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1. Introduction      
 

Global Stiffness design and optimization of parallel mechanisms can be a difficult and time-
consuming exercise in parallel robot design, especially when the variables are multifarious 
and the objective functions are too complex. To address this issue, optimization techniques 
based on kinetostatic model and genetic algorithms are investigated as the effective criteria. 
First, a 5-DOF parallel mechanism with a passive constraining leg and five identical legs 
with prismatic actuators for machine tool is proposed, and its corresponding inverse 
kinematics, Jacobian matrices and global velocity equation are derived. Second, with the 
kinetostatic model, the mean value and the standard deviation of the trace of the global 
compliance distribution are proposed as these two kinetostatic performance indices. Finally, 
the effectiveness of this optimization design methodology for global stiffness indices is 
validated with simulation. 
Compared with traditional serial manipulators, a parallel robot manipulator offers different 
potential benefits, including high rigidity, high accuracy, and high loading capacities. The 
parallel robot manipulator is used for applications where the demand on workspace and 
manoeuvrability is relatively low, while the dynamic loading is severe, and high speed and 
precision motions are primarily required. These applications include parallel kinematic 
machines (PKMs), aircraft flight simulators, telescope positioning, position tracker, and 
medical devices (Zhang & Gosselin, 2000; Dunlop & Jones, 1999; Carretero & Podhorodeski, 
2000; Staicu et al., 2006; Zhang & Wang, 2000; Liu et al., 2005). Past research and 
development efforts with parallel robot manipulators have shown the ever-increasing 
demand on the robot’s rigidity which is directly related to the system stiffness. In order to 
increase the production, a parallel manipulator which is capable of high speed operations 
with optimal rigidity is necessary. 
Recently, researchers have been trying to utilize these advantages to develop parallel robot 
based multi-axis machining tools and precision assembly tools. Since most machining 
operations only require a maximum of five axes, new configurations with less than six axes 
would be more appropriate (Bi et al., 2005). A 5-DOF parallel mechanism with a passive 
constraining leg and five identical legs with prismatic actuators for machine tool is proposed 
in this work. Kinetostatic analysis is essential for PKMs. A great deal of work so far has been 
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done on kinetostatic analysis that has direct application to PKMs (Birglen & Gosselin, 2004; 
Chablat & Angeles, 2002; Zhang & Gosselin, 2002), the issue of how to optimize the global 
stiffness based on kinetostatic modelling has not been well addressed. Two global 
compliance indices (kinetostatic performance indices) are introduced in this study, namely, 
the mean value and the standard deviation of the trace of the generalized stiffness matrix. 
The mean value represents the average stiffness of the PKMs over the workspace, while the 
standard deviation indicates the stiffness fluctuation relative to the mean value. 
Many scholars have studied on optimum design of robot manipulators (Bergamaschi et al, 
2006; Stock & Miller, 2003; Rout & Mittal, 2008; Ceccarelli & Lanni, 2004). Lum et al. 
(Mitchell et al., 2006) presented kinematic optimization to confirm the smallest configuration 
that would satisfy the workspace requirements for a lightweight and compact surgical 
manipulator. Chablat and Angeles (Chablat & Angeles, 2002) investigated on optimum 
dimensioning of revolute-coupled planar manipulators based on the concept of distance of 
Jacobian matrix to a given isotropic matrix which was used as a reference model. Zhao et al. 
(Zhao et al., 2007) exploited the least number method of variables to optimize the leg length 
of a spatial parallel manipulator. Boeij et al. (Boeij et al., 2008) proposed numerical 
integration and sequential quadratic programming method for optimization of a contactless 
electromagnetic planar 6-DOF actuator with manipulator on top of the floating platform. 
However, the traditional optimization methods only handle a few geometric variables due 
to the lack of convergence of the optimization algorithm. Genetic algorithms have applied 
the powerful and broadly applicable stochastic search methods and optimization 
techniques, and they can escape from local optima (Holland, 1975).  
The remainder of the chapter is organized as follows. In Section 2, the structure of the tripod 
parallel manipulator and its parametric description is introduced. In Section 3, the 
kinetostatic analysis and stiffness modelling process is derived. In Section 4, the application 
of the integration approach is conducted to optimize the performance indices. Finally, the 
conclusions are given in Section 5. 

 
2. Structure of the parallel manipulator 

In this work, a 5-DOF parallel mechanism and its joint distributions both on the base and on 
the platform are shown in Figures 1, 2. This mechanism consists of six kinematic chains, 
including five variable length legs with identical topology and one passive leg which 
connect the fixed base to the moving platform. In this 5-DOF parallel mechanism, the 
kinematic chains associated with the five identical legs consist, from base to platform, of a 
fixed Hooke joint, a moving link, an actuated prismatic joint, a second moving link and a 
spherical joint attached to the platform. The sixth chain (central leg) connecting the base 
centre to the platform is a passive constraining leg and has architecture different from the 
other chains. It consists of a revolute joint attached to the base, a moving link, a Hooke joint, 
a second moving link and another Hooke joint attached to the platform. This last leg is used 
to constrain the motion of the platform to only five degrees of freedom. This mechanism 
could be built using only five legs, i.e., by removing one of the five identical legs and 
actuating the first joint of the passive constraining leg. However, the uniformity of the 
actuation would be lost. 
 

 

 

Fig. 1. CAD model of the 5-DOF parallel manipulator (by Gabriel Cote) 

 

Fig. 2. Schematic representation of the 5-DOF parallel mechanism 
 
Assume that the centres of the joints located on the base and on the platform are located on 
circles with radii Rb and Rp, respectively. A fixed reference frame O-xyz is attached to the 
base of the mechanism and a moving coordinate frame P-x’y’z’ is attached to the platform. 
In Figure 2, the points of attachment of the actuated legs to the base are represented with Bi 
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and the points of attachment of all legs to the platform are represented by Pi, with i=1...5. 
Point P is the reference point on the platform and its position coordinate is P(x,y,z). 
The Cartesian coordinates of the platform are given by the position of point P with respect 
to the fixed frame, and the orientation of the platform (orientation of frame P – x’y’z’ with 
respect to the fixed frame), represented by rotation matrix Q. 
If the coordinates of the point Pi in the moving reference frame are represented with 
(xi’,yi’,zi’) and the coordinates of the point Bi in the fixed frame are represented by vector bi, 
then for i=1,...,5, one has 

 , , T
i i i ix y zp                                                          (1) 

 , , T
i i i ix y z   r                                                         (2) 

 , , Tx y zp                                                                (3) 

    i , ,
T

ix iy izb b b   b                                                       (4) 

Where Pi is the position vector of point Pi expressed in the fixed coordinate frame whose 
coordinates are defined as (xi,yi,zi), ri’ is the position vector of point Pi expressed in the 
moving coordinate frame, and P is the position vector of point P expressed in the fixed 
frame as defined above. 
One can then write 

i i
p = p + Qr , 1, ,5i                                                  (5) 

Where, Q is the rotation matrix from the fixed reference frame to the moving coordinate 
frame. 
Subtracting vector bi from both sides of Eq. (5), one obtains 

i i i i
  p b = p Qr b , 1, ,5i                                          (6) 

Then, taking the Euclidean norm on both sides of Eq. (6), one has 

i i i i i
    p b p Qr b ρ , 1, ,5i                                     (7) 

Where iρ  is the length of the ith leg, i.e., the value of the ith joint coordinate. The solution of 
the inverse kinematic problem for the 5-DOF manipulator is therefore completed and can be 
written as 

2 T
i i i i i 1, ,5i   ρ (p b ) (p b ),                                        (8) 

Now considering the parallel component of the mechanism, the parallel Jacobian matrix can 
be obtained by differentiating Eq. (8) with respect to time, one obtains 

T
i i i i i , 1, ,5i ρ ρ = (p b ) p                                              (9) 

 

Since one has 

Q Q                                                                  (10) 

with 

3 2

3 1

2 1

0
1 0

0

 
 
 

 
     
  

ω                                           (11)                

differentiating Eq. (5), one obtains 

i i
   p p Qr

                                                            (12) 

Then, Eq. (9) can be rewritten as 

T T
i i i i i i i[( ) ( )] , 1, ,5i   ρ ρ = (p b ) p Qr × p b ω                        (13)                  

Hence, one can write the velocity equation as 

A B t                                                                  (14) 

where vector   is defined as 

 ...... T 1 2 5ρ ρ ρ ρ                                                       (15)                        

and 

1 2 5]
TA [m m m                                               (16) 

1 2 5[ ]diagB ρ ρ ρ                                                (17) 

where im  is a vector with 6 components, which can be expressed as 

i i

i i

( ) ( )
( )
i

i

   
   

Qr p b
m

p b
                                                (18)  
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3. Kinetostatic analysis and stiffness modelling 

 
Fig. 3. The passive constraining leg with rigid links 
 

i ai bi αi θi 

0 0 0 90° 0 

1 lpassive,1 0 0 θpassive,1 

2 0 0 90° θpassive,2 

3 lpassive,2 0 0 θpassive,3 

4 0 0 90° θpassive,4 

5 0 0 0 θpassive,5 
Table 1. The DH parameters for the passive constraining leg with rigid links 
 
From Figure 3, one can obtain the Danavit-Hartenberg parameters of the passive leg as in 
Table 1. We take the Cartesian coordinate frame O, and define α0=90°, θ0=0°, then one 
obtains 

,0

1 0 0
0 0 1
0 1 0

passive

 
   
  

Q                                                    (19) 

 

The expressions for vectors ,passive ie and ,passive ir are then obtained following the procedure 

given above. 
Stiffness is a very important factor in many applications including machine tool design, as it 
affects the precision of machining. Induced vibration is explicitly linked to machine tool 
stiffness. For a metal cutting machine tool, high stiffness allows higher machining speeds 
and feeds while providing the desired precision, thus reduce vibration (such as chatter). 
Therefore, to build and study a general stiffness model of parallel mechanisms is very 
important for machine tool design. 
The parallel mechanisms studied here comprise two main components, namely, the 
constraining leg - which can be considered as a serial mechanism - and the actuated legs 
acting in parallel. 
Considering the constraining leg, one can write 

passive passive J θ t                                                      (20) 

where 
TT T   t p  is the twist of the platform, with ω the angular velocity of the 

platform and 

passive passive,1 passive,5

T
  θ = θ … θ                                    (21)

passive,1 passive,2 passive,3 passive,4 passive,5
passive

passive,1 passive,1 passive,2 passive,2 passive,3 passive,3 passive,4 passive,4 passive,5 passive,5

 
 
 

e e e e e
J =

e ×r e ×r e ×r e ×r e ×r
    

(22) 

is the joint velocity vector associated with the constraining leg. Matrix Jpassive is the Jacobian 
matrix of the constraining leg considered as a serial 5-dof mechanism. 
 
According to the principle of virtual work, one has  

T Tτ ρ w t                                                               (23) 

Where τ is the vector of actuator forces applied at each actuated joint and w is the wrench 
(torque and force) applied to the platform and where it is assumed that no gravitational 
forces act on any of the intermediate links. In practice, gravitational forces may often be 
neglected in machine tool applications. 
One has TT T   w n f where n and f are respectively the external torque and force 

applied to the platform. 
Rearranging Eq. (14) and substituting it into Eq. (23), one obtains 

T 1 T-τ B At  w t                                                            (24) 

Now, substituting Eq. (20) into Eq. (24), one has 

T T
passive passive passive passive

-1τ B AJ θ = w J θ                            (25) 
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The latter equation must be satisfied for arbitrary values of passive
 and hence one can write 

T T T
passive passive( ) -AJ B τ J w                                              (26) 

The latter equation relates the actuator forces to the Cartesian wrench, w, applied at the end-
effector in static mode. Since all links are assumed rigid, the compliance of the mechanism 
will be induced solely by the compliance of the actuators. An actuator compliance matrix C 
is therefore defined as 

Cτ = Δρ                                                               (27) 

Where τ is the vector of actuated joint forces and Δρ is the induced joint displacement. 
Matrix C is a (n×n) diagonal matrix whose ith diagonal entry is the compliance of the ith 
actuator. 
Now, Eq. (26) can be rewritten as 

T -T T
passive passive( )τ B AJ J w                                          (28) 

The substitution of Eq. (28) into Eq. (27) then leads to 

T -T T
passive passiveΔ ( )ρ = CB AJ J w                                         (29) 

Moreover, for a small displacement vector Δρ, Eq. (14) can be written as 

Δ Δ -1ρ B A c                                                            (30) 

where ΔC is a vector of small Cartesian displacement and rotation defined as 

TT TΔ Δ Δ  c = p α                                                     (31) 

in which Δα, the change of orientation, is defined from Eqs. (10) and (11) as 

( )Tvect   QQ                                                     (32) 

where ΔQ is the variation of the rotation matrix and vect(.) is the vector linear invariant of 
its matrix argument. 
Similarly, Eq. (20) can also be written, for small displacements, as 

T
passive passiveΔ ΔJ θ c                                                   (33) 

where Δpassive is a vector of small variations of the joint coordinates of the constraining leg. 
Substituting Eq. (29) into Eq. (30), one obtains 

-1 T -T T
passive passive( ) B A c CB AJ J w                                      (34) 

Premultiplying both sides of Eq. (34) by B, and substituting Eq. (33) into Eq. (34), one 
obtains, 

 

T -T T
passive passive passive passiveΔ ( )AJ θ = BCB AJ J w                                  (35) 

Then, pre-multiplying both sides of Eq. (35) by (AJpassive)-1, one obtains, 

-1 T -T T
passive passive passive passiveΔ =( ) ( )θ AJ BCB AJ J w                           (36) 

and finally, premultiplying both sides of Eq. (36) by Jpassive, one obtains, 

 -1 T -T T
passive passive passive passiveΔ ( ) ( )c = J AJ BCB AJ J w                         (37) 

Hence, one obtains the Cartesian compliance matrix as 
-1 T -T T

passive passive passive passive( ) ( )cC = J AJ BCB AJ J                              (38) 

with 

cΔc = C w                                                               (39) 
where Cc is a symmetric positive semi-definite (6×6) matrix, as expected. 
It is noted that, in non-singular configurations, the rank of B, C and Jpassive is five, and hence 
the rank of Cc will be five, depending on the degree of freedom of the mechanism. Hence, 
the nullspace of matrix Cc will not be empty and there will exist a set of vectors w that will 
induce no Cartesian displacement ΔC. This corresponds to the wrenches that are supported 
by the constraining leg, which is considered infinitely rigid. These wrenches are orthogonal 
complements of the allowable twists at the platform. Hence, matrix Cc  cannot be inverted 
and this is why it was more convenient to use compliance matrices rather than stiffness 
matrices in the above derivation. 
Furthermore, the diagonal elements of the stiffness matrix are used as the system stiffness 
value. These elements represent the pure stiffness in each direction, and they reflect the 
rigidity of machine tools more clearly and directly. The objective function for mean value 
and standard deviation of system stiffness can be written as: 

c-compliance E(tr( ))μ = C                                            (40)                       

c-compliance STD(tr( ))σ = C                                            (41)                    
Where E(.) and STD(.) represent the mean value and the standard deviation respectively, and 
tr is the trace of the stiffness matrix. 

 
4. Design optimization 

4.1 Principles 
We propose the mean value and the standard deviation of the trace of the generalized 
compliance matrix as the design indices. The purpose of design optimization is to evolve the 
performance indices by adjusting the structure parameters. It is noted that the trace of the 
matrix is an invariant of the matrix, so the distribution of the system stiffness/compliance is 
the distribution of the trace. The mean value represents the average compliance of the 
parallel robot manipulator over the workspace, while the standard deviation indicates the 
compliance fluctuation relative to the mean value. In general the lower the mean value the 
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less the deformation. Similarly, the lower the standard deviation the more uniform the 
stiffness distribution over the workspace. The suitability of these design indices for the 
system stiffness can be examined by developing their relationship with the stiffness of links 
and joints. We will further study a design optimization based on the compliance indices.  
 Since only a few geometric parameters can be handled due to the lack of convergence, this 
arises from the fact that traditional optimization methods use a local search by a convergent 
stepwise procedure, e.g. gradient, Hessians, linearity, and continuity, which compares the 
values of the next points and moves to the relative optimal points (Gosselin & Guillot, 1991). 
Global optima can be found only if the problem possesses certain convexity properties 
which essentially guarantee that any local optima are a global optimum. In other words, 
conventional methods are based on a point-to-point rule; it has the danger of falling in local 
optima. The genetic algorithms are based on the population-to-population rule; it can escape 
from local optima.  

Genetic algorithms have the advantages of robustness and good convergence properties: 
• They require no knowledge or gradient information about the optimization problems; 

only the objective function and corresponding fitness levels influence the directions of 
search. 

• Discontinuities present on the optimization problems have little effect on the overall 
optimization performance. 

• They are generally more straightforward to introduce, since no restrictions for the 
definition of the objective function exist. 

• They use probabilistic transition rules, not deterministic ones. 
• They perform well for large-scale optimization problems. 

 
4.2 Optimization 
In order to obtain the maximum global stiffness, the global compliance (since there are 
infinite terms among the diagonal stiffness elements) is minimized. As Cartesian stiffness is 
a monotonically increasing function of the link and actuator stiffness, the optimum solution 
always corresponds to the maximum link or actuator stiffness and these parameters are not 
included in the optimization variables. Seven geometrical parameters are selected as the 
pending optimization variables in order to obtain the optimal system stiffness, i.e.  

p b 61 62 p b[R ,R ,l ,l ,z,T ,T ]s =                                                    (42) 

where Rp is the radius of the platform, Rb is the radius of the base, l61, l62 are the link length 
for the 1st and 2nd link of the passive leg, respectively,z is the height of the platform, Tp,Tb  
are the angles to determine the attachment points on the base and on the platform, and their 
bounds are 

61 62

[0.10, 0.14] , [0.20, 0.26] ,

[0.52, 0.70] , [0.52, 0.70] ,
[0.66, 0.70] ,
[18, 26] , [38, 48]

p b

p b

R m R m
l m l m
z m
T T

 

 



  

 
Some genetic parameters and operators are set as: 
Variable representation format: real value 
Selection: roulette wheel approach 

 

Crossover operator: multi-point crossover 
Crossover rate: 0.9 
Mutation operator: multiple-point bit mutation  
Mutation rate: 0.005 
Population size: 200 
Maximum number of generations: 40 
The input vectors are the random arrangement of discretization values from the seven 
structure variables. The objective function is defined as 

( ( )) ( ( ))c cObjFun E tr STD tr     C C                                     (43) 
The evolution of system stiffness/compliance value arises from the optimization of 
architecture and behaviour variables in the implementation process of genetic algorithm as 
shown in Figure 4. By simultaneously adjusting the seven parameters, optimization results 
are obtained after 40 generations as follows 

61 62[ , , , , , , ]

[0.14 ,0.209 ,0.52 ,0.7 ,0.66 ,18 ,48 ]
p b p bR R l l z T T

m m m m m





s
 

 

and the compliances in each direction are 

 

, , , , ,

, , , , ,0.0363 0.0293 0.0381 0.0413 0.0177 0.0002

x y z x y z           


κ  

Figure 5 describes the evolution of the best individual, and the sum of the compliances is 
convergent at 0.0691 m/N after 40 generations.  

 
Fig. 4. The evolution of geometrical parameters for stiffness index 
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Before optimization, the parameter values of the mechanism were given as 

  
61 62[ , , , , , , ]

[0.11 ,0.25 ,0.68 ,0.52 ,0.68 ,22 ,42 ]
p b p bR R l l z T T

m m m m m
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
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and the compliances in each direction were 

 

, , , , ,

0.1224,0.1971,0.7151,0.0640,0.0198,0.0003

x y z x y z           


     κ  

the compliance sum is 0.6416 m/N. After optimization, the compliance sum is improved 9.3 
times.  

 
Fig. 5. The evolution of the performance 

 
5. Conclusions  

This chapter focused on the stiffness optimization of a spatial 5-DOF parallel manipulator. It 
is shown that the mean value and the standard deviation of the trace of the generalized 
compliance matrix can not only be used to characterize the kinetostatic behaviour of PKMs 
globally, but can be used for design optimization. This methodology paves the way for 
providing not only the effective guidance, but also a new approach of dimensional synthesis 
for the optimal design of general parallel mechanisms. 
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