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Abstract: This paper proposed a novel control method for dynamic positioning of an 

uninhabited surface vehicle (USV). A state-dependent Riccati equation (SDRE) 

technique was introduced to deal with dynamic positioning problem of the USV. A new 

state-dependent coefficient (SDC) matrix was built to show the relationship between 

variables and satisfy the control inputs saturation for practical application. In order to 

solve the SDRE in real time, a semi-analytical formulation was derived by using 

Legendre-Gauss-Radau pseudospectral method. Simulation results show that the 

proposed method can be applied in real time and the USV can maintain its position and 

heading accurately and remains stable. 
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1. Introduction 

The application of USV has gained a growing interest in recent years. Dynamic 

positioning (DP) is one of the important parts for USV, which might be defined as a 

system automatically controls a vessel to maintain its position and heading exclusively 

by means of active thrusters. There are many literatures about dynamic positioning. 

Here, only control methods for DP are reviewed, other literatures related about observer, 

control allocation, fault-tolerant or others can be seen in Sørensen (2011).  

Sørensen et al. (1996) proposed a model-based control method where a feedforward 
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controller based on reference model was used to provide appropriate reference 

trajectories. A LQG controller was then used to minimize the thruster force and moment 

and the position error. Katebi et al. (1997) proposed a H∞ robust controller for DP 

system and weighting functions were presented to undertake the trade-off between track 

keeping and station keeping for a linear system. To avoid using linearization 

assumption for DP systems, Fossen and Grøvlen (1998) proposed a globally 

exponentially stable (GES) nonlinear control law using backstepping observer. 

However the environmental disturbances were neglected in this paper. Loria et al. 

(2000) considered the environmental disturbances and presented a similar globally 

asymptotically stabilizing (GAS) controller for DP using only position measurements. 

The stability proof was based on a separation principle which holds for the nonlinear 

ship model. The simulation results of two model ships CyberShip I and CyberShip II 

with different disturbances proved the stabilization of this method. Pettersen and Fossen 

(2000) proposed a time-varying feedback control law including integral action for DP 

of an underactuated ship. The proposed method was able to asymptotically stabilize the 

ship, providing exponential convergence to the desired position and orientation. The 

disturbances were not considered in this method and the simulation results showed 

oscillation and station error in case of disturbance. Nguyen et al. (2007) developed a 

hybrid controller for DP system in varying environmental conditions from calm to 

extreme seas. This hybrid controller contained multi-output PID and acceleration 

feedback controllers with position and acceleration measurements. Supervisory control 

was also used to switch the controller by considering the sea conditions. Tannuri et al. 

(2010) proposed a sliding mode control (SMC) method for DP system. A saturation 

function was used to eliminate the chattering that appears in the SMC. This controller 

was robust and easily tuned compared to PID controller. Muhammad and Doria-Cerezo 

(2012) proposed a passivity-based control method. The vessel model was rewritten as 

a port-Hamiltonian description, then an interconnection and damping assignment-

passivity-based control (IDA-PBC) method based on port-Hamiltonian framework was 

presented. In this case only time invariable disturbance was considered for stability 

purpose. A similar method was proposed by Donaire and Perez (2012). The vessel 

model was also rewritten as an input-state-output port-Hamiltonian system (ISO-PHS), 

and then an integral action was used by considering a combination of passive and non-

passive variables. This method also can be asymptotic stable with the constant 

disturbance and the states are bounded for any bounded disturbance. Du et al. (2013) 

proposed neural controller using the vectorial backstepping technique for DP. This 



method didn’t require any priori knowledge of the dynamics of the vessel and 

disturbances.  

Most of the papers about DP system found in literatures are not designed for USV. 

It is more difficult to design the DP control system for USV than regular vessel as the 

disturbances would significantly affect the motion of the USV. Pereira et al. (2008) 

presented a weighted controller for station keeping of a small twin-propeller USV. This 

USV was underactuated, and wind was considered as the only disturbance. The control 

method weighted the line-of-sight controller and the disturbance. The ASV control was 

then designed to hold the vessel at a given place with the heading against the direction 

of wind. Panagou and Kyriakopoulos (2014) presented a state feedback control solution 

for the navigation and practical stabilisation of an underactuated marine vehicle under 

non-vanishing current disturbances. The control scheme consisted of three control laws. 

The first one was based on a novel dipolar vector field and was active when vehicle 

went out of the goal set to bring it back within the set. The other two control laws were 

active within the goal set and alternately regulate the position and the orientation of the 

vehicle and the system was practically stable around the desired position.  

Most of the papers above considered only simple disturbances and cannot be applied 

to the USV working in real sea. This paper introduces a novel method to solve complex 

state-dependent Riccati equation (SDRE) in an efficient way to make the dynamic 

positioning viable in real time in harsh environmental conditions. The solution of SDRE 

is the optimal control inputs for dynamic positioning, and a Legendre-Gauss-Radau 

pseudospectral method is used to derive the semi-analytical formulation for SDRE so 

that this method can be used in real-time for practical applications. 

The rest of this paper is organised as follows: Section 2 introduces the mathematical 

equations representing the motion of an USV. Section 3 describes the principle of SDRE, 

and the method to deal with control inputs saturation using SDRE. Section 4 proposes 

a method to solve SDRE problem using Legendre-Gauss-Radau (LGR) pseudospectral 

method. Section 5 shows the simulation results of the proposed algorithm and section 

6 provides the conclusions. 

2. Mathematical representation 

Two types of reference frames are defined in this paper to describe the six degrees of 

freedom (6DOF) for an USV as shown in Fig. 1. The earth-fixed frame is fixed to the 

earth, with the X-axis points towards the North, the Y-axis points towards the East, and 

the Z-axis points towards the centre of the Earth. The body-fixed frame is fixed to the 

USV, with the xb-axis points towards the bow, the yb-axis points towards the starboard, 



and the zb-axis points downwards. 
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Fig. 1. Definition of the Earth-fixed and body-fixed frames 

In this study, it is assumed that the center of buoyancy and the center of mass are the 

same, and the motion of heave, pitch and roll are negligible. The nonlinear equations 

of motion for an USV thus can be written as (Fossen, 1994): 

 ( )η R v   (1) 

 Env( ) ( ) +  Mv C v v D v v f f   (2) 

Here, 
T=[ , , ]x y η  denotes the position and orientation vector with coordinates in the 

earth-fixed frame, 
T=[ , , ]u v rv  denotes the linear and angular velocity vector with 

coordinates in the body-fixed frame. ( )R is the translation matrix defined as: 
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M is the system inertia matrix including added mass, C(v) is the matrix of Coriolis and 

centripetal matrix of the rigid-body, D(v) is damping matrix,  f is the vector of control 

inputs and Envf  is the environmental force and moments acting on the vessel. These 

matrixes can also be decomposed as follows: 
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where 𝑚 and Iz are the mass and moment of inertia of USV respectively, uX , vY  and 

rN  are the parameters for added mass effects. 
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where CRB is the Coriolis and centripetal matrix of the rigid-body, CA is the 

hydrodynamic Coriolis and centripetal matrix. 

For a low speed USV, the nonlinear damping can be neglected, and only linear 

damping will be considered here. The matrix D is given by: 
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 wind wave current other= + + +Envf f f f f   (9) 

where, windf  and currentf  are the disturbance force and moment caused by wind, wave 

and current, otherf  is the force and moment caused by other random disturbances. 

3. State-dependent Riccati equation 

3.1. Problem Formulation 

Consider a nonlinear time-varying system in the form 

 ( ) ( , ) ( , , )t t t x f x g x u   (10) 

where 1 2[ , , , ]T n
nx x x x   is the state vector, and 1 2[ , , , ]T m

mu u u u   is 

the control input vector for each t  , f and g are continuous functions of x, and 

( , )t f 0 0   is an equilibrium point with u 0  . This nonlinear system can be 

converted into a linear form as: 

 ( ) ( ) ( ) ( ) ( )t t t x A x x B x u   (11) 



which is also called state-dependent coefficient (SDC) parameterization formulation. 

Here ( ) ( ) ( )tf x A x x  and ( , , ) ( ) ( )t tg x u B x u  (Çimen, 2010). SDRE method is a 

state feedback control law to minimize the quadratic-like performance index 
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where Q is the symmetric positive semi-definite weighting matric for states, and R is 

the symmetric positive definite weighting matric for inputs.  

It can be seen that the SDC parameterization formulation and its performance index 

is similar with linear quadratic regulator (LQR). The solution of this infinite time 

horizon nonlinear optimal control (ITHNOC) problem is also inspired by LQR. For 

 x Ω  , if the pair { ( ),  ( )}A x B x   is pointwise stabilizable, and the pair 

{ ( ),  ( )}A x C x  is pointwise detectable, where ( ) ( ) ( )T C x C x Q x , then the optimal 

control for eqn. (11), (12) is ( Cloutier, 1997): 

 -1( ) - ( ) ( ) ( )U x R x B x P x x   (13) 

where P(x) is the unique, symmetric nonnegative definite solution of the algebraic 

SDRE 

 -1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T   P x A x A x P x P x B x R x B x P x Q x 0   (14) 

3.2. The choice of SDC matrix 

Let 0Gx  , and =0rY , then Eqn. (1) and (2) can be rewritten as  
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where 11 um m X   , 22 vm m Y   , 33 z rm I N   , 13 ( )vc m Y v    , 

23 ( )uc m X u   , 31 ( )vc m Y v   , 32 ( )uc m X u    , 11 ud X   , 22 vd Y   , 

23 rd Y  , 32 vd N  , 33 rd N  .  



Obviously, if ( ) ( )A x A x   and ( ) ( )B x B x  , and the pairs { ( ),  ( )}A x B x  

{ ( ),  ( )}A x C x  is pointwise stabilizable and pointwise detectable for  x Ω , then the 

optimal control inputs can be obtained by Eqn. (13) and (14). There are many other 

ways to build a SDC matrix for a multivariable nonlinear system, i.e. the SDC matrix 

A(x) is not unique. According to Çimen (2012), the SDC matrix A(x) should reflect the 

relationship of respective variables, and ( )A x  does not satisfy this requirement. For 

example, (1,3)=0A  doesn’t tell the relationship between ψ, u and v. To deal with this 

problem, a new A(x) is defined as follows: 
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here, 1 2 1 2=
T

x x y y u v r        
 α  can be chosen between 0 and 

1, and ( ) ( )A x A x  when 
8 1= 

α 0  . In this way the new SDC matrix A(x) can reflect 

the relationships of all the variables, and the choice of α is flexible and can help enhance 

the performance index. 

3.3. Control Input Saturation 

For a practical USV, the control actuators are hard-bounded, so the control system 

might be unstable without considering the control input saturation. The control input 

vectors are assumed to use continuous force and moment confined to lie within 

specified limits 

 max( )t f f   (17) 
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For fu, two new variables τu and fu1 are introduced, let (Mracek and Cloutier 1998) 
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and 

 1=u uf   (21) 

The equations for fv and fψ are straight forward 
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With this method, fu, fv and fψ will lay in the given interval no matter what  fu1, fv1 and 

fψ1 will be. 

 Then Eqn(15) can be extended as: 

 ( ) ( ) x A x x B x f   (23) 

where 
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The performance index Eqn. (12) is then derived as: 
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and the optimal control inputs for Eqn. (23) should be written as 

 -1( ) - ( ) ( )f x R x BP x x   (30) 

where ( )P x  is the solution of the new algebraic SDRE 

 T -1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T   P x A x A x P x P x B x R B x P x Q x 0   (31) 

Then the x  can be obtained, and the true control inputs f for the dynamic positioning 

of USV can be derived using Eqn. (19) and (22). 

4. Solving SDRE using a pseudospectral method 

The controller needs to solve the SDRE in real-time for the dynamic positioning 

mission, which can also be considered as solving a LQR in real-time. However the 

solution methods of LQR come with high computation cost and sometimes unstable. In 

this paper, a pseudospectral method is induced to solve the SDRE in real-time which is 

stable and will require less computational burden. 

4.1. Legendre-Gauss-Radau pseudospectral method 

Let ( )NL t denote the Legendre polynomial of order N, and let it , 1,2,i N  be the 

zeros of +1( )+ ( )N NL t L t , with 0 1t   . These N+1 points are called Legendre-Gauss-

Radau (LGR) points. These LGR points are distributed over [-1,1), this kind of fixed at 

the left hand endpoint interval is quite suitable for the ITHNOC problem. 

For a given function ( )F t defined at  1,1 , it can be approximated by a Nth degree 

interpolation polynomial as (Fahroo and Ross, 2008) 
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where ( )i t  satisfies the relationship ( )i j ijt  , and 
ij  is the Kronecker delta. 
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The derivative of ( )NF t  is 
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where : ( )ijDD is an ( 1) ( 1)N N    matrix, given by 
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4.2. Solution Approach 

As mentioned above, the LGR points should be in the interval [-1, 1), so that the 

original optimal problem should be restated from [0, +∞) to [-1, 1) with the 

transformation of the independent variable τ (Garg, Hager and Rao, 2011) 
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At an arbitrary sample time t0, the control inputs should be the solution of Eqn. (31) 

at t0, or they can be considered as the solution of a LQR problem. Let the state equation 

 0( ) ( ( )) ( ) ( )t t t t x A x x Bf   (39) 

with the co-state equation 
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and the desired control inputs are 
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If 0( )tλ  can be solved in real-time, the entire SDRE problem for dynamic positioning 

of the USV can then be solved. 

 The ( )tx  and ( )tλ  can be approximated using   
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So Eqn. (39) and (40) can be transferred as 
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Here, 
0 0= ( ( ))tA A x . Let  
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Eqn. (46) and (47) can be written as (Yan, Fahroo and Ross, 2001) 

   0 18( 1) 1

0

N

e

e

  
  

 

Z
VZ V V 0

Z
  (49) 

where 
T

T T   Z X Λ , V is a 18( 1) 18( 1)N N    matrices which can be derived 

for eqn. (46) and (47). V0 is the first 18( 1) 9N   block matrix of V, and Ve is the rest 

of V. 0 0Z x  , and 
T

T T T T T T

1 2 0 1e N N
   Z x x x λ λ λ  which can be 

derived as 

 0 0 0= ( \ )e e Z V V Z WZ   (50) 

The ‘\’ means the left matrix divide operator of Matlab. Then the following can be 

obtained: 

 0 0

n n
x

    
      
     

WX I
Z Z Z

WΛ W
  (51) 

where xW   and W   are 9( 1) 9N     matrices which can be obtained from 

T
n n  I W . 



thus 
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  (52) 

where 0 0( )tx x , and the Eqn. (41) can be obtained by 

 
-1 -1

0 0( ) ( ) 0 0t t    f R Bλ R BW x   (53) 

Now the control inputs are calculated by the following steps: i) Set 

T
3 1

u v

      0  at the initial time. ii) At each sample time, get the current states 

0( )tx , and then obtain 
0A  using Eqn. (26). iii) Using Eqn. (46) and (47) derive V. iv) 

Calculate W using Eqn. (50), and 0W  is a 9 9  block of W. v) the control inputs 

can be obtained by using Eqn. (53). It can be seen that there are only one left matrix 

divide and some simple fundamental operations in this method, so it is simple enough 

to be calculated in real-time. 

5. Simulation results 

This work used the model of an USV at Plymouth University called Springer, which 

is approximately 4m long and 0.6 tones weight. The parameters of the fully actuated 

Springer USV as shown in Table 1 are used in this paper for simulation purpose. 

Table 1  

The constant parameters of the Springer USV 

m, kg 600 Xu, N s/m  -17.0 

Iz, kg m  550 Yv, N s/m  -29.2 

uX , kg -77.6 Yr, N s/m  -1 

vY , kg -561.1 Nv, N s/m  -1 

rN , kg -286.5 Nr, N s/m  -19.8 

5.1. The number of LGR points 

The SDRE should be solved in real-time for practical applications. Different numbers 

of LGR points may have different effect on computational time and accuracy. Table 2 

shows the results of different LGR points in 200s without considering any environment 



disturbance. Control inputs saturation was not considered first, i.e. Eqn. (16) was used 

here with 
6 6 610  Q I  and 3 3R I , and the initial position and orientation were 

 
 

 

T

T

= 1 1 0.1

= 0 0 0

S

S

η

ν
  (54) 

From this table, it can be seen that the position and orientation accuracies are all 

acceptable, and the energy consumptions of each LGR points have no significant 

differences. N=4 was selected because its computation time is short enough for practical 

application. 

Table 2  

Comparison of different LGR points 

LGR points 4 6 8 10 12 

Terminal 

position error, m 
8.024×10-5 4.272×10-5 1.171×10-5 1.446×10-5 8.626×10-6 

Terminal ψ error, 

rad 
2.454×10-12 1.543×10-14 1.314×10-14 1.508×10-15 1.538×10-13 

Energy 

Consumption 
5.620×105 5.565×105 5.551×105 5.545×105 5.543×105 

Max 

computation 

time, s 

8.855×10-4 1.968×10-3 3.632×10-3 3.751×10-3 4.615×10-3 

Average 

computation 

time, s 

5.504×10-4 8.122×10-4 1.247×10-3 1.815×10-3 2.374×10-3 

5.2. Comparison with the lqr function of Matlab 

A Matlab function ‘lqr’ was used to verify the performance of the proposed method. 

lqr function uses the Schur algorithm to solve the algebraic Riccati equation. It is well-

known that this method is potentially unstable, numerical intensive and not efficient 

(Yan, Fahroo and Ross, 2001) and thus cannot be used for the dynamic positioning of 

USV. This method can design the optimal control for linear system and compared here 

to illustrate the performance of the proposed method. The comparison results of 

position, orientation and control inputs between the proposed method and lqr function 

are shown below. It can be seen that the results of the proposed method are almost the 

same with the results of lqr function indicating that the proposed method can get an 

accurate result in an optimal way. Here the environment forces and the control inputs 

saturation and the parameters on the diagonal position in A(x) are not considered to 

make sure that the problem can be solved by using lqr function of the Matlab. 



 
Fig. 2. Comparison of the position and orientation between the proposed method and 

the lqr function.

 

Fig. 3. Comparison of the control inputs between the proposed method and the lqr 

function. 

5.3. Simulation results considering control input saturation 
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Considering a harsh working conditions of USV with the wind and current 

disturbances assumed as Vw=2m/s, 
4w

   , Vc=2m/s, 
2c

   . A time variant 

disturbance was denoted as d(t) to include all the unknown external environmental 

disturbances. 

 

0.4sin(0.3 ) 0.3cos 1

( ) 0.15sin(0.2) 0.3cos(0.5 ) 1.5
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t t

d t t t

t t

  
 

   
 
   

  (55) 

It was assumed that the max control inputs for surge, sway and yaw are all 300N. Eqn. 

(53) was used to solve the Eqn. (30), where  
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The matrices Q  and R  were derived by trial and error method. The simulation 

results are shown in Fig. 4-6. Table 3 shows some details of this simulation. From these 

results, it can be seen that the computational time and the errors are all acceptable within 

limits for real application and the control inputs are also not saturated in the entire 

process. 



   

 

Fig. 4. Positions and orientation of USV. 

Fig. 5. Velocities and angle velocity of USV.  
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Fig. 6. Control inputs of the USV. 

Table 3  

Computation results considering control input saturation 

Terminal x error, m 0.067 Terminal u error, m/s 8.519×10-5 

Terminal y error, m -0.066 Terminal v error, m/s 2.760×10-5 

Terminal ψ error, rad -0.002 Terminal r error, rad/s 1.100×10-4 

Energy consumption 6.347×105 Average computation time, s 4.928×10-3 

5.4. Simulation results with a big initial error 

A bigger initial error was given to test the performance of the proposed method. The 

initial position and orientation were 

  
T

= 10 10 1Sη   (58) 

which was 10 times of the last section. 

 The results of position and orientation, velocities and angle velocity and the control 

inputs are shown in Figs. 7-9. It can be seen that the control inputs are a nearly bang-

bang control in the first 30 seconds, because the initial error is very big. The system 

then converge to the balance point under the disturbance. The terminal errors, energy 

consumption and computation time are shown in table 4. From the table, it can be seen 

that the errors and computation time are almost the same with the results in the last 

section, which shows the good performance of the proposed method with different 

0 20 40 60 80 100 120 140 160 180 200

-200

0

200

 u
(N

)

0 20 40 60 80 100 120 140 160 180 200
-200

0

200

 v
(N

)

0 20 40 60 80 100 120 140 160 180 200
-100

0

100

 r(N
)

t(s)



initial errors.  

For this big error, proper Q and R could not be found to make the system stable 

without using the control input saturation technique. Whilst the Q  and R  are the 

same for section 5.3 and 5.4 which means the proposed method is robust for any proper 

initial error. 

 

Fig. 7. Positions and orientation for a big initial error example. 
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Fig. 8. Velocities and angle velocity for a big initial error example 

 

 
 Fig. 9. Control inputs for a big initial error example. 
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Table 4  

Computation results considering control input saturation for a big initial error example 

Terminal x error, m 0.068 Terminal u error, m/s -4.428×10-

5 

Terminal y error, m -0.066 Terminal v error, m/s 9.974×10-6 

Terminal ψ error, rad -0.002 Terminal r error, rad/s 1.100×10-4 

Energy Consumption 5.722×106 Average computation time, s 4.796×10-3 

6. Conclusions 

A novel dynamic positioning method for an USV has been proposed in this paper. A 

state-dependent Riccati equation (SDRE) technique is used to solve the dynamic 

positioning problem. Then an extended state-dependent coefficient (SDC) is used to 

consider the control inputs saturation for practical application. A Legendre-Gauss-

Radau pseudospectral method is introduced to avoid solving complex algebraic Riccati 

equation so that calculation for SDRE can be performed in real-time. Simulation results 

show the accuracy of the proposed method compared with the lqr function of Matlab, 

and illustrates the excellent performance of the proposed methodology in real-time.  

The dynamic position may be required to be achieved in a finite time horizon for 

practical applications and the problem will not be an ITHNOC problem but will become 

a finite time horizon nonlinear optimal control (FTHNOC) problem. State-Dependent 

Differential Riccati Equation (SDDRE) technique which is developed from SDRE, is 

designed to deal with the FTHNOC problem. SDDRE needs to solve differential Riccati 

equation and is more difficult to solve compare to SDRE. The efficient solution for 

SDDRE will be studied in future. 
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