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Abstract. This paper1 investigates an information-theoretic design principle, in-
tended to support an evolution of a memory structure fitting a specific selection
pressure: associative information transfer through the structure. The proposed cri-
teria measure how much does associativity in memory add to the information
transfer in terms of precision, recall and effectiveness. The study also introduces
a conjectural analogy between memory retrieval and self-replication, with DNA
as a partially-associative memory containing relevant information. DNA decod-
ing by a complicated protein machinery (“cues” or ”keys”) may correspond to
an associative recall: i.e., a replicated offspring is an associatively-recalled proto-
type. The proposed information-theoretic criteria intend to formalize the notion of
information transfer involved in self-replication, and enable bio-inspireddesign
of more effective memory structures.

1 Introduction

Bio-inspired models have been suggested and used in many areas of Unconventional
Computing: parallel processing such as Cellular Automata (CA) and DNA computation;
distributed storage and transmission: e.g., neural networks and associative memory;
search and optimization: e.g., genetic algorithms and ant colony optimization (ACO).
New metaphors are discovered and applied at an increasing pace, improving compu-
tational models in terms of robustness, adaptivity and scalability. However, there is a
certain lack of a unifying methodology, or at least a set of guiding principles, underly-
ing many recent developments. This is unsatisfactory not only from a methodological,
but also from a pragmatic point of view: if some generic principles are not utilized then
specific solutions are likely to be suboptimal.

Existence of such core principles may be supported by an observation that most of
the bio-inspired models listed above do not fit into a particular category of conventional
computing (memory, communication, processing), but cope with multiple aspects. For
instance, CA were shown by Langton [23] to support, under certain conditions (the
edge of chaos), three basic operations of information storage, transmission, and mod-
ification, through static, propagating and interacting structures (blinkers, gliders, col-
lisions). ACO algorithms also combine distributed memory, distributed transmission

1 This paper extends preliminary studies and results reported earlier [34].
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and distributed search, employing stigmergy — the process by which multiple ant-like
agents indirectly interact through changes in their environment caused by pheromone
deposits [7, 8] — and resulting in emergence of optimal solutions. In other words,
these fundamental aspects of dealing with information are fused together within these
bio-inspired approaches, making them less brittle and morescalable than conventional
systems. One compelling explanation is that the motivatingbiological systems (ranging
from cellular tissues to ant colonies) co-evolved the computing components rather than
assemble the overall architecture out of separately designed parts [15, 26].

The main question then becomes what are the core principles that inter-relate mem-
ory, communication, and processing in evolvable computational systems? Answering
this question from an information-theoretic viewpoint mayalso improve comparability
of different bio-inspired approaches. In this paper, we propose an information-theoretic
design principle, intended to support an evolution of a memory structure fitting a spe-
cific selection pressure: associative information transfer through the structure. In doing
so we minimize architectural assumptions about memory or processor structures, hop-
ing instead that such dependencies emerge as a result of the optimization of the infor-
mation processing dynamics. Our preliminary studies, reported here, indicate that the
proposed principle is capable of clearly identifying the range and information dynam-
ics of possible memory structures in a very general sense, enabling design of optimal
memory.

The following Section points out some relevant background material on unconven-
tional memory organization, as well as intrinsic information-theoretic fitness criteria
used in evolvable computational systems. Section 3 describes the proposed measure,
followed by experimental results (Section 4) and conclusions (Section 5).

2 Background and Motivation

Moskowitz and Jousselin [27] have shown that, in a general algebraic sense, the nature
of the operations carried out by a computer processor actually determine the structure
of the computer memory. In particular, they highlighted thehidden group structure of
the address space, and pointed out that “when the integer addition law is used to ma-
nipulate addresses, this space is a cyclic group, and memoryis seen as a linear array”.
When another composition law is used (e.g., a non-commutative address composition),
a hypercubic memory structure fits more, greatly reducing complexity of computations.

Another related concept is associative or content-addressed memory: a memory or-
ganization in which the memory is accessed by its content rather than an explicit ad-
dress. Reference clues or keys are “associated” with actualmemory contents until a de-
sirable match (or set of matches) is found. A well-known example is a self-organizing
map (SOM or Kohonen network). It can be interpreted as an associative memory which
encodes the input patterns within the nodes of the network (the neural layer), in the
form of weight (codebook) vectors of the same dimension and nature as the input pat-
terns [22]. When a partial or corrupted pattern of data (a sensory cue) is presented in
the form of a key input-vector, the rest of the pattern (memory) is associated with it. A
characteristic of SOM-based associative memory is its self-organizing ordering: neigh-
boring nodes encode similar codebook vectors, preserving topology: neurons that are



closer in the neural layer tend to respond to inputs that are closer in the input space.
A related approach is advocated by Kanerva [16, 17]: a SparseDistributed Memory
(SDM) which is a content addressable, associative memory technique relying on close
memory items clustered together: while perceived data sparsely distribute themselves
over multiple storage locations, the outcome is a fusion of this distribution. In the auto-
associative version of SDM the memory contents and their addresses are from the same
space and may be used alternatively. Another well-known example of auto-associative
memory reproducing its input pattern as output is the Hopfield neural network [14].

Importance of memory access is discussed by Goertzel [10], who pursues “not a
model of how memories are physically stored in the brain or anywhere else, but rather
a model of how memory access must work, of how the time required to access different
memories in different situations must vary”. This pursuit led towards astructurally
associative memory(STRAM), based on the idea that “ifx is more easily accessible
thany, those things which are similar tox should in general be more easily accessible
than those things which are similar toy” [10]. Goertzel sketched a way of mapping
a weighted graph describing STRAM to a physical memoryM , by assigning to each
pair of elements(x, y) stored byM a distanceDM (x, y) measuring the difficulty of
locatingx in memory given thaty has very recently been located. It was suggested that
the distanceDM (x, y) is approximated as a number of links along the shortest path
between the graph nodes corresponding tox andy.

It is worth pointing out that our approach does not intend to present just a new mea-
sure of associativity or information transfer involved in memory operations, but rather
identify an information-theoretic principle contributing to a general methodology. Such
a methodology may go beyond computational aspects, including sensing, actuation, and
networking in distributed systems, co-evolving under multiple design/selection pres-
sures.

Typically, evolutionary design may employ genetic algorithms in evolving opti-
mal strategies that satisfy given fitness functions, by exploring large and sophisticated
search-space landscapes [26]. In general, however, we may approach evolutionary de-
sign in two ways: via task-specific objectives or via genericintrinsic selection crite-
ria. The latter approach can be exemplified byinformation-driven evolutionary design
which suggested to set intrinsic fitness functions according to information-theoretic cri-
teria [32, 33, 19, 20, 21]. This essentially focuses on optimizing information transfer
within specific channels. An example of an intrinsic selection pressure is the acqui-
sition of information from the environment: there is some evidence that pushing the
information flow to the information-theoretic limit (i.e.,maximization of information
transfer in perception-action loops) can give rise to intricate behaviour, induce a nec-
essary structure in the system, and ultimately be responsible for adaptively reshaping
the system [18, 19, 20]. Other important selection pressures applicable to distributed
systems include stability of self-organizing hierarchies[29, 9]; efficiency of multi-
cellular communication topologies [30]; efficiency of locomotion and distributed ac-
tuation [32, 33, 37]. The identification of possible intrinsic fitness criteria is also related
to the work of Deret al.on self-organization of agent behaviors from domain-invariant
principles, e.g., homeokinesis [6].



In summary, our main objective is to identify a selection pressure on associative in-
formation transfer involved in memory recall, contributing to the general methodology
of information-driven evolutionary design.

3 Information Transfer: Precision and Recall

Since our task is to identify a very generic principle, we choose to abstract away from
implementation details and consider instead an unconstrained deterministic function
f from two equally distributed random variablesK andX to a random variableY .
The variableK is intended to serve as a “key” or “cue” in accessing the memory X,
retrieving, as a result of the mappingf , the outcome or “readout”Y , i.e.,Y = f(K,X).
It is important to realize that while we interpretK, X and Y as key, memory and
readout, we do not structurally constrain the variables andthe mapping: e.g., there is no
requirement that any locationx in memoryX is accessible by a unique keyk ∈ K, etc.

The first constraint that we impose is the criterion:

maximization of P = I(X;K|Y ) , (1)

whereI(X;K|Y ) is the conditional mutual information betweenX andK given Y .
Before defining conditional mutual information, let us define the mutual information
I(A;B) betweenA andB:

I(A;B) =
∑

a∈A

∑

b∈B

P (a, b) log
P (a, b)

P (a)P (b)
, (2)

whereP (a) is the probability thatA is in the statea, andP (a, b) is the joint probability.
Mutual informationI(A;B) can be expressed in terms of entropiesH(·), joint entropies
H(·, ·), and conditional entropiesH(·|·):

I(A;B) = H(A) + H(B)−H(A,B) = H(A)−H(A|B) , (3)

where the entropies are defined as follows:

H(A) = −
∑

a∈A

P (a) log P (a) , (4)

H(A,B) = −
∑

a∈A

∑

b∈B

P (a, b) log P (a, b) , (5)

H(A|B) = H(A,B)−H(B) (6)

When dealing with three-term entropies [25], one typically defines the joint entropy

H(A,B,C) = −
∑

a∈A

∑

b∈B

∑

c∈C

P (a, b, c) log P (a, b, c) (7)

and uses relationships such as

H(B|A,C) = H(A,B,C)−H(A,C) (8)



A relationship like this is helpful in defining the conditional mutual information:

I(X;K|Y ) = H(X|Y )−H(X|K,Y ) (9)

where both conditional entropies on the right-hand side canbe obtained via equations
(4) – (8).

The criterion (1) maximizes the conditional mutual information between key and
memory, given the readout. First of all, we need to clarify that, althoughK and X

are independent and, therefore, mutual informationI(X;K) is zero, the conditional
mutual informationI(X;K|Y ) may well be positive. This is analogous to the exam-
ple of a binary symmetric channel with inputX, noiseK, and outputY , described by
MacKay [25] (we altered the variables names here to avoid confusion): mutual informa-
tion I(X;K) = 0 since input and noise are independent, butI(X;K|Y ) > 0, because
“once you see the output, the unknown input and the unknown noise are intimately re-
lated!” [25]. Similarly, the criterion (1) is applied once the readout is obtained, which
means that a possible association between memory and key hasbeen made.

Secondly, we draw an analogy with well-known information retrieval metrics: pre-
cision and recall. Precision is a measure of usefulness orsoundnessof the readout re-
trieved in response to a query, and is measured as a fraction of the relevant and re-
trieved items within the retrieved items (aiming at “nothing but the truth”). Recall is
a measure of relevance orcompletenessof the readout, and is measured as a ratio of
the relevant and retrieved items over the relevant items (aiming at “the whole truth”).
A probabilistic interpretation is possible as well [11]: precision may be defined as the
conditional probability that an object is relevant given that it is returned by the sys-
tem, while the recall is the conditional probability that a relevant object is returned:
precision= P (relevant|returned), and recall= P (returned|relevant).

Intuitively, the criterion (1) captures the potentialP of precision-driven information
transfer. To formalize this intuition, let us apply the chain rule for the mutual informa-
tion [25]:

I(X;Y,K) = I(X;Y ) + I(X;K|Y ) (10)

where the left-hand side contains the mutual information betweenX and jointlyY and
K. This chain rule produces

P = I(X;K|Y ) = I(X;Y,K)− I(X;Y ) . (11)

The alternative representation (11) can be interpreted as follows: how much does a
key add to precision of the readout by associating with memory. The equation (11)
contrasts two information transfers: one,I(X;Y ), does not use associativity, while the
other,I(X;Y,K), incorporates it. The difference between the two transferscaptures,
we believe, the potential information gain in precision. Another useful representation of
the criterion (1) can be obtained in terms of entropies. Applying the relationships (9),
(8) and then (6) to the right-hand side of the criterion (1) yields

P = I(X;K|Y ) = H(X|Y )−H(X|K,Y ) = H(X|Y )−[H(X,Y,K)−H(K,Y )] =

[H(X,Y )−H(Y )]−H(X,Y,K) + H(K,Y )



A further reduction is possible for deterministic functions, whereH(X,Y,K) is a con-
stant, making the criterion (1) equivalent to

maximization of P̃ = H(X,Y )−H(Y ) + H(K,Y ) . (12)

The measurẽP may, of course, be rewritten as follows:

P̃ = H(X|Y ) + H(K,Y ) = H(X,Y ) + H(K|Y ) . (13)

At this stage we would like to introduce another criterion. We consider

maximization of R = I(Y ;K|X) = I(Y ;X,K)− I(Y,X) . (14)

Intuitively,R measures how much a key is necessaryto identify the output of the map-
ping, given the memory. The criterion (14) captures the potentialR of information
transfer involved in the memory recall, and aims to maximizethe difference between
associative and non-associative information transfer. Using a relationship like (9), we
obtain

R = I(Y ;K|X) = H(Y |X)−H(Y |K,X) = [H(X,Y )−H(X)]−H(Y |K,X)

For deterministic functions, the entropyH(Y |K,X) is zero, and the entropyH(X) is
a constant. Hence, maximization ofR is equivalent to

maximization of R̃ = H(X,Y ) . (15)

It should be noted that sinceY = f(K,X), the expression for̃R is dependent onK.
The overall effectiveness of information retrieval is typically defined as the har-

monic mean (the reciprocal of the arithmetic mean of the reciprocals) of recall and
precision — hence, we suggest the criterion:

maximization of E =
2

1
P + 1

R

=
2PR

P +R
, (16)

fusing together the potential information gains in both precision and recall.
In order to highlight different roles played byK andX, we consider here scenar-

ios with varying sizes|K| and|X|, interpreted in the context of several examples: (a)
catalog/book indexing and search; (b) pattern associationusing a neural network; (c)
decoding of genotype (DNA) by proteins. The scenarios are asfollows:

(S1) |K| ≫ |X| and |X| ≈ |Y | , (S2) |K| ≈ |X| ≈ |Y | ,
(S3) |K| ≪ |X| and |X| ≈ |Y |

where| ◦ | is the cardinal number of the set◦ (in our case, simply the number of its ele-
ments). In the example (a), a library catalogue is a databasecontaining records indexed
by the authors, titles, subjects, etc. The explicit “cue” isthe key, using which a set of
catalogue itemsY ′ ⊆ Y can be found as a result of a query. Typically,|K| ≫ |X|,
while |Y | ≈ |X|: this is our first scenario(S1). Similarly, a book can be indexed by as-
sociating its content (e.g., pages) with keywords. In this case,|K| ≫ |X| as well, since



there may be more keywords than pages, while|Y | ≈ |X| as the number of retrieved
pages may approach their total number. However, the scenario (S2) pushes the scenario
(S1) to the extreme by restricting the number of possible keys (e.g., a limit on queries),
while the memory size is unchanged:|K| ≈ |X|. This represents a more challenging
case with respect to the precision as the relevant items are harder to find.

The example (b) involves an artificial neural network, e.g.,a self-organizing map
(SOM) implementing associative memory, briefly discussed in section 2. Each neuron
in memory (a network node) encodes a retrievable pattern, hence|Y | ≈ |X|. Of course,
memory updates would lead to an increase in the overall number of returned patterns,
highlighting the distinction between cumulative memory capacity and memory size.
The SOM handles multiple cues/keys as partial or corrupted patterns of data, associating
them with the memory, implying|K| ≫ |X|. This also concurs with the first scenario
(S1). Again, restricting the number of possible keys while keeping the memory size is
unchanged (the scenario(S2)) would challenge the system in terms of the precision.

The third scenario(S3) may correspond to an auto-associative neural network such
as the Hopfield network [14] or a Sparse Distributed Memory [16]. A key is interpreted
simultaneously by all neurons which interact by updating their weights until a stable
network state is reached: this attractor then represents the network output associated
with the key. In this case,|X| ≫ |Y | since there is only a limited number of attrac-
tor states supported by the network, while|K| ≪ |X| due to high-dimensionality of
memory. Interestingly, restricting the memory (reducing|X|) would challenge preci-
sion again, approaching the scenario(S2) from another direction.

Finally, we consider the case (c) when a genotype (DNA) is decoded by proteins.
An individual DNA can be interpreted as associative memory in the sense that it con-
tainspotential informationrelevant to the niche occupied by the individual’s species.
As pointed out by Adami [1], “If you do not know which system your sequence refers
to, then whatever is on it cannot be considered information.Instead, it is potential infor-
mation (a.k.a. entropy)”. Decoding a DNA involves a complicated protein machinery
(the key), and may correspond to an associative recall. In this model, a replicated off-
spring is an associatively-recalled prototype. In the nextsection we shall interpret all
three scenarios within this analogy.

4 Results

The experimental setup is very simple: we intend to satisfy our criteria (1), (14), and
(16) by varying possible deterministic functionsY = f(K,X) over finite size domains
K, X andY , for the scenarios(S1), (S2) and (S3). In particular, we consider three
sets of integers{1, . . . , |K|}, {1, . . . , |X|} and{1, . . . , |Y |}, and vary their sizes|K|,
|X| and |Y | between experiments. For each experiment, we search for deterministic
mappingsY = f(K,X) which maximizeP, orR, or E — repeating the search for
each of these criteria. We used a simple genetic algorithm (GA) to evolve solutions to
the maximization problems. The initial population is generated by random mappings
Y = fi(K,X), for a sufficiently large number of individual mappings, e.g. 1 ≤ i ≤
1000. At each generation, the mappings are evaluated in terms of the criterion in point
(eitherP, orR, orE). We have chosen a generation gap replacement strategy (theentire



old population is sorted according to the fitness, and the best 10% are chosen for direct
replication in the next generation, employing an elitist selection mechanism), and the
multiple-point crossover. We also ensure that the mutationresults in a unique individual
by re-applying this operator if necessary. The GA typicallyconverged to theoretical
maxima for the criteria within8000 generations.

4.1 Grid Contours

Visualizing evolved mappingsf is not revealing, as can be observed from Figure 1.
We plot instead an analogue of a2-dimensional contour, but rather than simply using
contours, we connect, for a given heighty ∈ Y , all points(k, x) ∈ K × X which
agree either onk or on x, producing a partial grid. For example, if there are entries
7 = f(1, 4), 7 = f(3, 4), and7 = f(1, 6), we connect points(1, 4) and(3, 4) as they
represent the same memoryx = 4, as well as points(1, 4) and(1, 6) sharing the same
keyk = 1. Such agrid-contourcombines grids for all values ofy ∈ Y by “overlaying”
the grids for all valuesy.

A random mapping (the zero hypothesis) has no discernable structure for all sce-
narios (e.g., Figure 2). Let us focus initially on the scenario (S1). A P-maximizing
mapping for this scenario is a structure with dominant horizontal lines (Figure 3). Each
horizontal reflects the fact that in the evolved mapping, thesame memory is recalled
if multiple different keys are associated with it. This, in the context of DNA decoding,
corresponds to conservation of DNA (memory) and its robustness to possible decoding
errors (multiple keys), ensuring high precision. AR-maximizing mapping maintains
the horizontal lines but introduces some vertical lines (Figure 4). Each vertical line
means that a key recalls the same content even if associated with different memories.
In the context of DNA decoding, this may correspond to pseudo-genes within a DNA
(characterised by a lack of protein-coding functionality): redundant code which does not
differentiate between offsprings and ensures high recall.Importantly, the effectiveness
criterionE maintains the horizontal lines (robust DNA) but eliminatesthe vertical lines
(no pseudo-genes), as shown in Figure 3. On the other hand, minimization ofE does
the opposite, producing a grid-like structure, i.e., for every association(k1, x1) there
exists an association(k2, x2) such that eitherk1 = k2 or x1 = x2 (more precisely, the
mapping minimizing the criteria is given by a constantf ).

The scenario(S2) pushes the observed tendencies to their limits. AP-maximizing
mapping for this scenario is a structure with no lines (Figure 5). There are no entries
which share either a key or memory — in other words, both key and memory are neces-
sary. Such an outcome illustrates the full precision of associative memory (a perfectly
succinct DNA). AnR-maximizing mapping has some vertical lines (Figure 6), sug-
gesting that some pseudo-genes are possible even in the highest recall case. This can
be interpreted as a tendency towards the dominance of precision over recall, i.e., ro-
bustness of DNA at the expense of redundancy. However, the effectiveness criterionE
eliminates redundancy and results in a fully associative memory structure (Figure 5),
where for every pair of a key and memory, fixing a keyk and varying memoryx (or
vice versa) results in a different readouty = f(k, x).

The results for the scenario(S3) are not surprising: mappings maximizingP, R
and E produce structures with only vertical lines. In the contextof DNA decoding,



this would correspond to highly redundant and error-prone DNA structures. This model
would work for reproduction if different arrays collectively store information (as in an
SDM or Hopfield network), “retrieving” offspring as a composite result of data fusion,
e.g. genetic cross-over.
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Fig. 1. An evolved mapping: scenario(S2).

4.2 Conjecture: a Model within The Model

A mappingY = f(K,X) implementing fully associative memory in the scenario(S2)
(Figure 5) can be interpreted in weak self-referential terms. Self-referentiality has many
interpretations, ranging from programming data structures (a self-referential structure
contains a pointer to a structure of the same type) to cognitive neuroscience: the self is a
cognitive structure with special mnemonic abilities, leading to “the enhanced memora-
bility of material processed in relation to self” [12, 35], suggesting that a self-referential
memory — a memory about the self — is not ordinary. According to the well-known
interpretation of Hofstadter [13], a self-referential system can be characterised by emer-
gent behaviour and tangled hierarchies exhibiting StrangeLoops: “an interaction be-
tween levels in which the top level reaches back down towardsthe bottom level and
influences it, while at the same time being itself determinedby the bottom level”. We
shall adopt a weaker interpretation of self-referential memory: the memory using a
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(S1).
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model of itself. This limited a-model-within-the-model view is not intended to preclude
emergence of tangled hierarchies, or references to the cognitive self of the agent using
this memory.

We begin by observing that, on the one hand, for anyk, x1, x2 (x1 6= x2), we have
f(k, x1) 6= f(k, x2), i.e., the readouts differ for the same key and a varying memory.
This means that every memory is sufficiently sensitive to itsown content/location, and
there is no redundant information in the associated key: thedifference in the readout
is due to different memory. This observation can be formalised as follows. Let us in-
troduce anarray-readout‖Yk‖ = [f(k, x1), . . . , f(k, x|X|)]. In other words,‖Yk‖ is
an array of readoutsf(k, x) produced by the mappingf given a fixed keyk. Then the
observation that every memory is sufficiently sensitive to its own content/location is
formally expressed by stating that each array-readout‖Yk‖ is isomorphic to the mem-
ory spaceX (i.e.,‖Yk‖ cannot be made less informative than the spaceX, or any array
[1, . . . , n], wheren = |K| = |X|).

On the other hand, for anyx, k1, k2 (k1 6= k2), we havef(k1, x) 6= f(k2, x),
i.e., the readouts differ for a varying key and identical memory. This means that every
key is sufficiently informative to produce different readouts upon association with the
same memory. In other words, every memory content is sufficiently sensitive to each
key (as well as to its content/location), and therefore, encodes information about all
possible keys. Formally, each array-readout‖Yx‖ = [f(k1, x), . . . , f(k|K|, x)] for a
fixed memoryx is isomorphic to the key spaceK (i.e., ‖Yx‖ cannot be made less
informative than the spaceK, or any array[1, . . . , n], wheren = |K| = |X|).



Another interpretation is that the evolved mapping implements aLatin square—
ann × n table filled withn different symbols in such a way that each symbol occurs
exactly once in each row and exactly once in each column [24].In particular, the evolved
mapping can be described by a multiplication table of a cyclic abelian groupZn of order
n = |X| = |K| = |Y |.

Furthermore, let us consider two array-readouts‖Yx1
‖ and‖Yx2

‖. Each of these
array-readouts is as informative as any permuted array[1, 2, . . . , n− 1, n], wheren =
|K| = |X|. Such permuted arrays can be interpreted asarrays of permuted keys, given
a fixed memory. Without a loss of generality,‖Yx1

‖ may be represented by the array
[1, 2, . . . , n− 1, n], and the array[2, 3, . . . , n, 1] may represent‖Yx2

‖. Importantly, the
circular shift (in the “horizontal” direction across keys)between the arrays ensures that,
given a fixed key, the outcomes retrieved from memoriesx1 andx2 would always be
different.

Each permuted array (i.e., each array-readout), however, is a memory modelper
se, and we shall use this in closing the loop around our systemY = f(X,K) with a
feedback

f ′(k, x) = ‖YD(f(k,x))‖ (17)

HereD(y) is a “diagonalization” function fromY to X. It takes the readouty =
f(k, x), uniquely maps it to an integeri, and returns a memoryx′ = xi. When the
memoryx′ is identified, the feedback is set:f ′(k, x) is the new associative memory
content, filled by the array-readout‖Yx′‖ of memoryx′. To re-iterate, the initial readout
f(k, x) is interpretedas the new memoryx′, producing the array-readout‖Yx′‖.

Let us consider a simple example, shown in Table 1. The associative mapping
f(k, x) at the first iteration may, in particular, be represented by aLatin square (n = 3),
i.e. a cyclic abelian group of order3.

k1 k2 k3 array-readout

x1 [1] [2] [3] [1, 2, 3]

x2 [2] [3] [1] [2, 3, 1]

x3 [3] [1] [2] [3, 1, 2]

Table 1. Mappingf(k, x) at the first iteration. Latin square (n = 3), or a cyclic abelian group of
order3. The right-hand side column shows array-readouts‖Yxi

‖.

In order to illustrate the feedbackf ′(k, x) = ‖YD(f(k,x))‖, let us select, as an exam-
ple, the readoutf(k2, x2) = [3], and use it in producing the memoryx′ = x3. Here we
capitalize on the fact that the readoutsy contain integers:y = [i], i.e.y ∈ {[1], [2], [3]},
and use a simple diagonalizationxi = D(y), such that functionD returns the first inte-
ger of the first element of the arrayy (the need for such recursion will become clear at
the second iteration). When the memoryx′ = x3 is identified, the array-readout‖Yx3

‖



is obtained as[3, 1, 2], and the feedback is set:f ′(k2, x2) = [3, 1, 2]. Closing the loop
for all pairs(k, x) results in the system shown in Table 2.

k1 k2 k3 array-readout

x1 [1, 2, 3] [2, 3, 1] [3, 1, 2] [[1, 2, 3], [2, 3, 1], [3, 1, 2]]

x2 [2, 3, 1] [3, 1, 2] [1, 2, 3] [[2, 3, 1], [3, 1, 2], [1, 2, 3]]

x3 [3, 1, 2] [1, 2, 3] [2, 3, 1] [[3, 1, 2], [1, 2, 3], [2, 3, 1]]

Table 2. Mappingf(′k, x) at the second iteration. The right-hand side column shows new array-
readouts‖Y ′

xi
‖.

The loop continues with new iterations: the functionD(y) always retrieves the
first integer in a nested readouty = f(k, x), and uses it in pointing out the memory
x′ = D(y) and the corresponding‖YD(y)‖. The iterations preserve the cyclic group
characteristic of the system. In general, the functionD may be quite involved, e.g. it
may introduce some noise into the feedback, resulting in more complex scenarios. Im-
portantly, at every iteration of the closed loop, each new memory maintains a possible
model of itself. Moreover, the feedbackf ′(k, x) = ‖YD(f(k,x))‖ iteratively “packs”
more and more structure into the memory nested at multiple scales.

An analogous arrangement (but in the “vertical” direction across memories) can
be obtained with new readouts‖Yk‖ represented bypermuted memory arrays. It is
also possible to interleave iterations of permuted key-arrays with iterations of permuted
memory-arrays.

The closed-loop system results in a Latin-square grid contour — the one produced
by the evolved fully associative mapping, i.e. both key and memory are necessary
for retrieval. We believe that this closed-loop fully-associative memory exhibits self-
referentiality and optimizes information transfer in terms of precision and recall. The
self-referentiality emerges under the pressures imposed by restricting the number of
queries and readouts to the memory size: the scenario(S2). If one of these pressures is
relaxed, self-referentiality is not needed and a memory does not have to encode infor-
mation about all possible keys: hence, the presence of horizontal lines in the optimal
structures for the scenario(S1), or vertical lines for the scenario(S3).

4.3 Connectivity within Optimal Associative Memory

The previous subsection presented a conjecture that a self-referential memory (a model
within the model) may produce a grid contour identical to theone exhibited by the
evolved memory structures. Given that the set-up adopted inthis work is intentionally
generic, it is not possible to demonstrate an explicit memory architecture for the system
X,K, Y , and verify “packing” of information at multiple scales. Inother words, the
presented results may be related only to a snapshot (a singleiteration) of the closed
loop that we believe is necessary for a self-referential memory. Nevertheless, we intend



to further analyse optimal mappingsf , hoping to discern a multi-scale structure of
associative connections in terms of readouts.

In doing so, we performed a multi-objective optimization off with respect to preci-
sionI(X;K|Y ) and recallI(Y ;K|X) (as usual,X andK were independently equidis-
tributed), finding the Pareto front of the mappingsf where both are non-dominated. For
this purpose, we used the NSGA II code [5] with the following parameters:

Population size 40

Generations 300

ηc
2 20

ηm 30

Crossover probability 0.2

Mutation probability 0.002

The size of the chromosomes depends on the problem considered. Via the multi-objective
optimization, one could identify potential trade-off surfaces at the Pareto front, but it
turns out actually that precision and recall are simultaneously optimized. In particular,
the variance of the Pareto front is typically small (deviations of less than 1% of the
absolute value the are the norm) for both objectives which means that the objectives
undergo little trade-off, if at all.

We consider memory sizes|X| = |K| = |Y | = 16 and|X| = |K| = |Y | = 64.
As our aim is to better understand the evolved memory structure, we study whether
different keysk, k′ can be interpreted as pointing to overlapping or distinct “memory
locations”. Since the systemX,K, Y has no explicit memory architecture, it is now
our task to partially “reverse engineer” the evolved memorystructure — for a single
iteration of the closed loop.

For this purpose, consider for a moment the family of random variablesYk for
different (fixed!)k. Here,k andk′ are fixed values from the domain ofK, and the joint
distribution of the variablesYk andYk′ is to be interpreted according to the following
Bayesian network:

Yk ← X → Yk′ ,

i.e. their distribution is given by

p(yk, yk′) =
∑

x

p(yk|x, k) p(x) p(yk′ |x, k′) (18)

wherep(yk|x, k) = δf(x,k)(yk) with δ being the Kronecker function, and likewise for
yk′ .

Now we can consider quantities such asI(Yk;Yk′), the mutual information between
outputsY induced by switching on particular keysk. If this mutual information is
nonvanishing only fork = k′, it means that the keys are “incommensurable”, i.e. they
point to distinct memory locations which have no structure with respect to each other.

2 ηc andηm are parameters used in the SBX crossover implementation for binary strings. See
[4] for details.



In the optimization runs, this turns out to be the generic case for general sizes ofX,K

andY .
However, for sizes|X| = |K| = |Y |, i.e. the scenario(S2), we do find some

overlapping between the readoutsYk for different fixed keysk. To allow for a more
geometrical interpretation of the memory structure, instead of the mutual information
I(Yk;Yk′), we consider the information-theoretic Crutchfield distance (“information
metric”) [3] to measure the relation between two keysk andk′:

d(Yk, Yk′) = H(Yk|Yk′) + H(Yk′ |Yk) . (19)

This allows us to create the distance matrix between allk. The histogram of all assumed
distances gives a good indication of whether there is some relation between differentk.
If the values are mainly concentrated at two values (for instance, one of them0), that
indicates incommensurable keys.

As Fig. 7 shows, the case where the sizes ofX,K, Y are equal provides a much
more interesting structure.
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Fig. 7. Distance histogram for|X| = |K| = |Y | = 16. The graph shown is the cumulative
distribution for distancesd(Yk, Yk′), i.e. the integral of the probability of finding a particular
distanced = d(Yk, Yk′). A histogram for incommensurable key structures (not shown) would
essentially find just one steep growth close tod = 0 and one close to the maximal attained value
of d = dmax, corresponding to a probability distribution with two peaks, one at 0 and oneatdmax.
The current figure thus shows a case with more structure (see text).

This can be further investigated by projecting (embedding)the distance matrix into
a Euclidean space, e.g. by finding those points in 2-dimensional space whose distance



matrix best matches the Crutchfield distance matrix of the pairs (Yk, Yk′). Such an
embeddingis shown for size 16 in Fig. 8, and for size 64 in Fig. 9. Figure 10 shows the
embedding (size 64) for a random mapping.
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Fig. 8. Projected Crutchfield distances of(Yk, Yk′) pairs (system size 16; evolved mapping). The
distances of the points are an approximation of the distances of theYk.

The obvious difference between embeddings produced for theevolved and random
mappings is that the former is much more compact than the latter, e.g., the embedding
in Fig. 9 (evolved mapping) occupies half the area of the embedding in Fig. 10 (random
mapping). Besides the approximation effort (measured via the sum of square distances
between the original distance matrix and the embedded distance matrix) indicates that
the embedding for the evolved mapping maintains distances twice as well as the embed-
ding for the random mapping. These observations support theexpectation that a degree
of commensurability, and hence associativity, in the evolved system is higher than such
a degree in a random mapping: the higher is the associativitythe easier it is to represent
the distances in 2D, while low associativity would require more dimensions to maintain
the distances.

The feedback from readouts of a closed-loop system into the new memory, given by
equation (17), would inject and preserve this associativity at one scale, while creating
associations on the new scale. We may conjecture that tangled hierarchies of a self-
referential memory require iterations of multiple memory levels, and more precisely
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Fig. 9. Projected Crutchfield distances of(Yk, Yk′) pairs (system size 64; evolved mapping). The
distances of the points are an approximation of the distances of theYk.

iterations of self-similar scales (nested within more and more refined scales). However,
an investigation of the relationship between scale-invariance, tangled hierarchies, and
the associative memory is outside the scope of this work.

At this stage we present another useful tool to study the evolved memory structures:
a distance-graph— the graph where two nodesYk are connected if the distance is
below a given threshold. For a threshold of an intermediate value 0.6 (see Fig. 7), one
obtains the graph in Fig. 11.

The graph shows quite an intricate structure of the memory with some nodes serving
as “hubs”, some nodes having quite a few connections and other nodes having only
limited similarity to the rest, finally some isolated nodes.It is important to note that
there are more “hubs” than nodes with low degrees, i.e. the distribution is opposite to the
one of a scale-free graph. There is not enough data, however,to estimate whether there
is a power law underlying the observed distribution, and what would be the parameters
of such scale-invariance3.

Nevertheless, we would like to point out that by varying the threshold of the distance-
graph, one may zoom into the multiple scales that may or may not be present in the
memory structures under investigation. For example, the evolved optimal memory struc-

3 If confirmed, this scale-invariance would be driven by the tendency to have high associativity
(dominating hubs) at multiple scales.
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Fig. 10. Projected Crutchfield distances of(Yk, Yk′) pairs (system size 64; random mapping).
The distances of the points are an approximation of the distances of theYk.
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ture allows us to zoom into fine scales (by setting the threshold low and looking at very
strong associations), as well as into the coarse scales (by setting the threshold high and
looking at very weak associations). If by varying the threshold (and scales) one obtains
different distance-graphs, then this would correspond to multiple scales and some hier-
archical memory structure. Otherwise (in the case of indistinguishable distance-graphs),
one may conclude that the memory structure is flat. The lattercase may be observed for
either extreme: low connectivity of flat non-associative memories, or high connectivity
(e.g., a complete graph) of non-hierarchical associative memories.

In summary, the extent of a revealed memory structure depends on the threshold.
At this point we hypothesize that under certain circumstances we may find that optimal
memory structures might exhibit different levels of hierarchical or associative memory
structures. These preferred structures areprior to any particular architecture that is ei-
ther imposed by design (in engineering) or evolved (in biology), and merely driven by
specific information-theoretic requirements. Here, we have collected a set of tools that
can help us in this quest.

5 Discussion and Conclusions

In this paper, we have investigated an information-driven evolutionary design of content-
addressable memory, and presented a set of tools (the designcriteria, grid-contours,
embeddings, threshold-dependent distance-graphs) useful for such design. The evolved
mappingsY = f(K,X) maximize precision, recall and effectiveness of the potential
information transfer throughout associative memory.

It was conjectured (e.g., [28, 31]) that the degree of self-referentiality employed by
a self-replicating multi-cellular organism is related to efficiency of its self-inspection
and self-repair — and may be quantitatively measured in order to evolve more efficient
processes. This conjecture was extended in this work in terms of memory structures and
the information transfer. We would like to point out that content-addressable memory
model is more generic than a self-referential memory model,and the latter emerges
under additional selection pressures. We briefly sketched an example of such a pressure,
provided by a closed loop around the system that packs information at multiple scales.

Continuing our analogy with DNA as an associative memory, itis interesting to
observe that real-life examples of DNA are not approaching the maximum information
transfer, as evidenced by their non-perfect error recoveryand significant redundancy
(pseudo-genes). Thus, in terms of self-replication, the maximum potential is not real-
ized — it would require higher precision and higher recall, culminating in a perfectly-
associative memory. Interestingly, another extreme, lower precision and/or lower recall,
can be pointed out already. We believe that a suitable example is the self-replication
mechanism exhibited by mineral crystals in the absence of biological enzymes, as ad-
vocated by Cairns-Smith [2]: clay crystals can store information as a pattern of inho-
mogeneities that are propagated from layer to layer, with few errors; they can repro-
duce by random fragmentation; and they can express a varietyof morphological phe-
notypes. Following this intuition, Schulman and Winfree recently proposed a method
of error-correcting self-replication that works by similar growth and fragmentation of
algorithmic DNA crystals [36]: “crystal growth extends thelayers and copies the se-



quence of orientations, which may be considered its genotype. . . . splitting of a crystal
can yield multiple pieces, each containing at least one copyof the entire genotype”.
Such self-replication can be considered as non-associative memory recall, where a key
is not necessary at all, and neither the point of crystal fragmentation nor surrounding
environmental conditions are important. In other words, Cairns-Smith model of crystal
self-replication is near the low-precision and low-recallextreme, while a self-referential
associative memory would implement the highest-effectiveness case.

Adami advocated the view that “evolution increases the amount of information a
population harbors about its niche” [1]. The information-theoretic criteria proposed in
this work may further formalize the notion of information transfer involved in self-
replication, and enable bio-inspired design of more effective memory structures.
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