations and high variance of the parameters during the update and the faster training.

���� = �� − �� (39)

�� = ����� + �∇��(��) (40)

�� = �∇��(��)� + ��∇��(����)��� + ���∇��(����)��� + ⋯ (41)

Unlike the basic gradient descent where the learning rate is the same for all the parameters, the 

Adagrad adaptively changes its learning rate. The basic idea in the Adagrad is that the low learning 

rate is applied to the parameters that have been updated much, and the high learning rate is applied to 

the parameters that have not been updated much because the parameters that have been updated much 

are likely to be nearby their optimum points, whereas, the parameters that have not been updated 

much are likely to need to be updated a lot to reach their optimum points. The parameter update by 

the Adagrad is represented as Eqs. (42)-(43) where �� is a sum of squares of the previous gradients 

and � is a small number such as 1e-8. It can be seen that the learning rate is adaptively changed by 

1/��� + � . During the training by the Adagrad, each parameter is updated to some extent, then, ��

increases accordingly. Given the magnitude of �� of each parameter, the learning rate �/��� + � for 

each parameter is determined. If the magnitude of �� of one parameter is high, the learning rate is low, 

whereas, if the magnitude of �� of one parameter is low, the learning rate is high. There are three 

main advantages of the Adagrad. First, the learning rate adaptively changes for each parameter. 
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Second, the learning rate does not have to be tuned manually. Third, the training can be effectively 

performed even on sparse data.

���� = �� −
�

��� + �
∙ ∇��(��) (42)

�� = ���� + �∇��(��)�
� (43)

Despite the advantages of the Adagrad, it has a limitation. For the Adagrad, as the training continues, 

�� continues to increase because the squares of the previous gradients do not decay over time but stay 

in �� . This makes the learning almost stop by the time �� is too big. The stop of learning occurs 

inevitably in the Adagrad. To overcome this limitation, the RMSProp was proposed. In the RMSProp, 

the way of calculating �� is different. It is changed in a way that the squares of the previous gradients 

decay over time so that the learning rate �/��� + � does not converge to almost zero over time. The 

parameter update by the RMSProp is represented as Eqs. (44)-(45) where � is an exponential decay 

rate which is usually set to 0.9, and the way of calculation for �� is different from the Adagrad. The 

calculation form of Eq. (45) is from an exponential moving average. By calculating �� as Eq. (45), 

�� does not become excessively big, and different significances can be put to the squares of the 

previous gradients where higher significances are applied to the recent gradients and lower 

significances are applied to the past gradients.

���� = �� −
�

��� + �
∙ ∇��(��) (44)

�� = ����� + (1 − �)�∇��(��)�
� (45)

The Adam can be viewed as a combination of the RMSProp and the momentum. In the Adam, there 

are two important components that are shown in Eq. (46) and Eq. (47), respectively. �� and �� are 

called a biased first moment estimate and a biased second moment estimate, respectively, and �� and 

�� are the exponential decay rates for �� and ��, respectively. For settings of the parameters, �� and 

�� are initialized to zero, and �� and �� are usually set to 0.9 and 0.999, respectively. The calculation 

of �� is similar to that of the momentum from Eq. (40), and the calculation of �� is similar to that of 

the RMSProp from Eq. (45). But, since the two biased moment estimates are initialized to zero, they 

are too small at the beginning of the training. A bias-corrected first moment estimate and a bias-

corrected first moment estimate compensate for that issue. The two bias-corrected moment estimates 
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are shown in Eq. (48) and Eq. (49), respectively. It should be noted that ��
� denotes �� to the power 

of time �. Using the two bias-corrected moment estimates, the parameter update by the Adam can be 

represented as Eq. (50). The learning performance of the Adam has been proven to be very robust in 

a variety of applications. Therefore, the Adam is adopted as the optimizer for the studies in this paper.

�� = ������ + (1 − ��)∇��(��) (46)

�� = ������ + (1 − ��)�∇��(��)�
�

(47)

��� = ��/(1 − ��
�) (48)

��� = ��/(1 − ��
�) (49)

���� = �� −
�

���� + �
∙ ��� (50)

2.2.4. Training Dataset Scaling

The training dataset consists of multiple sets of the input and output data in which the input and 

output data are the feature vectors as shown in Eq. (51) and Eq. (52), where �� and �� denote the i-th 

input feature vector and output feature vector, respectively, and �� and �� are the features in the 

feature vectors. Thus, the training dataset can be represented by Eq. (53) and Eq. (54) where �� and 

�� denote the training dataset for the input and output, respectively. Thus, the training dataset scaling 

refers to application of some scaling method to the training dataset (��, ��). 

�� = {��, ��, ⋯ , ��} (51)

�� = {��, ��, ⋯ , ��} (52)

�� = {��, ��, ⋯ , ��} (53)

�� = {��, ��, ⋯ , ��} (54)

There are very strong reasons that the training dataset should be scaled. The first reason is to match 

the distributions and scales of the features in the input and output vectors. The different distributions 

and scale in the feature vector deteriorate the learning process because the parameters in the neural 

network get to react more sensitively toward one feature than another. An example of the input feature 

vector with the different distribution and scale can be {age, #hairs} where the #hairs denotes a 

number of hairs. An illustration of the effect of different distribution and scale of the input feature 
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vector during the training is shown in Fig. 25 where the circles and elongated circles represent a 

contour of the loss function value, the black circle denotes the initial point, and the green arrow 

denotes the parameter update direction. It is shown that the training is more difficult when the input 

feature vector is not scaled, whereas the training is easier when the input feature vector is properly 

scaled.

(a) on an unscaled input feature vector (b) on a scaled input feature vector

Fig. 25 Illustration of the effect of different distribution and scale of the input feature vector 

during the training

The second reason for the scaling is to make the scale of input and output vectors small so that the 

weights and biases are updated to small values. If the scale of the input or output vectors is large, it 

causes the weights and biases to be updated to large values, which causes the unstable learning and 

poor performance because the neural network is now too sensitive to changes of the input. In terms 

of the backpropagation for the parameter update, if the scale of the output vector is large, it can result 

in the large loss value, then this causes a dramatic update of the parameters because the large loss 

value is backpropagated to the parameters to update them. In turn, this dramatic update of the 

parameters is likely to make the learning process unstable. For these reasons, the scaling of the 

training dataset is almost always conducted in practice.

There are mainly two types of scaling method. The first one is a standard scaling method, and the 

second one is a min-max scaling method. An equation of each scaling method is shown in Eq. (55)

and Eq. (56), respectively, where � and � denote a mean and standard deviation, respectively. It 

should be noted that �(. ), �(. ), min(. ), max(. ) are calculated for each feature across the entire 

dataset, therefore, the size of output by these operations is (1 × a number of features in the feature 
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vector). These two scaling methods can be applied to the training dataset for the output in the same 

way.

�������
� =

�� − �(��)

�(��)
(55)

�������
� =

�� − min(��)

max(��) − min(��)
(56)

2.2.5. Transfer Learning

The transfer learning is the deep learning technique that utilizes learned weights from a trained 

neural network to train a new neural network faster with a much smaller training dataset. A 

comparison between the traditional learning and the transfer learning is shown in Fig. 26. With the 

traditional learning, a large amount of training dataset is required to train each learning system, 

therefore, if there are two learning systems, two large amounts of training datasets are required. But, 

with the transfer learning, a new learning system can be trained by utilizing the learned knowledge 

(learned weights and biases) from the trained learning system, and it results in faster training of the 

new learning system and requires a much smaller training dataset.

(a) Traditional learning (b) Transfer learning

Fig. 26 Comparison between the traditional learning and the transfer learning

2.3. Reinforcement Learning

There are a large number of RL algorithms. Fig. 27 shows a diagram of the major RL algorithms, 

where the green oval denotes a category of the RL algorithms and the yellow rectangle denotes a type 
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of the RL algorithm. Aside from the RL algorithms presented in the figure, there are more RL 

algorithms such as a distributional DQN, rainbow DQN, D4PG, ACER, ACTKR, and so on. Since 

the RL algorithms are still actively studied and developed, there will certainly be more advanced RL 

algorithms in the future. This subchapter is mostly focused on explaining the DDPG (Lillicrap et al., 

2016) because it is the RL algorithm used in one of the studies in this paper. To explain the DDPG, 

the base RL algorithms of the DDPG are first introduced, then, the details of DDPG are addressed.

Fig. 27 Diagram of the major RL algorithms

In the standard reinforcement learning, there is an agent, A, and an environment, �, that that the

agent interacts with in discrete time steps. At every timestep, the agent receives a state �� , and takes 

an action �� , and obtains a reward ���� , forming a sequential transition 

(�� , �� , ����, ����, ����, ����, ⋯ ) throughout an episode. An action �� is determined by a policy �

which maps a state �� to probabilistic values of each action �(��) because an environment � may be 

stochastic. The learning process of the agent can be defined mathematically using a Markov Decision 

Process (MDP). A generic flowchart of the process is shown in Fig. 28. In the figure, as the agent 

continues to interact with an environment, the policy � eventually converges to an optimal policy �∗.
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Fig. 28 Learning process of an agent with MDP

In many RL algorithms, an action-value function, so-called Q function, is used in the learning 

process. The Q function describes the expected return value �� which is expressed as Eq. (57) where 

� is a discounting factor to consider influence of uncertainties towards the future after taking an action 

�� in a state �� and thereafter following the policy �. Thus, the Q function simply tells how good a 

certain action is at a certain state. The Q function can be written in a recursive form as Eq. (58) where 

�[. ] denotes an expectation value. This recursive form is called a Bellman equation, and Eq. (58) is 

called the Bellman equation of the Q function. If a deterministic policy � that maps a state �� to 

deterministic values of each action �� is used, Eq. (58) can be rewritten as Eq. (59). If the deterministic 

policy is to take ���� that maximizes the Q function at ����, Eq. (59) can be rewritten as Eq. (60). 

The recursive form in Eq. (60) is called a Bellman optimality equation. 

�� = � �(���)�(�� , ��)

�

���

(57)

��(�� , ��) = ���,����~� ��(�� , ��) + ������~�[��(����, ����)]� (58)

��(�� , ��) = ���,����~���(�� , ��) + ��������, �(����)�� (59)

��(�� , ��) = ���,����~� ��(�� , ��) + � max ���(����, ����)�� (60)

The RL based on the Q function can be briefly explained using Eq. (60) as Table 2 where the policy 

that takes action to go to the next state that provides the highest Q function is called a greedy policy. 

The greedy policy can be expressed as Eq. (61) where �(�, �) is a vector that consist of multiple Q 

functions with respect to different actions, which is shown in Eq. (62). As the loop continues, more 

and more Q functions at various states are continuously updated. Eventually, the Q functions at 

various states converge. Then, the RL is completed and the optimal policy is found. By taking the 

actions according to the greedy policy, the agent can maximize the rewards. This way of learning the 

Q function is called Q-learning proposed by Watkins and Dayan (1992). Although the greedy policy 
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is used in Table 2 for simplicity, the greedy policy is usually not ideal for the RL because it 

discourages the agent from exploring which is important to find the optimal policy that is optimal 

globally, not locally. Therefore, a stochastic behavior policy is often used as Eq. (63) which is called 

an epsilon-greedy policy where � is a random value ranging from zero to one and � is criteria to 

determine whether to take the action according to the greedy policy or a random action. The stochastic 

random action encourages the agent to explore the environment which helps to find the global optimal 

policy. � is usually initialized as a high value such as one and is decayed over time so that the agent 

is encouraged to explore at the beginning but take the greedy actions later.

Table 2 Brief procedure of the RL based on the Q function

Environment �

Starts from an initial state ��

while optimal policy is found do

Take action �� to go to the next state that provides the highest 

Q function

Obtain reward ���� and next state ���� from �

Calculate the Bellman optimality equation of the Q function

Update the Q function with {�� , �� , ����, ����}

end while

�(�|�) = argmax��(�, �)� (61)

�(�, �) = ����, �(�)�, ���, �(�)�, ⋯ , ���, �(�)�� (62)

�(�|�) = �argmax��(�, �)�

random action

if � ≥ �
if � < �

(63)

However, the RL has difficulties in learning when the environment is complex because the complex 

environment has too many states and the states may have non-linearity. Therefore, it is common to 

use the neural network as a function approximator to calculate the Q function. This neural network-

based approximator is parameterized by ��, and �� can be optimized by minimizing the following 

loss function Eq. (64) by the optimizer, where �� denotes a state visitation distribution by the 

stochastic behavior policy which is represented as � and �� is shown in Eq. (65). It should be noted 

that the loss function Eq. (64) is quite similar to the loss function for the regression task as Eq. (33). 

In Eq. (33), �� and ��� denote the actual output and the predicted output, respectively. Matching Eq. 
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(33) and Eq. (64), it can be seen that �(�� , ��|��) is the predicted output and �(�� , ��) +

� max��(����, ����|��)� is the actual output. Since �(�� , ��|��) is predicted by the neural network, 

it is a predicted output, but �(�� , ��) + � max��(����, ����|��)� is semi-actual output because 

�(�� , ��) is an actual value but �(����, ����|��) is a predicted value by the neural network. It might 

seem a bit odd that the true Q function can be learned by minimizing the loss function Eq. (64), but it 

is possible by conducting the Q-learning from Table 2 long enough with the epsilon-greedy policy. 

The Q-learning using the neural network to approximate the Q function is called Deep Q-learning. 

One important term in the Q-learning is bootstrapping. The bootstrapping is the way of updating the 

Q function where the semi-actual output consisting of the reward and predicted Q function is used as 

the actual output in the loss function. The bootstrapping is used to be able to update the Q function at 

�� at every timestep. The bootstrapping is utilized in most of the RL algorithms.

�(��) = ���~��,��~�,��~� ���� − �(�� , ��|��)�
�

� (64)

�� = �(�� , ��) + � max��(����, ����|��)� (65)

There are two RL algorithm categories as shown in Fig. 28. The first one is the value-based RL 

algorithm, and the second one is the policy-based RL algorithm. The value-based RL algorithms are 

the RL algorithms whose policy is implicitly determined by the Q function as Eq. (61). In other words, 

there is no explicit policy but the policy is determined based on the Q function approximated by the 

neural network. Unlike the value-based RL algorithms, in the policy-based RL algorithms, the policy 

is explicitly determined in which the policy is directly approximated by the neural network. The 

advantages and disadvantages of the policy-based RL algorithms compared to the value-based RL 

algorithms are as follows: The policy-based RL algorithms can output multiple continuous actions at 

one timestep, while the value-based RL algorithms can only output one discrete action. Therefore, the 

policy-based RL algorithms are more suitable for applications such as robot control. However, the 

policy-based RL algorithm is prone to falling into the local optimal policy and its evaluation process 

for the policy is typically inefficient with high variance. Common applications of the value-based RL 

algorithm and the policy-based RL algorithm are shown in 오류! 참조원본을찾을수없습니다.

where 오류! 참조 원본을 찾을 수 없습니다. (a) and 오류! 참조 원본을 찾을 수 없습니다. (b) 

shows one of Atari games called breakout and autonomous car driving, respectively. The action and 

the action space of each application in 오류! 참조원본을 찾을 수없습니다. (a) and 오류! 참조

원본을찾을수없습니다. (b) is shown in Eq. (66) and Eq. (67), respectively. The action space in 



33

Eq. (66) has three discrete actions and only one action is available at one time. The action space in 

Eq. (67) has two continuous actions where the angle of the steering wheel and the car speed can range 

from 0.0° to �° and from 0.0 km/h to � km/h, respectively. It can also be seen that multiple actions 

can be taken at one time by using the policy-based RL algorithm. 

(a) value-based RL algorithm (b) policy-based RL algorithm

Fig. 29 Common applications of the value-based RL algorithm and the policy-based RL 

algorithm

� = argmax({left, nothing, right}) (66)

� = {angle of steering wheel, car speed} (67)

Illustrations of the policies in the value-based RL algorithms and policy-based RL algorithms are 

shown in Fig. 30 and Fig. 31, respectively, where HL stands for the hidden layer, softmax denotes a 

softmax activation layer, � denotes a probability, � denotes mean, � denotes standard deviation, and 

� denotes a normal distribution. The softmax activation layer allows to yield probabilistic outputs in 

which the sum of the outputs is one. Also, in Fig. 30 and Fig. 31 (a), the greedy policy is used. In Fig. 

30, it is shown that the HL outputs the approximated Q functions, and the action that maximizes the 

Q function is selected. In Fig. 31, two types of the policy-based RL algorithm are shown according to 

their action spaces. In the policy-based RL algorithm with the discrete action space, a probability of 

each action is output from the HL and one action with the highest probability is chosen. In the policy-

based RL algorithm with the continuous action space, the mean and standard deviation of each action 

is output from the HL and the normal distribution of each action is formed. The action is taken by 

sampling from the normal distribution of each action, which results in a vector of three values for 

three actions. 
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Fig. 30 Illustration of the policy in the value-based RL algorithms

(a) for discrete action space

(b) for continuous action space

Fig. 31 Illustration of the policy in the policy-based RL algorithms

The learning process of the neural network in the policy-based RL algorithm is conducted by 

“maximizing” an objective function, Eq. (68) where ��(s) is the Bellman equation of a state value 

function which is expressed as Eq. (69). The Bellman equation of the state value function is quite 

similar to that of the Q function from Eq. (58). The Q function tells how good �� is at �� , whereas the 

state value function tells how good �� is. Therefore, it can be said that the Q function is a subset of 

the state value function. Seeing Eq. (68), the learning process can be intuitively explained: The 

parameters of the neural network in the policy-based RL algorithm updated in a direction that 

maximizes ��(s), which is equal to the maximization of the rewards. The detailed parameter update 

can be expressed as Eq. (70) where � is the parameter of the neural network for the policy and the 

gradient of the loss function with respect to � is expressed as Eq. (71). Eq. (71) is called policy 
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gradient proposed by Sutton et al. (2000). 

�(�) = ��(s) (68)

��(��) = ��� ,����~���(�� , ��) + ��[��(����)]� (69)

� = � + �∇��(�) (70)

∇��(�) = �[∇� log(��(� |�)) ��(�, �)] (71)

However, there is one problem in Eq. (71). The Q function ��(�, �) in that equation cannot be 

obtained because there is only one neural network for the policy not for the Q function in the basic 

notion of the policy-based RL algorithm. To resolve this problem, the Q function in Eq. (71) is often 

obtained by using another neural network. In this case, the policy-based RL algorithm has two neural 

networks. One is for the policy, and another is for the Q function. The first policy-based RL algorithm 

that took this approach is called actor-critic. In the actor-critic, the actor represents the neural network 

for the policy and the critic represents the neural network for the Q function. The update of critic is 

conducted the same way as the update of the Q-function in the deep Q-learning, and the update of 

actor is conducted using the policy gradient.

Before addressing the details of the DDPG, there is one more RL algorithm that the DDPG is based 

on, which is called the DQN proposed by Mnih et al. (2013). The DQN was proposed to improve the 

learning performance of the deep Q-learning. The deep Q-learning has two main limitations. First, 

the constant update of the Q function makes the learning unstable, which results in the unstable policy. 

Second, the Q function is updated with correlated data, which results in failure of the generalization. 

An example of the two correlated data are {�� , �� , ����, ����} and {����, ����, ����, ����}. In order for 

the learning system to be generalized well, a diversity of data should be ensured in the training data. 

The DQN overcomes these two limitations by introducing a replay memory (replay buffer), an 

experience replay, and a target neural network. The replay buffer is a kind of storage for 

{�� , �� , ����, ����}, the experience replay is a way of the training with a random mini-batch of �

transitions {�� , �� , ����, ����} from the replay buffer, and the target neural network is a duplicate of the 

original neural network from the deep Q-learning in which the original neural network is called the 

training neural network in the DQN. The target neural network is updated by its parameters being 

replaced with those of the training neural network every � steps. The replay buffer and experience 

replay ensure the diversity of the training data which helps the generalization, and the target neural 

network provides the stable training of the training neural network. A loss function to train the training 
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neural network in the DQN is expressed as Eq. (72) where �� is shown in (73). It should be noted that 

�(�� , ��|��) and �������, ����|���
� are obtained by the training neural network and the target neural 

network, respectively. An illustration of the replay buffer in the DQN is shown in Fig. 32 and an 

overall learning process of the DQN is shown in Table 3.

�(��) = ���~��,��~�,��~� ���� − �(�� , ��|��)�
�

� (72)

�� = �(�� , ��) + � max ��������, ����|���
�� (73)

Fig. 32 Illustration of the replay buffer in the DQN

Table 3 Overall learning process of the DQN

Environment �

Replay buffer �

Starts from an initial state ��

while optimal policy is found do

Take action ��

Obtain reward ���� and next state ���� from �

Store transition (�� , �� , �� , ����) in �

Sample a random mini-batch of � transitions 

{�� , �� , ����, ����} from �

Train the training neural network by minimizing the loss 

function Eq. (72)

Update the target neural network by replacing its parameters 

with those of the training neural network every � steps

end while
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The DDPG is the RL algorithm based on the DQN and actor-critic combined. The characteristics 

of the DDPG are as follows. First, the DDPG has four neural networks in which the first two neural 

networks are the actor and critic from the actor-critic, and the other two neural networks are a target 

actor and a target critic. The target actor and target critic are duplicates of the actor and critic. This 

notion is from the target neural network in the DQN. Second, the DDPG utilizes the replay buffer 

from the DQN. Third, the target actor and target critic are updated by being replaced with a small 

percentage of parameters of the actor and critic every step instead of being completely replaced every 

� steps. This way of target neural network update is called soft update. Fourth, the actor in the DDPG 

is learned by using a deterministic policy gradient (Silver et al., 2014) instead of the policy gradient. 

The deterministic policy is a deterministic version of the policy gradient from Eq. (71) and is known 

to outperform the policy gradient in high-dimensional action space. An equation of the deterministic 

policy is shown in Eq. (74) where �� denotes the parameter of the actor for its deterministic policy �, 

and �� denotes the parameter of the critic. 

∇���(�) = ��∇��(�, �|��)|����,���(��)∇���(�|��)|����
� (74)

In the DDPG, the use of the actor-critic allows to output the multiple continuous actions, the use 

of target actor and target critic provides the learning stability which is additionally enhanced by the 

soft update, the use of replay buffer eliminates the correlated training data problem, and the 

deterministic policy gradient improves the learning performance. An overall learning process of the 

DDPG is shown in Table 4. An architecture of the actor in the DDPG is shown in Fig. 33. It should 

be noted that the actions are deterministically taken.

Table 4 Overall learning process of the DDPG

Environment �

Replay buffer �

Starts from an initial state ��

while optimal policy is found do

Take action ��

Obtain reward ���� and next state ���� from �

Store transition (�� , �� , �� , ����) in �

Sample a random mini-batch of � transitions 

{�� , �� , ����, ����} from �

Update the critic by minimizing the loss function Eq. (72)
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Update the actor by using the deterministic policy gradient 

Eq. (74)

Update the target critic and target actor by being replaced 

with a small percentage of parameters of the actor and critic

end while

Fig. 33 Architecture of the actor in the DDPG
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Chapter 3 Machine Learning-Based Mooring Line Tension

Prediction System

3.1. Introduction

Typically, dynamic simulation for a moored floating structure and fatigue analysis on mooring lines 

takes a long computational time because it requires a huge amount of numerical calculation to 

represent the actual system’s dynamic behavior. To speed up the dynamic simulation and fatigue 

analysis, several studies have been conducted. Simões, Tiquilloca and Morishita (2002) proposed a 

neural network architecture to predict the top tension on mooring lines and a hawser in a system where 

a turret-FPSO is connected with a shuttle tanker by the hawser. Guarize et al. (2007) proposed a hybrid 

artificial neural network (ANN)-finite element method (FEM) approach where the ANN is trained 

with short motion and top tension time histories generated by a FEM-based time-domain simulation 

and the trained ANN calculates the rest of top tension history with an input of a prescribed motion 

time history. Christiansen et al. (2013) proposed an ANN-based mooring line fatigue analysis 

approach for the fast fatigue analysis and a procedure for the fatigue analysis based on the proposed 

approach. Sidarta et al. (2017) proposed an ANN-based mooring line top tension prediction system 

that receives previous motion time histories only as an input unlike Christiansen et al. (2013) where 

the ANN receives previous motion time histories as well as previous predicted top tension histories 

as the input. Despite all the previous developments, there are two main limitations in the previous 

studies. First, there has not been any standardized method for selecting sea states to obtain a training 

dataset on which the ANN is trained. Instead, the previous studies manually selected the sea states to 

obtain the training dataset. However, this manual sea state selection can be problematic because the 

appropriate sea state selection requires expertise in the ANN domain, and even the careful selection 

might not be optimal because it is still based on human intuition. Second, the ANN-based mooring 

line tension prediction system showed relatively low tension prediction performance when a variety 

of sea states from a wave scatter diagram are considered (Christiansen et al., 2013). In this study, to 

overcome these two limitations, a K-means-based sea state selection method and a hybrid neural 

network architecture are proposed. The K-means (Macqueen, 1967) is one of the machine learning 

algorithms for data clustering and the K-means-based sea state selection method can efficiently select 

the sea states by clustering relevant sea states with the K-means and finding the nearest sea state to a 

cluster center in each cluster. The hybrid neural network architecture can provide the robust tension 
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prediction performance across the various sea states in the wave scatter diagram. The hybrid neural 

network architecture improves the tension prediction performance by using the recent deep learning 

(DL) algorithms and techniques such as the deep neural network, batch normalization and transfer 

learning. Finally, it is shown that the proposed K-means-based sea state selection removes the manual 

selection by standardizing the sea state selection procedure and it results in high sampling and 

selection efficiency, and the proposed hybrid neural network architecture results in the robust tension 

prediction system across the entire wave scatter diagram. In the following subchapters, the 

conventional mooring line tension prediction system is introduced compared to the proposed mooring 

line tension prediction system, and the proposed K-means-based sea state selection method and hybrid 

neural network architecture are presented in detail. Finally, simulation conditions and simulation 

results are presented and discussed.

3.2. Brief Comparison Between Conventional and Proposed Mooring 

Line Tension Prediction Systems

A brief diagram of the conventional ANN-based mooring line tension prediction system is shown 

in Fig. 34. It should be noted that the sea state selection is conducted manually and a plain ANN is 

used. The plain ANN is composed of several hidden layers and its architecture is shown in Fig. 35

where HL stands for hidden layer. For the input, the previous ship motion time histories are used 

instead of the ship motion at a previous timestep to consider the memory effect in the motion dynamics. 

The details of the input and output are shown in Eq. (75) and Eq. (76), respectively. In Eq. (75), �, �, 

and � denote surge, sway, and heave motions, respectively, ∆� and � denote a timestep and length of 

the previous ship motion time histories, respectively. In Eq. (76), �(�) denotes the mooring line top 

tension at time � and � denotes a number of mooring lines. 

Fig. 34 Brief diagram of the conventional ANN-based mooring line tension prediction system
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Fig. 35 Plain ANN model used in the conventional ANN-based mooring line tension prediction 

systems

�(�) = �

�(� − �), �(� − (� − ∆�)), �(� − (� − 2∆�)), ⋯ , �(�),

�(� − �), �(� − (� − ∆�)), �(� − (� − 2∆�)), ⋯ , �(�),

�(� − �), �(� − (� − ∆�)), �(� − (� − 2∆�)), ⋯ , �(�),

� (75)

�(�) = {�1(�), �2(�), ⋯ , ��(�)} (76)

A brief diagram of the proposed DL-based mooring line tension prediction system is shown in Fig. 

36. The two main differences between Fig. 34 and Fig. 36 are the use of the proposed K-means-based 

sea state selection method instead of the manual sea state selection and the use of the proposed hybrid 

neural network architecture instead of the plain ANN. The details of the proposed K-means-based sea 

state selection method and hybrid neural network architecture are addressed in later subchapters.

Fig. 36 Brief diagram of the proposed DL-based mooring line tension prediction system

3.3. Proposed K-Means-Based Sea State Selection Method

A detailed diagram of the proposed K-means-based sea state selection method is shown in Fig. 37. 

The details of the components in the K-means-based sea state selection method are presented in this 

subchapter.
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Fig. 37 Detailed diagram of the proposed K-means-based sea state selection method

3.3.1. Padding

There are many types of neural networks aside from the ANN. One of them is the convolutional 

neural network (CNN) which is often used in DL-based computer vision systems. A brief diagram of 

the CNN’s convolution operation in one layer is shown in Fig. 38 where the input refers to a small 

image, the filter consists of the learnable parameters, and the asterisk denotes the convolution 

operation. As shown in Fig. 38, dimensions of the input and output are different due to characteristics 

of the convolution operation, and this dimension reduction causes data loss which may be undesirable. 

To compensate for the data loss during the convolution operation, padding is often used. An 

illustration of application of the padding is shown in Fig. 39. The padding is basically adding zero 

cells around the input so that even after the convolution operation, the dimension of the output can 

remain the same as that of the input. In the proposed K-means-based sea state selection method, the 

padding is applied to the wave scatter diagram. The application of the padding to the wave scatter 

diagram is shown in Fig. 40. The wave scatter diagram is from DNV-GL (2018), Hs and Tz refer to 

significant wave height and zero-crossing period, respectively, and the blue area and grey area denote 

a valid sea state area and a padded area, respectively. An output of application of the padding to the 

wave scatter diagram is the padded valid sea state area in which the valid sea state area is added with 

an extra surrounding area by the padding. This padded valid sea state area is fed into the K-means-

based Monte Carlo method. By using the padded valid sea state area, the data loss can be prevented 

during the use of the K-means-based Monte Carlo method.
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(a) Convolution operation (step1) (b) Convolution operation (step2)

(c) Convolution operation (finished)

Fig. 38 Brief diagram of the CNN’s convolution operation in one layer

Fig. 39 Illustration of application of the padding
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(a) Wave scatter diagram used in this study (b) Padded valid sea state area

Fig. 40 Application of the padding to the wave scatter diagram

3.3.2. K-Means

The K-means is one of the most popular data clustering algorithms in machine learning and used 

in various domains such as pattern recognition, marketing research, fraud detection, and so on. 

Examples of the data clustering by the K-means are shown in 오류! 참조원본을찾을수없습니다.

where scattered data is clustered to three groups and a cluster center in each cluster is presented as a 

cross mark. The K-means basically clusters scattered data to � clusters given their features in which 

� is a parameter and is determined depending on how many clusters are desired. The clustering of the 

K-means is achieved by minimizing an objective function ℒ defined in Eq. (77) where � is a number 

of clusters, � is a cluster number, �� is a set of data in �-th cluster, and �� is a cluster center of �-th 

cluster. Eq. (78) is used for the calculation of Eq. (77) and the output from Eq. (78) is called a 

Euclidean distance that is a distance between two �-dimensional vectors. Seeing Eq. (77), it should 

be noted that the data clustering with the K-means is possible even when a dimension of vectors is 

very high. When using the K-means, it is also important to note that the input � should be normalized 

over its features if a distribution of each feature varies much so that each (�� − ��) in Eq. (78) can 

have equal significance to the output ‖� − ��‖�. This K-means is efficiently utilized for the K-means-

based Monte Carlo method and the clustering of relevant sampled sea states with the K-means. 



45

(a) 2D (b) 3D

Fig. 41 Examples of data clustering by the K-means

ℒ = ∑ ∑ ‖� − ��‖��∈��

�
��� (77)

‖� − ��‖� = �(�� − ��)
� + (�� − ��)

� + ⋯ + (�� − ��)
� (78)

3.3.3. K-Means-Based Monte Carlo Method

The K-means-based Monte Carlo method is proposed in this study to provide efficient sampling 

than a typical Monte Carlo method. A procedure of the K-means-based Monte Carlo method is 

presented in Table 5 where the large number should large enough for generated data to be distributed 

uniformly within the specified area.

Table 5 Procedure of the K-means-based Monte Carlo method

1. Randomly generate a large number of data within a 

specified area

2. Obtain � clusters with the K-means

3. Obtain � cluster centers → sampled data

To examine the effectiveness of the proposed K-means-based Monte Carlo method, a comparison 

between the typical Monte Carlo method and the K-means-based Monte Carlo method is presented in 

Fig. 42 where data is generated within the black square. It can be observed that the K-means-based 

Monte Carlo method generates random data much more uniformly. This uniform random data 
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generation is important when it is necessary to sample data evenly to ensure a diversity of the sampled 

data with respect to its features. The application of the K-means-based Monte Carlo method to the 

padded valid sea state area is shown in Fig. 43 and a comparison between the typical Monte Carlo 

method and the K-means-based Monte Carlo method on the padded valid sea state area is shown in 

Fig. 44, where � is 50. In Fig. 43, it is shown that the sea states are sampled very evenly by the K-

means-based Monte Carlo method which ensures the diversity of the sea states and the padded valid 

sea state area allows the K-means-based Monte Carlo method to sample the sea states even at the edge 

of the valid sea state area. In Fig. 44, the effectiveness of the K-means-based Monte Carlo method is 

clearly shown compared to the typical Monte Carlo method on the padded valid sea state area.

(a) number of samples: 9 (b) number of samples: 20

Fig. 42 Comparison between the typical Monte Carlo method and the K-means-based Monte 

Carlo method

(a) 50,000 randomly generated sea states (b) 50 sampled sea states by the K-means

Fig. 43 Application of the K-means-based Monte Carlo method to the padded valid sea state area
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(a) Typical Monte Carlo method (b) K-means-based Monte Carlo method

Fig. 44 Comparison between the typical Monte Carlo method and the K-means-based Monte 

Carlo method on the padded valid sea state area

After the sea states are sampled by the K-means-based Monte Carlo method, the quasi-static 

simulations are conducted on the sampled sea states. Then, ship motion and mooring line tension time 

histories are obtained for each sampled sea state. The motion and tension time histories are processed 

into feature vectors through the feature vector generation.

3.3.4. Feature Vector Generation

The feature vector generation processes the ship motion and mooring line tension time histories 

into the feature vector. The feature vector is used to cluster the relevant sampled sea states with the 

K-means which is the last step in the proposed K-means-based sea state selection method. A 

configuration of the feature vector for one sea state is defined as Eq. (79) where the feature vector is 

represented as ℱ. ��, ��, ��, ���, ���, and ��� refer to normalized six degree-of-freedom ship motion 

time histories (surge, sway, heave, roll, pitch, yaw), �� and � refer to a normalized mooring line 

tension time history and a number of mooring lines, respectively. � and � refer to a mean and standard 

deviation, respectively. FFT��� refers to a center of gravity of an FFT graph in an x-axis where FFT 

stands for Fast Fourier Transform. An example of FFT��� is shown in Fig. 45 where its argument is 

sin(40�) + 0.5 sin(90�), a blue line represents the FFT graph, and a red dotted line represents a value 

of the FFT���. The size of the feature vector is determined by Eq. (80), therefore, if there are 16 

mooring lines, the size of the feature vector is 66. The components in the feature vector were carefully 

chosen to distinguish different sea states since the different sea states can be distinguished considering 

overall amplitudes and periods of the ship motions and mooring line tensions. The overall amplitudes 
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are represented by the � and � terms in the feature vector, and the overall periods are represented by 

FFT��� terms in the feature vector.

ℱ =

⎩
⎪⎪
⎨

⎪⎪
⎧

�(��), �(��), �(��), �(���), �(���), �(���),

�(��), �(��), �(��), �(���), �(���), �(���),
FFT���(��), FFT���(��), FFT���(��), FFT���(���), FFT���(���), FFT���(���),

�(��1), �(��2), ⋯ , �(���),

�(��1), �(��2), ⋯ , �(���),
FFT���(��1), FFT���(��2), ⋯ , FFT���(���), ⎭

⎪⎪
⎬

⎪⎪
⎫

(79)

Size(ℱ) = (18 + 3�) (80)

Fig. 45 Example of the FFT���

3.3.5. Clustering of Relevant Sampled Sea States with K-Means

The clustering of relevant sampled sea states with K-means is conducted by clustering the sampled 

sea states with the K-means based on their feature vectors. Because the feature vector can represent 

overall characteristics of each sampled sea state, the K-means can cluster the relevant sea states 

together. An illustration of the clustering of the relevant sampled sea states with the K-means is shown 

in Fig. 46 where the number of clusters � is nine and the sea states that are in the same cluster are 

colored in the same color, otherwise, in different colors. 
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Fig. 46 Illustration of the clustering of the relevant sampled sea states with the K-means

The final goal of the proposed K-means-based sea state selection method is to output the selected 

sea states which are used to generate the training dataset with the dynamic simulation. The sea state 

selection is conducted by selecting a representative sea state in each cluster based on the obtained 

clusters and their cluster centers. A procedure of finding the representative sea state in each cluster is 

shown in Table 6. By selecting the representative sea state in each cluster, a number of the sampled 

sea states can be reduced to a number of the clusters. This way of sea state selection is very efficient 

because it significantly reduces a number of sea states to run the dynamic simulation on while it can 

maintain the diversity of the sea states’ features in the wave scatter diagram to ensure the tension 

prediction performance of a trained neural network model. Ultimately, it results in a large reduction 

of simulation time. An illustration of the selected sea states by the representative sea states is shown 

in Fig. 47.

Table 6 Procedure of finding the representative sea state in each cluster

1. Obtain a cluster center in one cluster

2. Find the sampled sea state whose feature vector has the lowest 

Euclidean distance to the cluster center’s feature vector in the cluster 

→ a representative sea state

3. Repeat the above steps for all the other clusters
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(a) Relevant sampled sea states clustered by K-

means
(b) Representative sea states from the clusters

Fig. 47 Illustration of the selected sea states by the representative sea states

The final output from the proposed K-means-based sea state selection method is the selected sea 

states by selecting the representative sea states in the clusters. The selected sea states are used to 

generate the training dataset of the motion and tension time histories with the dynamic simulation, 

and the obtained motion and tension time histories are used to train the proposed hybrid neural 

network architecture.

3.4. Proposed Hybrid Neural Network Architecture

The proposed hybrid neural network is proposed to improve the tension prediction performance for 

various sea states in the wave scatter diagram. It utilizes several modern DL algorithms and techniques 

such as the deep neural network (DNN), batch normalization (BN), and transfer learning. 

3.4.1. Architecture

(a)
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(b) for continuous action space

Fig. 48 Architecture of the proposed hybrid neural network

�(�) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

�(� − 10), ��� − (9.8)�, ��� − (9.6)�, ⋯ , �(�),

�(� − 10), ��� − (9.8)�, ��� − (9.6)�, ⋯ , �(�),

�(� − 10), ��� − (9.8)�, ��� − (9.6)�, ⋯ , �(�),

��(� − 10), ���� − (9.8)�, ���� − (9.6)�, ⋯ , ��(�),

��(� − 10), ���� − (9.8)�, ���� − (9.6)�, ⋯ , ��(�),

��(� − 10), ���� − (9.8)�, ���� − (9.6)�, ⋯ , ��(�), ⎭
⎪
⎪
⎬

⎪
⎪
⎫

(81)

The architecture of the proposed hybrid neural network is presented in Fig. 48 where NN stands 

for neural network, �� �(�) and ��(�) denote the scaled predicted tension and the predicted tension at 

time �, respectively. �� �(�) is output from the NN models because the tension histories in the training 

dataset are scaled before used for the training to ensure the training stability. The subscripts �, �, and 

� denote an overall Hs-focused NN model, low Hs-focused NN model, and a soft-binary attention 

module, respectively. ��(�) is a scaled �(�) with a min-max scaling and �(�) is the input of the 

previous ship motion time histories and its configuration is shown in Eq. (81) where ��, ��, and ��

denote pitch, roll, and yaw motions. A length of �(�) is 10s, and the timestep is 0.2s. The overall Hs-

focused NN model is a NN model trained on the training dataset generated from overall sea states in 

which the overall sea states are the selected sea states by the proposed K-means-based sea state 

selection method. The low Hs-focused NN model is another NN model trained on the training dataset 

generated from low Hs-sea states in which the low Hs-sea states are defined as the sea states with the 

Hs lower than 4m. The un-scaling layer is a layer that un-scales �� �(�) to ��(�). To bind the two NN 

models, the soft-binary attention module is proposed in this study. The proposed soft-binary attention 

module determines how much attention to pay between the overall Hs-focused NN model and the low 

Hs-focused NN model given a concatenated vector of ��(�) , ���(�) , ���(�) , ���(�) − ���(�) , and 
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abs ����(�) − ���(�)�. A well-trained soft-binary attention module should output high attention to the 

low Hs-focused NN model and low attention to the overall Hs-focused NN model when the sea state 

has the low Hs. When the sea state has the high Hs, the high attention should be paid to the overall 

Hs-focused NN model and the low attention to the low Hs-focused NN model. When the Hs is 

somewhere between low and high, the appropriate amounts of attention should be paid to each of the 

NN models. This fusion of the two NN models by the soft-binary attention module improves the 

tension prediction performance because the overall Hs-focused NN model can make good tension 

predictions overall but yields relatively poor prediction performance on the low Hs-sea states and this 

limitation can be backed up by the low Hs-focused NN model. It is supposed that the overall Hs-

focused NN model results in the relatively poor prediction performance because of characteristics of 

backpropagation. Typically, the weights in the NN model is updated through the backpropagation 

based on a loss value from a loss function. For the NN-based mooring line tension prediction system, 

the loss values on the low Hs-sea states are much smaller than on the medium or high Hs-sea states

due to the scale of the tension amplitudes, therefore, a majority of the weight update is focused on the 

medium or high Hs-sea states.

Fig. 49 Architecture of the overall Hs-focused NN model

Fig. 50 Architecture of the low Hs-focused NN model
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Fig. 51 Architecture of the proposed soft-binary attention module

Architectures of the overall Hs-focused NN model, low Hs-focused NN model, and the soft-binary 

attention module are shown in Fig. 49, Fig. 50, and Fig. 51, respectively. The numbers right next to 

the HL and BN denote layer index numbers and the numbers in parenthesis next to the HL denote the 

size of the HL. In Fig. 51, the sigmoid denotes a sigmoid activation layer, the pink circles represent a 

point-wise operation. Importantly, �� and �� represent amounts of the attention for ���(�) and ���(�), 

respectively. � is called an attention value in this study. The attention values range from zero to one 

due to the characteristics of the sigmoid. The attention values can be visualized to examine how much 

attention is paid between the overall Hs-focused NN model and the low Hs-focused NN model during 

inference of the proposed hybrid neural network. For the un-scaling layers 1 and 2, their calculations 

are conducted by Eq. (82) and Eq. (83), respectively, where �� denotes the entire tension time 

histories the overall Hs-focused NN model is trained on and �� denotes the entire tension time 

histories the low Hs-focused NN model is trained on. In the proposed hybrid neural network 

architecture, the overall Hs-focused NN model and low Hs-focused NN model are set to non-trainable, 

meaning their weights are not updated during the training of the proposed hybrid neural network 

architecture but used to conduct the inference only. Only the soft-binary attention module is trained 

during the training of the proposed hybrid neural network architecture. The overall Hs-focused NN 

model and low Hs-focused NN model are trained before the training of the proposed hybrid neural 

network architecture. This utilization of the trained NN models is a kind of the transfer learning. The 

detailed procedure of training the proposed hybrid neural network architecture is shown in the next 

���(t) = ���
�(�)(max(��) − min(��)) + min(��) (82)

���(t) = ���
�(�)(max(��) − min(��)) + min(��) (83)
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sub-subchapter.

3.4.2. Training Procedure

The detailed procedure of training the proposed hybrid neural network architecture is presented in 

Table 7. In the steps 2 and 5, the obtained training datasets �� and �� are scaled with the min-max 

scaling. In the step 4, � should be large enough to ensure enough training data for �� and the low Hs-

sea state area refers to the padded valid sea state area with its Hs below 4m. In the step 6, the weights 

of the low Hs-focused NN model are initialized with the learned weights from the trained overall Hs-

focused NN model. This weight initialization is a kind of transfer learning and it helps the low Hs-

focused NN model speed up the training process by utilizing the pre-learned knowledge (learned 

weights and biases). In the steps 7 and 8, by setting the overall Hs-focused NN model and low Hs-

focused NN model to non-trainable, these two NN models are not trained during the training of the 

proposed hybrid neural network architecture in which only the soft-binary attention module is trained.  

Table 7 Detailed procedure of training the proposed hybrid neural network architecture

1. Obtain the selected sea states with the proposed K-means-based sea state 

selection method

2. Obtain the training dataset �� with the motion and tension time histories from 

the dynamic simulations on the selected sea states and scale ��

3. Train the overall Hs-focused NN model with the scaled ��

4. Sample � low Hs-sea states within the low Hs-sea state area with the proposed 

K-means-based Monte Carlo method

5. Obtain the training dataset �� with the motion and tension time histories from 

the dynamic simulations on the sampled low Hs-sea states and scale ��

6. Train the low Hs-focused NN model with the scaled ��

7. Set the overall Hs-focused NN model and low Hs-focused NN model to non-

trainable

8. Train the proposed hybrid neural network architecture on �� and ��
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3.5. Simulation and Result Discussion

3.5.1. Simulation Conditions

A target ship used in the simulations is a floating production unit (FPU) and its principal dimension 

is shown in Table 8. A mooring configuration of the target ship is shown in Fig. 52 where the OBA 

(outer bundle angle) and IBA (inner bundle angle) are set to 50° and 4°, respectively. The small 

numbers at the ends of the mooring lines indicate the mooring line numbers which start from an 

upper left side and count counterclockwise. Properties of the mooring lines are shown in Fig. 52

Mooring configuration of the target ship

Table 9. An attack angle of environmental direction is 20° to the target ship. Parameter settings for 

the K-means-based sea state selection method are shown in Table 10. In the neural network training, 

the Adam is used for an optimizer with a learning rate of 1e-3. The learning rate begins to be decayed 

to 1e-7 by an exponential learning decay with a decay rate of 0.996 when the training’s loss history 

reaches a plateau. The test sea states are shown in Fig. 53. The dynamic simulations on the test sea 

states are conducted with a different random seed from the training sea states.

Table 8 Principal dimension of the target ship

LBP

[m]

Breath

[m]

Draft

[m]

Volume

[m3]

GM

[m]

XCG

[m]

YCG

[m]

VCG

[m]

���

[m]

���

[m]

���

[m]

244 50 18.6 169,614 1.99 117.7 0 19.5 17.4 59.3 60

(a) Top (b) Profile
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Fig. 52 Mooring configuration of the target ship

Table 9 Properties of the mooring lines

Type
Length 

[m]

Diameter 

[mm]

Weight in air 

[kg/m]

Weight in 

water [kg/m]

MBL 

[kN]

Segment 1
R4 studless 

chain
62 130 336 292 15,559

Segment 2
Spiral strand 

wire
900 120 57 50 9,120

Segment 3
R4 studless 

chain
1800 130 336 292 15,559

Table 10 Parameter settings for the K-means-based sea state selection method

� in the K-means-based 

Monte Carlo method

� in the clustering of 

relevant sampled sea state 

with K-means

50 10

Fig. 53 Test sea states

3.5.2. Overall Hs-focused NN Model

The sea states for the training were manually selected in the previous studies, but they are selected 

by the proposed K-means-based sea state selection method in this study. Then, the selected sea states 

are used to obtain the ship motion and tension time histories by the dynamic simulation and the 

training dataset �� can be obtained from the motion and tension time histories. Finally, the overall 

Hs-focused NN model is trained with the scaled ��. The tension prediction performance of the trained
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overall Hs-focused NN model and the effectiveness of the proposed sea state selection method 

compared to the manual sea state selection are investigated by the r-squared and mean average error 

(MAE) scores of the overall Hs-focused NN models trained on the sea states obtained by manual sea 

state selection and the proposed sea state selection method, respectively. The selected sea states 

obtained by the manual sea state selection and the proposed sea state selection method are shown in 

Fig. 54. The r-squared and MAE scores of the trained overall Hs-focused NN models on the test sea 

states are shown in Fig. 55. The r-squared score is a common measurement for regression tasks. 

Typically, prediction performance for the regression task is considered good if the r-squared score is 

around 0.9, the performance is considered very good if the score is around 0.95, and the performance 

is considered excellent if the score is higher than 0.98. Through Fig. 54 and Fig. 55, it can be observed 

that a number of sea states required to train the NN model can be significantly reduced by using the 

proposed K-means-based sea state selection method while maintaining the tension prediction 

performance. The reduction of the number of sea states can result in a large reduction in computational 

time for the dynamic simulations. Predicted tension time histories of the overall Hs-focused NN 

model trained on the sea states obtained by the proposed K-means-based sea state selection method 

are shown in Fig. 56 where the tension time histories of the mooring line number 16 are presented 

and the last 1800s time histories are presented for visual clarity. It can be seen that the tension 

prediction performance is excellent when the r-squared score is 1.0 and the performance is still very 

good when the r-squared score is 0.95. 

(a) Manual sea state selection

(35 sea states)

(b) Proposed K-means-based sea state selection 

method 

(10 sea states)

Fig. 54 Selected sea states obtained by the manual sea state selection and the proposed K-means-

based sea state selection method
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(a) Manual sea state selection (r-squared)
(b) Proposed K-means-based sea state selection 

method (r-squared)

(c) Manual sea state selection (MAE)
(d) Proposed K-means-based sea state selection 

(MAE)

Fig. 55 R-squared and MAE scores of the trained overall Hs-focused NN model on the test sea 
states

(a) Hs: 0.5m, Tz: 6.5s (r-squared score: 0.95)

(b) Hs: 8.5m, Tz: 14.5s (r-squared score: 1.0)
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Fig. 56 Predicted tension time histories of the overall Hs-focused NN model trained on the sea 

states obtained by the proposed K-means-based sea state selection method

3.5.3. Effectiveness of Batch Normalization

The BN is utilized in the NN models in this study. One of the advantages of the BN is to improve 

the generalization, which leads to better performance on test data. The effectiveness of the BN is 

investigated with respect to the r-squared scores of the trained overall Hs-focused NN models with 

and without the BN. The overall Hs-focused NN model with the BN consists of three pairs of HL-BN 

layers, but the overall Hs-focused NN model without the BN consists of three HL layers only. The r-

squared and MAE scores of the trained overall Hs-focused NN models with and without the BN on 

the test sea states are shown in Fig. 57. It is obvious that the use of BN improves the prediction 

performance, which makes the BN an essential component in the NN model. 

(a) without BN (r-squared) (b) with BN

(c) without BN (MAE) (d) with BN (MAE)
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Fig. 57 R-squared and MAE scores of the trained overall Hs-focused NN models with and without 

the BN on the test sea states

3.5.4. Low Hs-focused NN Model

The low Hs-focused NN model is used in the proposed hybrid neural network architecture to back 

up the overall Hs-focused NN model for the better prediction performance. The low Hs-focused NN 

model is trained on the scaled �� in which �� is obtained from the dynamic simulations on the 

sampled low Hs-sea states sampled by the proposed K-means-based Monte Carlo method. The 

sampled low Hs-sea states for �� are shown in Fig. 58. The prediction performance of the trained low 

Hs-focused NN model is investigated by the r-squared and MAE scores on the test sea states. It can 

be observed that the low Hs-focused NN model provides the excellent prediction performance on the 

low Hs-sea states.

Fig. 58 Sampled low Hs-sea states for ��
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(a) r-squared (b) MAE

Fig. 59 R-squared and MAE scores of the trained low Hs-focused NN model on the test sea states

3.5.5. Proposed Hybrid Neural Network Architecture

The proposed hybrid neural network architecture mainly consists of the overall Hs-focused NN

model, the low Hs-focused NN model, and the soft-binary attention module. The tension prediction 

is made by appropriately fusing the output tensions from the overall Hs-focused NN model and low 

Hs-focused NN model with the attention values �� and �� which are obtained by the soft-binary 

attention module. The r-squared and MAE scores of the trained hybrid neural network architecture on 

the test sea states are shown in Fig. 60 where the tension and attention value time histories of the 

mooring line number 16 are presented and the last 1800s time histories are presented for visual clarity. 

The tension time histories along with the attention value time histories of the proposed hybrid neural 

network architecture are shown in Fig. 61. In Fig. 60, it is shown that the hybrid neural network 

architecture results in the excellent prediction performance across the entire sea states. In Fig. 61, the 

attention value for the low Hs-focused NN model �� is dominant when the sea state has the low Hs. 

As the sea state becomes more and more severe, the attention value for the overall Hs-focused NN 

model �� becomes more and more dominant. Fig. 61 clearly shows that the soft-binary attention 

module can provide the appropriate amount of attention to efficiently fuse the overall Hs-focused NN 

model and the low Hs-focused NN model, which yields the excellent tension prediction performance 

across the entire wave scatter diagram.
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(a) r-squared (b) MAE

Fig. 60 R-squared and MAE scores of the trained hybrid neural network architecture on the test sea 

states

(a) Hs: 0.5m, Tz: 3.5s

(b) Hs: 2.5m, Tz: 4.5s
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(c) Hs: 2.5m, Tz: 12.5s

(d) Hs: 4.5m, Tz: 9.5s

(e) Hs: 6.5m, Tz: 9.5s

(f) Hs: 10.5m, Tz: 14.5s
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(g) Hs: 16.5m, Tz: 15.5s

Fig. 61 Tension time histories along with the attention value time histories of the trained hybrid 

neural network architecture
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Chapter 4 Motion Predictive Control for DPS Using Predicted 

Drifted Ship Position Based on Deep Learning and Replay 

Buffer

4.1. Introduction

Dynamic positioning (DP) of a ship refers to a process of automatically controlling a ship’s 

thrusters to maintain the ship at a reference position and reference heading. Conventionally, a dynamic 

positioning system (DPS) uses a proportional-integral-derivate (PID) controller to calculate its 

required thrust to maintain the ship position. The PID controller calculates the required thrust for a 

current timestep �� based on an error at a current timestep �� , where the error is calculated by 

difference between a reference position and a ship position. Then, the DPS interacts with a given 

environment with �� and it results in the ship position at the next timestep. Then again, the error at 

the next timestep ���� is calculated based on the reference position and the ship position, which results 

in ���� through the PID controller. This way, it forms a feed-back loop and is called a feed-back 

system. Normally, the feed-back system stabilizes the station-keeping process of the DPS. To improve 

the station-keeping process of the DPS, the PID feed-back system often takes a feed-forward system. 

The feed-forward system cancels disturbance such as wind before the disturbance affects a ship’s 

response by providing additional thrust based on a magnitude of the disturbance to cope with the 

disturbance. Typically, a wind feed-forward system which is the feed-forward system that considers 

the wind disturbance has been widely adopted because it is straightforward to measure a direction and 

speed of wind, which makes the wind feed-forward easy to implement. Although the wind feed-

forward system can improve the station-keeping performance of the PID feed-back system to some 

extent, there are still other factors contributing to a ship’s drifting motion such as current and wave 

drift loads. Therefore, considering not only wind load but also current and wave drift loads would be 

more effective for the feed-forward system design. However, according to (Aalbers et al., 2004), 

current and wave drift loads cannot be directly measured in the conventional DP control system. In 

an attempt to consider all the contributing factors to the drifting motion by wind, wave, and current 

for the feed-forward system, (Song et al., 2016) proposed a feed-forward system that utilizes a 

predicted drifted ship position in the future because a drifting ship motion contains information about 

the drifting loads by wind, wave, and current. The feed-forward system proposed by (Song et al., 

2016) does the feed-forwarding by replacing the error in the PID controller with a predicted future 
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error in which the predicted future error is calculated as difference between a reference ship position 

and a predicted drifted ship position in the future. Although (Song et al., 2016) showed some 

improvement in the station-keeping performance, because the prediction was based on a kind of 

smoothing method, the prediction accuracy was not sufficient enough to yield the apparent 

improvement in the station-keeping performance. In this study, a motion predictive control for the 

PID controller of the DPS is proposed based on the notion of the feed-forward system from (Song et 

al., 2016). The concept of the control system is the same as (Song et al., 2016), but the major 

difference lies in the algorithm for the prediction for the drifted ship position. In our proposed motion 

predictive control, the prediction performance is improved by the following approaches: 1) deep 

learning (DL) algorithms such as Artificial Neural Network (ANN), Long Short-Term Memory 

(LSTM) proposed by Hochreiter and Schmidhuber (1997), Gated Recurrent Unit (GRU) proposed by

Cho et al. (2014), and dropout proposed by Srivastava et al. (2014) are considered. 2) an online 

machine learning system is utilized to provide the proposed motion predictive control with 

adaptability to a varying sea environment and inexpensive computational load for neural network 

training. 3) a neural network training method using a replay buffer and a real-time normalization 

method is proposed to ensure consistently high performance for the prediction, where the replay 

buffer was proposed by Mnih et al. (2013).

In the following chapters, details of the deep learning algorithms and replay buffer, the PID feed-

back system with the wind feed-forward system, the proposed motion predictive control, and the 

numerical modeling of a target ship’s behavior are first presented. Then, the effectiveness of the 

algorithms in the proposed motion predictive control and the simulation results with result discussion 

are presented.

4.2. PID Feed-Back System and Wind Feed-Forward System

Before introducing the PID feed-back system and the wind feed-forward system, a coordinate 

system of a ship is first presented in Fig. 62. In the figure, {�} and {�} are the origins of global and 

local coordinate systems, respectively. � is a heading angle of the ship in degrees. The global and 

local positions of the ship are in meters and denoted as (�, �) and (�� , ��), respectively.
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Fig. 62 Coordinate system of a ship

A control law of a single PID controller is shown in Eq. (84) where �� is the controller’s output at 

time �, �� is an error which is defined as a reference position subtracted by a current position, �� , �� ,

and �� are the proportional, integral, and derivative gains of the PID controller, respectively.

�� = ���� + �� � ��

�

�

�� + ��

���

��
(84)

In case of the PID controller in the DPS, since there are three directional motions (surge, sway, and 

yaw) that need to be maintained by the DPS, three PID controllers are used in the DP’s PID feed-back 

system. A structure of the PID feed-back system in the DPS is shown in Fig. 63. In this figure, ���� is 

a vector of reference positions of a ship in the surge, sway, and yaw directions. �� is a vector of the 

errors in the surge, sway, and yaw directions at time �, ��
(.) is a required thrust in each direction where 

the direction is denoted in the superscript parenthesis, and each �� denotes the same as ��. �� is a 

vector of the allocated thrusts for each thruster, and ���� is a vector of ship positions in the surge, 

sway, and yaw directions at time � + 1. The details of ����, ��. ��, and ���� are shown in Eqs. (85)-

(88). In ��, the number next to � represents a thrust number. For ����, it should be noted that the ship 

positions are the positions filtered by a Kalman filter which is used to remove the ship motion 

components induced by the 1st-order wave load (Fossen and Perez, 2009).
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Fig. 63 Structure of the PID feed-back system in the DPS

���� = {����
� , ����

� , ����}
(85)

�� = ���� − �� = {(����
� − ��

�), (����
� − ��

�), (���� − ��)} = ���

����
, ��

����
, ��

(�)
� (86)

�� = ��1�

����
, �1�

����
, �2�

����
, �2�

����
, ⋯ �

(87)

���� = {����
� , ����

� , ����} (88)

In Fig. 63, the flow of the control system is as follows: First, �� is calculated based on ���� and ��, 

and it is fed into each of the three PID controllers according to their directions. Then, each PID 

controller outputs ��
(.) and it is fed into the thrust allocation algorithm to output ��. For the thrust 

allocation algorithm for the DP thrust, a Lagrange Multiplier method is used (De Wit, 2009).

As mentioned earlier, the conventional PID feed-back system in the DPS often adopts the wind 

feed-forward system. The PID feed-back system with the wind feed-forward system is expressed as 

Eq. (89) where the direction is denoted in the parentheses, and ��̂���(�) is an estimated wind load at 

time � (Fossen and Perez, 2009). It should be noted that the terms in the square brackets denote the 

PID feed-back system and −��̂���(�) denotes the wind feed-forward system. A structure of the PID 

feed-back system with the wind feed-forward system is presented in Fig. 64 where ������ denotes a 

vector of the estimated wind loads in the surge, sway, and yaw directions.

��
(.) = ���

(.)��
(.) + ��

(.) � ��
(.)

�

�

�� + ��

���
(.)

��
� − ��̂���

(.) (�) (89)
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Fig. 64 Structure of the PID feed-back system with the wind feed-forward system

4.3. Proposed Motion Predictive Control

Fig. 65 Structure of the PID feed-back system with the proposed motion predictive control

In Fig. 65, a structure of the PID feed-back system with the proposed motion predictive control is 

presented. The main characteristic is the use of the DNN in which the DNN stands for a deep neural 

network. The DNN takes the input �� and outputs �����, where �� is based on ��, ��
(.), and ������(�), 

and ����� consists of the predicted drifted ship positions in the future. The details of �� and ����� are 

presented in Eqs. (90)-(92). In Eq. (90), �� denotes a state vector at time �, and � and � represent 

length of past data to consider and a sampling rate for �, respectively, in which � must be a factor of 

�. In Eq. (91), the dot represents the time derivative. In Eq. (92), ���, ���, and �� denote the predicted 

drifted ship positions in the surge, sway, and yaw directions, and � represents the length of the 

prediction for the drifted ship motion in the future. It should be noted that the ship positions shown in 

Eqs. (91)-(92) are filtered by the Kalman filter as the same as in Eq. (88).
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�� = ����� , ������ , ������� , ⋯ , ��� (90)

�� =

⎩
⎪⎪
⎨

⎪⎪
⎧

��
� , ��
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��̇
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��̈
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⎬
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(91)

����� = ������
� , �����

� , ������ (92)

With �����, the PID controller in Fig. 65 can be expressed as Eq. (93) where ��̂��
(.) is the predicted 

future error in one direction and is shown in Eq. (94) in detail. The essence of the proposed motion 

predictive control lies in the use of ����� instead of ��. As the PID controller with the proposed motion 

predictive control utilizes the predicted future error, it can prevent the drifting motion that would 

occur in the future in advance to some extent.

��
(.) = ��

(.)��̂��
(.) + ��

(.) � ��
(.)

�

�

�� + ��

���
(.)

��

(93)

����� = ���� − ����� = ������
� − �����

� �, �����
� − �����

� �, ����� − �������

= ���̂��
(��)

, ��̂��
(��)

, ��̂��
(�)�

(94)

Since the station-keeping performance improvement is derived from the use of �����, the prediction 

accuracy of ����� is important. To achieve the high prediction accuracy of ����� , the DNN is adopted 

as shown in Fig. 65. A structure of the DNN is presented in Fig. 66 where the number in the 

parenthesis next to the LSTM denotes the size of the cell states and hidden states in the LSTM, and 

the percentage next to the Dropout denotes a dropout rate. The decision for a type of the neural 

network layer was made based on simulation assessment which is presented in the next chapter. For 

the weight initialization in the LSTM, a Xavier initialization method (Glorot and Bengio, 2010) is 

used. For the weight training, an optimizer called Adam (Kingma and Ba, 2015) is used because it is 

known to be robust in a variety of areas and the most-used optimizer in the DL literature. For a loss 

function, mean error squared (MSE) is used.
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Fig. 66 Structure of the DNN

As briefly introduced in the introduction chapter, the training of the proposed motion predictive 

control is conducted using the online machine learning system, the replay buffer, and the real-time 

normalization method. The overall training process is shown in Fig. 67 in which the components 

related to the training process are in color only for visual clarity. In the figure, � denotes the size of 

the replay buffer, � denotes an arbitrary positive number that is not greater than �, ���� is a vector of 

ship positions at time � − � as shown in Eq. (95), the ‘Real-Time Normalization’ refers to the real-

time normalization method, and the ‘Update normalizing factor’ refers to an updating process for the 

normalizing factors {��, ��, ��, ��} used in the ‘Real-Time Normalization’. The flow of the training 

process is as follows: 1) obtained ���� is stored in the replay buffer, 2) a mini-batch of ������� , �����

is obtained by randomly sampling from the replay buffer, 3) the mini-batch is normalized by the real-

time normalization method with the updated normalizing factors, 4) the DNN is trained with the 

normalized mini-batch by one epoch. As to the normalizing factors, �� and �� refer to feature-wise 

mean and standard deviation of ��(���)�� , �(���)����, ⋯ , �(���)�, respectively, and �� and �� refer 

to feature-wise mean and standard deviation of {���� , ������, ⋯ , ��}, respectively. The update 

equations of the normalizing factors for ��, ��, ��, and �� are shown in Eqs. (96)-(99). By using the 

iterative equations for calculation of the normalizing factors, a significant amount of computational 

cost can be saved. As to the normalization of the mini-batch, the normalization is conducted as Eqs. 

(100)-(101) where Eq. (100) and Eq. (101) normalize � and � in the mini-batch, respectively, and ��

and �� denote the normalized � and �, respectively.
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Fig. 67 Overall training process of the proposed motion predictive control

���� = {����
� , ����

� , ����}
(95)

�� = (1/�)����� + (� − 1)��� (96)

�� = �(� − 2)/(� − 1)��
� + (1/�)����� − ���

� (97)

�� = (1/�)[�� + (� − 1)��] (98)

�� = �(� − 2)/(� − 1)��
� + (1/�)(�� − ��)� (99)

�� = (� − ��)/��
(100)

�� = (� − ��)/��
(101)

In the training process of the proposed motion predictive control, the online machine learning 

system, the replay buffer, and the real-time normalization method play important roles. First, the 

online machine learning system refers to a system that trains a neural network with both existing and 

new data periodically so that the neural network can adapt to the new data’s distribution. It is generally 

adopted in areas where new data continuously comes in such as market analysis. For the DPS, it faces 
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the sea environment where the environmental condition constantly changes over time with respect to 

a sea state and an environmental direction. Therefore, the DNN in the proposed motion predictive 

control needs to make the accurate predictions for the drifted ship position in the various sea 

environmental conditions. To do so, the DNN can be trained and used in the following two ways: 1) 

trained with data from all the possible environmental conditions and used without further training 

after deployed, 2) continuously trained with data from recent environmental conditions while being 

used, which refers to the online machine learning system that the proposed motion predictive control 

uses. The first way is very inefficient in this case because the DNN has to be trained with data from 

all the possible environmental conditions, which would require a lot of computational time and put a 

large load on the DNN for having to generalize all the given data from all the environmental 

conditions at once. That is why the proposed motion predictive control adopts the online machine 

learning system. Second, to make the online machine learning system robust, the online machine 

learning system is adopted with the replay buffer, in which the DNN is continuously trained with both 

existing data from the replay buffer and new data from the interaction with the sea environment. The 

training with the existing data from the replay buffer ensures the robust prediction performance, and 

the training with the new data allows the DNN to make the robust prediction when the new data is 

fed into the DNN from the new environmental condition as the sea state varies. Third, the real-time 

normalization method is used to stabilize and improve the neural network training process. It is well 

known that the training process can be very inefficient if distributions of features in training data are 

largely different, therefore, the normalization of training data is considered to be one of the critical 

steps in the neural network training (Lee, Lee and Seo, 2020a).

4.4. Numerical Modeling of Target Ship’s Behavior

4.4.1. Target Ship and DPS

A target ship used in this paper is a FPSO and its principal dimension is shown in Table 11 (Lee, 

2008). For the DP system of the target ship, six azimuth thrusters are used. The arrangement and 

details of the azimuth thrusters are shown in Fig. 68 and Table 12, respectively.

Table 11 Principal dimension of the FPSO

Item Principal dimension

LBP 285 m
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Longitudinal 
COG

142.26 m

B 63 m
T 13 m

Δ 225,518 ton

Fig. 68 Arrangement of the azimuth thrusters

Table 12 Locations and thrust limits of the azimuth thrusters

Azimuth 
thruster

�� [m] �� [m]
Maximum thrust limit 

[kN]

no.1 128 26 2000

no.2 128 -26 2000

no.3 -128 -26 2000

no.4 -128 26 2000

no.5 -121 0 2000

no.6 135 0 2000

4.4.2. Equation of Motion of Target Ship

A ship’s equation of motion can be expressed as Eq. (102) (Fossen and Perez, 2009).

�(�, �) + �(�, �) + �(�) = �(�, �, �) (102)

where �(�, �) is the system inertia load, �(�, �) is the system damping load, �(�) is the system 

stiffness load, �(�, �, �) is the external load, �, �, and � are the position, velocity, and acceleration, 

respectively, and � is time. For the DPS, the external load �(�, �, �) is equal to Eq. (103) (Fossen and 

Perez, 2009).

�(�, �, �) = ����� + �������� + ����� − ����������
(103)
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where � represents external loads and subscripts represent sources of the external forces.

There are three types of environmental loads contributing to the drifting motion of a ship such as 

wind, current, and wave drift loads. The environmental loads contributing to the drifting motion are 

presented in Fig. 69 (Song et al., 2016).

Fig. 69 Environmental loads contributing to the drifting motion

In order for the DPS to compensate for the drifting motion caused by the wind, current, and wave 

drift loads, azimuth thrusters need to counteract the environmental loads. This relation can be 

expressed as Eq. (104) in which the DPS maintains a ship’s position by trying to satisfy this equation

(Fossen and Perez, 2009).

(����� + �������� + ����� �����) − ���������� = 0 (104)

The wind and current loads can be expressed as Eqs. (105)-(108) (Fossen and Perez, 2009), and the 

wave drift load can be expressed as Eq. (109) (Orcina, 2019).

����� =
1

2
������

� �

������������

����������

��������

� (105)

���� = ��������
(106)

�������� =
1

2
��������

� �

������������

����������

��������

� (107)

���� = ���
� � (108)

where ����� and �������� are wind and current loads, respectively, ������, �����, ���� are the surge, 

sway and yaw coefficients with respect to the wind or current direction relative to a ship heading, �

denotes density, �� is a relative velocity of wind or current past a ship, ������, ����� are the exposed 

areas above the waterline for ����� and the submerged areas for �������� . ��� is length between 
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perpendiculars, and � is a draft.

����� ����� = � � Re�QTF���� �������� , �� , �� , ������� exp����� − ����
�

���

�

���

− ��� − �����

(109)

where � is the number of the regular wave components for describing irregular sea state, Re denotes 

the real part of a complex number, QTF���� ����� is the wave drift quadratic transfer function which 

can be obtained from a diffraction analysis in the frequency domain on the target ship, � is the 

direction of the regular wave component relative to the ship’s heading, �, �, �, � are the wave period, 

amplitude, frequency, and phase lag of the regular wave component. Eq. (109) shows that 

QTF���� ����� is applied to each pair of the regular wave components to yield each pair’s contribution 

to the wave drift load.

4.5. Effectiveness of Proposed Algorithms

The proposed motion predictive control utilizes the DNN to make the accurate prediction for the 

drifted ship motion. For the DNN, there are three types of the DL layers considered such as the ANN, 

LSTM, and GRU. Then, the DNN needs to be properly trained in the online machine leaning system-

manner. To make the training process of the DNN robust and result in the accurate predictions, the 

following two algorithms are used: 1) the replay buffer, 2) the real-time normalization method. In this 

chapter, comparative simulation results with respect to a type of the DL layer, the use of the replay 

buffer, and the use of the real-time normalization method are presented. In the simulations, the 

equation of ship motion is solved by using a marine dynamic simulation software, OrcaFlex, 

developed by Orcina.

4.5.1. Simulation Conditions

In the simulations, the settings of the parameters in the proposed motion predictive control such �, 

�, �, and � are presented as in Table 13 where ∆� is a timestep for the time domain simulation. In the 

table, � and � were determined considering periods of the low-frequency three-DOF ship motions 

(surge, sway, yaw) where the periods of the 3-DOF ship motions are determined by magnitude of the 

PID gains and environmental load. The length of � should be long enough to consider the memory 

effect (Yeung, 1983), but should not be too long since data from far in the past is irrelevant to a current 

timestep. The length of � should not be zero since � of zero eliminates the effects of using the 
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proposed motion predictive control. The length of � should be just long enough to counteract an 

upcoming drifting motion. � should be greater than 0.1s and lower than 1s since low � yields low 

efficiency in terms of computation memory and high � yields data loss between timesteps. The size 

of the replay buffer � should be big enough to capture statistical characteristics of a current 

environmental condition but not too big so that data stored in the replay buffer can efficiently adapt

to a varying environment.

Table 13 Settings of the parameters in the proposed motion predictive control

�� ����� The replay buffer

Length of past 
data �

5 s
Prediction 
length �

10 s
Size of the replay 

buffer �
3600
× (1/∆�)

Sampling rate � 0.5 s

The environmental condition for the simulations in this chapter is defined in Table 14 according 

to the IMCA standard (IMCA, 2000) since it provides the wind-wave relationship table for the DP 

validation. Finally, the PID gains of the PID feed-back system is set based on a Ziegler-Nichols (ZN) 

method (Ziegler and Nathaniel, 1942).

Table 14 Environmental condition for the simulations for the effectiveness test

Duration

Wave Wind Current Wind, 
wave, 
current 

directions

Attack angle of 
environments to a 

ship
Type of 

spectrum
Hs Tz Vw Vc

0 ~ 10800 
s

JONSWAP
6.12 
m

9.07 
m

17.5 
m/s

1 m/s co-linear 40∘

4.5.2. Types of Deep Learning Layers

Three different DNNs based on the ANN, LSTM, and GRU, respectively, are examined in terms 

of station-keeping performance. Details of the three DNNs are shown in Table 15. In the table, the 

hyperparameters are determined heuristically. A fine hyperparameter search algorithm such as k-fold 

cross validation is not utilized because of two reasons. First, the prediction performance was 

consistent over different hyperparameter settings based on common neural network architectures. 

Second, because the DNN of the proposed motion predictive control is trained on data collected from 

the dynamic simulations, conducting the fine hyperparameter search is computationally too expensive.
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Table 15 Details of the three DNNs

Hidden layer 
size

Size of cell 
states

Size of hidden 
states

Number of hidden 
layers

Dropout rate

ANN 64 10 40 %

LSTM 64 64 2 40 %

GRU 64 2 40 %

Ship motion time histories of the three DNNs are shown in Fig. 70. It is shown that there is almost 

no difference in the station-keeping performance between the ANN, LSTM, and GRU. It is assumed 

that because the future drifted ship position is mostly affected by current and near past data, the LSTM 

and GRU do not have the advantage over the ANN in terms of the long-term sequential data 

processing, therefore, they result in the similar performance as the ANN. In this paper, the LSTM is 

used in the DNN of the proposed motion predictive control because it still shows the slightly better 

performance and much more commonly used than the GRU.

Fig. 70 Ship motion time histories of the three different DNNs based on the ANN, LSTM, and GRU

4.5.3. Real-Time Normalization Method

Effectiveness of the use of the real-time normalization method is examined. The following two 

cases are compared: 1) the PID feed-back system with the proposed motion predictive control as 

shown in Chapter 4.3, 2) the PID feed-back system with the proposed motion predictive control which 

does not use the real-time normalization method. The two cases are comparatively presented with the 

ship motion time histories and loss time histories in Fig. 71 and Fig. 72, respectively. In Fig. 71, Fig. 
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71 (a) shows the overall graph and Fig. 71 (b) shows the zoomed graph. Fig. 71 shows that the station-

keeping performance is much better when the real-time normalization method is used, and its 

performance difference comes from the training performance difference as shown in Fig. 72. As 

shown in Fig. 72, when the real-time normalization method is used, the training loss is much lower, 

which means that the predicted ship motion is very close to the actual ship motion during the training 

process. Thus, the low training loss means the high prediction accuracy of the DNN in the proposed 

motion predictive control, and the high prediction accuracy guarantees the station-keeping 

performance improvement as mentioned in Chapter 4.3.

(a) overall

(b) zoomed
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Fig. 71 Ship motion time histories with respect to the use of the real-time normalization method

Fig. 72 Loss time histories with respect to the use of the real-time normalization method

4.5.4. Replay Buffer

Effectiveness of the use of the replay buffer is examined. The following two cases are compared: 

1) the PID feed-back system with the proposed motion predictive control as shown in Chapter 4.3, 2) 

the PID feed-back system with the proposed motion predictive control which does not use the replay 

buffer. In the second case, the DNN is trained with the latest data only. The two cases are 

comparatively presented with the ship motion time histories and loss time histories in Fig. 73 and Fig. 

74, respectively. Fig. 73 shows that the station-keeping performance is better when the replay buffer 

is used. Same as in the previous subchapter, this station-keeping performance difference comes from 

the training performance. Fig. 74 shows that the training loss is much lower and stable when the 

replay buffer is used, which ensures the prediction accuracy of the DNN in the proposed motion 

predictive control.

Fig. 73 Ship motion time histories with respect to the use of the replay buffer
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Fig. 74 Loss time histories with respect to the use of the replay buffer

4.6. Simulation and Results Discussion

To validate the proposed motion predictive control, simulation results from the following two 

systems are compared: 1) the PID feed-back system with the wind feed-forward system, 2) the PID 

feed-back system with the proposed motion predictive control. In Chapter 4.6.1, the two systems are 

simulated under one environmental condition to present performance difference and adaptability to a 

given environment from scratch. The adaptability is defined as an ability to adapt to a new sea 

environment by learning to make the good predictions for the drifted ship positions, which eventually 

leads to the better station-keeping. To compare the two systems in terms of the station-keeping 

performance, ship motion time histories are presented with their statistical result. And, predicted 

drifted ship position histories of the motion predictive control are presented to examine the prediction 

performance for the future drifted ship positions. Lastly, thrust time histories are presented. In Chapter 

4.6.2, the two systems are simulated under two different sequential environmental conditions to 

present performance difference and the adaptability of the proposed motion predictive control from 

one environmental condition to another. Similar to Chapter 4.6.1, ship motion time histories are 

presented with their statistical result, and predicted drifted ship position histories of the proposed 

motion predictive control are presented. For simulations in this chapter, the parameter settings of the 

proposed motion predictive control are the same as in Chapter 4.5.1.

4.6.1. Simulation Under One Environmental Condition

In this chapter, the environmental condition is the same as Table 14. Ship motion time histories 

and their statistics are shown in Fig. 75 and Table 16, respectively. In Fig. 75, the ‘with the wind 

feed-forward’ refers to the PID feed-back system with the wind feed-forward system, and the ‘with 

the proposed motion predictive control’ refers to the PID feed-back system with the proposed motion 

predictive control. In Table 16, the std stands for standard deviation, and ���� refer to �(��)� + (��)�.

For the statistics of the motion time histories, the first 2000s motion histories are excluded considering 

the initial training process of the proposed motion predictive control. Fig. 75 shows that the better 
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station-keeping performance is achieved by the ‘with the proposed feed-forward’ than ‘with the wind 

feed-forward’. Especially, the ‘with the proposed feed-forward’ has the smaller peaks which are equal 

to the smaller drifting ship motions. The better station-keeping performance of the ‘with the proposed 

feed-forward’ can also be seen in Table 16 from the statistical point of view.

Fig. 75 Ship motion time histories with respect to the wind feed-forward and the proposed motion 

predictive control (under one environmental condition)

Table 16 Statistics of the ship motion time histories with respect to the wind feed-forward and the 

proposed motion predictive control (under one environmental condition)

std(����)
max(����)

[m]
std(�)

max(|�|)
[deg]

With the wind feed-forward 
system

1.65 12.30 0.31 3.87

With the proposed motion 
predictive control

1.32 9.94 0.21 2.17

For the proposed motion predictive control, the prediction accuracy for the drifted ship position in 

the future is important. To examine the prediction performance, predicted ship motion time histories 

by the proposed motion predictive control and actual ship motion time histories from the simulation 

are compared in Fig. 76. For the clear visual comparison, the predicted ship motion time histories are 

shifted to the left by the prediction length � to align the timestep with the actual ship motion time 

histories. Fig. 76 shows that the prediction performance of the proposed motion predictive control is 

not completely stable yet before around 1700s. It is mainly because the weights of the DNN in the 
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proposed motion predictive control are randomly initialized at 0s and start to be trained from 0s. In 

other words, because the DNN is not trained enough before around 1700s, the prediction performance 

is poor in some sections. But from around 1700s to the end of the simulation, the prediction is quite 

accurate and robust. This accurate prediction is directly reflected in the station-keeping performance 

as Fig. 75 where most of the peaks of the ‘with the proposed motion predictive control’ in ��, ��, and 

� directions are lower than those of the ‘with the wind feed-forward’ after around 1700s.

Fig. 76 Comparison between the actual and predicted ship motion time histories (under one 

environmental condition)

Finally, thrust time histories of the two systems are compared in Fig. 77 where the mean thrust 

denotes the mean thrust from the six azimuth thrusters and the dotted-line denotes a mean value of 

the whole thrust time history. It can be observed that the two thrust time histories are quite similar 

and the mean values of the two thrust histories are almost the same since the two dotted-lines are 

overlapped. Therefore, it can be said that the PID feed-back system with the proposed motion 

predictive control is capable of learning to adapt to a given environment from scratch and yields the 

better the station-keeping performance than the PID feed-back system with the wind feed-forward 

system.
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Fig. 77 Thrust time histories with respect to the wind feed-forward and the proposed motion 

predictive control (under one environmental condition)

4.6.2. Simulation Under Two Different Sequential Environmental Conditions

In Chapter 4.6.1, it is shown that the PID feed-back system with the proposed motion predictive 

control can adapt to a given environment from scratch, improving its prediction performance as well 

as the station-keeping performance. The capability of adapting to a given environment is important, 

but capability of adapting from one environment to another is also equally important because a sea 

state varies over time. 

In this subchapter, two environmental conditions are sequentially placed, where the two 

environmental conditions are different in both harshness and attack angle. The environmental 

conditions are shown in Table 17.

Table 17 Two different sequential environmental conditions

Time
Wave 

spectrum
Hs Tz Vw Vc

Wind, wave, 
current 

directions

Attack angle of 
environments to a 

ship 

0 ~ 10800 
s

JONSWAP
4.09 

m
7.41 

m
12.5 
m/s

1 m/s co-linear 20∘

10800 ~ 
21600 s

JONSWAP
6.12 

m
9.07 

m
17.5 
m/s

1 m/s co-linear 40∘

First, ship motion time histories are shown in Fig. 78, and the actual and predicted ship motion 

time histories are shown in Fig. 79 to examine the effects of the prediction accuracy on the station-

keeping performance. For the clear visual comparison, the predicted ship motion time histories are 

shifted to the left by the prediction length � to align the timestep with the actual ship motion time 

histories. In Fig. 78 and Fig. 79, the red-dotted line represents the transition point from the first 

environmental condition to the second.
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Fig. 78 Ship motion time histories with respect to the wind feed-forward and the proposed motion 

predictive control (under two environmental conditions)

Fig. 79 Comparison between the actual and predicted ship motion time histories (under two 

environmental conditions)

As shown in Fig. 78, the station-keeping performance of the ‘with the proposed motion predictive 

control’ in the first environmental condition is better than the ‘with the wind feed-forward’ from the 

beginning unlike Fig. 75. This is because the first environmental condition in Fig. 78 is relatively 

milder than the environmental condition in Fig. 75 and the training process of the DNN is easier due 

to the smaller motion amplitudes. It tells that the adaptability of the proposed motion predictive 

control is more efficient when a sea state is relatively milder. In the early stage of the second 

environmental condition (around 10800s-12500s), the station-keeping performance of the ‘with the 

proposed motion predictive control’ is poorer than ‘with the wind feed-forward’ as shown in Fig. 78. 
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This poor station-keeping performance of the ‘with the proposed motion predictive control’ occurs 

due to the poor prediction accuracy at around 10800s to 12500s as shown in Fig. 79. In detail, since 

the predicted drifted ship positions are underestimated at the peaks, and it results in the smaller future 

error, then, the smaller future error causes the smaller thrust and it eventually leads to the further 

drifting ship motion. This underestimated prediction occurs because the DNN of the proposed motion 

predictive control trained in the first environmental condition is not accustomed to the second 

environmental condition at first, therefore, it underestimates the future ship position in the early stage 

of the second environmental condition. However, as the DNN gets trained with data from the second 

environmental condition, it starts making very accurate predictions around 1700s after the transition 

to the second environment. With such accurate predictions by the DNN, the ‘with the proposed motion 

predictive control’ achieves the better station-keeping performance than ‘with the wind feed-forward’

until the end of the simulation in the second environmental condition.

The statistics of the ship motion time histories in Fig. 78 are shown in Table 18 in which the first 

2200s ship motion histories in both environmental conditions are excluded considering the initial 

training process of the proposed motion predictive control in each environmental condition. Table 18

ensures the better station-keeping performance of the ‘with the proposed motion predictive control’ 

from the statistical point of view.

Table 18 Statistics of the ship motion time histories with respect to the wind feed-forward and the 

proposed motion predictive control (under two environmental conditions)

Time 2200 ~ 10800s

std(����)
max(����

[m]
std(�)

max(|�|)
[deg]

With the wind feed-
forward system

0.38 2.86 0.024 0.17

With the proposed motion 
predictive control

0.30 2.08 0.019 0.16

Time 13000 ~ 21600s

std(����)
max(����

[m]
std(�)

max(|�|)
[deg]

With the wind feed-
forward system

1.66 12.29 0.31 3.87
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With the proposed motion 
predictive control

1.31 9.95 0.20 1.72

In this subchapter, the two different environmental conditions are sequentially placed, where the 

transition from one environmental condition to another occurs instantly. This instant transition of the 

environmental condition is used to result in the conservative results in terms of the adaptability of the 

proposed motion predictive control. In other words, if the transition is set to be slow and gradual, it 

becomes much easier for the proposed motion predictive control to adapt to the new environmental 

condition and it becomes difficult to assess the maximum adaptability of the proposed motion 

predictive control. Therefore, by using the instant transition in the simulation, the maximum 

adaptability of the proposed motion predictive control can be assessed. It should be noted that because 

the proposed motion predictive control can even adapt to an instantly-varying sea environment, it is 

expected that the proposed motion predictive control can adapt to a gradually-varying sea 

environment well without deterioration in the prediction performance.
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Chapter 5 Reinforcement Learning-Based Adaptive PID 

Controller for DPS

5.1. Introduction

Dynamic positioning of a vessel refers to a process of automatically controlling a vessel’s thrusters 

to maintain the vessel at a fixed position and heading. Conventionally, dynamic positioning system 

(DPS) uses a proportional-integral-derivative (PID) controller (Harbonn, 1971; Nguyen, Sørensen 

and Tong Quek, 2007; Van ’t Veer and Gachet, 2011; Jeon et al., 2017). However, there are two main 

limitations in a conventional PID controller. First, a PID controller has P, I, and D gains in its structure 

and they need to be adjusted as parameters. Those gains are usually tuned manually by trial-and-error. 

However, such manual gain tuning may not result in optimal values for the gains since the gain tuning 

is based on trial-and-error and human intuition. To automate the PID gain tuning process, many 

studies have been conducted. The most common and easiest PID tuning method is a Ziegler-Nichols 

(ZN) method (Ziegler and Nichols, 1942), and this ZN method was adopted in many previous studies 

for the DPS (Van ’t Veer and Gachet, 2011; Koschorrek et al., 2015; Jeon et al., 2017). Aside from 

the ZN method, other PID gain tuning methods such as Davison method (Davison, 1976), Penttinen 

method (Penttinen and Koivo, 1980), and Maciejowski method (Maciejowski, 1989) were analyzed 

for the PID gain tuning for the DPS in (Martin and Katebi, 2005). However, no matter how the PID 

gains are tuned with the tuning methods introduced above, the tuned gains remain fixed. It is well 

known that performance of a conventional PID controller is somewhat limited when there is a time-

varying load (Teoh and Yee, 1991), which is the second main limitation of a conventional PID 

controller. In case of the DPS, since it needs to maintain a vessel’s position at the open sea, it faces 

environmental loads such as wind, wave, and current loads which vary over time. Thus, a PID 

controller with the fixed gains cannot yield efficient station-keeping performance for the DPS. To 

cope with the time-varying loads, an adaptive PID controller was introduced (Teoh and Yee, 1991). 

The main advantage of an adaptive PID controller is that it adaptively tunes the gains to cope with 

the varying loads. For the DPS, many adaptive PID controllers were developed based on fuzzy logic 

(Yamamoto and Morooka, 2005; Jeon et al., 2017; Xu et al., 2019). In the previous studies of the 

fuzzy-based adaptive PID controller for the DPS, the controller adaptively tuned the gains considering 

a position and velocity of a ship at every timestep, and it achieved better station-keeping performance. 

But since this fuzzy-based adaptive PID controller used fuzzy logic, it had intrinsic limitations of 
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manual definition of fuzzy rules and fuzzy variables of the system, both of which require human 

expertise in the application domain and can result in different performance by different individuals.

Also, the fuzzy-based adaptive PID controller’s fuzzy rule was designed to increase the P and D gains 

when a ship starts being drifted or is far away from a target position. This gain-tuning strategy 

certainly increases the station-keeping performance, but it comes with the cost of aggressive thrust 

control (Xu et al., 2019), which is undesirable in terms of control efficiency (Jon and Breivik, 2009). 

In this paper, a concept of an adaptive PID controller is used and its gains are tuned by the adaptive 

fine-tuning system proposed in this study instead of the fuzzy logic. The proposed adaptive fine-

tuning system is based on the following two notions: 1) it should not be dependent of human intuition-

based adaptive gain-tuning strategy, 2) it should be able to achieve the better station-keeping 

performance without further DP thrust consumption or a higher rate of the thrust change, which 

represent the control efficiency. To achieve the first notion, one of the deep reinforcement learning 

(DRL) algorithms, deep deterministic policy gradient (DDPG) (Lillicrap et al., 2016), is utilized since 

it does not require any prior knowledge about the dynamics of a ship or DPS to learn an efficient 

adaptive gain-tuning strategy by interacting with a given environment. To achieve the second notion, 

the proposed adaptive fine-tuning system is restricted for its available gain range to [0, �����] where 

����� represents a base gain. The base gain is a pre-tuned gain by PID gain-tuning methods such as

manual tuning method, ZN method, or any PID gain-tuning method. Because the available gain range 

is restricted, the proposed adaptive fine-tuning system is restricted in overusing the DP thrust to 

increase the station-keeping performance. With the two notions, the adaptive fine-tuning system is 

forced to learn how to efficiently tune the adaptive gains to increase the station-keeping performance 

while its choice for the gain is restricted not to overuse the thrust. The term “fine-tuning” in the 

proposed system comes from the fine-tuning for a convolutional neural network in deep learning (Guo 

et al., 2019).

As to the application of the DRL to an adaptive PID controller, there have been many studies 

conducted for robots (Gloye et al., 2005; Carlucho, De Paula and Acosta, 2019, 2020). In Carlucho 

et al., (2020, 2019) and Gloye et al. (2005), the robots with the DRL successfully learned to achieve 

a fast reference tracking with the fast convergence by adaptively tuning the gains. The main 

differences between those previous works and the work in this paper are a target of the application 

and the environment. In this work, unlike Carlucho et al., (2020, 2019) and Gloye et al. (2005), a 

285m FPSO (Floating Production Storage and Offloading) ship is used as a target of the application 

which has a much slower response to a control signal than a small robot, and the environmental load 
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is far greater which causes a high magnitude of drifting motions (Van ’t Veer and Gachet, 2011). For 

the proposed adaptive fine-tuning system, the main goal is the same as the fast convergence to the 

tracking reference, but instead of converging to a varying reference quickly, it needs to converge to a 

constant reference position quickly after the ship is drifted by the environmental load. 

In the following subchapters, a target ship and the DPS, and the proposed adaptive fine-tuning 

system are presented. Then, simulation results and discussion are followed.

5.2. Target Ship and DPS

The target ship and DPS introduced here are the ship and DPS used for the simulations in the result 

subchapter. Properties of the target ship and DPS are presented in detail. Principal dimension of the 

target ship and its coordinate system are shown in Table 19 and Fig. 80, respectively. In Fig. 80, {�}

and {�} are the origins of global and local coordinate systems, respectively. � is a heading angle of 

the ship in degrees. The global and local positions of the ship are in meters and denoted as (�, �) and 

(�� , ��), respectively. The target ship is equipped with six azimuth thrusters. Their arrangement and 

details are shown in Fig. 81 and Table 20, respectively.

Table 19 Principal dimension of the FPSO ship

Item Principal dimension

Length Between Perpendiculars (LBP) 285 m

Longitudinal Center of Gravity 142.26 m

Breadth 63 m

Draught 13 m

Weight 225,518 ton
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Fig. 80 Global and local coordinate systems

Fig. 81 Arrangement of DP thrusters

Table 20 Details of DP thrusters

Azimuth 
Thruster

From ��

[m]
From ��

[m]
Maximum Thrust Limit 

[kN]

no.1 128 26 2000

no.2 128 -26 2000

no.3 -128 -26 2000

no.4 -128 26 2000

no.5 -121 0 2000

no.6 135 0 2000

5.2.1. PID Control in DPS

A control law of a single PID controller is shown in Eq. (110) where �� is the low-level controller 

output at time �, �� is an error which is defined as a reference position subtracted by a current position, 

��, �� , and �� are the proportional, integral, and derivative gains of the PID controller, respectively.
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�� = ���� + �� � ��

�

�

�� + ��

���

��
(110)

In case of the PID controller in the DPS, since there are three directional motions (surge, sway, and 

yaw) that need to be maintained by the DPS, three PID controllers are used in the DP’s PID control 

system. The structure of the PID control system in the DPS is shown in Fig. 82. In this figure, ���� is 

a vector of reference ship positions in the surge, sway, and yaw directions. �� is a vector of the errors 

in the surge, sway, and yaw directions at time �, ��
(.)

is a required thrust in each direction where the 

direction is denoted in the superscript parenthesis, and each �� denotes the same as ��. �� is a vector 

of the allocated thrusts for each thruster, and ���� is a vector of current ship positions in the surge, 

sway, and yaw directions at time � + 1. The details of ����, ��. ��, and ���� are shown in Eqs. (111)-

(114). In ��, the number next to � represents a thrust number. For ����, it should be noted that the 

ship positions are the positions filtered by a Kalman filter which is used to remove the ship motion 

components induced by the 1st-order wave load (Fossen and Perez, 2009).

Fig. 82 Structure of the PID control system in the DPS

���� = {����
� , ����

� , ����}
(111)

�� = ���� − �� = {(����
� − ��

�), (����
� − ��

�), (���� − ��)} = ���

����
, ��

����
, ��

(�)
� (112)

�� = ��1�

����
, �1�

����
, �2�

����
, �2�

����
, ⋯ , �6�

����
, �6�

����
� (113)

���� = {����
� , ����

� , ����} (114)

In Fig. 82, the flow of the control system is as follows: First, �� is calculated based on ���� and ��, 
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and it is fed into each of the three PID controllers according to their directions. Then, each PID 

controller outputs ��
(.)

and it is fed into the thrust allocation algorithm to output ��. For the thrust 

allocation algorithm for the DP thrust, a Lagrange Multiplier method is used (De Wit, 2009).

5.2.2. Hydrodynamics Associated with a Drifting Motion of a Ship

This sub-subchapter is present to provide an understanding of the environmental loads that 

contribute to the ship’s drifting motion, and how the DP thrust counteract the environmental loads. 

The mathematical model of the ship motion can be expressed as Eq. (115) (Fossen and Perez, 
2009),

�(�, �) + �(�, �) + �(�) = �(�, �, �) (115)

where �(�, �) is the system inertia load, �(�, �) is the system damping load, �(�) is the system 

stiffness load, �(�, �, �) is the external load, �, � and � are the position, velocity and acceleration, 

respectively, and � is time. For the DPS, the external load �(�, �, �) is equal to Eq. (116),

�(�, �, �) = ����� + �������� + ����� − ����������
(116)

where � represents external loads and subscripts represent sources of the external loads.

There are three types of environmental loads contributing to the drifting motion of a ship such as 

wind, current, and wave drift loads. The environmental loads contributing to the drifting motion are 

presented in Fig. 83. The wave load is divided into the 1st order and 2nd order wave loads. The 

difference between these two loads is shown by ship motions affected by these two loads in Fig. 84

(Hassani and Pascoal, 2015).

Fig. 83 Environmental loads contributing to the drifting motion
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Fig. 84 Difference between the 1st order and 2nd order wave loads

For the DPS to compensate for the drifting motion caused by the wind, current, and wave drift 

loads, the DP thrusters need to counteract the environmental loads. This relation can be expressed as 

Eq. (117) in which the DPS basically maintains a ship’s position by trying to satisfy this equation.

(����� + �������� + ����� �����) − ���������� = 0 (117)

The wind and current loads can be expressed as Eqs. 오류! 참조원본을찾을수없습니다.-(121)

(Fossen and Perez, 2009), and the wave drift load can be expressed as Eq. (122) (Orcina, 2019).

����� =
1

2
������

� �

������������

����������

��������

� (118)

���� = ��������
(119)

�������� =
1

2
��������

� �

������������

����������

��������

� (120)

���� = ���
� � (121)

where ����� and �������� are wind and current loads, respectively, ������, �����, ���� are the surge, 

sway and yaw coefficients with respect to the wind or current direction relative to a ship heading, �

denotes density, �� is a relative velocity of wind or current past a ship, ������, ����� are the exposed 

areas above the waterline for ����� and the submerged areas for �������� . ��� is length between 



95

perpendiculars, and  � is a draft.

����� ����� = � � Re�QTF���� �������� , �� , �� , ������� exp����� − ����
�

���

�

���

− ��� − �����

(122)

where � is the number of the regular wave components for describing irregular sea state, Re

denotes the real part of a complex number, QTF���� ����� is the wave drift quadratic transfer function 

which can be obtained from a diffraction analysis in the frequency domain on the target ship, � is the 

direction of the regular wave component relative to the ship’s heading, �, �, �, � are the wave period, 

amplitude, frequency, and phase lag of the regular wave component. Eq. (122) shows that 

QTF���� ����� is applied to each pair of the regular wave components to yield each pair’s contribution 

to the wave drift load.

5.3. Proposed Adaptive Fine-Tuning System for PID Gains in DPS

Fig. 85 Overall structure of the proposed adaptive fine-tuning system

An overall structure of the proposed adaptive fine-tuning system is shown in Fig. 85. For the 

intuitive understanding, Fig. 85 is drawn on the top of 오류! 참조원본을찾을수없습니다.. In this 

figure, the state �� is an input vector for the actor and critic, �� is a vector of the adaptive PID gains, 

and �� is an update-gate for the integral of the errors. A configuration of  �� is shown in Eq. (123). 

The previous motion time histories are used in �� to consider a memory effect in which a fluid load 

is determined in part by previous motions at any instant (Yeung, 1983). The integrals of the errors are 

also included in �� since they are influential terms for the mean station-keeping position, and also 

needed to provide enough information to output the update-gate for the integral of the errors ��. 

During the training of the actor and critic, a normalized �� is used to ensure the training stability (Lee, 
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Lee and Seo, 2020b). For the normalization of ��, the error terms in �� are normalized by Eq. (124)

where � is all the states stored in the replay buffer and the std stands for standard deviation, and the 

integral of the error terms in �� are normalized by dividing them by 100 to make them small enough 

for the stable neural network training. The integral of the error terms are differently normalized 

because these terms usually increase and gradually decrease over time unlike the error terms which 

go around their mean values with certain standard deviations since the ship position goes around its 

reference position by the DPS.
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��
� = ��� − mean(�)�/ std(�) (124)

The actor basically outputs �� and ��, at every timestep. �� consist of the adaptive PID gains for 

the surge, sway, and yaw directions. The details of �� is shown in Eq. (125) where each ��
(.) consist 

of the adaptive P, I, and D gains in each direction as shown in Eq. (126). ����� is a vector of the base 

gains determined based on the ZN method, and �� is the output vector from the actor’s output layer. 

In this paper, the actor uses a sigmoid activation function in its output layer. The sigmoid activation 

function is shown in Eq. (127). Therefore, ranges of each component in �� and �� are [0,1] and 

[0, �����], respectively. With ��, the PID controller with the adaptive gains is expressed as Eq. (128)

where the direction is denoted in the superscript parenthesis.

�� = ���

����
, ��

����
, ��

(�)
� = �� × �����

(125)

��
(.)

= ���
(.)(�), ��

(.)(�), ��
(.)(�)� (126)

�(�) = 1/(1 + ���) (127)

��
(.) = ��

(.)(�)��
(.) + ��

(.)(�) � ��
(.)

�

�

�� + ��
(.)(�)

���

��
(128)

The update-gate for integral of the errors �� determines how much error to update for the integral 
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of the errors which is in the integral terms in the PID controllers. The update equation of the integral 

of errors by �� is shown in Eq. (129) where �� ∈ [0,1]. The concept of �� was inspired by gated 

recurrent units (GRU) (Chung et al., 2014).

� ��

�

�

�� = � ��

���

�

�� + (�� × ��) (129)

�� = ���

����
, ��

����
, ��

(�)
� (130)

�� is designed to prevent a large rebound motion of a ship. When a sea state is severe, a ship 

experiences large drifting motions on a drifting side mostly due to aggressive wave drift loads. An 

illustration of the drifting side and an example of the wave drift load time history are shown in Fig. 

86 and Fig. 87, respectively. While a ship is drifted greatly due to the very large wave drift load, the 

integral of the error increases drastically as well. Due to the drastically-increased integral of the error 

over many drifting motions, the large rebound ship motions are caused. The large rebound ship 

motions caused by the increased integral of the error are illustrated in Fig. 88.

Fig. 86 Illustration of the drifting side (direction of an environmental load: right to left)

Fig. 87 Example of the wave drift load time history (sea state: very rough, environmental direction 

to a ship: 40°)
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Fig. 88 Illustration of the large rebound motion caused by the drastic increase of the integral of error

As to the adaptive gains from the actor, the I gain is fixed when a ship is on the drifting side, while 

the P and D gains are adaptively selected by the actor. The I gain is fixed on the drifting side to ensure 

the convergence of the station-keeping. On the other side of the drifting side, the I gain is adaptively 

selected. The drifting side can easily be identified by the integral of the error.

Architectures of the actor and critic are shown in Fig. 89 where the HL stands for a hidden layer, 

the BN stands for batch normalization (BN) proposed by Ioffe and Szegedy (2015), and the numbers 

below the HL refer to the size of the HL. Unlike the original DDPG implementation from Lillicrap et 

al. (2016) that uses the BN in both the actor and critic, the BN is used in the critic only for the proposed 

adaptive fine-tuning system. The choice of application of the BN to the actor and critic was made 

based on the station-keeping performance assessment in simulations. Given the study by Bhatt et al. 

(2019), it is natural that application of the BN does not always increase the RL learning performance 

but the performance may increase or decrease depending on application domains.

(a) actor (b) critic

Fig. 89 Architectures of the actor and critic

The reward function that is needed to train the actor and critic is defined as Eq. (131). It should be 

noted that the station-keeping in the yaw direction is implicitly designed since the good station-

keeping of the surge and sway motions requires the good station-keeping of the yaw motion. To 
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further stabilize the RL learning, �� is clipped to [0,2] and �� is normalized as Eq. (132) where ℛ

denotes all the rewards stored in the replay buffer. For the action noise, a Gaussian action noise with 

the std of 0.1 is used instead of an Ornstein-Uhlenbeck process since they result in the similar learning 

performance (Plappert et al., 2018). Finally, the other hyper-parameters for the DDPG are set the 

same as in the original DDPG implementation (Lillicrap et al., 2016).

�� = −����
(��)

�
�

+ ���

(��)
�

� (131)

��
� = ��� − mean(ℛ)�/std(ℛ)

(132)

5.4. Simulation Results

In the simulations, the equation of ship motion is solved by using a marine dynamic simulation 

software, OrcaFlex, developed by Orcina. As to the sea states, because the station-keeping 

performance by the gain change does not vary much in calm or moderate sea states due to small 

drifting motions, the simulations were conducted in ‘very rough’, ‘high’, and ‘very high’ sea states 

according to Table 21 (Nguyen, Sørensen and Tong Quek, 2007). For the station-keeping, its 

reference positions (surge ��, sway ��, yaw �) are set to (0, 0, 0).

Table 21 Definition of sea states

Sea states Significant wave height �� [m]

Calm 0 - 0.1

Moderate 1.25 - 2.5

Rough 2.5 – 4.0

Very rough 4.0 – 6.0

High 6.0 – 9.0

Very high 9.0 – 14.0

5.4.1. Effectiveness of the Proposed Adaptive Fine-Tuning System

In the simulations in this sub-subchapter, the sea state is set to ‘very rough’. The details of the 

environmental condition of the sea state are shown in Table 22 where ��, �� , and �� denote a zero-

crossing period, mean current speed, and mean wind speed, respectively. The specific values for the 

environmental condition are determined by a IMCA standard (IMCA, 2000).
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Table 22 Environmental condition for the effectiveness test

Sea 
state

Wave 
spectrum

��

[m]
��

[m]
��

[m/s]
��

[m/s]

Wind, wave, 
current 

direction

Environmental 
direction to the 

ship

Very 
rough

JONSWAP 5.0 8.16 14.75 1 co-linear 40∘

First, the effects of the use of the adaptive P, D gains are presented with ship motion and the gain 

time histories in Fig. 90 where a PID controller with the base gain (fixed) and a PID controller with 

the proposed adaptive fine-tuning system are compared.  For the adaptive fine-tuning system in Fig. 

90, one adaptive fine-tuning system is not allowed to tune the PD gains but the I gain only, and the 

other is allowed to tune all the PID gains. For the gain histories, since a significant difference lies in 

the sway motion in Fig. 90, the gain histories regarding the sway direction are presented only, and the 

gain histories are normalized by division by �����. For the training of the adaptive fine-tuning systems, 

they are trained for 12-hour timesteps in the simulation. In Fig. 90, the ‘fixed base gain’ represents 

the PID controller with the fixed base gain, the ‘adaptive PD gain: not used’ represents the PID 

controller with the adaptive fine-tuning system that tunes the I gain only, and the ‘adaptive PD gain: 

used’ represents the PID controller with the adaptive fine-tuning system that tunes all the PID gains. 

In Fig. 90, the distinct difference between ‘adaptive PD gain: not used’ and ‘adaptive PD gain: used’ 

is the convergence speed. In case of the ‘adaptive PD gain: used’, it tends to approach the reference 

position faster than ‘adaptive PD gain: not used’ and it has smaller rebound motions, especially in the 

sway direction. As observed in Fig. 90 (c)-(d), in case of the ‘adaptive PD gain: used’, when the ship 

is drifted, the PD gains are increased to prevent the drifting motion, and while the ship approaches 

the reference position, the P gain is drastically decreased and the D gain is slightly decreased, which 

makes the fast convergence possible. Because the drastic reduction of the P gain contributes to the 

prevention for the rebound motion while the D gain which is relatively lower than the base gain by 

ranging from 0.4 to 0.6 of the base gain allows the fast approach to the reference position.
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(a) adaptive PD gain: not used
(b) gain histories of ‘adaptive PD gain: not 

used’

(c) adaptive PD gain: used (d) gain histories of ‘adaptive PD gain: used’

Fig. 90 Effects of the adaptive PD gains

Second, the effects of the adaptive I gain and the update-gate for the integral of the errors �� are 

analyzed in Fig. 91 where ��(�) represents the adaptive I gain. In Fig. 91, the ship motion time 

histories are presented on the left side, and the time histories of the adaptive gains and �� are 

presented on the right side. Same as in Fig. 90, the gain histories are normalized by division by �����, 

and the training of the adaptive fine-tuning systems is conducted for 12-hour timesteps in the 

simulation. In Fig. 91 (a), it is clearly seen that the rebound motion is reduced when ��(�) and �� are 

used. In Fig. 91 (c) and (g), the pattern of �
�

����
can be observed, in which �

�

����
are tuned to around 
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0.5 while the ship experiences the rebound motion. This is a reasonable control for �
�

����
because the 

drifting side is in the positive direction in the sway motion, then its integral of the error is negative. 

Thus, the small �
�

����
helps the ship to reach the reference position faster while the ship is in the 

rebound side (negative) by reducing the negative thrust contributed by the integral of the error. Fig. 

91 (e) shows that the adaptive fine-tuning system does not learn the adaptive gain-tuning strategy well 

when ��(�) is not used and �� are used.

(a) ship motion time histories

[ with respect to ��(�) and �(�) ]

(b) time histories of the adaptive gain and ��

[ ��(�): not used | �(�): not used ]

(c) ship motion time histories

[ with respect to �(�) ]

(d) time histories of the adaptive gain and ��

[ ��(�): used | �(�): not used ]



103

(e) ship motion time histories

[ with respect to ��(�) ]

(f) time histories of the adaptive gain and ��

[ ��(�): not used | �(�): used ]

(g) ship motion time histories

[ ��(�): used | �(�): used ]

(h) time histories of the adaptive gain and ��

[ ��(�): used | �(�): used ]

Fig. 91 Effects of the adaptive I gain and the update gate of the integral of error

5.4.2. Overall Performance Assessment

The overall performance of the adaptive fine-tuning system is presented with respect to the station-

keeping performance and the control efficiency. The higher control efficiency means the lower thrust 

consumption and a lower rate of the thrust change. The sea states considered here are ‘very rough’, 

‘high’, and ‘very high’. The details of the environmental conditions are shown in Table 23. For the 
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environmental directions, the maximum environmental directions in each sea state are determined 

based on a watch circle with its radius of 10m (Weingarth, 2006). 

Table 23 Environmental condition for the overall performance test

Sea 
state

Wave 
spectrum

��

[m]
��

[m]
��

[m/s]
��

[m/s]

Wind,
wave, 
current 

direction

Environmental 
direction to the ship

Very 
rough

JONSWAP 5.0 8.16 14.75 1 co-linear 0∘, 15∘, 30∘, 40∘, 45∘

High JONSWAP 7.5 9.87 20.0 1 co-linear 0∘, 15∘, 30∘, 35∘

Very 
high

JONSWAP 9.06 11.04 23.75 1 co-linear 0∘, 15∘, 30∘, 35∘

The performance assessment is conducted with respect to each environmental condition 

considering the sea states and environmental directions to examine the proposed system’s learning 

capability on each environmental condition. Then, a total number of the environmental conditions for 

the performance assessment is 13 (= 5 + 4 + 4). For the training of the adaptive fine-tuning system, 

the training is conducted for 12-hour timesteps in each environmental condition individually. The 

overall performance assessment of the adaptive fine-tuning system compared to the PID controller 

with the fixed base gain is presented in Fig. 92. The station-keeping performance assessment is 

presented with the line graphs with the IAE performance index. The IAE stands for the integral 

absolute error and it is a traditional performance index (Jon and Breivik, 2009). The control efficiency 

assessment is presented with violin graphs to present the distributions of the thrust and a rate of thrust 

change. In Fig. 92, the ‘fixed base gain’ and ‘adaptive gain’ refer to the PID controller with the fixed 

base gain and the PID controller with the adaptive fine-tuning system, respectively. IAE(����) is 

equal to IAE��(��)� + (��)��. �� and ���/�� denote a mean absolute value of � from Eq. (113) and

a time derivative of �� , respectively. The performances indices IAE(����), IAE(�), �� , and ���/��

indicate the station-keeping performance in the surge and sway directions, the station-keeping 

performance in the yaw direction, the DP thrust consumption, and a rate of the thrust change, 

respectively. The results in Fig. 92 are obtained from five 1h-simulations with different seeds. Finally, 

in the line graphs for the IAE, the dots denote the mean values and shaded area denotes a 95% 

confidence interval.
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(a) IAE(����)

[ sea state: ‘very rough’ ]

(b) IAE(�)

[ sea state: ‘very rough’]

(c) distribution of ��

[ sea state: ‘very rough’]

(d) distribution of ���/��

[ sea state: ‘very rough’]

(e) IAE(����)

[ sea state: ‘high’ ]

(f) IAE(�)

[ sea state: ‘high’ ]
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(g) distribution of ��

[ sea state: ‘high’ ]

(h) distribution of ���/��

[ sea state: ‘high’ ]

(i) IAE(����)

[ sea state: ‘very high’ ]

(j) IAE(�)

[ sea state: ‘very high’ ]

(k) distribution of ��

[ sea state: ‘very high’ ]

(l) distribution of ���/��

[ sea state: ‘very high’ ]

Fig. 92 The overall performance assessment of the adaptive fine-tuning system

There are two distinct characteristics in the results in Fig. 92. First, when the environmental 

direction is below around 15°, there is almost no performance difference between the ‘fixed base gain’ 
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and ‘adaptive gain’. This is because when the environmental direction to the ship is small, the ship 

experiences the relatively small wave drift loads than when the environmental direction to the ship is 

large, and the small wave drift loads result in the small drifting motions. The small drifting motions 

are equal to the small error. Therefore, no matter how the gains are tuned by the adaptive fine-tuning 

system, the output DP thrust does not change much, which corresponds to the no performance change. 

For the intuitive understanding of the wave drift load with respect to the environmental directions, 

the wave drift loads with respect to the environmental directions in the ship’s equilibrium position in 

the ‘high’ sea state are presented in Fig. 93 where ��� , ��� , and �� denote the load in the surge 

direction, the load in the sway direction, and the load in the yaw direction, respectively.

Fig. 93 Wave drift loads with respect to the environmental directions (sea state: ‘high’)

Second, when the environmental direction is over around 15°, the difference in the station-keeping 

performance becomes apparent. Overall, when the environmental direction is over around 15 deg, the 

adaptive fine-tuning system results in the better station-keeping performance in the surge and sway 

directions and the equal station-keeping performance in the yaw direction with the similar thrust 

consumption distribution and the similar rate of the thrust change. Since the goal of the proposed 

system is to learn the efficient adaptive gain-tuning strategy to increase the station-keeping 

performance without deterioration in the control efficiency, the proposed system achieves its goal.

5.5. Discussion

The proposed adaptive fine-tuning system achieves its goal of learning the efficient adaptive gain-

tuning strategy to increase the station-keeping performance without deterioration in the control 

efficiency. However, while the station-keeping performance increases in the surge and sway 

directions, the performance in the yaw direction remains almost the same. We originally thought that 

it is because the reward function does not have explicit information on the station-keeping for the yaw 

motion. Therefore, we tried adding a penalty term for the yaw motion error in the existing reward 
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function. However, it only made the yaw motion somewhat aggressively oscillating, which made the 

station-keeping in the surge and sway directions unstable as well. To solve that issue, we needed to 

add time derivates of the surge, sway, and yaw motion errors, and additional efforts for the weight 

tuning for each term. At that point, the reward function became too complicated. Therefore, we kept 

the reward function as simple as possible as presented in this paper. 

The proposed adaptive fine-tuning system allows the ship to converge to the reference position 

quickly after drifted. However, the magnitudes of the ‘peaky’ drifting motions remain the same. These 

peaky drifting motions are caused when the wave drift load is suddenly strong as shown in Fig. 87. 

To reduce the magnitude of the peak drifting motions, we tried adopting a machine learning-based 

anomaly detection algorithm to detect the moment when the peaky drifting motion is about to happen, 

and when detected, the base gain multiplied by a multiplying factor of 10 was set to be used to reduce 

the magnitude of the peaky drifting motion as a part of the adaptive fine-tuning system. Although the 

anomaly detection algorithm worked well for the detection, when the wave drift loads were suddenly 

strong, this approach did not help much. We suppose that utilization of a feed-forward system would 

be much more effective to reduce the magnitude of the peaky drifting motion.

The proposed adaptive fine-tuning system utilizes a PID controller and thrust allocation algorithm 

to yield the DP thrusts from the six azimuth thrusters, which is designed to cope with the varying 

environmental loads more efficiently than using the fixed gains. Then, one might have this question: 

‘what if the deep reinforcement learning algorithm learns to control the DP thrusts directly so that the 

ship can cope with the varying environmental loads efficiently as an end-to-end learning system?’ We 

had this exact idea and experimented it in simulations. However, the end-to-end learning did not 

perform well. Here are the reasons why we suppose did not go well: 1) In the end-to-end learning, a 

number of actor’s output increases in proportion to a number of thrusters. In other words, one thruster 

needs to be controlled by a magnitude of thrust and thruster angle, therefore, six thrusters require 12 

actions. But if we impose the PID structure, a number of the output is fixed to nine. (three gains for 

the surge motion, three gains for the sway motion, and three gains for the yaw motion). This gives the 

end-to-end learning a higher dimension in the action space. 2) When a PID structure is used with a 

thrust allocation algorithm, the thrust allocation algorithm can take care of the change rates of thrust 

and angle of each thruster. However, in case of the end-to-end learning, the deep reinforcement 

learning algorithm needs to learn not to drastically change the thrust and an angle of each thruster, or 

the change rate limit can be imposed on the action of the actor but this would discourage the 

exploration process. 3) When a PID structure is used with a thrust allocation algorithm, the allocation 
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algorithm can ensure that a target total thrust is well distributed over the available thrusters not to give 

one thruster a lot of load and let other thrusters to be idle. However, in case of the end-to-end learning, 

the deep reinforcement learning algorithm needs to learn the thrust allocation from scratch, which 

adds the complexity in learning. 4) With a PID structure, the directionality in the control system for 

the thrust is simpler as shown in Fig. 94 and Eqs. (133)-(134), where the red star denotes a reference 

position and PID(. ) represents a PID controller. It should be noted that only P gain is considered in 

the sway direction for the example’s simplicity in Fig. 94. In case of the PID controller, the same 

thrust with its proper direction can be output with the same gain as shown in Eq. (133). But in case of 

the end-to-end learning, the deep reinforcement learning algorithm needs to learn the directionality 

of the thrust, which adds the additional complexity in learning as shown in Eq. (134).

Fig. 94 Directionality of thrust in the control system

��⃗ = PID��, ��� (133)

��⃗ = �
+� = [�cos(�), �sin(�)]

−� = [�cos(� + 2�), �sin(� + 2�)]
(134)

Finally, this study shows that the adaptive fine-tuning system can learn the effective adaptive gain-

tuning strategy in each environmental condition. Therefore, it is important that the proposed system 

should be further developed to perform well in various environmental conditions. We suggest the 

following two feasible approaches: 1) training the proposed system on all the environmental 

conditions at once, 2) utilizing a switching control system. The first approach might be possible, but 

since there can be a lot of environmental conditions depending on a sea site, the training might be 

difficult. The second approach was proposed by Nguyen et al. (2007). In the scheme with the second 

approach, multiple adaptive fine-tuning systems with respect to the sea states are trained first. Then, 

they are integrated by using the switching control system which determines which adaptive fine-

tuning system to use in a current state. Since the learning complexity can be distributed over several 

adaptive fine-tuning systems with the second approach, the second approach seems more feasible than 
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the first one.
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Chapter 6 Application of Recent Developments in Deep Learning 

To ANN-based Automatic Berthing System

6.1. Introduction

When a ship approaches a port or harbor, which is called a “berth operation,” slow speeds cause 

nonlinear characteristics in a ship’s motion, and the ship undergoes sudden changes in its rudder angle 

and engine revolutions per second (RPS). For this reason, unlike ship navigation, where ships sail 

almost at a constant speed, the ship berthing problem is a challenging one. In order to overcome these 

difficulties, many intelligent control algorithms have been proposed, and one of them is the artificial 

neural network (ANN) or simply the neural network (NN). With the rapid development of deep 

learning (DL), systems based on neural networks have drastically increased and demonstrate 

extraordinary performance. Therefore, many studies on the application of neural networks to ship 

berthing systems have been conducted.

Im and Hasegawa (2001) proposed the “Parallel Neural Network,” which makes the neural network 

focus on each task by changing the ordinary neural network architecture. Im and Hasegawa (2002)

attempted to use another neural network to identify ship motions so that the neural network system 

could cope with wind disturbances. Im (2007) proposed an algorithmic method using a neural network 

to allow ships to berth safely, even when they approached from unusual directions. Bae et al. (2008)

compared two neural networks with different input configurations and showed that both input 

configurations led to a similar performance. Ahmed and Hasegawa (2013) used a virtual window 

concept and nonlinear programming method to generate teaching data consistently. Im and Nguyen 

(2018) tried solving the problem in which a neural network trained with a ship berthing dataset at one 

port can only be used at that particular port but not at others. The researchers adopted a head-up 

coordinate system instead of a north-up coordinate system, and the head-up coordinate system 

allowed the neural network trained with a ship berthing dataset at one port to be used at another port 

as well.

However, although many studies on ANN-based automatic berthing have been conducted to date, 

they have missed to address several important issues. First, they neither considerd to use recent 

activation functions nor mentioned about weight initialization methods. Second, they used an 

inefficient optimizer, although, there are other optimizers with higher performance that have been 
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proposed and verified. Third, there are no consistent method for input data scaling, and some previous 

studies scaled their input data in inefficient ways. Fourth, no regularization methods have been 

considered. Fifth, owing to the overfitting problem caused by the lack of a regularization method, 

poor berthing performance occurred when neural networks were given extrapolated initial positions. 

Therefore, most of the previous studies showed berthing trajectories with initial positions from 

training datasets and interpolated or slightly extrapolated initial positions only.

In this study, recent activation functions, weight initialization methods, optimizers, input scaling 

methods, neural networks with a higher number of hidden layers, and the batch normalization (BN) 

are applied to the ANN-based automatic berthing. Then, their effectiveness is verified based on the 

loss functions, berthing performance histories, and berthing trajectories.

6.2. Mathematical Model of Ship Maneuvering

To build a mathematical model of ship maneuvering, a definition of a coordinate system and 

principal particulars of a ship are first presented in Fig. 95 and 

Table 24, respectively. Then, a mathematical model of ship maneuvering and modeling of a 

propeller and rudder are presented. In Fig. 95, � and � are the actual positions of the ship in meters, 

and � and � are the normalized positions of �, � by the length of the ship.

Fig. 95 Coordinate system

Table 24 Principal particulars of a target ship

HULL

Length overall ��� [m] 188.0

Length between perpendiculars � [m] 175.0
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Breath � [m] 25.4

Draft � [m] 8.50

Block coefficient �� 0.559

RUDDER

Height �� 7.70

Area ratio ��/(��) 1/45.8

Aspect ratio � 1.827

PROPELLER

Diameter � [m] 6.5

Pitch ratio �/� 1.055

Expanded area ratio 0.730

6.2.1. Mathematical Model for Ship-Maneuvering Problem

In the ship-maneuvering problem, a planar motion includes only surge, sway and yaw motions, 

which are considered out of six-degree-of-freedom motions. The basic equations of motion for ship 

maneuvering can be expressed as follows:

�(�̇ − ��) = ������ (135)

�(� +̇ ��) = ����� (136)

��� =̇ ���� (137)

where � is the mass, and �, �, � are the velocities in the surge, sway, yaw directions, respectively. ��

is the moment of inertia with respect to the z-axis, and ������ ,  ����� , ���� are the surge and sway 

forces and yaw moment, respectively. The dot represents the time derivative. The right terms in Eqs. 

(135)-(137) can be dealt with using the established procedure from (Newman, 2019), and Eqs. (135)-

(137) can be expressed as Eqs. (138)-(140).

(� + ��)�̇ − (� + ��)�� = � (138)

(� + ��)� +̇ (� + ��)�� = � (139)

(�� + ��)� =̇ � − ��� (140)

where �� ,  �� ,  �� are the added mass in the surge and sway directions and the added moment of 

inertia, respectively. �,  � are the hydrodynamic forces, and � is the hydrodynamic moment. �� is 

the distance from the midship to the center of gravity. The hydrodynamic forces and moment are 
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generally expressed as Eqs. (141)-(143), which were proposed by the Maneuvering Modeling Group 

(MMG).

� = �� + �� + �� + �� + �� (141)

� = �� + �� + �� + �� + �� (142)

� = �� + �� + �� + �� + �� (143)

where subscripts �, �, �, �, � refer to the hull, propeller, rudder, wind and tug, respectively. 

However, because this study focuses on the application of recent developments in DL, the external 

forces such as the wind and tug are not considered.

A ship’s maneuvering displacements and velocities can be calculated numerically by integrating 

Eqs. (144)-(146) using the Runge–Kutta 4th-order method.

�̇ =
� + (� + ��)��

(� + ��)
(144)

� =̇
� − (� + ��)��

(� + ��)
(145)

� =̇
� − ���

�� + ��

(146)

6.2.2. Modeling of Propeller and Rudder

Owing to the kinematics of the mechanical system of the rudder and engine, time delays between 

commands of operation and the resultant mechanical response may occur. The equations from (Sohn, 

1992) to consider this physical time-delay effect are used here. First, the equation to consider the 

time-delay effect for the propeller RPS is Eq. (147).

�̇ = (�∗ − �)/�� (147)

where � is the RPS, �̇ is a derivative of RPS with respect to time, and �∗ is the target RPS. �� is a 

time-delaying constant for the RPS, and this variable is set to 15 s in this study. Next, equations to 

consider the time-delay effect for a rudder are Eqs. (148)-(149).

� =̇ (�∗ − �)/�� ; if |�∗ − �| ≤ �� ���̇��� (148)
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� =̇ sign(�∗ − �)���̇���; if |�∗ − �| > �����̇��� (149)

where �∗ is the target rudder angle, �� is the time-delaying constant for the rudder, and ��̇�� is the 

maximum angular velocity of the rudder. In this study, �� is set to 2.5 s, and ��̇�� is set to 3.0°/s.

6.3. Artificial Neural Network and Important Factors in Training the 

Network

6.3.1. Artificial Neural Network

The basic architecture of the neural network used in this study is illustrated in Fig. 96, � is � /L, 

and � is � /L, in which �,  � are the relative positions of the ship from the target berthing point, and �

is the LBP of the ship. �,  �,  � are the velocities of the ship in the surge, sway, and yaw directions, 

respectively, and � is the heading angle of the ship. In the output layer, �������,  ������� are the target 

rudder angle and target RPS, respectively. This input layer configuration has been used in several 

studies such as (Im and Hasegawa, 2001; Ahmed and Hasegawa, 2013). The number of hidden layers 

and the size of the neural network will be addressed in Chapter 6.3.4.

(a) (b)

Fig. 96 Basic architecture of neural network, and concept of imaginary line

The imaginary line shown in Fig. 96 is used as a guideline during berthing. It is known that as the 
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imaginary line provides the additional input variables of �� and ��, which can improve the berthing 

performance by the neural network. The angle between the x-axis and the imaginary line is set to 20° 

in this study.

For the teaching data preparation, the patterns of the berthing trajectories, rudder angle, and RPS 

control from (Bae et al., 2008; Nguyen, Do and Im, 2018) are referred. The teaching dataset used in 

this study is shown in Fig. 97, where the red crosses are the initial positions in the teaching data, the 

target berthing facility is drawn in blue, and the orange straight line is the imaginary line.

Fig. 97 Teaching dataset

The end of the berthing operation is defined as a status meeting and the following three conditions 

according to Ahmed and Hasegawa (2012). First, the aim is to berth at a distance of around the length 

of 1.5 times farer than where the ship is from the berthing facility. Second, the relative heading angle 

to the berthing facility should be smaller than 30°. Third, the velocity of the ship should be slower 

than 0.2 m/s.

The overall flowchart for the automatic ship berthing with a neural network is shown in Fig. 98, 

the left side of the dotted line is the preparation step for the neural network model, and the right side 

is a processing loop with the trained neural network. In this study, building and training the neural 

networks are carried out with the open-source software library Tensorflow.



117

Fig. 98 Flowchart for ANN-based ship berthing system

6.3.2. Optimizer

In previous studies, such as (Im and Hasegawa, 2001; Im and Hasegawa, 2002; Ahmed and 

Hasegawa, 2013; Im and Nguyen, 2018) adopted the Levenberg–Marquardt (Levenberg, 1944) as an 

optimizer. However, according to (Bazzi, Ismail and Zohdy, 2018), that analyzed the training 

performance of several popular optimizers including the Levenberg–Marquardt, the RMSProp turned 

out to be faster and computationally more efficient, and required fewer hyperparameters than 

Levenberg–Marquardt. Furthermore, Kingma and Ba (2015) showed that the Adam optimizer

outperforms the RMSprop. Therefore, the Adam is adopted as an optimizer in this study. The learning 

rate of the Adam is set to 1e-3, which results in robust training performance in general. For the loss 

function, the MSE is used.

6.3.3. Input Data Scaling

Table 25 List of input data-scaling methods

Scaling method

Scaling #1 0 to 1 Min-Max Scaling Scales inputs to range of 0 to 1

Scaling #2 -1 to 1 Min-Max Scaling Scales inputs to range of -1 to 1

Scaling #3 Standard Scaling
Standardizes inputs by removing mean and scaling 
to unit variance

Because the input data of a ship berthing dataset for neural network contains variables of different 

units, the weights are likely to be updated in an unstable way during training when input data scaling 

is not applied because of the different scales of each input variable. However, among the previous 

studies on ANN-based automatic berthing, some did not employ a scaling method for their input data, 
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and some applied a scaling method on some input variables only. A few of the studies scaled the input 

data to between 0 and 1. The commonly used input data-scaling methods are presented in Table 25. 

Equations for the Scaling #1 and the Scaling #2 are shown in Eq. (150) and Eq. (151), respectively.

�� = (� − min(�))/(max(�) − min(�)) (150)

�� = (� − 2 min(�))/(max(�) − min(�)) (151)

where � is the sampled data, �� is the scaled sampled data, and � is a set of data.

6.3.4. Number of Hidden Layers

The number of hidden layers has a close relationship with the neural network model’s system 

capacity. It is commonly known that if a neural network model has a large number of hidden layers,

it has a large capacity to understand the complexity of a given training dataset and to have a complex 

system. However, simply using many hidden layers does not guarantee the neural network’s good 

performance. Numbers of hidden layers of 5, 10, 20, 30, and 40 are considered and investigated in 

Chapter 6.4. The hidden layer size is also an important factor in the neural network architecture, but 

in order to build a neural network model for a complex system, the number of hidden layers is more 

influential. Generally, the hidden layer size is set to 2n. n is 3 for relatively simple systems, 6 for 

slightly complex systems, and 8–9 for complex systems. In this study, the hidden layer size is set to

26.

6.3.5. Overfitting Prevention

Overfitting may occur when a neural network is trained with a given training dataset over many 

epochs because the weights become too fit to the given dataset only. Then, the performance of the 

neural network fails with new input data. In an automatic berthing using a neural network, if the 

overfitting occurs, the neural network will show poor berthing performance when a new initial 

position is given. The poor performance with the overfitting issue occurs more clearly when new input 

data is extrapolated rather than interpolated by the neural network. In previous studies on ANN-based 

automatic berthing, no regularization methods to prevent overfitting were considered. Some studies

such as (Bae et al., 2008) showed that poor berthing performance occurs owing to an extrapolated 

initial position. In order to deal with the poor performance caused by the extrapolation, the BN is 

adopted in this study.
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6.4. Application of Recent Developments in Deep Learning to Automatic 

Berthing

In this subchapter, the effects of the activation function, weight initialization method, input data-

scaling method, number of hidden layers, and the BN are investigated in terms of the neural network’s 

training performance and berthing performance.

As to the activation functions and weight initialization methods, nine different neural network 

models with nine combinations from three activation functions of the sigmoid, tangent hyperbolic 

(tanh), and ReLU; and three weight initialization methods of the normal distribution, Xavier, and He 

are built. In order to show the training progress over epochs, a loss function history graph is presented 

in Fig. 99. Details of the training models are listed in Table 26 for better reproducibility.

Fig. 99 Loss function histories with respect to activation and weight initialization methods

Table 26 Details of training models with respect to activation and weight initialization methods

Hidden 
layer 
size

Number 
of 

hidden 
layers

Optimizer, 
learning 

rate

Number 
of 

epochs

Batch 
size

Activation 
function

Weight 
initialization

Input data-
scaling 
method

26 10
Adam, 
1e-3

1000 27
sigmoid,

tanh, 
ReLU

normal 
distribution, 
Xavier, He

-1 to 1 
Min-Max 
Scaling

The number of hidden layers is set to 10 to make use of the DNN. The effect of the number of 
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hidden layers is investigated later in this subchapter. The batch size is set to 27 because this is usually 

set to 2n, where n is generally 5 to the minimum and 10 to the maximum.

In Fig. 99, the models with weight initialization by normal distribution led to a slow training speed 

and poor convergence. The models using the sigmoid function show a slow training speed as well. It 

is shown that the traditional activation function and weight initialization method are inefficient in 

terms of training the DNN for automatic ship berthing. The best combination of the activation function 

and weight initialization method is ReLU-He.

For the input data-scaling methods, the effect of each input data-scaling method is analyzed with a 

loss function history. The loss function history is shown in Fig. 100, and details of the training models 

with respect to the input data-scaling method are listed in Table 27.

Table 27 Details of training models with respect to activation and weight initialization methods

Hidden 
layer 
size

Number of 
hidden 
layers

Optimizer, 
learning 

rate

Number 
of 

epochs

Batch 
size

Activation 
function

Weight 
initialization

Input data-scaling 
method

26 10
Adam, 
1e-3

1000 27 ReLU He

No Scaling,
x y-Only Scaling,
0 to 1 Min-Max 

Scaling,
-1 to 1 Min-Max 

Scaling,
Standard Scaling

In Table 27, the training model with No Scaling means that the input data of 

{�,  �,  �,  �,  �,  �, ��,  ��}, where �, � are the actual �,  � coordinates of the ship from the berthing 

facility, are used for the neural network. The training model with the x y-Only Scaling means that the 

input data of {�,  �,  �,  �,  �,  �, ��,  ��} are used for the model.

In Fig. 100, the significance of application of the input data-scaling method is clearly seen by its 

training speed and convergence. Standard Scaling shows the fastest training speed and best 

convergence with the least oscillation, while No Scaling resulted in poor training performance.
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Fig. 100 Loss function histories with respect to input data-scaling methods

Next, the effect of the number of hidden layers is analyzed based on the loss function history and 

berthing performance history with initial positions from the training dataset. The berthing 

performance history is obtained as in Table 28.

Table 28 Procedure for obtaining berthing performance history

Set a period for a berthing performance test ← ����������������� ����

Set initial positions of the ship for a berthing performance test ← �����

Initialize an array to store berthing performance history ← �������

for epoch = 1, 2, ... do

Train the neural network with a given training dataset

if epoch % ����������������� ����= 0 then

Test the neural network with �����

Measure the distance between the target berthing point and the arrival 

position of the ship

Store the distance value in �������

end if

end for

return �������

The loss function history and berthing performance history with initial positions of the ship from 

the training dataset with respect to the number of hidden layers are shown in Fig. 101. Details of the 

training models are listed in Table 29. In Fig. 101 (a), n_hidden_layer of 5 and 10 result in the most 

stable training, whereas the others show somewhat unstable training with fluctuations. In Fig. 101 (b), 

the y-axis of the distance represents the distance gap between the target berthing point and arrival 

position of the ship, as shown in Table 28. Thus, when the distance is zero, this indicates the highest 

value and thus the highest performance. The edges of the shaded areas in Fig. 101 (b) represent the 
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actual data. It is shown that the training model with the n_hidden_layer of 10 shows the highest 

performance, and an unnecessarily complex neural network model with many hidden layers decreases 

the performance.

Table 29 Details of training models with respect to number of hidden layers

Hidden 
layer 
size

Number 
of hidden 

layers

Optimizer, 
learning 

rate

Number 
of 

epochs

Batch 
size

Activation 
function

Weight 
initialization

Input data-
scaling 
method

26 5, 10, 20, 
30, 40

Adam, 
1.0e-3

1000 27 ReLU He
Standard 
Scaling

(a) Loss function histories

(b) Berthing performance histories with initial positions from training dataset
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Fig. 101 Loss function and berthing performance histories with respect to number of hidden layers

Finally, to verify the model’s universal berthing performance, the effect of using the BN to prevent 

overfitting and to improve the neural network’s performance is analyzed by the loss function history 

and berthing performance history with initial positions from the training dataset and a set of new 

initial positions that are not included in the training dataset. The set of new initial positions is shown 

in Fig. 102, where the red crosses are the initial positions in the teaching data and the blue ships 

represent the new initial positions.

Fig. 102 Set of new initial positions for berthing performance history to verify universal berthing 

performance

The loss function and berthing performance histories, and details of the training models with 

respect to the use of the BN, are shown in Fig. 103 and Table 30, respectively.

Table 30 Details of training models when BN is used

hidden 
layer 
size

number 
of hidden 

layers

optimizer, 
learning 

rate

number 
of 

epochs

batch 
size

activation 
function

weight 
initialization

input data-
scaling 
method

use 
of 

BN

26 10
Adam, 
1e-3

1000 27 ReLU He
Standard 
Scaling

True,
False



124

(a) Loss function histories

(b) Berthing performance histories

Fig. 103 Loss function and berthing performance histories when BN is used

In Fig. 103 (a), it can be seen that the BN prevents overfitting and stabilizes the training process. 

The performances in Fig. 103 (b) show that the model with the BN outperforms the model without

the BN not only for the initial positions from the training dataset but also for the new initial positions 

that are not included in the training dataset.
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Table 31 Trained model selection algorithm for a neural network for automatic ship berthing

Initialize an array to store harmonic mean values ← ���� �

Set the berthing performance history data with the initial positions from the training 

dataset ← �

Set the berthing performance history data with the new initial positions out of the 

training dataset ← �

for each � ∈ � and � ∈ � do

Concatenate � and � ← ��

�� =
� − min(��)

max(��) − min(��)

�� =
� − min(��)

max(��) − min(��)

ℎ� = (2����)/(�� + ��)    // harmonic mean

Store ℎ� in �����

end for

return argmax( �����)

Although the trained model with the BN shows good and stable performance over epochs, it is ideal 

to select the best-trained model of them all. In order to select the best-trained model, a trained model 

selection algorithm for neural network models for automatic berthing using the harmonic mean is 

proposed. The trained model selection algorithm is shown in Table 31.

We adopted the harmonic mean to penalize cases where the gap between the berthing performances 

with the initial positions from and out of the training dataset is high, meaning that the model is overfit 

to the given training dataset and has a poor universal berthing performance. It has been shown that 

the use of the recent activation functions, weight initialization method, and input data-scaling methods 

resulted in faster training speeds and better convergence of the loss function. In addition, the BN 

improved the actual berthing performance for universal use and stabilized the training process. With 

the trained model selection algorithm, the two best-trained models were selected for the final 

simulation in Chapter 6.5. One is from the trained models with the BN, and the other is from the 

trained models without the BN. The significance of application of the BN is shown and discussed in 

the next subchapter.

6.5. Simulation and Results Discussion

In this subchapter, the berthing trajectories by two different trained models with and without the 

BN are presented to show how the BN improves the neural network for ship berthing and solves the 
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extrapolation problem. First, berthing trajectories with the initial positions from the training dataset 

are presented. And then, the berthing trajectories with interpolated and extrapolated initial positions 

are presented next, respectively. In the berthing simulations in this subchapter, the initial � is set to 

1.5, and the initial � is set to 0.5 for all cases.

To validate if the two trained neural network models perform efficiently when initial positions from 

a training dataset are given, berthing trajectories with initial positions from a training dataset are 

presented in Fig. 104. As expected from the berthing performance history in Fig. 103 (b), similar 

berthing performance and trajectories are shown with the initial positions from the training dataset as 

shown in Fig. 104 (a)-(i), meaning that both trained models are trained well for the given training 

dataset.

(a) (�, �, �): (7, 7, 250°) (b) (�, �, �): (9, 7, 210°) (c) (�, �, �): (11, 7, 250°)

(d) (�, �, �): (7, 5, 220°) (e) (�, �, �): (9, 5, 220°) (f) (�, �, �): (11, 5, 250°)
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(g) (�, �, �): (7, 3, 270°) (h) (�, �, �): (9, 3, 270°) (i) (�, �, �): (11, 3, 270°)

Fig. 104 Berthing trajectories with initial positions from training dataset

(red: with BN, blue: without BN)

To validate if the two trained neural network models perform efficiently when interpolated initial 

positions are given, berthing trajectories with the interpolated initial positions are presented in Fig. 

105. It can be observed that when the interpolated initial positions are given, both trained models 

showed successful berthing performances with similar berthing trajectories as shown in Fig. 105 (a)-

(f).

(a) (�, �, �): (6, 6, 220°) (b) (�, �, �): (8, 6, 240°) (c) (�, �, �): (10, 6, 240°)
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(d) (�, �, �): (6, 4, 240°) (e) (�, �, �): (8, 4, 250°) (f) (�, �, �): (10, 4, 240°)

Fig. 105 Berthing trajectories with interpolated initial positions (red: with BN, blue: without BN)

In the following simulations, the trained models are given three types of extrapolated initial 

positions. The types of extrapolated initial positions differ by the magnitude of extrapolation.

Berthing trajectories with the first type of extrapolated initial position are shown in Fig. 106. It can 

be observed that although the trained model without the BN shows good berthing performance in a 

few cases such as Fig. 106 (a) and Fig. 106 (b), it also shows poor performance as shown in Fig. 106

(c)-(d), while the model with the BN performs successfully in all the cases. In addition, it can be seen 

that the two trained models control quite differently to reach the target berthing point, as seen in Fig. 

106 (e)-(f).

(a) (�, �, �): (8, 2, 280°) (b) (�, �, �): (8, 8, 240°) (c) (�, �, �): (12, 4, 260°)
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(d) (�, �, �): (10, 2, 270°) (e) (�, �, �): (10, 8, 240°) (f) (�, �, �): (12, 6, 250°)

Fig. 106 Berthing trajectories with extrapolated initial positions, Type 1

(red: with BN, blue: without BN)

(a) (�, �, �): (14, 2, 280°) (b) (�, �, �): (14, 4, 260°) (c) (�, �, �): (8, 10, 210°)

(d) (�, �, �): (10, 10, 230°) (e) (�, �, �): (12, 10, 250°) (f) (�, �, �): (14, 6, 250°)

Fig. 107 Berthing trajectories with extrapolated initial positions, Type 2

(red: with BN, blue: without BN)

Next, berthing trajectories with the second type of extrapolated initial position are shown in Fig. 
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107. As the more extrapolated initial positions are given in the cases in Fig. 107, the trained model 

without the BN suffers from the extrapolation issue even more as shown in Fig. 107 (a)-(e). The only 

case where the trained model without the BN performs well is when it berths in a straight line as 

shown in Fig. 107 (f).

Finally, berthing trajectories with the third type of extrapolated initial position are shown in Fig. 

108, in which the extrapolation of initial positions is the greatest in order to clearly see the effect of 

the BN. In Fig. 108. The model without the BN performs poorly overall owing to the extrapolation 

problem. The effectiveness of application of the BN is clear, as the BN improves the neural network 

model for more general use.

(a) (�, �, �): (18, 4, 270°) (b) (�, �, �): (14, 6, 260°) (c) (�, �, �): (18, 6, 230°)

(d) (�, �, �): (8, 14, 180°) (e) (�, �, �): (10, 14, 190°) (f) (�, �, �): (14, 14, 210°)

Fig. 108 Berthing trajectories with extrapolated initial positions, Type 3
(red: with BN, blue: without BN)
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Chapter 7 Conclusion

In this paper, the following four studies were conducted: 1) machine learning-based mooring line 

tension prediction system, 2) feed-forward system for DPS using predicted drifted ship position based 

on deep learning and replay buffer, 3) reinforcement learning-based adaptive PID controller for DPS, 

4) application of recent developments in deep learning to ANN-based automatic berthing system.

7.1. Machine Learning-Based Mooring Line Tension Prediction System

The machine learning-based mooring line tension prediction system mainly consists of the 

proposed K-means-based sea state selection method and the proposed hybrid neural network 

architecture. 

The proposed K-means-based sea state selection method provides a standardized way of the sea 

state selection to obtain the training dataset by utilizing the K-means algorithm. The proposed sea 

state selection method eliminates the manual sea state selection which was a limitation in the previous 

studies, and it can reduce a number of sea states for the dynamic simulations to obtain the training 

dataset by efficiently selecting the representative sea states, which saves a large amount of 

computational cost. In the simulation, it was shown that a number of sea states could be reduced by 

3.5 times by using the proposed K-means-based sea state selection method while maintaining the 

tension prediction performance on the test sea states. 

The proposed hybrid neural network architecture provides the excellent tension prediction 

performance across the entire sea states. This high prediction performance was achieved by the use 

of BN and the fusion of the overall Hs-focused NN model and the low Hs-focused NN model with 

the proposed soft-binary attention module in which the soft-binary attention module pays the 

appropriate amount of attention to each NN model given its input at every timestep. In the simulation, 

it was shown that the use of BN clearly improved the tension prediction performance and the soft-

binary attention module could learn to efficiently output the attention values, which results in the 

excellent prediction performance. 

Since the proposed machine learning-based mooring line tension prediction system shows the 

excellent prediction performance on various sea states in one main environmental direction, a further 

study can be conducted by considering multiple environmental directions for a broader use such as a 

mooring line tension monitoring system that can replace physical sensors for the mooring line tension 
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as a digital twin system. When multiple environmental directions are considered, a number of 

directional sea states increases drastically, which significantly increases the computational cost for 

the dynamic simulation. However, it is strongly supposed that this problem can be resolved by the 

proposed K-means-based sea state selection method while the proposed hybrid neural network 

architecture may provide the excellent prediction performance for various directional sea states.

7.2. Motion Predictive Control for DPS Using Predicted Drifted Ship 

Position Based on Deep Learning and Replay Buffer

The conventional PID feed-back system for the DPS is integrated with the proposed motion 

predictive control to improve the station-keeping performance by reducing magnitudes of the ship 

drifting motions. The proposed motion predictive control is designed based on the DL layer, dropout, 

online machine learning system, and the replay buffer.

The DL layers and dropout form the DNN, and the DNN is used to output the predicted drifted ship 

motion in the future. By using the DNN, the prediction accuracy for the predicted drifted ship motions 

is ensured, which guarantees the station-keeping performance improvement of the proposed motion 

predictive control.

The online machine learning system provides the proposed motion predictive control with the 

adaptability to a new/varying sea environment, therefore, it can eliminate necessity of training the 

DNN for all the possible environmental conditions before deployment, which saves a lot of 

computational time and large load on the DNN for having to generalize all the given data from all the 

environmental conditions at once.

The replay buffer allows the DNN to be trained with a variety of data from various timesteps to 

make the time-independent learning possible which helps the DNN have a better understanding of 

ship dynamics. In the comparative simulation with respect to the replay buffer, it was shown that the 

use of the replay buffer resulted in the better the station-keeping performance throughout the entire 

simulation, which makes the replay buffer one of the crucial components in the proposed motion 

predictive control.

The real-time normalization method ensures robustness of the neural network training process by 

adaptively normalizing training data. The main difference between the ordinary normalization method 

and the proposed real-time normalization method is that the ordinary normalization method calculates 

normalizing factors before the training and uses the factors for the neural network training as constants. 
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However, the proposed real-time normalization method constantly updates the normalizing factors 

with the incoming data to the replay buffer, which makes the normalization be able to normalize 

training data properly and adaptively with new data distribution from varying environmental 

conditions.

Finally, the PID feed-back system with the wind feed-forward system and the PID feed-back 

system with the proposed motion predictive control were compared in the simulations. The simulation 

results showed that the proposed motion predictive control resulted in the better station-keeping 

performance than the wind feed-forward system with the same amount of thrust consumption.

7.3. Reinforcement Learning-Based Adaptive PID Controller for DPS

In this paper, an adaptive PID controller for the DPS is developed with the proposed adaptive fine-

tuning system for the PID gains. The main goal of the proposed adaptive fine-tuning system is to learn

an efficient adaptive gain-tuning strategy to increase the station-keeping performance without 

deterioration in the control efficiency. To achieve the goal, one of the deep reinforcement learning 

algorithms, deep deterministic policy gradient (DDPG), was adopted. The main characteristics of the 

proposed adaptive fine-tuning system is as follows:

First, a target of the application is a 285m FPSO ship and the environment is the open sea where 

the sea state can become severe. The ships have a much slower response to a control signal unlike 

small robots, and the environmental loads a ship undergoes when the sea state is severe are far greater 

than wind disturbance that small robots experience. 

Second, the input is previous ship motions, and the output is the adaptive PID gains and the update-

gate for the integral of the errors. For the input, previous ship motions are used instead of a ship 

motion at a current timestep to help the neural networks understand the ship dynamics better by 

considering the memory effect. The adaptive PID gains allow the PID controller to cope with the 

varying environmental loads better, and the update-gate for the integral of the errors allows to prevent 

the unconditional accumulation for the integral of the errors, which leads to the smaller rebound ship 

motions.

Third, the proposed adaptive fine-tuning system is likely to learn an adaptive-gain tuning strategy 

that simply increases the gains to increase the station-keeping performance if there is no restriction in 

the available adaptive gain range. However, this strategy is inefficient because it comes with the cost 

of higher thrust consumption and aggressive thrust control. To encourage the proposed system to learn 
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the adaptive-gain tuning strategy that results in the better station-keeping performance without 

deterioration in the control efficiency, its available adaptive gain range is set to [0, �����] where �����

refers to the base gain pre-tuned by a PID gain-tuning method.

In the simulation results, it was shown that the proposed adaptive fine-tuning system could learn 

the efficient adaptive gain-tuning strategy which results in the better station-keeping performance 

without deterioration in the control efficiency. In the discussion subchapter, the advantages and 

limitations of the proposed system are discussed, and the room for further study is also discussed.

7.4. Application of Recent Developments in Deep Learning to ANN-

Based Automatic Berthing System

In the study of the application of recent developments in deep learning to ANN-based automatic 

berthing system, it was shown that the faster training speed and better training convergence could be 

achieved with the application of recent activation functions, weight initialization methods, input data-

scaling methods, and a higher number of hidden layers. In order to observe the progress of the berthing 

performance over epochs and select the best-trained model, the algorithm for obtaining the berthing 

performance history and the model selection algorithm were proposed. Lastly, the use of the BN could

stabilize the training process and solve the extrapolation problem by preventing overfitting. A neural 

network model with the BN was able to perform successfully, not only with interpolated and slightly 

extrapolated initial positions but also with greatly extrapolated initial positions. This could make the 

neural network models more universal for automatic berthing.
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