113 research outputs found

    Therapeutic capsule endoscopy: Opportunities and challenges

    Get PDF
    10.1260/2040-2295.2.4.459Journal of Healthcare Engineering24459-47

    Implantable slot antenna with substrate integrated waveguide for biomedical applications

    Get PDF
    This work presents a new design of capsule slot antenna with substrate integrated waveguide (SIW) for wireless body area networks (WBANs) operating at the range of (2.5-4 GHz) which is located in the body area networks (BAN) standard in IEEE802.15.6. The proposed antenna was designed for WBANs. The substrate is assumed to be from Rogers 5880 with relative permittivity of 2.2, and thickness of 0.787 mm. The ground and the patch are created from annealed copper while the capsule is assumed to be a plastic material of medical grade polycarbonate. The antenna designed and summited using computer simulation technology (CST) software. A CST voxel model was used to study the performance of SIW capsule antenna and the ability of the band (2.5-4 GHz). Results indicated a wide bandwidth of 1.5 GHz between the range of (2.5-4) GHz at 3.3 GHz as center frequency, with return loss with more than -24.52 dB, a gain of -18.2 dB, voltage standing wave ratio (VSWR) of 1.17, and front-to-back ratio (FBR) of 10.07 dB. Through simulation, all considerable parameters associated with the proposed antenna including return loss, bandwidth, operating frequency, VSWR less than 2, radiation pattern were examined. Regarding size, gain, and frequency band, the proposed antenna is located with the standards of implantable medical devices (IMDs)

    Technology of swallowable capsule for medical applications

    Get PDF
    Medical technology has undergone major breakthroughs in recent years, especially in the area of the examination tools for diagnostic purposes. This paper reviews the swallowable capsule technology in the examination of the gastrointestinal system for various diseases. The wireless camera pill has created a more advanced method than many traditional examination methods for the diagnosis of gastrointestinal diseases such as gastroscopy by the use of an endoscope. After years of great innovation, commercial swallowable pills have been produced and applied in clinical practice. These smart pills can cover the examination of the gastrointestinal system and not only provide to the physicians a lot more useful data that is not available from the traditional methods, but also eliminates the use of the painful endoscopy procedure. In this paper, the key state-of-the-art technologies in the existing Wireless Capsule Endoscopy (WCE) systems are fully reported and the recent research progresses related to these technologies are reviewed. The paper ends by further discussion on the current technical bottlenecks and future research in this area

    Conformal antenna-based wireless telemetry system for capsule endoscopy

    Get PDF
    Capsule endoscopy for imaging the gastrointestinal tract is an innovative tool for carrying out medical diagnosis and therapy. Additional modalities beyond optical imaging would enhance current capabilities at the expense of denser integration, due to the limited space available within the capsule. We therefore need new designs and technologies to increase the smartness of the capsules for a given volume. This thesis presents the design, manufacture and performance characterisation of a helical antenna placed conformally outside an endoscopic capsule, and the characterisation in-silico, in-vitro and in-vivo of the telemetry system in alive and euthanised pigs. This method does not use the internal volume of the capsule, but does use an extra coating to protect the antenna from the surrounding tissue and maintain biocompatibility for safe use inside the human body. The helical antenna, radiating at 433 MHz with a bandwidth of 20 MHz within a muscle-type tissue, presents a low gain and efficiency, which is typical for implantable and ingestible medical devices. Telemetry capsule prototypes were simulated, manufactured and assembled with the necessary internal electronics, including a commercially available transceiver unit. Thermistors were embedded into each capsule shell, to record any temperature increase in the tissue surrounding the antenna during the experiments. A temperature increase of less than 1°C was detected for the tissue surrounding the antenna. The process of coating the biocompatible insulation layer over the full length of the capsule is described in detail. Data transmission programmes were established to send programmed data packets to an external receiver. The prototypes radiated at different power levels ranging from -10 to 10 dBm, and all capsules demonstrated a satisfactory performance at a data rate of 16 kbps during phantom and in-vivo experiments. Data transmission was achieved with low bit-error rates below 10-5. A low signal strength of only -54 dBm still provided effective data transfer, irrespective of the orientation and location of the capsule, and this successfully demonstrated the feasibility of the system

    Therapeutic capsule endoscopy: Opportunities and challenges

    Get PDF
    ABSTRACT The increasing demand for non-invasive (or less-invasive) monitoring and treatment of medical conditions has attracted both physicians and engineers to work together and investigate new methodologies. Wireless capsule endoscopy is a successful example of such techniques which has become an accepted routine for diagnostic inspection of the gastrointestinal tract. This method offers a non-invasive alternative to traditional endoscopy and provides the opportunity for exploring distal areas of the small intestine which are otherwise not accessible. Despite these advantages, wireless capsule endoscopy is still limited in functionality compared to traditional endoscopy. Wireless capsule endoscopes with advanced functionalities, such as biopsy or drug delivery, are highly desirable. In this article, the current status of wireless capsule endoscopy is reviewed together with some of its possible therapeutic applications as well as the existing challenges

    In Vivo Characterization of a Wireless Telemetry Module for a Capsule Endoscopy System Utilizing a Conformal Antenna

    Get PDF
    This paper describes the design, fabrication, packaging, and performance characterization of a conformal helix antenna created on the outside of a 10 mm ×30 mm capsule endoscope designed to operate at a carrier frequency of 433 MHz within human tissue. Wireless data transfer was established between the integrated capsule system and an external receiver. The telemetry system was tested within a tissue phantom and in vivo porcine models. Two different types of transmission modes were tested. The first mode, replicating normal operating conditions, used data packets at a steady power level of 0 dBm, while the capsule was being withdrawn at a steady rate from the small intestine. The second mode, replicating the worst-case clinical scenario of capsule retention within the small bowel, sent data with stepwise increasing power levels of –10, 0, 6, and 10 dBm, with the capsule fixed in position. The temperature of the tissue surrounding the external antenna was monitored at all times using thermistors embedded within the capsule shell to observe potential safety issues. The recorded data showed, for both modes of operation, a low error transmission of 10−3 packet error rate and 10−5 bit error rate and no temperature increase of the tissue according to IEEE standards

    Prolonged energy harvesting for ingestible devices

    Get PDF
    Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged-monitoring systems for patients. Although previous biocompatible power-harvesting systems for in vivo use have demonstrated short (minute-long) bursts of power from the stomach, little is known about the potential for powering electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW mm⁻² of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell could provide power to the next generation of ingestible electronic devices for prolonged periods of time inside the gastrointestinal tract.National Institutes of Health (U.S.) (Grant EB-000244
    corecore