11,801 research outputs found

    Mask Programmable CMOS Transistor Arrays for Wideband RF Integrated Circuits

    Get PDF
    A mask programmable technology to implement RF and microwave integrated circuits using an array of standard 90-nm CMOS transistors is presented. Using this technology, three wideband amplifiers with more than 15-dB forward transmission gain operating in different frequency bands inside a 4-22-GHz range are implemented. The amplifiers achieve high gain-bandwidth products (79-96 GHz) despite their standard multistage designs. These amplifiers are based on an identical transistor array interconnected with application specific coplanar waveguide (CPW) transmission lines and on-chip capacitors and resistors. CPW lines are implemented using a one-metal-layer post-processing technology over a thick Parylene-N (15 mum ) dielectric layer that enables very low loss lines (~0.6 dB/mm at 20 GHz) and high-performance CMOS amplifiers. The proposed integration approach has the potential for implementing cost-efficient and high-performance RF and microwave circuits with a short turnaround time

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio

    A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS

    Get PDF
    In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13-μm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 μm wide, 10 mm long, 20 μm thick), achieving a crosstalk of −64.4 dB. The probe base (5 × 9 mm2) implements dual-band recording and a 1

    Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology

    Get PDF
    The presented paper includes the design and implementation of a 65 nm CMOS low-noise amplifier (LNA) based on inductive source degeneration. The amplifier is realized with an active balun enabling a single-ended input which is an important requirement for low-cost system on chip implementations. The LNA has a tunable bandpass characteristics from 4.7 GHz up to 5.6 GHz and a continuously tunable gain from 22 dB down to 0 dB, which enables the required flexibility for multi-standard, multi-band receiver architectures. The gain and band tuning is realized with an optimized tunable active resistor in parallel to a tunable L-C tank amplifier load. The amplifier achieves an IIP3 linearity of -8dBm and a noise figure of 2.7 dB at the highest gain and frequency setting with a low power consumption of 10 mW. The high flexibility of the proposed LNA structure together with the overall good performance makes it well suited for future multi-standard low-cost receiver front-ends

    Design issues and experimental characterization of a continuously-tuned adaptive CMOS LNA

    Get PDF
    This paper presents the design implementation and experimental characterization of an adaptive Low Noise Amplifier (LNA) intended for multi-standard Radio Frequency (RF) wireless transceivers. The circuit —fabricated in a 90-nm CMOS technology— is a two-stage inductively degenerated common-source topology that combines PMOS varactors with programmable load to make the operation of the circuit continuously tunable. Practical design issues are analyzed, considering the effect of circuit parasitics associated to the chip package and integrated inductors, capacitors and varactors. Experimental measurements show a continuous tuning of NF and Sparameters within the 1.75-2.23GHz band, featuring NF19.6dB and IIP3> −9.8dBm, with a power dissipation < 23mW from a 1-V supply voltage.Ministerio de Ciencia e Innovación (FEDER) TEC2007-67247-C02-01/MICJunta de Andalucía, Consejo Regional de Innovación, ciencia y empresa TIC-253

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    A Novel (DDCC-SFG)-Based Systematic Design Technique of Active Filters

    Get PDF
    This paper proposes a novel idea for the synthesis of active filters that is based on the use of signal-flow graph (SFG) stamps of differential difference current conveyors (DDCCs). On the basis of an RLC passive network or a filter symbolic transfer function, an equivalent SFG is constructed. DDCCs’ SFGs are identified inside the constructed ‘active’ graph, and thus the equivalent circuit can be easily synthesized. We show that the DDCC and its ‘derivatives’, i.e. differential voltage current conveyors and the conventional current conveyors, are the main basic building blocks in such design. The practicability of the proposed technique is showcased via three application examples. Spice simulations are given to show the viability of the proposed technique

    Current-mode Biquadratic Universal Filter Design with Two Terminal Unity Gain Cells

    Get PDF
    A grounded parallel lossy active inductor and two current-mode (CM) universal filters are presented in this paper. All the circuits use two voltage followers (VFs) and a current follower (CF). The parallel lossy active inductor includes a grounded capacitor which is attractive in integrated circuit (IC) technology. The CM universal filters have one input and standard three outputs such as band-pass (BP), low-pass (LP) and high-pass (HP) responses. All-pass and notch outputs can be obtained by adding extra one CF. Suggested structures in this paper can be constructed with commercially available active devices such as AD844s. Non-ideal gain and intrinsic X-terminal parasitic resistor effects are examined. Several computer simulations with SPICE program and experimental results by employing AD844s are drawn to verify theoretical ones
    corecore