367 research outputs found

    New methods for deep tissue imaging

    Full text link
    Microscopes play vital role biological science and medicine. For single photon microscopies, the scattering of photons makes regions of interest located a few hundred microns beneath the surface inaccessible. Multi-photon microscopes are widely used for minimally invasive in vivo brain imaging due to their increased imaging depth. However, multi-photon microscopes are hampered by limited dynamic range, preventing weak sample features from being detected in the presence of strong features, or preventing the capture of unpredictable bursts in sample strength. In the first part of the thesis, I present a solution to vastly improve the dynamic range of a multi-photon microscope while limiting potential photodamage. Benefits are shown in both structural and in-vivo functional mouse brain imaging applications. In the second section of the thesis work, I explore a completely different approach towards deep tissue imaging by changing the type of radiation from light to ultrasound. Inspired by an optical phase contrast technique invented in the lab, I developed an unprecedented ultrasound imaging system that can visualize the ultrasound phase contrast in the sample. The ultrasound phase contrast technique is able to visualize local sound speed variations instead of local reflectivity. Compared with existing sound speed tomography systems, our technique eliminates the cumbersome sound speed reconstruction process. The research work in this section contains three parts. In the first part, we designed a low-cost single element scanning system as proof of concept. In the second part, we implemented the ultrasound phase contrast imaging system on a commercial linear phased transducer array and an imaging apparatus designed for samples with finite thickness. In the third part, we studied the feasibility of ultrasound phase contrast imaging in arbitrarily thick tissue. We presented a complete workflow of theoretical study, simulation, prototyping and experimental testing for all three parts.2020-02-28T00:00:00

    Medical robots for MRI guided diagnosis and therapy

    No full text
    Magnetic Resonance Imaging (MRI) provides the capability of imaging tissue with fine resolution and superior soft tissue contrast, when compared with conventional ultrasound and CT imaging, which makes it an important tool for clinicians to perform more accurate diagnosis and image guided therapy. Medical robotic devices combining the high resolution anatomical images with real-time navigation, are ideal for precise and repeatable interventions. Despite these advantages, the MR environment imposes constraints on mechatronic devices operating within it. This thesis presents a study on the design and development of robotic systems for particular MR interventions, in which the issue of testing the MR compatibility of mechatronic components, actuation control, kinematics and workspace analysis, and mechanical and electrical design of the robot have been investigated. Two types of robotic systems have therefore been developed and evaluated along the above aspects. (i) A device for MR guided transrectal prostate biopsy: The system was designed from components which are proven to be MR compatible, actuated by pneumatic motors and ultrasonic motors, and tracked by optical position sensors and ducial markers. Clinical trials have been performed with the device on three patients, and the results reported have demonstrated its capability to perform needle positioning under MR guidance, with a procedure time of around 40mins and with no compromised image quality, which achieved our system speci cations. (ii) Limb positioning devices to facilitate the magic angle effect for diagnosis of tendinous injuries: Two systems were designed particularly for lower and upper limb positioning, which are actuated and tracked by the similar methods as the first device. A group of volunteers were recruited to conduct tests to verify the functionality of the systems. The results demonstrate the clear enhancement of the image quality with an increase in signal intensity up to 24 times in the tendon tissue caused by the magic angle effect, showing the feasibility of the proposed devices to be applied in clinical diagnosis

    Hydraulic pressure and flow control of injection moulding

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN041811 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Advanced interface systems for readout, control, and self-calibration of MEMS resonant gyroscopes

    Get PDF
    MEMS gyroscopes have become an essential component in consumer, industrial and automotive applications, owing to their small form factor and low production cost. However, their poor stability, also known as drift, has hindered their penetration into high-end tactical and navigation applications, where highly stable bias and scale factor are required over long period of time to avoid significant positioning error. Improving the long-term stability of MEMS gyroscopes has created new challenges in both the physical sensor design and fabrication, as well as the system architecture used for interfacing with the physical sensor. The objective of this research is to develop interface circuits and systems for in-situ control and self-calibration of MEMS resonators and resonant gyroscopes to enhance the stability of bias and scale factor without the need for any mechanical rotary stage, or expensive bulky lab characterization equipment. The self-calibration techniques developed in this work provide 1-2 orders of magnitude improvement in the drift of bias and scale factor of a resonant gyroscope over temperature and time.Ph.D

    Optimisation for Optical Data Centre Switching and Networking with Artificial Intelligence

    Get PDF
    Cloud and cluster computing platforms have become standard across almost every domain of business, and their scale quickly approaches O(106)\mathbf{O}(10^6) servers in a single warehouse. However, the tier-based opto-electronically packet switched network infrastructure that is standard across these systems gives way to several scalability bottlenecks including resource fragmentation and high energy requirements. Experimental results show that optical circuit switched networks pose a promising alternative that could avoid these. However, optimality challenges are encountered at realistic commercial scales. Where exhaustive optimisation techniques are not applicable for problems at the scale of Cloud-scale computer networks, and expert-designed heuristics are performance-limited and typically biased in their design, artificial intelligence can discover more scalable and better performing optimisation strategies. This thesis demonstrates these benefits through experimental and theoretical work spanning all of component, system and commercial optimisation problems which stand in the way of practical Cloud-scale computer network systems. Firstly, optical components are optimised to gate in 500ps\approx 500 ps and are demonstrated in a proof-of-concept switching architecture for optical data centres with better wavelength and component scalability than previous demonstrations. Secondly, network-aware resource allocation schemes for optically composable data centres are learnt end-to-end with deep reinforcement learning and graph neural networks, where 3×3\times less networking resources are required to achieve the same resource efficiency compared to conventional methods. Finally, a deep reinforcement learning based method for optimising PID-control parameters is presented which generates tailored parameters for unseen devices in O(103)s\mathbf{O}(10^{-3}) s. This method is demonstrated on a market leading optical switching product based on piezoelectric actuation, where switching speed is improved >20%>20\% with no compromise to optical loss and the manufacturing yield of actuators is improved. This method was licensed to and integrated within the manufacturing pipeline of this company. As such, crucial public and private infrastructure utilising these products will benefit from this work

    Analog Implementation of Fractional-Order Elements and Their Applications

    Get PDF
    With advancements in the theory of fractional calculus and also with widespread engineering application of fractional-order systems, analog implementation of fractional-order integrators and differentiators have received considerable attention. This is due to the fact that this powerful mathematical tool allows us to describe and model a real-world phenomenon more accurately than via classical “integer” methods. Moreover, their additional degree of freedom allows researchers to design accurate and more robust systems that would be impractical or impossible to implement with conventional capacitors. Throughout this thesis, a wide range of problems associated with analog circuit design of fractional-order systems are covered: passive component optimization of resistive-capacitive and resistive-inductive type fractional-order elements, realization of active fractional-order capacitors (FOCs), analog implementation of fractional-order integrators, robust fractional-order proportional-integral control design, investigation of different materials for FOC fabrication having ultra-wide frequency band, low phase error, possible low- and high-frequency realization of fractional-order oscillators in analog domain, mathematical and experimental study of solid-state FOCs in series-, parallel- and interconnected circuit networks. Consequently, the proposed approaches in this thesis are important considerations in beyond the future studies of fractional dynamic systems

    Measured and Modeled Performance of a Spring Dominant Free Piston Engine Generator

    Get PDF
    Free Piston Engine Generators (FPEG) directly convert the reciprocating piston motion into electricity by using a linear alternator. Unlike conventional engines with piston motion restricted by a crankshaft mechanism, the FPEG piston motion is constrained by the energy available in the system. When stiff springs are considered in the design, the FPEG system attains high frequency with high power and efficiency. The main objective of this research was to model stiff spring-assisted FPEG system dynamics and performance accurately, and to apply the modeling results to the development of a 1kW, spark ignited, natural gas fueled, FPEG experimental prototype. The experimental data was further utilized to refine and improve the existing model. First, a MATLAB®/Simulink based multi-cycle numerical model was developed for single and dual cylinder FPEG systems to study the effects of major design parameters on FPEG dynamics and performance. When stiff springs were added, the dynamics became more sinusoidal and symmetric with respect to the initial starting position. For a total displacement of 34 cc, trapped compression ratio of 8.25, and assumed combustion efficiency of 95%, the modeled frequency and electric power varied from 72.3 Hz to 80.8 Hz and 0.81 kW to 0.88 kW for a single cylinder FPEG as the spring stiffness changed from 372 kN/m to 744 kN/m. For a dual cylinder FPEG with the same conditions, these modeled values changed from 76.8 Hz to 84.1 Hz and 1.7 kW to 1.8 kW with increasing spring stiffness. The numerical model was then expanded for sensitivity studies of major design parameters. When FPEG operating conditions were considered, the effective stroke length was found to have a dominant effect on efficiency followed by compression ratio, cylinder bore, and spring stiffness respectively. The experimental FPEG prototype generating 550 W of electricity with indicated efficiencies exceeding 13.8% was used for model validation. Finally, the stable FPEG system requires a control strategy to match the power generated by the engine to the power demanded by the alternator. A model-based control strategy was developed in Stateflow® for alternator mode switching, calibration maps, energy management, ignition and fuel injection timings. With the proposed control strategy and stiff spring dominance, the modeled and experimental FPEG system maintained stable operation with cycle-to-cycle variations less than 5%

    Thermodynamic analysis, modelling and control of a novel hybrid propulsion system

    Get PDF
    Stringent emission regulations imposed by governments and depleting fossil fuel reserves have promoted the development of the automotive industry towards novel technologies. Various types of hybrid power plants for transport and stationary applications have emerged. The methodology of design and development of such power plants varies according to power producing components used in the systems. The practical feasibility of such power plants is a pre-requisite to any further development. This work presents thermodynamic analysis and modelling of such a novel power plant, assesses its feasibility and further discusses the development of a suitable control system. The proposed system consists of a hybrid configuration of a solid oxide fuel cell and IC engine as the main power producing components. A reformer supplies fuel gas to the fuel cell while the IC engine is supplied with a liquid fuel. The excess fuel from the fuel cell anode and the oxygen-depleted air from cathode of the fuel cell are also supplied to the engine. This gas mixture is aspirated into the engine with the balance of energy provided by the liquid fuel. The fuel cell exhaust streams are used to condition the fuel in the engine to ensure minimum pollutants and improved engine performance. Both, fuel cell and engine share the load on the system. The fuel cell operates on a base load while the engine handles majority of the transient load. This system is particularly suitable for a delivery truck or a bus cycle. Models of the system components reformer, solid oxide fuel cell, IC engine and turbocharger were developed to understand their steady state and dynamic behaviour. These models were validated against sources of literature and used to predict the effect of different operating conditions for each component. The main control parameters for each component were derived from these models. A first law analysis of the system at steady state was conducted to identify optimum operating region, verify feasibility and efficiency improvement of the system. The results suggested reduced engine fuel consumption and a 10 % improvement in system efficiency over the conventional diesel engines. Further, a second law analysis was conducted to determine the key areas of exergy losses and the rational efficiency of the system at full load operating conditions. The results indicate a rational efficiency of 25.4 % for the system. Sensitivity to changes in internal exergy losses on the system work potential was also determined. The exergy analysis indicates a potential for process optimisation as well as design improvements. This analysis provides a basis for the development of a novel control strategy based on exergy analysis and finite-time thermodynamics. A dynamic simulation of the control oriented system model identified the transient response and control parameters for the system. Based on these results, control systems were developed based on feedback control and model predictive control theories. These controllers mainly focus on air and fuel path management within the system and show an improved transient response for the system. In a hierarchical control structure for the system, the feedback controllers or the model predictive controller can perform local optimisation for the system, while a supervisory controller can perform global optimisation. The objective of the supervisory controller is to determining the load distribution between the fuel cell and the engine. A development strategy for such a top-level supervisory controller for the system is proposed. The hybrid power plant proposed in this thesis shows potential for application for transport and stationary power production with reduced emissions and fuel consumption. The first and second law of thermodynamics can both contribute to the development of a comprehensive control system. This work integrates research areas of powertrain design, thermodynamic analysis and control design. The development and design strategy followed for such a novel hybrid power plant can be useful to assess the potential of other hybrid systems as well

    A multi-modular second life hybrid battery energy storage system for utility grid applications

    Get PDF
    The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications
    corecore