176 research outputs found

    A Multi-User, Single-Authentication Protocol for Smart Grid Architectures

    Get PDF
    open access articleIn a smart grid system, the utility server collects data from various smart grid devices. These data play an important role in the energy distribution and balancing between the energy providers and energy consumers. However, these data are prone to tampering attacks by an attacker, while traversing from the smart grid devices to the utility servers, which may result in energy disruption or imbalance. Thus, an authentication is mandatory to efficiently authenticate the devices and the utility servers and avoid tampering attacks. To this end, a group authentication algorithm is proposed for preserving demand–response security in a smart grid. The proposed mechanism also provides a fine-grained access control feature where the utility server can only access a limited number of smart grid devices. The initial authentication between the utility server and smart grid device in a group involves a single public key operation, while the subsequent authentications with the same device or other devices in the same group do not need a public key operation. This reduces the overall computation and communication overheads and takes less time to successfully establish a secret session key, which is used to exchange sensitive information over an unsecured wireless channel. The resilience of the proposed algorithm is tested against various attacks using formal and informal security analysis

    An integrated security Protocol communication scheme for Internet of Things using the Locator/ID Separation Protocol Network

    Get PDF
    Internet of Things communication is mainly based on a machine-to-machine pattern, where devices are globally addressed and identified. However, as the number of connected devices increase, the burdens on the network infrastructure increase as well. The major challenges are the size of the routing tables and the efficiency of the current routing protocols in the Internet backbone. To address these problems, an Internet Engineering Task Force (IETF) working group, along with the research group at Cisco, are still working on the Locator/ID Separation Protocol as a routing architecture that can provide new semantics for the IP addressing, to simplify routing operations and improve scalability in the future of the Internet such as the Internet of Things. Nonetheless, The Locator/ID Separation Protocol is still at an early stage of implementation and the security Protocol e.g. Internet Protocol Security (IPSec), in particular, is still in its infancy. Based on this, three scenarios were considered: Firstly, in the initial stage, each Locator/ID Separation Protocol-capable router needs to register with a Map-Server. This is known as the Registration Stage. Nevertheless, this stage is vulnerable to masquerading and content poisoning attacks. Secondly, the addresses resolving stage, in the Locator/ID Separation Protocol the Map Server (MS) accepts Map-Request from Ingress Tunnel Routers and Egress Tunnel Routers. These routers in trun look up the database and return the requested mapping to the endpoint user. However, this stage lacks data confidentiality and mutual authentication. Furthermore, the Locator/ID Separation Protocol limits the efficiency of the security protocol which works against redirecting the data or acting as fake routers. Thirdly, As a result of the vast increase in the different Internet of Things devices, the interconnected links between these devices increase vastly as well. Thus, the communication between the devices can be easily exposed to disclosures by attackers such as Man in the Middle Attacks (MitM) and Denial of Service Attack (DoS). This research provided a comprehensive study for Communication and Mobility in the Internet of Things as well as the taxonomy of different security protocols. It went on to investigate the security threats and vulnerabilities of Locator/ID Separation Protocol using X.805 framework standard. Then three Security protocols were provided to secure the exchanged transitions of communication in Locator/ID Separation Protocol. The first security protocol had been implemented to secure the Registration stage of Locator/ID separation using ID/Based cryptography method. The second security protocol was implemented to address the Resolving stage in the Locator/ID Separation Protocol between the Ingress Tunnel Router and Egress Tunnel Router using Challenge-Response authentication and Key Agreement technique. Where, the third security protocol had been proposed, analysed and evaluated for the Internet of Things communication devices. This protocol was based on the authentication and the group key agreement via using the El-Gamal concept. The developed protocols set an interface between each level of the phase to achieve security refinement architecture to Internet of Things based on Locator/ID Separation Protocol. These protocols were verified using Automated Validation Internet Security Protocol and Applications (AVISPA) which is a push button tool for the automated validation of security protocols and achieved results demonstrating that they do not have any security flaws. Finally, a performance analysis of security refinement protocol analysis and an evaluation were conducted using Contiki and Cooja simulation tool. The results of the performance analysis showed that the security refinement was highly scalable and the memory was quite efficient as it needed only 72 bytes of memory to store the keys in the Wireless Sensor Network (WSN) device

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    AUTHENTICATED KEY ESTABLISHMENT PROTOCOL FOR CONSTRAINED SMART HEALTHCARE SYSTEMS BASED ON PHYSICAL UNCLONABLE FUNCTION

    Get PDF
    Smart healthcare systems are one of the critical applications of the internet of things. They benefit many categories of the population and provide significant improvement to healthcare services. Smart healthcare systems are also susceptible to many threats and exploits because they run without supervision for long periods of time and communicate via open channels. Moreover, in many implementations, healthcare sensor nodes are implanted or miniaturized and are resource-constrained. The potential risks on patients/individuals’ life from the threats necessitate that securing the connections in these systems is of utmost importance. This thesis provides a solution to secure end-to-end communications in such systems by proposing an authenticated key establishment protocol. The main objective of the protocol is to examine how physical unclonable functions could be utilized as a lightweight root of trust. The protocol’s design is based on rigid security requirements and inspired by the vulnerability of physical unclonable function to machine learning modeling attacks as well as the use of a ratchet technique. The proposed protocol verification and analysis revealed that it is a suitable candidate for resource-constrained smart healthcare systems. The proposed protocol’s design also has an impact on other important aspects such as anonymity of sensor nodes and gateway-lose scenario

    Access Authentication Via Blockchain in Space Information Network

    Get PDF
    These authors contributed equally to this work. Abstract Space Information Network (SIN) has significant benefits of providing communication anywhere at any time. This feature offers an innovative way for conventional wireless customers to access enhanced internet services by using SIN. However, SIN's characteristics, such as naked links and maximum signal latency, make it difficult to design efficient security and routing protocols, etc. Similarly, existing SIN authentication techniques can't satisfy all of the essentials for secure communication, such as privacy leaks or rising authentication latency. The article aims to develop a novel blockchain-based access authentication mechanism for SIN. The proposed scheme uses a blockchain application, which has offered anonymity to mobile users while considering the satellites' limited processing capacity. The proposed scheme uses a blockchain application, which offers anonymity to mobile users while considering the satellites' limited processing capacity. The SIN gains the likelihood of far greater computational capacity devices as technology evolves. Since authenticating in SIN, the technique comprises three entities: low Earth orbit, mobile user, and network control centre. The proposed mutual authentication mechanism avoids the requirement of a ground station, resulting in less latency and overhead during mobile user authentication. Finally, the new blockchain-based authentication approach is being evaluated with AVISPA, a formal security tool. The simulation and performance study results illustrate that the proposed technique delivers efficient security characteristics such as low authentication latency, minimal signal overhead and less computational cost with group authentication
    • …
    corecore