1,423 research outputs found

    The design and control of an actively restrained passive mechatronic system for safety-critical applications

    Get PDF
    Development of manipulators that interact closely with humans has been a focus of research in fields such as robot-assisted surgery and haptic interfaces for many years. Recent introduction of powered surgical-assistant devices into the operating theatre has meant that robot manipulators have been required to interact with both patients and surgeons. Most of these manipulators are modified industrial robots. However, the use of high-powered mechanisms in the operating theatre could compromise safety of the patient, surgeon, and operating room staff. As a solution to the safety problem, the use of actively restrained passive arms has been proposed. Clutches or brakes at each joint are used to restrict the motion of the end-effector to restrain it to a pre-defined region or path. However, these devices have only had limited success in following pre-defined paths under human guidance. In this research, three major limitations of existing passive devices actively restrained are addressed. [Continues.

    Characterization of a Contact-Stylus Surface Digitization Method Using Collaborative Robots: Accuracy Evaluation in the Context of Shoulder Replacement or Resurfacing

    Get PDF
    Total shoulder arthroplasty (TSA) is the third most common joint replacement. While robot-assisted hip and knee replacement technologies have enjoyed extensive development, this has been limited in the upper limb. This work focused on quantifying the localization accuracy of a robotic system, and evaluating its efficacy in the context of TSA. A collaborative robot was fitted with a stylus tip to perform manual surface digitizations using the robot’s encoder output. In the first experiment, two precision-machined master cubes, representing the working volume around a glenoid structure, were used for system validation. Next, cadaveric glenoids were digitized and compared to a ‘gold standard’ laser scanner. Digitization errors were 0.37±0.27 mm, showing that collaborative robotics can be used for osseous anatomy digitization. This thesis presents two novel concepts: 1) use of collaborative robotics for manually operated surface digitizing, and 2) optical fiducial technique, allowing registration between a laser scanner and stylus digitizer

    PKM mechatronic clamping adaptive device

    Get PDF
    This study proposes a novel adaptive fixturing device based on active clamping systems for smart micropositioning of thin-walled precision parts. The modular architecture and the structure flexibility make the system suitable for various industrial applications. The proposed device is realized as a Parallel Kinematic Machine (PKM), opportunely sensorized and controlled, able to perform automatic error-free workpiece clamping procedures, drastically reducing the overall fixturing set-up time. The paper describes the kinematics and dynamics of this mechatronic system. A first campaign of experimental trails has been carried out on the prototype, obtaining promising results

    System design of a quadrupedal galloping machine

    Full text link
    In this paper we present the system design of a machine that we have constructed to study a quadrupedal gallop gait. The gallop gait is the preferred high-speed gait of most cursorial quadrupeds. To gallop, an animal must generate ballistic trajectories with characteristic strong impacts, coordinate leg movements with asymmetric footfall phasing, and effectively use compliant members, all the while maintaining dynamic stability. In this paper we seek to further understand the primary biological features necessary for galloping by building and testing a robotic quadruped similar in size to a large goat or antelope. These features include high-speed actuation, energy storage, on-line learning control, and high-performance attitude sensing. Because body dynamics are primarily influenced by the impulses delivered by the legs, the successful design and control of single leg energetics is a major focus of this work. The leg stores energy during flight by adding tension to a spring acting across an articulated knee. During stance, the spring energy is quickly released using a novel capstan design. As a precursor to quadruped control, two intelligent strategies have been developed for verification on a one-legged system. The Levenberg-Marquardt on-line learning method is applied to a simple heuristic controller and provides good control over height and forward velocity. Direct adaptive fuzzy control, which requires no system modeling but is more computationally expensive, exhibits better response. Using these techniques we have been successful in operating one leg at speeds necessary for a dynamic gallop of a machine of this scale. Another necessary component of quadruped locomotion is high-resolution and high-bandwidth attitude sensing. The large ground impact accelerations, which cause problems for any single traditional sensor, are overcome through the use of an inertial sensing approach using updates from optical sensors and vehicle kinematics

    A novel hardware approach to integrating active and passive rehabilitation in a single exoskeleton

    Get PDF
    The proposed exoskeleton is based on the elbow joint where patients can have active and passive rehabilitation in a single structure without changing its configuration. The structural formation of the exoskeleton has been designed in such a way that it offers two working regions namely; actuator based active rehabilitation in the first phase and passive rehabilitation in the second phase. The solution for integrating these two phases has been implemented using an innovative passive locking mechanism which uses a spring-based system for transformation. The stiffness of the spring is utilized to switch between active and passive rehabilitation regions. Besides this there are some other advantages this exoskeleton offers such as reduction of the actuation torque as well as ease of control. The paper is divided into three parts: the first part describes the existing designs, the second part gives an overview of the developed mechanism with structural description and the last part provides the solution with technical specification

    Increase of Singularity-Free Zones in the Workspace of Parallel Manipulators Using Mechanisms of Variable Structure

    Get PDF
    International audienceThis paper is focused on the study of singularity of planar parallel manipulators taking into account the force transmission, i.e. study of singularity of planar manipulator by introducing the force transmission factor. Thus the singularity zones in the workspace of the manipulator are defined not only by kinematic criterions from the theoretical perfect model of the manipulator but also by the quality of force transmission. For this purpose, the pressure angle is used as an indicator of force transmission. The optimal control of the pressure angle for a given trajectory of the manipulator is realized by means of legs with variable structure. The suggested procedure to determination of the optimal structure of the planar parallel manipulator 3-RPR is illustrated by two numerical simulations
    • …
    corecore