45 research outputs found

    Revisiting the Energy-Efficient Hybrid D-A Precoding and Combining Design For mm-Wave Systems

    Get PDF
    Hybrid digital to analog (D-A) precoding is widely used in millimeter wave systems to reduce the power consumption and implementation complexity incurred by the number of radio frequency (RF) chains that consume a lot of the transmitted power in this system. In this paper, an optimal number of RF chains is proposed to achieve the desired energy efficiency (EE). Here, the optimization problem is formulated in terms of fractional programming maximization, resulting in a method with a twofold novelty: First, the optimal number of RF chains is determined by the proposed bisection algorithm, which results in an optimized number of data streams. Second, the optimal analog precoders/combiners are designed by eigenvalue decomposition and a power iteration algorithm, followed by the digital precoders/combiners which are designed based on the singular value decomposition of the proposed effective uplink and downlink channel gains. Furthermore, the proposed D-A systems are designed carefully to attain a lower complexity than the existing D-A algorithms while achieving reasonable performance. Finally, the impact of utilizing a different number of quantized bits of resolution on the EE is investigated. Simulation results show that the proposed algorithms outperform existing algorithms in terms of EE, spectral efficiency, and computational complexity

    SIC-MMSE method based wireless precoding technique for millimetre-wave MIMO system

    Get PDF
    A communication method is proposed using Minimum Mean Square Error (MMSE) precoding and Successive Interference Cancellation (SIC) technique for millimetre-wave multiple-input multiple-output (mm-Wave MIMO) based wireless communication system. Background: The mm-Wave MIMO technology for wireless communication system is the base potential technology for its high data transfer rate followed by data instruction and low power consumption compared to Long-Term Evolution (LTE). The mm-Wave system is already available in indoor hotspot and Wi-Fi backhaul for its high bandwidth availability and potential lead to rate of numerous Gbps/user. But, in mobile wireless communication system this technique is lagging because the channel faces relative orthogonal coordination and multiple node detection problem while rapid movement of nodes (transmitter and receiver) occur. Methods/Improvement: To improve the conventional mm-wave MIMO nodal detection and coordination performance, the system processes data using symbolized error vector technique for linearization. Then the MMSE precoding detection technique improves the link strength by constantly fitting the channel coefficients based on number of independent service antennas (M), Signal to Noise Ratio (SNR), Channel Matrix (CM) and mean square errors (MSE). To maintain sequentially encoded user data connectivity and to overcome data loss, SIC method is used in combination with MMSE. Improvements: MATLAB was used to validate proposed system performance. Simulation analysis shown that, with the increase number of antennas use, the spectral efficiency also increased and higher then millimetre-wave MIMO or Single MMSE system. This research observed that, hybrid controller or combined control method have the better efficiency then single method, where SIC-MMSE based hybrid controller is a good example

    Systems with Massive Number of Antennas: Distributed Approaches

    Get PDF
    As 5G is entering maturity, the research interest has shifted towards 6G, and specially the new use cases that the future telecommunication infrastructure needs to support. These new use cases encompass much higher requirements, specifically: higher communication data-rates, larger number of users, higher accuracy in localization, possibility to wirelessly charge devices, among others.The radio access network (RAN) has already gone through an evolution on the path towards 5G. One of the main changes was a large increment of the number of antennas in the base-station. Some of them may even reach 100 elements, in what is commonly referred as Massive MIMO. New proposals for 6G RAN point in the direction of continuing this path of increasing the number of antennas, and locate them throughout a certain area of service. Different technologies have been proposed in this direction, such as: cell-free Massive MIMO, distributed MIMO, and large intelligent surface (LIS). In this thesis we focus on LIS, whose conducted theoretical studies promise the fulfillment of the aforementioned requirements.While the theoretical capabilities of LIS have been conveniently analyzed, little has been done in terms of implementing this type of systems. When the number of antennas grow to hundreds or thousands, there are numerous challenges that need to be solved for a successful implementation. The most critical challenges are the interconnection data-rate and the computational complexity.In the present thesis we introduce the implementation challenges, and show that centralized processing architectures are no longer adequate for this type of systems. We also present different distributed processing architectures and show the benefits of this type of schemes. This work aims at giving a system-design guideline that helps the system designer to make the right decisions when designing these type of systems. For that, we provide algorithms, performance analysis and comparisons, including first order evaluation of the interconnection data-rate, processing latency, memory and energy consumption. These numbers are based on models and available data in the literature. Exact values depend on the selected technology, and will be accurately determined after building and testing these type of systems.The thesis concentrates mostly on the topic of communication, with additional exploration of other areas, such as localization. In case of localization, we benefit from the high spatial resolution of a very-large array that provides very rich channel state information (CSI). A CSI-based fingerprinting via neural network technique is selected for this case with promising results. As the communication and localization services are based on the acquisition of CSI, we foresee a common system architecture capable of supporting both cases. Further work in this direction is recommended, with the possibility of including other applications such as sensing.The obtained results indicate that the implementation of these very-large array systems is feasible, but the challenges are numerous. The proposed solutions provide encouraging results that need to be verified with hardware implementations and real measurements

    Implementation of Deep-Learning-Based CSI Feedback Reporting on 5G NR-Compliant Link-Level Simulator

    Get PDF
    Advances in machine learning have widened the range of its applications in many fields. In particular, deep learning has attracted much interest for its ability to provide solutions where the derivation of a rigorous mathematical model of the problem is troublesome. Our interest was drawn to the application of deep learning for channel state information feedback reporting, a crucial problem in frequency division duplexing (FDD) 5G networks, where knowledge of the channel characteristics is fundamental to exploiting the full potential of multiple-input multiple-output (MIMO) systems. We designed a framework adopting a 5G New Radio convolutional neural network, called NR-CsiNet, with the aim of compressing the channel matrix experienced by the user at the receiver side and then reconstructing it at the transmitter side. In contrast to similar solutions, our framework is based on a 5G New Radio fully compliant simulator, thus implementing a channel generator based on the latest 3GPP 3-D channel model. Moreover, realistic 5G scenarios are considered by including multi-receiving antenna schemes and noisy downlink channel estimation. Simulations were carried out to analyze and compare the performance with current feedback reporting schemes, showing promising results for this approach from the point of view of the block error rate and throughput of the 5G data channel

    DR9.3 Final report of the JRRM and ASM activities

    Get PDF
    Deliverable del projecte europeu NEWCOM++This deliverable provides the final report with the summary of the activities carried out in NEWCOM++ WPR9, with a particular focus on those obtained during the last year. They address on the one hand RRM and JRRM strategies in heterogeneous scenarios and, on the other hand, spectrum management and opportunistic spectrum access to achieve an efficient spectrum usage. Main outcomes of the workpackage as well as integration indicators are also summarised.Postprint (published version
    corecore