402 research outputs found

    ADAPT Project Publications Booklet

    Get PDF

    The Implementation and Validation of a Virtual Environment for Training Powered Wheelchair Manoeuvres

    Get PDF
    This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.Navigating a powered wheelchair and avoiding collisions is often a daunting task for new wheelchair users. It takes time and practice to gain the coordination needed to become a competent driver and this can be even more of a challenge for someone with a disability. We present a cost-effective virtual reality (VR) application that takes advantage of consumer level VR hardware. The system can be easily deployed in an assessment centre or for home use, and does not depend on a specialized high-end virtual environment such as a Powerwall or CAVE. This paper reviews previous work that has used virtual environments technology for training tasks, particularly wheelchair simulation. We then describe the implementation of our own system and the first validation study carried out using thirty three able bodied volunteers. The study results indicate that at a significance level of 5% then there is an improvement in driving skills from the use of our VR system. We thus have the potential to develop the competency of a wheelchair user whilst avoiding the risks inherent to training in the real world. However, the occurrence of cybersickness is a particular problem in this application that will need to be addressed

    The Remote Controllable Electric Wheelchair System combined Human and Machine Intelligence for Caregivers and Care Receivers

    Get PDF
    Thesis (Master of Science in Informatics)--University of Tsukuba, no. 41280, 2019.3.2

    Assessing the Impact of Multi-variate Steering-rate Vehicle Control on Driver Performance in a Simulation Framework

    Get PDF
    When a driver turns a steering-wheel, he or she normally expects the vehicle\u27s steering system to communicate an equivalent amount of signal to the road-wheels. This relationship is linear and occurs regardless of the steering-wheel\u27s position within its rotational travel. The linear steering paradigm in passenger vehicles has gone largely unchanged since mass production of passenger vehicles began in 1901. However, as more electronically-controlled steering systems appear in conjunction with development of autonomous steering functions in vehicles, an opportunity to advance the existing steering paradigms arises. The following framework takes a human-factors approach toward examining and evaluating alternative steering systems by using Modeling and Simulation methods to track and score human performance. Present conventional steering systems apply a linear relationship between the steering-wheel and the road wheels of a vehicle. The rotational travel of the steering-wheel is 900° and requires two-and-a-half revolutions to travel from end-stop to opposite end-stop. The experimental steering system modeled and employed in this study applies a dynamic curve response to the steering input within a shorter, 225° rotational travel. Accommodation variances, based on vehicle speed and steering-wheel rotational position and acceleration, moderate the apparent steering input to augment a more-practical, effective steering rate. This novel model follows a paradigm supporting the full range of steering-wheel actuation without necessitating hand repositioning or the removal of the driver\u27s hands from the steering-wheel during steering maneuvers. In order to study human performance disparities between novel and conventional steering models, a custom simulator was constructed and programmed to render representative models in a test scenario. Twenty-seven males and twenty-seven females, ranging from the ages of eighteen to sixty-five were tested and scored using the driving simulator that presented two successive driving test vignettes: One vignette using conventional 900° steering with linear response and the other employing the augmented 225° multivariate, non-linear steering. The results from simulator testing suggest that both males and females perform better with the novel system, supporting the hypothesis that drivers of either gender perform better with a system augmented with 225° multivariate, non-linear steering than with a conventional steering system. Further analysis of the simulated-driving scores indicates performance parity between male and female participants, supporting the hypothesis positing no significant difference in driver performance between male and female drivers using the augmented steering system. Finally, composite data from written questionnaires support the hypothesis that drivers will prefer driving the augmented system over conventional steering. These collective findings support justification for testing and refining novel steering systems using Modeling and Simulation methods. As a product of this particular study, a tested and open-sourced simulation framework now exists such that researchers and automotive designers can develop, as well as evaluate their own steering-oriented products within a valid human-factors construct. The open-source nature of this framework implies a commonality by which otherwisedisparate research and development work can be associated. Extending this framework beyond basic investigation to reach applications requiring morespecialized parameters may even impact drivers having special needs. For example, steeringsystem functional characteristics could be comparatively optimized to accommodate individuals afflicted with upper-body deficits or limited use of either or both arms. Moreover, the combined human-factors and open-source approaches distinguish the products of this research as a common and extensible platform by which purposeful automotive-industry improvements can be realized—contrasted with arbitrary improvements that might be brought about predominantly to showcase technological advancements

    Uma arquitetura de telerreabilitação baseada em realidade aumentada para apoiar o treinamento de usuários de cadeiras de rodas motorizadas

    Get PDF
    Many people worldwide have been experimenting a decrease in their mobility as a result of aging, accidents and degenerative diseases. In many cases, a Powered Wheelchair (PW) is an alternative help. Currently, in Brazil, patients can receive a PW from the Unified Health System, following prescription criteria. However, they do not have an appropriate previous training for driving the PW. Consequently, users might suffer accidents since a customized training protocol is not available. Nevertheless, due to financial and/or health limitations, many users are unable to attend a rehabilitation center. To overcome these limitations, we developed an Augmented Reality (AR) Telerehabilitation System Architecture based on the Power Mobility Road Test (PMRT), for supporting PW user’s training. In this system, the therapists can remotely customize and evaluate training tasks and the user can perform the training in safer conditions. Video stream and data transfer between each environment were made possible through UDP (User Datagram Protocol). To evaluate and present the system architecture potential, a preliminary test was conducted with 3 spinal cord injury participants. They performed 3 basic training protocols defined by a therapist. The following metrics were adopted for evaluation: number of control commands; elapsed time; number of collisions; biosignals and a questionary was used to evaluate system features by participants. Results demonstrate the specific needs of individuals using a PW, thanks to adopted (qualitative and emotional) metrics. Also, the results have shown the potential of the training system with customizable protocols to fulfill these needs. User’s evaluation demonstrates that the combination of AR techniques with PMRT adaptations, increases user’s well-being after training sessions. Furthermore, a training experience helps users to overcome their displacement problems, as well as for appointing challenges before large scale use. The proposed system architecture allows further studies on telerehabilitation of PW users.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorTese (Doutorado)Muitas pessoas em todo o mundo estão vivenciando uma diminuição de sua mobili- dade como resultado de envelhecimento, acidentes e doenças degenerativas. Em muitos casos, uma cadeira de rodas motorizada (CRM) é uma ajuda alternativa. Atualmente, no Brasil, os pacientes podem receber uma CRM do Sistema Único de Saúde, seguindo os critérios de prescrição. No entanto, eles não têm um treinamento prévio apropriado para dirigir a CRM. Conseqüentemente, os usuários podem sofrer acidentes, pois um protocolo de treinamento personalizado não está disponível. Além disto, devido a limi- tações financeiras e / ou de saúde, muitos usuários não podem comparecer a um centro de reabilitação. Para superar essas limitações, desenvolvemos uma arquitetura de sistema de telereabilitação com Realidade Aumentada (RA) baseado no PMRT (Power Mobility Road Test), para apoiar o treinamento de usuários de CRM. Nesse sistema, os terapeutas podem personalizar e avaliar remotamente as tarefas de treinamento e o usuário pode realizar o treinamento em condições mais seguras. O fluxo de vídeo e a transferência de dados entre cada ambiente foram possíveis através do UDP (User Datagram Protocol). Para avaliar e apresentar o potencial da arquitetura do sistema, foi realizado um teste preliminar de três participantes com lesão medular. Eles realizaram três protocolos básicos de treinamento definidos por um terapeuta. As seguintes métricas adotadas para avaliação foram: número de comandos de controle; tempo decorrido; número de colisões e biossinais. Além disso, um questionário foi usado para avaliar os recursos do sistema. Os resultados demonstram as necessidades específicas dos indivíduos que usam uma CRM, graças às métricas adotadas (qualitativas e emocionais). Além disso, os resultados mostraram o potencial do sistema de treinamento com protocolos personalizáveis para atender a essas necessidades. A avaliação do usuário demonstra que a combinação de técnicas de RA com adaptações PMRT aumenta o bem-estar do usuário após as sessões de treinamento. Além disso, esta experiência de treinamento ajuda os usuários a superar seus problemas de deslocamento, bem como a apontar desafios antes do uso em larga escala. A arquitetura de sistema proposta, permite estudos adicionais sobre a telerreabilitação de usuários de CRM

    Head-mounted augmented reality for explainable robotic wheelchair assistance

    Get PDF
    Robotic wheelchairs with built-in assistive fea- tures, such as shared control, are an emerging means of providing independent mobility to severely disabled individuals. However, patients often struggle to build a mental model of their wheelchair’s behaviour under different environmental conditions. Motivated by the desire to help users bridge this gap in perception, we propose a novel augmented reality system using a Microsoft Hololens as a head-mounted aid for wheelchair navigation. The system displays visual feedback to the wearer as a way of explaining the underlying dynamics of the wheelchair’s shared controller and its predicted future states. To investigate the influence of different interface design options, a pilot study was also conducted. We evaluated the acceptance rate and learning curve of an immersive wheelchair training regime, revealing preliminary insights into the potential beneficial and adverse nature of different augmented reality cues for assistive navigation. In particular, we demonstrate that care should be taken in the presentation of information, with effort-reducing cues for augmented information acquisition (for example, a rear-view display) being the most appreciated

    Virtual and Mixed Reality Support for Activities of Daily Living

    Get PDF
    Rehabilitation and training are extremely important process that help people who have suffered some form of trauma to regain their ability to live independently and successfully complete activities of daily living. VR and MR have been used in rehabilitation and training, with examples in a range of areas such as physical and cognitive rehabilitation, and medical training. However, previous research has mainly used non-immersive VR such as using video games on a computer monitor or television. Immersive VR Head-Mounted Displays were first developed in 1965 but the devices were usually large, bulky and expensive. In 2016, the release of low-cost VR HMDs allowed for wider adoption of VR technology. This thesis investigates the impact of these devices in supporting activities of daily living through three novel applications: training driving skills for a powered wheelchair in both VR and MR; and using VR to help with the cognitive rehabilitation of stroke patients. Results from the acceptability study for VR in cognitive rehabilitation showed that patients would be likely to accept VR as a method of rehabilitation. However, factors such as visual issues need to be taken into consideration. The validation study for the Wheelchair-VR project showed promising results in terms of user improvement after the VR training session but the majority of the users experienced symptoms of cybersickness. Wheelchair-MR didn’t show statistically significant results in terms of improvements but did show a mean average improvement compared to the control group. The effects of cybersickness were also greatly reduced compared to VR. We conclude that VR and MR can be used in conjunction with modern games engines to develop virtual environments that can be adapted to accelerate the rehabilitation and training of patients coping with different aspects of daily life
    • …
    corecore