

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 21, 2017

Modelling and Analysis for Cyber-Physical Systems: An SMT-based approach

Dung, Phan Anh; Hansen, Michael Reichhardt

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Dung, P. A., & Hansen, M. R. (2015). Modelling and Analysis for Cyber-Physical Systems: An SMT-based
approach. Kgs. Lyngby: Technical University of Denmark (DTU). (DTU Compute PHD-2015; No. 373).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43250289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/modelling-and-analysis-for-cyberphysical-systems-an-smtbased-approach(8e6faac4-f3e1-4836-b235-0f82eac8c687).html

Modelling and Analysis for
Cyber-Physical Systems: An

SMT-based approach

Anh-Dung Phan

Kongens Lyngby 2015
PHD-2015-373

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, Building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk PHD-2015-373

Summary

This thesis focuses on high-level modelling and analysis of Cyber-Physical
Systems (CPS). The rationale is that: since modelling and analysis phases
are closely related to the design phase, having better modelling and analysis
techniques would tremendously increase quality of designs. Moreover, better
designs have positive impacts on the product quality, development time and price,
etc.

We developed tools, theories and techniques that make use of SMT solving as
a back-end engine for analysis and employ Duration Calculus as a front-end
technology for modelling. The proposed techniques have been validated via a few
interesting case studies.

In particular, a combination of techniques including reduction to SMT solving,
novel simplification for quantified formulas in Linear Integer Arithmetic and
multicore parallelism has been used to make Duration Calculus feasible for
practical use. Duration Calculus has shown its potential as a domain specific
language in a Smart Meter case study. Moreover, counting semantics has proven
useful in connection with tool-based support for Duration Calculus.

To extend SMT techniques towards better support for analysis of CPS, we
proposed algorithms for handling quantifier alternations and implemented SMT-
based optimization procedures. The optimization procedures, available as an
extension to Z3 SMT solver, have been instrumental to provide solutions for our
case studies in a natural way.

ii Summary

Resumé

I denne afhandling er fokus på højniveaumodellering og analyse af Cyber-Physical
systemer. Rationalet bag dette fokus er at modellerings- og analysefaserne
er tæt forbundet til designfasen, og derfor vil forbedrede modellerings- og
analyseteknikker være vigtige faktorer omkring etablering af design af høj
kvalitet. Ydermere vil bedre designs have stor positiv indflydelse på, for eksempel,
udviklingstiden, kvaliteten af det endelige produkt og produktets pris.

I dette projekt er der udviklet værktøjer, teorier og teknikker der gør brug af
SMT solving som en analyse backend og som benytter Duration Calculus som
en frontend teknologi til modellering. De etablerede teknikker er validerede ved
brug af nogle få case studier.

Kombinationen af teknikker indbefatter blandt andet reduktioner til SMT
solving og nye forenklinger af lineær aritmetiske formler over heltal med
kvantorer, og multicore parallelisme er benyttet i en stræben på at bringe
anvendelse af Duration Calculus nærmere en praktiske brug. Duration Calculus
har vist sit potentiale som domæne specifikt sprog i et Smart-Meter case studie.
Derudover har en counting semantics vist sin betydning omkring værktøjsbaseret
understøttelse af Duration Calculus.

Udvidelser til SMT teknikker, der er rettet mod øget analyseunderstøttelse for
CPS, inkluderer algoritmer til at håndterer formler med dybe kvantoralterne-
ringer, samt SMT-baserede optimeringsprocedurer. Disse optimeringsprocedurer,
tilgængelige som en udvidelse af Z3 SMT solver, har været instrumentale omkring
opnåelse af resultater for vores case studier på en naturlig facon.

iv

Preface

This thesis was prepared at the department of Applied Mathematics and
Computer Science at the Technical University of Denmark i.e. DTU Compute,
in partial fulfilment of the requirements for acquiring the degree of Doctor of
Philosophy.

The thesis deals with modelling and analysis of Cyber-Physical Systems. The
main focus is to develop theories, tools and techniques that assist developers in
the design process of Cyber-Physical Systems.

The thesis is self-contained and revolves around the work done in a number of
publications written during the period 2012-2015.

The PhD project has been funded by the IDEA4CPS project granted by the
Danish Research Foundation for Basic Research (DNRF86-10). The work has
been inspired by the joint effort amongst IDEA4CPS partners and the fruitful
collaboration with researchers at Microsoft Research and Verimag.

Lyngby, June 2015

Anh-Dung Phan

vi

Acknowledgements

The first person I would like to thank is my main supervisor, Michael R. Hansen.
We met each other four years ago during the course of my Master thesis. I have
known one thing back then: he would be the best PhD supervisor one could
dream of. Michael has been always available as a source of both inspiration
and guidance over the years. I really appreciate his support and encouragement
through the highs and lows of my PhD study. Without him, this work would not
be possible to attain.

I also would like to thank my co-supervisor, Jan Madsen. He has provided great
insights in the area of Cyber-Physical Systems and real-world application. Jan
has always had a different way of looking at research problems and come up with
interesting ideas and suggestions. Thanks to him, it is possible for us to keep
balances between the practical and the theoretical side of the work.

Part of this work was carried out during my internship at Microsoft Research
Redmond. I would like to thank my collaborator and mentor, Nikolaj Bjørner
at Microsoft Research, for his guidance. I met Nikolaj three years ago while
attending his course on SMT solving at DTU Compute. His introduction to
SMT solving has been a turning point of my PhD study where SMT solving has
served as a foundation for analysis methods of our work. I am grateful to have
had a chance to visit Microsoft and learned how formal methods are being used
in the industry.

Thanks to all the fellow PhD students at the Embedded Systems Engineering

viii

section at DTU Compute. You are great colleagues with whom I have had
interesting discussions inside and outside work. Especially I would like to thank
my office mates: Florian Brandner, Luke Thomas Herbert, Qasim Mahmood
Rajpoot and Othoman Elaswad for the fun time and inspiring talks we had
together. I express the appreciation to my friends and colleagues, Nhut Nguyen
and Linh Hong Vu. Thank you for reminding me to maintain a work life balance
and to keep myself calm during difficult times.

Finally, the greatest appreciations go to my family: my mother, my father and
my brother. They have been supportive for any path I chose. My son, Dan, who
has taught me to be the most responsible, and who lights up the dark during
my tough times. And the love of my life, my wife, Xuan. She has always been
supportive and understanding. You make it possible for me to be where I am.

List of papers

The dissertation is based on the following publications, which are referred to
in the text by Paper A-F.

A. M. R. Hansen, A. D. Phan, and A. W. Brekling,
“A practical approach to model checking Duration Calculus using Pres-
burger Arithmetic”, Annals of Mathematics and Artificial Intelligence,
vol. 71, no. 1-3, pp. 251–278, 2014.

B. A. D. Phan and M. R. Hansen,
“An approach to multicore parallelism using functional programming:
A case study based on Presburger Arithmetic,” Journal of Logic and
Algebraic Programming, vol. 84, no. 1, pp. 2–18, 2015.

C. A. D. Phan, N. Bjørner, and D. Monniaux,
“Anatomy of alternating quantifier satisfiability (work in progress)”, in
10th International Workshop on Satisfiability Modulo Theories, SMT
2012, Manchester, UK, pp. 120–130, EasyChair, 2012.

D. A. D. Phan, M. R. Hansen, and J. Madsen,
“EHRA: Specification and Analysis of Energy-Harvesting Wireless Sensor
Networks”, in Specification, Algebra, and Software - Essays Dedicated
to Kokichi Futatsugi, vol. 8373 of Lecture Notes in Computer Science,
pp. 520–540, Springer, 2014.

E. N. Bjørner and A. D. Phan,
“νZ - Maximal Satisfaction with Z3”, in 6th International Symposium on
Symbolic Computation in Software Science, SCSS 2014, Gammarth, La
Marsa, Tunisia, pp. 1–9, EasyChair, 2014.

F. N. Bjørner, A. D. Phan, and L. Fleckenstein,
“νZ - An Optimizing SMT Solver”, in Tools and Algorithms for the
Construction and Analysis of Systems - 21st International Conference,
TACAS 2015, vol. 9035 of Lecture Notes in Computer Science, pp. 194–
199, Springer, 2015.

x

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 What are Cyber-Physical Systems? 1
1.2 Modelling and Analysis of Cyber-Physical Systems 6

1.2.1 Automata-based approaches 6
1.2.2 Logic-based approaches . 8
1.2.3 Other approaches . 10

1.3 Goals of the thesis . 11
1.4 Structure of the thesis . 12

2 Background 15
2.1 Introduction to SMT solving . 16
2.2 Introduction to Duration Calculus 24
2.3 Summary . 26

3 Contributions 27
3.1 A practical approach to model checking Duration Calculus using

Presburger Arithmetic . 28
3.2 An approach to multicore parallelism using functional program-

ming: A case study based on Presburger Arithmetic 34

xii CONTENTS

3.3 Anatomy of Alternating Quantifier Satisfiability 39
3.4 EHRA: Specification and Analysis of Energy-Harvesting Wireless

Sensor Networks . 44
3.5 νZ - An optimizing SMT solver . 49

4 Two cases 57
4.1 Smart Meter . 57
4.2 Formal Design Space Exploration for Wireless Sensor Networks . . 62

5 Conclusions 71

References 75

Chapter 1

Introduction

For quite some time, Cyber-Physical Systems (CPS) have emerged as a field
of research closely related to Embedded Systems. The term Cyber Physical
Systems is often used to emphasize an integration of computation components
with physical processes as stated in [43]: “In CPS, embedded computers and
networks monitor and control the physical processes, usually with feedback loops
where physical processes affect computations and vice versa. The design of
such systems, therefore, requires understanding the joint dynamics of computers,
software, networks, and physical processes.” In this chapter, we will discuss
Cyber-Physical Systems and their characteristics, and position the focus of this
work in the CPS area.

1.1 What are Cyber-Physical Systems?

For many years, Embedded Systems have played an important role in our daily
life. For example, we often use cars which are embedded systems comprising many
components. Even common traffic lights contain embedded computers running
with limited resources and fulfilling real-time requirements. Embedded Systems

2 Introduction

get more and more complex and many tasks performed by them today are too
critical to tolerate failures.

Two well-known examples of failures that result in either huge financial costs or
life threatening to many people are: (1) In 1996, Ariane 5, a European heavy lift
launch vehicle, was self-destructed a few seconds into its first test flight. It turned
out that a unit conversion bug in the control software has caused the $370M
failure. (2) Between 1985 and 1987, Therac-25, a radiation therapy machine
produced by Atomic Energy of Canada Limited, was involved in massive radiation
overdose to six patients. The reason was a race condition between concurrent
tasks.

These incidents show how safety and reliability are of extreme importance to
embedded systems design. Therefore, more formal design methods are crucial in
designing these systems. In this thesis, one of the recurring themes is to apply
formal methods to detect flaws in designs and eliminate them as early as possible.

Recently there has been a growing interest in an emerging category of embedded
systems called Cyber-Physical Systems. The cyber part stands for computational
components that integrate with physical processes via network fabrics. A
distinctive property of CPS is their emphasis on interaction and coordination
between computational and physical components. The idea is that embedded
systems no longer operate in isolation; they often cooperate via networks and
coordinate to form a bigger and more autonomous system. For instance, if we
allow cars to communicate with traffic lights and self-coordinate for more efficient
traffic flows, this forms an intelligent transport system, i.e. an exemplary CPS.
More efficient traffic flows give huge boosts in terms of time saving for people
in societies. However, intelligent transport systems are complex and error-prone.
Imagine if communication signals between cars and traffic lights got delayed, it
could cause catastrophic failures where cars crashed and the whole transport
system broke down. It becomes more and more important to be able to manage
complexity and mitigate failures of such critical systems. The phenomenon
inspires a strive for better methodologies and tools to construct CPS.

Unmanned Aerial Vehicles: A motivating example

In December 2013, Amazon announced their Prime Air plan to use drones for
speedy delivery. The idea is to use drone-like "octocopters” to deliver lightweight
orders in 30-minute timeframe. The octocopters operate in 10-mile radius and
carry items weighed less than 2 kg. Although Prime Air has not yet reach

1.1 What are Cyber-Physical Systems? 3

Figure 1.1: A detailed look at an Amazon’s octocopter

commercial use, it has steered a lot of discussion regarding the use of Unmanned
Aerial Vehicles (UAV) in a large scale [17].

Amazon’s vision is that octocopters pick up packages in warehouses and deliver
them at customers’ doorsteps quickly and safely. Each octocopter is planned for
economical delivery, and it needs coordination with other octocopters for route
planning and collision avoidance. Although the scenario is very simple, it is
notoriously tricky to make it efficient and robust in reality.

The first issue is safety. Amazon would like to ensure that drones will not cause
injuries, e.g. by dropping goods. To be practical, these flying machines have to
be able to operate in a wide range of conditions. But what should be done if a
delivery is expected in bad weather? A solution could be that the drones should
be equipped with reliable trackers so that they are able to adjust order departures
based on weather conditions.

Another issue is interaction. An octocopter needs to navigate through unknown
territories. It is not straightforward to land reliably on inhomogeneous or even
dynamic customer sites. The drones should interact with the environment,
capture relevant data and make use of computer vision techniques to find an
ideal landing location.

There is also an issue with coordination. A drone might deliver multiple packages
in a single mission. But disruption in the environment might cause its mission
plan to change. In an ideal case, multiple drones should communicate with each
other and coordinate where each of them should go next. This is a general
problem in mission planning, that occurs in package delivery, monitoring and

4 Introduction

Figure 1.2: An iterative process of model-based design of Cyber-Physical
Systems [43]

other use cases.

It is exciting to see applications of Cyber-Physical Systems in daily life. As we can
observe from the Prime Air example, it is difficult to build CPS in a sustainable
manner. Therefore, it is of extreme importance to have proper feedback in the
design process so that faulty design decisions could be ruled out as early as
possible. We employ a model-based design methodology. This methodology
fits nicely with the emphasis on formal methods as well. Model-based design is
discussed in more detail in the next section.

Model-based Design of Cyber-Physical Systems

In order to design Cyber-Physical Systems using a model-based approach, we
often have to go through an iterative process with three phases: modelling,
design and analysis as shown in Fig. 1.2. Modelling gives a deeper understanding
of the problem by creating a specification of what a system should do. This
step often builds a mathematical model where the behaviors are specified in a
clear and concise manner using a formal modelling language. The design process
puts together all components to refine the model into a concrete implementation.
This is often done by adding more information to the model and specifying non-
functional properties of the system. In the analysis phase, we break the system
down to have detailed looks at its different components and their interactions.

1.1 What are Cyber-Physical Systems? 5

From a formal methods’ perspective, this step often exploits formal analysis of
the models. Three phases – modelling, design and analysis – stand for what, how
and why a system does what it does, respectively. We often go back and forth
between the phases, gain more insights about the system and refine it along the
way. The phases also give multiple levels of abstractions of the system. This is
important since one can focus on relevant details at the current level and easily
recognize design flaws by using a right abstraction.

The focus of this dissertation is on high-level modelling and analysis techniques.
The perspective is by doing qualitative and quantitative modelling and analysis,
we get deeper insights on system designs. The acquired knowledge is crucial
for making Cyber-Physical Systems safer, more robust and more sustainable.
Another goal is to reduce cost of design, development and maintenance in the
long term. In the next section, we shall discuss the techniques for modelling and
analysis of such systems.

In this thesis, we set our focus on techniques to model and analyze Cyber-Physical
Systems. One of the recurring topics in our research is Wireless Sensor Network
(WSN). A Wireless Sensor Network is a distributed network of sensor nodes
operating in a physical environment. Each node interacts with the environment
and collects data for a specific purpose, e.g., environmental monitoring, traffic
control, etc. Collected data is gathered at so-called base stations where it is
further processed. A long-lasting issue of WSN is to account for unpredictable
behaviors of the environment.

If we add energy harvesting capabilities to sensor nodes, their lifetimes now
depend on how the environment behave. This adds more complexity to designing
WSN because sensor nodes are often designed to sustain long lifetime using low
powers. Energy-harvesting-aware routing requires interaction and coordination
between computational and physical components. Since energy harvesting is
unpredictable, sensor nodes need to adapt their behaviors when surrounding
environment changes. These uncertainty and complexity issues make WSN design
very challenging and fascinating. By working on this down-to-earth WSN topic,
one could understand more about modelling and analysis of WSN and generalize
lessons learned to other domains.

6 Introduction

1.2 Modelling and Analysis of Cyber-Physical
Systems

In this section, different approaches for modelling analysis of CPS are presented.
The three categories include automata-based, logic-based and other approaches.
While the two former categories are formal in the sense that they use mathe-
matical models of different kinds as a basis for rigorous analysis. The “other
approaches” are more heterogeneous; they are based on informal reasoning to
gain insights about systems under investigation. There are not always significant
differences between these approaches. However, by categorizing them, we are
able to explore advantages and drawbacks of each category. The ultimate goal is
to use an approach that is most relevant to a given scenario.

1.2.1 Automata-based approaches

Automata, i.e. finite-state machines, are often used to model systems. An
automaton comprises states and transitions between states. It provides a
convenient and operational modelling formalism via a graphical representation.
Complex systems could be addressed by decomposing into small systems which
can be represented by independent automata. Then large systems can be
modelled by compositions of corresponding automata, where the automata
typically are combined in parallel.

One common question is to check whether a model of a system satisfies a given
property P . This is so-called model checking problem, i.e., verifying correctness
properties of finite-state systems [15]. A property P is typically a specification
expressed in a form of a formula of a temporal logic. Model checking algorithms
then check satisfiability of this formula automatically. Despite being powerful
analysis techniques, model checking algorithms face a big challenge due to
combinatorial complexity of state spaces i.e. the state explosion problem.

There is a lot of research in the area of automata theoretic approaches for CPS.
This section does not mean to provide an exhaustive survey of the approaches.
Instead we focus on two prominent formalisms including hybrid automata and
timed automata and discuss their applications in more detail.

A hybrid automaton is a model comprising finite-state machine and continuously
evolving variables [36], where two kind of state changes are considered: (1)

1.2 Modelling and Analysis of Cyber-Physical Systems 7

A timed automaton trajectory
A linear hybrid automaton trajectory
A hybrid automaton trajectory

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

x

y

Figure 1.3: Trajectories of different classes of hybrid automata

discrete transitions, happening instantaneously, which are suitable to model
discrete systems and (2) continuous flows which are based on time elapses.
Continuous variables are depicted by ordinary differential equations. Hybrid
automata are well-suited to model CPS since they can describe inherent
interaction between physical and computational components. Due to the presence
of continuous variables, hybrid automata are infinite-state systems which classic
model checking algorithms are not directly applicable for.

Linear Hybrid Automata (LHA) is a special class of hybrid automata, that allows
any differential equation of the form ẋ = k where k is constant. It has been
received a lot of research attention; a main reason is that LHA is simple yet
powerful enough to model a lot of complex systems. Reachability analysis on
LHA is undecidable while bounded reachability is still decidable [9]. HyTech, a
symbolic model checker for LHA, is able to perform parametric analysis to deduce
design parameters for given systems satisfying some temporal requirements [37].

Timed automata, a modelling formalism proposed by Alur et al. [1], is a class
of hybrid automata where continuous variables are clocks whose derivatives are
constants of the form of ẋ = 1. Fig. 1.3 shows different trajectories of various
classes of hybrid automata. As one can see, the trajectory of a general hybrid
automaton has some irregularities that pose serious challenges for automatic

8 Introduction

analysis. Timed automata is an attractive formalism since their model-checking
problem is decidable [1]. Consequently there are many efficient tools for analyzing
timed-automata-based systems e.g. Kronos [20, 73] and Uppaal [4, 42].

Model checking algorithms start with a region automaton construction. The idea
is to construct equivalence classes of states in terms of regions. These regions form
finite-state automata, which are subjected to classic model checking algorithms.

Revisiting our motivating example on UAV, Seibel et al. has used Hybrid
Automata as the formalism for UAV mission planning [63]. The focus of the
work is detailed modelling of aircrafts’ internal as well as external conditions
i.e. the underlying environment. For instance, fuel consumption is specified by
a linear hybrid automaton which has each of its states as an estimation of real
consumption. The environment is characterized by a set of inequalities in which
non-linear regions are approximated by a union of linear regions. This hierarchical
approach leads to a very comprehensive set of hybrid automata, which are
composed together in parallel to form a complex system. A flight plan is then
deduced from a reachability analysis of the whole system. An interesting aspect of
using Hybrid Automata is that one can model interaction between computation
and physical components through combination of continuous dynamics and
discrete state changes. Moreover, the environment is also taken into account,
which makes the model realistic.

1.2.2 Logic-based approaches

The separation between automata-based and logic-based approaches is not always
crystal clear. A model checker often uses automata for detailed modelling and
logics for specification thanks to their expressiveness. In this section, an approach
is said to be logic-based if solving these logical formulas is the main ingredient of
the approach.

Advantages of logic-based approaches are their conciseness and expressiveness in
modelling systems and properties. These strengths allow users to encode complex
systems and provide useful abstractions in understanding such systems. A trade-
off of expressiveness is high complexity of decision procedures for such logics if
such procedures exist.

There are different kinds of logic-based approaches. We mention here a few
common ones.

1.2 Modelling and Analysis of Cyber-Physical Systems 9

• Interactive theorem proving Using these approaches, users state explicit
goals in a proof assistant, and gradually prove them based on hints provided
by the proof assistant. Due to the interactive nature, the problem-solving
process might be tedious and error-prone for complex problems. A few
examples of such proof assistants are Isabelle [51] and PVS [66].

• Automatic theorem proving A specific logic fragment is used to model
systems and a corresponding automatic prover deduces results from input
formulas. In the area of CPS, differential dynamic logic (dL), introduced
by Platzer, is an expressive formalism to specify and verify hybrid systems
[56]. The logic can be used to specify properties in first-order formulas
combined with hybrid programs. The properties can be verified using the
deductive verification tool for hybrid systems, KeYmaera. There are a
number of case studies using dL to verify complex CPS such as European
Train Control System and aircraft collision avoidance manoeuvres [58, 57].
An advantage of dL is its advanced support for compositional modelling of
complex systems.

• Reduction-based techniques These methods rely on reductions from mod-
elling formalisms to first-order logics. In the end one may still use automatic
theorem proving in order to solve logic formulas. However, reductions
have many intricacies that need special treatments. This section focuses
on reduction-based approaches. We demonstrate a few methods of this
category later in more detail.

Bounded model checking (BMC) is one of the representative techniques for
reduction-based approaches. Different from classical model checking, BMC
unrolls the finite-state machine until a fixed number of steps k. The algorithm
verifies whether a property is violated in up to k steps by checking satisfiability
of a logical formula.

BMC is a commonly-used technique to remedy the state explosion problem. The
approach is well-suited for finding bugs/counterexamples. Its drawback is non-
exhaustiveness; it is only able to find possible violations up to a value k. Bounded
model checking for Linear Hybrid Automata has been addressed by the work of
Audemard et al. [2] for example. The work relies on Boolean satisfiability i.e.
SAT solving and employs mathematical reasoning over the reals. Experiments
were conducted on Secondary Power System, a concrete case study in the CPS
area. Experimental results showed that the approach is more scalable than that
of HyTech.

On a related note, Gao et al. also encodes bounded reachability of hybrid systems

10 Introduction

using Satisfiability Modulo Theories (SMT) solvers [33]. SMT solvers can be
understood as SAT solvers plus reasoning capabilities w.r.t. some background
theories. The authors consider reachability analysis within a number of discrete
transitions. To deal with non-linear nature of hybrid systems, δ − complete
decision procedures that ensure systems to be safe or unsafe under certain
thresholds are proposed. Their novel SMT solver dReal is able to handle
problems with thousands of variables [32].

Coming back to our motivating UAV example, Humphrel et al. proposed to use
Linear Temporal Logic (LTL) as a specification language for synthesizing UAV
mission plans [38]. Mission plans often include UAVs’ movements and their paths
on specific regions of road networks. The richness of LTL is really important in
expressing interesting mission specifications. One can encode common UAVs’
properties e.g. coverage, sequencing and avoidance in LTL in a concise manner.
The idea is that UAVs’ road networks are discretized to concrete points using
maximum and minimum speed possible. The whole system of multiple UAVs is
modelled as a transition system using these points as states. These transition
systems are rather simple; the focus is in the coordination between the UAVs,
which generates comprehensive mission specifications. Mission specifications are
written as temporal properties of these locations; then model checking techniques
are used to synthesize a feasible mission plan. The underlying model checker is
in turn based on logical formalisms e.g. the properties are reduced to Boolean
formulas to be solved by a SAT solver.

Reduction-based techniques are being used frequently throughout the disserta-
tion. One example is to solve model checking problem of Duration Calculus, an
interval temporal logic, that allows succinct ways to express real-time properties
[12]. The main idea of our approach is to reduce the model checking problem to
a formula in Linear Integer Arithmetic and to use a powerful backend to solve
formulas in that logic. This problem involving Duration Calculus inspires several
directions of our work and constitutes the core of the thesis. We shall describe
the approach at a deeper level in Chapter 3.

1.2.3 Other approaches

Simulink, developed by MathWorks, is an environment for modelling and
simulating systems with time-dependent behaviors. The environment is based
on Block Diagrams comprising input and output signals. The Block Diagrams
can be easily composed to create more complex systems. Simulink is widely used

1.3 Goals of the thesis 11

in the domain of control designs and it starts being used for modelling CPS [48].
It has many strengths e.g. code generation support for multiple platforms and
advanced simulation capabilities. Furthermore, Simulink Design Verifier provides
excellent tools to detect design flaws that cannot be found by simulation [71].

Modelica, an open standard developed by Object Management Group, provides
an object-oriented modelling language for CPS [31]. Models in Modelica are
often represented graphically that give users opportunities to reason about
the models informally. A collection of crafted models is provided to support
modelling of systems of systems in a large scale. The emphasis of Modelica is not
formal analysis but flexibility in modelling; it also provides powerful simulation
capabilities. For example, Modelica’s simulation of controller timing is based on
TrueTime simulator [60].

While automata-based and logic-based approaches often suffer from scalability
problems, simulation-based approaches are applicable for large systems. This
makes simulation appealing to detailed modelling and analysis of concrete sys-
tems. One method is to use multiple levels of abstractions i.e. approximated high-
level models for formal analysis and precise system-level models for simulation
purposes. This method facilitates the use of complementary approaches which
have their own strengths to offer.

A method that is in between formal and simulation-based approaches is statistical
model checking. The premise of statistical model checking is scalability by not
exhausting state spaces. Moreover, it still has guarantees up to certain probability
similar to what model checking offers. Statistical model checking has excellent
tool support such as Uppaal SMC [10] for timed automata.

While Simulink and Modelica are excellent tools to examine and simulate concrete
systems, there are some gaps in composing large-scale systems to be filled.
For the purpose, one can use a standardized language for model-based systems
engineering e.g. SysML and AADL [35, 25]. The advantage of using such a
language is that it gives more holistic views on systems of systems and provides
tools to examine specific components and their interactions.

1.3 Goals of the thesis

In the previous section, various approaches for modelling and analysis of CPS
have been introduced. We believe each approach should be used on areas of

12 Introduction

their best strengths. Therefore, combined methods are often employed where we
can inject relevant approaches at appropriate places. Our intention is to develop
theories, tools and techniques for modelling and analysis of CPS and apply those
to concrete case studies. The goals of this thesis can be summarized as follows:

• Develop theories, tools and techniques for Duration Calculus, that are
geared towards high-level modelling and analysis of CPS. As mentioned
in Section 1.2, Duration Calculus is used as a front-end technology to
solve problems of CPS nature. Moreover, in making DC’s model checking
algorithms more efficient, we are inspired to investigate various techniques
to make Duration Calculus suitable for practical use.

• Develop theories, tools and techniques for SMT solving, that are geared
towards analysis of CPS. SMT-based analysis could be used as a back-end
technology for various problems. Along with the use of reduction to SMT
solving, we examine the use of SMT optimization. Problems of CPS nature
often require quantitative analysis in a form of optimization.

• Develop modelling and analysis techniques for Wireless Sensor Networks
with special focus on energy harvesting. In particular, we analyze global
behaviors of such networks and use concrete WSN topologies as case studies
to gain insights on the problems at hand and on the analysis techniques.

1.4 Structure of the thesis

The remaining chapters are organized as follows.

• Chapter 2 gives an introduction on SMT solving and Duration Calculus,
the main modelling and analysis frameworks we choose as a basic of the
work. The chapter provides basic knowledge to understand the techniques
presented in the thesis.

• Chapter 3 summarizes our publications and their main contributions. The
chapter consists of detailed summaries for Paper A-F.

• Chapter 4 describes two cases in the CPS domain: the first one on
Smart Meter of home appliances and the second one on simple WSN in
a chain topology. The former case is relatively simple; it focuses only
on coordination between appliances. The latter case takes into account

1.4 Structure of the thesis 13

both coordination and interaction between sensor nodes. These concrete
examples are examined using the techniques presented in Chapter 3. The
idea is to revisit relevant techniques and discuss their applicability in
appropriate circumstances.

• Chapter 5 concludes the thesis with a brief summary and a discussion of
future work.

14 Introduction

Chapter 2

Background

In Chapter 1, we set out the goals to employ Duration Calculus and SMT
solving as the front-end and back-end technologies, respectively, to address CPS
problems. This chapter provides the readers with background knowledge on SMT
solving and Duration Calculus in order to understand concrete contributions and
their relationships in the next chapter.

We start with a quick glance of SMT solving, that provides analysis techniques
being used throughout the thesis. The introduction shows what SMT solving
is and how it is used in practice. The next section gives a brief introduction
to Duration Calculus, that was proposed in connection with specification and
analysis of hybrid and embedded systems. The use of Duration Calculus as a
modelling formalism will be described in more detail in Chapter 3 and Chapter 4.

16 Background

2.1 Introduction to SMT solving

What is SMT solving?

For a Boolean formula ϕb, there exist algorithms for checking satisfiability of ϕb.
Such an algorithm is called SAT solver. However, formulas arise in practice do
not only contain Boolean fragment; they often require reasoning based on certain
theories. Taking the following formula ϕ as an example

ϕ ≡ (2x+ 1 = 2y) ∧ b

where b ∈ B. If x and y are on the domain of reals, ϕ is satisfiable. However, if
the domain of integers is chosen, no satisfying assignment exists for ϕ.

For a first-order logic formula ϕ, a key question is:

“Is formula ϕ satisfiable modulo theory T ?”

If the answer is yes, the formula is said to be T -satisfiable. The question is
central for so-called Satisfiability Modulo Theories (SMT) problems. Procedures
that solve SMT problems are called SMT solvers.

Theory T can be understood as a signature defining domains, functions and
relations of the theory. For instance, Linear Real Arithmetic (LRA) has its
signature to be given by domain R of reals, and relations ≥, <,≤, >,=. The
operations consist of addition (+), subtraction (−), and multiplication (×) by a
constant r ∈ R. Efficient decision procedures for LRA exist; they are implemented
as an integral part of most modern SMT solvers [24]. If changing the domain from
R to Z, one obtains theory of Linear Integer Arithmetic (LIA). LIA and LRA are
two theories being used frequently in this thesis as we shall see in Chapter 3.

Another theory, Equality and Uninterpreted Functions (EUF), constitutes the
core of SMT solvers. The signature contains uninterpreted functions and
relations. An important property is congruence rule: if t = s then f(t) = f(s).
EUF is the core theory of SMT because most of theories are translated to EUF,
for which efficient decision procedures exist. The readers are referred to the
congruence closure algorithm [23, 3] for more thorough treatments.

To illustrate these theories, let us take a look at the following example which has
a mixture of LRA and EUF theory:

ϕ ≡ (x+ 2 = y) ∧ (f(3) 6= f(y − x+ 1)) (2.1)

2.1 Introduction to SMT solving 17

If we substitute y by x+2 and perform a simplification, we arrive at the following
formula:

ϕ ≡ (x+ 2 = y) ∧ (f(3) 6= f(3))

The formula is inconsistent i.e. unsatisfiable w.r.t. the EUF theory. As the
example demonstrated, combination of theories is an important advantage of
SMT solving. SMT provides an expressive modelling formalism where multiple
background theories can be leveraged. This also means high-level abstractions
for users where many problems are too tedious to express in pure SAT. Another
strength is that not every theory can be reduced to SAT.

SMT solving: A simple example

Input: Ground formula ϕ in theory T
Output: unsat or sat with a satisfying assignment in T
ϕb ← fol2prop(ϕ)
while satB(ϕb) do

βb ← pick_assignment(ϕb)
(ρ, π)← satT (prop2fol(βb))
if ρ is sat then

return sat
end
ϕb ← ϕb ∧ ¬fol2prop(π)

end
return unsat

Algorithm 1: A core algorithm for SMT solving [22]

The core algorithm of an SMT solver is given in Algorithm 1. First, the first-
order formula ϕ is converted to a Boolean abstraction ϕb on fresh propositional
variables by using function fol2prop. Then we enumerate satisfying assignments
of the Boolean abstraction and check for satisfiability of ϕ in theory T . The
procedure satB is a SAT solver, that answers whether the formula ϕb is satisfiable.
If it is sat, the SAT solver provides a model containing all Boolean atoms, βb.
A SAT solver is often based on the DPLL algorithm [19], but we do not focus
on SAT solving in this chapter. The interested readers are referred to [5] for
background information.

The Boolean model is translated back to first-order atoms in T using function
prop2fol. The procedure satT i.e. Theory solver is used to check for consistency

18 Background

w.r.t. theory T . The theory solver returns two results: (1) ρ is an outcome, being
either sat or unsat (2) π is an optional value which returns an unsat core i.e. a set
of conflicting literals when ρ is unsat. To reiterate, if ρ is unsat, the theory solver
provides evidence π in a form of theory conflicts, which are translated back to
Boolean domain (using fol2prop) in order to exclude this inadequate SAT model
from next SAT solvers’ results. The procedure in Algorithm 1 continues until
satT returns sat or all Boolean satisfying assignments have been enumerated.

We use the following example to illustrate SMT solving with LIA theory:

ϕ ≡ (x ≥ 0) ∧ (y = x+ 1) ∧ (y > 2 ∨ y < 1)

A few steps of solving this formula are given in Fig. 2.1 with annotated labels
based on Algorithm 1. Here are a number of remarks:

• The Boolean abstraction ϕb is created by simply declaring new propositional
variables p1, p2, p3 and p4 for first-order literals.

• ϕb has a model in B where p1, p2, ¬p3, p4 are true. However, there does
not exist a corresponding model in T .

• satT gives a result stating that x ≥ 0, y < 1, y = x + 1 are conflicting
literals which constitute an unsat core.

• fol2prop translates negation of the unsat core to Boolean formula ¬p1 ∨
¬p2 ∨¬p4. This extra information is used in next SAT iteration to exclude
current model.

The key takeaway is that the exchange of information between SAT solver and a
theory solver is done in a modular way. In a nutshell, an SMT solver comprises
of a SAT and a theory solver that exchange atoms with each other.

Architecture of an SMT solver

The main components of an SMT solver are shown in Fig. 2.2. The architecture
depicted here is heavily influenced by that of Z3 SMT solver [21]. However, many
of the components can also be found in other SMT solvers.

2.1 Introduction to SMT solving 19

βb :
p1, p2, ¬p3, p4

satB :
SAT solver

prop2fol(βb) :
x ≥ 0, y = x+ 1,
¬(y > 2), y < 1

p1 ≡ (x ≥ 0), p2 ≡ (y = x+ 1)
p3 ≡ (y > 2), p4 ≡ (y < 1)

ϕ :
x ≥ 0, y = x+ 1,
(y > 2 ∨ y < 1)

ϕb :
p1, p2, (p3 ∨ p4)

satT :
Theory solver

π :
x ≥ 0, y < 1,
y = x+ 1

¬fol2prop(π) :
¬p1 ∨ ¬p2 ∨ ¬p4

Figure 2.1: An example trace of SMT solving

20 Background

Lexing

Basic lexing

White-space sensitive lexing
Parsing

Import

Resolving references

Importing referenced .NET
binaries

Importing referenced F#
binaries

Type checking

Type checking files
sequentially

Pattern match compilation

Constraint solving

Post-inference type checking

Code generation

Quotation translation

Optimization

Code generation

Abstract IL code rewriting

Binary emit Reflection emit

Figure 2.2: An architecture of an SMT solver

2.1 Introduction to SMT solving 21

• Simplifier: This component performs simplifications that exploit the
structure of input formulas. As shown in Equation 2.1, many formulas
consist of redundant assertions and effective simplification is enough to
give definite results in certain cases. In Paper A, we discuss simplification
techniques that are akin with this component of an SMT solver.

• Compiler: The component compiles abstract syntax trees of formulas into
different data structures suitable for being processed by core theory solvers.

• Congruence closure core: This is the core SMT solver that understands
SMT formulas in EUF theory. A general SMT problem is translated to a
SMT one with only equalities to be handled by this solver.

• SAT solver: This is a typical SAT solver that sends literal assignments
back to the core theory solver for SMT solving w.r.t. equalities.

• Satellite theory solvers: Most of theories supported by SMT are
implemented as satellite theory solvers. As demonstrated in Fig. 2.1, all
the theory-specific bits are abstracted away from input formulas. The core
SMT problem with equalities is solved by the core SMT solver. Whenever
a satisfying assignment was constructed, the theory solver would check it
for consistency w.r.t. the background theory.

From the architecture above, one can see that a benefit of implementing a theory
solver as part of an SMT solver is the tight integration with SMT core. It means
that there are useful information e.g. equality assignments and atoms exchanged
between solvers to make use of. Another advantage is to avoid doing redundant
work. An SMT solver only passes a small chunk of a formula to corresponding
SAT solver at a time. If an SMT problem is reduced to SAT upfront, it may
suffer significant blowup even before the solving phase.

Beside theory of linear arithmetic (including LIA, LRA, etc.), we are also
interested in theory of quantifiers. For a first-order logic formula with quantifiers,
a quantifier-elimination procedure is an algorithm that finds a quantifier-free
equivalence of such formula. There are efficient algorithms for quantifier
elimination; we shall go into more detail in Paper C.

Z3 is a state-of-the-art SMT solver from Microsoft Research [21]. The SMT solver
supports satisfiability of many of theories out of the box. Paper E and Paper F
present an extension of Z3 SMT solver, that provides optimization capabilities on
top of satisfiability. The optimization procedures are also implemented as satellite
theory solvers. For a first-order logic formula and an optimization goal of some

22 Background

kind, one needs to find a satisfying assignment of the formula that optimizes
the given goal. In a typical case, optimization solvers interact with the core
SMT solver to retrieve a solution for the core SMT problem. However, there are
some cases where input formulas can be compiled to pure SAT problems. The
optimization theory solvers then invoke the core SAT solver directly for better
efficiency.

SMT-based problem solving: N-Queens example

8 QZ0Z0Z0Z
7 Z0Z0Z0L0
6 0Z0ZQZ0Z
5 Z0Z0Z0ZQ
4 0L0Z0Z0Z
3 Z0ZQZ0Z0
2 0Z0Z0L0Z
1 Z0L0Z0Z0

a b c d e f g h

Figure 2.3: A 8× 8 chessboard with a feasible solution

Consider the following classic problem: placing n queens on an n × n
chessboard so that no two queens attack each other. A simple SMT
formulation using Linear Integer Arithmetic is established as follows:

• Let Qi ∈ Z be a non-negative integer variable for 1 ≤ i ≤ n.

• Qi = k denotes that a queen is placed at position (i, k), i.e. column i and
row k.

• Every queen is placed in the board:

Qi ≥ 1 ∧Qi ≤ n where 1 ≤ i ≤ n

2.1 Introduction to SMT solving 23

(assert (distinct (- Q1 Q2) -1 1))
(assert (distinct (- Q1 Q3) -2 2))
(assert (distinct (- Q1 Q4) -3 3))
(assert (distinct (- Q1 Q5) -4 4))
(assert (distinct (- Q1 Q6) -5 5))
(assert (distinct (- Q1 Q7) -6 6))
(assert (distinct (- Q1 Q8) -7 7))
...
(assert (distinct (- Q5 Q6) -1 1))
(assert (distinct (- Q5 Q7) -2 2))
(assert (distinct (- Q5 Q8) -3 2))
(assert (distinct (- Q6 Q7) -1 1))
(assert (distinct (- Q6 Q8) -2 2))
(assert (distinct (- Q7 Q8) -1 1))

Figure 2.4: Diagonal constraints for N-Queens problems with N=8

• Each queen is in a distinct row:

Qi 6= Qj where 1 ≤ i < j ≤ n

• No diagonal can contain two queens:

Qi −Qj 6= i− j ∧Qi −Qj 6= j − i where 1 ≤ i < j ≤ n

In Fig. 2.3, a solution for 8×8 chessboard is shown. For example, since there is a
queen at position d3, no other cell in the same row, column or backward/forward
diagonals of d3 can contain a queen.

Fig. 2.4 illustrates the diagonal constraints above in SMT-LIB syntax. SMT-LIB
is the de-factor language for SMT solving, that allows expressing SMT problems
in a concise and clear manner. As shown in Fig. 2.4, translation from logical
formulation to SMT-LIB syntax is straightforward. Throughout the thesis, we
use the logical notation, the translation to SMT-LIB is assumed to be trivial.

Notice that the formalization to Linear Integer Arithmetic is one of many possible
encodings for the N-Queens problem. For instance, one can exploit the fact that
positions comprise of bounded natural numbers and make use of a fixed-width bit-
vector encoding. An advantage of SMT solving (compared to SAT counterpart)
is their high-level abstraction where one can focus on expressing problems in

24 Background

Figure 2.5: A trajectory on observation intervals

natural ways. Most of the heavy-lifting tasks are done by theory solvers under
the hood.

2.2 Introduction to Duration Calculus

Interval Temporal Logic (ITL), introduced by Moszkowski [47], is a real-time logic
that allows quantitative interval properties to be expressed in a natural way. A
formula φ in ITL is constructed via following rules:

φ ::= θ1 = θ2 | ¬φ | φ ∨ ψ | φ _ ψ | ...

where chop (_) is the only modality of the logic. A formula φ _ ψ holds in an
interval [b, e] if the interval can be partitioned into two consecutive intervals [b,
m] and [m, e] so that φ holds in [b, m] and ψ holds in [m, e].

Duration Calculus (DC), another real-time logic, extends ITL with a notion
of duration

∫e
b
S(t)dt [12, 11]. This extension allows succinct formulation of

quantitative properties concerning durations of complex properties.

Fig. 2.5 describes an exemplary trajectory with multiple intervals. One can
observe that DC formula (

∫
x ≥ 3) ∧ (

∫
y < 3) holds on interval [1, 4] and∫

y − 2
∫
(x ∧ ¬y) = 0 holds on interval [4, 7] respectively. By the definition of

chop, DC formula ((
∫
x ≥ 3) ∧ (

∫
y < 3))_(

∫
y − 2

∫
(x ∧ ¬y) = 0) holds on interval

[1, 7].

2.2 Introduction to Duration Calculus 25

Undecidability of decision problems is a big challenge in dealing with DC. The
decision problem of DC is undecidable unless there are severe restrictions imposed
on formulas and/or models [34, 28, 29]. Consider a discrete-time DC fragment
whose syntax is defined as follows:

S ::= 0 | 1 | P | ¬S | S1 ∨ S2

φ ::= > | Σi∈Ωci

∫
Si ./ k | ¬φ | φ ∧ ψ | φ_ψ

where P is in the set of state variables, k, ci ∈ Z and ./ ∈ {<, ≤, =, ≥, >}.
The satisfiability problem of the above fragment is undecidable already unless
the duration notion is limited to the form

∫
S ./ k.

A similar issue occurs for the model checking problem of DC. We consider the
model checking problem K |= φ, where K is a finite automaton and φ is a DC
formula which consists of atomic formulas of the form Σici

∫
Si ./ C, ./∈ {<,≤,=

,≥, >}. This problem is undecidable for both continuous-time and discrete-time
semantics. In Paper A, we examine an approximation-based semantics for DC to
arrive at a decidable DC fragment.

A Duration Calculus example: Recovery from Damages

This example is based on the one given in Paper A. We describe here a system
with damage recovery. The system may suffer from damages due to uncontrollable
events. Once damage has occurred, the system requires some recovery actions to
return to its normal operation. Some damages are more severe than others, so
stronger recovery is required in some cases.

A model of the system is depicted in Fig. 2.6. There are two state variables D1

and D2 for damages, and three state variables Ri, where 1 ≤ i ≤ 3, for recoveries.
The normal operation mode is at vertex 0. When damages occur, the system is
in vertices 1 or 3 depending on severity of damages. Recovery strengths have to
exceed certain threshold before the system can come back to normal operations.

Sufficiency of the recoveries can be formulated by a DC formula where an
accumulated weighted duration of the recovery states exceeds that of the damage
states. As seen from Equation 2.2, the notion of duration provides a concise and
expressive way of modelling system properties. Here constants ki, where 1 ≤ i ≤

26 Background

Figure 2.6: Example: Recovery from Damages

3, and cj , where 1 ≤ j ≤ 2, express strengths of damages and recoveries.

2(
∫
R3 ≥ 1 =⇒ Σ3

i=1ki
∫
Ri ≥ Σ2

j=1cj
∫
Dj) (2.2)

In Chapter 4, the same fragment of DC is used as a modelling formalism for a
problem of Cyber-Physical nature.

2.3 Summary

In this chapter, we have given brief introductions to SMT solving and Duration
Calculus. While the former provides core analysis techniques used throughout
the thesis, the latter is a suitable formalism for the Cyber-Physical problems of
our interest. By presenting background introduction, one hopes that the readers
have enough context for understanding individual contributions in Chapter 3.

Chapter 3

Contributions

Paper A solves the model checking algorithm of Duration Calculus using an
approximation-based semantics via a reduction to Presburger Arithmetic. The
main contributions are the use of counting semantics for efficient encoding and
Guarded Normal Form for practical simplification. The model checking algorithm
also motivates the research in Paper B and Paper C.

In Paper B, a thorough parallelization scheme was proposed using a language-
based cost model and concrete practical development guidelines. Promising
speedups were recorded for Cooper’s algorithm and the exact shadow in Omega
Test, the two prominent decision procedures for Presburger Arithmetic. These
performance gains contribute to the overall improvement of the model checking
algorithm. The parallelization scheme has wide applicability e.g. for other
advanced tree algorithms.

In Paper C, we approach the problem in a totally different angle. Noticing
that the Presburger formulas generated from the model checking problem have
deep nesting of alternating quantifiers, a generic algorithm for solving alternating
quantified formulas was proposed. Multiple efficient instantiations of the generic
algorithm were implemented in Z3 SMT solver. Experimental results show that
the alternating quantifier satisfiability algorithm gives a significant performance

28 Contributions

gain in solving quantified formulas of alternating nature.

In Paper D, we come back to Wireless Sensor Networks, our central research
topic in the CPS domain. The setting is to investigate three different routing
protocols and analyze their influences on global behaviors of the network. The
main contributions are (1) a formal modelling framework where semantics of
sensor nodes and routing protocols can be described in a precise way (2) several
global properties are analyzed on the basis of a simulation-based technique.

In subsequent papers, we revisit SMT solving in the context of optimization. The
motivation is that optimization is a recurring pattern in the CPS domain. Paper E
and Paper F present two aspects of νZ, the optimization framework as part of Z3
SMT solver. While the former has its focus on algorithms and implementation
techniques, the latter emphasizes the modelling side i.e. how the framework can
be used for problem solving. As a logical consequence, the two papers will be
presented in the same section and motivated via a common example.

3.1 A practical approach to model checking Du-
ration Calculus using Presburger Arithmetic

The model checking problem

Duration Calculus is a suitable formulation to model Cyber-Physical Systems.
One can express quantitative properties using the notion of accumulated dura-
tions of states in Duration Calculus. This gives expressiveness with the cost
of increasing complexity of decision problems. Even worse, many fragments
of Duration Calculus are undecidable unless there are severely constrained
assumptions [28, 67]. For example, a decision procedure for a Duration Calculus
with quantifiers on Boolean states is implemented in the tool DCVALID [54].
However, this Duration Calculus fragment is too limited to express interesting
quantitative properties.

We are interested in the model checking problem K |= φ, where K is a Kripke
structure and φ is a Duration Calculus formula which consists of atomic formulas
of the form Σici

∫
Si ./ C, ./∈ {<,≤,=,≥, >}. This is an expressive fragment of

DC where the model checking problem can easily be undecidable. For that reason,
we consider an approximation-based counting semantics to achieve decidability
[30]. The counting semantics calculates visiting frequencies of vertices based on

3.1 A practical approach to model checking Duration Calculus using
Presburger Arithmetic 29

Parikh image of traces. We employ a similar technique as described in [64] but
apply it on vertices instead of flows.

Consider a simple Kripke structure K:

¬p

m1

p

m2

p

m3

¬p

m4

Figure 3.1: A simple Kripke structure

and a DC formula:
K |= ` < 4⇒

∫
p < 3

The model checking problem can be translated to satisfiability of the following
formula

∀m̄. (cons14 ⇒ Σ4
i=1mi − 1 < 4⇒ m2 +m3 < 3)

We denote mi and eij as visiting frequencies of vertex mi and edge eij (from
mi to mj) respectively. Here cons14 is a consistency predicate that ensures a
consistent run between vertex 1 and 4. The idea of consistent runs is that flows
of incoming edges and outgoing edges should be the same as frequencies of the
vertices.

∃e12, e21, e23, e34, e44.
e21 + 1 = m1 ∧ e12 = m1

∧ e12 = m2 ∧ e21 + e23 = m2

∧ e23 = m3 ∧ e34 = m3

∧ e34 + e44 = m4 ∧ e44 + 1 = m4

Figure 3.2: The formula cons14(m̄) for the Kripke structure in Fig. 3.1.

The generated formulas look simple at first, but their sizes quickly grow out of
hand when chop modality is involved. Here is a sketch of an input formula

∀m̄. consij(m̄)⇒ markTij(φ _ ψ)(m̄)

where markTij is a marking formula denoting the marking between vertex i and
j.

30 Contributions

∀m̄. consij(m̄)

∃ē, d̄. flowij(ē, m̄) ∧ connectedij(d̄, ē, m̄)

⇒ markTij(φ _ ψ)(m̄)

∃m̄′, m̄′′. splitikj(m̄
′, m̄′′, m̄)

consik(m̄′)

∃ē, d̄. flowik(ē, m̄′) ∧ connectedik(d̄, ē, m̄′)

∧ conskj(m̄′′)

∃ē, d̄. flowkj(ē, m̄′′) ∧ connectedkj(d̄, ē, m̄′′)

∧ Eik(m̄′, m̄′′, m̄)

∧ ∀m̄′, m̄′′.
splitikj(m̄

′, m̄′′, m̄)⇒ markTik(φ)(m̄′) ∧markTkj(ψ)(m̄′′)

See above

∨
k

Figure 3.3: A breakdown of a generated formula

In Fig. 3.3, each formula can be expanded as the complex formula in the rounded-
corner box right below it. The figure visualizes the recursive structure of the
formulas based on the building blocks such as flowij , connectedij and splitikj .
The generated Presburger formulas consist of complex Boolean formulas with
many levels of quantifier alternations. Here consij is constituted from flowij

and connectedij . While formula flowij ensures a consistent flow where visiting
frequencies of vertices agree with their flows on incoming and outgoing edges,
formula connectedij models relationships between visiting frequencies of vertices
and their distances to start vertex. For each multiset of visiting frequencies, we
denote splitikj as a way to construct a run from two consecutive runs having k
as the transit vertex.

While we start to be able to use Duration Calculus for modelling, practicality of
the approach is still in question. Particularly a double exponential lower bound
is established as complexity for checking satisfiability of any Presburger formula
[26], and the worst-case running time for a decision procedure for Presburger
Arithmetic is known to be triple exponential upper bound [53].

3.1 A practical approach to model checking Duration Calculus using
Presburger Arithmetic 31

Guarded Normal Form

The generated Presburger formulas may have size exponential to the chop depth
of Duration Calculus counterparts. This causes a severe problem in terms of
memory usage. In order to shrink Presburger formulas, we introduce Guarded
Normal Form (GNF), a non-expansive canonical form where literals are collected
into guards to provide contexts for simplifying the rest of the formula.

Guarded formulas consist of implication guard g ⇒
∨
i Fi and conjunction

guard g ∧
∧
i Fi where g is a conjunction of literals. From Equation 3.1 to

Equation 3.4, we introduce a series of non-expansive transformations where
formulas are flattened and literals are collected into guards. These transformation
are to reduce nesting of formulas and accumulate information to central places
for simplification.

g ⇒
∨
i

Fi ∨ l ⇐⇒ ¬l ∧ g ⇒
∨
i

Fi (3.1)

g ∧
∧
i

Fi ∧ l ⇐⇒ l ∧ g ∧
∧
i

Fi (3.2)

g ⇒ (g′ ⇒
∨
i

Fi) ∨
∨
j

Gj ⇐⇒ g ∧ g′ ⇒
∨
i

Fi ∨
∨
j

Gj (3.3)

g ∧ (g′ ∧
∧
i

Fi) ∧
∧
j

Gj ⇐⇒ g ∧ g′ ∧
∧
i

Fi ∧
∧
j

Gj (3.4)

Applying the transformations above by left to right order, we eventually arrive
at a formula in GNF when no further application is possible.

Guarded Normal Form admits a very nice property. Guards provide contextual
information which can be used to simplify the corresponding formulas. Contex-
tual information can even be used in connection with quantified formulas. For
example, we have the following reductions for cheap quantifier elimination.

32 Contributions

∃x. (nx = t ∧ g ⇒
∨
i

Fi) ⇐⇒ > (3.5)

∃x. (nx = t ∧ g ∧
∧
i

Fi) ⇐⇒ n|t ∧ g[t/nx] ∧
∧
i

Fi[t/nx] (3.6)

∀x. (nx = t ∧ g ∧
∧
i

Fi) ⇐⇒ ⊥ (3.7)

∀x. (nx = t ∧ g ⇒
∨
i

Fi) ⇐⇒ n|t ∧ g[t/nx] ⇒
∨
i

Fi[t/nx] (3.8)

Here we assume that n ∈ Z \ {0} and x does not occur in t. These reductions
often result in further simplifications. Another interesting observation is that one
can easily substitute variables arising from equalities to reduce variable spaces.

Assume that x does not occur in g; one can systematically apply the following
equivalences from left to right.

(∃x. g ∧ g′ ∧
∧
i

Fi) ⇐⇒ g ∧ (∃x. g′ ∧
∧
i

Fi) (3.9)

(∃x. g ∧ g′ ⇒
∨
i

Fi) ⇐⇒ g ⇒ (∃x. g′ ⇒
∨
i

Fi) (3.10)

These equivalences happen to be really useful for our generated formulas. The
generation process produces a lot of redundant equalities which can be removed
for more compact representations. Moreover, most of the quantifiers can be
eliminated through the above-mentioned transformations. To give more details
on the effectiveness of Guarded Normal Form, we recorded some statistics on
formula sizes in Table 3.1.

Lessons learned

As demonstrated in Table 3.1, the use of GNF helps dramatically reduce size
of Presburger formulas by exploiting their special structures and providing a
cheap way to eliminate quantifiers. Normalized formulas are then being fed into
Z3 SMT solver, which has excellent support for Presburger Arithmetic [7]. We

3.1 A practical approach to model checking Duration Calculus using
Presburger Arithmetic 33

Input Number of atomic formulas/quantifiers
Before GNF GNF

Consistency predicates (consij) 33/7 19/3
Flow formulas (flowij) 37/16 8/2

Marking formulas (markTij) 267/103 107/19

Table 3.1: Sizes of generated formulas

also employ the Simplifier module inside Z3 to further reduce the formulas. Our
experiments demonstrate that both simplification processes are crucial to provide
inputs that can be solved by Z3 in a reasonable amount of time.

We investigate two small case studies, one for concatenating a sequence of
automata and another for a model of a system that recovers from damages.
Although the flavor of Cyber-Physical domain is not so strong, it is a promising
start for using Duration Calculus as a modelling formalism. Moreover, the case
studies have shown that the approximation nature of counting semantics is good
enough to model and analyze useful systems.

The first experiment checks satisfiable and unsatisfiable properties on a Kripke
structure composed from a sequence of identical automata. The primitive
automaton is given in Fig. 3.1. The goal is to investigate scalability of the
approach on big inputs in different situations. Experimental results show that
the use of GNF leads to 50% reduction of formula sizes upon Z3 simplification.
Many of the original formulas were too big for Z3 to handle. The solving time is
also slightly better for GNF formulas.

In the second experiment, we revisit the damage recovery problem introduced in
Chapter 2. A model of the problem was presented in Fig. 2.6. To remind the
readers, we have two state variables D1 and D2 for damages and three ones R1,
R2 and R3 for recoveries.

2

(∫
(D1 ∨ R1) ≤ tmax1 ∧

∫
(D2 ∨ R2) ≤ tmax2 ∧

∫
R3 ≥ 1

=⇒ Σ3
i=1ki

∫
Ri ≥ Σ2

j=1cj
∫
Dj

)
(3.11)

Since the focus is parameter synthesis, we use a slightly more complex Duration
Calculus formula in Equation 3.11. The first part of the formula (before =⇒)
asserts that one should not stay at D1 or R1 longer than tmax1 time instances,
should not stay at D2 or R2 longer than tmax2 time instances and should

34 Contributions

visit R3 eventually. The second part of the formula denotes sufficiency of
recovery i.e. recovery is successful when accumulated sum of weighted durations
on recovery states is larger than that of damaged ones. For given constants
k1, k2, c1 and c2, the goal is to find the smallest coefficient k3 for the weighted
recovery state duration k3

∫
R3 to satisfy the requirement. The experiment

demonstrates an iterative way to synthesize a bound of k3 given 6 different
parameter combinations. The empirical results indicate that GNF is a big plus
when being used in connection with Z3 simplification. GNF+Simplication mode
takes just a few seconds to synthesize k3. The default mode without GNF cannot
complete the same task within timeout of 5 minutes.

In Paper A, we have solved the high-complexity model checking problem of
Duration Calculus by a combination of using contextual simplification (Guarded
Normal Form) and a powerful backend solver (Z3). It shows that simplification
is very useful in practice if one can exploit the inherent structure of the input
formulas. The counting semantics has given us a simple yet powerful tool to
tackle modelling problems. In the subsequent papers, we will discuss it as a
recurring technique to abstract away irrelevant details in an encoding.

3.2 An approach to multicore parallelism using
functional programming: A case study based
on Presburger Arithmetic

In the previous section, we proposed to solve the model checking problem of
Duration Calculus by a reduction to Presburger Arithmetic. While contextual
simplification and SMT solving have given a nice solution, we are interested in
better scalability for large formulas. Paper B sets an aim to take advantage
of multicore parallelism and functional programming in addressing decision
procedures for Presburger Arithmetic.

Multicore processors have become commodity for many years, yet their extra
powers have not been fully exploited. Multicore parallelism has been well studied
in the context of flat data structures such as arrays, matrices, etc. but there are
not many available results on recursive data structures [8]. We study parallelism
in solving Presburger formulas that have deeply nested structures, and use
functional programming as a powerful tool for the purpose.

While functional programs are relatively easy to parallelize, not many case studies

3.2 An approach to multicore parallelism using functional programming: A
case study based on Presburger Arithmetic 35

on parallelization of functional programs on complex tree structures are known.
By examining a close-to-home case study, we would like to derive a design
methodology and investigate its applicability in a wider scope.

Presburger Arithmetic (PA), also known as Linear Integer Arithmetic (LIA),
introduced by Mojzaesz Presburger in 1929, is a first-order theory of integer which
accepts + as its only operation. Any Presburger formula is constructed from
primitive formulas such as d ./ Σicixi and d | Σicixi where ./∈ {<,≤,=,≥, >},
d and ci are constants and xi are variables.

Beside Boolean combinations, Presburger formulas may contain quantifiers of
arbitrary depths. A typical example of representing some amount of money by
3-cent and 5-cent coins is modelled in PA as follows:

∀z. (z ≥ 8⇒ ∃x ∃y. (3x + 5y = z))

Classical decision procedures solve the satisfiability problem by use of quantifier
elimination.

Quantifier elimination: Cooper’s algorithm

Assuming that φ is a formula in Negation Normal Form (NNF), Cooper’s
algorithm removes quantifiers from φ in the inside-out order [7].

∃x. φ ⇐⇒
δ∨
i=1

(φ[>/ax < t,⊥/ax > t, i/x]∨
∨

ax>t∈L
φ[t+ i/ax]∧a | t+ i) (3.12)

Here δ is the least common multiple of all divisors d in divisibility constraints
d | t. Moreover, L is the set of all lower-bound constraints of the form ax > t
collected from φ. We assume that in each round of quantifier elimination, formula
φ is normalized to contain only lower-bound constraints ax > t and upper-bound
constraints ax < t. Using the following example with nested quantifiers

∃y ∃x. 2x+ 3y = 7 ∧ x < y

we have two systematic transformations

36 Contributions

∃y ∃x. 2x+ 3y = 7 ∧ x < y

⇐⇒ ∃y.
2∨
i=1

(i < 2 ∧ i > 0 ∧ 5y > 6 + i ∧ 2 | 6− 3y + i)

⇐⇒
10∨
j=1

2∨
i=1

(i < 2 ∧ i > 0 ∧ j > 0 ∧ 10 | 12 + 2i− 3j ∧ 5 | 6 + i+ j)

The resulting quantifier-free formula consists of multiple disjunctions. This is
a big opportunity for parallelization since each round of quantifier elimination
generates a number of disjunctions that can be processed in parallel.

Quantifier elimination: the Omega Test

Intuition of the Omega Test results from its geometrical representation and the
way the algorithm eliminates a quantifier by projecting it and creating lower-
dimension geometrical objects. The algorithm requires input formulas in the
Disjunctive Normal Form (DNF)

∨
m

∧
n lmn where lmn is a literal.

Let us consider a lower-bound constraint cx ≤ γ and an upper-bound constraint
bx ≥ β. Then we have the following equivalence [59]:

∃x. cx ≤ γ∧bx ≥ β ⇐⇒

 cβ + (c− 1)(b− 1) ≤ bγ
∨ c ≥ b ∧ cβ ≤ bγ ∧

∨b−1
i=1 (b | β + i ∧ c(β + i) ≤ bγ)

∨ c < b ∧ cβ ≤ bγ ∧
∨c−1
i=1 (c | γ − i ∧ b(γ − i) ≥ cβ)

(3.13)

Since
∧
n lmn can be transformed to the canonical form

∧
i∈L cix ≤ γi ∧∧

j∈U bjx ≥ βj where ci > 0, bj > 0 and L and U are the sets of lower-bound
constraints and upper-bound constraints respectively. We have |L| · |U | pairs of
corresponding constraints to apply the Omega Test. The constraints cβ ≤ bγ and
cβ + (c− 1)(b− 1) ≤ bγ are called real shadow and dark shadow in that order.

When the real shadow is false, the original formula is unsatisfiable. If the dark
shadow is true, then the formula is satisfiable. Otherwise, we perform a number of
case splittings to explore the formula with concrete values for the given quantifier.

3.2 An approach to multicore parallelism using functional programming: A
case study based on Presburger Arithmetic 37

When c = 1 or b = 1, the real and dark shadow are the same thing called exact
shadow. In that case, the equivalence becomes:

∃x. cx ≤ γ ∧ bx ≥ β ⇐⇒ cβ ≤ bγ (3.14)

This transformation operates on the integers in the same way that Fourier-
Motzkin elimination works on the reals.

The parallelization approach

The starting point of our approach is a simple sequential implementation. On
that basis, we carefully examine inherent parallelism in the quantifier elimination
procedures. The Directed Acyclic Graph (DAG) model of multithreading is
employed to analyze parallelism factors inside these algorithms. The model was
introduced by Blelloch as a language-based cost model for parallel computing
while developing NESL, one of the first functional programming language with
implicit parallel constructs. In this cost model, each vertex in a DAG stands
for a basic block of computation when an edge describes dependencies amongst
computations. Two important concepts were introduced: work, denoted by W ,
representing total amount of computation in the DAG and span, denoted by S,
showing the slowest sequential path of a computation, i.e. the longest path in the
DAG from start vertex to end vertex. Because an algorithm cannot be executed
faster than any of its sequential path, speedups on N processors SN are limited
by parallelism factor PF , which is the ratio of work and span:

SN ≤ PF =
W

S

The cost model provides a reliable way to estimate parallelism factors of
algorithms. Moreover, the graph representation is an intuitive way to understand
and explore parallelization. For example, a quantifier elimination step in Cooper’s
algorithm is modelled in Fig. 3.4. Let l denote the number of literals in the input
formula. In Fig. 3.4, while the dashed box can be completed in O(|L| · l) and any
other box has O(l) complexity. This leads us to the parallelism factor:

PF = (|L| · l + 4 · l)/(l + l + l) = (|L|+ 4)/3

To remind the readers, |L| denotes the number of resulting lower-bound
constraints in each quantifier elimination. More detailed analysis of the algorithm
can be found in Section 4.1 in Paper B.

38 Contributions

Normalize the formula

Get lcm of coefficients Get lower-
bound literals

Substitute
using true/false

Substitute using
lower-bound literals

Gather results

The dashed box represents |L| substitutions, one for each disjunction.

Figure 3.4: Task graph denoting a round of quantifier alternation

Transformation to parallel execution is clear and concise thanks to the absence
of side effects. Although we have validated that parallelism factor is not a
problem for Cooper’s algorithm and the exact shadow, how much can we achieve
in practice?

A number of practical matters can have negative effects on parallelism including
garbage collection, cache locality and parallelism runtime. While deriving a
parallel implementation, we follow simple guidelines addressing these matters
and re-evaluate the implementation in an iterative manner. Here are general
observations that are proven to be very helpful for our case studies.

• The parallelism runtime may have big overheads on excessive paralleliza-
tion. One should control parallelization by setting an appropriate depth of
parallelism and figuring out a suitable work partitioning scheme.

• Cache locality is hugely affected by data representation. Our experiments
show that an array-based representation often outperforms a list-based
representation because the former often allocates contiguous blocks of
memory and uses less memory than the latter does. Another trick is to
pad arrays by extra elements to make sure that the whole array fits to an

3.3 Anatomy of Alternating Quantifier Satisfiability 39

exact number of cache lines.

• Regarding garbage collection, functional programs often allocate short-lived
objects which put more pressures on garbage collectors. Reducing memory
allocation often improves efficiency of garbage collection and provides better
speedups. For example, representing Presburger terms by stack-allocated
structs is really effective in eliminating a large amount of short-lived objects.

By following the guidelines mentioned above, we obtained good speedups on an
8-core platform: 4× for Cooper’s algorithm and 6× the exact shadow part of the
Omega Test. The Omega Test experiments have been performed on Presburger
formulas arising from the model checker algorithm such as consistency predicates
and marking formulas. This is very encouraging since the exact shadow tests have
eliminated quite a lot of quantifiers and the simplification procedure becomes
faster thanks to the exploit of multicore parallelism.

Paper B has presented an interesting case study whose inputs come from the
Duration Calculus model checking algorithm. We examine the case study in the
interplay between functional programming and multicore parallelism. While the
results are extremely helpful for the Duration Calculus model checking problem,
we believe the approach can also be applied to other advanced tree algorithms.
Moreover, by generalizing the exact shadow test, we have a direct result for
parallelizing the Fourier-Motzkin elimination method on the reals.

3.3 Anatomy of Alternating Quantifier Satisfiabil-
ity

For any PA formula of length n, running time of any non-deterministic decision
procedure is at least 22cn

for some constant c > 0 [26]. Moreover, a triply
exponential upper bound 222cn

is proven for worst-case running time of Cooper’s
algorithm [53]. As mentioned in the previous section, Cooper’s algorithm and
the Omega Test are two common decision procedures for PA although their
complexity is inhibitedly high. These decision procedures are also available from
SMT solvers such as Yices and Z3.

In Section 3.1, we have investigated decision procedures for Presburger Arithmetic
as important tools to solve the model checking problem in Duration Calculus. As
demonstrated in Fig. 3.3, an important characteristic of the generated formulas

40 Contributions

is their deep nesting of quantifier alternations. Whenever there is an alternation
between existential and universal quantification, resulting formulas often blow up
in each round of quantifier elimination. This poses a serious challenge in solving
quantified formulas efficiently. Our proposed method has helped remedy the
situation by compressing the formulas into Guarded Normal Form. However, this
method is incomplete and there is a lot of room for further simplifying quantified
formulas. Here we demonstrate an alternative approach where we solve quantifier
alternations in a single-pass algorithm.

Paper C proposed a generalized algorithm for alternating quantifier satisfiability.
There are existing algorithms for Quantified Boolean Formulas, that are special-
ized for Boolean domain [6, 55]. An algorithm for Linear Real Arithmetic was
proposed [45]; the fact that it is tightly coupled with an All-SMT loop prevents
it from being applied to other domains.

Inspired by [45], we create a parameterized variant which abstracts the auxiliary
procedures. The algorithm can be instantiated by two procedures: one for
projection and another for extrapolation. Projection could be understood as
partially or fully removing certain quantifiers from input formulas. By using
extrapolation, we introduce refinements of input formulas that still satisfy certain
conditions.

Extrapolation

We denote C = 〈A, B〉 as an extrapolant of A and B if the following conditions
hold:

A ∧B is unsat then C = false
A ∧B is sat then A ∧ C is sat,

¬B ∧ C is unsat

As described in Fig. 3.5, one can understand 〈A, B〉 as a refinement of formula
B under the context of formula A. There are many choices to implement
extrapolation; one procedure is called SMT-TEST. Assume that L := `1, . . . , `n
is the set of literals in the satisfying assignment for A ∧ B. An SMT-TEST
extrapolant has an intersection with L and it is an unsatisfiable set of literals of
L ∧ ¬B. The procedure can be implemented efficiently using SMT solvers.

3.3 Anatomy of Alternating Quantifier Satisfiability 41

A

B

C

Figure 3.5: An illustration of an extrapolant C = 〈A, B〉

Projection

Intuitively a projection is an image of a quantified formula when we get rid of a
quantifier. Assume that C andM are formulas and x is a free variable in formula
C i.e. x ∈ FV (C). A projection procedure πx.(C|M) computes a refinement of
∃x C given the contextual formula M . It means that the following conditions
hold:

1. FV (πx.(C|M)) ⊆ FV (C) \ {x}

2. πx.(C|M) is sat

3. (M ∧ πx.(C|M))⇒ ∃x C

The definition of projection does not dictate how the procedure is implemented.
We can freely plug in any quantifier elimination procedure that satisfy the
conditions above. Since Linear Integer Arithmetic is the logic fragment of our
interest, we can use both Cooper’s algorithm and the Omega Test as projections.
In Paper C, the implementation makes use of Z3’s internal quantifier elimination,
which is a mixture of the decision procedures above.

The algorithm

Algorithm 3 (QE) accepts a formula Fn and a vector of quantifiers q as its inputs.
Each quantifier here stands for an alternation to be removed. The intuition of

42 Contributions

QE is that it enumerates all quantifier-free formulas by producing disjoint output
formulas and strengthening the input formula for the next call. Algorithm 2 (QT)
has a number of inputs including the vector of quantifiers q, current index i, an
input formula C and a vector of contextual formulas M . The algorithm tries to
compute extrapolants of the input formula and a contextual formula Mi at level
i repeatedly; it stops when an extrapolant cannot be strengthened any more.
Projection is only done on simple extrapolants but we are still able to remove
nested quantifier alternations in a single execution.

if C ∧M i is unsat then
return (false, M)

end
if i = n then

return (〈C, M i〉, M)
end
(C ′, M ′)← QT (q, i+ 1, 〈C, M i〉, M);
if C ′ = false then

return (〈C, M i〉, M ′)
end
M ′′k ← M ′k, ∀ k 6= i;
M ′′i ← M ′i ∧ ¬(πqi.(C

′|M ′i));
return QT (q, i, C, M ′′);

Algorithm 2: QT (q, i, C, M)

Mk ← true, ∀ k < n;
Mn ← Fn;
C ← false;
C ′ ← true;
while C ′ 6= false do

(C ′, M)← QT (q, 1, ¬C, M);
C ← C ∨ C ′;

end
return C;

Algorithm 3: QE(q, Fn)

We use the following small example for illustration:

∀y ∃z. (z ≥ 0 ∧ ((x ≥ 0 ∧ y ≥ 0) ∨ −y − z + 1 ≥ 0)) (3.15)

The formulas corresponding to Equation 3.15 are:

F1 = ∀y. ¬F2,
F2 = ∀z. ¬F3,
F3 = z ≥ 0 ∧ ((x ≥ 0 ∧ y ≥ 0) ∨ −y − z + 1 ≥ 0)

with a vector of quantifiers q = {y, z}.

In Table 3.2 we present a trace of QT algorithm where x ≥ 0 is the final result
of alternating quantifier satisfiability. The formula C propagates information
between levels (denoted by i). The idea is that propagating C from level i to
level i+ 1 or i− 1 results in an extrapolant C ′ of C and Mi. The algorithm QT

3.3 Anatomy of Alternating Quantifier Satisfiability 43

i C M C ′

1 true [true, true, F3] true
2 true [true, true, F3] true
3 true [true, true, F3] z ≥ 0 ∧ x ≥ 0 ∧ y ≥ 0
2 true [true, ¬(x ≥ 0 ∧ y ≥ 0), F3] ¬(y ≥ 0)
3 ¬(y ≥ 0) [true, ¬(x ≥ 0 ∧ y ≥ 0), F3] z ≥ 0 ∧ −y − z + 1 ≥ 0
2 true [true, x < 0 ∧ y > 1, F3] x < 0 ∧ y > 1
3 x < 0 ∧ y > 1 [true, x < 0 ∧ y > 1, F3] false
2 true [true, x < 0 ∧ y > 1, F3] x < 0 ∧ y > 1
1 true [true, x < 0 ∧ y > 1, F3] x < 0
1 true [x ≥ 0, x < 0 ∧ y > 1, F3] x ≥ 0
2 x ≥ 0 [x ≥ 0, x < 0 ∧ y > 1, F3] false

Table 3.2: An example trace of the algorithm QT

strengthensMi in each call and the last C being returned gives an equi-satisfiable
quantifier-free formula of Fn.

We experimented with different instantiations for Linear Integer Arithmetic and
reported experimental results of the variants. The detailed configurations are
shown in Table 3.3.

Projection Extrapolation
(A) Full quantifier elimination (0) Trivial extrapolant
(B) Partial quantifier elimination (1) NNF strengthening

(2) SMT-TEST

Table 3.3: Different configurations for experimentation

Two distinct benchmark sets are generated with controlled sizes for experiments.
These benchmarks come from marking formulas markTij in the Duration
Calculus model checking algorithm so they are of deep nesting and challenging to
solve. Benchmark set 1 has relatively small sizes; it is used to compare between

Benchmarks Number of formulas Number of quantifiers
Set 1 32 56-94
Set 2 64 69-768

Table 3.4: Generated benchmarks coming from the Duration Calculus model
checking algorithm

44 Contributions

different variants and Z3’s current procedure. The experiment shows that
multiple combinations e.g. A0 (full projection + trivial extrapolant) and A2 (full
projection + SMT-TEST) are an order of magnitude faster than Z3. Benchmark
set 2 consists of a number of big formulas for evaluating most competitive
combinations above. Empirical evidence shows that a combination of full
projection and SMT-TEST extrapolation (A2) scales well on these benchmarks
from Duration Calculus model checking. While it is difficult to find a superior
combination in all cases, the parameterization nature of the approach gives users
more flexibility to choose suitable procedures depending on use cases.

The most efficient variants are exposed in a general purpose tactic in Z3. The
algorithm is readily available to solve any problem that requires quantifier
alternation. For our model-checking use case, this approach is complete, scalable
and complementary to the heuristic-based solution in Section 3.1.

3.4 EHRA: Specification and Analysis of Energy-
Harvesting Wireless Sensor Networks

Discrete-event simulation has been used to efficiently model energy consumption
of WSN. Simulation can be done via domain-specific programming languages [61]
or comprehensive simulation platforms [72]. Another complementary approach is
to apply formal methods to modelling and analysis of WSN. Model checking tools
have been employed to gain insights about WSN systems and protocols [16, 52].
However, the model checking approach suffers from scalability issues mainly due
to state explosion. One may have to resort to simulation for large-scale networks.

Paper D presents a hybrid approach that utilizes both formal methods and
simulation techniques for analyzing WSN. Different from most related work, we
take into account energy harvesting, which adds an extra layer of complexity to
the analysis.

An example network showing the challenge with energy-harvesting-aware proto-
cols is given in Fig. 3.6, where we have a grid 7 × 7 of identical nodes. There
is no node in a hole of size 3 × 3. Each node communicates with at most four
neighbors which are its closest nodes vertically or horizontally.

A shade on a node, if present, has big influences on the ability to harvest energy.
The node at position (1, 1) is the base station and other nodes try to forward

3.4 EHRA: Specification and Analysis of Energy-Harvesting Wireless Sensor
Networks 45

1

1

2

2

3

3

4

4

5

5

6

6

7

7

y

x

Node

Base station

Strong shadow

Light shadow

Figure 3.6: A network structure with shadowed nodes

observations to this base station. Messages are being passed through two routes
along the axes in order to reach the base station. If the routes are not dynamically
adapted based on energy changes, the network will be fragmented soon when
critical nodes on ‘bottleneck routes’ get drained.

A generic modelling framework

We investigate a generic modelling framework for energy-harvesting-aware WSN.
The goal is to examine a broad class of energy-harvesting-aware routing protocols
through comprehensive models and detailed simulations. We are interested in
global behaviors of the network during analysis e.g. how long does it take for the
network to be fragmented, what are the routing trends of certain nodes and will
they recover after getting drained?

Fig. 3.7 describes a typical sensor node with energy harvesting capabilities. Each
node is represented by its identity and current physical state. The node can
interact with the environment and record an observation at certain time. It also
communicates with its neighbors by sending and receiving messages.

• id , t `O d, o, where t, d ∈ R≥0: Node id can make the observation o at time
t+ d where d is an amount of delay.

• id , t `H d, ps, where t, d ∈ R≥0: Node id has physical state ps at time t+d.

46 Contributions

Figure 3.7: Architecture of an energy-harvesting sensor node

• s̄, id `M id ′: Node id ′ can receive a message from node id in the network
state s̄.

Let Sid denote a node under consideration, where id is a unique identifier to
recognize the node inside the network. Let PhysState, Observation and Msg be
the sets of physical states, observations and messages respectively. The operations
above can be modelled by the following relations:

• Sample the physical state: samplePSid : Sid × PhysState→ Sid

• Sense observation: senseObsid : Sid × Observation→ Sid

• Receive message: treatMsgid : Sid ×Msg→ Sid

We model generic nodes as composite types consisting of basic operations and
various energy and cost functions (see Fig. 3.8). These nodes are affected by
network topology and a generic environment comprising of energy harvesting,
rate of observation and communication medium, etc. Network operation is
instantiated by plugging in a specific energy-harvesting-aware routing protocol.

Semantics of the networks is modelled as labelled transition systems. In Fig. 3.8,
we show fundamental operations of a sensor node. A transition of a node
is obtained by composition of its basic operations. Each routing protocol is
described in many-sorted algebras so that its behaviors are clear and concise.

3.4 EHRA: Specification and Analysis of Energy-Harvesting Wireless Sensor
Networks 47

id ∈ Id unique node identifier
o ∈ Observation observation
ps ∈ PhysState physical state
cs ∈ CompState computational state
as ∈ AbsState abstract state
m ∈ Msg message having one of the forms:
obsMsg(dst , o) observation message with node dst ∈ Id as destination
nbMsg(src, as) neighbor message from node src ∈ Id

next : CompState→ Id
updateEnergyState : CompState× PhysState→ CompState
updateRoutingState : CompState→ CompState
consistent? : CompState→ {true, false}
abstractView : CompState→ AbsState
updateNeighbourView : CompState× Id× AbsState→ CompState
transmitChange? : CompState× CompState→ {true, false}

Figure 3.8: Fundamental types and operations

The formal semantics forms the basis of modelling WSN in a precise manner.
In the meantime, the modelling formalism is used as a conceptual framework
to study energy-harvesting-aware protocols. The analysis phase is performed
through discrete-event simulation.

The protocols

In Paper D, we have experimented with three distinctive protocols including
Directed Diffusion (DD) [39], Energy-Aware Routing (EAR) [65] and Distributed
Energy-Harvesting-Aware Routing (DEHAR) [40]. While DD chooses a route by
shortest path (number of hops) to the base station, EAR finds a neighbor with a
shorter distance probabilistically by their energy levels. Moreover, DEHAR uses
energy levels and faithful adjustments in order to propagate information about
energy levels. One can say that these protocols are ordered in the progression
of energy awareness, where DEHAR is the only protocol allowing detours in the
routing of observations.

The protocols are examined on the same network under the same environment.
We simulate the network on 30 days of simulation time. The environment has 12
hours of full light and 12 hours of no light every day. A node in light shadow can

48 Contributions

1 2 3 4 5 6 7
1

2

3

4

5

6

7

0

1

2

3

4

5

6

7
x 10

4

Figure 3.9: Amount of messages of DEHAR nodes after 720h

1

1

2

2

3

3

4

4

5

5

6

6

7

7

y

x

Figure 3.10: Routing trends of DEHAR nodes after 720h

harvest up to 75% amount of solar energy and another in dark shadow is only
able to at most harvest 25% of solar energy. We assume to sample energy once in
every 1800 seconds and observe the environment once in every 900 seconds. The
experimental results show that DEHAR is able to harvest 50% more energy than
DD and 40% more than EAR. Moreover, DD had 1.5× as many drained nodes
as EAR had and 3.5× as many as DEHAR had. The experiments also indicate
that DEHAR nodes are able to recover from drainage and messages are detoured
along long paths while network fragmentation occurs (see Fig. 3.10).

The work lays the foundation for more comprehensive analysis based on proposed
formal semantics for WSN. As future work, we may investigate other protocols

3.5 νZ - An optimizing SMT solver 49

as case studies and attempt formal verification via statistical model checking.

3.5 νZ - An optimizing SMT solver

Earlier in this chapter, we have considered the use of SMT solvers for solving
satisfiability problems. Many problems can be encoded as a SAT problem
involving different fragments of first-order logics. By using SMT solvers, we
are able to focus on the problem at hand and exploit the power of modern SMT
solvers. However, not all problems fit into a satisfiability framework in a natural
manner. Optimal solutions are often desired for many problems of Cyber-Physical
nature.

Many users have built custom loops around SMT solvers to achieve optimal
assignments for objective functions. But it is more efficient to handle optimization
in a native way “inside” SMT solvers. SMT community has done a lot of work on
MaxSAT [14, 46, 50]. By MaxSAT, we mean the optimization problem where the
number of satisfiable formulas is maximized for a given set of Boolean formulas.
The optionally satisfiable constraints are called “soft constraints” to contrast with
the hard constraints where this flexibility is not allowed. Furthermore, some
progress has been made for arithmetic optimization in SMT solvers [62, 13, 44].

This section introduces νZ, an extension to Z3, that provides a portfolio of
approaches to solve arithmetic optimization, MaxSAT and combinations thereof.
The tool supports multiple ways of combining objectives e.g. independently,
lexicographically or by using Pareto fronts.

A motivating example

We use a transportation problem in the context of Dynamics AX, an enterprise
resource planning software product from Microsoft, in order to motivate the
development of νZ. One of the core problems in Dynamics AX is to distribute
all shipments into trucks under some specific constraints. For example, trucks
have limited weights and volumes; certain goods cannot be packed together due
to safety requirements. The objectives are to minimize the number of trucks used
and reduce transportation costs as much as possible.

The scenario is an instance of the classic bin packing problem. There is a lot of

50 Contributions

Shipments Weight(kg) Volume(m3) Requirement
1 400 300 Dry
2 300 350 Fresh
3 220 160 Dry

Table 3.5: Shipments that requires transportation

Trucks Weight(kg) Volume(m3) Requirement Initial cost Extra cost
1 777 700 Fresh $100 $20
2 450 1000 Dry $120 $30
3 600 460 Dry $130 $10

Table 3.6: Available trucks for transportation

research on solving bin packing variants e.g. based on constraint programming
techniques [68] or based on specialized algorithms [41]. In this particular example,
we focus on flexibility i.e. how easily constraints can be revised when changing
requirements.

Fig. 3.11 describes the bin packing constraints that form the satisfiability
problem. The expressiveness of SMT solving is really helpful here. Most
constraints can be formulated as Boolean combinations of linear constraints over
0-1 variables. Let 0-1 variable xij denote that shipment i is packed into truck j
and 0-1 variable yj denote that truck j is in use. The first block of constraints
shows that only one in three 0-1 variables xi1, xi2, xi3 is exclusively equal to
1. The second block of constraints means a truck yj is in use if a shipment is
packed into it i.e. yj takes the largest value in those of x1j , x2j , x3j . The last
block consists of weight capacity constraints. They denote that total weights
of shipments cannot exceed weights of corresponding trucks. There are similar
constraints on volume capacity, but they are not shown here.

Furthermore, optimization goals can be expressed as lexicographical combinations
of multiple objective functions. In Fig. 3.12, we formulate two objectives: one
based on a group of soft constraints called unused_trucks and the other based on
a linear sum of 0-1 variables. While the first objective is to maximize number of
unused trucks, the second one denotes minimization of total transportation cost.
For simplicity, total transportation cost is the sum of initial costs of deploying
trucks and extra costs of handling individual shipments. These concrete costs
are available in Table 3.6. These objectives show the flexibility in expressing
optimization problems, one of key targets in developing νZ.

3.5 νZ - An optimizing SMT solver 51

(assert (= (+ x_11 x_12 x_13) 1))
(assert (= (+ x_21 x_22 x_23) 1))
(assert (= (+ x_31 x_32 x_33) 1))

(define-fun imax ((a Int) (b Int)) Int (if (> a b) a b))
(assert (= y_1 (imax (imax x_11 x_21) x_31)))
(assert (= y_2 (imax (imax x_12 x_22) x_32)))
(assert (= y_3 (imax (imax x_13 x_23) x_33)))

(assert (<= (+ (* 400 x_11) (* 300 x_21) (* 220 x_31)) (* 777 y_1)))
(assert (<= (+ (* 400 x_12) (* 300 x_22) (* 220 x_32)) (* 450 y_2)))
(assert (<= (+ (* 400 x_13) (* 300 x_23) (* 220 x_33)) (* 600 y_3)))

Figure 3.11: The constraints of the transportation planning example

(assert-soft (= y_1 0) :id unused_trucks)
(assert-soft (= y_2 0) :id unused_trucks)
(assert-soft (= y_3 0) :id unused_trucks)

(minimize (+ (* 100 y_1) (* 20 (+ x_11 x_21 x_31))
(* 120 y_2) (* 30 (+ x_12 x_22 x_32))
(* 130 y_3) (* 10 (+ x_13 x_23 x_33))))

(set-option :opt.priority lex)
(check-sat)

Figure 3.12: Two optimization goals of the transportation planning example

52 Contributions

Inspired by the example above, νZ adds a few new commands to SMT-LIB
standard:

• (maximize t) or (minimize t) - instruct the solver to maximize or
minimize t where the term t can be either Integer, Real or Bit-vector.

• (assert-soft F [:weight n | :dweight d] [:id id]) - assert soft con-
straint F , optionally with an integral weight n or a decimal weight d . Soft
constraints can be furthermore tagged with an optional name id. This
enables combining multiple different soft objectives.

For combining objectives, νZ provides three different ways:

• Boxes: each objective is optimized independently subject to the original
constraints.

• Lexicographic combinations: for two maximization objectives t1 and t2,
it finds a model M where (M(t1), M(t2)) are maximized lexicographically.

• Pareto fronts: given two maximization objectives t1 and t2, the set of
Pareto front is a set of models Mi where none of the models dominates the
others.

For this particular example, an optimal solution is to use truck 1 to carry shipment
1 and 3, and truck 2 to carry the remaining shipment. It means that we have
truck 3 to spare and settle down with a minimum transportation cost of $290.

We now consider the νZ architecture and main ideas behind the implementations.
In addition to MaxSMT, νZ provides a portfolio of multiple approaches for
solving arithmetic optimization problems and their combinations. In Fig. 3.13,
νZ components are described in more detail.

• First, constraints are translated to weighted sums of 0-1 variables i.e.
Pseudo-Boolean variables. With the use of objectives, we have an
optimization problem on Pseudo-Boolean domain i.e. Pseudo Boolean
Optimization (PBO).

• Multiple objective functions are analyzed to identify a relevant orchestrator
in charge of computing optimal results.

3.5 νZ - An optimizing SMT solver 53

• For a pure arithmetic instance, we use OptSMT module, which provides
complementary approaches for solving arithmetic optimization.

• If the instance involves in soft constraints,MaxSMTmodule is in charge of
finding a suitable algorithm for solving the MaxSMT problem in an efficient
way.

• Depending on inputs’ characteristics, OptSMT and MaxSMT choose to
use Z3’s SMT solver or SAT solver under the hood.

• Pseudo Boolean and Cost solvers can be implemented efficiently as satellite
modules of SMT solver without too much complication.

0-1 constraints
⇒ PBO

SMT formula
with objectives

Combination of
objective functions

OptSMT: Arithmetic MaxSMT: Soft Constraints

Pseudo Boolean
and Cost solvers SMT solver SAT solver

Figure 3.13: νZ system architecture

OptSMT: Arithmetic Optimization

Algorithm 4 shows a basic optimization algorithm for arithmetic fragments such
as Linear Integer Arithmetic, Linear Real Arithmetic and Difference Logic (DL).
If we have F and t to be an input formula and an objective to maximize
respectively, the algorithm works as follows.

• Choose L as a set of literals (from F) that imply F and construct a partial
model that satisfies L.

• Maximize t as much as possible given the partial model.

• Remember the current best objective and re-iterate until there is no more
distinctive set of literals.

54 Contributions

In order to maximize an objective locally, linear real/integer arithmetic opti-
mization module uses primal Simplex to compute optimal values. For difference
logic, an important catch is that optimization goals may not be in difference
logic. Therefore, we do not block objectives directly but assert negations of
literal values to ensure convergence. Moreover, νZ uses non-standard numbers
to conveniently represent unbounded objectives. Each number takes a value of
the form c∞+ b+ εa where a, b, and c are rational numbers and∞ is larger than
any finite constant; this representation also supports all Simplex operations.

Input: Formula F and Objective t to maximize
Output: Maximal value v, such that v = t ∧ F is satisfiable
v ← −∞
while F is satisfiable do

Let L be a set of literals (from F) that imply F .
if t is unbounded in L then

return ∞
end
Let M be an interpretation that satisfies L and maximizes t
v ← max(v,M(t))
F ← F ∧ t > v ∧ ¬

∧
L

end
return v

Algorithm 4: Sequential Bound Increase

MaxSMT: Soft Constraints

The weighted MaxSMT problem is defined as follows. Given a formula F0, a set
of formulas F1, · · · , Fn and corresponding numerical weights w1, · · · , wn, find a
subset I ⊆ {1, · · · , n} such that:

• F0 ∧
∧
i∈I Fi is satisfiable.

• The reward Σi∈Iwi is maximized.

The tool νZ implements a portfolio of multiple engines for MaxSMT. These
include WMax [50], MaxRes [49], BCD2 [46] and MaxHS [18] algorithm. We
present here one of the simplest algorithms, namely WMax. For more details on
other engines, we refer to Paper E and Paper F.

3.5 νZ - An optimizing SMT solver 55

WMax asserts F0 and Fi ∨ pi where pi is a new propositional variable. The idea
of pi is to track satisfiability of the soft constraint Fi. We maintain a current cost
c and update it whenever pi is switched to true. If c exceeds the minimum cost
c∗, the corresponding partial model is blocked so that its search space should no
longer be explored. When all pi are assigned and c < c∗, we can update the new
minimum cost and block the corresponding assignment. WMax is a very simple
algorithm that can be implemented outside Z3’s SMT core. The advantage of
WMax is that it can be interrupted at any point with a current upper bound. It
also means that we can return current best values after a given timeout, which
is crucial for many real-world scenarios.

Experimental results

In Fig. 3.14, we compare νZ with the three best solvers in each category of
MaxSAT competition 2014. Since νZ did not enter the competition, we replicate
results for νZ using given benchmarks on similar test environments. Presently νZ
is not fine-tuned as the other solvers are, but it performs quite respectably. The
graphs show the number of instances each solver is able to solve under 1800-second
timeout. The tool νZ can solve up to 400 instances for Partial MaxSAT and 350
instances for Weighted Partial MaxSAT under the given timeout. These results
are much better than those of many solvers that participated in the competition.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Partial MaxSAT instances

ISAC+2014-pms
Open-WBO-In

Eva500a
νZ

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Weighted Partial MaxSAT instances

ISAC+2014-wpms
MSCG

Eva500a
νZ

Figure 3.14: MaxSAT 2014 competition evaluation results

We performed selected evaluation of νZ on different problems from Z3 users. The

56 Contributions

Source Category Solved instances Time
Longest Paths (easy) MaxSAT 8/8 <0.05s
Longest Paths (medium) MaxSAT 34/34 1-36s
DAL Allocation challenge PBO 96/96 0.02-6s
Symba LRA 2435/2435 0.2s-36s
OptiMathSAT LRA 9/9 0.5-20s

Table 3.7: Evaluation of νZ on selected examples

Longest Paths benchmarks come from one of our collaborators. DAL Allocation
challenge is a recent competition for PBO solvers. We use LRA benchmarks
from Symba [44] and OptiMathSAT [62], the two solvers that currently support
linear arithmetic optimization. The selected evaluation shows encouraging results
across multiple categories including MaxSAT, PBO and LRA.

We summarize here the main contributions:

• Extend SMT-LIB language with relevant extensions for modelling optimiza-
tion problems in a powerful and flexible way.

• Support portfolios of algorithms for MaxSMT, arithmetic optimization and
their combinations, that are readily available out of the box.

• Provide a foundation for modelling different Cyber-Physical problems that
lend themselves to optimization.

http://www.lifl.fr/LION9/challenge.php

Chapter 4

Two cases

In this chapter, two case studies in the domain of Cyber-Physical Systems are
presented. One goal is to examine different flavors of CPS in the real world.
Another goal is to evaluate our modelling and analysis techniques on various
settings. For each case, we present a high-level description and a detailed analysis,
then briefly discuss experimental results.

4.1 Smart Meter

With Cyber-Physical Systems becoming more pervasive, smart home appliances
become more and more popular. The main idea is that various home appliances
can be well-connected and self-regulated without human intervention. We present
here a concrete use case of smart home appliances, called Smart Meter. The use
case arose from a working group on CPS with our colleagues, Flemming Nielson
and Nataliya Skrypnyuk, at DTU Compute.

The Smart Meter interface consists of two main components, a washing machine
and a dishwasher. Each component is controlled by a corresponding task. Before

58 Two cases

0

10

20

30

40

50

60

8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00

N
oi
se
 le
ve
l (
dB

)

Time (h)

Figure 4.1: Users’ maximal tolerance w.r.t. noise levels

leaving home for work, the home owner starts the Smart Meter interface and
wishes to complete the two tasks at the end of the day. The Smart Meter
controller has to deduce a schedule for the tasks where maximal level of noise
tolerance and maximal power rate are not exceeded. The objective is to minimize
the price the home owner has to pay in the end.

Regarding the flavor of CPS, the setting here is quite simple. The goal is to
determine coordination between tasks in order to give informed decisions for
scheduling smart-home appliances. The control operation is offline in the sense
that the duration is fixed and the appliances are operated by specified plans.
For future work, online control is an interesting direction where there is much
more interaction between components and schedules have to be adjusted based
on changes.

For this concrete use case, the maximal power rate is 2.2kW and users’ maximal
tolerance w.r.t. noise level is specified in Fig. 4.1. The washing machine runs
for 2 hours with a power rate of 2kW and a noise level of 41dB. The dishwasher
operates for 2 hours, requires 1kW supply and emits 39dB w.r.t. noise levels.
Energy supply has a given pricing structure (see Fig. 4.2). The time period for
scheduling is 14 hours between 8:00 and 22:00 on the given day.

First, the problem is modelled by a discrete version of DC. This allows for a focus
on the essence of the problem when DC acts as a domain specific language to

4.1 Smart Meter 59

0

1

2

3

4

8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00

Pr
ic
e
(k
r/
kW

h)

Time (h)

Figure 4.2: Pricing structure of energy supply

express the problem at hand. Second, DC formulas are encoded to Linear Integer
Arithmetic using automatic transformations. This step helps us leverage the
powerful SMT solving engines to efficiently solve the formulas. The methodology
is similar to what has been used throughout Paper A.

Formalization in Duration Calculus

Let W and D denote state variables for the washing machine and the dish washer
respectively

W, D : Time→ {0, 1}

where W(t) = 1 when the washing machine is used at time t. A similar
explanation applies for D.

Energy costs (EC) and noise levels (LNoise) are discrete functions of time

EC : Time→ {1, 2, · · · , N}
LNoise : Time→ {1, 2, · · · , M}

where EC(t) = n and LNoise(t) = m when the energy cost and noise level are at

60 Two cases

the given amounts at time t. Here N and M are maximal values of energy costs
and noise levels respectively.

Prices can be expressed as linear sums

P
df
= ΣNk=1dk

∫
(D ∧ (EC = k)) + ΣNk=1wk

∫
(W ∧ EC = k))

where dk and wk are constants. The pricing structure for energy consumption is
provided in Fig. 4.2. The state expression D ∧ (EC = k) is true (i.e. equals to 1)
at time t if the dishwasher is running at time t and the energy cost at time t is
k. The state expression W ∧ (EC = k) has a similar explanation.

The corresponding tasks can be formulated as follows

TS
df
= (dd¬Dee∗ _ (ddDee ∧ l = 2h)) _ (dd¬Dee∗) ∧

(dd¬Wee∗ _ (ddWee ∧ l = 2h)) _ (dd¬Wee∗)

where each task has to be scheduled for 2 hours without interruption.

We can model limits on power supplies and on noise levels.

PS
df
= 2(l = 1⇒ 2

∫
W + 1

∫
D ≤ 2.2kW)

NL
df
= 2(l = 1⇒ 41

∫
W ⊕ 39

∫
D ≤ LNoise)

The operation ⊕ is special addition on dB.

Prices and noise levels can be modelled as follows.

PSNL
df
= ((l = 5 ∧ EC = 1) _ (l = 7 ∧ EC = 3) _ (l = 2 ∧ EC = 1))

∧ ((l = 1.5 ∧ LNoise = 40) _ (l = 2.5 ∧ LNoise = 20)

_ (l = 8 ∧ LNoise = 50) _ (l = 2 ∧ LNoise = 40))

We have a bounded model checking problem with a duration of 14 hours and the
main formula is φ df

= TS ∧ PS ∧NL ∧ PSNL. The objective is to schedule the
tasks and minimize price P .

4.1 Smart Meter 61

Translation to SMT solving

Different approaches have been taken for the problem of scheduling smart home
appliances. Sou et al. used a detailed mathematical model to solve the problem
using Mixed Integer Programming (MIP) [70]. The approach is complex due to
the rigidity of MIP that only allows conjunctions of linear constraints. On a
related note, Sheini et al. proposed a SAT-based approach to represent temporal
constraints [69]. This approach has more flexibility in terms of describing complex
relationships thanks to the use of expressive logical formulas.

The idea of applying BMC in the context of DC is not new. An elegant BMC
encoding for a pure Boolean fragment of DC was introduced in [27]. Another
approach for BMC of a discrete DC fragment was proposed in [74]. The paper
described a reduction to timed automata and showed efficiency of the approach
using Uppaal model checker. In this section, we investigate bounded model
checking in another discrete variant of DC allowing linear sum, which is slightly
more expressive than that of [27].

Given a natural number K and formula φ, one can find a model of size K for φ
if such a model exists. The idea is to reduce the problem to a SAT problem for
Linear Integer Arithmetic. For each state variable S, we introduce K variables
Sk ∈ {0, 1} denoting the value S(k) at time k ∈ {0, 1, · · · , K − 1}. For
each subformula ψ of φ and each interval [i, j] where 0 ≤ i ≤ j < K, a
variable Fψ, i, j ∈ {0, 1} is introduced to denote the truth value of ψ in the
given interval. We can translate in the polynomial time the encoding of φ and K
to a quantifier-free formula linφ, K in linear arithmetic having Pk and Fψ, i, j as
Boolean variables.

Experimental results

We implemented two versions of the encoding. An initial version was done using
plain Z3 SMT solver and a custom optimization loop atop. This version was
also used as a motivation for creating νZ. Another variant was built on top of
νZ; the encoding was posed as a Pseudo-Boolean Optimization problem that is
well-supported by νZ.

For this particular case, we have dk = 2 and wk = 1 where 1 ≤ k ≤ 3 for
the above-mentioned constants. An optimal assignment is to run the dishwasher
between 10:00 and 12:00 and schedule the washing machine between 18:00 and

62 Two cases

20:00 on the given day. The minimal price is 10 kr under the given constants.

Both two implementations completed their runs in a fraction of a second. The
native νZ variant is twice as fast as the other implementation. The gap is not too
big since the size of the problem is small. We implicitly use a granularity of half
an hour for both variants. Consequently, there are not many steps to discretize
for a span of 14 hours. We have not tried out with problems of bigger sizes; we
suspect that the benefit of using native optimization procedures might be more
significant for those cases. Moreover, the native νZ version is also much more
concise and easier to derive thanks to excellent support for optimization.

Summary

We summarize the lessons learned from this section.

• The example demonstrates the adequacy of DC as a domain specific
language. DC allows users to focus on modelling aspects and to delegate
tedious transformations to underlying logics.

• It also validates the feasibility of the approach to use DC for modelling and
LIA for analysis.

• The case study also shows the strength of νZ in expressing optimization
problems and solving those in an efficient manner.

• We have had a single validation with a simple setup. A next step would be to
consider a more extensive case study where granularity could be controlled.

4.2 Formal Design Space Exploration for Wireless
Sensor Networks

This case study uses a similar setup for WSN as in other parts of the thesis. Each
node has a limited memory capacity and it maintains a residual energy. Residual
energy decreases when the node consumes energy during sending, receiving or
making observations. Residual energy increases when the node harvests certain
amount of energy from the environment. We assume that each observation
has equal size one in terms of memory usage. Memory usage grows when the

4.2 Formal Design Space Exploration for Wireless Sensor Networks 63

node makes observations or receives messages. Another assumption is that a
sensor node sends the whole amount of observations in the memory to one of its
neighbors.

The use case comprises both interaction and coordination aspects. The setting
is complex. Each node records observations by interacting with the environment,
and the node needs to communicate with its neighbors and adjusts its behaviors
accordingly. The interaction and coordination aspects are being influenced by
harvested energy coming from the environment, making the problem even more
challenging for rigorous analysis.

We consider the following problem. Given an observation frequency, a period
length should be determined so that there is no energy depletion and the
network operates optimally according to certain metrics. A special problem is
to dimension each node so that it functions properly and has less risks of being
drained under specified parameters.

0Base station 1 2 i N − 1

Figure 4.3: A WSN consisting of nodes in a chain topology

For a given network topology, a key question is:

“How long does the network operate until a node’s energy is depleted?”

We also would like to investigate the relationship between amount of observations
and distances to the base station. For instance, what is the maximal number of
nodes one can put to the topology so that there is no node depletion? These
are interesting design space exploration questions in order to gain more insights
about WSN through quantitative analysis. Answers to these questions may be
incomprehensible for complex topologies. Therefore, we use a specific single chain
topology (see Fig. 4.3) in order to achieve a deeper understanding of the problem.
Hopefully the lessons learned can be generalized for other topologies.

We would like to avoid memory overflow in sensor nodes. The whole network is
examined until a node dies. On the chain topology, the implication is that any
node further away from the base station becomes unreachable. The nodes are
numbered so that node 0 is the base station where all observations should be
gathered, and node i is a neighbor of node i+ 1 and node i− 1.

64 Two cases

The questions above constitute an optimization problem that fits nicely with the
paradigm νZ pursues. This opens up a big opportunity to use the optimization
framework presented in Paper E and Paper F for quantitative analysis.

Formal analysis

In Paper D, we have presented a simulation-based approach for analyzing global
behaviors of WSN. While the approach is efficient, it cannot provide any absolute
guarantee on analysis results. In this setting, we are interested in a more
formal analysis. We have attempted to use timed automata model checking
for formulating WSN, but the approach was not able to scale further than a few
nodes.

This section still focuses on formal analysis of global properties of WSN. The main
idea is to use counting semantics to support analysis at a high-level abstraction.
Global analysis gives insights about WSN behaviors; it results in some kinds of
templates in terms of node behaviors. At the abstract level, frequencies rather
than sequences of observations and messages are considered. At the node level,
one can do local analysis to synthesize concrete node behaviors.

Under a counting semantics, we do not look into behaviors of a node at a specific
time instance but have a general view on node behaviors during concrete time
periods. For this use case, a fixed number of periods are employed to determine
a period length that satisfies the end goals. We can consider this as a system-
level encoding where non-optimal schedules of the network are ruled out. For
instance, a concrete period length is determined where we can maximize the
number of observations.

We devise a two-step optimization scheme, where the first phase solves an
abstract problem and the second phase deals with a concrete version. The
abstract semantics acts as a design space exploration step to rule out infeasible
combinations of parameters. The concrete semantics finds an exact model based
on values of the counting variables.

Let us consider a chain of N sensor nodes and examine the network in fixed K
periods of length T . Let i be an index of a node (0 ≤ i ≤ N − 1) and j be an
index of a period of interest (0 ≤ j ≤ K − 1).

We make use of counting variables for each node in these periods. Instead

4.2 Formal Design Space Exploration for Wireless Sensor Networks 65

of determining an exact time instance where an action occurs, the number of
occurrences of those actions are considered for a given period. The purpose is
to abstract away from overwhelming details and to understand the network at
a high-level abstraction. Recalling from Chapter 1, automata-based and logic-
based approaches often need to rule out irrelevant information from models to
make formal analysis feasible. In this section, we use counting semantics to
suppress irrelevant details, a technique which has been shown to be useful in
Paper A.

The counting variables are:

• Sij denotes the number of occurrences of messages sent at node i during
j-th period.

• Rij denotes the number of occurrences of messages received at node i during
j-th period.

• Oij denotes the number of occurrences of observations at node i during j-th
period.

Constraints on these counting variables are formalized as follows.

• The amount of sends, receives and observations should not exceed the length
of a given period.

Sij + Rij + Oij ≤ T

Thus we assume that a node can execute at most one action at a time
instance.

• The amount of messages sent at a node should be the same as the amount
of messages received at its neighbor (no message loss).

R(i−1)j = Sij

• The cumulative amount of messages sent at a node up to the current period
should be less than or equal to the cumulative amount of messages received
and observed at the node.

k∑
j=0

Sij ≤
k∑
j=0

(Oij + Rij) where 0 ≤ k ≤ K − 1

66 Two cases

• The cumulative amount of messages sent at a node should at least be equal
to the cumulative amount of received messages and observations until the
previous period.

k∑
j=0

Sij ≥
k−1∑
j=0

(Oij + Rij) where 1 ≤ k ≤ K − 1

This constraint assumes that an observation or message has to be sent
within time T .

• There is at least one observation per period per node.

Oij ≥ 1

It ensures that there is some activity on a node in any period.

Experimental results

We experimented with a chain of 6 nodes. The nodes have the same energy-
harvesting pattern i.e. half of a day without energy harvesting and the other
half with 20% total energy capacity that is available to harvest in every hour.
Residual and harvested energies were recorded. Amounts of message exchanges
were also monitored.

In Fig. 4.4, one can see that residual energy of node 1 is close to be depleted at
15th period. This node is the main bottleneck of the topology since it guards the
only route to the base station. Indeed node 1 runs out of energy if the chain is
analyzed for 17 periods. Residual energy of a node increases proportionally with
its distance to the base station.

The synthesized period length is 205 seconds. Fig. 4.5 shows the amount of
messages sent, received and observed during the 15 periods. The figure also
acts as a sanity check where one can inspect that the relationships between the
variables Sij , Oij and Rij are meaningful.

Note that the results only provide a general picture of nodes’ behaviors; there
is no information concerning on when an action actually happens. We have
not investigated concrete scheduling of the network based on these generic
configurations. In general, the generic configurations are good to show general
trends on the chain topology i.e. messages are denser while being close at the

4.2 Formal Design Space Exploration for Wireless Sensor Networks 67

Energy Harvesting & period length = 205

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

Period indices

E
ne

rg
y

(%
)

Node 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

Period indices

E
ne

rg
y

(%
)

Node 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

Period indices

E
ne

rg
y

(%
)

Node 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

Period indices

E
ne

rg
y

(%
)

Node 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

Period indices

E
ne

rg
y

(%
)

Node 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

Period indices

E
ne

rg
y

(%
)

Node 5

residual energy
harvested energy

Figure 4.4: Residual and harvested energy during 15 periods

base station. We are able to highlight these trends without compromising the
abstract encoding, which is designed to handle large networks.

Summary

There are a number of bodies of research on formal analysis of WSN. In [16],
sensor nodes are modelled in HyTech where their safety properties are analyzed.
For a large WSN, a network of Hybrid Automata is simulated where energy
consumption is also taken into account. Real-Time Maude is used to analyze
the Optimal Geographical Density Control algorithm for WSN in [52]. Model-

68 Two cases

Energy Harvesting & period length = 205

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

Period indices

M
es

sa
ge

s
co

un
t

Node 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

Period indices

M
es

sa
ge

s
co

un
t

Node 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

Period indices

M
es

sa
ge

s
co

un
t

Node 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

Period indices
M

es
sa

ge
s

co
un

t

Node 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

Period indices

M
es

sa
ge

s
co

un
t

Node 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

Period indices

M
es

sa
ge

s
co

un
t

Node 5

send
receive
observation

Figure 4.5: Number of messages sent, received and observed during 15 periods

checking techniques are used to verify functional properties and performance
evaluation is performed via the corresponding simulator as well. Note that these
related works do not consider energy harvesting.

In this section, we have shown that SMT techniques are useful for analyzing
global behaviors of WSN in connection with energy harvesting. The case study
has given us a number of useful lessons.

• The abstract encoding is helpful to understand global behaviors of the
network.

• Counting semantics is a powerful technique to obtain a high-level but useful

4.2 Formal Design Space Exploration for Wireless Sensor Networks 69

abstraction.

• We are able to obtain answers for the design space exploration questions
earlier.

• We would like to generalize the analysis to other topologies. The challenge
is to model communication amongst nodes.

70 Two cases

Chapter 5

Conclusions

Before giving a detailed summary of the work, we would like to recapitulate the
goals set out in Section 1.3.

• Develop theories, tools and techniques for Duration Calculus, that are
geared towards high-level modelling and analysis of Cyber-Physical Systems
(CPS).

• Develop theories, tools and techniques for SMT solving, that are geared
towards analysis of CPS.

• Develop modelling and analysis techniques for Wireless Sensor Networks
with special focus on energy harvesting.

Summary

In previous chapters, we have presented our main contributions and relevant case
studies. In Paper A, we started with the model checking problem on Duration
Calculus where the high complexity prohibited practical tool support. Counting

72 Conclusions

semantics was employed to construct an efficient reduction of the problem to
Linear Integer Arithmetic. Thanks to Guarded Normal Form, generated formulas
can be solved efficiently using Z3 SMT solver. The counting semantics technique
was used later in Wireless Sensor Network case study, resulting in a scalable
abstract encoding.

Motivated by the model checking problem, we investigated different ways to solve
the problem in an efficient manner. First, we examined multicore parallelism
as a means to exploit extra computation powers for the decision procedures of
LIA in Paper B. The experiments resulted in encouraging speedups for Cooper’s
algorithm and exact shadow of Omega Test, which have positive influences on
efficiency of the model checking algorithm. More importantly, the parallelization
process can be applied to other advanced tree processing algorithms. Second,
algorithms for quantifier elimination in context of satisfiability were investigated
in Paper C. We proposed a generic algorithm for efficiently solving quantified
formulas with deep nesting of alternating quantifiers. The algorithm along with
multiple instantiations were implemented as a common tactic in Z3 SMT solver.
While the algorithm has wide applicability, it also brings further gains to directly
improve the model-checking algorithm in Paper A.

We then shifted our focus to a concrete class of CPS i.e. Wireless Sensor
Network (WSN). Paper D presented a modelling framework of energy-harvesting-
aware WSN with formal semantics. Using this formal model, one is able to
analyze different routing protocols in a consistent way using similar network
topologies and underlying conditions. Three routing protocols were instantiated
via many-sorted algebras, including Directed Diffusion (DD), Energy-Aware
Routing (EAR) and Distributed Energy-Harvesting-Aware Routing (DEHAR).
Then a discrete-event simulator was developed as a basis to compare these
protocols. The goal was to examine global behaviors of WSN under a concrete
protocol. The paper was based on a simulation-based approach, which allows a
fine-grained way of modelling and analyzing systems. Experimental results have
shown that DEHAR algorithm turned out to be superior. Its distinctive feature is
the ability to adapt so that drained nodes could be recovered by routing messages
longer paths.

After that, we revisited SMT solving and investigated their use in CPS modelling
and analysis. Many problems of CPS nature lend themselves to optimization.
Paper E and Paper F presented two aspects of an extension to Z3 for optimization
i.e. νZ. While Paper E focuses on details of algorithms and lessons learned
while developing νZ framework, Paper F highlights flexibility and powers of
optimization in the context of SMT. In Chapter 4, we examined two case studies

73

which both use νZ as the main analysis engine. Experiments have shown
promising results concerning the use of νZ in the analysis of CPS.

We have achieved our goals to a large extent. The Duration Calculus formalism
has been instrumental to inspire us to investigate different modelling and analysis
techniques. SMT-based analysis is proven to be an efficient back-end technology
for formal analysis. We have gained insights on understanding WSN and their
global behaviors. There are a number of case studies where SMT optimization
techniques have shown their potentials.

Evaluation

During the course of our work, a few things have worked out nicely:

• A combination of techniques including reduction to SMT solving, Guarded
Normal Form and multicore parallelism has made Duration Calculus much
more compelling for practical use. The counting semantics technique has
shown its usefulness in multiple situations.

• SMT optimization via νZ is a promising framework to leverage for analysis
of CPS.

• The formal model is useful in reasoning about WSN. It lays the foundation
for more rigorous analysis.

There are a number of things that can be improved. Duration Calculus is useful
as a modelling formalism, but it is still not ready for large-scale use. Scalability
of the approach used in Smart Meter use case is not yet well-understood. SMT
optimization has huge potentials, but we have not fully exploited their capabilities
in the case studies.

Directions for Future work

As future work, we would like to investigate along the following directions:

(A) The simulation-based approach in Paper D has shown interesting results on
global behaviors of WSN. An attempt to analyze WSN in a more formal way

74 Conclusions

has been done for a chain topology in Chapter 4. An immediate direction is
to extend the work for general topologies. Moreover, the WSN case study in
Chapter 4 has been solved by an abstract semantics that provides templates
for node operations. One can push the work further by doing local synthesis
to obtain suitable parameters for efficient scheduling at each sensor node.

(B) The Smart Meter case study can be pushed further towards the use of
a domain specific language. The formalization using Duration Calculus
is nice but not intuitive enough for domain experts. One may derive a
Duration Calculus variant catered for the domain or create a declarative
domain specific language that employs Duration Calculus as an immediate
representation.

(C) We have been using νZ for two simple case studies in the CPS area. While
νZ has proven to be useful in such cases, there are other options to exploit
SMT optimization for quantitative analysis. One could investigate more
advanced case studies in CPS where νZ can provide powerful analysis
backends, for example, by considering the extensions of (A) and (B) above.

References

[1] Rajeev Alur and David L. Dill. The theory of timed automata. In
J. W. de Bakker, Cornelis Huizing, Willem P. de Roever, and Grzegorz
Rozenberg, editors, Real-Time: Theory in Practice, REX Workshop, Mook,
The Netherlands, June 3-7, 1991, Proceedings, volume 600 of Lecture Notes
in Computer Science, pages 45–73. Springer, 1991.

[2] Gilles Audemard, Marco Bozzano, Alessandro Cimatti, and Roberto
Sebastiani. Verifying industrial hybrid systems with mathsat. Electronic
Notes in Theoretical Computer Science, 119(2):17–32, March 2005.

[3] Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Abstract congruence
closure. Journal of Automated Reasoning, 31(2):129–168, 2003.

[4] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial
on uppaal. In Marco Bernardo and Flavio Corradini, editors, Formal
Methods for the Design of Real-Time Systems, International School on
Formal Methods for the Design of Computer, Communication and Software
Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised
Lectures, volume 3185 of Lecture Notes in Computer Science, pages 200–236.
Springer, 2004.

[5] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and
Applications. IOS Press, Amsterdam, The Netherlands, The Netherlands,
2009.

76 REFERENCES

[6] Armin Biere. Resolve and Expand. In Holger H. Hoos and David G. Mitchell,
editors, SAT (Selected Papers, volume 3542 of Lecture Notes in Computer
Science, pages 59–70. Springer, 2004.

[7] Nikolaj Bjørner. Linear Quantifier Elimination as an Abstract Decision
Procedure. In The 6th International Joint Conference on Automated
Reasoning, IJCAR, volume 6173 of Lecture Notes in Computer Science,
pages 316–330. Springer, 2010.

[8] Guy E. Blelloch, Rezaul Alam Chowdhury, Phillip B. Gibbons, Vijaya
Ramachandran, Shimin Chen, and Michael Kozuch. Provably good multicore
cache performance for divide-and-conquer algorithms. In Shang-Hua Teng,
editor, Symposium on Discrete Algorithms, pages 501–510. SIAM, 2008.

[9] Lei Bu, You Li, Linzhang Wang, and Xuandong Li. BACH : Bounded
reachability checker for linear hybrid automata. In Alessandro Cimatti
and Robert B. Jones, editors, Formal Methods in Computer-Aided Design,
FMCAD 2008, Portland, Oregon, USA, 17-20 November 2008, pages 1–4.
IEEE, 2008.

[10] Peter E. Bulychev, Alexandre David, Kim Guldstrand Larsen, Marius
Mikucionis, Danny Bøgsted Poulsen, Axel Legay, and Zheng Wang.
UPPAAL-SMC: statistical model checking for priced timed automata. In
Herbert Wiklicky and Mieke Massink, editors, Proceedings 10th Workshop
on Quantitative Aspects of Programming Languages and Systems, QAPL
2012, Tallinn, Estonia, 31 March and 1 April 2012., volume 85 of EPTCS,
pages 1–16, 2012.

[11] Zhou Chaochen and Michael R. Hansen. Duration Calculus - A Formal
Approach to Real-Time Systems. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, 2004.

[12] Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus of
durations. Information Processing Letters, 40(5):269–276, 1991.

[13] Alessandro Cimatti, Anders Franzén, Alberto Griggio, Roberto Sebastiani,
and Cristian Stenico. Satisfiability modulo the theory of costs: Foundations
and applications. In Javier Esparza and Rupak Majumdar, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 16th International
Conference, TACAS 2010, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings, volume 6015 of Lecture Notes in Computer Science,
pages 99–113. Springer, 2010.

REFERENCES 77

[14] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani. A Modular Approach to MaxSAT Modulo Theories. In
Matti Järvisalo and Allen Van Gelder, editors, Theory and Applications of
Satisfiability Testing - SAT 2013 - 16th International Conference, Helsinki,
Finland, July 8-12, 2013. Proceedings, volume 7962 of Lecture Notes in
Computer Science, pages 150–165. Springer, 2013.

[15] Edmund M. Clarke. The birth of model checking. In Orna Grumberg and
Helmut Veith, editors, 25 Years of Model Checking - History, Achievements,
Perspectives, volume 5000 of Lecture Notes in Computer Science, pages 1–26.
Springer, 2008.

[16] Sinem Coleri, Mustafa Ergen, and T. John Koo. Lifetime analysis of a
sensor network with hybrid automata modelling. In Proceedings of the 1st
ACM international workshop on Wireless sensor networks and applications,
WSNA ’02, pages 98– 104. ACM, 2002.

[17] Raffaello D’Andrea. Guest editorial can drones deliver? IEEE Transactions
on Automation Science and Engineering, 11(3):647–648, 2014.

[18] Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up
MAXSAT solving. In Christian Schulte, editor, Principles and Practice
of Constraint Programming - 19th International Conference, CP 2013,
Uppsala, Sweden, September 16-20, 2013. Proceedings, volume 8124 of
Lecture Notes in Computer Science, pages 247–262. Springer, 2013.

[19] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Communications of the ACM, 5(7):394–397,
1962.

[20] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The
tool KRONOS. In Rajeev Alur, Thomas A. Henzinger, and Eduardo D.
Sontag, editors, Hybrid Systems III: Verification and Control, Proceedings of
the DIMACS/SYCON Workshop, October 22-25, 1995, Ruttgers University,
New Brunswick, NJ, USA, volume 1066 of Lecture Notes in Computer
Science, pages 208–219. Springer, 1995.

[21] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient
SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer, 2008.

78 REFERENCES

[22] David Dharbe, Silvio Ranise, and Jorgiano Vidal. A prototype
implementation of a distributed satisfiability modulo theories solver in the
ToolBus framework. Journal of the Brazilian Computer Society, 14:71 – 86,
03 2008.

[23] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on
the common subexpression problem. Journal of the ACM, 27(4):758–771,
October 1980.

[24] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic
solver for DPLL(T). In Thomas Ball and Robert B. Jones, editors, Computer
Aided Verification, 18th International Conference, CAV 2006, Seattle, WA,
USA, August 17-20, 2006, Proceedings, volume 4144 of Lecture Notes in
Computer Science, pages 81–94. Springer, 2006.

[25] Peter H. Feiler, David P. Gluch, and John J. Hudak. The architecture
analysis & design language (AADL): An introduction. Technical Report
CMU/SEI-2006-TN-011, Software Engineering Institute, Carnegie Mellon
University, 2006.

[26] Michael J. Fischer and Michael O. Rabin. Super-Exponential Complexity
of Presburger Arithmetic. In Proceedings of the SIAM-AMS Symposium in
Applied Mathematics, 1974.

[27] Martin Fränzle. Take it np-easy: Bounded model construction for duration
calculus. In Werner Damm and Ernst-Rüdiger Olderog, editors, Formal
Techniques in Real-Time and Fault-Tolerant Systems, 7th International
Symposium, FTRTFT 2002, Co-sponsored by IFIP WG 2.2, Oldenburg,
Germany, September 9-12, 2002, Proceedings, volume 2469 of Lecture Notes
in Computer Science, pages 245–264. Springer, 2002.

[28] Martin Fränzle. Model-checking Dense-time Duration Calculus. Formal
Aspects of Computing, 16(2):121–139, May 2004.

[29] Martin Fränzle and Michael R. Hansen. Deciding an Interval Logic with
Accumulated Durations. In 13th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS, volume
4424 of Lecture Notes in Computer Science, pages 201–215. Springer, 2007.

[30] Martin Fränzle and Michael R. Hansen. Efficient Model Checking for
Duration Calculus. International Journal Software and Informatics, 3(2-
3):171–196, 2009.

[31] Peter Fritzson and Peter Bunus. Modelica-a general object-oriented language
for continuous and discrete-event system modeling and simulation. In

REFERENCES 79

Proceedings 35th Annual Simulation Symposium (ANSS-35 2002), San
Diego, California, USA, 14-18 April 2002, pages 365–380. IEEE Computer
Society, 2002.

[32] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. Delta-complete decision
procedures for satisfiability over the reals. ACM Computing Research
Repository, abs/1204.3513, 2012.

[33] Sicun Gao, Soonho Kong, Wei Chen, and EdmundM. Clarke. Delta-complete
analysis for bounded reachability of hybrid systems. ACM Computing
Research Repository, abs/1404.7171, 2014.

[34] Michael R. Hansen. Model-Checking Discrete Duration Calculus. Formal
Aspects of Computing, 6(6A):826–845, 1994.

[35] Matthew Hause. The sysml modelling language. In Fifteenth European
Systems Engineering Conference, 2006.

[36] T. A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, LICS ’96, pages
278–, Washington, DC, USA, 1996. IEEE Computer Society.

[37] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A
model checker for hybrid systems. International Journal on Software Tools
for Technology Transfer, 1(1-2):110–122, 1997.

[38] Laura Humphrey, Eric Wolff, and Ufuk Topcu. Formal specification and
synthesis of mission plans for unmanned aerial vehicles. In AAAI Spring
Symposium Series, 2014.

[39] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John
Heidemann, and Fabio Silva. Directed diffusion for wireless sensor
networking. IEEE/ACM Transactions on Networking, 11(1), February 2003.

[40] Mikkel Koefoed Jakobsen, Jan Madsen, and Michael R. Hansen. DEHAR: A
distributed energy harvesting aware routing algorithm for ad-hoc multi-hop
wireless sensor networks. In Proceedings of the 2010 IEEE International
Symposium on A World of Wireless, Mobile and Multimedia Networks,
WOWMOM ’10, 2010.

[41] Richard E. Korf. A new algorithm for optimal bin packing. In Rina
Dechter and Richard S. Sutton, editors, Proceedings of the Eighteenth
National Conference on Artificial Intelligence and Fourteenth Conference on
Innovative Applications of Artificial Intelligence, July 28 - August 1, 2002,
Edmonton, Alberta, Canada., pages 731–736. AAAI Press / The MIT Press,
2002.

80 REFERENCES

[42] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a
nutshell. International Journal on Software Tools for Technology Transfer,
1(1-2):134–152, 1997.

[43] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems - A
Cyber-Physical Systems Approach. Lee and Seshia, 1 edition, 2010.

[44] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha
Chechik. Symbolic optimization with SMT solvers. In Suresh Jagannathan
and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego,
CA, USA, January 20-21, 2014, pages 607–618. ACM, 2014.

[45] David Monniaux. Quantifier Elimination by Lazy Model Enumeration. In
Tayssir Touili, Byron Cook, and Paul Jackson, editors, CAV, volume 6174
of Lecture Notes in Computer Science, pages 585–599. Springer, 2010.

[46] António Morgado, Federico Heras, and João Marques-Silva. Improvements
to Core-Guided Binary Search for MaxSAT. In Alessandro Cimatti and
Roberto Sebastiani, editors, Theory and Applications of Satisfiability Testing
- SAT 2012 - 15th International Conference, Trento, Italy, June 17-20, 2012.
Proceedings, volume 7317 of Lecture Notes in Computer Science, pages 284–
297. Springer, 2012.

[47] B. Moszkowski. A Temporal Logic for Multilevel Reasoning about Hardware.
IEEE Computer, 18(2):10–19, 1985.

[48] Shin Nakajima, Satoru Furukawa, and Yoshikazu Ueda. Co-analysis of
sysml and simulink models for cyber-physical systems design. In 2012 IEEE
International Conference on Embedded and Real-Time Computing Systems
and Applications, RTCSA 2012, Seoul, Korea (South), August 19-22, 2012,
pages 473–478. IEEE Computer Society, 2012.

[49] Nina Narodytska and Fahiem Bacchus. Maximum Satisfiability Using Core-
Guided MaxSAT Resolution. In Carla E. Brodley and Peter Stone, editors,
AAAI, pages 2717–2723. AAAI Press, 2014.

[50] Robert Nieuwenhuis and Albert Oliveras. On SAT Modulo Theories and
Optimization Problems. In Armin Biere and Carla P. Gomes, editors, Theory
and Applications of Satisfiability Testing - SAT 2006, 9th International
Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings, volume
4121 of Lecture Notes in Computer Science, pages 156–169. Springer, 2006.

REFERENCES 81

[51] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A
Proof Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg,
2002.

[52] Peter Csaba Ölveczky and Stian Thorvaldsen. Formal modeling,
performance estimation, and model checking of wireless sensor network
algorithms in real-time maude. Theoretical Computer Science, 410(2-3):254–
280, 2009.

[53] Derek C. Oppen. A 222pn

Upper Bound on the Complexity of Presburger
Arithmetic. J. Comput. Syst. Sci., 16(3):323–332, 1978.

[54] P.K. Pandya. Specifying and Deciding Quantified Discrete-time Duration
Calculus Formulae using DCVALID. Technical Report TCS-00-PKP-1, Tata
Institute of Fundamental Research, Mumbai, India, 2000.

[55] David A. Plaisted, Armin Biere, and Yunshan Zhu. A satisfiability procedure
for quantified Boolean formulae. Discrete Applied Mathematics, 130(2):291–
328, 2003.

[56] André Platzer. Differential dynamic logic for verifying parametric hybrid
systems. In Nicola Olivetti, editor, TABLEAUX, volume 4548 of LNCS,
pages 216–232. Springer, 2007.

[57] André Platzer and Edmund M. Clarke. Formal verification of curved flight
collision avoidance maneuvers: A case study. In Ana Cavalcanti and Dennis
Dams, editors, FM, volume 5850 of LNCS, pages 547–562. Springer, 2009.

[58] André Platzer and Jan-David Quesel. European Train Control System: A
case study in formal verification. In Karin Breitman and Ana Cavalcanti,
editors, ICFEM, volume 5885 of LNCS, pages 246–265. Springer, 2009.

[59] William Pugh. The Omega Test: a fast and practical integer programming
algorithm for dependence analysis. In Joanne L. Martin, editor,
Supercomputing, pages 4–13. IEEE Computer Society / ACM, 1991.

[60] Philip Reuterswärd, Johan Åkesson, Anton Cervin, and Karl-Erik Årzén.
Truetime network—a network simulation library for modelica. In
International Modelica Conference, 2009.

[61] Ludovic Samper, Florence Maraninchi, Laurent Mounier, and Louis Mandel.
GLONEMO: global and accurate formal models for the analysis of ad-hoc
sensor networks. In Proceedings of the first international conference on
Integrated internet ad hoc and sensor networks, InterSense ’06, 2006.

82 REFERENCES

[62] Roberto Sebastiani and Silvia Tomasi. Optimization in SMT with LA(Q)
Cost Functions. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors,
Automated Reasoning - 6th International Joint Conference, IJCAR 2012,
Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture
Notes in Computer Science, pages 484–498. Springer, 2012.

[63] Conrado W. Seibel, Jean-Marie Farines, and José E. R. Cury. Towards
using hybrid automata for the mission planning of unmanned aerial vehicles.
In Panos J. Antsaklis, Wolf Kohn, Michael D. Lemmon, Anil Nerode, and
Shankar Sastry, editors, Hybrid Systems, volume 1567 of Lecture Notes in
Computer Science, pages 324–340. Springer, 1997.

[64] Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl.
Counting in Trees for Free. In 31st International Colloquium on Automata,
Languages and Programming, ICALP, volume 3142 of Lecture Notes in
Computer Science, pages 1136–1149. Springer, 2004.

[65] R C Shah and J M Rabaey. Energy Aware Routing for Low Energy Ad
Hoc Sensor Networks. IEEE Wireless Communications and Networking
Conference Record, 2002.

[66] N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer Science
Laboratory, SRI International, Menlo Park, CA, February 1993. Also
appears in Tutorial Notes, Formal Methods Europe ’93: Industrial-Strength
Formal Methods, pages 357–406, Odense, Denmark, April 1993.

[67] Babita Sharma, Paritosh K. Pandya, and Supratik Chakraborty. Bounded
Validity Checking of Interval Duration Logic. In Nicolas Halbwachs and
Lenore D. Zuck, editors, 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS, volume
3440 of Lecture Notes in Computer Science, pages 301–316. Springer, 2005.

[68] Paul Shaw. A constraint for bin packing. In Mark Wallace, editor, Principles
and Practice of Constraint Programming - CP 2004, 10th International
Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004,
Proceedings, volume 3258 of Lecture Notes in Computer Science, pages 648–
662. Springer, 2004.

[69] Hossein M. Sheini, Bart Peintner, Karem A. Sakallah, and Martha E.
Pollack. On solving soft temporal constraints using sat techniques. In Peter
van Beek, editor, CP, volume 3709 of Lecture Notes in Computer Science,
pages 607–621. Springer, 2005.

REFERENCES 83

[70] Kin Cheong Sou, James Weimer, Henrik Sandberg, and Karl Henrik
Johansson. Scheduling smart home appliances using mixed integer linear
programming. In Proceedings of the 50th IEEE Conference on Decision and
Control and European Control Conference, CDC-ECC 2011, Orlando, FL,
USA, December 12-15, 2011, pages 5144–5149. IEEE, 2011.

[71] Jean-Frédéric Étienne, S. Fechter, and E. Juppeaux. Using simulink design
verifier for proving behavioral properties on a complex safety critical system
in the ground transportation domain. In Marc Aiguier, Francis Bretaudeau,
and Daniel Krob, editors, CSDM, pages 61–72. Springer, 2010.

[72] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: scalable
sensor network simulation with precise timing. In Proceedings of the 4th
international symposium on Information processing in sensor networks,
IPSN ’05, 2005.

[73] Sergio Yovine. KRONOS: A verification tool for real-time systems.
International Journal on Software Tools for Technology Transfer, 1(1-2):123–
133, 1997.

[74] Quan Zu, Miaomiao Zhang, Jiaqi Zhu, and Naijun Zhan. Bounded model-
checking of discrete duration calculus. In Calin Belta and Franjo Ivancic,
editors, Proceedings of the 16th international conference on Hybrid systems:
computation and control, HSCC 2013, April 8-11, 2013, Philadelphia, PA,
USA, pages 213–222. ACM, 2013.

	Summary
	Resumé
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 What are Cyber-Physical Systems?
	1.2 Modelling and Analysis of Cyber-Physical Systems
	1.2.1 Automata-based approaches
	1.2.2 Logic-based approaches
	1.2.3 Other approaches

	1.3 Goals of the thesis
	1.4 Structure of the thesis

	2 Background
	2.1 Introduction to SMT solving
	2.2 Introduction to Duration Calculus
	2.3 Summary

	3 Contributions
	3.1 A practical approach to model checking Duration Calculus using Presburger Arithmetic
	3.2 An approach to multicore parallelism using functional programming: A case study based on Presburger Arithmetic
	3.3 Anatomy of Alternating Quantifier Satisfiability
	3.4 EHRA: Specification and Analysis of Energy-Harvesting Wireless Sensor Networks
	3.5 Z - An optimizing SMT solver

	4 Two cases
	4.1 Smart Meter
	4.2 Formal Design Space Exploration for Wireless Sensor Networks

	5 Conclusions
	References

