778 research outputs found

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify, validate and analyse a prominent example of adaptive system: robot swarms equipped with self-assembly strategies. The analysis exploits the statistical model checker PVeStA

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify, validate and analyse a prominent example of adaptive system: robot swarms equipped with self-assembly strategies. The analysis exploits the statistical model checker PVeStA

    TOOL-ASSISTED VALIDATION AND VERIFICATION TECHNIQUES FOR STATE-BASED FORMAL METHODS

    Get PDF
    To tackle the growing complexity of developing modern software systems that usually have embedded and distributed nature, and more and more involve safety critical aspects, formal methods (FMs) have been affirmed as an efficient approach to ensure the quality and correctness of the design, that permits to discover errors yet at the early stages of the system development. Among the several FMs available, some of them can be described as state-based, since they describe systems by using the notions of state and transitions between states. State-based FMs are sometimes preferred since they produce specifications that are more intuitive, being the notions of state and transition close to the notions of program state and program execution that are familiar to any developer. Moreover, state-based FMs are usually executable and permit to be simulated, so having an abstraction of the execution of the system under development. The aim of the thesis is to provide tool-assisted techniques that help the adoption of state-based FMs. In particular we address four main goals: 1) identifying a process for the development of an integrated framework around a formal method. The adoption of a formal method is often prevented by the lack of tools to support the user in the different development activities, as model editing, validation, verification, etc. Moreover, also when tools are available, they have usually been developed to target only one aspect of the system development process. So, having a well-engineered process that helps in the development of concrete notations and tools for a FM can make FMs of practical application. 2) promoting the integration of different FMs. Indeed, having only one formal notation, for doing different formal activities during the development of the system, is preferable than having a different notation for each formal activity. Moreover such notation should be high-level: working with high level notations is definitely easier than working with low-level ones, and the produced specifications are usually more readable. This goal can be seen as a sub-goal of the first goal; indeed, in a framework around a formal method, it should also be possible to integrate other formal methods that better address some particular formal activities. 3) helping the user in writing correct specifications. The basic assumption of any formal technique is that the specification, representing the desired properties of the system or the model of the system, is correct. However, in case the specification is not correct, all the verification activities based on the specification produce results that are meaningless. So, validation techniques should assure that the specification reflects the intended requirements; besides traditional simulation (user-guided or scenario-based), also model review techniques, checking for common quality attributes that any specification should have, are a viable solution. 4) reducing the distance between the formal specification and the actual implementation of the system. Several FMs work on a formal description of the system which is assumed to reflect the actual implementation; however, in practice, the formal specification and the actual implementation could be not conformant. A solution is to obtain the implementation, through refinements steps, from the formal specification, and proving that the refinements steps are correct. A different viable solution is to link the implementation with its formal specification and check, during the program execution, if they are conformant

    Coordinated Execution of Heterogeneous Service-Oriented Components by Abstract State Machines

    Get PDF
    Abstract. Early design and validation of service-oriented applications is hardly feasible due to their distributed, dynamic, and heterogeneous nature. In order to support the engineering of such applications and discover faults early, foundational theories, modeling notations and analysis techniques for component-based development should be revisited. This paper presents a formal framework for coordinated execution of serviceoriented applications based on the OSOA open standard Service Component Architecture (SCA) for heterogeneous service assembly and on the formal method Abstract State Machines (ASMs) for modeling notions of service behavior, interactions, and orchestration in an abstract but executable way. The proposed framework is exemplified through a Robotics Task Coordination case study of the EU project BRICS

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    Logics for digital circuit verification : theory, algorithms, and applications

    Get PDF

    SAVCBS 2004 Specification and Verification of Component-Based Systems: Workshop Proceedings

    Get PDF
    This is the proceedings of the 2004 SAVCBS workshop. The workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to establish a suitable foundation for the specification and verification of component-based systems. Component-based systems are a growing concern for the software engineering community. Specification and reasoning techniques are urgently needed to permit composition of systems from components. Component-based specification and verification is also vital for scaling advanced verification techniques such as extended static analysis and model checking to the size of real systems. The workshop considers formalization of both functional and non-functional behavior, such as performance or reliability

    A Discrete Event System approach to On-line Testing of digital circuits with measurement limitation

    Get PDF
    AbstractIn the present era of complex systems like avionics, industrial processes, electronic circuits, etc., on-the-fly or on-line fault detection is becoming necessary to provide uninterrupted services. Measurement limitation based fault detection schemes are applied to a wide range of systems because sensors cannot be deployed in all the locations from which measurements are required. This paper focuses towards On-Line Testing (OLT) of faults in digital electronic circuits under measurement limitation using the theory of discrete event systems. Most of the techniques presented in the literature on OLT of digital circuits have emphasized on keeping the scheme non-intrusive, low area overhead, high fault coverage, low detection latency etc. However, minimizing tap points (i.e., measurement limitation) of the circuit under test (CUT) by the on-line tester was not considered. Minimizing tap points reduces load on the CUT and this reduces the area overhead of the tester. However, reduction in tap points compromises fault coverage and detection latency. This work studies the effect of minimizing tap points on fault coverage, detection latency and area overhead. Results on ISCAS89 benchmark circuits illustrate that measurement limitation have minimal impact on fault coverage and detection latency but reduces the area overhead of the tester. Further, it was also found that for a given detection latency and fault coverage, area overhead of the proposed scheme is lower compared to other similar schemes reported in the literature

    Modelling and Analysis for Cyber-Physical Systems: An SMT-based approach

    Get PDF
    • …
    corecore