562 research outputs found

    Free Speech and Its Relation to Self-Government by Alexander Meiklejohn

    Get PDF
    In today’s system-on-chip (SoC) implementations, power consumption is a key performance specification. The proliferation of mobile communication devices and distributed wireless sensor networks has necessitated the development of power-efficient analog, radio-frequency (RF), and digital integrated circuits. The rapid scaling of CMOS technology nodes presents opportunities and challenges. Benefits accrue in terms of integration density and higher switching speeds for the digital logic. However, the concomitant reduction in supply voltage and reduced gain of transistors pose obstacles to the design of highperformance analog and mixed-signal circuits such as analog front-ends (AFEs) and data converters. To achieve high DC gain, multistage amplifiers are becoming necessary in AFEs and analog-to-digital converters (ADCs) implemented in the latest CMOS process nodes. This thesis includes the design of multistage amplifiers in 40 nm and 65 nm CMOS processes. An AFE for capacitive body-coupled communication is presented with transistor schematic level results in 40 nm CMOS. The AFE consists of a cascade of amplifiers to boost the received signal followed by a Schmitt trigger which provides digital signal levels at the output. Low noise and reduced power consumption are the important performance criteria for the AFE. A two-stage, single-ended amplifier incorporating indirect compensation using split-length transistors has been designed. The compensation technique does not require the nulling resistor used in traditional Miller compensation. The AFE consisting of a cascade of three amplifiers achieves 57.6 dB DC gain with an input-referred noise power spectral density (PSD) of 4.4 nV/ while consuming 6.8 mW. Numerous compensation schemes have been proposed in the literature for multistage amplifiers. Most of these works investigate frequency compensation of amplifiers which drive large capacitive loads and require low unity-gain frequency. In this thesis, the frequency compensation schemes for high-speed, lowvoltage multistage CMOS amplifiers driving small capacitive loads have been investigated. Existing compensation schemes such as the nested Miller compensation with nulling resistor (NMCNR) and reversed nested indirect compensation (RNIC) have been applied to four-stage and three-stage amplifiers designed in 40 nm and 65 nm CMOS, respectively. The performance metrics used for comparing the different frequency compensation schemes are the unity gain  frequency, phase margin (PM), and total amount of compensation capacitance used. From transistor schematic simulation results, it is concluded that RNIC is more efficient than NMCNR. Successive approximation register (SAR) analog-to-digital converters (ADCs) are becoming increasingly popular in a wide range of applications due to their high power efficiency, design simplicity and scaling-friendly architecture. Singlechannel SAR ADCs have reached high resolutions with sampling rates exceeding 50 MS/s. Time-interleaved SAR ADCs have pushed beyond 1 GS/s with medium resolution. The generation and buffering of reference voltages is often not the focus of published works. For high-speed SAR ADCs, due to the sequential nature of the successive approximation algorithm, a high-frequency clock for the SAR logic is needed. As the digital-to-analog converter (DAC) output voltage needs to settle to the desired accuracy within half clock cycle period of the system clock, a speed limitation occurs due to imprecise DAC settling. The situation is exacerbated by parasitic inductance of bondwires and printed circuit board (PCB) traces especially when the reference voltages are supplied off-chip. In this thesis, a power efficient reference voltage buffer with small area has been implemented in 180 nm CMOS for a 10-bit 1 MS/s SAR ADC which is intended to be used in a fingerprint sensor. Since the reference voltage buffer is part of an industrial SoC, critical performance specifications such as fast settling, high power supply rejection ratio (PSRR), and low noise have to be satisfied under mismatch conditions and over the entire range of process, supply voltage and temperature (PVT) corners. A single-ended, current-mirror amplifier with cascodes has been designed to buffer the reference voltage. Performance of the buffer has been verified by exhaustive simulations on the post-layout extracted netlist. Finally, we describe the design of a 10-bit 50 MS/s SAR ADC in 65 nmCMOS with a high-speed, on-chip reference voltage buffer. In a SAR ADC, the capacitive array DAC is the most area-intensive block. Also a binary-weighted capacitor array has a large spread of capacitor values for moderate and high resolutions which leads to increased power consumption. In this work, a split binary-weighted capacitive array DAC has been used to reduce area and power consumption. The proposed ADC has bootstrapped sampling switches which meet 10-bit linearity over all PVT corners and a two-stage dynamic comparator. The important design parameters of the reference voltage buffer are derived in the context of the SAR ADC. The impact of the buffer on the ADC performance is illustrated by simulations using bondwire parasitics. In post-layout simulation which includes the entire pad frame and associated parasitics, the ADC achieves an ENOB of 9.25 bits at a supply voltage of 1.2 V, typical process corner, and sampling frequency of 50 MS/s for near-Nyquist input. Excluding the reference voltage buffer, the ADC achieves an energy efficiency of 25 fJ/conversion-step while occupying a core area of 0.055 mm2

    A SAR ADC with Reconfigurable Delay and Redundancy to Relax the Reference Driver

    Get PDF
    This work presents a reconfigurable delay and redundancy technique, which relaxes the reference driver requirements for a charge-redistribution SAR ADC. By selectively adding delay to the most critical SAR cycle, the overall speed of the ADC is only slightly degraded, while the output impedance of the driver or the amount of decoupling capacitance can be reduced substantially. In a simulated 10-bit 10 MS/s SAR ADC prototype, the proposed technique reduces the decoupling capacitance by 16× while maintaining 59.2 dB SNDR and 71.2 dB SFDR at a power consumption of 32 mu mathrm{W}. The estimated area is 0.002 mm2 including decoupling capacitors.</p

    High Voltage and Nanoscale CMOS Integrated Circuits for Particle Physics and Quantum Computing

    Get PDF

    Design of Energy-Efficient A/D Converters with Partial Embedded Equalization for High-Speed Wireline Receiver Applications

    Get PDF
    As the data rates of wireline communication links increases, channel impairments such as skin effect, dielectric loss, fiber dispersion, reflections and cross-talk become more pronounced. This warrants more interest in analog-to-digital converter (ADC)-based serial link receivers, as they allow for more complex and flexible back-end digital signal processing (DSP) relative to binary or mixed-signal receivers. Utilizing this back-end DSP allows for complex digital equalization and more bandwidth-efficient modulation schemes, while also displaying reduced process/voltage/temperature (PVT) sensitivity. Furthermore, these architectures offer straightforward design translation and can directly leverage the area and power scaling offered by new CMOS technology nodes. However, the power consumption of the ADC front-end and subsequent digital signal processing is a major issue. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-effcient receiver. This dissertation presents efficient implementations for multi-GS/s time-interleaved ADCs with partial embedded equalization. First prototype details a 6b 1.6GS/s ADC with a novel embedded redundant-cycle 1-tap DFE structure in 90nm CMOS. The other two prototypes explain more complex 6b 10GS/s ADCs with efficiently embedded feed-forward equalization (FFE) and decision feedback equalization (DFE) in 65nm CMOS. Leveraging a time-interleaved successive approximation ADC architecture, new structures for embedded DFE and FFE are proposed with low power/area overhead. Measurement results over FR4 channels verify the effectiveness of proposed embedded equalization schemes. The comparison of fabricated prototypes against state-of-the-art general-purpose ADCs at similar speed/resolution range shows comparable performances, while the proposed architectures include embedded equalization as well

    Design of Analog-to-Digital Converters with Embedded Mixing for Ultra-Low-Power Radio Receivers

    Get PDF
    In the field of radio receivers, down-conversion methods usually rely on one (or more) explicit mixing stage(s) before the analog-to-digital converter (ADC). These stages not only contribute to the overall power consumption but also have an impact on area and can compromise the receiver’s performance in terms of noise and linearity. On the other hand, most ADCs require some sort of reference signal in order to properly digitize an analog input signal. The implementation of this reference signal usually relies on bandgap circuits and reference buffers to generate a constant, stable, dc signal. Disregarding this conventional approach, the work developed in this thesis aims to explore the viability behind the usage of a variable reference signal. Moreover, it demonstrates that not only can an input signal be properly digitized, but also shifted up and down in frequency, effectively embedding the mixing operation in an ADC. As a result, ADCs in receiver chains can perform double-duty as both a quantizer and a mixing stage. The lesser known charge-sharing (CS) topology, within the successive approximation register (SAR) ADCs, is used for a practical implementation, due to its feature of “pre-charging” the reference signal prior to the conversion. Simulation results from an 8-bit CS-SAR ADC designed in a 0.13 μm CMOS technology validate the proposed technique

    Duty Cycling and Compact Layout Techniques in ADCs and Analog Front-ends

    Get PDF

    Low-Power Slew-Rate Boosting Based 12-Bit Pipeline ADC Utilizing Forecasting Technique in the Sub-ADCS

    Get PDF
    The dissertation presents architecture and circuit solutions to improve the power efficiency of high-speed 12-bit pipelined ADCs in advanced CMOS technologies. First, the 4.5bit algorithmic pipelined front-end stage is proposed. It is shown that the algorithmic pipelined ADC requires a simpler sub-ADC and shows lower sensitivity to the Multiplying DAC (MDAC) errors and smaller area and power dissipation in comparison to the conventional multi-bit per stage pipelined ADC. Also, it is shown that the algorithmic pipelined architecture is more tolerant to capacitive mismatch for the same input-referred thermal noise than the conventional multi-bit per stage architecture. To take full advantage of these properties, a modified residue curve for the pipelined ADC is proposed. This concept introduces better linearity compared with the conventional residue curve of the pipelined ADC; this approach is particularly attractive for the digitization of signals with large peak to average ratio such as OFDM coded signals. Moreover, the minimum total required transconductance for the different architectures of the 12-bit pipelined ADC are computed. This helps the pipelined ADC designers to find the most power-efficient architecture between different topologies based on the same input-referred thermal noise. By employing this calculation, the most power efficient architecture for realizing the 12-bit pipelined ADC is selected. Then, a technique for slew-rate (SR) boosting in switched-capacitor circuits is proposed in the order to be utilized in the proposed 12-bit pipelined ADC. This technique makes use of a class-B auxiliary amplifier that generates a compensating current only when high slew-rate is demanded by large input signal. The proposed architecture employs simple circuitry to detect the need of injecting current at the output load by implementing a Pre-Amp followed by a class-B amplifier, embedded with a pre-defined hysteresis, in parallel with the main amplifier to boost its slew phase. The proposed solution requires small static power since it does not need high dc-current at the output stage of the main amplifier. The proposed technique is suitable for high-speed low-power multi-bit/stage pipelined ADC applications. Both transistor-level simulations and experimental results in TSMC 40nm technology reduces the slew-time for more than 45% and shorts the 1% settling time by 28% when used in a 4.5bit/stage pipelined ADC; power consumption increases by 20%. In addition, the technique of inactivating and disconnecting of the sub-ADC’s comparators by forecasting the sign of the sampled input voltage is proposed in the order to reduce the dynamic power consumption of the sub-ADCs in the proposed 12-bit pipelined ADC. This technique reduces the total dynamic power consumption more than 46%. The implemented 12-bit pipelined ADC achieves an SNDR/SFDR of 65.9/82.3 dB at low input frequencies and a 64.1/75.5 dB near Nyquist frequency while running at 500 MS/s. The pipelined ADC prototype occupies an active area of 0.9 mm^2 and consumes 18.16 mW from a 1.1 V supply, resulting in a figure of merit (FOM) of 22.4 and a 27.7 fJ/conversion-step at low-frequency and Nyquist frequency, respectively
    corecore