46 research outputs found

    Optimizing Associative Information Transfer within Content-addressable Memory

    Get PDF
    Original article can be found at: http://www.oldcitypublishing.com/IJUC/IJUC.htmlPeer reviewe

    Contributions to unsupervised and supervised learning with applications in digital image processing

    Get PDF
    311 p. : il.[EN]This Thesis covers a broad period of research activities with a commonthread: learning processes and its application to image processing. The twomain categories of learning algorithms, supervised and unsupervised, have beentouched across these years. The main body of initial works was devoted tounsupervised learning neural architectures, specially the Self Organizing Map.Our aim was to study its convergence properties from empirical and analyticalviewpoints.From the digital image processing point of view, we have focused on twobasic problems: Color Quantization and filter design. Both problems have beenaddressed from the context of Vector Quantization performed by CompetitiveNeural Networks. Processing of non-stationary data is an interesting paradigmthat has not been explored with Competitive Neural Networks. We have statesthe problem of Non-stationary Clustering and related Adaptive Vector Quantizationin the context of image sequence processing, where we naturally havea Frame Based Adaptive Vector Quantization. This approach deals with theproblem as a sequence of stationary almost-independent Clustering problems.We have also developed some new computational algorithms for Vector Quantizationdesign.The works on supervised learning have been sparsely distributed in time anddirection. First we worked on the use of Self Organizing Map for the independentmodeling of skin and no-skin color distributions for color based face localization. Second, we have collaborated in the realization of a supervised learning systemfor tissue segmentation in Magnetic Resonance Imaging data. Third, we haveworked on the development, implementation and experimentation with HighOrder Boltzmann Machines, which are a very different learning architecture.Finally, we have been working on the application of Sparse Bayesian Learningto a new kind of classification systems based on Dendritic Computing. This lastresearch line is an open research track at the time of writing this Thesis

    Peripersonal Space in the Humanoid Robot iCub

    Get PDF
    Developing behaviours for interaction with objects close to the body is a primary goal for any organism to survive in the world. Being able to develop such behaviours will be an essential feature in autonomous humanoid robots in order to improve their integration into human environments. Adaptable spatial abilities will make robots safer and improve their social skills, human-robot and robot-robot collaboration abilities. This work investigated how a humanoid robot can explore and create action-based representations of its peripersonal space, the region immediately surrounding the body where reaching is possible without location displacement. It presents three empirical studies based on peripersonal space findings from psychology, neuroscience and robotics. The experiments used a visual perception system based on active-vision and biologically inspired neural networks. The first study investigated the contribution of binocular vision in a reaching task. Results indicated the signal from vergence is a useful embodied depth estimation cue in the peripersonal space in humanoid robots. The second study explored the influence of morphology and postural experience on confidence levels in reaching assessment. Results showed that a decrease of confidence when assessing targets located farther from the body, possibly in accordance to errors in depth estimation from vergence for longer distances. Additionally, it was found that a proprioceptive arm-length signal extends the robot’s peripersonal space. The last experiment modelled development of the reaching skill by implementing motor synergies that progressively unlock degrees of freedom in the arm. The model was advantageous when compared to one that included no developmental stages. The contribution to knowledge of this work is extending the research on biologically-inspired methods for building robots, presenting new ways to further investigate the robotic properties involved in the dynamical adaptation to body and sensing characteristics, vision-based action, morphology and confidence levels in reaching assessment.CONACyT, Mexico (National Council of Science and Technology

    Über die Selbstorganisation einer hierarchischen GedĂ€chtnisstruktur fĂŒr kompositionelle ObjektreprĂ€sentation im visuellen Kortex

    Get PDF
    At present, there is a huge lag between the artificial and the biological information processing systems in terms of their capability to learn. This lag could be certainly reduced by gaining more insight into the higher functions of the brain like learning and memory. For instance, primate visual cortex is thought to provide the long-term memory for the visual objects acquired by experience. The visual cortex handles effortlessly arbitrary complex objects by decomposing them rapidly into constituent components of much lower complexity along hierarchically organized visual pathways. How this processing architecture self-organizes into a memory domain that employs such compositional object representation by learning from experience remains to a large extent a riddle. The study presented here approaches this question by proposing a functional model of a self-organizing hierarchical memory network. The model is based on hypothetical neuronal mechanisms involved in cortical processing and adaptation. The network architecture comprises two consecutive layers of distributed, recurrently interconnected modules. Each module is identified with a localized cortical cluster of fine-scale excitatory subnetworks. A single module performs competitive unsupervised learning on the incoming afferent signals to form a suitable representation of the locally accessible input space. The network employs an operating scheme where ongoing processing is made of discrete successive fragments termed decision cycles, presumably identifiable with the fast gamma rhythms observed in the cortex. The cycles are synchronized across the distributed modules that produce highly sparse activity within each cycle by instantiating a local winner-take-all-like operation. Equipped with adaptive mechanisms of bidirectional synaptic plasticity and homeostatic activity regulation, the network is exposed to natural face images of different persons. The images are presented incrementally one per cycle to the lower network layer as a set of Gabor filter responses extracted from local facial landmarks. The images are presented without any person identity labels. In the course of unsupervised learning, the network creates simultaneously vocabularies of reusable local face appearance elements, captures relations between the elements by linking associatively those parts that encode the same face identity, develops the higher-order identity symbols for the memorized compositions and projects this information back onto the vocabularies in generative manner. This learning corresponds to the simultaneous formation of bottom-up, lateral and top-down synaptic connectivity within and between the network layers. In the mature connectivity state, the network holds thus full compositional description of the experienced faces in form of sparse memory traces that reside in the feed-forward and recurrent connectivity. Due to the generative nature of the established representation, the network is able to recreate the full compositional description of a memorized face in terms of all its constituent parts given only its higher-order identity symbol or a subset of its parts. In the test phase, the network successfully proves its ability to recognize identity and gender of the persons from alternative face views not shown before. An intriguing feature of the emerging memory network is its ability to self-generate activity spontaneously in absence of the external stimuli. In this sleep-like off-line mode, the network shows a self-sustaining replay of the memory content formed during the previous learning. Remarkably, the recognition performance is tremendously boosted after this off-line memory reprocessing. The performance boost is articulated stronger on those face views that deviate more from the original view shown during the learning. This indicates that the off-line memory reprocessing during the sleep-like state specifically improves the generalization capability of the memory network. The positive effect turns out to be surprisingly independent of synapse-specific plasticity, relying completely on the synapse-unspecific, homeostatic activity regulation across the memory network. The developed network demonstrates thus functionality not shown by any previous neuronal modeling approach. It forms and maintains a memory domain for compositional, generative object representation in unsupervised manner through experience with natural visual images, using both on- ("wake") and off-line ("sleep") learning regimes. This functionality offers a promising departure point for further studies, aiming for deeper insight into the learning mechanisms employed by the brain and their consequent implementation in the artificial adaptive systems for solving complex tasks not tractable so far.GegenwĂ€rtig besteht immer noch ein enormer Abstand zwischen der LernfĂ€higkeit von kĂŒnstlichen und biologischen Informationsverarbeitungssystemen. Dieser Abstand ließe sich durch eine bessere Einsicht in die höheren Funktionen des Gehirns wie Lernen und GedĂ€chtnis verringern. Im visuellen Kortex etwa werden die Objekte innerhalb kĂŒrzester Zeit entlang der hierarchischen Verarbeitungspfade in ihre Bestandteile zerlegt und so durch eine Komposition von Elementen niedrigerer KomplexitĂ€t dargestellt. Bereits bekannte Objekte werden so aus dem LangzeitgedĂ€chtnis abgerufen und wiedererkannt. Wie eine derartige kompositionell-hierarchische GedĂ€chtnisstruktur durch die visuelle Erfahrung zustande kommen kann, ist noch weitgehend ungeklĂ€rt. Um dieser Frage nachzugehen, wird hier ein funktionelles Modell eines lernfĂ€higen rekurrenten neuronalen Netzwerkes vorgestellt. Im Netzwerk werden neuronale Mechanismen implementiert, die der kortikalen Verarbeitung und PlastizitĂ€t zugrunde liegen. Die hierarchische Architektur des Netzwerkes besteht aus zwei nacheinander geschalteten Schichten, die jede eine Anzahl von verteilten, rekurrent vernetzten Modulen beherbergen. Ein Modul umfasst dabei mehrere funktionell separate Subnetzwerke. Jedes solches Modul ist imstande, aus den eintreffenden Signalen eine geeignete ReprĂ€sentation fĂŒr den lokalen Eingaberaum unĂŒberwacht zu lernen. Die fortlaufende Verarbeitung im Netzwerk setzt sich zusammen aus diskreten Fragmenten, genannt Entscheidungszyklen, die man mit den schnellen kortikalen Rhythmen im gamma-Frequenzbereich in Verbindung setzen kann. Die Zyklen sind synchronisiert zwischen den verteilten Modulen. Innerhalb eines Zyklus wird eine lokal umgrenzte winner-take-all-Ă€hnliche Operation in Modulen durchgefĂŒhrt. Die KompetitionsstĂ€rke wĂ€chst im Laufe des Zyklus an. Diese Operation aktiviert in AbhĂ€ngigkeit von den Eingabesignalen eine sehr kleine Anzahl von Einheiten und verstĂ€rkt sie auf Kosten der anderen, um den dargebotenen Reiz in der NetzwerkaktivitĂ€t abzubilden. Ausgestattet mit adaptiven Mechanismen der bidirektionalen synaptischen PlastizitĂ€t und der homöostatischen AktivitĂ€tsregulierung, erhĂ€lt das Netzwerk natĂŒrliche Gesichtsbilder von verschiedenen Personen dargeboten. Die Bilder werden der unteren Netzwerkschicht, je ein Bild pro Zyklus, als Ansammlung von Gaborfilterantworten aus lokalen Gesichtslandmarken zugefĂŒhrt, ohne Information ĂŒber die PersonenidentitĂ€t zur VerfĂŒgung zu stellen. Im Laufe der unĂŒberwachten Lernprozedur formt das Netzwerk die Verbindungsstruktur derart, dass die Gesichter aller dargebotenen Personen im Netzwerk in Form von dĂŒnn besiedelten GedĂ€chtnisspuren abgelegt werden. Hierzu werden gleichzeitig vorwĂ€rtsgerichtete (bottom-up) und rekurrente (lateral, top-down) synaptische Verbindungen innerhalb und zwischen den Schichten gelernt. Im reifen Verbindungszustand werden infolge dieses Lernens die einzelnen Gesichter als Komposition ihrer Bestandteile auf generative Art gespeichert. Dank der generativen Art der gelernten Struktur reichen schon allein das höhere IdentitĂ€tssymbol oder eine kleine Teilmenge von zugehörigen Gesichtselementen, um alle Bestandteile der gespeicherten Gesichter aus dem GedĂ€chtnis abzurufen. In der Testphase kann das Netzwerk erfolgreich sowohl die IdentitĂ€t als auch das Geschlecht von Personen aus vorher nicht gezeigten Gesichtsansichten erkennen. Eine bemerkenswerte Eigenschaft der entstandenen GedĂ€chtnisarchitektur ist ihre FĂ€higkeit, ohne Darbietung von externen Stimuli spontan AktivitĂ€tsmuster zu generieren und die im GedĂ€chtnis abgelegten Inhalte in diesem schlafĂ€hnlichen "off-line" Regime wiederzugeben. Interessanterweise ergibt sich aus der Schlafphase ein direkter Vorteil fĂŒr die GedĂ€chtnisfunktion. Dieser Vorteil macht sich durch eine drastisch verbesserte Erkennungsrate nach der Schlafphase bemerkbar, wenn das Netwerk mit den zuvor nicht dargebotenen Ansichten von den bereits bekannten Personen konfrontiert wird. Die Leistungsverbesserung nach der Schlafphase ist umso deutlicher, je stĂ€rker die Alternativansichten vom Original abweichen. Dieser positive Effekt ist zudem komplett unabhĂ€ngig von der synapsenspezifischen PlastizitĂ€t und kann allein durch die synapsenunspezifische, homöostatische Regulation der AktivitĂ€t im Netzwerk erklĂ€rt werden. Das entwickelte Netzwerk demonstriert so eine im Bereich der neuronalen Modellierung bisher nicht gezeigte FunktionalitĂ€t. Es kann unĂŒberwacht eine GedĂ€chtnisdomĂ€ne fĂŒr kompositionelle, generative ObjektreprĂ€sentation durch die Erfahrung mit natĂŒrlichen Bildern sowohl im reizgetriebenen, wachĂ€hnlichen Zustand als auch im reizabgekoppelten, schlafĂ€hnlichen Zustand formen und verwalten. Diese FunktionalitĂ€t bietet einen vielversprechenden Ausgangspunkt fĂŒr weitere Studien, die die neuronalen Lernmechanismen des Gehirns ins Visier nehmen und letztendlich deren konsequente Umsetzung in technischen, adaptiven Systemen anstreben

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    A Decade of Neural Networks: Practical Applications and Prospects

    Get PDF
    The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization

    Attention Restraint, Working Memory Capacity, and Mind Wandering: Do Emotional Valence or Intentionality Matter?

    Get PDF
    Attention restraint appears to mediate the relationship between working memory capacity (WMC) and mind wandering (Kane et al., 2016). Prior work has identifed two dimensions of mind wandering—emotional valence and intentionality. However, less is known about how WMC and attention restraint correlate with these dimensions. Te current study examined the relationship between WMC, attention restraint, and mind wandering by emotional valence and intentionality. A confrmatory factor analysis demonstrated that WMC and attention restraint were strongly correlated, but only attention restraint was related to overall mind wandering, consistent with prior fndings. However, when examining the emotional valence of mind wandering, attention restraint and WMC were related to negatively and positively valenced, but not neutral, mind wandering. Attention restraint was also related to intentional but not unintentional mind wandering. Tese results suggest that WMC and attention restraint predict some, but not all, types of mind wandering

    TĂ€tigkeitsbericht 2017-2019/20

    Get PDF

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF
    corecore