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Chapter 1

Introduction

In several activities of our everyday life we get in touch, in a direct or indirect way, with hard-
ware/software systems. In addition to the intentional use of PCs, laptops, or tablets, that is
becoming common for work, study and for private entertainment, one can interact with HW/SW
embedded systems also when she drives a car, takes a plane/high-speed train, pays with a credit
card, or watches television (satellite or digital terrestrial); moreover, if she unfortunately suffers
from an heart disease, she could have a pacemaker implanted, that is controlled by a specialized
software. These are only some examples of HW/SW systems that are involved in our life, but
the list could be very long; we could also mention systems that, although we do not directly
use them, have a great impact on our society, as software systems that control nuclear plants,
financial markets, space rockets, and so on.

Depending on the size and the importance of a system, its failure can constitute only an
annoying inconvenience for the user (e.g., a bug in the software of the DVD player) or can have
serious consequences for the manufacturer and/or the user. In literature, several systems failures
have been described [16, 146]:

e One of the most famous is the explosion, 36 seconds after the lift-off, of the Ariane 5
rocket!; the amount lost was of half a billion dollars. The failure was caused by an uncaught
exception, due to a floating-point error in a conversion from a 64-bit integer to a 16-bit
signed integer.

e An error in the software of the baggage handling system delayed of 9 months the opening
of the Denver airport, with a loss of 1.1 million dollars per day?.

e Several HW/SW errors caused the recall of the faulty systems. Intel lost 475 million dollars
for replacing Pentium II processors that had a faulty floting-point division unit. Also
automotive industries had to recall some of their cars for defects in the onboard software:
Toyota recalled some vehicles in 2010 for a bug in the anti-lock brake software?, and Honda

planned to recall 2.5 million vehicles for a bug in the transmission software?.

e Sometimes systems failures have even worst consequences, since they can cause the loss of
human life. For example, because of an error in the radiation therapy machine Therac-25,
some patients were exposed to an overdose of radiation and six of them died®.

It is apparent the need of having some techniques to produce systems that are as correct as
possible. This is the main goal of formal methods, introduced in Section 1.1. Although applicable
to the development of both hardware and software systems, from now on we only consider the
latter ones.

IThe report of the commission responsible for discovering the cause of the failure is reported at http://www.
esa.int/esaCP/Pr_33_1996_p_EN.html

2http://www.eis.mdx.ac.uk/research/SFC/Reports/TR2002-01 . pdf

Shttp://en.wikipedia.org/wiki/2009-2011_Toyota_vehicle_recalls

4http://www.reuters.com/article/2011/08/05/us-honda-recall-idUSTRE77432120110805

Shttp://sunnyday.mit.edu/papers/therac.pdf
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1.1 Formal methods

To tackle the growing complexity of developing modern software systems that usually have em-
bedded and distributed nature, and more and more involve safety critical aspects, formal methods
(FMs) have been affirmed as an efficient approach to ensure the quality and correctness of the
design, that permits to discover errors yet at the early stages of the system development.

Formal methods comprise all those notations and techniques that permit to describe and
analyse systems in a formal way, i.e., relying on well founded mathematical theories, such as
logic, automata theory or graph theory [146].

FMs provide several advantages when involved in software system engineering. According
to [146], FMs can be used to achieve three main goals:

1. Having a formal description of the system under development. Since they are formal,
FMs permit to describe, by means of formal specifications, the features and the expected
behaviour of a system in an unambiguous way, so avoiding the misunderstanding that can
arise if the system is described in natural language or using semi-formal design techniques
as, for example, UML. Thanks to their unambiguous nature, formal specifications are also
useful for system documentation: they can integrate less formal documentation, and taken
as the final arbiter when the latter is ambiguous [33]. The use of a formal specification from
the beginning of the system development permits to discover incompleteness, ambiguities
and inconsistencies of the informal system requirements that, if discovered later during the
development or testing, can cause a delay in the system deployment and an exceedance of
the estimated costs.

2. Assisting the development of the system by providing a mechanism to obtain, in an au-
tomatic or semi-automatic way, the (partial) implementation of the system. Refinement
approaches permit to obtain, starting from an abstract specification of the system, more
and more detailed specifications, and possibly, in the end, the executable code. Each re-
finement step is usually well documented and proved correct, so that all design decisions
are recorded and, if a re-design is required, can be examined again.

3. Catching and fixing design errors applying formal analyses methods that assure correct-
ness w.r.t. the system requirements and guarantee the required system properties. To
this purpose, validation (e.g., simulation, scenario-based validation and model review) and
verification (e.g., model checking and theorem proving) techniques can be used.

These three points roughly correspond to the three formalization levels of a formal method
(i.e., formal specification, formal development/verification and machine-checked proofs), identi-
fied in [33, 34].

There are several FMs available, each having its own strengths and weaknesses. Each FM is
based on a different mathematical theory, provides a different notation, and is more suitable for
achieving some goals rather than others. When choosing what FM to adopt, we should look for
the FM that best addresses our necessities: we should define what formalization levels best fit
our needs (not necessarily all three), and find a FM that covers the desired levels.

It is also possible to adopt different FMs to be used for different purposes during the devel-
opment of the system. However, using more than a formal notation in the same project can have
some disadvantages: it can be time consuming, since a formal specification of the system must be
written for each FM adopted, and inconsistencies may arise between the different specifications.
As suggested in [34], one viable solution is using methods integration, in which translations be-
tween different notations are provided, so that it is possible, having only one formal specification,
to exploit the capabilities of different FMs.

Another factor that can influence the choice of a FM is its tool support. Even the best FM,
without an appropriate set of tools that facilitate its usage, has few chances to be adopted [95].
In his proposal of the Grand challenge project [98] for the construction of a program verifier,
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Tony Hoare states that development of the tools should consume a bit less than half the total
effort. The techniques presented in this text are all well tool supported, with the aim of making
the use of FMs as easy as possible.

1.1.1 State-based formal methods

Among the several FMs available, some of them can be described as state-based, since they
describe systems by using the notions of state and transitions between states. State-based FMs
are sometimes preferred since they produce specifications that are more intuitive, since the notions
of state and transition are close to the notions of program state and program execution that are
familiar to any developer. Moreover, state-based FMs are usually executable and permit to be
simulated, so having an abstraction of the execution of the system under development.

We can describe a generic state-based formal method as follows.

Definition 1.1 (State-based formal method). A generic state-based formal method F is de-
scribed by the triple (S, Sy, T, being

o S the set of states;
e Sy the set of initial states;
e T C S xS the transition relation.

The previous definition can be used to abstractly describe several FMs but, since too generic,
can not be used to concretely define any FM. In order to define a given state-based FM, Def.
1.1 must be extended by adding the distinguishing characteristics of the FM, as the way used to
describe the states or the transition relation. Finite State Machines (FSMs), for example, add to
the transitions some inputs, and to the states (or to the transitions) an output function. Kripke
structures (see Section 3.1) have a labeling function that labels the states with the facts that are
true in the state. NuSMV specifications (see Section 3.2) represent a particular class of Kripke
structures, describing the states using a finite set of variables that range over finite domains,
and defining the transition relation as a set of guarded updates of the variables. In Abstract
State Machines (see Section 2.1) the states are first-order structures, and the transition relation
is described by means of transition rules.

1.2 Motivations of the thesis

The aim of the thesis is to provide tool-assisted techniques that help the adoption of state-based
FMs. In particular we address four main goals:

1. identifying a process for the development of an integrated framework around a formal
method. The adoption of a formal method is often prevented by the lack of tools to
support the user in the different development activities [95], as model editing, validation,
verification, etc. Moreover, also when tools are available, they have usually been developed
to target only one aspect of the system development process. So, having a well-engineered
process that helps in the development of concrete notations and tools for a FM can make
FMs of practical application. Indeed, as suggested by Parnas [145], FMs should not be
an optional feature of the development process, but become an essential part of it; but, in
order to achieve this result, they must prove to be really usable.

2. Promoting the integration of different FMs. As already said, having only one formal nota-
tion, for doing different formal activities during the development of the system, is preferable
than having a different notation for each formal activity. Moreover such notation should
be high-level: working with high level notations is definitely easier than working with
low-level ones, and the produced specifications are usually more readable [125, 11]. This
goal can be seen as a sub-goal of the first goal; indeed, in a framework around a formal
method, it should also be possible to integrate other formal methods that better address
some particular formal activities.
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3. Helping the user in writing correct specifications. The basic assumption of any formal
technique is that the specification, representing the desired properties of the system or
the model® of the system, is correct. However, in case the specification is not correct, all
the verification activities based on the specification produce results that are meaningless.
So, validation techniques should assure that the specification reflects the intended require-
ments; besides traditional simulation (user-guided or scenario-based), also model review
techniques, checking for common quality attributes that any specification should have, are
a viable solution.

4. Reducing the distance between the formal specification and the actual implementation of
the system. Several FMs work on a formal description of the system which is assumed
to reflect the actual implementation; however, in practice, the formal specification and the
actual implementation could be not conformant. A solution is to obtain the implementation,
through refinements steps, from the formal specification, and proving that the refinements
steps are correct. A different viable solution is to link the implementation with its formal
specification and check, during the program execution, if they are conformant.

Moreover, we can identify two collateral goals of the previous four main goals.

First of all we should always give evidence that a proposed technique is effective, not only by
some experiments, but by a formal evaluation of its strengths and weaknesses.

Second, we should always care about the performances of the proposed technique. Validation
and verification techniques, in fact, usually have scalability problems due to their time and
memory consumption.

Overview of the thesis

Part I describes three state-based formal notations, namely Abstract State Machines (ASMs)
(Section 2.1), Kripke structures (Section 3.1), and NuSMV specifications (Section 3.2). A process
for the development of a set of tools around a formal method is proposed in Section 2.2, where
the process is instantiated for ASMs.

Part II, after a description of some validation techniques (Chapter 4) and an overview of
model review techniques (Chapter 5), i.e., validation approaches for checking the quality of formal
specifications, proposes a model review technique for NuSMV specifications and ASMs (Chapters
6 and 7). An approach for evaluating the fault detection capability of a model review technique
is proposed in Chapter 8.

Part III introduces formal verification techniques. In Chapter 9, after a brief introduction to
model checking, a technique for model checking ASMs is proposed (Section 9.2). Then, after an
introduction to the notion of runtime monitoring (Chapter 10), Chapter 11 proposes a technique
for checking at runtime the conformance of a Java program with its formal specification given
in terms of ASMs. Chapter 12 proposes an approach for combining runtime monitoring with
model-based testing with the aim of testing nondeterministic Java programs.

Finally, Part IV introduces some scalability issues that can arise in formal analysis techniques.
Chapter 13 proposes a method to mitigate the state space explosion problem in test case gener-
ation using model checkers. Chapter 14, instead, proposes some optimizations for reducing the
execution time of test case generation for boolean expression using SAT/SMT solvers.

A technique developed for a state-based FM usually can be (easily) adapted for being used
with another state-based FM. This is the case of the two model review techniques for NuSMV
and ASMs specifications, described in Chapters 6 and 7. In Chapter 8, instead, an approach for

6Specifying the system and specifying the properties of the system are two different activities [146]. With the
term formal specification, depending on the contest, we can refer to the formal description of the system or to
the properties that the system must assure; if there is no ambiguity, we use the term formal specification freely.
When we do formal verification of a system (e.g., model checking), however, we usually have some properties that
we want to prove over a formal description of the system: in this case the properties are the formal specification,
whereas the description of the system is the model (i.e., the formal description assures the properties if it is a
model for the properties, as defined in model theory).
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discovering the equivalence between Kripke structures has been adapted to obtain a technique
for checking the equivalence of NuSMV specifications, since the latter represent a particular class
of the former. The runtime monitoring technique presented in Chapter 11 uses ASMs as formal
specification notation, but any other state-based FM could be used.
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Chapter 2

Abstract State Machines and ASMETA

2.1 Abstract State Machines (ASMs)

Abstract State Machines (ASMs) [32], previously known as Evolving Algebras [86], are a system
engineering method that drives the development of systems (both software and hardware) from
the requirements capture to the code implementation. ASMs have been successfully applied in
different contexts: definition of industrial standards for programming and modeling languages,
design and re-engineering of industrial control systems, modeling e-commerce and web services,
design and analysis of protocols, architectural design, verification of compilation schema and
compiler back-ends, etc.

ASMs permit to make requirements elicitation by constructing a ground model, i.e., a high-
level description of the system under development. Ground models are formulated using an
application-oriented language which can be understood by all the stakeholders [30]; so, thanks
to their abstract and precise nature, ground models are system blueprints that can be used as
contracts between the customer and the software designer. As stated in [30], ground models
are abstract yet complete, that is they contain all the essential elements of the system under
development (the interaction with the environment, the architectural system structure, etc.),
but they do not model elements/behaviours that are not necessary for the overall understanding
of the system. However, the points of the system that are left abstract, are properly marked in the
ground model, so that it is clear what must be specified in later refinements. Although abstract,
thanks to their mathematical nature, ground models can be already validated and verified. For
example, since they are executable, they can be simulated to discover if they reflect the user
expectations about the system.

Starting from the ground model, more detailed models can be iteratively obtained through
the refinement method. Each refinement step consists in the implementation of some system
requirements in a more detailed way. The notion of correct refinement between an ASM M
and the refined ASM M* — based on the equivalence of the runs of M and M* — provides a
theoretical support for the verification of the refinement correctness. The sequence of refinement
steps is, in a traceable and documented way, a link between the abstract view of the system and
the executable code.

ASMs dispel at least three of the myths about formal methods described in [88]:

5. Formal methods involve complex mathematics and this makes it difficult their adoption.
6. Formal methods are incomprehensible to clients because of their mathematical nature.
7. Nobody uses formal methods for real projects.

Myths 5 and 6 can be dispelled by the fact that ASMs can be viewed as pseudo-code over
abstract data [32]: so their mathematical nature is somehow hidden to the software designer and
to the customer that, usually, are both used to reading pseudo-code. Myth 7 is dispelled by the
fact that ASMs have been successfully applied to real projects as, for example, a mathemati-
cal and an experimental analysis of Java and of the Java Virtual Machine (JVM) [158], or in
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monitored
controlled
dynamic |
/ basic / \ shared
function \ static
\ derived out

Figure 2.1: Classification of ASM functions

the specification of the Universal Plug and Play (UPnP) architecture for peer-to-peer network
connectivity of intelligent devices [84].

ASMs are an extension of FSMs [30], where states are multi-sorted first-order structures, i.e.,
domains of objects with functions and predicates (treated as boolean functions) defined on them.
The transition relation is specified by rules describing how functions interpretations change from
one state to the next one.

2.1.1 Abstract states

Definition 2.1 (Signature). A signature (or vocabulary) is a finite set of function names, each
having an arity n € Ng that specifies the number of arguments of the function.

Also if it is not specified, every signature contains the static constants undef, true, false.

Definition 2.2 (Location). The pair (f, (vi,...,v,)) composed by a function name f of arity
n = 0, which is fized by the signature, and an argument (v1,...,vy,) (empty if n = 0), which is
formed by a list of dynamic parameter values v; of whatever type, is called location.

Locations can be viewed as an abstraction of memory units, in which the memory addressing
and object referencing mechanisms are not specified [32].

Definition 2.3 (State). An ASM state A of a signature ¥ is given by a non-empty set X (called
the superuniverse of A) and interpretations for the function names in 3.

An interpretation for an n-ary function f, with n > 0, is a function f4: X™ — X. An
interpretation ¢ for a O-ary function c is an element of X.

ASM functions can be partial, since they can be not totally defined. However, they can be
seen as total functions, saying that the interpretation of a not specified location f(vy,...,v,) is
interpreted as the interpretation of the constant undef (i.e., f4(vy,...,v,) = undefA).

The superuniverse X is usually divided in smaller universes (or domains). A domain D can
be described by a characteristic function g that indicates the elements of the superuniverse that
constitute the domain, i.e., Vx € X [z € D < g(z) = true].

2.1.1.1 Functions classification

ASMs functions are classified, as shown in Fig. 2.1, depending on the way in which they can be
read and updated.

A first distinction is made between basic and derived functions. Basic functions are those
that form the basic signature, whereas derived functions are those coming with a specification
or computation mechanism given in terms of other basic functions.
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Basic functions are further divided into static, which never change during any run of the
machine, and dynamic, that may be changed by the environment or by machine updates. 0-
ary static functions are also called constants; O-ary dynamic functions, instead, are also called
variables, since they can be viewed as the variables used in programming languages.

Dynamic functions are divided into:

e monitored: they are updated by the environment (or by another agent in case of a multi-
agent machine), and can be only read by the machine (i.e., they can not appear in the left-
hand side of an update rule); they identify the part of the dynamic state that is controlled
by the environment;

e controlled: they can be read and updated by the machine (i.e., updated by transition rules),
and they can not be updated by the environment (or other agents); they identify the part
of the dynamic state that is directly controlled by the machine;

e shared: they can be read and updated both by the machine and the environment; they
represent a combination of monitored and controlled functions; since they can be updated
by multiple agents, usually a protocol is required to assure that the updates are consistent;

e out: they can be updated but not read by the machine (i.e., they can only appear in the
left-hand side of an update rule), and read but not updated by the environment and other
agents.

2.1.2 ASM transitions

The way in which an ASM changes its state, i.e., it changes the interpretation of its dynamic
functions, is described by means of transition rules. Note that static functions never change
their value. Derived functions, instead, although not directly modified by transition rules, can
change their value among states since their computation mechanisms is based on the value of
basic functions.

In Section 2.1.2.1 we give some basic definitions about the notion of state update, and in
Section 2.1.2.2 we describe some transition rules that are used to define the transition relation.

2.1.2.1 ASM state update

Definition 2.4 (Update). Location-value pairs (loc,v) (i.e., (f,(v1,...,v,),v)) are called up-
dates and represent the basic units of state change.

Definition 2.5 (Update set). The update set is the set of all the updates that can fire in a state.

The updates that can fire are identified by the conditions imposed by the transition rules.
An update set can be applied to the machine only if it is consistent.

Definition 2.6 (Consistent update). An update set updSet is consistent if it holds:

(((f, (a1, ... ap)),b) € updSet A ((f,(a1,...,as)),c) € updSet) — b = ¢

If the update set is consistent, it is not possible that a location is updated to two different
values at the same time.

Definition 2.7 (Run). A run (or computation) of an ASM is a finite or infinite sequence so, s1,
..y 8n,... of states of the machine, where s is an initial state and each s;11 is obtained from s;
by simultaneously firing all of the transition rules which are enabled in s;.

If in a state the computed update set is not consistent, it is not applied and the run terminates.
Since ASMs can be nondeterministic, given an initial state, more than a run of length n can
exist.



20 Abstract State Machines and ASMETA

2.1.2.2 ASMs transition rules

In its simplest form, a transition rule has the form of guarded update
if cond then updates

where cond is a first-order formula without free variables, and updates a set of function updates

of the form f(t1,...,t,) := t which are simultaneously executed when cond is true. f is an
arbitrary n-ary function and tq,...,t,,t are first-order terms. To fire this rule in a state s;,
1 >0, all terms tq,...,t,,t are evaluated at s; to their values, say vy,...,v,,v, then the value of
location (f, (vy,...,v,)) is updated to v, which represents the value of the location in the next
state s;41.

Actually, ASMs provide a rich set of transition rules that, thanks to their high expressiveness,
permit to describe complex guarded updates in a concise way.
We here briefly describe the transition rules available in the ASMs.

Skip rule It does not produce any effect.

skip
Update rule It updates the location f(v1,...,v,) to the value v, being v,...,v, and v the
evaluation of terms t¢1,...,%, and ¢ in the current state.
Fltr, .o ty) =t

Block rule It executes rules R; and Ry simultaneously in parallel.

R, par R,

Since R; and/or Ry could be block rules as well, we introduce a more general notation that
describes the parallel execution of n rules, with n > 2.

par
R’
R,

endpar

Conditional rule It executes rule Ry if the boolean condition cond is true, R otherwise!.

if cond then
Rthen
else
Relse
endif

Forall rule It executes in parallel the rule R with all the values of x for which the boolean
condition cond is true. The read-only variable & can occur both in the boolean condition and in
the rule R.

forall z in D with cond do
R

n concrete syntaxes, as Asmetal, (see Section 2.2) or the CoreASM syntax [68], the else branch is usually
optional.
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Choose rule It nondeterministically chooses a value for z for which the boolean condition cond
is true and executes the rule R with the chosen value. If no value for x exists that satisfies the
condition, nothing is done?. The read-only variable = can occur both in the boolean condition
and in the rule R.

choose x in D with cond do
R

Extend rule It takes a new element e from the reserve (i.e., a subset of the superuniverse X,
containing fresh elements), it removes e from the reserve and adds it to the domain D. Then it
executes rule R, where the new value e could be read.

extend D with e
R

Let rule It associates to x the value of ¢ and executes R. The read-only variable x can occur
in the rule R.

letx=tin R
Call rule It calls the rule R using as parameters t1,...,t,.
R(t1,...,tn)

Turbo ASMs transition rules The transition rules described previously constitute the so
called basic ASMs. A richer set of ASMs are the turbo ASMs that can contain transition rules for
sequential composition, iteration, and the definition of parametrized submachines. The sequential
rule (R; seq Ry), for example, permits to decompose a step in micro steps that must be executed
in sequence. We do not describe all the turbo rules here, since they are not used in the rest of
the text.

2.1.3 Abstract State Machine

After having introduced the notion of signature, state, and transition rule, we can now formally
define what is an Abstract State Machine, by first introducing the notion of rule declaration.

Definition 2.8 (Rule declaration). Given a transition rule R, containing occurrences of the free
variables x1,...,x,, a rule declaration for a rule name r of arity n is

r(z1,...,2n) = R

Given a rule call r(¢1,...,t,), each occurrence of variable z; in the body of R is substituted

Definition 2.9 (Abstract State Machine). An Abstract State Machine is constituted by:
1. a signature X, together with a classification for all the functions;
2. a set of initial states Sy;
3. a set of rule declarations RD;

4. a main rule of arity 0 that acts as the starting point of the ASM and that invokes, directly
or indirectly, the rules in RD.

2Usually, in concrete syntaxes, the choose rule can also specify a rule Rifnone that must be executed if no value
for x satisfies the condition. The modified syntax is

choose z in D with cond do
R
[ifnone Rifone]
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2.1.4 Multi-agent ASMs

In Section 2.1.3 we have assumed that an ASM describes the behaviour of a single agent.

However, ASMs also permit to specify multi-agents models, where different agents interact,
each executing its own moves. In a multi-agent ASM, each agent specifies its own program, i.e.,
some basic/turbo rules that describe its behaviour.

Multi-agent ASMs can be synchronous or asynchronous.

In a synchronous multi-agent ASM all agents execute their programs in parallel, synchronized
using an implicit global system clock [32]. A synchronous multi-agent ASM permits to decompose
a complex single-agent ASM, identifying the part of the machine (signature and behaviours (i.e.,
transition rules)) that is due to a particular agent of the system under development.

In an asynchronous multi-agent ASM, instead, the moves of the agents can be scheduled in
any desired order. A run of a multi-agent asynchronous ASM is a partially ordered set (M, <)
that guarantees three conditions:

1. finite history: each move m € M has finitely many predecessors;
2. sequentiality of agents: the set of moves of every agent is linearly ordered by <;

3. coherence: given an initial finite segment X of (M, <), it exists a state o(X) that is the
result of applying any maximal element m € M to state (X — {m}).

2.2 ASMETA: a toolset around ASMs

The practical integration of a formal method within a system development process is often
prevented by the lack of tools supporting its use during the different development activities:
model editing, simulation, validation, verification, tests generation, etc. Furthermore, when tools
are available, it is often the case that they have been developed to cover well only one aspect
of the whole system development process, while, at different steps, modelers and practitioners
would like to switch tools to make the best of them while reusing information already entered
about their models. Tools are usually loosely-coupled, they have their own notations and internal
representation of models. This makes the integration of tools and the reuse of information hard
to accomplish, so preventing a formal notation from being used in an efficient and tool supported
manner during the entire software development life-cycle.

This was, for example, our experience with the ASMs. The increasing application of the
ASM formal method for academic and industrial projects has caused a rapid development of
tools around ASMs of various complexity and goals: tools for mechanically verifying properties
using theorem provers or model checkers, and execution engines for simulation and testing. Since
these ASM tools have been usually developed by different research groups, they are loosely
coupled, and have syntaxes and internal representations of ASM models strictly depending on
the implementation environment. This makes the encoding of ASM mathematical models not
always natural and straightforward and makes the integration of these tools hard to accomplish.

In order to develop a set of integrated tools around a formal method, we present a pro-
cess, based on the Model-Driven Engineering (MDE), which allows developing a family of tools
supporting different activities of the development process, from system specification to system
analysis, and that are strongly integrated in order to permit reusing information about models
during several phases of the system life cycle (first aim of the thesis in Section 1.2). The process
exploits MDE concepts and technologies, like metamodeling and automatic model-to-model and
model-to-text transformation. It also facilitates software reuse, since several software artifacts
are reused by all the tools, and it exploits several generation techniques and tools in order to
automatically obtain several software artifacts starting from (meta)models.

The application of MDE principles in order to engineer software languages is well established
in the context of domain-specific modeling languages [159]. It mainly consists of developing a
model (called metamodel) to represent the modeling concepts of a language, their relationships,



2.2 ASMETA: a toolset around ASMs 23

and their use and combination to build models (i.e., the abstract syntax of the language). We here
propose to apply the same approach to formal notations as well. This (meta)modeling activity
requires a certain effort and a deep understanding of the underlying formal notation. However,
this effort is later compensated by the speed and the easiness with which software tools for
the formal method can be developed. Indeed, one can automatically derive (through mappings
or projections) from a metamodel-based abstract syntax, several different basic artifacts that
can be reused. In particular, several language concrete notations and grammars can be easily
derived or defined. They can be either human-comprehensible (textual and/or graphical) for
editing models, and machine-comprehensible (like the XML Metadata Interchange format) for
model handling by software applications. Software APIs for model representation in terms of
programmable elements can also be easily obtained in a generative programming approach.

The proposed process is based on our experience in engineering a metamodel-based language
for ASMs and in developing the ASMETA (ASM mETAmodeling) toolset [13, 81] which provides
tools for developing, exchanging, and analysing ASM models. ASMETA is also a framework for
developing new ASM tools and for integrating existing ones.

Although we here apply the proposed process to the ASMs, it is general enough and applicable
to any kind of formal method: in [9], for example, it has been applied to the Finite State Machines
(FSMs).

The remainder of this chapter is organized as follows. The fundamental concepts of the MDE
approach for software development are briefly presented in Section 2.2.1. Section 2.2.2 presents
the overall process of engineering a toolset around a formal method. Section 2.2.3 presents the
application of the proposed approach to the ASMs: the result is the ASMETA framework, a set
of tools around the ASMs.

2.2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) technologies, with a greater focus on architecture and automa-
tion, provide high levels of abstraction in software system development by promoting models as
first-class artifacts to maintain, analyse, simulate, and eventually transform into code or into
other models. Meta-modeling is a key concept of the MDE methodology and it is intended as a
way to endow a language or a formalism with an abstract notation, so separating the abstract
syntax and semantics of the language from its different concrete notations.

Although the foundations of the MDE as a paradigm are still evolving, some implementations
of the MDE principles can be found in different meta-modeling/programming frameworks. The
most commonly used are the OMG framework with the MOF (Meta Object Facility) as meta-
language, the AMMA metamodeling platform with the KM3 meta-language, the Xactium XMF
Mosaic initiative, the Software Factories and their Microsoft DSL Tools, the Model-integrated
Computing (MIC), the Generic Modeling Environment for domain-specific modeling, the Eclipse
Modeling Framework (EMF) with the Ecore meta-language, and the Eclipse subproject openAr-
chitectureware.

The MDE methodology for engineering software languages is well established in the context
of domain-specific languages [159]. The development process of a DSL consists, more or less, of
the following four main activities:

1. defining the DSL core language model to reflect all relevant domain abstractions;
2. defining the behaviour of DSL language elements;

3. defining the DSL concrete syntax(es) by specifying symbols for language model elements
and DSL production/composition rules;

4. integrating DSL artifacts with the platform/infrastructure by mapping the different arti-
facts to the target platform. This last activity produces transformations, integration tests,
and platform extensions for the DSL.
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Figure 2.2: Model-Driven Process for Toolset Development

This model-driven development process can be adapted to a formal method with the overall
goal of engineering a language and a set of integrated tools around it, as described in detail in
Section 2.2.2.

2.2.2 Model-Driven process for toolset development

We here describe the steps of the model-driven process (see Fig. 2.2) a designer may undertake
in order to engineer a set of integrated tools for a formal method, namely tools for model editing,
exchange, validation, and verification. The process might require feedback loops and iterative
development.

2.2.2.1 Requirements capture and analysis

During this step (1 in Fig. 2.2), concepts and constructs representing the expressive power of
the formal method should be clearly pointed out. To this purpose, any official documentation
should be taken in consideration, and, if language dialects already exist, it should be make clear
if their characteristics have to be included in the new language.

2.2.2.2 Choice of a metamodeling framework and supporting technologies

The choice of a specific metamodeling framework (step 2 in Fig. 2.2) should not in princi-
ple prevent the use of models in other metamodeling frameworks, since model transformations
(model-to-model, model-to-text, etc.) are supported by almost all metamodeling environments.
In practice, metamodeling environments do not support all kinds of model transformations in
the same way and problems may arise when changing technologies. Therefore, the choice of a
metamodeling framework should consider the language artifacts one likes to generate from the
metamodel. For example, if one is interested into a concrete textual notation, a framework
supporting model-to-text transformations should be selected.

2.2.2.3 Design of a specification language for the formal method by metamodeling

During this step (3 in Fig. 2.2), the abstract syntax of a specification language is defined in
terms of a metamodel describing the vocabulary of modeling concepts, the relationships existing
among those concepts, and how they may be combined to create models. Possible constraints on
the metamodel elements are expressed by the Object Constrain Language (OCL) [139]. Precise
guide lines exist (e.g., [159]) to drive this modeling activity that leads to an instantiation of the
chosen metamodeling framework for a specific domain of interest. This is a critical process step
since the metamodel is the starting point for further tool development and remains the reference
blueprint of the overall development process.

2.2.2.4 Development of tools

Software tools are developed starting from the language metamodel. They can be classified in
generated, based, and integrated, depending on the decreasing use of generative technologies for
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their development. The effort required by the user increases, instead. Software tools automat-
ically derived from the metamodel are considered generated. Based tools are those developed
exploiting artifacts (APIs and other concrete syntaxes) and contain a considerable amount of
code that has not been generated. Integrated tools are external and existing tools that are con-
nected to the language artifacts: a tool may use just the XMI format, other tools may use the
APIs or other derivatives. The difference between based and integrated tools is sometimes weak,
and some tools can be can stay in both categories.

Development of language artifacts From the language metamodel, several language ar-
tifacts are generated (step 4 in Fig. 2.2) for model handling — i.e., model creation, storage,
exchange, access, manipulatation — and these artifacts can be reused during the development
of other applications. Artifacts are obtained by exploiting standard or proprietary mappings
from the metamodeling framework to several technical spaces, as XML-ware for model serializa-
tion and interchange, and Java-ware for model representation in terms of programmable objects
(through standard APIs).

Definition and validation of language concrete syntax(es) Language concrete notations
(textual, graphical or both) can be introduced (step 5 in Fig. 2.2) for the human use of editing
models conforming to the metamodel. Several tools exist to define (or derive) concrete textual
grammars for metamodels. For example, EMFText [93] allows defining text syntax for languages
described by an Ecore metamodel and it generates an ANTLR grammar file. TCS [107] (Tex-
tual Concrete Syntax) enables the specification of textual concrete syntaxes for Domain-Specific
Languages (DSLs) by attaching syntactic information to metamodels written in KM3. A simi-
lar approach is followed by the TEF (Textual Editing Framework) [161]. Other tools, like the
Xtext by openArchitectureWare (now integrated in the Eclipse Modeling Process) [171], follow-
ing different approaches, may fit in our process as well. Depending on the degree of automation
provided by the chosen framework, concrete syntax tools can be classified between generated and
based software.

Once defined, concrete grammars must be also validated. To this aim, a pool of models writ-
ten in the concrete syntax and acting as benchmark has to be selected. During this activity it is
important to collect information about the coverage of language constructs (classes, attributes
and relations of the language metamodel) to check that all of them are covered by the examples.
Writing wrong models and checking that they are not accepted is important as well. Coverage
evaluation can be performed by using a code coverage tool and instrumenting the parser accord-
ingly. This validation activity is also useful to provide confidence that the metamodel correctly
captures concepts and constructs of the underlying formal method.

2.2.2.5 Development of other tools

Metamodel, language artifacts, and concrete syntaxes are the foundations over which new tools
can be developed and existing ones can be integrated (step 6 in Fig. 2.2).

2.2.3 ASMETA

We here report the experience of our research group® in engineering (over the last few years) a
metamodel-based language and a toolset for the ASMs.

By following the steps of our model-driven design process, the ASMs have been provided
with a set of tools, the ASMs mETAmodeling (ASMETA) toolset [13] (see Fig. 2.3), useful for
the practical use of the ASMs in the systems development life-cycle. Concrete syntaxes have
been defined, useful to create, store, access, validate, exchange and manipulate ASM models.
Moreover, a general framework have been built, suitable for developing new ASM tools and for
the integration of existing ones [81]. In the Fig. 2.3, the tools with a grey background are those
that support the techniques for ASMs we propose in this thesis.

3Formal Methods and Software Engineering Laboratory (FM&SE Lab) — http://fmse.di.unimi.it/
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Figure 2.3: The ASMETA toolset

In the following we describe how the step described in Section 2.2.2 have been applied for the
development of ASMETA.

Requirements capture and analysis

The initial developers of ASMETA started collecting all material available on the ASM theory
and tool support. As official documentation about the ASM theory, they took [32], but they
also considered to include constructs (i.e., particular forms of domains, special terms, derived
rule schemes) from other existing notations (like XASM, ASM-WB, AsmGofer, and AsmL) for
encoding ASM models.

Choice of a metamodeling framework and supporting technologies

As metamodeling framework, they initially chose the OMG MDA /MOF framework, the main-
stream at the time the ASMETA project started. Later, they moved the ASMETA framework
to the EMF-Ecore, open-source Eclipse framework, that is becoming the de-facto standard MDE
platform, and it provides a great variety of supporting technologies and tools.

Design of a specification language for the formal method by metamodeling

The Abstract State Machines Metamodel (AsmM) [79] resulted into class diagrams representing
all ASM concepts and constructs and their relationships. AsmM is available in both MDR/MOF
and EMF/Ecore formats, but only the latter is actively maintained. The complete metamodel
is organized in one package called ASMETA containing 115 classes, 114 associations, and 150 OCL
class invariants, approximately.

Development of language artifacts

By exploiting projections from EMF to other technical spaces, from the AsmM they developed
in a generative manner (see Fig.2.3): an XMT interchange format for ASMs, and Java APIs to
represent ASMs in terms of Java objects. Both formalisms are useful to speed up the tooling
activity around ASMs and, in fact, they are deeply used by several based tools of the framework.

Definition and validation of a language concrete syntax

In [78], the original developers of ASMETA defined general rules on how to derive a context-
free EBNF grammar from a metamodel, and also provided guidance on how to automatically
assemble a script file and give it as input to the JavaCC parser generator to generate a parser
for the EBNF grammar of the textual notation. This parser is more than a grammar checker:
it is able to process models conforming to their metamodel, to check for their well-formedness
with respect to the OCL constraints of the metamodel, and to create instances of the metamodel
through the use of the Java APIs.

Applying the technique explained in [78], they obtained AsmetalL [80], a platform-independent
teztual notation, to write ASM models. Table 2.1 shows the template of an ASM model (taken
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[ AsmM elements | Concrete syntax \

ASM (asm|module) name

Header [import] mq [(Zdll . idlhl)]
[import] my [(idg1 ... idgn, )]
export (id; ...id.) | export *]
signature:

[dom_decly . ..dom_decl,]
[fun_decl; ...dom_decl,,]

where:
- (ids1 . . . id;p,;) are names for domains, functions and rules imported from module m;
(if omitted, all exported elements of m,; are imported)
- (tdy .. .1ide) are names for exported domains, functions and rules (* to export all)
- dom_decl; and fun_decl; are declarations of domains and functions
Body definitions:
[domain Dy = DTerm; ... domain D, = DTerm,)]
[function fl [(pu in D11 <. Dih,y in Dlhl) ] = FTerml

function f; [(ps1 in Dg1 ... pgn, in Dgp,) | = FTermy |
[rule_decly ... rule_decl,]
[invariant_decly . . .invariant_decls]

where:

- DTerm; and FTerm,; are terms defining domains D; and functions f;

- pi; are variables ranging in the domain D;; and specifying the formal parameters of the function f;
- rule_decl; and invariant_decl; are declarations of rules and axioms

Main rule main rule_decl |

Initial state default] init sn:

[domain Dy = DTerm; ... D, = DTerm,]

[function fi [(p11 in D11 ... p1p, in Dip,) | = FTermy

function f, [(py1 in Dy1 ... Dy, in Dyp,) | = FTerm, |
[agent A;: rule; ... agent A,: rule, |

where:
- sn is the name of the initial state
- DTerm; and FTerm; are terms specifying the initial value of domains D; and functions f;

- p;; are variables ranging in the domain D;; and specifying the formal parameters of the function f;

- A; and rule; are the agents and their associated programs

Table 2.1: Template of Asmetal. programs

from [80]); the complete documentation about the language can be found in [79, 12].

Moreover, they also, obtained AsmetalLc, a text-to-model compiler, to parse Asmetal. models
and check for their consistency w.r.t. the AsmM OCL constraints. The Asmetal and its compiler
Asmetal.c can be considered in between generated and based tools, since they were partially
derived from the metamodel (however we consider them based tools).
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Figure 2.4: A Petri net

Example Code 2.1 shows an Asmetal. model that models the structure and the behaviour of
the Petri net* shown in Fig. 2.4°. The abstract domains Place and Transition represent the
places and the transitions of the net; their elements are defined as constants in the signature
(i.e., p1 — pa, t1 — t4). The controlled function tokens stores the number of tokens of each place;
the number of tokens can change during the evolution of the Petri net. The structure of the net
is described by means of the static functions:

o inArcWeight contains the weights of the arcs between places and transitions; value 0 means
that there is no arc between the place and the transition;

o outArcWeight contains the weights of the arcs between transitions and places; value 0
means that there is no arc between the transition and the place;

e incidenceMatriz contains the total number (positive or negative) of tokens that a place
gains when a transition fires; it is the difference between the weight of the (possible) arc from the
transition to the place, with the weight of the (possible) arc from the place to the transition®.

o isInputPlace states if there is an arc between a place and a transition (i.e., if the weight of
the possible arc is positive).

The derived function isEnabled states if a transition is enabled to fire: its interpretation
depends on the number of tokens contained in the places connected to the transition through
input arcs (input places).

The behaviour of a generic Petri net is given by the main rule that nondeterministically
chooses a transition that is enabled and fires it with the macro call rule r_fire, that updates the
marking of the places connected (with input and/or output arcs) with the chosen transition.

An invariant has been added to check that all the places do not assume a negative number
of tokens.

4We briefly report the formal definition of Petri Nets [136]. An infinite capacity Petri net is a 5-tuple, PN =
(P,T, F,W, My):
e P ={p1,p2,...,pm} is the set of places;
T = {t1,t2,...,tn} is the set of transitions;
Fc (PxT)u (T x P) is the set of arcs;
W: F — N7¥ is a weight function;
Mp: P — N is the initial marking;
P uT # J: anet has at least a place or a transition;
P nT = &: places and transitions are distinct.
In an execution step of a Petri Net, an enabled transition is nondeterministically chosen and fired. A transition
is enabled if each place connected to the transition with an entering arc (i.e., belonging to (P x T')) has at least
as many tokens as the number specified by the label of the arc. When a transition fires, the tokens of the places
connected with entering/exiting arcs are decreased/increased by the number specified by the labels of the arcs.
5The Asmetal. model is taken from [10], where we use ASMs to give semantics to Domain Specific Languages
(DSLs) that are defined in terms of metamodels. In this particular example, ASMs provide the semantics for a
DSL of Petri nets.
6Note that a place and a transition can be connected by an entering and an exiting arc at the same time. See,
as an example, place p2 and transition ¢2 in Fig. 2.4.



2.2 ASMETA: a toolset around ASMs 29

Validation of Asmetal. By encoding a great number of ASM specifications, they validated
the capability of Asmetal, to encode, in a natural and straightforward way, ASM mathematical
models, and ASM specifications previously written in other ASM notations. The coverage of the
metamodel was evaluated by instrumenting the Asmetal.c compiler with the Ecl[Emma tool [62],
assuring that all the metamodel constructs were covered at least once.

Development of other tools

In the ASMETA framework (see Fig.2.3), during the last years, several tools have been developed.
The based tools are:

the graphical front-end ASMEE (ASM Eclipse Environment), which acts as IDE and it is
an Eclipse plug-in;

the simulator AsmetaS [80] to execute ASM models (briefly presented in Section 4.1);

the validator AsmetaV [39] with its language Awvalla to express scenarios, for scenario-based
validation of ASM models (briefly presented in Section 4.2);

the model reviewer AsmetaMA, to check for common quality attributes of ASM models
(proposed in Chapter 7);

the model checker AsmetaSMV [6] for model verification by NuSMV (proposed in Chapter
9.2);

the runtime monitoring tool CoMA for checking at runtime the conformance of a Java code
with its ASM formal specification (proposed in Chapters 11 and 12).

Another tool, instead, is classified as integrated, since it was developed independently and later
added to the ASMETA framework: the ATGT tool [77] is an ASM-based test case generator,
based upon the SPIN model checker, that accepts Asmetal. as input notation.
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asm petriNet
import StandardLibrary

signature:
abstract domain Place
abstract domain Transition

controlled tokens : Place —> Integer

static inArcWeight: Prod(Place, Transition) —> Integer
static outArcWeight: Prod(Transition, Place) —> Integer
static incidenceMatrix: Prod(Place, Transition) —> Integer //tokens gained after a transition fire
static isInputPlace: Prod(Place, Transition) —> Boolean
static pl: Place

static p2: Place

static p3: Place

static p4: Place

static t1: Transition

static t2: Transition

static t3: Transition

static t4: Transition

derived isEnabled : Transition —> Boolean

definitions:
function inArcWeight($p in Place, $t in Transition) =
switch($p, $t)
case (pl, t1):
case (p2, t2):
case (p3, t3):
case (p3, t4):
case (p4, t2):
case (p4, t4):
otherwise 0
endswitch

W N R

function outArcWeight($t in Transition, $p in Place) =

switch($t, $p)

case (t1, p2)

case (t1, p3)

case (t2, pl):

case (t2, p2)

case (t3, p4)

case (t4, pl)

otherwise 0
endswitch

=N =W

function incidenceMatrix($p in Place, $t in Transition) = outArcWeight($t, $p) — inArcWeight(3$p, $t)
function isInputPlace($p in Place, $t in Transition) = inArcWeight($p, $t) > 0

function isEnabled ($t in Transition) =
(forall $p in Place with isInputPlace($p, $t) implies tokens($p) >= inArcWeight($p, $t))

rule r_fire ($t in Transition) =
forall $p in Place with true do
tokens($p) := tokens(8p) + incidenceMatrix($p, $t)

invariant over tokens: (forall $p in Place with tokens($p) >= 0)
main rule r_Main =
choose $t in Transition with isEnabled($t) do
r_fire [$t]

default init sO:
function tokens($p in Place) = at({pl —> 1, p2 —> 0, p3 —> 0, p4 —> 1}, $p) //initial marking

Code 2.1: ASM model of the Petri net shown in Fig. 2.4




Chapter 3

Kripke structures and the NuSMYV model checker

3.1 Kripke structures

Kripke structures were introduced by Kripke to represents models of basic modal logic [100],
i.e., propositional logics extended with the connectives [] and ¢ that express two modalities of
truth, necessity and possibility. Kripke structures use states to represent worlds in which some
facts (atomic propositions) are true, and transitions between states to show how the worlds are
connected. Checking that a fact p is necessarily true (i.e., [Jp) means checking that p holds in
all the reachable states. Checking that a fact p is possibly true (i.e., Op) means checking that it
exists a reachable state in which p holds.

We here consider Kripke structures as models of a temporal logic, since temporal logics are
special kinds of modal logic.

In Section 3.1.1 we give some basic definitions about Kripke structures. In Section 3.1.2 we
present a theorem about the equivalence of Kripke structures: it will be used in Chapter 8 to
detect equivalence between NuSMV models, since they are a form of Kripke structures.

3.1.1 Definitions
Definition 3.1 (Kripke structure). A Kripke structure is a quadruple M = (S, S, T, L) where

e S is a set of states;
e (S < S) # I is the set of initial states;
o I'C S xS is the transition relation;

e L:S — P(AP) is the proposition labeling function, where AP is a set of atomic proposi-
tions.

Definition 3.2 (Finite Kripke structure). A Kripke structure where S and AP are finite.

Definition 3.3 (Total Kripke structure). A Kripke structure with a left-total transition relation,
i.€.,

Vse S,3s'€ S: (s,8")eT
A not total structure is said partial.
Fig. 3.1 shows the graphical representation of the finite and total Kripke structure K = { {sq,

52, 83, S4, 85}7 {SlaSQ}a {(81752)7 (81755)7 (82753)7 (82755)7 (83754)7 (84753)7 (85751)}7 [’K> where
Lk is defined as follows

S S1 ‘ S9 ‘ S5

S3 ‘ Sa ‘
oy [ {p.a} | o} | {r} | {r. 8}
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Figure 3.1: Example of a finite and total Kripke structure

Definition 3.4 (Computation tree). Given a Kripke structure K = (S,S°,T, L), a computation
tree of M is a tree structure where the root is an initial state so € S°, and the children of a
node s € S in the computation tree are all the states s' € S such that there exists a transition
(s,8)eT.

If the Kripke structure is total, the computation tree is infinite, i.e., it has no leaves.
Fig. 3.2 represents the computation tree of the Kripke structure shown in Fig. 3.1.

Definition 3.5 (Path). A finite path is a sequence of states in S

T = 81,82,...,8n

such that Vi € [1,n — 1]: (s;,8;41) € T. The length of the path, denoted by |r|, is n.
An infinite path is a sequence of states in S

T = 81,82,...
such that Vi = 1: (s;,8;41) € T. The length of the path is 0.

With 7; we identify the i-th state of 7 (i.e., m; = s;). With 7 we identify the tail of the path
starting in m; (i.e., 7 = 84, Sig1,...).

IT is the set of all the paths in K.

II° I is the set of all the paths such that the starting state s, € SU.

Definition 3.6 (Reachability). A state s € S is reachable in K if there exists a finite path

70 = s1,...,8, € II° such that s, = s, i.e.,

isReach(s) = In® = s1,...,8,€1’: 5, =5
We denote by reach(K) < S the set of reachable states of the structure K.

Definition 3.7 (Successor state). A state s’ is a successor of another state s if (s,8') e T. We
denote by next(s) the set of the successor states of s, i.e.,

next(s) = {s' € S: (s,s') € T}
3.1.2 Equivalence for Kripke structures

We here report the essential definitions and theorems on the equivalence of Kripke structures [36,
15).

Let K1 = (51,89, T1,L£1) and Ky = (S5, 59, Ty, L) be two total and finite Kripke structures
with the same set of atomic propositions AP. A relation E can be defined on S; x Ss to express
the equivalence between states of the two structures K7 and Ks; two states are equivalent if they
have the same labels and bring to next states having the same labels.
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Figure 3.2: Computation trees of the Kripke structure in Fig. 3.1

Definition 3.8 (State equivalence). Vs; € S1Vsa € Sy we say s1Esq iff the following condition
holds:

51(81) = 52(82) A
Vs| € next(sy) Ish € next(ss) : L1(s]) = La(sh) A
Vs, € next(sq) 38| € next(sy) : La(sh) = L1(s))
Theorem 3.1 (Structure equivalence). Let K; and Ks be two Kripke structures with the same

set of atomic propositions. If the following properties hold (initial states have same labeling and
reachable states are equivalent):

Vs € 57,359 € 591 [L1(s?) = La(s9)] (3.1)
Vs) e 59,3s) € S [La(s3) = L1(s7)] (3.2)
Vs1 € reach(K7) Is € reach(Ka): s1 E so (3.3)
Vso € reach(Ks) 3s1 € reach(K1): s3 E s1 (3.4)

then K1 and Ko are equivalent.

3.2 The NuSMYV model checker

NuSMV [48, 137] (New Symbolic Model Verifier) is known as a model checker derived from
the CMU SMV [129]. It allows for the representation of synchronous and asynchronous finite
state systems, and for the analysis of specifications expressed in Computation Tree Logic (CTL)
and Linear Temporal Logic (LTL), using Binary Decision Diagrams (BDD)-based and SAT-
based model checking techniques. Heuristics are available for achieving efficiency and partially
controlling the state space explosion problem.
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For an introduction to the model checking problem and to CTL and LTL, we remind to Section
9.1. Here, we are mainly interested in describing the syntax of the model checker NuSMV (Section
3.2.1), and how a NuSMV model describes a Kripke structure (Section 3.2.2).

3.2.1 NuSMYV syntax

A NuSMV model describes the behaviour of a Kripke structure in terms of a possible next state
relation between states that are determined by the values of variables. Transitions between states
are determined by the updates of the variables. According to the model operational description,
a NuSMYV model is made of two principal sections:

e VAR that contains variable declarations. A variable type can be boolean, integer defined
over intervals or sets, an enumeration of symbolic constants, or a bounded array of one of
the three previous types.

e ASSIGN that contains the initialisation (by the instruction init) and the update mech-
anism (by the instruction next) of variables. It is also possible to define the value of a
variable in the current state, rather than defining its initial value and its transition relation;
in this case the init and next assignments can not be declared.

Moreover, a DEFINE statement can be used as a macro to syntactically replace an identifier
with the expression it is associated with. The associated expression is always evaluated in the
context of the statement where the identifier is declared. Note that a DEFINE identifier does
not introduce a new variable and so it does not increase the state space.

The properties specification can be done in the CTLSPEC (resp. LTLSPEC) section,
that contains the CTL (resp. LTL) properties to be verified. It is possible to name a property,
specifying an identifier after the keyword NAME. Naming the properties permits to ask the model
checker to check only a particular property.

A state of the model is an assignment of values to variables/definitions. According to the
NuSMV language definition, there exist the following four kind of assignments:

e simple assignment for defining the value of a variable var in the current state:

ASSIGN
var := simple_expression;

e init assignment for defining the value of a variable var in the initial state:

ASSIGN
init (var) := simple_expression;

e simple assignment for defining the value of a variable var in the next state:

ASSIGN
next(var) := next_expression;

e macro definition of an identifier def:

DEFINE
def := simple_expression;

In simple/init assignments and macro definitions, only simple_ezpressions can be used, i.e., ex-
pressions built from the values of variables in the current state. In next assignments, instead, it
is possible to use next_expressions, i.e., expressions in which also the values of other variables in
the next state can be checked (through the next operator that can access the value of a variable
in its next state). The circular dependency rule requires that there are no cycles in the variables
dependency graph. For example, in the following model, the definition of the next values of
variables a, b and ¢ contains a cycle.
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MODULE main

VAR
a: boolean;
b: boolean;
c: boolean;

ASSIGN
next(a) := next(b);
next(b) := next(c);
next(c) := next(a);

In both simple_expression and next_expressions, a variable value can be determined either
unconditionally or conditionally, depending on the form of the expression.
Conditional expressions can be:

1. An if-then-else expression

condl 7 expl : exp2

which evaluates to expl if the condition condi evaluates to true, and to exp2 otherwise.

2. A case expression:

case
left_expression_1 : right_expression_1 ;

left_expression_n : right_expression.n ;
esac

which returns the value of the first right_expression_i such that the corresponding left_expres-
ston_i condition evaluates to true, and the previous i-1 left expressions evaluate to false.
The type of the expressions on the left-hand side must be boolean. An error occurs if all
expressions on the left-hand side evaluate to false. To avoid these kinds of errors, NuSMV
performs a static analysis and, if it believes that in some states no left expression may be
true, it forces the user to add a default case with left_expression equal to TRUE. This kind
of analysis is conservative: sometimes the user must add a default case even if it is not
necessary. For example, in the following model, in the case expression used in the definition
of the next value of variable z, the first two left expressions are complete since z never takes
value 2; however, NuSMV requires to add the default condition.

MODULE main

VAR
x: 1..3;
ASSIGN
init (x) = 1;
next(x) :=
case
x =1: 3
x =3: 1
TRUE: 2;—— default condition useless, but still required
esac;

In NuSMV it is possible to model nondeterministic behaviours by

(a) not assigning any value to a variable that, in this case, can assume any value of its finite
domain;

(b) assigning to a variable a value randomly chosen from a set.

The behaviour of a variable can be always nondeterministic, in case both its initialisation and
the definition of its transition relation are always nondeterministic, or be nondeterministic only
in some states. In case of variable nondeterministic definition, NuSMV creates as many states
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MODULE main
VAR
req: boolean;
state: {ready, busy};
ASSIGN
init(state) :=
next(state) :=
case
state = ready & req: busy;
TRUE: {ready, busy};
esac;
CTLSPEC AG(req —> AF state = busy)

ready;

Code 3.1: Example of NuSMV model

MODULE main
VAR
req: boolean;
state: {ready, busy};
INIT state = ready;
TRANS (state = ready & req) —> next(state) = busy;

CTLSPEC AG(req —> AF state = busy)

Code 3.2: Declarative version of the model shown in Code 3.1

as the number of possible values; if there is no definition at all, all the values of the variable type
are considered.

Code 3.1 shows a simple NuSMV model, taken from the documentation of NuSMV [42], that
abstractly models the behaviour of a system that provides a service. The states of the model
are identified by the values of the boolean variable req, that signals if there is a request to be
satisfied, and the enumerative variable state that indicates if the system is busy (in satisfying a
request or in other activities), or if it is ready for receiving a request. Since the initial and next
values of variable req are not defined, they are always fixed nondeterministically. The state of
the system is ready in the initial state; if there is a request and the system is ready, the system
becomes busy (i.e., it starts fulfilling the request), otherwise it nondeterministically decides to
be ready or busy (note that it can be busy also if there is no request to fulfil).

Definition in terms of propositional formulae NuSMYV offers a more declarative way of
defining initial states and transition relations, directly in terms of propositional formulae. Initial
states can be defined by the keyword INIT followed by a boolean expression that describes
constraints that must be satisfied in the initial states. Transition relations can be expressed
through the keyword TRANS followed by a boolean expression describing the relation between
the current and the next state. Invariant conditions can be expressed by the command INVAR
followed by a boolean expression that must be true in each state. INIT and INVAR sections can
contain only simple-expressions, whereas the TRANS section can contain also next-expressions
in order to describe variables updates.

Code 3.2 shows a NuSMV model in which we describe, in a declarative way, the same system
described by the model shown in Code 3.1. There is a technique [41] that permits to automatize
the translation between an operational model to its declarative description; it is based on the
following equivalences.

ASSIGN a := exp; is equivalent to INVAR a in exp;
ASSIGN init(a) := exp; is equivalent to INIT a in exp;
ASSIGN next(a) := exp; is equivalent to TRANS next(a) in exp;




3.2 The NuSMYV model checker 37

MODULE philosopher(leftFork, rightFork) MODULE main
VAR VAR
status: {EATING, THINKING}; forkl: boolean; —— TRUE if free
ASSIGN fork2: boolean,;
init (status) := THINKING; fork3: boolean;
next(status) := fork4: boolean;
case fork5: boolean,;
(status=THINKING & leftFork & rightFork) | philol: process philosopher(forkl, fork2);
status=EATING: {EATING, THINKING}; philo2: process philosopher(fork2, fork3);
TRUE: THINKING; philo3: process philosopher(fork3, fork4 );
esac; philo4: process philosopher(fork4, fork5);
next(leftFork) := philo5: process philosopher(fork5, forkl);
case ASSIGN
next(status)=EATING: FALSE; init (forkl) := TRUE;
status=EATING: TRUE; init (fork2) := TRUE;
TRUE: leftFork; init (fork3) := TRUE;
esac; init (fork4) := TRUE;
next(rightFork) := init (fork5) := TRUE;
case
next(status)=EATING: FALSE;
status=EATING: TRUE;
TRUE: rightFork;
esac;
JUSTICE running ——the process is executed infinitely often
——liveness properties (always possible to eat and think)
CTLSPEC AG (EF (status=EATING))
CTLSPEC AG (EF (status=THINKING))

Code 3.3: NuSMV model of the dining philosophers problem

Synchronous/asynchronous systems A NuSMV model can be decomposed in modules; at
least the module main is always present. Modules can also have parameters that are passed by
reference.

New instances of a module can be created in the VAR section of a different module. Modules
can be instantiated in a synchronous or asynchronous way (using the keyword process). Syn-
chronous instances are executed together in parallel. Asynchronous instances are called processes;
at each step, one process is nondeterministically chosen to be executed. Processes have a special
boolean variable running that signals if a process is in execution.

Code 3.3 shows the NuSMV model of the dining philosophers problem in which five processes
of the module philosopher are created in the main module, each taking as actual parameters the
left and the right fork. The justice constraint! requires to restrict the attention only to execution
paths in which variables running of all the instances of philosopher are true infinitely often, i.e.,
those paths in which the instances are executed infinitely often.

3.2.2 Relation between NuSMYV models and Kripke structures

We here describe the relation between NuSMV models and Kripke structures. In Section 3.2.2.1
we see how it is possible to derive a total and finite Kripke structure starting from a NuSMV
model, and in Section 3.2.2.2 the other way round.

1Fairness constraints restrict the attention of the model checker only to fair execution paths. A justice con-
straint (keyword JUSTICE or FAIRNESS) requires that a boolean formula is true infinitely often. A compassion
constraint (keyword COMPASSION) requires that, given two boolean formulae (p, q), if p is true infinitely often
in a fair path, then also g is true infinitely often in the same path.
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state = busy

Figure 3.3: Kripke structure of the NuSMV model shown in Code 3.1

3.2.2.1 Deriving a Kripke structure from a NuSMYV model

A NuSMV model represents a total and finite Kripke structure (see Defs. 3.1, 3.2 and 3.3) by
means of a set of variables, describing how they modify their values among states. Let’s give
some definitions for describing this relationship.

Definition 3.9 (NuSMV model). Given a NuSMV model M, we identify with var(M) = {vy,

..., Up} the finite fized set of its variables taking values over domains D1, ..., D,. The model is
defined by the triple M = (S, S°, T, where:

e S is a finite set of states; each state is uniquely identified by the value of the variables in
the state, i.e.,

Vs1,82 € S l(/\[[viﬂsl = [viﬂ52> o8 = 82]
i=1
There are [ |!'_, |D;| states (not necessarily all reachable);
e SO C S is the set of initial states;

o T is the transition relation defined through the updates of the state variables.

Definition 3.10 (NuSMV model as Kripke structure). A NuSMV model M = (S, S°,T) repre-
sents a Kripke stucture K = (S, S°, T, L) where:

e the set of atomic propositions AP is composed by the equalities v; = d; (with v; € var(M)
and d; € D;). The number of atomic propositions is ¥, |D;|;

e cach state s is labeled by n atomic propositions, one for each variable:

L(s)={v1 =dy,...,v, =dp}

From Def. 3.10 it is possible to easily define a procedure for deriving a Kripke structure from
a NuSMV model. Note that the produced Kripke structure is finite, since the number of states
is finite, and the labeling function is injective, since different states have different labels. Fig.
3.3 shows the corresponding Kripke structure of the NuSMV model shown in Code 3.1.
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MODULE main ASSIGN
VAR init(state) := {sl, s2};
state: {sl, s2, s3, s4, s5}; next(state) :=
DEFINE case
p := state in {s1, s2, s3}; state = sl: {s2, s5};
q := state = s2; state = s2: {s3, sb};
r := state in {s4, sb}; state = s3: s4;
t := state = sb; state = s4: s3;
state = sb: sl;
TRUE: state;
esac;
CTLSPEC AF r

Code 3.4: NuSMV model derived from the Kripke structure shown in Fig. 3.1

3.2.2.2 Deriving a NuSMYV model from a Kripke structure

It is also possible to derive a NuSMV model starting from a general Kripke structure in which
the atomic predicates are general (i.e., they are not equalities between variables and values). The
only constraint is that the Kripke structure must be finite (see Def. 3.2) and total (see Def. 3.3).

Given a finite and total Kripke structure K = (S, S°, T, L), a NuSMV model can be obtained

in the following way:
1. declare an enumerative variable state, taking as values all the identifiers of the states;
2. define, for each atomic predicate p € AP, a definition in the DEFINE section as follows
DEFINE p := state in {s_1, ..., s.k};
where s_1, ..., s_k are all the states s; that are labeled by p, i.e., p e L(s;).
3. define the initialisation of the variable state as follows
ASSIGN init(state) := {s_1, ..., s_r};
where {s_1,...,sr} = S°.

4. define the next value of the variable state as follows

ASSIGN next(state) :=
case
state = s_1: nextStates(s_1);

state = s_n: nextStates(s.n);
TRUE: state;

esac;
where nextStates(s_i) = {s_1,...,s_t} are all the next state of s_i.

Code 3.4 shows the NuSMV model derived from the Kripke structure shown in Fig. 3.1; a
CTL property has been added later to the obtained model. Note that the atomic predicates are
not used to define the transition relation of the model, but only in the temporal properties.
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Chapter 4

Model validation

A definition given by Boehm of system wvalidation is that it consists of all those techniques that
permit to answer the question “Are we building the right product?” [29].

We here only consider model validation, i.e., the process of investigating a model (intended
as formal specification) with respect to the user perceptions, in order to ensure that the specifi-
cation really reflects the user needs and statements about the application, and to detect faults
in the specification as early as possible with limited effort. Model validation can give us enough
confidence that the formal specification correctly describes the intended requirements of the ap-
plication under development and, so, can be used for other activities like formal verification, or
it can be refined into a more detailed specification. Note that the validation of the model is a
paramount activity, since using a wrong model can have serious consequences in terms of costs
overrun and delay in the system deployment. Indeed, if the wrong requirements described by the
model are implemented in the code, finding and fixing the faults in the code is definitely more
difficult and expensive than correcting the model.

Some validation techniques are:

e simulation: the user executes the model by providing certain inputs, and she observes if
the outputs are the expected ones or not.

e scenarios gemeration: the user builds scenarios describing the expected behaviour of a
system. A scenario describes a simulation of the model, providing a series of inputs to
exercise the model, and checks that the output is as expected. It is a more automated
version of the basic simulation.

e model review: models are (automatically) examined to determine if they have some quality
attributes that any model of a particular notation should have. We remind to Chapter 5
for an introduction to model review, and to Chapters 6 and 7 for the description of two
model review techniques we propose for NuSMV and ASMs specifications.

We here briefly describe simulation and scenarios generation, as implemented in the ASMETA
framework (see Section 2.2). In Section 4.1 we see the ASMs simulator, and in Section 4.2 the
scenario-based validator. We introduce these two techniques since they have been used in some
of the works described in this thesis. The simulator is used by CoMA, the runtime conformance
checker of Java code, described in Chapter 11; the scenario-based validator, instead, can be
used to reproduce the counterexamples returned by the model checker AsmetaSMV, described
in Section 9.2.

4.1 ASMs simulator

Simple model validation can be performed by basic simulation, in which the user can get a general
idea of the behaviour of the written specification and determine if it reflects her expectations.
Fixing the errors found at this stage of development has nearly no cost, but it produces great
benefits.
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<State 1 (controlled)> tokens (p1)=0 tokens (p4)=0
Place={p1,p2,p3,p4} tokens(p2)=1 </State 3 (controlled)>
Transition={t1,t2,t3,t4} tokens (p3)=2 <State 4 (controlled)>
tokens (p1)=0 tokens (p4)=3 Place={p1,p2,p3,p4}
tokens (p2)=1 </State 2 (controlled)> Transition={t1,t2,t3,t4}
tokens (p3)=3 <State 3 (controlled)> tokens (p1)=0

tokens (p4)=1 Place={p1,p2,p3,p4} tokens (p2)=2

</State 1 (controlled)> Transition={t1,t2,t3,t4} tokens (p3)=3

<State 2 (controlled)> tokens(pl)=1 tokens (p4)=0
Place={p1,p2,p3,p4d} tokens (p2)=1 </State 4 (controlled)>
Transition={t1,t2,t3,t4} tokens (p3)=0

Figure 4.1: Simulation of the Petri net Asmetal. model shown in Code 2.1

Asmeta$S [80] is the ASMs simulator of the ASMETA framework, for the simulation of ASMs
models written in Asmetal.. As key features for model validation, AsmetaS supports:

1.

inwvariant checking to check whether invariants expressed over the ASM model under ex-
ecution are satisfied or not. Invariants are checked after each step and, if a violation is
detected, the simulation is interrupted raising an error. Invariants can be added to the
model to check that some expected properties of the internal behaviour of the machine
hold: in this case, a violation of an invariant must lead to a review of the model to fix the
wrong behaviour. Moreover, invariants could be added to check that the ASM is accessed
in the right way, namely that the values provided by the environment for the monitored
functions respect some input contracts. Indeed, there could be constraints on the values
that a monitored function can assume in certain states, and these constraints can be easily
encoded as invariants!.

. consistent updates checking for revealing inconsistent updates (see Def. 2.6). The presence

of an inconsistent update is a clear sign of a weakness of the model. It reveals that, under
some conditions, the machine takes two decisions that conflict each other, since it wants to
update the same location to two different values.

interactive simulation when required inputs (i.e., values for monitored functions) are inter-
actively provided during simulation by the user. This is the standard way of simulation
in which the user interacts with the model providing the correct inputs and judging the
correctness of the observed behaviour.

random simulation when the values for the monitored functions are given randomly by the
simulator. This kind of simulation is particular useful for exercising the model several times
with minimal effort from the user. The aim of this activity is mainly to look for states in
which an invariant is violated or an inconsistent update happens.

Moreover the simulator permits to execute a limited simulation, specifying the number of
steps to execute, or an unlimited simulation, requiring that the simulation is stopped only when
the update set is empty.

A simulation with AsmetaS produces as output a sequence of states where, in each state, only
the locations updated/read up to that moment are shown.

Fig. 4.1 shows the first four steps of simulation of the Asmetal. model shown in Code 2.1.
Since the model does not contain monitored functions, no user intervention is required. Since
the model is nondeterministic, a different run of the simulator could obtain a different trace. In

1An alternative could be to encode the constraints directly in the model transition rules, but this would
unnecessarily complicate the model.
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asm sluiceGateMotorCtl

import StandardLibrary

signature:
dynamic controlled phase: Phase
dynamic monitored passed: TimePeriod —> Boolean
dynamic monitored event: Position —> Boolean

definitions:

main rule r_Main =

par
if (phase=FULLYCLOSED and passed(CLOSED_PERIOD)) then ...
endif
if (phase=OPENING and event(TOP)) then ...
endif
if (phase=FULLYOPEN and passed(OPEN_PERIOD)) then ...
endif
if (phase=CLOSING and event(BOTTOM)) then ...
endif

endpar

Code 4.1: Fragmet of the Asmetal. model for the Sluice gate problem

State 2, for example, the transition ¢3 of the modeled Petri net (see Fig. 2.4) has been fired, but
also transition ¢2 could have been fired. For validating the model, an invariant has been added
to check that all the places can not assume a negative number of tokens: in this case, a violation
of the invariant would mean that the model is not correct. Note that, in the simulation trace,
also the elements of the abstract domains Place and Transition are reported. The content of an
abstract domain is shown because it could be modified by an extend rule (see Section 2.1.2.2)
which adds a fresh element to it.

Code 4.1 shows a fragment of the AsmetaL implementation of the ASM introduced in [31]
that models a sluice gate?. In the specification, in order to abstractly model the time, the boolean
monitored function passed indicates if two time periods have been passed: the monitored locations
passed(CLOSED_PERIOD) and passed(OPEN_PERIOD) indicate if the period of time during
which the gate must stay, respectively, closed and open is elapsed. The monitored locations
event(TOP) and event(BOTTOM), instead, indicate if the gate has reached, respectively, the
top and the bottom position. Fig. 4.2 shows the simulation of the model. Note that, at each
step, the simulator asks the user for the values of the monitored locations; since the simulator
executes a lazy evaluation of the conditions, it asks the values only for those monitored locations
that are necessary to compute the update set. The print of the state is divided between the
monitored part and the controlled part.

4.2 Scenario-based validation of ASMs

Scenario-based validation can be seen as the automation of the simple validation that can be
obtained with basic simulation. It consists in building scenarios where to specify the inputs for
exercising the model under validation, and the expected model behaviour.

In the ASMETA framework, scenario-based validation is done using the AsmetaV tool [39].
It provides a language, Avalla, to

e specify the Asmetal. model under validation;

e describe execution scenarios as sequences of actions. The user can

2 A sluice, with a rising and falling gate, is controlled by a computer. The gate must be kept open (in the top
position) for ten minutes in every three hours and otherwise kept closed (in the bottom position).
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Insert a boolean for passed(CLOSED_PERIOD):

true

<State 0 (monitored)>
passed (CLOSED_PERIOD)=true
</State 0 (monitored)>
<State 1 (controlled)>
dir=CLOCKWISE

motor=0N

phase=0PENING

</State 1 (controlled)>
Insert a boolean for event(TOP):
false

<State 1 (monitored)>
event (TOP)=false

dir=CLOCKWISE

motor=0N

phase=0PENING

</State 2 (controlled)>
Insert a boolean for event (TOP):
true

<State 2 (monitored)>
event (TOP) =true

</State 2 (monitored)>
<State 3 (controlled)>
dir=CLOCKWISE
motor=0FF
phase=FULLYOPEN

</State 3 (controlled)>

</State 1 (monitored)>
<State 2 (controlled)>

Insert a boolean for passed(OPEN_PERIOD):

Figure 4.2: Simulation of the Sluice gate Asmetal. model shown in Code 4.1

set the environment (i.e., the values of monitored/shared functions);
— check the machine state, observing the values of its functions;

— force the machine to make one step, or a sequence of steps until a condition becomes
true (by the command step until);

— ask for the execution of new transition rules not contained in the model. Using this
feature, the user can deeply influence the simulation and modify the behaviour of the
ASM under validation; this results particular useful when validating nondeterministic
models, since it permits to override nondeterministic choices that, otherwise, make it
difficult to exactly specify the expected behaviour.

e add invariants that must hold during the scenario execution. Note that these invariants
distinguish from those added in the Asmetal. models, since scenario invariants are required
to hold only during the simulation of the scenario, whereas model invariants must hold in
any possible simulation.

Depending on the actions specified in the scenario, the external actor interacting with the
model is identified as user or observer. A user has a black box view of the system, since she can
only set the value of the monitored functions, force machine steps, and check only the output
functions of the machine. The observer, instead, has a gray bozx view of the model, since she can
also check the machine controlled state and require the execution of new transition rules.

Code 4.2 shows a scenario for the Asmetal. model of the sluice gate, shown in Code 4.1. For
four times, it sets the value of a proper monitored location, makes a step, and checks that the
controlled state of the machine has been updated correctly.

AsmetaV works as follows:

1. it reads an Avalla user scenario scen and the Asmetal. specification spec which the scenario
refers to;

2. it builds a new Asmetal. specification specForV starting from scen and spec. The simulation
of specForV corresponds to the execution specified in the scenario scen over the original
specification spec.

3. it executes the scenario by invoking the simulator AsmetaS over specForV. The scenario
simulation is similar to a traditional model simulation, but, in addition, it also contains
the results of the behaviour checks specified in the scenario with the command check.
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scenario sluiceGatel
load sluiceGateMotorCtl.asm

set passed(closedPeriod) := true;
step
check phase = OPENING and motor = ON and dir = CLOCKWISE;

set event(top) := true;
step
check phase = FULLYOPEN and motor = OFF and dir = CLOCKWISE;

set passed(openPeriod) := true;
step
check phase = CLOSING and motor = ON and dir = ANTICLOCKWISE;

set event(bottom) := true;
step
check phase = FULLYCLOSED and motor = OFF and dir = ANTICLOCKWISE;

Code 4.2: Scenario for the Sluice gate Asmetal. model shown in Code 4.1

During the scenario execution, AsmetaV also collects data about the coverage of the transition
rules of the original specification spec. This permits to check which transition rules have been
exercised and which rules, instead, would require to be executed by different scenarios.







Chapter 5

Model review

Model review, also called model walk-through or model inspection, is a validation technique in
which models are critically examined to determine if they, not only fulfills the intended require-
ments, but also are of sufficient quality to be easy to develop, maintain, and enhance. This
process should, therefore, assure a certain degree of quality. The assurance of quality, namely
ensuring readability and avoiding error-prone constructs, is one of the most essential aspects
in the development of safety-critical reactive systems, since the failure of such systems — often
attributable to modeling and, therefore, coding flaws — can cause loss of property or even human
life [151]. When model reviews are performed properly, they can have a big payoff because they
allow defects to be detected early in the system development, reducing the cost of fixing them.

Model review has been inspired by the review process executed during the software devel-
opment. In Section 5.1 we introduce the technique of program review, while in Section 5.2 we
describe some model review techniques.

In Section 5.3 we propose a general approach for doing model review of state-based formal
notations. Then, the general approach is instantiated for NuSMV models and for the ASMs in
Chapters 6 and 7.

5.1 Program review process

In the '70s at the IBM, Fagan proposed a technique for reviewing programs during the software
development cycle (this process is also known as Fagan inspection [67]). In this process the code,
but also any document that has been produced during the software development process (as
designs, test plans, users manuals, etc.), are checked to see if they assure some quality standards.
Program review has demonstrated to be a very effective technique: in [67] it is reported that
more than 60% of errors in a program has been discovered using a program inspection technique.
Although there are different variations of this process, it is usually divided into three phases [157]:

1. Pre-meeting activities In this phase the review team is composed by taking a group of
qualified people, often both technical staff and project stakeholders, who usually are not
involved in the development phase. Then the documents to be reviewed are distributed
among the components of the team. Then, after a meeting in which the team discusses
about the software under review, each reviewer individually inspects the documents to find
faults, omissions, departures from standards, etc., and records comments about them.

2. Review meeting In this phase the components of the review team meet together with a
developer of the program and discuss about the comments recorded in the previous phase.
The discussion about each comment must clarify if a real fault/omission in the code has
been discovered and, in case, decide to fix it.

3. Post-meeting activities In this phase the problems in the code discovered in the previous
phases are addressed. This can require fixing the code, refactoring it, or modifying/rewrit-
ing related documents. After this phase, a new review process could be made to check that
all the problems revealed by the review process have been solved.
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When the reviewers individually check the code (code review), they usually look for common
programming errors [157] that can frequently occur and that are independent of the particular
program under review (i.e., no knowledge of the program is needed to find them): e.g., an array
is accessed outside its bounds, an input variable is not used, the types of the formal and the
actual parameter do not match, etc.. Obviously, the kind of errors that reviewers must look for
depends on the programming language used, since each language has its own typical errors (e.g.,
dangling pointers in C) and, instead, ensures that some other errors can not occur thanks to the
way it has been designed (e.g., buffer overflows can not occur in Java).

For different languages, there are several tools that automatically look for common errors, as,
for example, FindBugs', PMD? and Checkstyle® for Java, or Splint* for C. These tools look for
erroneous code but also for stylistic conventions violations that may indicate a possible problem.
For example, the pattern Unwritten field of FindBugs signals if a field has never been written
and always returns its default value: the violation of this pattern could show that the field is not
necessary or that we forgot to update it somewhere.

Using these tools in code review permits the reviewers to avoid looking for these trivial errors,
and concentrate their attention on more subtle errors/stylistic violation that are more difficult
to find with an automatic tool.

5.2 Model review techniques

As it has been done for code, also for models, depending on the notation used, it is possible to
identify some common errors that can be easily identified. For an UML state machine, for exam-
ple, an error is the presence of miracle states [151], i.e., non-initial states not having incoming
transitions: Fig. 5.1 shows an UML state machine where B is a miracle state.

4

MiracleState

\ J

Figure 5.1: UML state machine with a miracle state

A weak aspect of a model review process is that, usually, it must be executed by hand. This
requires a great effort that might be tremendously reduced if performed in an automatic way by
systematically checking specifications for known vulnerabilities or defects. In a report about the
certification of the Darlington nuclear plant, Parnas observed that “reviewers spent too much of
their time and energy checking for simple, application-independent properties” which distracted
them from the more difficult, safety-relevant issues” [144]. Tools that automatically perform such
checks can save reviewers considerable time and effort, liberating them to do more creative work.

So, given a formal notation, the problems that arise are what properties must be checked over
the model and how to automatically check them. In other words, it is necessary to identify classes
of faults and defects to check, and to establish a process by which to detect such deficiencies in
the underlying model. If these faults are expressed in terms of formal statements, these can
be assumed as a sort of “measure” of the model quality assurance. A tool is also necessary to
make the process automatic. It would work as model advisor to check a model for conditions

Ihttp://findbugs.sourceforge.net/
?http://pmd.sourceforge.net/
Shttp://checkstyle.sourceforge.net/
4http://www.splint.org/
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and configuration settings that can result in inaccurate or under-/over-specified behaviour of the
system that the model represents.

Typical automatic reviews of formal specifications include simple syntax checking and type
checking. This kind of analysis is performed by simple algorithms which are able to immediately
detect faults like wrong use of types, misspelled variables, and so on. Some complex type systems
may require proving of real theorems, like the non-emptiness of PVS types [142].

In the following sections, we will make a non-exhaustive overview of some model inspection
techniques for different notations, that can fall into our definition of model review.

5.2.1 Software Cost Reduction

A model review technique has been developed for the Software Cost Reduction (SCR) method [94].
SCR is a requirements specification method that uses a tabular notation to define mathematical
functions. There are different tables: condition, event, and mode transition tables. Each table
describes a wvariable or a mode as a function of modes and/or events and/or conditions. For
example, a condition table describes a controlled variable as a function of a mode and a condi-
tion, where a controlled variable is an environmental quantity that the system controls, a mode
represents the state of an environment entity that influences the system, and a condition is a
predicated defined on one or more system entities. Table 5.1 shows the condition table of the
controlled variable SafetyInjection (taken from [94]), whose value is a function of Pressure
and Overridden.

Mode of Pressure | Conditions on Overridden
High, Permitted true false

TooLow Overridden | — Overridden
SafetyInjection ‘ Off ‘ On

Table 5.1: Condition table of the controlled variable SafetyInjection

Reading the table is easy. If Pressure is High or Permitted (independently of the value
of Overridden), or if Pressure is TooLow and Overridden is true, then SafetyInjection is
Off; if Pressure is TooLow, and Overridden is false, then SafetyInjection is On. The entry
false in the first row means that SafetyInjection can not be On when Pressure is High or
Permitted.

The authors defined a formal requirements model specifying the properties that any SCR
specification must satisfy, and developed a tool, the consistency checker, for checking these
properties. They identified eight categories of properties: Proper Syntax, Type Correctnesses,
Completeness of Variable and Mode Class Definitions, Initial Values, Reachability, Disjointness,
Coverage and Lack of Circularity.

Let’s give the definitions of three of these properties. Type Correctnesses requires that the
types of the variables are satisfied in the tables. Disjointness requires that, in a given state, each
controlled variable is uniquely defined, i.e., its conditions on each row are disjoint; the aim of
this property is to check that the specifications are deterministic. Coverage requires that each
variable described by a condition table is always defined. Table 5.2 is a modified version of Table
5.1 in which the three previous properties are violated.

Type Correctnesses is violated by the values assigned to variable SafetyInjection, since the
variable domain is { Off, On} and not {false, true}.

To check the disjointness property, we must check that the conditions on each row (e.g., cond;
and condy) are disjoint, that is that —(cond; A conds) is a tautology. But, we see that conditions
on the second row of Table 5.2 do not satisfy the disjointness property since —(Qverridden A
Overridden) is not a tautology.

To check the coverage property, we must check that, in each state, at least a condition on
each row is satisfied so that a value can be determined; for example, given conditions cond; and
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Mode of Pressure | Conditions on Overridden
High, Permitted true false

TooLow Overridden Overridden
SafetyInjection ‘ false ‘ true

Table 5.2: Condition table of the controlled variable SafetyInjection that violates properties
Type Correctnesses, Disjointness and Coverage

conds, we must require that cond; v conds, is a tautology. But, we see that conditions on the
second row of Table 5.2 do not satisfy the coverage property since Overridden v Overridden is
not a tautology.

In the SCR toolset, the checking of the disjointness and coverage properties are executed
through the Consistency Checker tool that implements a tableau-based decision procedure. Since
the consistency checker can not handle predicates containing complex numerical constraints, other
tools have been experimented.

Salsa [27] is an invariant checker for specifications written in the SCR Abstract Language
(SAL): it can check the validity of formulae on Boolean, enumerated and integer variables re-
stricted to Presburger arithmetic. For specifications containing numerical variables, that were
not supported by the consistency checker tool, Salsa could perform the analysis [27].

In [37], instead, the infinite state model checker Action Language Verifier (ALV) has been
used. In this case, the properties to verify are CTL formulae that predicate over the values
assumed by the variables. For example, for checking the disjointness property, for each dependent
variable d, the following CTL property must be checked

AG(EX(dzvdA /\m=vm>:Ax</\m=vm:d=vd>>

meM meM

where M is the set of monitored variables, and vy and v, are type-correct values for variables
d and m. In SCR, the values of dependent variables in a state depend on the values of the
monitored variables. The disjointness property requires that the system is deterministic and so
that, for any state, the value of any dependent variable in the next state is uniquely determined
by the values of the monitored variables in the next state. So, given a current state S, there
can not be a next state S’ in which the monitored variables take values {v},...,v"} and the
dependent variable takes value ¥4, and another next state S’ in which the monitored variables
take the same values {v}, ..., v"} but the dependent variable takes value 94 with 94 # 0.

5.2.2 SCR-style specifications

In [114] a method to automatically verify the consistency of software requirements specifications
(SRS), written in SCR-style, is described. SCR-style specifications are similar to SCR specifica-
tion: the difference lies in how primitive functions are described.

The authors noticed that normal inspections of SCR-style specifications — following the pro-
cess described by Fagan in [67] — became ineffective when used to verify structural properties
of large, complex, and evolving requirements. Structural properties are application independent
properties that requires that the definition and use of variables, functions and functions groups
are consistent. They observed that reviewers find very tedious checking for this properties, since
it is a process very repetitive and less stimulating.

The idea of their work was to use the Prototype Verification System (PVS) [142] to automatize
the verification of structural properties on SCR-style specifications. The verification process
works as follows:

1. An SCR-style specification is translated into a PVS specification using an algorithm de-
scribed in the paper;
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2. for each property, a PVS theorem is built;

3. the user selects a property to prove and PVS automatically executes the proof without the
need of user intervention.

For each property, the authors defined a PVS theorem that must be added to the PVS
specification (step 2 of the process) obtained from the translation of the SCR-style specification.
All the theorems can be proved automatically, so that the user does not have to guide the proof
and no knowledge of PVS is required. Since for one property it was not possible to build a theorem
that could be automatically verified, such property has been encoded as a CTL property and its
verification is carried out using the model checking capabilities of PVS.

The authors identified the following properties:

P1 Each external input should be used in at least one function.
P2 Each external output should be generated by a function.

P3 All internal data flows must be generated from a source function and consumed by target
functions.

P4 All data flows declared in higher levels of a FOD are consistent with the ones defined in lower
levels and vice versa.

P5 The data flows of one function are consistent with the input—output relation of the function
definition body written in a structured decision table.

P6 No circular dependencies exist among data flows.

Properties P1-5 are encoded as PVS theorem, whereas property P6 is encoded as a CTL
formula.

Let’s see, as an example, property P1. It requires that each monitored function is actually
useful in the definition of at least a function. The PVS theorem that must be proved is:

monitor_check: THEOREM
FORALL (m_var : monitor_type): EXISTS (f_var : function_type):
member ((m_var, f_var), dependency_set)

It requires that, for each monitored function m_var, it exists a function f_var, such that in
the set dependency_set® it exists a tuple (m_var, f_var): this means that f_var depends on
m_var.

5.2.3 Statecharts

Statecharts [90] are an extension of state machines and state diagrams for the specification and
design of complex discrete event-systems. They provide the notions of hierarchy, orthogonality,
compound events, and a broadcast mechanism for the communication of concurrent components.
The UML state machines [164] are an object-based variant of Harel statecharts.

In [151], the authors present a set of rules that seek to avoid common types of errors by ruling
out certain modeling constructs for UML state machines or Statecharts.

The authors state that the first rules that must be respected are the UML well-formedness
rules [164]. These rules are expressed as OCL constraints over UML models; the satisfaction of
these constraints assures the syntactical correctness, which is a prerequisite for executing more
complex checks. An example of well-formedness rule is the rule CompositeState-1 that states
that a composite state can have at most one initial vertex.

The authors then reviewed different style guides proposed for statecharts and their dialects.
They devised two categories of rules:

5The dependency_set describes the dependency relations among the primitive functions.
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o Syntactical Robustness Rules identify syntactical constructions that, although syntactically
correct according to the well-formedness rules, should be avoided because they could pro-
duce misleading models;

o Semantic Robustness Rules try to detect incorrect model behaviours, e.g., race conditions.

Syntactical Robustness Rules The syntactical robustness rules derived from the literature
are MiracleStates, IsoatedStates, EqualNames, InitialState, OrStateCount, RegionStateCount and
DefaultFromJunction. In addition to these rules, the authors also identified the TransitionLabels,
Interlevel Transitions and Connectivity rules.

In the introduction of Section 5.2 we have already seen the MiracleState rule that requires
that, except the initial state, all the states must have an incoming transition. Fig. 5.1 shows a
violation of such property. An extension of the MiracleState rule is the Connectivity rule that
requires that each state must be reachable from the initial state. Fig. 5.2 shows a machine that
violates the Connectivity rule, although it does not violate the MiracleState rule.

( )

Connectivity
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Figure 5.2: UML state machine with a violation of the Connectivity rule

The checking of syntactical robustness rules, as well as of well-formedness rules, is done using
OCL constraints. OCL, indeed, is powerful enough to reason about the syntactical structure of
a machine.

Semantic Robustness Rules The semantic robustness rules identified are Transition Overlap,
Duwelling and Race Conditions. The Transition Overlap rule, for example, requires that all
transitions outgoing from a state should have semantically disjoint predicates. Fig. 5.3 shows a
state whose exiting transition should be checked for disjointness.

Figure 5.3: UML state machine with a possible violation of the Transition Overlap rule

In the proposed approach, the authors, for checking the semantic robustness rules, have to
use an SMT solver, since, for predicating about the behaviour of a machine, OCL is not enough.
For example, for checking the Transition Overlap rule for the state in Fig. 5.3, the satisfiability
of the following formula is checked

(eq A ca) A (ep A cp)
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MODULE main

VAR
hour: 0..23;
hour12: 1..12;
amPm: {AM, PM};
ASSIGN
init (hour) := 0;
next(hour) := (hour + 1) mod 24;
hourl2 :=
case
hour in {0, 12}: 12;
!(hour in {0, 12}): hour mod 12;
esac;
amPm :=
case
hour < 12: AM;
hour > 11: PM;
esac;

CTLSPEC AG (hour > 11 —> amPm = PM);

Code 5.1: NuSMV model of a clock with a CTL property non-vacuously satisfied

where e, and ¢, are the event and the condition of transition a, and e, and ¢; of transition b. If
the formula is satisfiable, it means that transitions a and b are not disjoint.

5.2.4 Vacuity detection

Model checkers check systems correctness with respect to some desired behaviours specified as
temporal properties (see Section 9.1). Most model checkers tools, upon a property violation,
provide a counterezample, in the form of an execution trace of the model, showing why the
property does not hold. These counterexamples are very useful because permit to the modelers
to discover errors in their models. When the property is satisfied by the model, instead, most of
the tools simply say that the property holds, without providing any witness of why the property
holds. But, if the property holds, it does not necessarily mean that the model of the system is
correct: the property could be true for the wrong reason.

Code 5.1 shows the NuSMV model of a clock that memorizes only the hours: the variable
hour memorizes the hour in the 24-hour format, whereas variables hour12 and amPm provide
the hour in the 12-hour format. Variable hour is initialised to zero and it is incremented of a unit
(modulo 24) in each transition from a state to the next one. The values of hourl2 and amPm
are defined based on the value of hour. A CTL property checks that, in each state, if hour is
greater than 11, then amPm is PM.

Code 5.2 shows a modified version of the model in Code 5.1 in which the variable hour is
always 0.

In both models the CTL property is satisfied. However, in the model in Code 5.2 the property
is true because subformula hour > 11 (antecedent of the implication) is always false: the property
is vacuously satisfied.

In [24] the authors say that, according to their experience, typically 20% of formulae pass
vacuously during the first formal verification runs of a new hardware design, and that vacuous
passes always point to a real problem in either the design or its specification or environment.
So, discovering properties that are vacuously satisfied is extremely important. Since vacuity
detection is independent of a particular model, we can classify it as a model review technique.

In [24], a technique has been proposed for checking the vacuity of formulae in w-ACTL, a
subset of CTL without the operators existentially quantified, in which the — operator modifies
only atomic propositions, and in which for all the binary operators at least one of the operands
is a propositional formula.
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MODULE main
VAR
hour: 0..23;
hourl2: 1..12;
amPm: {AM, PM};

ASSIGN
hour := 0;
hourl2 :=
case
hour in {0, 12}: 12;
!(hour in {0, 12}): hour mod 12;
esac;
amPm :=
case
hour < 12: AM;
hour > 11: PM;
esac;

CTLSPEC AG (hour > 11 —> amPm = PM);

Code 5.2: NuSMV model of a clock with a CTL property vacuously satisfied

The technique has been extended in [118] for checking the vacuity of CTL* formulae [16].
CTL* is an extension of CTL and it subsumes both CTL and LTL. So, techniques for checking
the vacuity of CTL* formulae, can be used for checking the vacuity of CTL and LTL formulae
as well. We report the definition of vacuity satisfaction as presented in [118].

Definition 5.1. A system M satisfies a formula ¢ vacuously iff M = ¢ and there is a subformula
¥ of ¢ that does not affect ¢ in M.

Intuitively, a subformula 1 does not affect ¢ in M if the truth value of ¢ is independent of
the truth value of ¥, i.e.,

M = o[t < false] iff M | o[t « true]

where ¢[¢ < p] is the formula ¢ where the subformula % is replaced by the formula p.

Actually, the algorithm for checking the vacuity of a formula is simpler. Indeed, when check-
ing for vacuity, it is already known that M & ¢ and so it is not necessary to consider both
replacements of values false and true. The algorithm uses the polarity of subformulae: the po-
larity of a subformula 1) is positive, if it is nested in an even number of negations in ¢, otherwise
it is negative. The algorithm works as follows. For each subformula 1 in :

1. the formula ¢’ is built based on the polarity of ¢. If v is positive, 1 is replaced by false
in @, i.e, ¢ = p[tb — false], otherwise, if ¢ is negative, 1) is replaced by true in ¢, i.e.,
¢ = [ « truel;

2. the formula ¢’ is model checked; if M = ¢/, it is said that ¢ is vacuously satisfied for the
subformula ).

For example, let’s apply the algorithm to the CTL formula

AG(hour > 11 — amPm = PM)

of the NuSMV model in Code 5.1 (let’s call it M), and also of its modified version in Code 5.2
(let’s call it M’).
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Applying the replacement based on the polarity of the subformulae hour > 11 and amPm =
PM, generates the two following formulae®

a = AG(TRUE — amPm = PM)
B = AG(hour > 11 — FALSE)

The result of model checking M against « and f is

Mt a M B

This means that the CTL property is non-vacuously satisfied in M. Instead, the result of
model checking M’ against o and 3 is

M ¥ « M =

This means that the CTL property is vacuously satisfied in M. The verification of formula
B shows that the value of the original formula does not depend on the value of the subformula
amPm = PM: indeed, since the antecedent of the implication is always false, the implication is
always true, nevertheless the value of the consequent.

5.3 Proposed model review approach

We here propose a general model review approach for state-based formal methods that has been
concretely implemented for the NuSMV notation and for the ASMs, as described in Chapters 6
and 7. The choice of defining model review processes for NuSMV and ASMs is due to the fact
that both are endowed with tools that permits to easily automatize the proposed approach, and
provide a wide range of models to analyse.

Let’s suppose to have a state-based formal method F' for which we want to develop a model
review technique. The general definition of a state-based formal method has been given in Def.
1.1 as F ={S,S8° T), being S the set of states, S° the set of initial states, and T the transition
relation. R(s) is the set of all the states reachable from s. Let M be a model of F.

In order to develop a model review technique for F', first of all we must identify defects,
vulnerabilities, and deviations from the notation style guide that are usually introduced by a
developer when modeling with F. Then these faults must be expressed as the violations of
formal properties. These properties refer to model attributes and characteristics that should
hold in any model, independently from the particular model to analyse. For this reason we call
them meta-properties (we identify them as MPg1,...,MPgn). They should be true in order
for a model of F' to have the required quality attributes. Therefore, they can be assumed as
measures of model quality assurance. The violation of a meta-property always means that a
quality attribute is not met and may indicate a potential/actual fault in the model. The severity
of such violation depends on the meta-property, each of which measures the degree of model
adequacy to the guidelines of the formal method modeling style.

Although the properties defined for a notation are different from those defined for another
notation, we have devised three categories of model quality attributes that are general enough
to cover different state-based formal methods:

e Consistency requires that there are no model statements that conflict with each other. Vi-
olations of consistency meta-properties usually identify real faults of the model. In NuSMV,
for example, a consistency meta-property could require that there is no specified temporal
property false: if the meta-property is violated, it means that the model contradicts the
temporal property. In ASMs, instead, a consistency meta-property could require that a
location is never simultaneously updated to two different values: if violated, it means that
there are two update rules that contradict each other.

6Note that the antecedent of an implication is considered to be under negation.
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e Completeness requires that every system behaviour is explicitly modeled. Violations
of completeness meta-properties seldom identify real faults of the model: most of the
times they identify parts of the model that could be difficult to understand by an external
reader, because the behaviour of the machine is left unspecified (usually because the state
of the machine does not have to change). These meta-properties force the modeler to
explicitly describe the behaviour of the model in every state and under each condition. For
example, both in NuSMV and in ASMs, a completeness meta-property could require that
no conditional branch (a branch of a case expression in NuSMV, or the else branch of a
conditional rule in ASMs) is left unspecified, although permitted by the notation.

e Minimality requires that the model does not contain elements defined or declared in the
model but never used. These defects are also known as over-specification. Violations of
minimality meta-properties usually identify unnecessary elements of the model, or they
signal that the model is not complete. For example, both in NuSMV and in ASMs, a
minimality meta-property could require that each variable is read at least once.

In order to describe the meta-properties, we define four logical operators that permits to
specify when (i.e., in which states) a property must hold. The operator Always permits to
capture properties that must be true in every state, and the operator Sometime properties that
must be eventually true in at least one state. Moreover, the operator InitiallyA is used to describe
properties that must be true in every initial state, and InitiallyS properties that must be true in
at least one initial state. Their formal definition is as follows:

M = Always(p) = VspeSY VseR(so): p(s) (5.1)
M |= Sometime(p) = 3sp€ 8% Ise R(sq): ¢(s) (5.2)
M = InitiallyA(p) = Vsoe S%: ¢(so) (5.3)
M = InitiallyS(p) = 3so e S°: ¢(s0) (5.4)

where ¢ is a predicate over a state of M.

How to execute the verification of these properties depends on the state-based formal method
for which we are developing the model review technique. In the model reviews for NuSMV and
ASMs, these properties are translated into CTL formulae and then model checked.

5.3.1 Evaluation of the approach in terms of fault detection capability

The last step of the development of a model review technique should be an assessment of its
ability of detecting real faults. Indeed, the meta-properties introduced could target real faults
of a model or only "stylistic” defects (violations of style-guide conventions) that does not affect
the behaviour of the model.

In Chapter 8 we propose a methodology for assessing the fault detection capability of a model
review technique, based on mutation analysis, using an approach similar to mutation testing [106].
Our approach has been applied to the NuSMV model advisor, but it could be applied to any
other model review technique.



Chapter 6

Model review of NuSMYV models

We now tackle the problem of automatically reviewing NuSMV formal specifications (Section
3.2).

We here refer to the NuSMV formal specification method which is endowed with a simulator
and a model checker that make possible to handle and to automatize our approach. Moreover,
there exists a wide repository of NuSMV specification case-studies available for testing the model
advisor we propose.

We develop a model advisor for NuSMV programs which helps the developers to assure given
model qualities. We first detect a family of vulnerabilities and defects a developer can introduce
during the modeling activity using NuSMV and we define appropriate meta-properties to capture
them.

We have identified 10 meta-properties which use all the logical operators defined in Section
5.3, i.e., Always, Sometime, InitiallyA and InitiallyS. In order to verify these meta-properties,
the logical operators are mapped to temporal logic formulae and the NuSMV model checking
facilities are exploited to check for meta-property violations.

We only consider NuSMV models containing operational commands in this work. There
are known techniques [41] for converting more general TRANS-based specifications into our
operational form, so this is not a fundamental limitation.

Section 6.1 defines a function, later used in the meta-properties definition, that statically
computes the assignment condition under which a model variable is updated upon state changing.
Meta-properties able to guarantee certain quality attributes of a specification are introduced in
Section 6.2. In Section 6.3, we describe how it is possible to automatize our model review process
by exploiting the use of NuSMV itself as a model checker to check for possible violations of meta-
properties. The general architecture of our model advisor is described in Section 6.4. As a
proof of concept, in Section 6.5 we report the results of applying our model advisor to a certain
number of benchmark models of various degree of complexity: some taken from the NuSMV
source distribution, others found on the Internet, others obtained by translating ASM models of
real case studies to NuSMV models. Considerations about the fault detection capability of the
approach are reported in Section 6.6.

6.1 Assignment Condition

As stated in Section 3.2, there exist different ways to assign values to NuSMV variables. Formally,
an assignment is a pair (identifier, expr) where identifier is a variable identifier and ezpr is a
simple or next-expression which provides the variable value.

We here present a method to compute, for each assignment {identifier, expr) defined in
the specification under review, the list of conditions under which the assignment is actually per-
formed, and the condition-free expressions, which will determine the value assigned to the variable
identifier when computed. For this purpose, we introduce a function assignment condition

AC : Assignment — (Condition x ValueExpr)™
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It is defined as AC ((identifier, expr)) = CV (expr) in terms of the function

CV : Expression — (Condition x ValueExpr)™

which extracts the conditions from a generic expression by returning the list of pairs {cond,
valEzpr), where cond is the condition under which the expression takes the value given by the
expression (without conditions) valEzpr. CV is recursively defined as follows, depending on
whether expr is defined in terms of a conditional operator or not.

Expression without conditions. In this case expr is a constant, an identifier, a logical/al-
gebraic expression, etc. The function yields CV (expr) = (true, expr).

Expression with conditions. In this case expr is expressed in terms of a case or an if-then-
else operator. Before defining the function C'V in these cases, let us introduce two auxiliary
functions.

Let @} (L;) be the concatenation of lists L;, with i = 1,...,n.

Let L = [{¢;, e;)];—, be a list of pairs {¢;, ;) (with i = 1,...,n), where ¢; a boolean condition
and e; an expression. We define a function A (L) = [(a A ¢;,€;)]"; returning the list of pairs
obtained from the elements of L by making the conjunction between the boolean condition a
with the condition c¢;.

o If expr is an if-then-else expression, C'V holds:

CV(c?el:e2) =@ </\ CV(el), /\ CV(e2)>

e If expr is a case expression, the C'V function yields:

case
left_expr_1 : right_expr_1;

cv e =@, ( /\ CV(Tight@xpri))
left_expr_n : right_expr_n; left-expr_i

esac

Example Code 6.1 shows a fragment of a NuSMV model in which the next value of the variable
x is defined using a case expression.

ASSIGN
next(x) :=
case
al:
case
bl: 2;
b2: 3;
esac;
a2: ¢ 7?75 : 6
TRUE: 7;

esac;

Code 6.1: Definition of the next value of variable x

The following is the computation of the function AC' on the next_expression.

AC({x, next_expr)) = CV (next_expr) =
[(al A b1,2), (al A D2,3),(a2 A ¢,5), (a2 A —c¢, 6), (true, 7)]
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6.2 Meta-properties

In this section we introduce ten meta-properties (MPy1-10) that should be proved in order to
assure that a NuSMV specification has some quality attributes.

The three categories of model quality attributes introduced in Section 5.3 for state-based
formal methods, can be adapted to the NuSMV notation in the following way:

e Consistency requires that there are no model statements (variable assignments, propriety
specifications, behaviours, etc.) that conflict with each other. For instance, MPx9 requires
that all the specified properties are true. Consistency of assignments to variables, one of
the main goals of other model review techniques [7, 94], is guaranteed in NuSMV by the
semantics of the language. However, one could require mutual exclusion of assignment
conditions (MPy3).

e Completeness requires that the transition relation is explicitly described. This encourages
the explicit assignment of variables (MPx7) and that at least one assignment condition,
apart the default condition, is true (MPy4).

e Minimality guarantees that the specification does not contain elements — i.e., variables,
assignments, type values, etc. — defined or declared in the model but never used. Minimality
of the assignments requires that every assignment can be performed (MPy1, MPN2) and
it is really useful (MPx5). Every value of a variable type should be necessary (MPx6) and
every variable used (MPy7 and MPy8). Minimality of properties requires that property
specifications are not vacuously satisfied (MPy10).

6.2.1 Meta-property definition

In the following we present the meta-properties we have introduced for automatic review of
NuSMV models.

Most of the meta-properties are expressed in terms of the assignment condition function. For
notational convenience, given an assignment o = (id, expr), we denote by AC,; the condition
cond; of the i-th element (cond;, val;) of the list AC'(«). Moreover, we need to distinguish between
assignments « regarding initial values, called ;s assignments, and non-initial assignments. For
the sake of brevity, all the following meta-properties containing AC, ; (resp. AC,,,.:) are
universally quantified over assignment a (resp. @n;:) and condition index i.

All the logical operators defined in Section 5.3, i.e., Always, Sometime, InitiallyA and InitiallyS
are used in the meta-properties.

MPn1 Every assignment condition can be true

We would like that every condition, under which a variable is assigned a value, can be eventually
true, i.e., the model does not contain conditions which are always false. We have to distinguish
between initial and non-initial assignments.

This meta-property requires that every condition can be true in at least one initial state
(formula 6.1), and every non-initial condition is eventually true (formula 6.2).

InitiallyS(ACa,,, i) (6.1)
Sometime(AC ;)

In Code 6.2, the condition x = BB is never satisfied.

MPn2 Every assignment is eventually applied

Even if a condition ¢ can be true by MPy1, we would actually like ¢ to eventually be evaluated
and not to be masked by other conditions preceding it in a case expression. In such a case, we
may suspect that the conditions in a case expression are mistakenly listed. MPn2 is guaranteed
by proving formula 6.3 for initial conditions and formula 6.4 for non-initial conditions.
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MODULE main

VAR
x: {AA, BB, CC};
ASSIGN
init (x) := AA;
next(x) :=
case
x = AA: CC;
x = BB: AA;——never satisfied
x = CC: AA;
esac;

Code 6.2: Violation of meta-property MPy1

MODULE main

VAR
x: 1..3;
ASSIGN
init (x) = 1;
next(x) 1=
case
x =1: 2;
x > 1: {1, 3}
x = 3: 1;—— never applied
esac;

Code 6.3: Violation of meta-property MPx2

i—1
InitiallyS (ACQW,i AN ﬁAcalw> (6.3)
j=1
i—1
Sometime (AC’OM- A /\ ﬁACo“j) (6.4)
j=1

In Code 6.3, the condition x = 3 is eventually satisfied (MPx1) but the corresponding assign-
ment is never applied because the condition is masked by the previous condition x > 1.

MPn3 The assignment conditions are mutually exclusive

This meta-property requires that every condition explicitly and precisely models the conditions
under which the assignment is applied. This guarantees that, if the condition is true, it is applied
and it is not masked by another condition which precedes it. MPy3 is guaranteed by proving
formula 6.5 for initial conditions and formula 6.6 for non-initial conditions.

Vi, 1<j <t InitiallyA(—(ACayi A ACayi)) (6.5)
Vi, 1<j<i Always(—(ACq; A AC, 5)) (6.6)

In Code 6.4, even if the model is correct, i.e., the value of amPm and hourl2 are correctly
related to the value of hour, the two conditions of the assignment of the variable amPm are not

mutually exclusive. To remove the violation we could, for example, change the second condition
with the condition hour > 11.
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MODULE main
VAR
hour: 0..23;
hourl2: 1..12;
amPm: {AM, PM};
ASSIGN
init (hour) := 0;
next(hour) := (hour + 1) mod 24;
hourl2 :=
case ——conditions mutually exclusive
hour in {0, 12}: 12;
!I(hour in {0, 12}): hour mod 12;
esac;
amPm :=
case ——conditions not mutually exclusive
hour < 12: AM;
hour >= 11: PM;
esac;

Code 6.4: Violation of meta-property MPy3

MODULE main

VAR
x: 2..4;
ASSIGN
init (x) = 2;
next(x) =
case
x = 2: 4;
x = 4: 3;
TRUE: 2; ——default condition useful
esac;

Code 6.5: Violation of meta-property MPy4

MPn4 For every assignment terminated by a default condition true, at least one
assignment condition is true

We have already discussed in Section 3.2 that the conditions in a case expression must be complete.
However, sometimes NuSMV forces the user to add a last default condition equal to true, even
if the conditions in the case expression are already complete. This is due to fact that the
completeness check executed by NuSMV is based on a static analysis of the code, that could
give imprecise results in some cases. The following meta-property requires that all the conditions
before the last default condition are already complete. If, for an initial assignment, AC,, ,,.n =
true, then formula 6.7 must be checked. If, for a non-initial assignment, AC, , = true, then
formula 6.8 must be checked.

InitiallyA(AC w1 vV - -V ACqy 0 n—1) (6.7)
Always(ACq1 v -+ v ACqn-1) (6.8)

This applies only when AC,, = true (or AC,,,,, n = true), because, otherwise, NuSMV
already guarantees completeness. If this meta-property is verified, the default condition is useless
because the previous conditions already cover every case.

In Code 6.5 the meta-property is violated, i.e., Always(x = 2 v x = 4) is false, because, in
the next expression of variable x, the default condition is useful since the previous conditions
do not cover all the cases. The meta-property would be not violated if the next expression was
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MODULE main
VAR
shuffle : boolean;
x: {AA, BB};
ASSIGN
next(x) :=
case
I shuffle & x = AA: AA;——trivial
! shuffle & x = BB: BB;——trivial
shuffle : {AA, BB}
esac;

Code 6.6: Violation of meta-property MPx5

rewritten, for example, in the following way:

next(x) :=
case
x = 2: 4;
x = 4: 3;
x =3 2
esac;

MPn5 No assignment is always trivial

We say that a next assignment (var, expr) is trivial if var is already equal to expr, even before the
update is applied. This property requires that each assignment which is eventually performed,
will not be always trivial, unless it is explicitly formalized by the assignment {var,var) which
assigns to var its current value. The property

i—1 i—1
Sometime (ACW» A /\ ﬂACa,j> — Sometime <ACW» A /\ —ACq ; A var # empr) (6.9)

j=1 j=1

states that, if eventually updated (see MPN2), the variable var will be updated to a new value
at least in one state. The more simple property Sometime(AC; A var # expr) would be false
if the assignment is never applied.
We borrowed the concept of trivial update from the ASMs [32].
In Code 6.6, in the next expression of variable x, the first two assignments are always trivial.
The next expression could be rewritten in a more simple equivalent way:
next(x) 1=
case
! shuffle : x;
shuffle : {AA, BB}

esac;

MPn6 Every variable can take any value in its type

This meta-property requires that every variable takes all the values of its type. For each variable
var, whose type values are eq,... ,e,, the property

Sometime(var = e1) A ... A Sometime(var = e,) (6.10)

states that variable var takes all the values of its type. Since each Sometime(var = e;) is checked
individually, we can know all the values never taken; these values, if they are really unnecessary,
can be removed from the type definition.

In Code 6.7, variable = never takes value 2. Note that different variables can be defined over
the same values, as x and y in the example. However, for NuSMV their types are distinct and
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MODULE main

VAR
x: {1, 2, 3}; ——it never takes value 2
v: {1, 2, 3}; ——it takes all the values
ASSIGN
init (x) = 1;
next(x) := (x * 3) mod 4;
y ={1, 2, 3}

Code 6.7: Violation of meta-property MPy6

MODULE main

VAR
x: boolean;
xMU: boolean;——monitored variable used
xMNU: 1..3;——monitored variable not used
xMEA: boolean;——wvariable explicitly assigned

ASSIGN
x := IxMU;
xMEA := {FALSE, TRUE},

Code 6.8: Violation of meta-property MPy7

so they can be considered individually: indeed, we can remove value 2 from the type of variable
x without affecting the type of variable y that, instead, takes all its values.

MPnNT7 Every variable not explicitly assigned is used

In NuSMV there is no definition of monitored variables, i.e., variables that are updated by
the environment. However, the variables that are not explicitly defined by an init/next/simple
assignment, can be considered as monitored, since, at every step, they can take any value of their
type. We claim that monitored variables should be used in other parts of the model, or that it
should be made explicit that they can take any value (with a nondeterministic assignment over all
the variable type). We say that a variable is used if it occurs in an assignment (in the right-hand
side of an ASSIGN expression) or in a property (a CLTSPEC/LTLSPEC section).

The verification of this meta-property is statically performed by analysing the model without
the use of the proving capabilities of the model checker.

In Code 6.8 ztMU and xMNU are both monitored variables. MU satisfies the meta-property
because it is used in the simple assignment of variable x; *MNU, instead, violates the meta-
property because is never read. The variable xMFEA, instead, satisfies the meta-property because
is explicitly assigned.

MPn8 Every independent variable is used

In NuSMV a variable x can be assigned in the next state to a value which depends only on x.
In this case we say that the variable is independent, since it does not depend on other variables.
Independent variables are generally used to model monitored variables which however have some
constraints for their behaviour. These variables should be used in other parts of the model.

In Code 6.9 zIU and zINU are both independent variables. zIU satisfies the meta-property
because is used in the assignment of variable x; zINU, instead, violates the meta-property because
is never read.

MPn9 Every property is proved true

This meta-property simply requires that every property (CTL and LTL properties, and invari-
ants) is proved true.
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MODULE main
VAR
x: boolean,;
xIU: boolean;——independent variable used
xINU: 0..4;——independent variable not used
ASSIGN
x := IxIU;
init (xIU) := TRUE;
next(xIU) := IxIU;
init (xINU) := 0;
next(xINU) := (xINU + 1) mod 5;

Code 6.9: Violation of meta-property MPn8

MODULE main
VAR
request: boolean;
state: {ready,busy};
ASSIGN
request := FALSE;
init (state) := ready;
next(state) :=
case
state = ready & request : busy;
TRUE: {ready,busy};
esac;
CTLSPEC AG(request —> AF state = busy)

Code 6.10: Violation of meta-property MPx10

MPnN10 No property is vacuously satisfied

A well known problem in formal verification is vacuous satisfaction: a property is vacuously
satisfied if that property is satisfied and proved true regardless of whether the model really fulfills
what the specifier originally had in mind or not. For example, the LTL property G(z — X(y))
is vacuously satisfied by any model where x is never true. Vacuity is an indication of a problem
in either the model or the property. Several techniques to detect vacuity have been proposed
(e.g., [25, 118]) and also tools that perform vacuity detection have been developed (e.g., [82]).

We have already seen in Section 5.2.4 the general strategy to detect vacuity employed in [25,
118]. Let’s briefly recall it here. The technique consists in replacing parts of a property and see if
this has any effect on the result of the verification. In order to detect vacuity of a property ¢, it
is sufficient to replace a subformula v of ¢ with true or false [118], depending on the polarity of
1 in . The polarity of a subformula 1 is positive, if it is nested in an even number of negations
in ¢, otherwise is negative, and pol(1) is a function such that pol(v)) = false if ¢ has positive
polarity in ¢, and pol(1)) = true otherwise!.

The replacement of subformula ¢ with p in formula ¢ is denoted as p[¢) < p].

Definition 6.1. A property ¢ is completely/partially vacuous if, for every/some of its atomic
proposition 1, VCy = @[t < pol(y)] is proved true by the model checking.

Our tool reports the list of atomic propositions 1 for which VCy is proved true by the model
checker.
In Code 6.10, the CTL property is vacuously true for subformula state = busy. Indeed the

1 As in [118] we assume that all the occurrences of the subformula 1) in ¢ are of pure polarity, that is either they
are all under an even number of negations (positive polarity), or they are all under an odd number of negations
(negative polarity).
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CTL formula is true regardless of whether state is equal to busy or not, since request is always
false.

6.3 Meta-property verification by model checking

To verify (or falsify) the meta-properties introduced in the previous section, we translate each

N . CTL
instance MPnk of a meta-property MPyk into a CTL property MPy k. We identify with
MP%TLk the set of all the CTL properties for the meta-property MPyk. We then build a new
NuSMV model My,p obtained by adding to the original model M the set

10
MPE™ = | ] MPRT E
k=1
that contains the CTL translations of all the instances of all the meta-properties. The verification
of the meta-properties is carried out through the model checking of Myp.

The mapping from a meta-property instance MPxk to a CTL formula MP;TLk is not
straightforward, because of a) the way CTL properties are verified in NuSMV, b) the fact that
next_expressions, which can be used in some meta-properties, can not occur in CTL formulae.

a) A CTL property ¢ is true if and only if ¢ is true in every initial state of the machine, i.e.,
given a model R and a property ¢,

R iff VsoeSy (R,s0) = ¢

where Sy is the set of initial states of R.

The operator Always(p) is translated to AG(p). Indeed, Mpyp = AG(¢) means that, along all
paths starting from each initial state, ¢ is true in every state (globally), which corresponds to
the definition of Always (see Formula 5.1 in Section 5.3). So:

Muyp = Always(p) <= Mup = AG() (6.11)

Similarly, InitiallyA(p) is translated as ¢, since My p |= ¢ means that in each initial state ¢ is
true, which corresponds to the definition of InitiallyA (see Formula 5.3 in Section 5.3). So:

Myp | InitiallyA(p) <  Myp E ¢ (6.12)

However, the translation of Sometime(p) is not EF(p), since Myp = EF(p) means that there
exists at least one path starting from each initial state containing a state in which ¢ is true, while
Sometime only requires that there exists at least an initial state from which ¢ will eventually
hold (see Formula 5.2 in Section 5.3). This means that there are cases in which EF(y) is false,
since not from every initial state ¢ will eventually be true, while Sometime(yp) is true. To prove
Sometime(y) we use the following equivalence:

Mpyp = Sometime(p) < Myp ¥ AG(—p) (6.13)

that means that Sometime(p) is true if and only if AG(—¢) is false. We run the model checker
with the property P = AG(—¢) and, if a counterexample of P is found, then Sometime () holds,
while if P is proved true, then Sometime(yp) is false.

Similarly, to prove InitiallyS (see Formula 5.4 in Section 5.3) we use the equivalence:

Muyp = InitiallyS(p) < Myp ¥ —p (6.14)

b) It is possible that a meta-property contains next_expressions®. In NuSMV such expressions
can not be contained in CTL formulae, but they can occur in invariant specifications. Invariant

2The meta-properties that are defined through the Always or the Sometime operators can contain the next
operator (i.e., MPN1, MPN2, MPN3, MPn4 and MPN5 when are applied to next assignments).
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specifications are propositional formulae which must hold invariantly in the model, and are
expressed as “INVARSPEC next_expr”. They are equivalent to “CTLSPEC AG simple_expr”
and can be checked by a specialized algorithm during reachability analysis.

In conclusion, all the CTL formulae obtained by the translation described previously, that have

. CTL
the form MPy &k = AG(p), with ¢ containing next_expressions, are checked as invariant specifi-
cations. All the other CTL formulae, instead, are checked as CTL specifications.

6.4 NuSMYV Model Advisor

We have implemented a prototype tool, available at [138], written in Java to automatize the model
review process. The tool is built on top of the NuSVM model checker and required to develop a
new parser to represent the structure of a NuSMV specification in terms of Java navigable objects
that could be visited to compute the assignment condition functions and to access other internal
syntactical specification elements. To the purpose of developing this new parser, the Xtext [171]
framework was used. It allows the development of language infrastructures including compilers
and interpreters as well as full blown Eclipse-based IDE integration. The user must only provide
an EBNF grammar of its language. Starting from this grammar, the XTEXT generator creates
a parser, a language meta-model (implemented in EMF) as well as a full-featured Eclipse-based
editor.

For our application, we have written the EBNF grammar of NuSMV and through Xtext we
have obtained a NuSMV parser. Parsing a model, an EMF model of the NuSMV specifica-
tion is built, which allows accessing the structure of the specification (otherwise accessible by
constructing its abstract syntax tree).

The model advisor works in the following way:

1. the model M one likes to review is parsed by the NuSMYV parser provided by the model
checker; if M is not parsed correctly the tool does not execute any verification and quits,
otherwise it continues as follows;

2. the model M is parsed with our NuSMV parser and an EMF model of M is internally
represented;

3. the CTL properties MP{TL needed for the verification of the meta-properties are built as
described in Section 6.3, as well as the NuSMV model Myp = M + MP{TY obtained from
the original specification M with the CTL meta-properties;

4. the tool runs the specification M y;p with the model checker NuSMV and reads the output
of the execution;

5. it interprets the MP%TL verification results and builds the meta-properties results that are
finally printed (on the screen or on a file).

6.5 Experimental results
We have applied our model review process to three different sets of NuSMV specifications:
e the NuSMVsrc set contains the NuSMV examples available in the NuSMV source distri-

bution; some of these examples are also available in the example page on the NuSMV
site [137];

e the Internet set contains various models that we have found on the Internet: research
works, students projects, etc.;

e the AsmetaSMV set contains the models obtained with the tool AsmetaSMV, a tool that
translates ASM models into NuSMV models (see Section 9.2). This last set of examples was
chosen to assess the quality of NUSMYV models obtained from models developed using other
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Spec Set # spec. | # rev. | # not rev. | MPn1 | MPn2 | MPn3 | MPn4 | MPy5
NuSMVsrc 63 47 3-13 178 230 882 683 44
Internet 187 151 30-6 209 261 392 351 104
AsmetaSMV 34 33 0-1 94 121 20 151 34
total 284 231 33 - 20 481 612 1294 1185 182
Spec Set MPx6 | MPN7 | MPN8 | MPN9 | MPx10
NuSMVsrc 120 (47) 7 3 42 44
Internet | 2201 (105) 12 8 147 184
AsmetaSMV| 215 (150) 0 0 1 22
total 2536 (302) | 19 | 1] 19 | 250

Table 6.1: Experimental results and violations found

(high level) formal notations. Indeed, NuSMV is often used as a target language for model
checking specifications originally developed using other formal methods. By translating
these other models to NuSMV, the NuSMV code might be not efficient and redundancies
might be introduced.

The results of our experiments are reported in Table 6.1. It shows the name of the set, the
number of models in it, the number of models which we were able to analyse® and, for each
meta-property, the number of violations we detected.

The most violated meta-property is MPn6, that is that a variable does not take all the values
declared in its type. The high number of violations is also due to the fact that each value
not taken is a violation (the number of variables that do not take all their values is shown in
round brackets). Simply removing the unused values of the variables type (if they are really not
necessary) can dramatically improve the model performances.

The second most violated property is MPn3, that requires that two conditions are always
mutually exclusive. When a couple of conditions (cond;, conds) violates this property, the first
condition cond; masks the second one conds: sometimes the developer is conscious of this be-
haviour, but sometimes she is not.

The third most violated property is MPn4, that requires that the default condition, if speci-
fied, is never taken; this meta-property is very strong: developers, indeed, often use the default
condition to catch some situations not captured by the previous conditions. We must remember
that our meta-properties do not signal errors, but violations of some modeling guidelines that
the developer would like to follow.

Finally we would like to underline that the violations of meta-properties MPN2 and MPn1 (the
third and the fourth most violated meta-properties) signal erroneous models where, respectively,
some assignments are never applied and some assignment conditions are never satisfied. Moreover
we can notice that all MPy1 violations are also MPy2 violations, but not vice versa. Indeed,
there are assignments that are never executed, whose conditions are eventually satisfied: these
assignments are never executed because their conditions are masked by some previous conditions.

Violations in the AsmetaSMV set deserve a particular remark. As expected, the AsmetaSMV
set contains several violations concerning the minimality of the model, since these models are
obtained using NuSMV as target language to model checking ASM models. For example, since
all the locations of an ASM function become variables with the same type (the translation of
the codomain of the ASM function), it is probable that some of these variables do not take some
of their values, since in the original ASM model not all the locations take all the values of the
function codomain. Therefore, the high number of MPx6 violations was expected.

3Some models could not be analysed because a) they were wrong, that is they did not parse with the NuSMV
parser (33 models) b) the verification of their meta-properties could have been longer than one hour, the execution
time limit we have set (20 models).
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However, the violations of property MPn3 (20 violations in 5 models) is, at a first sight,
surprising. The tool AsmetaSMV, indeed, should always produce conditions mutually exclusive.
We have discovered that these violations are produced by ASM models containing inconsistent
updates, namely parallel updates, in the same state, of the same location (variable in NuSMV) to
two different values. This proves that the analysis done at the level of NuSMV can give insights
about the high level starting models. In the future, we plan to integrate our NuSMV model
advisor with the AsmetaSMV tool, in order to obtain minimal models from the translation of
the ASM models and check for model consistency.

6.6 Fault detection capability

An important question about the technique we propose is what kind of faults it can reveal.
Although a violation of a meta-property does not necessarily mean that the specification is faulty,
it is important to link the automatic analysis we perform to possible faults in the specifications
for two reasons: (1) to be sure that the meta-properties actually measure the quality of the
specification also in terms of its correctness (which can be ultimately considered as the absence
of faults) and (2) to provide useful feedback to the user to suggest, given a violation of a specific
meta-property, which kinds of faults can occur in the specification. We have identified the
following defects:

o Quer-specification or missing use of variables is detected by meta-properties like MPN7 and
MPn8 or by MPn6 which checks that variable values are all used. These meta-properties
aim at detecting faults either of over-specification, i.e., useless details are added to the
model, or of omission, i.e., variables that should occur in conditions or expressions but are
simply forgotten.

o Faults in assignments can be detected by MPyx5. In fact, if a next assignment, when
executed, always confirms the value currently assumed by the variable, there is probably
an error to fix.

e Missing or misplaced conditions can be detected by MPx1 and MPy2. Indeed if conditions
are placed in a wrong order, then an assignment can be masked and this is signalled by
our meta-properties. MPn3 and MPn4 try to prevent these kinds of faults by making the
conditional assignments independent of the order of the conditions.

o Wrong or inaccurate properties are detected by MPxn9 and MPx10.

In Chapter 8 we evaluate the fault detection capability of the NuSMV model advisor using a
technique based on mutation analysis (an approach similar to mutation testing [106]).



Chapter 7

Model review of ASMs

We now tackle the problem of automatically reviewing formal specifications given in terms of
ASMs (Section 2.1).

The choice of defining a model review process for the ASM formal method is due to several
reasons. First, the ASMs are a powerful extension of the Finite State Machines (FSMs), and it has
been shown [32] that they capture the principal models of computation and specification in the
literature. Therefore, the results obtained for the ASMs can be adapted to other state-transition
based formal approaches. Furthermore, thanks to the ASMETA framework (see Section 2.2)
and, in particular, to its model checker AsmetaSMV (see Section 9.2), we can easily automatize
the proposed approach. Finally, there are several non-trivial specifications on which to test our
process.

As done for NuSMV specifications in Chapter 6, we first identify those defects, vulnerabilities,
and deviations from standards that a developer can introduce during the modeling activity using
the ASMs. Then we define some meta-properties that permit to capture these faults.

We have identified seven meta-properties which use two operators, Always and Sometime,
among those defined in Section 5.3. In order to verify these meta-properties, the ASM model
under review is translated into a NuSMV model using the AsmetaSMV tool and the meta-
properties are translated into CTL formulae using the technique already described in Section 6.3
for the NuSMV model advisor. Then, the translated model is model checked against the CTL
properties to verify if the original ASM model guarantees the meta-properties.

Section 7.1 defines a function, later used in the meta-properties definition, that statically
computes the firing condition of a transition rule occurring in the model. Meta-properties that
are able to guarantee certain quality attributes of a specification are introduced in Section 7.2.
In Section 7.3, we describe how we use AsmetaSMV to check the possible violation of meta-
properties. As a proof of concept, in Section 7.4 we report the results of applying our ASM
review process to a certain number of specifications, going from benchmark models to test the
meta-properties, to ASM models of real case studies of various degree of complexity.

7.1 Rule Firing Condition

In the following we introduce a method to compute, for each rule of the specification under
review, the firing condition under which the rule is executed. We introduce a function Rule
Firing Condition (RFC') which returns this condition.

RFC : Rules — Conditions

where Rules is the set of the rules of the ASM M under review and Conditions are boolean
predicates over the state of M. RFC can be statically computed as follows.

a) First build a static directed graph, similar to a program control flow graph. Every node of
the graph is a rule of the ASM and every edge has label [u]c representing the conditions
under which the target rule is executed. c¢ is a boolean predicate and [u] is a sequence of
logical assignments of the form v = ¢, being v a variable and ¢ a term. The condition ¢
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Parallel rule R p_ Htrue R,
Ry par Ry [Jtrue
Ry
Let rule R R m R,
let z =tin R,
Macro call rule R R [21=t1,- 0 =tn]true R,,
Ro[t1, s tn]
Conditional rule R R e R,
if ¢ then [—c
Ry
;lse R,
2

endif

[z=d1]as
Forall rule R R ~ T R,
forall x in D with a, do ~_ 7
Rac [z=d,]az

[z=d1]as
Choose rule R R ~ T R,
choose z in D with a, do ~_ 7
Ra: [z=d,]as

Figure 7.1: Schemas for building the graph for the Rule Firing Condition

must be evaluated under every logical assignment v = ¢ listed in w. Fig. 7.1 reports how
to incrementally build the graph, together with the labels for the edges. By starting from
the main rule, the entire graph is built, except for the rules that are never used or are not
reachable from the main rule and for which the RFC evaluates to false. We assume that there
are no recursive calls of ASM rules, so the graph is acyclic. In general, an ASM rule can call
itself (directly or indirectly), but rule recursion is seldom used. However, recursion is still
supported in derived functions, which are often used in ASM specifications. For this reason
the lack of recursive rules does not prevent to write realistic specifications.

b) Then, to compute the RFC for a rule R, start from the rule R and visit the graph backward
until the main rule is reached.

The condition RFC(R) is obtained by applying the following three steps. Initially, R, = R
holds.

1. Expand every occurrence of RFC(R,.) by substituting it with the conditions under which R, is
reached, i.e., the labels of the edges entering the node of R,. If the graph has the schema shown
below, one must substitute RFC(R,) with [u1](RFC(R1) A c1) v -+ V [un](RFC(Ry) A ¢y)

Ry Ry, ... R,
[u1]6\“ i[w]w [un]en
R,
2. Eliminate every logical assignment by applying the following rules:
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asm exampleForRFC
import StandardLibrary

signature:
dynamic controlled y: Integer
dynamic controlled z: Integer

definitions:
main rule R =
par
rl: forall $x in {0,2} with $x < 2 do
r2: if y < $x then
r3: zZ =y
endif
r4: skip
endpar
Code 7.1: Example for the computation of the Rule Firing Condition
[$2=0]$z<2
T [ly<$z
R frue rl - = r2 r3
\ [$x=2]$x<2

r4

Figure 7.2: RFC graph of the ASM model shown in Code 7.1

e Distribute the v (or) over the A (and):

([ur]Ar v - - v [up]An) A B=[u1](A1 A B) v -+ v [un](An A B)

e Distribute the assignments:

[u](A A B) = [u]A A [u]B

e Apply the assignments:

[u, = t)]A = [u]Alz < t]
3. Apply again 1 until you reach a rule with no entering edges (main rule).

Example Consider the ASM model shown in Code 7.1 in which y and z are nullary func-
tions of the machine and $x is a logical variable. The inner rules are labeled for their concise
representation in the graph. The RF'C graph is shown in Fig. 7.2.

To compute the condition under which rule r3 fires, i.e., RFC(r3), one must perform the
following steps:

1. Apply the expansion of RFC(r3):

RFC(r3) = RFC(r2) ny < $z
2. Since there is no assignment to eliminate, expand RFC(r2):

RFC(r3) = ([$2 = 0](RFC(r1) A 8z < 2) v [$z = 2](RFC(rl) n $z < 2)) Ay < $z
3. Distribute the v over the A:

RFC(r3) = [$2 =0](RFC(r1) Sz <2 rny < $z)v
[$2 = 2](RFC(r1) A $x <2 Ay < $2)

4. Apply the assignments:
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main rule r_incO = main rule r_incl =
par par
l:=1 if condl then
1:=2 1(al) :=t1
endpar endif
if cond2 then
1(a2) := t2
endif
endpar
Code 7.2: Apparent inconsistent update Code 7.3: Inconsistent update less trivial

RFC(r3) = (RFC(r1) A0<2Ay<0) v (RFC(rl) A2<2ry<2)
RFC(r3) = (RFC(rl) ny <0) v false

5. Expand the definition of RFC(r1) which is true:
RFC(r3) =y <0

7.2 Meta-properties

We here describe seven meta-properties (M P41 — 7) that we have identified for ASMs. All the
meta-properties describe attributes that we think that any ASM model should have.

The three categories of model quality attributes introduced in Section 5.3 for state-based
formal methods, can be adapted to the ASMs in the following way:

e Consistency guarantees that locations (memory units) are never simultaneously updated
to different values (MP A 1). This fault is known as inconsistent update and must be removed
in order to have a correct model.

e Completeness requires that every behaviour of the system is explicitly modeled. This
enforces explicit listing of all the possible conditions in conditional rules (MPA2) and the
actual updating of controlled locations (MPAT).

e Minimality guarantees that the specification does not contain elements — i.e., transition
rules, domain elements, locations, etc. — defined or declared in the model but never used
(MPa3, MPa4, MPA5, MPA6). Minimality of the state requires that only the necessary
state functions are introduced (MPA7).

7.2.1 Meta-property definition

In the following we report the formal definitions of the seven meta-properties that use the logical
operators Always, Sometime defined in Section 5.3 (formulae 5.1 and 5.2).

MPa1l No inconsistent update is ever performed

An inconsistent update occurs when two updates clash, i.e., they refer to the same location but
are distinct (see Def. 2.6). If a location is updated by only one rule, no inconsistent update
occurs. Otherwise an inconsistent update is possible.

Let’s see two examples. In the example shown in Code 7.2, the same location [ is updated
to two different values (1 and 2) in two rules having both conditions RFC' equal to true; in this
case, the inconsistent update is apparent. In the example shown in Code 7.3, instead, to prove
that the two updates are consistent, one should prove:

Always((condl A cond2 A al = a2) — t1 = t2)

In genfaral, gor every pair of update rules R and R of the form f(t1,...,tp) = t and
f(t1, ..., ty) :=t, the property:




7.2 Meta-properties 75

if x > 0 then if a and b then

skip skip
else else

if x <=0 then if not a then

skip skip

endif endif

endif endif
Code 7.4: Complete conditional rule Code 7.5: Incomplete conditional rule

i=1

Always <<RFC(R) A RFC(R) A /\ﬁ = f,) —t= f) (7.1)

states that the two updates are never inconsistent. The violation of property 7.1 means that
there exists a state in which R and R fire, they identify the same location, and ¢ # £.

MPa2 Every conditional rule must be complete

In a conditional rule R = if ¢ then Ry;., endif, without the else branch, the condition ¢ must
be true if R is evaluated. Therefore, in a nested conditional rule, if one does not use the else
branch, the last condition must be true.

In Code 7.4 the inner conditional rule is complete, since, if guard z > 0 of the outer conditional
rule is false, the guard < 0 is true. In Code 7.5, instead, the inner conditional rule is incomplete,
since, if guard a and b of the outer conditional rule is false with a being true and b being false,
then no branch in the conditional statements is chosen. Property

Always(RFC(R) — ¢) (7.2)

states that, when the conditional rule R is executed, its condition c¢ is evaluated to true. A viola-
tion of property 7.2 means that there exists a behaviour of the system that satisfies RFC(R) A —c
but it is not explicitly captured by the model.

Corollary 1: Every Case Rule without otherwise must be complete Since the case rule
can be reduced, by definition [32], to a series of conditional rules, the computation of RFC is
straightforward. The meta-property MP 42 is applied to case rules as follows. Let

switch ¢
caset| : Ry

caset, : R,
endswitch

be a case rule R. Its completeness is given by the following property:

Always (RFC(R) — \"/t = ti> (7.3)

The violation of the property 7.3 means that there exists a state in which the case rule R is
executed and no branch is taken.

MPa3 Every rule can eventually fire

Let R be a rule of our ASM model; to verify that R is eventually executed, we must prove the
following property:

Sometime( RFC(R)) (7.4)

If the property is proved false, it means that rule R is contained in an unreachable model fragment.
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if x > 0 then
if x < 0 then
skip
endif
endif

Code 7.6: Conditional rule with guard never true

Corollary 2: Every condition in a conditional rule is eventually evaluated to true
(and false if the else branch is given) For every conditional rule, MP 5 3 requires that there
exists a path in which its guard is eventually true and, if the else is given, also a path in which
its guard is eventually false. In the example in Code 7.6 the guard of the inner conditional rule
is never true.

Let Q = if cthen Ripep, [else Rese] endif be a conditional rule. The property 7.4 becomes,
for the then and the else branches, respectively:

Sometime(RFC(Q) A ¢) (7.5)
Sometime(RFC(Q) A —c) (7.6)

MPa4 No assignment is always trivial

An update [ := ¢ is trivial [87] if [ is already equal to t, even before the update is applied. This
property requires that each assignment which is eventually performed, will not be always trivial.
Let R = [ :=t be an update rule. Property

Sometime(RFC(R)) — Sometime(RFC(R) Al # t) (7.7)

states that, if eventually updated, the location [ will be updated to a new value at least in one
state. Note that the more simple property Sometime(RFC(R) Al # t) would be false if the
update is never performed.

MPA5 For every domain element ¢ there exists a location which has value e

Every domain element should be used at least once as location value. In the example of Code
7.7, the element OUTOFMONEY of the domain State is never used. To check that a domain
element e; € D is used as location value, if [1,...,l, are all the locations (possibly defined by
different function names) taking value in the domain D, the property

Sometime (\/ l; = ej> (7.8)

i=1

states that at least a location once takes the value e;. Note that this property must be restricted
to domains that are only function co-domains: if the domain D is used as domain of an n-ary
function with n > 0, all its elements have to be considered useful, even if property 7.8 would be
false for some e; € D. Otherwise, if property 7.8 is false, the element e; may be wrongly removed
from the domain.

MPa6 Every controlled function can take any value in its co-domain

Every controlled function is assigned at least once to each element in its co-domain; otherwise it
could be declared over a smaller co-domain. Let [ ...[, be the locations of a controlled function
f with co-domain D = {ey,...,e,}. Property
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asm ATM
import StandardLibrary

signature:
enum domain State = {AWAITCARD | AWAITPIN | CHOOSE | OUTOFSERVICE | OUTOFMONEY}
dynamic controlled atmState: State
dynamic controlled atmInitState: State
dynamic controlled atmErrState: State
dynamic monitored pinCode: Integer

main rule r_Main =
par
if (atmState = atmInitState) then
atmState := AWAITPIN
endif
if (atmState=AWAITPIN) then
atmState := CHOOSE
endif
if (atmState=CHOOSE) then
atmState := AWAITCARD
endif
endpar

default init s0:
function atmlInitState = AWAITCARD
function atmErrState = OUTOFSERVICE
function atmState = atmlInitState

Code 7.7: Over-specified ATM model

Sometime (\/ l; = 61> A Sometime <\/ l; = 62) A ... A Sometime (\/ li = em> (7.9)

i=1 i=1 i=1
states that f takes all the values of its co-domain D. Actually, in order to discover what values
of the co-domain are never taken, each Sometime must be checked independently.
MPAT7 Every controlled location is updated and every location is read

This meta-property is obtained combining the results of the previous meta-properties and a static
inspection of the model. It checks if a location is useful and if it has been declared correctly (e.g.,
a controlled function could be static). The meta-property is defined by Table 7.1.

controlled | initialised | updated | always trivial | read || Possible actions
update
false N/A N/A N/A false || remove - read somewhere
true - false N/A false || remove - read somewhere
and/or add an update
true true false N/A true || declare static - add an update
true true true true - declare static

Table 7.1: Indicators used in the verification of MPA7

Given a location, the static inspection of the code must establish whether it is a controlled lo-
cation, or it is a monitored /static/derived location (column controlled). Also by static inspection,
it must be discovered if the location is initialised (column initialised); this check is applicable
only to controlled locations (N/A when controlled is false).
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Moreover, through MP 4 3 we check if the location is updated (column updated): it is applicable
only to controlled locations. We check that there exists at least an update rule in which the
location is on the left-hand side.

By MPa4 we check if the update is always trivial (column always trivial update): it is appli-
cable only to controlled locations which have actually been updated.

Finally, by MP a3 we check if the location is read in at least one state.

The combination of the results of the single checks can suggest different possible solutions to
fix the model. Let’s see, as example, the second row of the table. If a controlled function is never
updated and never read, no matter it is initialised or not, we can think of two possible sources
of the error and provide two possible solutions:

a) the location is useless and the corresponding function can be removed (only if all the locations
of the same function present the same problem),

b) the modeler forgot to specify some behaviours and so the location should be read and/or
updated somewhere in the model.

Let’s see the application of the meta-property to a simple example. In the model shown in
Code 7.7 the monitored location pinCode is never read; this means that it could be removed
or that a part of the model is missing in which the location should be read. The controlled
atmErrState location is initialised, but never updated nor read; it could be removed or it should
be used in some unspecified part of the model. The controlled atmInitState location is initialised,
read, but never updated; it could be declared static.

7.3 Meta-property verification by model checking

To verify (or falsify) the meta-properties introduced in the previous section, we use the As-
metaSMYV tool (see Section 9.2) which is able to prove temporal properties of ASM specifications
by using the model checker NuSMV. The ASM specification M is translated to a NuSMV machine
Mpyysyyv representing the Kripke structure which is model checked to verify a given temporal
property.

We here use CTL to express the properties to be verified by NuSMV. The technique used to
translate meta-properties into CTL formulae is the same described in Section 6.3 for the NuSMV
model advisor.

7.4 Experimental results

We have implemented a prototype tool, available at [13], that has allowed us to apply our model
review process to three different sets of ASM specifications:

e the Bench set contains only the benchmarks we have explicitly designed to expose the
violations of the introduced meta-properties;

e the AsmRep set contains models taken from the ASMETA repository which are also available
at [13]. Many ASM case studies of various degree of complexity and several specifications
of classical software engineering systems (like ATM, Dining Philosophers, Lift, etc.) are
included in AsmRep.

e the Stu set contains the models written by the students of a master course in which the
ASM method is taught.

The results of our experiments are reported in Table 7.2 which shows the name of the set,
the number of models in it, the total number of rules in those models, the number of violations
we detected, and the violations found in terms of meta-properties.

As expected our tool was able to detect all the violations in the benchmarks. The student
projects contained several faults, most regarding the model minimality but also some inconsisten-
cies which were not detected by model simulation. We found also several violations in the models
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Spec Set ‘ # spec. ‘ # rules ‘ # violations ‘

violated MPxs (# violations)

Bench 21 384 61 All

AsmRep 18 506 29 MP A 4(11), MPA6(8), MPA5(5)
MPA7(4), MPA3(1)

Stu 6 172 38 MPA7(11), MPA5(9), MPA6(9),
MPA1(3), MPA3(3), MPA4(3)

Table 7.2: Experimental results and violations found

of AsmRep, all of them regarding model minimality. Note that not all the models in AsmRep could
be analysed, since AsmetaSMV does not support all the Asmetal. constructs and it can analyse

only finite models.






Chapter 8

Assessing the fault detection capability of a model
review technique

In Chapters 6 and 7 we have presented two model review techniques for, respectively, NuSMV
specifications and ASMs. These techniques identify model attributes and characteristics that
any model should assure, independently from the particular model to analyse. These quality
attributes are expressed as formal predicates, called meta-properties: they can be assumed as
measures of model quality.

The main aim of model review is to check if models are easy to develop, maintain, and
enhance, not to detect behavioural faults. However, also the (stylistic) violations identified by a
model reviewer can bring to behavioural faults. So, it would be of great importance to be able
to assess the capability of tools for static checking (like model reviewers) in detecting errors in
models, especially actual behavioural faults. However, while testing fault detection capability has
been extensively studied, since testing explicitly targets behavioural faults, the fault detection
capability of static analysis has not been studied with the same strength. For this reason, we
propose a way to assess the fault detection capability of static model review by using mutation.

Mutation is a well known technique in the context of software code, and program mutation
consists in introducing small modifications into program code such that these simple syntactic
changes, called mutations, represent typical mistakes that programmers often make. These faults
are deliberately seeded into the original program in order to obtain a set of faulty programs called
mutants. Program mutation is almost always used in combination with testing. High quality
test suites should be able to distinguish the original program from its mutants, i.e., to detect the
seeded faults. The history of mutation testing can be traced back to the 70s as reported by [106].
Mutation testing has been applied to many programming languages and for any sort of domain
application. More recently, it has been applied to specifications like FSMs [64], Petri nets [65],
Statecharts [66], Object-Z specifications [127], Estelle specifications [56], instead of programs.

We propose using mutation analysis in combination with static model review instead of test-
ing, and we operate at specification level instead of at code level. We evaluate the fault detection
capability of the NuSMV model advisor, but the idea behind the presented approach could be
used to evaluate also the ASM model advisor or other model review techniques.

The idea is quite simple: can we use the mutation of NuSMV models to assess the quality
of the analysis performed by the model advisor? A static analysis like that performed by our
model advisor, to be really useful in practice, should be able to distinguish between correct
specifications and faulty ones, in a similar way as tests are able to kill mutants in mutation
testing. Note that a model advisor is designed to enforce a set of style and consistency rules with
the main goal of increasing model qualities like maintainability and readability, while it does not
target behavioural correctness.

Section 8.1 presents a NuSMV model we use as running example. Section 8.2 introduces a
set of mutation operators for NuSMV, representing possible mistakes designers can make. Each
operator produces a set of mutated specifications, which however could be equivalent to, i.e.,
behave as, the original one (Section 8.3). Equivalent mutants pose a challenge to our method,
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MODULE main
VAR
hour: 0..23;
hourl2: 1..12;
amPm: {AM, PM};
ASSIGN
init (hour) := 0;
next(hour) := (hour + 1) mod 24;
hourl2 :=
case
hour in {0, 12}: 12;
!(hour in {0, 12}): hour mod 12;
esac;

amPm :=
case
hour < 12: AM;
hour >= 11: PM;
esac;

CTLSPEC NAME pmOK := AG(hour > 11 —> amPm = PM);

Code 8.1: NuSMV model of a clock (only hours)

since they do not represent actual faults. A novel technique for checking equivalence between
Kripke structures is presented in Section 8.4, and extended to NuSMV models in Section 8.5.
Section 8.6 presents the process we have devised to combine the use of mutation and static model
review. This process is able to classify mutants in four cases: it considers if a mutant has been
killed or not, and if it is equivalent or not. The desired outcome would be to have only killed
not equivalent mutants and not killed equivalent ones. We present a series of experiments and
statistical analyses in Section 8.7. We are able to assess the quality of our method by measuring
its sensitivity, precision, and accuracy.

8.1 Running example

Code 8.1 shows the NuSMV specification that we use as running example throughout the chapter
to describe our approach. It is a model of a clock that memorizes only the hours: the variable
hour provides the hour in the 24-hour format, whereas variables hour12 and amPm provide the
hour in the 12-hour format. Variable hour is initialised to zero and it is incremented of a unit
(modulo 24) in each transition from a state to the next one. The values of hour!2 and amPm
are defined based on the value of hour. A CTL property checks that, in each state, if hour is
greater than 11, then amPm is PM; the property identifier is pmOK .

Model review We checked the model in Code 8.1 using our model advisor. The assignment of
variable amPm violates meta-property MPyn3 (see Section 6.2.1), since the conditions hour < 12
and hour >= 11 are not mutually exclusive: both conditions are true when variable hour takes
value 11. Note that, however, the definition of variable amPm is correct since, when hour takes
value 11, amPm correctly assumes value AM (because the first branch of the case expression
whose condition evaluates to true is taken). In this case, the violation of the meta-property has
indicated a stylistic defect, not a real fault.

8.2 Mutation operators for NuSMV models

In order to generate mutated specifications (or mutants), we must define some mutation operators,
i.e., rules that specify syntactic variations of the specification [2]. The standard way is to derive
the operators directly from fault classes, namely errors that can be introduced by the developer
in the specification: typical fault classes are those defined by Kuhn in [117].

We have identified a group of mutation operators: some of them are the usual ones described in
literature (e.g., LOR, SA0), others are more specific operators tailored on NuSMV specifications




8.2 Mutation operators for NuSMYV models 83

MODULE main

VAR

hour: 0..23;
hour12: 1..12;

amPm:

ASSIGN

init (hour) :
next(hour) :

{AM, PM};

03
(hour + 1) mod 24;

hourl2 :=
case

hour in {0, 12}: 12;
!(hour in {0, 12}): hour mod 12;

esac;

amPm

case

hour >= 11: PM;
hour < 12: AM;

esac;

CTLSPEC NAME pmOK := AG(hour > 11 —> amPm = PM);

Code 8.2: Mutation of the NuSMV model in Code 8.1 — Swapped branches

(e.g., MB, SB). Mutation operators can be classified as follows:

e Structure mutation operators modify the structure of the specification:

Missing Branch (MB): in a case expression one of the branches is removed.

Swapped Branches (SB): in a case expression two branches are swapped. Given a case
expression with n branches, it produces 7(n—1)/2 mutants. The model in Code 8.2
is a mutant of that in Code 8.1, obtained by swapping the two branches of the case
expression of the assignment of variable amPm.

Missing Definition (MD): a variable assignment (simple, init or next) is removed from
an ASSIGN section.

Missing TRANS/INIT/INVAR (MTC/MIC/MINC): a TRANS/INIT/INVAR con-
straint is removed from the specification.

e Expression mutation operators modify expressions:

Ezxpression Negation (EN): an expression is replaced by its negation.

Logical Operator Replacement (LOR): a logic operator (&, |, —, < =zor, znor) is
replaced by another logic operator.

Mathematical Operator Replacement (MOR): a mathematical operator (+, —, =*, /,
mod) is replaced by another one.

Relational Operator Replacement (ROR): a relational operator (=, ! =, <, <=, >,
>=) is replaced by another one. The model in Code 8.3 is a mutant of that in Code 8.1,
obtained by replacing, in the second condition of the case expression of the assignment
of variable amPm, the operator >= with the operator >.

Stuck-At 0/1 (SAO, SA1): a boolean expression is replaced by the value FALSE/TRUE.

Associative Shift (AS): in an expression, operators precedence is changed introducing
and/or removing parentheses (e.g., (a | b) & ¢ is mutated in a | (b & ¢)).

e Value mutation operators modify the occurrence of numerical or enumerative values:
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MODULE main
VAR
hour: 0..23;
hourl2: 1..12;
amPm: {AM, PM};
ASSIGN
init (hour) := 0;
next(hour) := (hour + 1) mod 24;
hourl2 :=
case
hour in {0, 12}: 12;
!(hour in {0, 12}): hour mod 12;
esac;
amPm :=
case
hour < 12: AM;
hour > 11: PM;
esac;

CTLSPEC NAME pmOK := AG(hour > 11 —> amPm = PM);

Code 8.3: Mutation of the NuSMV model in Code 8.1 — Relational Operator Replacement

— Enumeration Replacement (ER): an enumeration constant is replaced by another enu-
meration constant belonging to the same domain.

— Number Replacement (NR): an integer constant n is replaced by the integer constant
n+lorn—1.

— Digit Replacement (DR): given an integer constant n whose decimal representation is
Ny - .. Ng, a digit n; (with ¢ = 0,...,m) is replaced with a different digit (e.g., 98 is
mutated in 92). For each integer constant, it produces 9 - (m + 1) mutants.

All the mutation operators previously introduced are applied to the ASSIGN, DEFINE,
TRANS, INIT and INVAR sections; in this work we do not mutate neither the variable dec-
laration nor the properties specifications.

Since we do not modify neither variable domains nor modules instances, all the mutant
specifications we produce have the same state space of the original specification; the mutations
we apply can just change the transition relation, the set of reachable states and the set of initial
states.

Although the operators introduce only single mutations (first order), they can be applied in
sequence in order to obtain higher order mutants [105].

In the rest of the thesis we will identify mutants with the acronym of the mutation operator
that generates them.

Note that the mutation operators are voluntarily not directly related to the properties that
are addressed by the NuSMV model advisor since they model faults, while meta-properties refer
to quality attributes of the models. As already emphasized before, the model advisor is not
designed to target behavioural faults.

In the following we will use the function

orig : Muts — OrigSpecs (8.1)

that, given a mutant, retrieves its original specification.

8.3 Equivalent mutants

When a mutant behaves like the original model, it is said equivalent. Most mutation operators
can produce equivalent mutants, which pose a challenge, since they do not represent actual
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faults and can not be detected by observing the behaviour of the specification. The problem of
functionally equivalent mutants is well-known in mutation testing [2, 85]: an equivalent mutant
does not change the semantics of the program. Since the semantics of the program is unchanged,
it is impossible (and useless) to write a test that captures it.

The model in Code 8.2 is a non-equivalent mutant of that in Code 8.1, since the seeded
mutation (the swapping of the case expression branches in the assignment of variable amPm)
has changed the behaviour of the model. In fact, when variable hour takes value 11, the variable
amPm takes value AM in Code 8.1, whereas it takes value PM in Code 8.2.

The model in Code 8.3, instead, is an equivalent mutant of that in Code 8.1, since the seeded
mutation (the replacement of the relational operator >= with operator > in the second condition
of the case expression of the assignment of variable amPm) has not changed the behaviour of the
model. In fact, in Code 8.1 the condition hour >= 11 is checked only if hour is greater than 11,
since the previous branch is not taken if condition hour < 12 is false. So, replacing the second
condition with hour > 11 does not affect the behaviour of the model.

Although detecting equivalent mutants is in general an undecidable problem [2] and, when
possible, is a time-consuming activity [85] and difficult to automatize, we have devised a technique
able to discover NuSMV equivalent mutants. We first present a technique to discover equivalence
between Kripke structures in Section 8.4. Then, in Section 8.5, since NuSMV models are a form
of Kripke structures, we apply the technique to discover equivalence between NuSMV models.

8.4 Equivalence checking for Kripke structures

In Section 3.1.2 (Theorem 3.1) we have reported the conditions under which two Kripke structures
K, and K5, with the same set of atomic propositions, are equivalent.

We here show that the problem of checking the equivalence of K; and K (i.e., proving
properties 3.1 — 3.4 of Theorem 3.1) can be reduced to the problem of proving some properties
over a new merging Kripke structure K5 derived from K; and K. In Section 8.4.1 we show how
to build K5, and in Section 8.4.2 we introduce a new theorem that establishes the equivalence
between K7 and K5 based on the verification of some properties in K7s.

8.4.1 Construction of the merging Kripke structure

Let K1 = (51,589, T1,L£1) and Ky = (S5, 59, Ty, Ls) be two Kripke structures with the same set
of atomic propositions AP.

Let K1 = (S12,5%,T12,L12) be a Kripke structure built upon K; and K, satisfying the
following conditions.

C1: condition over the states S;12. There exist two projection functions:

O’12512—>Sl 022812_"3’2
such that

Vs1 € S1,Vsg € So,3s12 € S12 [01(812) = 51 A 02(s12) = $2]
C2: condition over the initial states S9,.
Vse Sip [s€ )y = (o1(s) € 8] A aa(s) € S9)]
C3: condition over the transition relation 7.
Vs € S12,Vs € S12 [’ € nextk,,(s) < (01(s') € nexty, (01(8)) A 02(8") € nexty,(02(s)))]

8.4.1.1 Corollary

A state s € Syo is reachable in K5 iff its projections o1 (s) and o3(s) are, respectively, reachable
in K7 and K.

isReachk,,(s) < isReachg, (01(s)) A isReachk,(o2(s))
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Proof. Let’s assume that

3s € S12 [isReachk,,(s) A —isReachk,(o2(s))]

If s is reachable in K5, it means that there exists a path 7 = s1,...,s, € H(l)2 such that
Sp = S.
Let’s now consider the sequence of states o2(s1),...,02(s,) in K5. By the assumption made

at the beginning of the proof, we know that the projection of state s, is not reachable in Ks,
i.e., misReachy,(02(sy,)); this means that 3i € [1,n — 1]: 02(s;41) ¢ next(oz(s;)). But this
contradicts condition C3 on the construction of Ti5. A similar contradiction is achieved if, at
the beginning of the proof, we suppose that 3s € Si2 [isReachk,,(s) A ~isReachk, (01(s))]. O

8.4.2 Conditions on the merging Kripke structure for assessing the equivalence

We here introduce some predicates to investigate the relation between the states of K15 and the
states of K7 and Ks. Then, we use them to formulate a theorem (derived from Theorem 3.1) in
which the equivalence between K7 and K> is established checking some properties in Kis.

Definition 8.1 (Equivalence of the projections). We say that a state s € S5 is labelly equivalent
iff the labels of the two projections are equivalent, i.e,

le(s) = L1(01(s)) = La(02(s))

We say that two states s,s’ € Sia are labelly equivalent with respect to the projection o;
(i = 1,2) iff the labels of their projections o; are equivalent, i.e,

lel(s,s') = ,Cl(O'l(S)) = ,Cl(O'l(S,)) 162(8,8,) = £2(O’2(8)) = CQ(O—Q(S,))

Definition 8.2 (Mirror state). For all states s € S12 we define the predicate mirror as:

" " / "
mirror(s) = le(s) — Vs' € next(s) 35" € eat(s) [le(s") n lex(s', s")1n ]

35" € next(s) [le(s") A lea(s',s™)]

Theorem 8.1 (Equivalence between Ky and K»). K; and Ko are equivalent iff the following
properties

Vse 8%y, 35" € S, [le(s)) A lei(s,s')]
Vs e 8Py, 35" € 8% [le(s") A lea(s, s")]

Vs € reach(Ki2) [mirror(s)] (8.4)
hold in Klg.

8.5 Equivalence checking for NuSMV models

We here introduce a technique that permits to check if two NuSMV models that have the same
state space are equivalent. Since NuSMV models are a form of Kripke structures (see Def. 3.10
in Section 3.2), we adapt the technique shown in Section 8.4 for checking the equivalence between
Kripke structures.

In Section 8.5.1 we show the result of mutating a NuSMV model, using the mutation operators
previously introduced. In Section 8.5.2 we show how to build a merging NuSMV model starting
from a NuSMV model and one of its mutant. Finally, in Section 8.5.3, we describe how to
check the equivalence between the original NuSMV model and its mutant by proving some CTL
properties over the merging model.

S = Sp
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8.5.1 Mutating a NuSMYV model

As we have seen in Section 8.2, the mutations we apply can change the initial assignments and/or
the next state assignments of a set of variables, that is the way in which their initial/next value
is calculated. Given a NuSMV model M, = {(S,, S, T,), when we apply a mutation, we obtain a
model M, = {(S,,, S, T,,> with the same state space and the same variables, i.e., S, = S, and
var(M,) = var(M,,), but, maybe, with a different transition relation T,, and/or a different set
of initial states SO,. If SY = S% A T? = T? the two models are equivalent, otherwise they are
not equivalent.

Partitioning of the variables We decompose the variables var(M,) in subsets, depending
on the fact that they are affected by the mutation or not:

MV = {vy,...,0} is the set of variables whose initial /next assignment has been mutated.

Let Dq,..., Dy be their domains.

e DV = {vg41,...,0,} is the set of all non mutated variables of M, upon which the value of
some mutated variables depends on, i.e., v € DV iff there exists a variable © € MV whose
value in some state is determined according to the value of v in the current/previous state.
Let Dgy1,..., D, be their domains. We require that MV n DV = .

e [N is the set of variables that are not considered in the evaluation of the value of any
variable in MV and that are not mutated.

8.5.2 Merging model

Given the NuSMV models M, and M,,, we define the merging model M, = {S.,S%,T.) as the
NuSMV implementation of the merging Kripke structure described in Section 8.4.1. M, is built
as follows:

e var(M.) = MV U MV’ 0 DV, where MV’ = {#,...,7,} is the set of renamed copies of
variables in MV. Their domains are the same of the variables in MV, i.e., Dq,..., Dy.
There exists a bijective function

mut : MV — MV’
such that Vo, € MV (mut(0;) = v}).

e The initial state assignments of variables in MV u DV are those defined in M,, while
variables in MV’ have initial assignments as in M,,.

e The next state assignments of variables in MV U DV are those defined in M,,, while variables
in MV’ have next state assignments as in M,,.

Note that variables in IN are not considered in the merging model since they are not useful
for assessing the equivalence. Identifying variables of IN is a variant of the cone of influence
technique [51].

Given a state s € S, the interpretation of variables MV u DV identifies a set of states in S,,
ie.,

k n
origModelStates(s) = {so €5S,: /\[ﬁzﬂs = [0:]s, A /\ [vils = [[Ujﬂso}

j=k+1

If IN = ¢, then |origModelStates(s)| = 1 for each s € S,.
In the same way, given a state s € S, the interpretation of variables MV’ u DV identifies a
set of states in .5,,, i.e.,
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MODULE main
VAR
hour: 0..23;
amPm: {AM, PM};
amPmMut: {AM, PM};
ASSIGN
init (hour) := 0;
next(hour) := (hour + 1) mod 24;
amPm =
case
hour < 12: AM;
hour >= 11: PM;
esac;
amPmMut :=
case
hour >= 11: PM;
hour < 12: AM;
esac;

Code 8.4: Merging model of models in Codes 8.1 and 8.2

k n
mutModelStates(s) = {sm €Sm: /\[[17;]]3 = [9}]s,, A /\ [vils = [[vjﬂsm}
i=1 j=k+1

Let’s see now an example of merging model. Code 8.4 is the merging model to use for checking
the equivalence between Codes 8.1 (the original model) and 8.2 (the mutant). The set of variables
of the merging model is composed as follows: MV = {amPm} and MV' = {amPmMut} since
the mutation affects the definition of variable amPm, and DV = {hour} because the definition of
variable amPm depends on variable hour. The transitions relation of variables amPm and hour
are those specified in the original model (Code 8.1), whereas the transition relation of variable
amPmMut has been derived from the transition relation of variable amPm in the mutated model
(Code 8.2). Note that variable hour12 is not included in the merging model because its transition
relation has not been mutated and it is not involved in the definition of a mutated variable (i.e.,
IN = {hour12}).

Let’s now introduce some definitions useful for identifying the states of the merging model as
tuple of values.

Definition 8.3 (Initial state as tuple of values). Let IS be the set of tuples of values of the

variables in the initial states SO, i.e.,

<~i:1 (S ﬁ“dzk:l € Diad?:k+1 S Dj) :

A& =Tlond =) n A dy= ms]

=1 j=k+1

1S =
Is e SV

Let’s also define the projections of IS over the original and the mutated models as

k n
IS, = {(Ji?l € Di,d}_py € Dj) :3se S0 [/\CZZ = [0:]s A /\ dj = [”j]]S]}

i=1 j=k+1
k n

1S, = {(d§_1 € Dy iy € Dj) :3se S0 l/\ di = [0}]s A /\ dj = MSH
i=1 j=k+1

By definition of IS, IS, and IS,,, it holds that
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V (di_, € Di,djy € D;,di_; € D;
(2 dty di ) €18 = (A dioyy) € 180 n (A5 di ey ) €150

Definition 8.4 (Next state as tuple of values). Let NS(s) be the set of tuples of values of the
variables in the next states of s € S, i.e.,

(1 € Didiey e Dy D))

35’ € next(s) l/k\ (CL = [o:]s A d} = [[172]]3') A /"\ dj = ijﬂs’]

i=1 j=k+1

NS(s) =

Let’s also define the projections of NS(s) over the original and the mutated models as

NS,(s) = {(dk 1€ DZ,dJ we1 €D; ) : 38’ € next(s) [/\JZ = [0;]s A /”\ d; = Mjﬂs,}}

i=1 j=k+1
k n

NSp(s) = {(d’“ e Dy, €D, ) . 35" € newt(s) l/\di =8~ N\ d= [[vj}]s,]}
i=1 j=k+1

By definition of NS, NS, and NS,,, it holds that

Vse S, V (dle e D;, d;’il e D, d?:kﬂ € Dj)
(o) 0 o () 50 () 5.0 )

Let’s now introduce two predicates that permits to discover how a state in the merging model
represents the states of the original and mutated models.

Definition 8.5 (Both and Fither predicates). Let

k ~ _ n
BOth(d1 1 A5 k1) = A ( i =0y Ady = 17;) AN dj=v;
k ~ ~
Elther(df 17d; k+1) = (/\ dz = ’l~1i Vv /\ dl = ’lj;) A /\ dj = ’Uj
2 2 J

be two predicates such that, given a n-upla of values d = (d¥_,, dj_y.1) (that represents a state),
Both(d) means that both models M, and M, are in the same state d, while Either(d) means that
at least one model is in state d.

8.5.3 Equivalence checking through CTL properties

In this section we will see how the properties described in Theorem 8.1 for ensuring the equiv-
alence of two Kripke structures can be checked through some CTL properties for checking the
equivalence of two NuSMV models. Section 8.5.3.1 redefines, for NuSMV models, some predi-
cates previously introduced for Kripke structures. Then, Section 8.5.3.2 describes how to prove
properties 8.2 and 8.3 on the initial states, and Section 8.5.3.3 how to prove property 8.4 on
the transition relation. Finally, Section 8.5.3.4 presents an example of the application of the
technique.
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8.5.3.1 Equivalence of the projections and mirror state

Since a state in a NuSMV model is identified by the values of its variables (see Def. 3.10),
the predicates for the equivalence of the projections (see Def. 8.1) can be written using the
interpretation of the variables in the state, instead of the labels. Let s and s’ be states of S.

le(s) = Vv e MV [[v]s = [mut(v)]s] = /\ [5:]s = [3]s (8.5)

k n
leo(s,s') = Yo e (MV U DV) [[v]s = [v]s] = /\ [6:]s = [0:]s A~ /\ [vs]s = [vils  (8:6)

j=k+1
lem(s,s') = Yve (MV' 0 DV) [[v], = [v]s] = N\ [5]s = [5]s A A [vsls = [;]s (87)
i=1 j=k+1

Applying formulae 8.5 and 8.6, the formula le(s’) A le,(s,s’) can be written in the following
way:

le(s") Aleo(s,s’) = /k\ [U:]s = [9i]s A /\ [0:]s = [0:]s A /\ [vils = [vills
o gkt (8.8)
= /:\ ([9:]s = [0:llsr A [9:])s = [9:]s) A ‘:/k\+1 [vils = [vills

Applying formulae 8.5 and 8.7, the formula le(s) A le,, (s, s’) can be written in the following
way:

le(s') A lem(s,s)

P>
>

[O:]s = (o] A Z\l [7:]s = [ils A /\ [[vﬂ] [v;]s

s Ik (8.9)
= A ([, = msm[ﬁ;ﬂﬁﬂﬁﬂ]sw_=/k\+1[[vjﬂ = [v;]s

Finally, the predicate mirror (see Def. 8.2) for NuSMV models can be defined using formulae
8.5, 8.8 and 8.9.

a

mirror(s) =
k
A [oils = [5:]s —

Vs’ € next(s)
(8.10)

>

3s” € next(s)
i

([B:]s = [B:]sn A [B:]s = [Ti]s7) A /\ [[vj]]s' = [vs1s ]

35" € next(s)

([[v]]'—[[171'}]5'"A[[ﬁé]]sf:ﬂﬁéﬂsm)A /n\ [[vjﬂs'—[[vjﬂsm}

|I>?r I

8.5.3.2 Equivalence of the initial states

First condition on the initial states Using formula 8.8, formula 8.2 becomes

k n
Vse 5P, 3s' € S¢ /\ ([ﬂiﬂs = [o:]s A [0:]s = [[ﬁ;ﬂs/) A /\ [v;]s = [[Ujﬂs’]

j=k+1
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Substituting the universal quantification over the initial states with the quantification over
the values of the variables in the initial states (i.e., I.S in Def. 8.3), we obtain

- - k - ~ n
v(di‘c:l?d;k:hd?:k-&-l) € IS, ElSI € S(e) l/\ (dZ = Hﬁi]]sl N dl = [[6:]5/) A A d] = [[Ujﬂs/]

i=1 j=k+1

Note that the interpretations of the variables in state s have been replaced with the actual
values of the variables in the state.
_ We can further simply the formula, observing that the values of the variables in MV" (i.e.,
d’¥ |) are not used in the propositional formula (matrix) of the existentially quantified subformula:
so it is possible to quantify over IS, (see Def. 8.3). Moreover, the matrix of the existentially
quantified subformula can be replaced with the predicate Both (see Def. 8.5) interpreted in state
s'. The obtained formula is

V(di_y, d}_py1) € IS,, 35’ € SC [Both(di_y, d}—y41)]s (8.11)
Second condition on the initial states Using formula 8.9, formula 8.3 becomes
k n
Vse 5P, 35" € S¢ l/\ ([[f’;]]s = [0:lsn A [07]s = [f’gﬂy’) A /\ [vils = [[Uj]]S”l
i=1 j=k+1

The quantification over the initial states can be substituted with the quantification over the
values of the variables in the initial states, i.e.,

- - k - ~ n
V(di—":l,dgil,d;-;kﬂ) elS, 3s" € S l/\1 (di = [0;]s A di = [[ﬂ;]}su) A A dj= [[vj}]s”}
_ The formula can be further simplified, observing that the values of the variables in MV (i.e.,
dle) are not used in the matrix of the existentially quantified subformula: so, it is possible to
quantify over 1.5, (see Def. 8.3). Moreover, the matrix of the existentially quantified subformula
can be replaced with the predicate Both interpreted in state s”. The obtained formula is
V(di_s, dj_py1) € ISm, 35" € S¢ [Both(d;_;, i—kr1)]s (8.12)
Unique formula for checking formulae 8.11 and 8.12 In order to use a unique formula
for checking formulae 8.11 and 8.12 we must introduce the following theorem.

Theorem 8.2. Being A, B and C three domains such that A u B < C, it holds that

Vee A [f(x)]AVYye B [fly)] = VzeC [(ze Av ze B) — f(2)]

The matrices of the universal quantified formulae 8.11 and 8.12 are the same. So, it is possible
to prove both properties, using the following formula?

eDy) Is € SO l(i/i\l[[ﬁiﬂs =d; v 2\1[[172]}3 = (L) A A ol = dj] _

V(di_, € Dy, d7 j=krl

j=k+ 5
35’ € S9 [[Both(dle,d;‘:kﬂ)ﬂs/

We can rewrite the formula using the predicate Either in the antecedent of the implication

(8.13)

. - = 0 T 7k n N
A (df:1 e D, d;'l:k+1 € Dj) [ s €5 [[ Zther(dl=1ldj=k+1)]]5 1

s’ € SY [Both(di_y, dj—_p,1)]s

2In our case IS, < (szl D; x X;L:Ic+1 D]-) and IS,, © (szl D; x X;L:k+1 Dj>. So, we can take as C

the domain X¥_, D; x X5 k1 Dje
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Checking equivalence of initial states using CTL properties As we have already seen,
in NuSMV a CTL property ¢ is true iff it is true starting from each initial state, i.e.,

MEp iff Vsg € S° (M, s0) =

So, if we want to know if a property is true in at least an initial state, we must check —¢; if
M H —¢, it means that there exists an initial state in which ¢ is true, i.e.,

M ¥ —p iff Jsp € S° (M, s0) =

So, in order to check property 8.13, for all tuples of values (al’C 1€ D, d] k41 € Dj), we have
to:

1) check the CTL property
—FEither (dz 1 dj- k+1> (8.14)

2) if property 8.14 is false, also check that the CTL property

—Both (dz . ng) (8.15)
is false.

8.5.3.3 Equivalence of the transition relations

Applying the definition of the predicate mirror (see Formula 8.10), formula 8.4 becomes

Vs € reach(M,)
Mok
;/\1 [5:]s = [9:]s —

Vs' e next(s)
3s” € next(s)

([0 = [l A [0i]r = [2]r) A _=/n\ [v;ls = ijﬂsff] A

35" € next(s)

H >a. || >?s~

([[U I = [Bilsm A [5]sr = [0i]sm) A /\ [vils = [['UJHS”’}

Jj=k+1

The formula can be simplified, replacing the universal quantification over the next states of
s with the universal quantification over the values of the variables in the next states of s (i.e.,
NS(s) in Def. 8.4), in the following way

[ A [l = [0, —

i=1
V<Jé€:1€DiﬂCE 1€ 27dj k+1ED)€NS(S)

(d—hhAd—hﬂ)AK %=MMWA

j=k+1

Vs € reach(M,)

.>w

35" € next(s)

n

35" € next(s) Z\ (& = @i A & =[] ) A A dj = [[vjﬂsml

j=k+1

In the formula, in the first existentially quantified subformula, the values of the variables MV”
(i.e., d’* |) are never used, and, in the second existentially quantified subformula, the values of the
variables MV (i.e., d¥_,) are never used. So, we can rewrite the formula, splitting the universal
quantification over NS(s) in two universal quantifications over N.S,(s) and NS,,(s) (see Def.
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8.4). Moreover the matrices of the existentially quantified subformulae can be replaced by the
predicate Both interpreted in the quantified state. This is the obtained formula:

V(dk leDl,dJ w1 € Dj ) e NS,(s),
k 3s” t Both
Vs e reach(M.) | A [l = [5]s — | %€ el ﬂ ¢ ( =14y k+1)ﬂ .
i=1 V(df_, € Di,dP_, ., € D;) € NSp(s),

35" € next(s) {[Both (diC 1 dj k-&-l)ﬂ .

In the formula, the matrices of the two universally quantified subformulae over N'S,(s) and
NS, (s) are the same. According to Theorem 8.2, the conjunction of the two universally quan-
tified Subformulae can be replaced by a single formula universally quantified over the bigger

domain ><l 1 D x X" ekl D . This is the obtained formula:

) vd = (&, € Dy, iy, € D;)
Vs € reach(M.) | N [8:]s = [7i]s — (de NS,(s) vde NS, (s)) —
= 3" € next(s) [[Both (dZ 1A k+1)]] .

The formula can be rewritten, transforming the antecedent of the rightmost implication, in
the following way

| A 6. = [#1, —
(dl 1€ Doy € D;)
k n
35’ € next(s) (/\ d; = [0:]s v /:\ [[17;]5/) A /k\+1 d; = [[Ujﬂs’] -

3s” € neat(s) Both( i1, d kH)ﬂ

Vs € reach(M,)

We rewrite the formula, extracting the inner universal quantifier, and replacing the matrix of
the first existential quantifier with the predicate Fither (see Def. 8.5).

o
v (d € Didiyii € D;), -

51— [0 — 3s’ € next(s) [[Ezther(dk dr )]s —
Vs € reach(M,) [/\1 [3:]. = 1ol lﬂs” € next(s) [Both(dk_ 1 A7 1) ] 1 ]

Finally the two implications can be simplified in the following way*

v (‘ii‘c:l € Dud] ka1 € Dj) , Vs € reach(M.)

k ~
(/_\1 [0:]s = [U}]s ~ 38" € next(s) [[Either(dfl,d?kH)]}s,) N (8.16)

35'76 next(s) [[Both( 1 J i)

3Note that, for any s € Se, X l 1 D; x X"

Jekt1Dj 2 NSo(s) U NSm(s).
iP5 (Q—->R=({PrQ)—
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Checking equivalence of the transition relation using CTL properties In NuSMV,
checking property 8.16 means checking that the following formula

k
AG ((/\ o = ) A EX (Ez‘ther (cif:l, d;?_kﬂ))) — EX (Both (dﬁ;l, d?—k+1)>> (8.17)
i=1
holds in M,, for each tuple of values (d¥_, € D;, di_y41 € Dj).
Formula 8.17 has been obtained from formula 8.16 simply applying the semantics of the CTL
operators AG and EX:

o M = AG(p) iff Vs € reach(M) [(M,s) = ¢]
o M, s = EX(p) iff 3’ € next(s) [(M,s') = ¢]

8.5.3.4 Example of equivalence checking

Let’s see the application of the CTL properties shown in Formulae 8.14, 8.15 and 8.17, to check
the equivalence of models shown in Codes 8.1 and 8.2.

In the following, we report some of the CTL properties derived from Formulae 8.14, 8.15.
Some of them must be checked against the merging model (Code 8.4) in order to prove the
equivalence of the two models in their initial states.

CTLSPEC NAME isNotInitState-1 := !((

CTLSPEC NAME notEqlnitState_1 :=
CTLSPEC NAME isNotInitState 2 :=

o

mPm = AM | amPmMut = AM) & hour = 0)
((amPm = AM & amPmMut = AM) & hour = 0)

I((amPm = AM | amPmMut = AM) & hour = 1)
(

CTLSPEC NAME isNotInitState_25 := !((amPm = PM | amPmMut = PM) & hour = 0)
CTLSPEC NAME notEqInitState_25 := !((amPm = PM & amPmMut = PM) & hour = 0)

CTLSPEC NAME isNotInitState_48 := !((amPm = PM | amPmMut = PM) & hour = 23)
CTLSPEC NAME notEqInitState 48 := !((amPm = PM & amPmMut = PM) & hour = 23)

We must check that, if a CTL property isNotInitState_i is false, then also the CTL property
notEqlInitState_i is false. In the example, we verified that isNotInitState_1 and notEqInitState_1
are false (i.e., there is an initial state in which hour is 0 and both amPm and amPmMut are
AM), and all the properties isNotInitState_i, with ¢ = 2,...,48, are true: so the two models are
equivalent in the unique initial state. Totally, we had to check 49 over 96 properties.

We now report some of the CTL properties derived from Formula 8.17. All the properties
must be checked against the merging model in order to prove the equivalence of the transition
relations of the two models; if the two models are not equivalent, it could be that not all the
properties must be checked.

CTLSPEC NAME transRelOk_1 :=
AG( (amPm = amPmMut & EX((amPm = AM | amPmMut = AM) & hour = 0)) —>
EX((amPm = AM & amPmMut = AM) & hour = 0) )

CTLSPEC NAME transRelOk_12 :=
AG( (amPm = amPmMut & EX((amPm = AM | amPmMut = AM) & hour = 11)) —>
EX((amPm = AM & amPmMut = AM) & hour = 11) )

CTLSPEC NAME transRelOk_36 :=
AG( (amPm = amPmMut & EX((amPm = PM | amPmMut = PM) & hour = 11)) —>
EX((amPm = PM & amPmMut = PM) & hour = 11) )

CTLSPEC NAME transRelOk_48 :=
AG( (amPm = amPmMut & EX((amPm = PM | amPmMut = PM) & hour = 23)) —>
EX((amPm = PM & amPmMut = PM) & hour = 23) )
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We must check that all the CTL properties transRelOk_i, with ¢ = 1,...,48 are true. As soon
as we find a property false, we can stop checking since we will have found that the two models
are not equivalent. In the example, we only checked the first 12 properties, since we found that
transRelOk_12 is false®.

So, the original model (Code 8.1) and its mutant (Code 8.2) are not equivalent.

8.6 Mutation and model review

- NuSMV @ - Result @
71 Model Advisor 71 evaluation
mutant Equivalence /
operators Checker@
mutant g Syntax @ NuSMVl @
” Checker 0 Model Advisor

Figure 8.1: Assessing the fault detection capability of a model review technique using mutation
analysis

We have devised the following framework with the aim of assessing the fault detection capa-
bility of the NuSMV Model Advisor. The process is depicted in Fig. 8.1. A NuSMV model is
taken as input by the evaluation process. The mutation operators presented in Section 8.2 are
applied in order to obtain a large number of mutations of the original NuSMV model (step 1).
Each mutant is then parsed by the original NuSMYV parser in order to detect those mutations
which result in syntax errors (step 2). These mutations represent mistakes that can be easily
detected by syntax, type, and dependency checking performed by NuSMYV itself. Every mutant
that survives is analysed by the equivalence checker in order to establish if it is equivalent to the
original specification (step 3), and it is checked by the NuSMV model advisor in order to assess
the violations of meta-properties in the mutant (step 4). The original NuSMV specification must
be previously reviewed (step 0) and the results obtained over the mutant are compared with the
original review in order to establish if the mutant is either killed or not by the model advisor
(step 5). The decision of killing a mutant is taken as follows.

Let

MpV, : NuSMVmodels — Ny

be the function that returns the number of violations of meta-property MPyi for any NuSMV
model (the set NuSMVspecs contains both the original and the mutated specifications).

Definition 8.6. We say that the model advisor kills a mutant (let’s call ¢ mut) if some meta-
property is violated more times than that of the original specification (see Formula 8.1), i.e.,
formally

IMPyi : MpV ,;(mut) > MpV ,(orig(mut))

Depending on the number of violations of the original specification, we can distinguish two
scenarios:

1. Original models without meta-properties violations. In case the original model
does not violate any meta-property (it represents a completely corrected specification, i.e.,
VMPyi : MpV ,;(orig(mut)) = 0), the mutant is killed if MpV ;(mut) > 0 for any MPys.

5Note that also property transRelOk_36, if checked, would have been violated.
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2.

Original models with meta-properties violations: In this case original models violate
some meta-properties. This is the most common case, since a model with some violations
could still be acceptable (once that the designer has checked that those violations are not
faults in the model). This is particularly true for meta-properties that refer to the style
in which the specification is written (like MPx3 or MPN4). In order to kill a mutant, an
increase of the number of violations of at least a meta-property suffices. Note that the
total number of meta-property violations may decrease due to some mutations: we do not
only consider the total number of meta-property violations, because we are interested in
analysing the contribution of every single meta-property.

8.6.1 Classification of the results

: Mutants
: nKne non-equivalent
nkKe equivalent
killed not killed
(At least a MP withan : (No MP with an increased
increased # of violations) # of violations)

Figure 8.2: Classification of the results

The evaluation of the results takes into account the problem of mutant killing and equivalence.
We can classify four cases, as depicted in Fig. 8.2. The set of mutants representing all the
specifications obtained by mutation, can be divided in two by considering equivalence and by
two again by considering if a mutant is killed or not. This results into the following four subsets.

Kne:

nKe:

A non-equivalent mutant (from now on neg-mutant) is killed by the model advisor. This
means that the mutation, representing a real fault, causes a violation of some meta-property
(or an increase of the number of violated meta-properties) and that the model advisor is
capable of finding these faults. In brief: the model advisor finds a real fault.

: An equivalent mutant (from now on eg-mutant) is killed by the model advisor. This means

that the mutation does not change the behaviour of the machine, nevertheless it changes
the specification in a way that a meta-property is (more) violated. This represents a false
positive: the model advisor marks as fault a mutation in the structure which could be
classified as “stylistic” defect.

An eg-mutant is not killed by the model advisor. The mutation does not change the
behaviour of the machine neither modifies the structure of the specification in a way that
some meta-property is violated.

nKne: A neq-mutant is not killed by the model advisor. This means that a real fault passes

undetected and represents a false negative.

While Kne and nKe represent the correct outcome of the analysis, Ke and nKne represent
mistakes but with different meanings. False positives (Ke) prompt the user to modify a spec-
ification that is fault-free but that, nevertheless, may have other problems like readability. On
the contrary, false negative cases (nKne) are a clear sign of weakness in the model review we
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propose, since the model review is not enough powerful to discover such faults. This case would
require to introduce new meta-properties (if possible) or the developer to perform other types of
analysis.

Fault detection capability

If we just consider the fault detection capability, only neg-mutants must be taken into account,
since they alone represent real faults. In this case the model advisor behaves correctly when it
kills neq-mutants (Kne), while it is mistaken only when it does not kill neq-mutants (nKne). To
increase the fault detection capability, we should increase the ratio between Kne and the number
of neg-mutants.

However, although a high number of false positives (Ke) does not diminish the fault detection
capability, it may weaken the quality of the analysis since the designer may decide to ignore the
results all together if the number of requested modifications is too high.

8.7 Experiments

The experiments have been executed on a Linux machine, Intel(R) Core(TM) i7 CPU, 4 GB
RAM; the model advisor tool is part of the nusmv-tools framework [138]; the NuSMV version
used is 2.5.4.

We have collected 104 NuSMV specifications from different sources:

e examples contained in the NuSMV distribution (9);

e specifications sent to the NuSMV mailing list (3);

e specifications found on the Internet (research works, teaching material, etc.) (39);
e specifications we developed by ourselves for research and teaching purposes (25);

e NuSMV models obtained from the translation of ASMs into NuSMV models through the
tool AsmetaSMV (see Section 9.2) (28).

We evaluated the size of the specifications in terms of number of BDD variables®. The number
of BDD variables is a good indicator of the state space size, since it depends on the number of
variables (and not definitions) and the sizes of their domains. The average number is 20.44, the
minimum is 2 and the maximum 156.

Moreover we have also considered the number of BDD nodes allocated. The average number
is 10650, the minimum is 19 and the maximum 380808.

We have performed the experiments dividing the specifications in the following two sets:

e NoViolations containing 51 specifications that do not violate any meta-property;

e Violations containing 53 specifications that violate at least one meta-property.

We did not make any selection on the specification kind: we tried to build the sets as much
heterogeneous as possible, since our aim is to assess the model advisor fault detection capability
not just on a particular kind of specification, but on any possible specification. We know that
there are some specifications that are not targeted by the model advisor: indeed, the meta-
properties of the model advisor have been originally designed for checking NuSMYV specifications
that describe the transition relation in an operational way (i.e., using the ASSIGN section) and
not those that do it in a declarative way (i.e., using the INIT and TRANS sections). So, the
mutants of specifications belonging to the latter type would probably generate a high number of

6Note that the number of BDD variables is the double of value one would expect and that can be discovered,
for example, using in NuSMV the command write_order that print the order of the BDD variable. This is due to
the fact that each BDD variable has two copies, one for the current state, and another for the next state. Also
the authors of NuSMYV reports the number of BDD variables in this way [49].
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false negative results (nKne). Among all the 104 specifications, 68 are given in an operational
style.

The mutated specifications have been obtained applying 8 mutation operators among those
described in Section 8.2: ER, LOR, MOR, ROR, MB, SB, SA0, and SA1. We base our ex-
periments on two classical hypotheses: the competent programmer and the coupling effect. We
decided to apply only one mutation operator at the time (first order mutants), even if our ap-
proach supports also higher order mutants (homs) [105], because the number of homs can be very
high and because we believe that the coupling effect is generally valid for NuSMV specifications
as it is for programs [140].

8.7.1 Overall results analysis
Generated mutants

We generated 26978 mutants; 11% (2946) are rejected by the NuSMV parser, whereas the remain-
ing 24032 are syntactically correct NuSMV specifications. The following table reports, for each
mutation class, the number of its mutants and the percentage of them rejected by the NuSMV
parser.

Mutation ER | LOR | MOR | ROR | MB | SB SAO0 | SA1
Number of mutants 3037 | 8540 400 5579 | 716 | 1498 | 3642 | 3566
Rejected by parser (%) | 11 5 38 23 38 0 9 3

A lot of MB mutants have been rejected by the parser: indeed, most of the mutants in which
the default condition of a case expression has been removed are likely detected by the parser
since the case conditions become not exhaustive. The SB mutants, instead, can not be detected
by the parser: indeed, changing the order of the conditions in a case expression does not modify
their exhaustiveness.

From now on we only consider mutants that survived the NuSMV parser.

The size of a mutant in terms of number of BDD variables is the same as that of its original
specification, since we do not mutate variables declarations, i.e., we do not add/remove variables
or values from the variables domains. However, if we consider the average size of a mutant,
we discover that the average number of BDD variables is 34.05: such value is greater than the
average value of the original specifications seen previously (20.44). This is due to the fact that
bigger specifications in terms of number of BDD variables, on average, generate more mutants
because, in general, they have more instructions that can be affected by a mutation.

The number of allocated BDD nodes of a mutant, instead, can be different from that of the
original specification because a mutation can change the behaviour of a model and so also the
structure of the underlying BDD. In order to evaluate the difference between a mutant mut and
its original specification (see Formula 8.1), we use the percentage change, i.e.,

BDD_NA(mut) — BDD_NA (orig(mut))
BDD_NA (orig(mut))
where BDD_NA : NuSMVspecs — Ny is a function that, given a NuSMV specification, retrieves

the number of BDD nodes allocated.
Given a set of mutants Muts, we identify with

percChange(mut) = % 100 (8.18)

{percChange(mut)} mute Muts (8.19)

the set of all the percentage changes of the mutants in Muts.

We computed the average and the standard deviation of the set described by Formula 8.19,
considering as Muts all the mutants, or only the mutants produced with a mutation operator.
Results are reported in Table 8.1.
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Muts All ER | LOR | MOR | ROR | MB SB SAO0 | SA1l
AVG of formula 8.19 | -0.18 | -0.04 | 1.03 | -0.32 | 1.90 | -3.91 | -3.37 | -3.23 | -0.91
STD of formula 8.19 | 7.35 | 3.92 | 6.73 | 647 | 7.54 | 7.09 | 13.27 | 6.69 | 5.82

Table 8.1: Average and standard deviation of the percentage change between the number of
allocated BDD nodes in a mutant and that of the original specification

We discovered that, on average, mutation operators can increase or decrease the number of
allocated BDD nodes with almost equal probability since the percentage change computed over
all the mutants is -0.18%, and the data are normally distributed.

However, we discovered that there are some differences among the mutants generated with
different kinds of mutation operators. Almost all the operators, except LOR and ROR, on
average diminish the number of BDD nodes allocated. This is due to the fact that, most of the
times, the application of these operators causes the removal of some behaviours of the model,
making the BDD more simple. A MB mutant, in which a branch in a case expression is removed,
would probably be more simple than the original model, since, most likely, a transition has been
removed. In LOR and ROR mutants, instead, the logical/relational operators are replaced: such
replacements do not necessarily simplify the transition relation.

It is interesting to notice that the operator SAO simplifies the BDD much more than SA1.
This is due to the fact that, in the considered specifications, there are a lot of AND-expressions
and setting an operand of an AND-expression to FALSE means to stuck at FALSE all the AND-
expression, so simplifying the BDD. Stucking at TRUE an operand of and AND-expression,
instead, could change the behaviour of the model not so deeply”.

If we consider the standard deviation of the percentage change, we notice that some mutation
operators sometimes can modify the behaviour of the original specification (increasing or de-
creasing the number of allocated BDD nodes) more than others. The operator SB, for example,
can deeply change the behaviour of a model. In fact, swapping the branches in a case expression
in which the conditions are not mutually exclusive, could radically change the behaviour of the
model: if, for example, the default condition is swapped with the first branch, the correspond-
ing variable is forced to be always updated to the value of the right_expression of the default
condition.

Execution times

The total time taken to execute the NuSMV model advisor over the original specifications is
152 seconds, while executing the NuSMV model advisor over the mutated specifications took
about 20 hours. The total time taken to check the equivalence between the original and the
mutated specifications is almost 7 hours. Although the process for checking the equivalence
is computationally expensive in the worst case (when the mutant is equivalent to the original
specification), on average it takes 1.04 seconds for specification, because, when the models are
not equivalent, not all the CTL properties derived from Formulae 8.14, 8.15 and 8.17 must be
checked.

Number of eq-mutants

We are now interested in knowing what is the percentage of eq-mutants. In [85] they found
that 40% (8/20) of mutants of a Java code were equivalent. In our experiments we found that
27% (6396/24032) of mutants are equivalent. Both results confirm that eq-mutants are a real
problem, since their number is not irrelevant.

TWe remind to Section 8.7.2.1 for a deeper analysis of the relation between the logical operators of a specification
and the application of the mutation operators SAQO and SA1.
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neq-mutants

eq-mutants

not killed

45%

53%

killed 55%

47%

Table 8.2: (Not) Equivalent (not) killed mutants

Influence of equivalence on the killability

We observed that the model advisor kills neq-mutants more easily, as shown in Table 8.2.

8.7.2 Quality evaluation

Now we want to make a more general evaluation, assessing sensitivity, precision, and accuracy
of our approach. According to the ISO standard [104], for binary classification we can assess the
quality factors of our methodology following the schema shown in Table 8.3.

Analysis outcome

Mutant

not equivalent

equivalent

Positive (killed)

true positive Kne

false positive Ke

— Precision

Negative

false negative nKne

true negative nKe

l

Sensitivity

N

Accuracy

Table 8.3: Quality factors

Note that sensitivity considers only neg-mutants, and it measures the actual fault detection
capability (since only neq-mutants represent actual faults), whereas accuracy measures also the
capability of avoiding killing eq-mutants. Finally, precision measures the likelihood that a killed
mutant is not equivalent.

In the following, we report a list of hypotheses we formulated about our methodology. They
have been all confirmed by the Kruskal-Wallis one-way analysis of variance [116] that rejected
the corresponding null hypotheses. We use the Kruskal-Wallis test because our data are not
normally distributed.

8.7.2.1 Sensitivity

In order to discover how good is the model advisor in killing neq-mutants, following the termi-
nology of the theory of classification [104], we introduce sensitivity as

Kne B Kne
#neg-mutants  Kne + nKne

sensitivity =

Table 8.2 reports the overall sensitivity (55%) measuring the actual fault detection capability
of the model advisor.

Specification influence on the sensitivity We want now to discover if some of the charac-
teristics of the original specification influence the killability of its neq-mutants.

We found that the number of killed neg-mutants strongly depends on the specification under
analysis. In Fig. 8.3 we show the minimum percentage of killed neq-mutants: for example, for
the 74% of specifications, at least the 60% of their neq-mutants are killed. Note that, for 28%
of the specifications, 100% of neq-mutants were killed. Can we identify any characteristic of the
specifications that influences the sensitivity?

We found that specifications with meta-property violations (set Violations) are more sensitive
to mutation, that is the model advisor is more sensitive for specifications with some defects.
The model advisor kills more easily neq-mutants of specifications in Violations than those in
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Percentage of original specifications
30 40 50 60 70 80 90 100
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Minimum percentage of killed neq—-mutants

Figure 8.3: Percentage of at least killed neq-mutants vs percentage of specs

MPy fT112[3[4][5[6] 78] 9]10]
Sensitivity (%) 19 124 (19110 5 | 23] 0 0 26 7
Precision (%) 87 [ 85 | 66 | 66 | 91 | 89 [ 100 | 100 | 100 | 100
Accuracy (%) 39 [ 41 (33303042 27 | 27 | 45 | 31
nKe/eq-mutants % || 92 | 88 [ 74 [ 86 | 99 [ 93 | 100 | 100 | 100 | 100

Table 8.4: Meta-property Sensitivity, Precision, Accuracy, and Not killed eq-mutants

NoViolations. On average, 60% of neq-mutants of specifications in Violations are killed, whereas
the 49% of neg-mutants of specifications in No Violations are killed.

We found that specifications with temporal properties are more sensitive to mutation. There
is a correlation between the fact that a specification has temporal properties and the killability
of its neg-mutants; indeed, mutants changing the specification behaviour can be easily killed by
meta-properties MPN9 and MPy10 checking that each temporal property is, respectively, true
and not vacuously true (see Section 5.2.4). We discovered that, on average, 63% of neq-mutants
of specifications that have a temporal property are killed, whereas the 41% of neq-mutants of
specifications that does not have a temporal property are killed. This result suggests that is a
good practice to add temporal properties that redundantly specify what is the desired behaviour
of the specification.

We found that specifications in an operational style are more sensitive to mutation. Neg-
mutants of specifications whose behaviour is given using ASSIGN constructs, are detected more
easily than the average. The sensitivity for these mutants raises from 55% to 77%.

Meta-property sensitivity We want now to discover how much a meta-property is able to
kill any kind of neq-mutant.

We found that some meta-properties have greater killing neq-mutants skills (sensitivity).
There exists a relation between the number of killed neq-mutants and the meta-property used
to kill them. Table 8.4 (row Sensitivity) reports the percentage of neq-mutants that each meta-
property Kkills.

Some meta-properties, like MPN7 and MPx8, can not detect any mutation; their aim is to

identify models where some monitored variables (i.e., variables whose value is unbounded) or
independent variables (i.e., variables that do not depend on any other variable) are never read:
it is difficult to obtain such kind of models with the mutation operators we have tested.
Each single meta-property never kills more than 26% of neg-mutants. As reported in Table 8.2,
the model advisor can globally kill more than the half of neq-mutants (55%), which is less than
the total sum of all the values. This means that some mutants are killed by more than one
meta-property and that the meta-property targets are not disjoint.
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| Mutation | ER [ LOR | MOR | ROR | MB | SB [ SA0 | SA1 |
Sensitivity (%) [[ 79 | 51 83 36 [ 81 [39] 82 | 40

Precision (%) 82 74 90 (0] 79 | 76 79 69
Accuracy (%) 68 51 84 44 71 | 61 | 70 44

Table 8.5: Dependence between the Sensitivity, Precision and Accuracy, and the mutation classes
used to generate the mutants

Relation between neq-mutants killability and their mutation classes We want to dis-
cover if the neq-mutants of some mutation classes are more easily killed by the model advisor.

We found that some mutation classes generate neq-mutants that have greater killability.

Table 8.5 (row Sensitivity) reports, for each mutation class, the percentage of its neq-mutants
that have been killed. The model advisor kills more easily some mutants because their mutation
classes often introduce faults in elements of the specification that it checks. There are other
mutants, instead, that the model advisor kills very rarely because it is not able to capture most
of the faults their mutation classes introduce. It is interesting that killing SAO mutants is twice
easier than killing SA1 mutants; we tried to understand why. SAO and SA1 replace the operands
in logical expressions with, respectively, FALSE and TRUE. We analysed our specifications and
we recorded the number of occurrences of logical operators. We found that the & operator occurs
1446 times, whereas the | operator occurs 223 times.

Operator | & | | | = | xor | o | znor
# of occurrences || 1446 [ 223 [ 19 20 | 0 | ©

If one sets to FALSE an operand of an AND-expression, the expression is forced to be false

in all the states; if in the original specification the expression is true in some state (this is highly
probable), it is highly probable that the behaviour of the specification is changed and that the
model advisor can kill the mutant.
If one sets to TRUE an operand of an AND-expression, instead, the expression is not forced to
assume a truth value in all the states: the value of the other operand is still necessary to evaluate
the overall expression. So, for the model advisor it is more difficult to kill the mutant, since the
mutation could have not changed the behaviour of the specification.

For OR-expressions the reasoning is the opposite: the model advisor kills more easily SA1
mutants rather than SAO mutants. But, since the number of AND-expressions is more than 6
times the number of OR-expressions (and so the number of their mutants), the number of killed
SAO mutants is higher than the number of killed SA1 mutants.

8.7.2.2 Precision

Following the terminology of the theory of classification [104], we define precision as

Kne B Kne
#killed-mutants  Kne + Ke

precision =

Precision indicates what is the probability that, once the model advisor kills a mutant, the
mutant is not equivalent. The overall precision of the model advisor is 76%.

Meta-property precision We want to know what is the probability that a mutant killed with
a given meta-property is not equivalent.

We found that some meta-properties have greater precision. Table 8.4 (row Precision) reports
the relation between the precision and the meta-property used. Eight meta-properties are quite
precise: when they kill a mutant, it is highly probable that it is not equivalent. Only MPy3
and MPn4 are not so precise, since they can kill also stylistic defects that do not change the
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Kne 40%

Ke 13%

nKne 33%

Figure 8.4: Overall results

behaviour of the specification; this fact is confirmed by the ratio between nKe and eq-mutants
reported in Table 8.4 (row nKe/eq-mutants) where MPx3 and MPn4 have the lowest ratios in
not killing eq-mutants.

Relation between the precision of the model advisor and the mutation classes used
to generate the mutants We want to discover if mutants of some mutation classes permit
to obtain better precision in the model advisor.

We found that some mutation classes generate mutants that are captured by the model
advisor with a greater precision. The mutation class used to generate the mutants influences the
precision. Table 8.5 (row Precision) reports, for each mutation class, the precision of the model
advisor over the mutants of that class. We know that it is difficult to kill the mutants of ROR
(Table 8.5 - Sensitivity 36%). Nevertheless, when we kill a mutant of ROR, we know that it is
not equivalent with 75% of probability (Table 8.5 - Precision).

8.7.2.3 Accuracy

Now we want to do a more general evaluation; we do not want just to consider how good is the
model advisor in killing neq-mutants, but we also want to know how often it does not kill the
equivalent ones.
Indeed, as we have seen previously, the model advisor can kill also eq-mutants since some
meta-properties can identify stylistic defects that do not change the behaviour of the specification.
Following the terminology of the theory of classification [104], we define accuracy as

Kne + nKe Kne + nKe
accuracy = =
Y H#mutants Kne + Ke + nKne + nKe

In Fig. 8.4 we show the classification of all the mutants. The value of the overall accuracy of
the model advisor is 54% (Kne% + nKe%).

Meta-property accuracy We want now to discover how much a meta-property is able to kill
any kind of neq-mutant and not kill the equivalent ones.

We found that some meta-properties have greater accuracy. Table 8.4 (row Accuracy) reports
the accuracy of each meta-property. The accuracy of each meta-property is always greater than
its sensitivity: this means that each meta-property is good in not killing eq-mutants. This fact
is confirmed by Table 8.4 (row nKe/eq-mutants). In general, each meta-property kills very few
eq-mutants. However, in Table 8.2 we see that 47% of the eq-mutants are killed: this means that
the abilities of killing eq-mutants of the meta-properties are partially disjoint.

Relation between the accuracy of the model advisor and the mutation classes used
to generate the mutants We want to discover if the mutants of some mutation classes permit
to obtain better accuracy in the model advisor.

We found that some mutation classes generate mutants that are captured by the model
advisor with a greater accuracy. Table 8.5 (row Accuracy) reports the accuracy of the model
advisor over the mutants of each mutation class. The model advisor obtains greater accuracy
than sensitivity when checking the mutants of some mutation classes (e.g., SB), and greater
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Mutation MPy | Sensitivity (%) Precision (%) Accuracy (%)
MOR MPx6 48.68 100 68.42
MOR MPn5 38.16 100 61.94
SA0 MPx6 53.12 93.88 61.87
SB MPn6 28.57 87.16 60.41
SB MPx3 31.12 81.06 60.15
MOR MPn2 34.21 100 59.51
SB MPy2 33.29 73.94 58.95
MOR MPy1 32.89 100 58.7
SB MPy1 17.22 87.1 55.34
SB MPn9 18.75 77.37 54.61
ROR MPy38 0 100 26.18
SA1 MPy4 3.02 35.21 26.08
LOR MPnN7 0 100 25.85
LOR MPn38 0 100 25.85
SAO MPNT7 0.48 100 24.62
SAOQ MPn8 0.16 100 24.38
ER MPy3 16.43 60.33 22.17
SA0 MPn3 2.55 18.82 17.87
ER MPy7 0 100 17.53
ER MPn8 0 100 17.53

Table 8.6: Relationship between mutation classes and meta-properties in terms of Accuracy

sensitivity than accuracy when checking the mutants of other mutation classes (e.g., SA0). For
instance, accuracy with SB (61%) is definitely greater than sensitivity (39%) since the model
advisor kills very rarely SB eq-mutants. Indeed, eq-mutants swapping two case branches could
be killed only by meta-properties MPn2 and MPn4.

8.7.2.4 Relation between mutation classes and meta-properties

We check the correlation between mutation classes and meta-properties in killing mutants. We
want to discover which mutations are targeted with the highest/lowest probability by which meta-
properties. We evaluate the relationship between a mutation class MUT and a meta-property
MPi by considering the value of the accuracy obtained by using only MPi over the mutants
produced with MUT. We compute the accuracy because it is the best indicator of the reliability
of the proposed approach, since, unlike sensitivity, it also considers the not killed eq-mutants.
Table 8.6 reports the couples (mutation class, meta-property) sorted in descending order by the
value of the accuracy: we report the first and the last ten couples with their values of sensitivity,
precision and accuracy.

As expected, the best/worst couples, in general, are composed by those mutation classes and
meta-properties that obtain the best/worst results in Tables 8.5 and 8.4 (Row Accuracy), that
show, respectively, the accuracy of the model advisor in capturing the mutants of each mutation
class, and the accuracy of each meta-property in capturing all the mutants.

However, there are some exceptions due to the strong correlation that may (not) exist between
a mutation class and a meta-property.

For example, MPx5 does not have a good accuracy over all the mutants (30% in Table 8.4);
however, if we only consider the mutants obtained with the mutation class MOR, the accuracy
is 61.94%, the second best result in Table 8.6.

Mutants obtained with the mutation class SAQ are captured by the model advisor with a
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very good accuracy (the second best value in Table 8.5), and meta-property MPx3 has a decent
accuracy over all the mutants (fifth best value in Table 8.4). However, MPn3 has a very bad
accuracy over the mutants of SAQ (third last value in Table 8.6).

8.7.2.5 Overall evaluation

Besides sensitivity, precision, and accuracy, if we also consider the ability of killing stylistic
defects, the model advisor behaves correctly in 67% of the cases (Kne + nKe + Ke) as shown
in Fig. 8.4.

In conclusion, based on the statistical analysis performed, a user can assess the expected
success of finding faults by the use of the model advisor, depending on the characteristics of the
specification, on the type of targeted faults, and on the type of violations of meta-properties.
A heuristic procedure could, given a specification (with some features) and the list of violated
meta-properties, compute the probability that the specification contains each kind of fault we
have identified.






Part 111

Verification and runtime
monitoring






Chapter 9

Model verification

A definition given by Boehm of system wverification is that it consists of all those techniques that
permit to answer the question “Are we building the product right?” [29].

We here only consider model verification, i.e., the process of discovering if the formal specifica-
tion is correct. Model verification should be only applied when a designer has enough confidence
that her model captures all informal requirements, thus after model validation. The aim of
model verification is not to discover if the specification fulfils the intended requirements (the
aim of model validation), but if it implements them in the right way. Model verification is
the execution of expensive (in terms of execution time) and accurate analyses of the model for,
for example, the proof of mathematical theorems or the verification of properties. Two main
verification techniques are theorem proving and model checking.

Using theorem proving a user can check mathematical theorems about the model with the
help of a program [146], the theorem prover, that checks that all the proof steps are correctly
derived from the proof system used. A key characteristic of a theorem prover is the degree of
automation that it can provide; an automated theorem prover can require few user assistance for
producing a complete formal proof. Moreover it can help the user in choosing how to continue
the proof starting from a given point. Useful features of theorem provers are the possibility of
exploring the proof for checking the previous steps and finding alternatives, backtracking, and
reusing proofs in other proofs. Since theorem provers reason about the syntactic domain of a
model (or program), they can also reason about infinite state spaces [141]. The main drawback
of theorem provers is that they usually require a great deal of user expertise and effort [112].

Model checking is a different approach to verification based on the exploration of the model
state space to check that some desired properties hold. Model checking is usually described as a
“push button” technique, since the verification of the properties is fully automatic, without the
need of user intervention. In Section 9.1 we briefly introduce model checking, and in Section 9.2
we propose a technique for model checking ASMs.

9.1 Model checking

Model checking is an automated formal verification technique whose aim is to discover if an
abstract description M of a system satisfy a property ¢, i.e.,

M;skEe

where s is a state of M.

The model checking technique consists in the exhaustive exploration of the state space of M
to check if property ¢ holds. Model checkers, using explicit state enumeration, can handle state
spaces of 10% to 10° states, whereas, using tailored data structures, also state spaces of 102° to
10%76 states can be checked for particular problems [16].

The model checking process can be divided in three phases [16]:

1. the modeling phase:
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(a) the system is modeled using the model checker notation. Since the property verifica-
tion can be very time-consuming, it is better to be enough confident that the model
really reflects the system under verification. This can be achieved by simulating the
model and by using a model review technique as, for example, the one presented in
Chapter 6 for the NuSMV model checker.

(b) formal properties are specified using a logic supported by the model checker.

2. the wverification phase: the model checker, in an automated way, checks the model to
discover if it assures the specified properties.

3. the analysis phase: the model checker, as result of the verification phase, for each specified
property returns a positive or negative response depending on the fact the the property is
satisfied or not. In case of negative response, it usually also returns a counterexample, in
the form of an execution trace of the model, that provides a witness of the property failure.

In Section 9.1.1 we see how it is possible to describe the model M, and in Section 9.1.2
what logics are available to specify the required properties. We are not interested here in the
algorithms used to solve the model checking problem [16].

9.1.1 Model

The behaviour of the system is usually modeled using a finite-state automaton, where the states
represent the system states and the transitions describe how the system changes its state de-
pending on some particular conditions [135].

There are mainly three notations used to describe the model':

e Kripke structures;
e Labeled transition systems;
o Kripke transition systems.

Kripke structures (KSs) have been described in Section 3.1. For model checking purposes
they are required to be finite (see Def. 3.2) and total (see Def. 3.3). KSs are particular suitable
for describing the properties of the states.

Labeled transition systems (LTSs) [135] differ from Kripke structures since they label transi-
tions with some actions, rather than states. LTSs can be defined as follows.

Definition 9.1 (Labeled transition system). A labeled transition system is defined by the 4-tuple
(8,80, A, =), being

o S the set of states;

o Sy € S the set of initial states;

e A the set of actions;

e —»C S x A xS the transition relation. The transition (s, a,s’), that can be represented as
s 5 §', means that the system goes from state s to state s’ exchanging the action a with
the environment.

For model checking purposes, S and A must be finite. LTSs are particular suitable for
describing the dynamic of the system.

Kripke transition systems (KTSs) are a combination of KSs and LTSs, that exploit the
strengths of both formalisms. KTSs are defined as follows.

Mn literature, different definitions of model use the term transition system for identifying different notations.
In [100], for example, Kripke structures are identified as transition systems, whereas in [131] transition systems
identify labeled transition systems. We adhere to the definitions given in [135, 26|, that are more specific in
distinguishing the different notations.
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Figure 9.1: Relationship between LTL, CTL and CTL*

Definition 9.2 (Kripke transition system). A Kripke transition system is defined by the 5-tuple
(S, S0, A, —, L), being S, Sy and A defined as in Def. 9.1, and L defined as in Def. 3.1.

Model checkers notations FEach model checker provides its own input syntax to encode a
model. Usually these syntaxes are dialects/extensions of C, Java or VHDL. In Section 3.2 we
have described the syntax of NuSMV and seen the relationship between a NuSMV model and
the Kripke structure it describes. Another notation that we have used in our works is Promela,
the input syntax of SPIN [99]: it is a C-like language that permits to easily describe concurrent
systems.

9.1.2 Property specification

Properties that are checked in model checking are usually described in temporal logics. Tempo-
ral logics permits to describe properties not only related to the state, but that also involve the
dynamic of the system over time. Temporal logics permit to describe different kind of proper-
ties [16]:

e reachability properties check that it is possible to reach a given state;
e safety properties check that something bad never happens;
e liveness properties check that something good will eventually happen;

e fairness properties check that, under some conditions, an event can repeatedly happen.

Temporal logics are divided into:
e Linear-time logics represent time as sequences of instants.

e Branching-time logics represent time as a tree, where the root is the initial instant and its
children the possible evolutions of the system; it is possible to declare properties concerning
all the paths or only some of them.

In Section 9.1.2.1 we describe the linear-time logic LTL, and in Section 9.1.2.2 the branching-
time logic CTL. The two logics have different expressivenesses; some properties can be expressed
in LTL but not in CTL and the other way around. The logic CTL* is an extension of CTL and it
subsumes both CTL and LTL. The relationship between the expressivenesses of the three logics
is shown in Fig. 9.1.

9.1.2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) [149] is a linear-time logic whose syntax is described by the following
Backus-Naur form (BNF):

@ u= true|p|—p oA @l X(p) | ¢Ugp

where p belongs to the set of atomic propositions AP.
LTL formulas can be interpreted over infinite paths of Kripke structures as described by the
following definition.
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Definition 9.3 (LTL interpretation over paths). Given a Kripke structure M = (S,S°, T, L),
an infinite path ™ = s1, s9,... in M, and an LTL formula @, the problem 7 = ¢ can be described
using the following inductive definition

T = true
TEp < peL(s1)
T = e = T

TEQIAP < TEQATEQ
TEX(p) = e .
TEUpy, < Fizl:(t"Ep2aVje[l,i—1]: 7 = ¢1)

where p is an atomic proposition taken from AP, and w the tail of the path starting in s; (i.e.,
7Ti = 8i78i+17...).

The definition says that every path satisfies true, and that a path satisfies an atomic propo-
sition p iff p belongs to the labels of the first state of the path. The definitions for the negation
and the conjunction are straightforward; other boolean connectives can be introduced starting
from the basic ones (e.g., 1 v w2 = —(—@1 A —p2)).

The next operator X () requires that the property ¢ holds starting from the next state, i.e.,
the second state of the path.

The strong until operator 1 U o requires that ¢; holds continuously until ¢9 holds. The
operator is strong since it requires that ¢o eventually holds.

Other LTL temporal operators can be defined starting from the next and the strong until
operators:

e F(p) = true Up. The operator finally requires that ¢ eventually holds in a state of the
path.

e G(p) = =F(—¢). The operator globally requires that ¢ holds in every state of the path.

e p1 Wyps = 1 Upy v G(p1). The operator weak until, is a weaker version of the strong
until operator, since it does not require that @9 eventually holds. If @9 never holds, then
1 must globally hold.

e p1Ryy = —(—¢1 U —ps). The operator release requires that ¢o must hold up to and
including the state in which ¢; becomes true. Note that ¢ is not required to eventually
hold; if 1 never becomes true, then ¢ must globally hold.

In order to verify if a model M satisfies an LTL formula ¢ we must give a further definition.

Definition 9.4 (LTL model checking). Let M = (S, S° T L) be a model, s € S a state of the
model, and ¢ an LTL formula. The model M satisfies the formula ¢ starting from the state s if
the formula is satisfied for every execution path starting from s, i.e.,

MsEe <<= VrellgimEoyp
where Il; is the set of infinite paths starting from s.

9.1.2.2 Computation Tree Logic
Computation Tree Logic (CTL) [50] is a branching-time logic whose syntax is described by the

following BNF:
o u=true|p| —ploAnp|EX(p) |[E[pUp] [ApUy]

where p belongs to the set of atomic propositions AP. Each CTL temporal operator is composed
by a pair of symbols:
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1. the first symbol is A or E, meaning that the property must hold along All paths, or it
must Ezist a path in which it holds.

2. the second symbol is X, U, F or G, having the same meaning of the corresponding LTL
operators (see Section 9.1.2.1).

In the following we give the semantics of the formulae built using the operators introduced
in the BNF, then we derive the others operators (AX, EF, AF, EG and AG) starting from the
basic ones.

Definition 9.5 (CTL model checking). Given a Kripke structure M = (S,S° T, L), a state
s€ S, and a CTL formula ¢, the CTL model checking problem M, s = ¢ can be described using
the following inductive definition

M, s = true

M,;skEp < peL(s)

M,s b — — Mty

M, sE @1 Ao = M,sE @1 AM,skE=po

M, s = EX(¢) < 35’ enext(s): M,s' =@ where next(s) = {s' € S: (s,s') e T}
M,sEE[p1Uypy] < 3dnelly:nmk= o1 Ups

M, s E=A[pUy] > Vrell;:mlk= ¢ Ups

where p is an atomic proposition taken from AP, m = s1, Sa, ... is an infinite path in M, and 1l
the set of infinite paths starting from s.

The definition says that every state satisfies true, and that a state satisfies an atomic propo-
sition p iff p belongs to the labels of the state. As for LTL, the definitions for the negation and
the conjunction are straightforward and other boolean connectives can be introduced starting
from the basic ones.

The existential next operator EX(¢) requires that ¢ holds in at least one next state of s.

The existentially quantified strong until operator E [p1 U ps] requires that it exists a path
starting from s where ¢; holds continuously until ¢o holds (see Def. 9.3).

The universally quantified strong until operator A [¢1 U ps] requires that, along all paths
starting from s, (1 holds continuously until ¢- holds.

Other CTL temporal operators can be defined starting from the previous ones:

e AX(p) = ~EX(p). The operator requires that o holds in all the next states of s.

e EF(¢) = E[trueU ¢]. The operator requires that it ezists a state in the future (a state
belonging to a path starting from s) where ¢ holds.

e AF(p) = A[trueUy]. The operator requires that, in all the paths starting from s, it
exists a state where ¢ holds.

e EG(yp) = =AF(p). The operator requires that it exists a path starting from s in which ¢
globally holds.

e AG(p) = —EF(p). The operator requires that ¢ globally holds in all the paths starting
from s.

9.2 Model checking ASMs

In Section 2.1 we have already underlined the advantages of using ASMs for system modeling.
They permit to easily describe complex systems at different level of abstractions. As a conse-
quence, all the concrete syntaxes developed for the ASMs (e.g., Asmetal, CoreASM [68] and
AsmL [14]) are high-level notations, general enough to describe a wide range of systems (both
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software and hardware), and that permit to write models that can be understood by all the stake-
holders of the system under development. These notations distinguish from those used by formal
verification tools (e.g., Promela, the input language of SPIN, or the input syntax of NuSMV)
that are usually very low-level, sometimes difficult to understand for non-expert people, and so
not usable for design and documentation purposes.

Several works [125, 11, 95] have underlined the necessity of doing formal verification directly
on high-level models of the system under analysis. This would mainly have two advantages:

a) declaring a property on a high level-model of the system is definitely easier than writing the
same property on a low-level model;

b) if formal verification can be done on the high-level model, the user does not have to write a
low-level model only for this task, so avoiding two problems:

e the low-level model could be more difficult to write;

e if two different models are written using two different notations, there is the problem of
proving that the two models are conformant.

Moreover, we believe that a developing environment where several tools can be used for
different purposes on the base of the same specification model can be much more convenient
than having different tools working on input models with their own different languages.

We here present a work that addresses the second aim of the thesis described in Section 1.2,
i.e., the promotion of the integration of different FMs [34]. We report our experience in the
integration of a model checker in ASMETA (see Section 2.2). Given our experience on some
case studies (e.g., the Mondex protocol, see Section 9.2.2.1), having a model checker integrated
with a powerful simulator provides great advantages for model analyses, especially in order to
perform model and property validation. Indeed, verification of properties should be applied when
a designer has enough confidence that the specification and the properties themselves capture
all the informal requirements. By simulation (interactive or scenario driven as described in
Chapter 4) and model review (see Chapter 7), it is possible to ensure that the specification
really reflects the intended system behaviour. Otherwise there is the risk that proving properties
becomes useless, for example when a property is vacuously true (see Section 5.2.4). Moreover,
a simulator can help to reproduce counterexamples provided by a model checker, which are
sometimes hermetic to understand, as suggested in [95].

The problem that arises is how to model check ASMs. Although it is relatively clear that
the ASMs specification formalism enables a more convenient modeling than that provided by, for
example, the language of a model checker as NuSMV, on the other hand it is undoubted that
a lower-level formalism usually leads to more efficient model checking. So we claim that, rather
than developing a model checker tailored on ASMs, it is more convenient to provide a mapping
from the syntax of ASMs to the low-level syntax of an existing model checker.

There are several attempts to translate ASM specifications to the languages of different model
checkers. For explicit state model checkers as Spin, we can cite [77] and [69]. In [77], the authors
show how to obtain Promela programs from simple ASMs in order to use Spin for test generation;
the approach has some limitations since it only supports 0-ary functions and does not support
the choose rule?. The approach has been significantly improved in [69] where support has been
added for arbitrary n-ary functions, for the choose rule and for distributed ASMs. The authors
report their experience in using Spin for verifying properties of CoreASM specifications on the
FLASH Cache Coherence Protocol.

In [168], the author discusses the use of the model checker SMV (Symbolic Model Verifier) in
combination with ASMs. A scheme is introduced for transforming ASM models into the language
of SMV from ASM workbench specifications. The approach was later improved in [40] and applied

2 Actually, in the work described in Chapter 12, the tool presented in [77] has been extended to support the
choose rule.
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to a complex case study in [169]. In this approach ASMs are iteratively flattened in a series of
conditional rules that can be easily mapped in SMV. In [168] only 0-ary functions are supported,
whereas in [40] also generic n-ary functions are supported. The approach is similar to the scheme
we present here in Section 9.2.1 since the target notation is similar (SMV/NuSMYV). However, our
approach does not need to flatten the ASM for the translation, and natively supports the choose
rule; in their approach, instead, the choose rules must be substituted by appropriate monitored
functions.

Other approaches to model check ASMs include works which perform a quasi-native model
checking without the need of a translation to a different notation. For example, [111] presents a
model checking algorithm for AsmL specifications. The advantages is that the input language is
very rich and expressive, but the price is that the model checking is very inefficient and unable to
deal with complex specifications, and it is not able to perform all the optimizations available for
a well established technique as that of Spin or NuSMV. A mixed approach is taken by [23], which
presents a way for model checking ASMs without the need of translating ASM specifications into
the modeling language of an existing model checker. Indeed, they combine the model checker
[mc]square with the CoreASM simulator which is used to build the state space.

A different approach is presented in [160], where Answer Set Programming is used for doing
bounded model checking of ASMs.

We here present AsmetaSMYV, a tool that enriches the ASMETA framework with the ca-
pabilities of the model checker NuSMV [137]. AsmetaSMYV, besides the traditional verification
purposes, is also used by another tool of the ASMETA framework (AsmetaMA) to do model
review of ASM specifications (see Chapter 7).

In Section 9.2.1 we describe the general architecture of AsmetaSMV and the process of auto-
matically mapping ASM models into NuSMV models. In Section 9.2.2, we report the results of
using AsmetaSMV to verify temporal properties of various case studies of different characteristics
and complexity.

9.2.1 AsmetaSMV

AsmetaSMV has been developed as based tool of the ASMETA toolset, since it exploits some
derivatives of the ASMETA environment. In particular, AsmetaSMV does not define its own
input language, neither introduces a parser for a textual syntax. It reuses the parser defined for
Asmetal, and reads the models as Java objects as defined by the ASMETA Java API. The aim of
AsmetaSMYV is that of enriching the ASMETA toolset with the capabilities of the model checker
NuSMV. No knowledge of the NuSMV syntax is required to the user in order to use AsmetaSMV.
To perform model checking over ASM models written in Asmetal., a user must know, besides
the Asmetal, language, only the syntax of the temporal operators.

AsmetaSMV supports a wide range of ASMs, both single and multi-agents (synchronous and
asynchronous); limitations are due to the model checker restriction over finite domains and data
types.

Fig. 9.2 shows the general architecture of the tool. We assume that the user provides a model
in Asmetal, but any other concrete syntax (like Asmeta XMI) could be used instead. The tool
parses the model and then checks if it is adequate to be mapped into NuSMV. If this test fails,
an exception is risen; otherwise, signature and transitions rules are translated as described in
Section 9.2.1.1 and 9.2.1.2. The user can define temporal properties directly into the Asmetal.
code as described in Section 9.2.1.3. The invocation of the model checker can be separately done
on the translated model or directly from AsmetaSMV (see Section 9.2.1.4).

9.2.1.1 Mapping of the signature

Domains The Asmetal. domains that can be mapped in NuSMYV are only those that have a
corresponding type in NuSMV and that are finite. The supported domains are: Boolean, Enum
domains, Concrete domains whose type domains are Integer or Natural, and abstract domains.

Boolean and Enum domains are straightforwardly mapped into boolean and symbolic enu-
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Asmetal model

Domains check Domains translation
Parsing
Functions check Functions translation =N NuSMV model
Java Rules check Rules translation
representation

Figure 9.2: Architecture of AsmetaSMV

asm example MODULE main
import StandardLibrary VAR
foo0: boolean;

signature: fool FALSE: {AA, BB, ENDOM_UNDEF};
domain SubDom subsetof Integer fool_TRUE: {AA, BB, ENDOM_UNDEF};
enum domain EnDom = {AA | BB} foo2 1_AA: {1, 2, —2147483647};
controlled foo0: Boolean foo2_1.BB: {1, 2, —2147483647};
controlled fool: Boolean —> EnDom foo2 2 _AA: {1, 2, —2147483647};
controlled foo2: Prod(SubDom , EnDom) —> SubDom fo02.2_.BB: {1, 2, —2147483647};

definitions:
domain SubDom = {1..2}

Figure 9.3: Example of domains and functions mapping — Asmetal. and NuSMV models

merative types of NuSMV. Concrete domains of Integer and Natural, instead, become integer
enumeratives in NuSMV, on the base of the concrete domain definitions. Abstract domains are
mapped into enumerative domains. Abstract domains must be static, i.e., they can not be ex-
tended using the extend rule, since we need that the state space of the machine must be fixed
and finite.

All the domains previously introduced are supported both as function domains and as function
codomains. There is another domain that, instead, is only supported when it is used as function
domain, the product domain. Product domains are used as function domains to define n-ary
functions with n > 2.

For almost all the domains, when these are mapped into functions codomains, we add a
special value that represents the undef value of ASMs. For enumeratives domains we add a new
enumerative value, using the format DOMNAME_UNDEF where DOMNAME is the uppercase
version of the name of the domain. For integers domains we add the minimum value of NuSMV
integers®. Only for the Boolean domain we can not provide the undef value in NuSMYV, since we
decided to map it directly to the boolean type of NuSMV; so, we require that boolean functions
are always defined. A solution could be to translate the Boolean domain in an enumerative
type with three values, but this approach would complicate too much the translation of boolean
expressions.

In Fig. 9.3 we can see how the domains SubDom and EnDom have been mapped. We see
that, when they are used as function codomains, also the mapping of the undef value is added.
In Section 9.3 we will explain what is the effect of the domain mapping when the domain is used
as a function domain.

3In case the minimum value of NuSMV integers is already a value of the domain, we look for another suitable
value.
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asm ex
import StandardLibrary

signature:
enum domain EnDom = {AA | BB}
dynamic monitored mon: Boolean

MODULE main
VAR
mon: boolean;
contr: {AA, BB, ENDOM_UNDEF};
ASSIGN
init(contr) := AA;

dynamic controlled contr: EnDom next(contr) :=
case
definitions: mon: AA;
main rule r_Main = !mon: BB;
if mon then TRUE: contr;
contr := AA esac;
else
contr := BB
endif

default init sO:
function contr = AA

Figure 9.4: Example of controlled and monitored functions mapping — Asmetal. and NuSMV
models

Functions For each Asmetal. dynamic nullary function (i.e., variable) a NuSMV variable is
created. ASM n-ary functions (with n > 0), instead, must be decomposed into function locations;
each location is mapped into a NuSMV variable. So, the cardinality of the domain of a function
determines the number of the corresponding variables in NuSMV. Therefore, given an 1-ary
function with domain Dy, or an n-ary function (with n > 2) with domain Prod(D;,...,D,), in
NuSMV we introduce [ [, |D;| variables with names

func_elDom1_..._elDom,,

where elDomy € Dy, ...,elDom,, € D,,, and func is the function name.

As seen in Section 9.2.1.1, the mapping of the codomain of a function determines the type of
the variable.

In Fig. 9.3 the O-ary function foo0 has been mapped to a single variable, the unary function
fool has been mapped to two variables, since the function has two locations, and foo2 has
generated four variables, since it is composed of four locations.

Controlled functions Controlled functions are the only functions whose value can be
updated in a transition rule. The initialisation and the updates of each controlled location are
mapped in the ASSIGN section of NuSMV through the init and next instructions. If a location
is not initialised, it is initialised in NuSMV to the corresponding value of undef for its codomain.

The computation of the conditions under which a location must be updated will be explained
in Section 9.2.1.2. Here, we can simply say that all the updates of a location in the Asmetal. model
are collected together and executed through a case expression in NuSMV. A default condition
is always added for keeping the value of the location unchanged when no update of the location
fires.

In Fig. 9.4, the function contr is an example of controlled function that is initialised in the
initial state, and updated by two different update rules, based on the value of the monitored
function mon. Note that in this case the default condition is not necessary, since the first two
conditions are complete, i.e., in each state one of the two conditions is satisfied. In this particular
simple example, NuSMYV permits to omit the default condition, since it understands that the first
two conditions are complete; but usually it forces the user to add the default condition, even if
the conditions are complete (see Section 3.2.1 for more details).
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asm statDer
import StandardLibrary

signature:
domain ConcrDom subsetof Integer
dynamic monitored monl: Boolean
dynamic monitored mon2: Boolean
static stat: ConcrDom
derived der: ConcrDom

definitions:
domain ConcrDom = {1..4}

MODULE main
VAR
monl: boolean;
mon2: boolean;

DEFINE
stat = 2;
der :=
case
monl: 1;

!monl & mon2: 3;
TRUE: —2147483647;

esac;

function stat = 2

function der =
if monl then
1
else if mon2 then
3
endif endif

Figure 9.5: Example of static and derived functions mapping — Asmetal. and NuSMV models

Monitored functions Monitored functions are functions whose value is set by the environ-
ment. In NuSMV, monitored variables are declared but they are neither initialised nor updated.
When NuSMV meets a monitored variable it creates a state for each value of the variable.

In Fig. 9.4 the corresponding variable of the monitored function mon is only declared, but
neither initialised nor updated.

Static and derived functions Static and derived functions can not be updated either by
an update rule or by the environment; their value (for static functions) or their computation
mechanism (for derived functions) is defined in the section definitions and never changes during
the execution of the machine. AsmetaSMYV does not distinguish between static and derived
functions: their mapping is the same. In the target NuSMV model, static and derived functions
are expressed through the DEFINE statement. Let’s remember that a DEFINE declaration does
not introduce new variables, but acts as a macro that introduces aliases for (complex) expressions.

The mapping of a static/derived location requires to associate, at each term ¢; to which the
location can be defined, the corresponding condition ¢; under which the definition takes place.
In NuSMV, all the couples (¢;,t;) are reported through a case expression in the corresponding
definition. Since in ASMs a not defined static/derived location takes value undef, we add to the
case expression a default condition that sets the definition to the undef value of the function
codomain (see Section 9.2.1.1).

In Fig. 9.5 the mapping of the static function stat is straightforward, whereas the mapping
of the derived function der is more complex. The definition of the function der has been visited
and the conditions under which it takes value 1 or 3 have been computed and mapped in the
case expression of the definition in NuSMV. Since the ASM function is not total, in the case
expression the default condition sets the definition to the undef value of integers.

9.2.1.2 Mapping of transition rules

ASMs and NuSMV differ in the way they compute the next state of a transition, and such
difference is reflected in their syntaxes as well.

In ASMs, at each state, every enabled rule is evaluated and the update set is built by collecting
all the locations and next values to which locations must be updated. The same location can be
updated to different values in several points of the specification under different conditions.

In NuSMV, at each step, for every variable, the next value is computed by considering all
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its possible guarded assignments. As we have seen in Section 3.2, the next value of a variable
is defined once, listing all the guarded assignments. For example, the next value of variable var
could be defined using a case expression in the following way
next(var) :=

case

condl: vall;
cond?2: val2;

esac;

where all the possible next values for the variable are listed.

So, for our purposes, the main difference between ASMs and NuSMYV is that in ASMs the
updates of a location can be distributed all over the model, whereas in NuSMYV the definition of
the next state of a variable is grouped in a single expression. In order to map transition rules
from Asmetal. to NuSMV, our translation algorithm visits the ASM specification looking for all
the updates and arranging them as required by NuSMV. It starts from the main rule and, by
executing a depth visit of all the rules it encounters, it builds a conditional update map, which
maps every location to its update value together with its guard. A global stack Conds (initialised
to true) is used to store the conditions of all the outer rules visited. For each transition rule, a
suitable visit procedure has been defined. In the following we briefly overview the mapping of
the update, condition and choose rules, and finally list all the other rules that are supported by
our translation algorithm.

Update rule The update rule syntax is

l:=t

where [ is a location and ¢ a term.

The translation algorithm builds ¢ as the conjunction of all the conditions on the stack Conds
and adds to the conditional update map the triple (I, ¢, t), specifying that location [ is updated
to t under condition c.

Conditional Rule The conditional rule syntax is

if cond then

Ripen
[else

Relse]
endif

where cond is a boolean expression and Ryje, and R, are transition rules.
The translation algorithm works as follows:

1. cond is put on stack Conds and rule Ryp.,, is visited; in such a way all the updates contained
in Ripen are executed only if cond is true;

2. cond is removed from stack Conds.
3. If the else branch is not null:

(a) condition —cond is put on stack Conds and rule R, is visited; in such a way all the
updates contained in R;s. are executed only if cond is false;
(b) —cond is removed from stack Conds.

For example, the conditional update map that results from the visits of the Asmetal. model
shown in Fig. 9.6 is the following
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asm condRule

import StandardLibrary

signature:
enum domain EnDom = {AA| BB| CC}
dynamic monitored mon: Boolean
dynamic monitored mon2: Boolean
dynamic controlled contr: EnDom
dynamic controlled contrl: EnDom

definitions:
main rule r_Main =
par
contrl := AA
if (mon) then
if (mon2) then

MODULE main
VAR
contr: {AA, BB, CC, ENDOM_UNDEF};
contrl: {AA, BB, CC, ENDOM_UNDEF};
mon: boolean,;
mon2: boolean;
ASSIGN
init(contr) := ENDOM_UNDEF;
init (contrl) := ENDOM_UNDEF;
next(contr) :=
case
mon & mon2: BB;
mon & !mon2: AA;
TRUE: contr;
esac;

contr := BB next(contrl) := AA;
else
contr := AA
endif
endif
endpar

Figure 9.6: Example of conditional rule mapping — Asmetal. and NuSMV models

Location | Condition Value

contr mon A mon2 BB
mon A — mon2 | AA

contrl true AA

Choose rule The choose rule syntax is

choose vy in Dy, ..., v, in D, with G(vy,...,v,) do
R(Ul, cee ,Un)
[ifnone R; fpnone]
where v1,...,v, are logical variables and Dy, ..., D,, their domains. G(v1,...,v,) is a boolean
condition, and R(vy,...,v,) a transition rule. Optional branch ifnone contains the rule R; frone
that must be executed if there are no values for variables vy, ..., v, that satisfy G(vy,...,v,).

In the mapping process, each choose rule is identified by an identifier chld. In NuSMV,
for each variable v;, a variable lv_v;_chld is created; the type of such variable is obtained with
the mapping of domain D;. The translation algorithm, for each tuple of values (dy,...,d,) €
Dy x,...,xD,, executes the following operations:

1. it adds to the stack Conds the condition cond;, built as follows
n
cond; = /\ lww;_chld = d; n G(vy < dy, ..., 0, < dy)
i=1
2. rule R(vy < dy,...,v, « dy) is visited;

3. condition cond; is removed from stack Conds.

The number of iterations of this process is nB = [, |D;|.
Finally, if the branch ifnone is not null, the algorithm executes the following operations:
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asm chooseRule MODULE main
import StandardLibrary VAR
foo: {1, 2, 3, 4, —2147483647};
signature: v $x.0: 1..4;
domain ConcrDom subsetof Integer ASSIGN
dynamic controlled foo: ConcrDom init(foo) :=1
next(foo) :=
definitions: case
domain ConcrDom = {1..4} lv$x0 =1&1<3:1+ 2
lv$x 0 =28&2<3:2+ 2
main rule r_Main = lv$x 0 =3&3<3:3+2;
choose $x in ConcrDom with $x < 3 do lv$x 0 =48&4<3:4+ 2
foo = $x + 2 11 <3)&!1(2<3)&!(3<3)&!(4<3): 1;
ifnone TRUE: foo;
foo ;=1 esac;
INVAR (Iv3x0=1&1<3) | (lv$x0=2& 2 < 3) |
default init s0: (lv3x0 =3&3<3)| (Ilv3x0 =4 & 4 < 3) |
function foo = 1 M1 <3)&1(2<3)&!(3<3) &!(4<3));

Figure 9.7: Example of choose rule mapping — Asmetal. and NuSMV models

1. it adds to the stack Conds the condition ifNoneCond, built as follows

ifNoneCond = /\ —G(v1 < dy,..., v < dy)

(dlv---adn)e
DiX...xDy

2. rule Rifmone is visited;

3. condition ifNoneCond is removed from stack Conds.

The procedure we have described permits to add the right conditions to the updates contained
in the scope of the choose rule.

Now, we must render the semantics of the choose rule in NuSMV. We must assure that, in
each state, a condition cond; (with j = 1,...,nB) is satisfied or, if this is not possible, that

condition ifNoneCond is satisfied. To this purpose, we define the following invariant in the
INVAR section:

nB
\/ cond; v ifNoneCond

j=1

The invariant, if possible, bounds the logical variables of the choose rule to those values
that satisfy the guard of the rule. Note that we must also add to the invariant the condition
ifNoneCond so that the invariant is true also when no cond; is true.

In Fig. 9.7 there is an example of ASM with choose rule. We can see that the choose rule
has been decomposed into:

e a variable [v_$z_0 that corresponds to the logic variable $x of the choose rule;

e four branches in the case expression that computes the next value of variable foo. The
conditions depend on the value of lv_$2_0 and on the guard of the choose rule. An additional
branch of the case expression corresponds to the ifnone rule of the choose rule;

e an INVAR declaration that bounds {v_$z_0 in the range [1,2].
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Actually, the model produced by AsmetaSMV is simpler of that shown in Fig. 9.7. In fact
the tool, where possible, evaluates boolean and integer expressions*. The simplified model is
MODULE main

VAR
foo: {1, 2, 3, 4, —2147483647};
lv_$x.0: 1..4;
ASSIGN
init (foo) := 1;
next(foo) :=
case
lv_$x 0 = 1: 3;
lv_$x 0 = 2: 4;
TRUE: foo;

esac;

INVAR lv.$x.0 =1 | Iv_$x.0 = 2;

Other rules In addition to the update, conditional and choose rules, the other transition rules
that are supported by AsmetaSMV are: skip, macrocall, block, case, let and forall rules. Details
can be found in [5].

We do not support the eztend rule since the state space of the machine must be fixed and
finite. A solution could be to require that an extend rule is called a fixed number of times: in
this case we could add in the NuSMV model all the elements of the reserve that can be added,
and use a characteristic function to translate the extend rule.

We do not support turbo rules since their translation would be too complicated. We only
support simple forms of the seq rule.

9.2.1.3 Temporal property specification

AsmetaSMV allows the user to declare CTL/LTL properties directly in the Asmetal. model,
before the main rule. The syntax of a CTL/LTL property in Asmetal is:

CTLSPEC/LTLSPEC p

where p is a boolean expression possibly containing boolean functions that represents the tempo-
ral operators of CTL/LTL. In order to write temporal formulae in Asmetal., we have developed
the libraries CTLlibrary.asm and LTLlibrary.asm where, for each CTL/LTL operator supported
by NuSMV, an equivalent boolean function is declared.

In formal verification there are commonly used patterns that are formed by the combination
of the basic operators: in CTL, for example, the global precedence pattern requires that s always
precedes p, i.e., A[=p W s]. In [61] a lot of patterns for CTL and LTL have been proposed.
We have added some of them to our libraries: this let the user write complex specifications in a
compact way.

Table 9.1 reports some of the CTL functions contained in the library CTLlibrary.asm. Note
that the weak until operators have been added in the pattern section, since they are not natively
supported by NuSMV.

Fig. 9.8 contains a fragment of the Asmetal. model of the dining philosophers problem. It
contains a reachability property that checks that it is possible to reach a state in which the
first and the third philosophers are eating; also the negation of the property has been added in
order to obtain a counterexample. Moreover, two liveness properties check that each philosopher
can always eat and think. Thanks to the Asmetal. forall term, the two liveness properties can
be written very concisely, specifying the same property for all the philosophers; in the NuSMV
model, they are unfolded as conjunctions.

9.2.1.4 Temporal property verification

AsmetaSMV allows model checking an Asmetal. specification by translating it to the NuSMV
language and directly run the NuSMV tool on this translation to verify the properties.

41t is possible to avoid the simplification using the execution option -ns.
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NuSMYV CTL operator AsmetalL CTL function

EG p static eg: Boolean — Boolean

EX p static ex: Boolean — Boolean

EF p static ef: Boolean — Boolean

AGp static ag: Boolean — Boolean

AX p static ax: Boolean — Boolean

AF p static af: Boolean — Boolean

E[p U (] static e: Prod(Boolean, Boolean) — Boolean
Alp U (] static a: Prod(Boolean, Boolean) — Boolean
CTL pattern AsmetalL CTL function

Ep W (] static ew: Prod(Boolean, Boolean) — Boolean
Alp W ¢] static aw: Prod(Boolean, Boolean) — Boolean
A[-p W (] static ap: Prod(Boolean, Boolean) — Boolean
A[(—p v AG(—1)) W (q v )] | static pb: Prod(Boolean, Boolean, Boolean) — Boolean

Table 9.1: CTL operators and CTL patterns available in CTLlibrary.asm

The output produced by NuSMYV is pretty-printed, replacing the NuSMYV variables with the
corresponding Asmetal. locations: it is our desire, in fact, to hide as much as possible the NuSMV
syntax to the user.

Fig. 9.9 reports the output produced by model checking the Asmetal. model shown in Fig.9.8.
All the three properties are verified. The negation of the reachability property shows a path to
reach a state in which the first and the third philosophers are eating. Note that the pretty printer
has substituted variables with locations (e.g., eating_.PHIL1 with eating(PHIL1)).

Thanks to the integration of AsmetaSMV in the ASMETA framework, a counterexample can
be mapped to an Avalla scenario (see Section 4.2), so that the trace that leads to a failure can be
reproduced through simulation. This feature has also been encouraged in [95], where it is noticed
that a good formal method framework should provide a better feedback when formal analysis
exposes a failure, so that for the user it is easier to discover the fault and fix it.

9.2.2 Experiments

AsmetaSMV has been tested on five case studies; the complete description of our tests can be
found in [5], and all the models are available in the ASMETA repository [13].
The first two case studies we have analysed are two problems described in [31]:

1. A system made of two traffic lights placed at the beginning and at the end of an alternated
one-way street; both traffic lights are controlled by a computer.

2. An irrigation system composed of a small sluice, with a rising and a falling gate, and a
computer that controls the sluice gate.

For both problems we have written ground and refined models; in each model we have declared
safety and liveness properties to test the correctness of the model.

We have also analysed the taxi booking problem: in a city some clients can request one or
more taxis to a central that must satisfy all the requests. The taxis must bring the clients where
they want to go. For this problem we had previously developed a NuSMV model (let us call it
original NuSMV'); now we have developed an Asmetal. model containing the same properties that
we wrote in the originalNuSMV. We have been able to compare the originalNuSMV code with
the code obtained from the translation of the Asmetal model (let us call it mapped NuSMV).
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asm philosophers MODULE main
import StandardLibrary VAR
import CTLlibrary
DEFINE

signature:

ASSIGN
definitions:

——CTL properties
// reachability CTLSPEC EF (eating PHIL3 & eating_ PHIL1)
CTLSPEC ef(eating(phill) and eating(phil3)) CTLSPEC !EF (eating PHIL3 & eating_PHIL1)

CTLSPEC not(ef(eating(phill) and eating(phil3))) |CTLSPEC AG(EF(eating.PHIL1)) &
AG(EF (eating_PHIL2)) &

//liveness AG(EF (eating_PHIL3)) &

CTLSPEC (forall $p in Philosophers with AG(EF (eating_ PHIL4)) &
ag(ef (eating($p)))) AG(EF (eating_PHIL5))

CTLSPEC (forall $p in Philosophers with CTLSPEC AG(EF(leating PHIL1)) &

ag(ef (not(eating($p))))) AG (EF (leating PHIL2)) &

AG(EF (leating_PHIL3)) &

main rule r_choose_philo = AG(EF (leating_ PHIL4)) &
choose $p in Philosophers with true do AG(EF (leating_-PHIL5))

program($p)

default init s0:

Figure 9.8: Example of temporal properties mapping — Asmetal. and NuSMV models

We have seen that, for the same problem, it is easier to write an Asmetal. code rather than a
NuSMYV one: the ASMs in fact, thanks to a wide set of transition rules, are much more expressive
than NuSMV. The verification of the properties in originalNuSMV and in mappedNuSMV gave
the same results. Obviously this cannot be considered as a demonstration of the correctness of
the mapping, but shows that, for a problem, there are different equivalent models. Generally,
the code obtained from a mapping is more computational onerous than a code written directly
in NuSMV; the mapping, in fact, introduces some elements that can be avoided in the direct
encoding.

We have applied our tool to the FLASH cache coherence protocol, which integrates support for
cache coherent shared memory for a large number of interconnected processing nodes. Starting
from the specifications published by Winter [169] and by Farahbod at alt. [69], we have written
the Asmetal. specification for the protocol together with its safety properties. By means of the
ASMETA simulator and the validator we were able to correct some defects in our specifications
even before trying to prove the properties. A problem of vacuity detection has also been arisen.

Finally, we have analysed the Mondex protocol [133], as described in the next section.

9.2.2.1 Mondex protocol

The Mondex protocol [133] implements electronic cash transfer between two purses (here cards);
the transfer of money is implemented through the sending of messages over a lossy medium, that
can be a device with two slots or an Internet connection. We have analysed the first refinement
described in Section 3 (”From Atomic Transfers to Messages“) of [154]. The protocol that sends
money from card card; to card cards works in four steps:

1. cardp sends a request of money to card; with the rule STARTTO;
2. card; receives a request and sends money to carde with the rule REQ;
3. cardy receives the money and sends an acknowledgement to card; with the rule VAL;

4. card; receives the acknowledgement with the rule ACK.
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-- specification EF (eating(PHIL3) & eating(PHIL1)) is true
-- specification !(EF (eating(PHIL3) & eating(PHIL1))) is false
-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample
Trace Type: Counterexample

-> State: 1.1 <-
eating(PHIL1) = FALSE

eating (PHIL5) = FALSE

hungry (PHIL5) = FALSE
owner (FORK1) = undef

owner (FORK5) = undef
1lv_$p_0 = PHIL1
-> State: 1.2 <-
hungry (PHIL1) = TRUE
-> State: 1.3 <-

eating (PHIL1) = TRUE
hungry (PHIL1) = FALSE
hungry(PHIL3) = TRUE

owner (FORK1) = PHIL1
owner (FORK2) = PHIL1
1lv_$p_0 = PHIL3
-> State: 1.4 <-

eating(PHIL3) TRUE
hungry (PHIL3) = FALSE
owner (FORK3) = PHIL3
owner (FORK4) = PHIL3
1v_$p_0 = PHIL1

-- specification AG (EF eating(PHIL1)) & ...
-- specification AG (EF l!eating(PHIL1)) & ...

Figure 9.9: NuSMV model execution embedded in AsmetaSMV

& AG (EF eating(PHIL5))
& AG (EF l!eating(PHIL1))

is true
is true

There are two additional rules: rule LOSEMSG models the loss of a message, and rule ABORT
the abortion of a protocol run by one of the cards involved.

We have written a simplified version of the protocol in Asmetal. (Section 9.2.2.1). Since
the model must be translated into NuSMV, we have only used elements that are supported by
AsmetaSMV and we have slightly changed the signature.

The model presented in [154] contains an error; in Section 9.2.2.1 we describe how we found
it with AsmetaSMV and we propose a solution to fix it.

Mondex model We consider a simplified version of the problem presented in [154]:

e there are only two cards (CARDI and CARD2 belonging to the domain Name);

e it is not possible that a message is lost and that a card aborts a transaction, that is rules
LOSEMSG and ABORT of [154] are not considered.

A fragment of the model is shown in Code 9.1.
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macro rule r_startTo($initiator in Name) =
if (isFree ( $initiator )) then
choose $na in Name, $value in MoneyDom, $tid in TidDom with not(tids($tid)) and
authentic($na) and $na != $initiator do
par

inbox($na, REQ, $initiator, $value, $tid) := true //request money
outboxMessage(3initiator) := REQ outboxName($initiator) := $na
outboxMoney ($initiator) := $value outboxTid($initiator) := $tid
outboxIsNone(3initiator) := false
tids ($tid) := true //tid used

endpar

endif

macro rule r_req($receiver in Name) =
choose $na in Name, $value in MoneyDom, $tid in TidDom with authentic($na) and $nal=S$receiver
and inbox($receiver, REQ, $na, $value, $tid)
and $value <= balance($receiver) and isFree($receiver) do

par
inbox($receiver, REQ, $na, $value, $tid) := false //message read
balance(8receiver) := balance(8$receiver) — $value //subtraction of the requested money
inbox($na, VAL, $receiver, $value, $tid) := true //reply with a VAL message
outboxMessage($receiver) := VAL outboxName($receiver) := $na
outboxMoney ($receiver) := $value outboxTid(Sreceiver) := $tid
outboxIsNone($receiver) := false

endpar

macro rule r_val($receiver in Name) = ...
macro rule r_ack($receiver in Name) = ...

CTLSPEC ag(inbox(CARD1, REQ, CARD2, On, 1n) implies ef(inbox(CARD2, VAL, CARD1, On, 1n)))

main rule r_irule =
choose $card in Name, $rule in Ruleld with authentic($receiver) do

switch(S$rule)
case STARTTORULE: r_startTo[$card]
case REQRULE: r_req[$card]
case VALRULE: r_val[$card]
case ACKRULE: r_ack[$card]

endswitch

default init s0:
function balance($n in Name) = at({ CARD1—>5n, CARD2—>5n}, $n)
function inbox($n in Name, $t in MsgType, $na in Name, $value in MoneyDom, $tid in TidDom) = false
function tids($tid in TidDom) = false
function outboxIsNone($n in Name) = true

Code 9.1: Mondex protocol with error: Asmetal. model
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outbox of CARD2 inbox of CARD1
outboxMessage(CARD2) = REQ
outboxName(CARD2) = CARD1
outboxMoney(CARD2) = On inbox(CARD1, REQ, CARD2, On, 1n) = true
outboxTid(CARD2) = 1n
outboxIsNone(CARD2) = false

Figure 9.10: Correspondence between the outbox sender and the inbox of the receiver

Signature We here briefly describe the signature of the model®. The controlled function
balance($n in Name) represents the balance of card $n; the static boolean function authentic($n
in Name) says if card $n is authentic. Each card has an inbox that contains messages that have
to be processed. The controlled boolean function inbor models the inboxes of the cards; the
arguments are:

e $n: the owner of the inbox;

e J$m: the type of the message (REQ, VAL or ACK);

e $na: the sender of the message;

e S$value: the amount of money involved in the transaction; to keep down the model checker
execution time, its domain is limited to {0, 5, 10};

e $t: the identifier of the transaction.

The location inbox($n, $m, $na, $value, $t) is true if the message ($m, $na, Svalue, §t) is in
the inbox of $n.

Each card has an outbox that contains the last sent message. The outbox is modeled through
five controlled functions that contain the elements of the message:
outborMessage: Name — MsgType: type of the message;
outborName: Name — Name: the addressee of the message;
outboxrMoney: Name — MoneyDom: the amount of money involved in the transaction;
outboxTid: Name — TidDom: the identifier of the transaction;
outboxrIsNone: Name — Boolean: it signals if the outbox contains a message.

The element of the domain Name used as argument of the five functions is the owner of the
outbox.

Fig. 9.10 reports an example to visualize the correspondence between the outbox of the card
that has sent the message and the inbox of the card that has received it. In this example CARD2
has sent a REQ message of 0 money to CARD1; the identifier of the transaction is 1.

The derived function isFree($n Name) says if the outbox of §n is not involved in a transaction
(the outbox contains no message or contains an ACK message). Finally, the boolean function

5The complete signature of the model is as follows.
enum domain Name = {CARD1 | CARD2}
enum domain MsgType = {REQ | VAL | ACK}
enum domain Ruleld = {STARTTORULE | REQRULE | VALRULE | ACKRULE}
domain TidDom subsetof Natural
domain MoneyDom subsetof Natural
controlled balance: Name — MoneyDom
controlled tids: TidDom — Boolean
controlled inbox: Prod(Name, MsgType, Name, MoneyDom, TidDom) — Boolean
controlled outboxMessage: Name — MsgType
controlled outboxName: Name — Name
controlled outboxMoney: Name — MoneyDom
controlled outboxTid: Name — TidDom
controlled outboxIsNone: Name — Boolean
derived isFree: Name — Boolean
static authentic: Name — Boolean
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tid($t in TidDomain) says if an identifier of transaction (tid) has already been used (since we
must do model checking, we have a fixed number of tids, i.e., we can not create fresh ones).

Transition rules Let’s describe the transition rules, by instantiating in our model the
transfer of money from card; to cards described in Section 9.2.2.1:

1. r_startTo($initiator in Name): cardg (here the initiator) requests v money from card; (it
sends a REQ message to the inbozx of card;) and memorizes the message in its outbox;

2. r_req($receiver in Name): card; (here the receiver) receives the request, removes the mes-
sage from its inbox, removes v money from its balance, sends a VAL message to the inbox
of cards and puts the message also in its outbox;

3. r_val($receiver in Name): cardg (here the receiver) receives the VAL message, removes the
message from its inbox, adds v money to its balance, sends an ACK message to the inbox
of card; and puts the message also in its outbox;

4. r_ack($receiver in Name): card; (here the receiver) receives the ACK message, removes the
message from its inbox and clears its outbox.

In the main rule, an authentic card and a rule are nondeterministically chosen; the chosen
card executes the chosen rule. If the chosen rule is r_startTo, the card acts as the initiator of
a communication, whereas in the other three rules the card always receives a message and, if
required (i.e., in r_req and r_val), replies with a suitable message.

Formal verification We now describe how we found an error in the model presented in [154].
Let’s focus our attention on the first two rules, r_startTo and r_req; we want to show that the
system, through a particular execution of this two rules, can enter in a deadlock state.
The execution of rule r_startTo($initiator in Name) is the following:

1. the rule can be executed only if card $initiator is not involved in a previous transaction
(i.e., isFree($initiator));

2. a message ($na, REQ, $value, $tid) is built such that card $na is authentic and different
from card $initiator, and the tid $tid has not yet been used; if it is possible to build such
a message, the following actions are executed:

(a) the card $initiator puts the message in the inbox of card $na and in its outbox;
(b) the tid $tid is removed from the available tids.

The execution of rule r_req($receiver in Name) is the following:

1. the rule can be executed only if card $receiver is not involved in a previous transaction
(i.e., isFree($receiver));

2. a message ($na, REQ, $value, $tid) contained in the inbox of $receiver is chosen such that
card $na is authentic and different from card $receiver, and the amount of money $value
is less or equal to the balance of the receiver; if it is possible to find such a message, the
following actions are executed:

(a) the chosen message is removed from the inbox of the card $receiver;
(b) the value $value is removed from the balance of the card $receiver;
(c) the card $receiver puts a VAL message in the inbox of card $na and in its outbox.

By means of the verification of the CTL property reported in Code 9.1, we have discovered
that there is a situation in which the system is in deadlock:
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-> State: 1.1 <- tids(2) = FALSE
authentic(CARD1) = TRUE lv_$card_0 = CARD2
authentic (CARD2) = TRUE 1v_$rule_0O = STARTTORULE
balance(CARD1) = 5 lv_$na_1 = CARD1
balance(CARD2) = 5 lv_$value_1 = 0
isFree(CARD1) = TRUE lv_$tid_1 = 1
isFree(CARD2) = TRUE R
inbox (CARD1, ACK, CARD1, 0, 1) = FALSE -> Input: 1.2 <-

. -> State: 1.2 <-

inbox (CARD2, VAL, CARD2, 5, 2) = FALSE isFree(CARD2) = FALSE
outboxIsNone (CARD1) = TRUE inbox (CARD1, REQ, CARD2, 0, 1) = TRUE
outboxIsNone (CARD2) = TRUE outboxIsNone (CARD2) = FALSE
outboxMessage (CARD1) = MSGTYPE_UNDEF outboxMessage (CARD2) = REQ
outboxMessage (CARD2) = MSGTYPE_UNDEF outboxMoney (CARD2) = 0
outboxMoney (CARD1) = -2147483647 outboxName (CARD2) = CARD1
outboxMoney (CARD2) = -2147483647 outboxTid(CARD2) = 1
outboxName (CARD1) = NAME_UNDEF tids(1) = TRUE

outboxName (CARD2) = NAME_UNDEF 1v_$card_O = CARD1
outboxTid (CARD1) = TIDDOM_UNDEF lv_$na_1 = CARD2

outboxTid (CARD2) = TIDDOM_UNDEF lv_$tid_1 = 2

tids(1) = FALSE

Figure 9.11: Counterexample of the CTL property ag(inbox(CARD1, REQ, CARD2, On, 1n)
implies ef (inbox(CARD2, VAL, CARD1, On, 1n)))

1. CARD2 executes the rule r_startTo: it asks 0 money to CARD15. The outbox of CARD2,
after the rule has fired, contains the same message it has sent to CARD].

2. CARD1 executes the rule r_startTo: it also asks 0 money to CARD2. The outbox of
CARD1 contains the same message it has sent to CARDZ2.

At this point, in order to continue the transfers of money, the two cards should execute the
rule r_req to satisfy the request of the other card. A receiver, however, in the r_req rule satisfies
a REQ message only if its outbox is empty. But both cards have their outboxes occupied by the
REQ message that they have sent to the other card. So, we have reached a situation in which
the two cards are blocked.

The used CTL property is

ag(inbox (CARD1, REQ, CARD2, On, 1n) implies ef (inbox(CARD2, VAL, CARD1, On, 1n)))

The property checks that, if CARD2 has done a request of 0 money to CARD1, sooner or later
CARD1 will reply with the VAL message. The property is not verified and Fig. 9.11 shows
the counterexample. In State 1.1 CARD2 has requested, in the rule r_startTo, 0 money to
CARD1 (the tid is 1): we can see that there is the request by observing the logic variables
lv_$card 0, 1v_$rule 0, lv_$na 1, 1lv_$value_1 and lv_$tid_1. In State 1.2 the message has
been delivered to CARD1 (inbox(CARD1, REQ, CARD2, 0, 1) = TRUE) and put in the outbox
of CARD2 (outboxIsNone(CARD2) = FALSE, ..., outboxTid(CARD2) = 1).

In State 1.2, observing the same logic variables we have observed previously, we can see that
CARD1 has requested, in the rule r_startTo, 0 money to CARD2 (the tid is 2)7. So, in the
next state (State 1.3 not shown by the returned counterexample), the outbox of CARD1 and the
inbox of CARD2 will contain this request.

From State 1.3, both cards can not reply to the request of money from the other card (although
they have enough money in their balances): in fact, both the outboxes of CARDI and CARD2

6We can notice that the request will be always satisfied, because there will be always enough money on the
balance of CARD1 to satisfy a request of 0 money.
7In NuSMV counterexamples, the content of a state is given as difference with respect to the previous state.
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are occupied by a message and the r_req rule can be executed only if the outbox of the receiver
is empty.

We now present two possible solutions to fix the problem. We applied both solutions to the
model shown in Code 9.1 and in both cases the CTL property has been verified.

Naive solution In the Asmetal. model described in Section 9.2.2.1 we have not considered
the ABORT rule described in [154], that permits to abort a transaction. In fact we thought
that, even without the ABORT rule, the transfer of money between two cards should be always
permitted if the balances of the cards allow it.

However, we have seen that the reintroduction of the ABORT rule can solve the problem,
because, if the system enters in deadlock, sooner or later the execution of the ABORT rule
terminates one of the two transactions, so solving the deadlock.

We do not think that this is a good solution and so we propose a modification to the model
presented in [154] to fix the problem, without the need of using the ABORT rule.

Proposed solution We propose to add to the model a boolean function check($initiator in
Name) that verifies that card $initiator has not a pending request of money from another card.
In the rule r_startTo, the guard of the choose rule is extended with the control check($initiator):
in this way, card $initiator can not request money if it has to fulfil a request of money pre-
viously received from another card. This control avoids the deadlock. These are the required
modifications to the model shown in Code 9.1.

signature:
derived check: Prod(Name) —> Boolean

definitions:
function check($initiator in Name) =
not(exist $na in Name, $v in MoneyDom, $t in TidDom with inbox($initiator, REQ, $na, $v, $t))

macro rule r_startTo($initiator in Name) =
if (isFree ( $initiator )) then
choose $na in Name, $value in MoneyDom, $tid in TidDom with not(tids($tid)) and
authentic($na) and $na != $initiator
and check( $initiator) do
par

endpar
endif



Chapter 10

Runtime monitoring

According to [124], runtime monitoring (also runtime verification) is “the discipline of computer
science that deals with the study, development, and application of those monitoring techniques
that allow checking whether a run of a system under scrutiny satisfies or violates a given cor-
rectness property”.

So, the aim of runtime monitoring is to check that the observed executions of a system!
ensure some correctness properties. Runtime monitoring is a lightweight verification technique
that, considering the ability to detects faults, can be classified halfway between those techniques
that try to ensure universal correctness of systems — as model checking and theorem proving (see
Chapter 9) — and those techniques like testing that ensure the correctness only for a fixed set of
executions (i.e., those deriving from the test cases specified in the test suite).

The main difference with techniques like model checking is that, whereas these techniques
check all possible executions of a program, runtime monitoring only checks those executions that
are actually performed by the program under scrutiny. So, it is possible that, although the
program contains a fault, its executions never produce a failure that evidences that fault.

The main difference with testing, instead, is that the number of executions over which the
program is checked is not fixed. Sometime, runtime monitoring is seen as the process of testing
the system forever [124], since, as in testing, the actual output is checked with respect to an
expected output (usually described by an oracle), but, unlike testing, every execution of the
system is checked.

Finally, what distinguishes runtime monitoring from any other validation and verification
(V&V) activity, is that it can be executed also after the deployment of the program, whereas
traditional V&V activities are only executed offfine, that is before the deployment.

So, why and when should we use a runtime monitoring technique? Let’s try to list some
motivations:

e Exhaustive verification techniques are not always applicable; for example, proving a secu-
rity property that a system never reaches a dangerous state could require too much time
depending on the size of the system. Moreover, techniques like model checking usually
check the model of the system, not the actual implementation: so, it remains the problem
of verifying that the correctness of the model implies the correctness of the implementation.

e The system could strongly depend on the environment in which it is executed [53]. If this
environment is not available at testing time or, although available, it is not practically
possible to interact with it (because maybe too much time consuming), testing the sys-
tem could become difficult. In unit testing this problem is sometimes mitigated by using
mock objects that mimic the behaviour of the environment: however, if the actions of the
environment are not fully predictable, also using mock objects could be not useful.

1All the definitions are applicable both to hardware and software systems. However, from now on, we will only
consider software systems.
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e Finally, safety-critical systems [115] as medical devices, aircraft flight controls, nuclear
systems, etc., although tested and verified deeply, could require an additional degree of
confidence that they behave as expected. Runtime monitoring here acts as a double check
that everything goes well [124].

In Section 10.1 we give general definitions about runtime monitoring, while in Section 10.2
we give a non-exhaustive overview of the literature about runtime monitoring by describing
four runtime monitoring techniques. In Chapter 11 we introduce the approach we propose to
execute runtime monitoring of Java programs using ASMs. In Chapter 12 we describe how our
runtime monitoring approach can be used in combination with model-based testing for testing
nondeterministic systems.

10.1 Runtime monitoring schema

The general schema of a runtime monitoring approach is depicted in Fig. 10.1. We have adapted
to our purposes the schema presented in [57].

runtime monitor

Requirements| properties Analyser respons Event
———>»| | Observer ——» E)
state of |(Sync./async.) handler

f& interest
/
ro A\

runtime )
data actions (recover,

\ shutdown, ...)

\

internal
probe

result/trace

external Log

probe

Executing software
e,

Figure 10.1: General overview of a runtime monitoring scenario

Any runtime monitoring technique must start considering the requirements that specify the
expected behaviour of the software system. Some approaches are more tailored to the verifica-
tion of functional requirements, whereas others address in particular non-functional requirements:
here we are mainly interested in analysing those techniques that deal with functional require-
ments.

Starting from the requirements, a set of correctness properties [57] must be derived. These
properties specify all admissible individual executions of a system and can be expressed using a
great variety of different formalisms as, for example, temporal logics [92, 22], extended regular
expressions [43] and Z specifications [126].

Then, these properties are usually encoded into a runtime software-fault monitor, or simply
a monitor, a system that observes and analyses the states of an executing software system. The
monitor checks the correctness of the system behaviour by comparing the observed state of the
system with the expected state described by the correctness properties. Some approaches provide
special algorithms to synthesize the monitor starting from the properties. Other approaches,
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instead, provide a general monitor that can check any property and simply needs to be initialised
with the properties to check.

A monitor is composed of two elements: the observer that concretely monitors the program
execution and the analyser that checks that the correctness properties are satisfied.

In order to monitor the program, the observer uses some probes that can collect different kinds
of data about the program execution as, for example, the values of internal fields/variables, which
methods have been executed, the value returned by a method, etc.. These probes can be internal,
if they have access to the internal state of the program, or external, if they can just observe its
external behaviour.

The runtime monitoring process works as follows:

1. When a monitored event is detected, i.e., a given condition is satisfied (e.g., a method has
been called, or a field has been updated), the observer retrieves runtime data from the
probes;

2. the observer extracts from the runtime data the state of interest, i.e., those data that are
necessary for checking the properties, and sends it to the analyser;

3. the analyser, based on the received data, checks if the execution of the system still satisfies
the properties. The analyser can operate in two ways:

o synchronously, if the program can continue its execution only after the analyser has
finished its computation; this scenario is quite intrusive and so it would be desirable
that the time taken by the verification of the properties is narrowed as much as
possible. However, in this scenario all the faults are captured timely, as soon as they
occur.

e asynchronously, if the program, in order to continue its computation, does not have
to wait for the analyser to finish the checking of the properties. This approach is
less intrusive of the previous one, but it could lead to situations in which a fault is
discovered after it has already produced a failure in the program.

4. the analyser sends the response of its control to the event handler that, in case of property
violation, can decide to make some actions on the running program (e.g., stopping it or
restoring it to a previous state known to be safe) and/or record some information in a log
file, maybe in the form of execution traces (similar to counterexamples of model checking).

The approach we have presented, in which the system is checked while it is executing, is
sometimes called online monitoring [22], to distinguish it from offline monitoring, in which the
system executions are recorded and checked offline.

10.2 Runtime monitoring techniques

In the following, we give a non-exhaustive overview of the literature about runtime monitoring
by describing four runtime monitoring techniques.

10.2.1 LTL;

In [22, 21] the authors presents an approach to runtime monitoring in which traces of programs
are examined in order to check if they satisfy some temporal properties expressed in LTL3, a
linear-time temporal logic designed for runtime monitoring. The syntax of LTLj3 is the same as
LTL (see Section 9.1.2.1); its semantic, instead, is adapted in order to handle finite traces. It
uses three truth values: true, false and inconclusive (T, L and 7). Given a finite trace u and an
LTL3 formula ¢, the value of ¢ is

a) true if every continuation of u satisfies ¢,

b) false if no continuation of u satisfies ¢,
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¢) inconclusive otherwise.

From an LTL3 formula they derive an FSM whose states are labeled with three output symbols
(T, L and 7) that constitute a classification of the finite traces of the monitored system.

During the runtime monitoring, the FSM is visited using as inputs the events observed in the
running software. The visit continues as long as the visited states are labeled with 7, since this
means that no conclusive result can be given about the formula. As soon as a state labeled with
T or L is reached, the verification is interrupted because a conclusive result has been reached
and no continuation of the observed trace can modify the result.

Let’s see the example presented in [22]. In C++ a known problem is the static initialisation
order fiasco [58], that is caused by the fact the initialisation of static objects is executed in a
nondeterministic order. So, if threads get spawned before the main method is executed, it could
be that not all the resources necessary to synchronize those threads are already initialised. The
authors propose the following simple LTL formula to monitor the execution of a C++ program:

o = —spawn U init

where the atomic proposition spawn signals if a thread has been spawned, while init signals if
the initialisation of the program has finished. Property ¢ simply requires that no thread can
be spawned until the application has not finished its initialisation. Fig. 10.2 shows the Biichi
automaton that describe ¢, i.e., that accepts all the infinite traces that are models for .

—spawn true

Figure 10.2: Biichi automaton that describe property ¢ = —spawn U init

Fig. 10.3 shows the FSM used, during runtime monitoring, as monitor for property .

true

—spawn A —init o
spawn A —init

Figure 10.3: Monitor for property ¢ = —spawn U init

As long as the monitor does not read as input spawn or init, it remains in state pg, in which
no conclusive result can be established. If the monitor reads an init, it goes in state p, where
the property is declared satisfied. Instead, if it reads a spawn without an init, it goes to state p;
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where the property is declared wviolated. Any trace continuing from p; or ps can not change the
result about the property and, so, the monitoring can be interrupted.

10.2.2 Monitored oriented programming

Monitored-oriented programming (MOP) [43, 44] is a generic monitoring framework whose aim is
the integration of an implementation with its formal specification, by checking the latter against
the former at runtime. The specification can be written in any formalism for which a logic plugin
has been developed: the framework yet implements several logic plugins for different formalisms
as FSMs, Extended Regular Expression (ERE), LTL, and Past Time LTL (PTLTL).

According to the authors [43], MOP can be seen as a lightweight formal method that extends
programming languages with logics: logic statements can be placed in different places of the
program for monitoring its execution and, in case of errors, also possibly undertaking some
recovery actions.

The approach requires that the formal specifications are translated (in two steps) in the target
programming language. The obtained monitoring code can be used in online mode, in which the
monitoring code is placed in the monitored program, and in an offline mode in which it is used
to check traces recorded by adequate probes. Aspect Oriented Programming (AOP) [113] is used
to weave the monitoring code into the monitored code.

The MOP approach has been instantiated in JavaMOP [45], for the monitoring of Java
programs, and in BusMOP [147], for the monitoring of PCI bus traffic.

Let’s consider JavaMOP. JavaMOP already provides several logic plugins; on the project
website [103] there are several specifications that can be downloaded or translated into a monitor
using an online tool (also the offline version is available). The obtained monitor is an AspectJ [132]
aspect that is responsible for catching the monitored events and executing the checking. Let’s
take an LTL specification from their web repository to describe the approach. Code 10.1 shows
the JavaMOP LTL specification that states that, when using an Iterator, you always have to
call the method hasNext before calling the method next. Such specification describes a common
requirement for a safe usage of iterators.

package mop;
import java.io.x;
import java.util.x;

HasNext(Iterator i) {
event hasNextTrue after(Iterator i) returning(boolean b): call(x Iterator.hasNext())
&& target(i) && condition(b) { }
event next before(Iterator i) : call(x Iterator.next()) && target(i) { }

1tl: [J(next => (*) hasNextTrue)

@violation {
System.out.println(” Method next has been called without calling hasNext before!”);

}
}

Code 10.1: JavaMOP LTL specification: correct usage of iterators

In the specification, the atomic predicates used in the LTL formula must be declared using
the keyword event. An event looks like an AspectJ pointcut, that is a point of the program
execution one wants to capture. In the example, the event hasNextTrue captures the points of
the program execution just after calls of the method hasNext that has returned the value true.
The event mezt, instead, identifies the points of the program execution just before calls of the
method next.

The LTL formula states that always ([]), if the method next is called, previously? ((x)) the

2Here previously indicates the event occurred right before the current event.
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method hasNext must have been called returning true.

The section @violation permits to specify the code that must be executed if the property
is violated. In this case, we simply require that a message is printed to the standard output.
However, any action could be made: e.g., calling the method hasNext to check if it is possible
to proceed with the execution of method next anyway® and, if not, doing some recovery actions,
ie.,

@violation {

if(!i.hasNext()) {
//do some recovery actions

In order to be used for monitoring, the specification in Code 10.1 must be translated into a
monitor, that is an AspectJ aspect. We do not report here the obtained aspect because too big
and not really interesting. We want to show, instead, what is the effect of the monitoring.

Let’s consider Code 10.2 in which an iterator over a list of strings is created.

public static void main(String[] args) {
ArrayList<String> list = new ArrayList<String>();
list.add("a”);
list.add (" b”);
list.add(”c”);
Iterator<String> it = list.iterator();

Code 10.2: Creation of an iterator for a list of strings

In the following we will see some instructions that could be executed after those shown in
Code 10.2.

Fig. 10.4 shows, on the left, a correct usage of the iterator in which the execution of next
is always guarded by an execution of hasNext. On the right the produced output is reported.
Since no violation of the LTL property occurs, the execution ends correctly.

while(it.hasNext()) a
System.out.println(it.next());

Figure 10.4: Correct usage of the iterator

Fig. 10.5, instead, shows a wrong usage of the iterator, since the method next is called without
calling hasNext before. The monitor detects the violation and executes section @violation. Note
that, however, the violation of the property does not imply a failure of the Java code because,
in this case, there is an element that can be retrieved with next.

System.out.println(it.next()); Method next has been called without calling hasNext before!

a

Figure 10.5: Wrong usage of the iterator — No Java exception risen

Also Fig. 10.6 shows a wrong usage of the iterator. In this case, however, also a failure in the
Java code occurs (exception NoSuchElementException is risen), since, when the next method is
called outside the while loop, there is no element in the iterator that can be retrieved.

3Note that the event next captures the execution point right before the call of method next. So, if in section
@violation method hasNext is called, it correctly states if there is an available element in the iterator, to be
consumed by the captured call of method next.
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while(it.hasNext()) a
System.out.println(it.next()); b
System.out.println(it.next()); c

method next has been called without calling hasNext before!
Exception in thread "main” java.util. NoSuchElementException
at java.util.ArrayList$ltr.next(ArrayList.java:757)
at mop.Main.main(Main.java:16)

Figure 10.6: Wrong usage of the iterator — Java exception risen
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Figure 10.7: Software monitoring through Z specifications

10.2.3 Software monitoring through Z specifications

In [126] a formal specification-based software monitoring system is presented. In this approach
the behaviour of a concrete implementation (a Java code) is checked for compliance with a formal
specification.

Unlike MOP, in this approach the concrete implementation is separated from the specification
and no instrumentation code is inserted in the monitored program.

Fig. 10.7 shows the schema of the approach, as reported in [126]. The execution of program is
monitored by a debugger and the formal specification is executed in parallel with a specification
animator. The user must provide to the system an execution sequence, i.e., a list of the methods
that must be executed, together with values to be used as actual parameters. The controller
module drives the execution according to the execution sequence. The analyser module compares
the execution of the program and the simulation of the formal specification to see if they are
conformant: in case of violation, it reports the error to the user.

In this approach, the Z specification language [170] is used to write the formal specifications.
Z is a formal language, based on set theory and first order logic, for specifying sw/hw systems; a
system is modeled describing its states and the way in which they can be modified. A specification
contains state schemas and operation schemas. A state schema contains variable declarations
and related invariants: the system state is given by the values of the variables that must always
respect the invariants. An operation schema describes the relation between the states before and
after an operation execution.

Fig. 10.8 shows the Z specification of a FIFO queue. The state schema Queue describes the
queue as a sequence of natural numbers that can contain, at the most, ten elements. Operation
schema InitQueue describes the initialisation of the queue, Enqueue the addition of an element
to the queue, and Dequeue the removal of an element.
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Figure 10.8: Z formal specification of a FIFO queue

The actual monitoring of the implementation must be done through a tool in which the user
must specify the sequence of methods she wants to execute and where she can follow the parallel
execution of the program and of the specification. Note that the proposed approach can be
used during the testing of a program, but can not be used in the deployed program in which
the monitoring system should be hidden to the final user (as in JavaMOP, for example). Fig.
10.9 shows a screenshot of the tool in which the Java implementation of a FIFO queue has been
monitored with the specification in Fig. 10.8: since the Java code wrongly implements method
deQueue (it removes the last inserted element) a conformance violation is risen.

10.2.4 Dynamic Monitoring — Dynamo

Business Process Ezxecution Language (BPEL) is a language used to execute web services or-
chestrations. A BPEL specification describes the evolution of a business process specifying a
sequence of activities; a BPEL engine executes a BPEL specification, performing all the activities
and finding the required external services. The binding between the external service invocation
and the actual service exported by a service provider is done at runtime and can change over
time [83] (e.g., new versions of the selected services are released, services are supplied by different
providers, ... ). In such a scenario, where the binding with web services is made and can change
dynamically, the typical V&V activities are less effective than in the traditional scenario. In
the web service orchestration scenario, instead, a continuous verification should be executed, for
example, that the services delivered comply with the requests.

In [18] the tool Dynamo (Dynamic Monitoring) is presented: it permits to execute runtime
monitoring of BPEL processes. It can check that both functional and non-functional properties
are satisfied and, eventually, recover from erroneous situations.

Dynamo has a language, called WSCoL [19], that permits to specify constraints on WS-BPEL
processes: it permits to specify pre-conditions and post-conditions for the BPEL activities that
use external services: invoke (the process invokes a web service), receive (the process receives
a message after the invocation of a web service), reply (the process returns a message to the
partner that started the conversation) and pick (the process selects an activity associated with
the message received). In Fig. 10.10 an overview of the Dynamo system is shown.

Let’s see how to use Dynamo in practice:

1. First of all, we must write a WS-BPEL specification; in Fig. 10.10 WS-BPEL process
contains the invocations of the three services A, B and C. It is important to notice that
this specification does not contain any WSCoL code (this specification is also called the
unmonitored version of the business process) and it can be run by the BPEL engine: on

the left side of the figure we can see that the normal run leads to the invocation of web
services WS A, WS B and WS C.
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Figure 10.9: Tool for runtime monitoring through Z formal specifications

. Then, the constraints that we want to check must be specified in the Monitoring Definition
File, using the WSCoL language; in this file we have also to specify the BPEL activities
that are monitored by the constraints. In the example, the Monitoring Definition File
specifies some constraints on the invocation of service B.

. The component BPEL? takes in input the W.S-BPEL Process and the Monitoring Definition
File; it builds the monitored version Instrumented WS-BPEL process where each BPEL
invocation that is monitored by a constraint (as specified in the Monitoring Definition File)
is replaced by an invocation of the Monitoring Manager MM. Moreover, BPEL? adds, at
the beginning of the specification, some code to set up the monitoring manager before the
process execution, and some code at the end to release it at the completion of the process
execution.

. During the run of Instrumented WS-BPFEL process (right side of Fig. 10.10) we have two
kinds of invocations:

e non-monitored invocations that are dealt like in a run of WS-BPFEL Process: invoca-
tions of non-monitored services A and C lead to the invocations of web services WS

A and WS C;
e monitored invocations that are handled by the Monitoring Manager MM.

. The Monitoring Manager MM, for each monitored invocation, executes the following tasks:

e it acts as a proxy, invoking the suitable web service for the current invocation;

e it checks, with a proper data analyser, that the constraints on the current invocation
are satisfied. This check must be executed before or after the web service invocation,
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depending on the fact that the constraints are, respectively, pre or post conditions.
It is possible to use different data analysers and, so, to analyse different kinds of

Since this is an online monitoring approach (see Section 10.1), all the activities of the Moni-
toring Manager MM are blocking, that is they block the execution of the business process during
the checking of the constraints: this permits to discover erroneous behaviours as soon as they

occur. When a violation is detected, Dynamo can also execute some recovery actions, that must
be specified in the Monitoring Definition File.



Chapter 11

Runtime monitoring through ASMs

In Section 10.2 we have seen that, in most of the approaches dealing with runtime monitoring
of software, the required behaviour of the system is formalized by means of correctness proper-
ties [57] described using declarative specifications, as LTL/PTLTL [22, 108, 45], extended regular
expressions [45], design by contract languages [19, 122], and so forth. Also new notations devel-
oped for runtime monitoring are based on a declarative style. ALBERT [17] is a temporal asser-
tion language for the runtime monitoring of BPEL processes that extends LTL with timestamps.
Tracematches [1], instead, are an extension of AspectJ pointcuts, based on the integration of
regular expressions, that can be used with success in runtime monitoring: indeed, while standard
pointcuts only permit to capture single points of the program execution, tracematches permit
to signal if particular runs of the program have been executed, a feature requested by several
runtime monitoring techniques.

Declarative notations have the advantage of having been extensively used in traditional veri-
fication techniques and, moreover, they provide efficient algorithms to derive the monitors that
must be used during the runtime checking. For these reasons they have been widely used in
runtime monitoring.

The use of operational specifications (as abstract automata and state machines) for runtime
monitoring, instead, has not been studied with the same strength. An operational specifica-
tion describes the desired system behaviour by providing a model implementation of the system,
generally executable. The work in [126], that we have briefly presented in Section 10.2.3, is an
example of runtime monitoring that makes use of operational specifications: the formal specifica-
tion of the program under monitoring is given in the Z language and it describes the system state
and the ways in which it changes. Another approach that uses operational specifications (called
model programs) is presented in [20], where they use ASMs to specify all of the traditional design-
by-contract concepts of pre- and post-conditions and invariants for .NET components. The work
we propose in this chapter has been inspired by both works [126, 20].

We claim that specification styles (and languages) may differ in their expressiveness and very
often their use depends on the preference and taste of the specifier, the availability of supporting
tools, and so forth. Up to now, declarative languages have been preferred for runtime software
monitoring, but we think that the use of operational languages should be investigated more
deeply.

In this chapter we present CoMA (Conformance Monitoring by ASMs), a specification-based
approach and its supporting tool for runtime monitoring of Java software. We assume that the
desired system behaviour of a Java program under monitoring is given in an operational way by
means of an ASM (see Section 2.1).

The technique we propose makes use of Java annotations. However, annotations do not
contain the specification of the correct behaviour (like in JML [122] or in MOP (see Section
10.2.2)) but they are only used to link the concrete implementation to its formal model, keeping
separated the implementation of the system and its high-level specification. The approach has,
therefore, the advantage of allowing the reuse of abstract formal specifications for other purposes
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Figure 11.1: The CoMA runtime monitor for Java

(as also discussed in [20]), like formal verification, model simulation, model-based testing, and
so forth.

In Section 11.1, we present the theoretical framework of CoMA, in which we explain the re-
lationship between the Java implementation and its ASM specification. This relationship defines
syntactical links or mappings between Java and ASM elements and a semantical relation which
represents the conformance. In Section 11.2, we introduce the actual implementation of our
conformance monitoring approach which is based on Java annotations and AspectJ. In Section
11.3, we discuss some advantages and limits of our approach; by means of diverse examples, we
evaluate performance, expressiveness and usability of CoMA w.r.t. other approaches for runtime
monitoring. Finally, in Section 11.4, we describe how our approach can be used for the runtime
monitoring of web services.

11.1 Runtime conformance monitoring based on ASMs

In our approach we intend runtime monitoring as conformance analysis at runtime and we propose
CoMA, runtime Conformance Monitoring of Java code by ASM specifications.

The CoMA monitor supports online monitoring, namely it considers executions in an incre-
mental fashion. It takes as input an executing Java program and an ASM formal model. The
monitor observes the behaviour of the Java program and determines its correctness w.r.t. the
ASM specification working as an oracle of the expected behaviour. While the software system is
executing, the monitor checks conformance between the observed state and the expected state.

We now instantiate the general schema of a runtime monitoring technique, presented in
Section 10.1, to our approach, as depicted in Fig. 11.1.

A link between a Java class and an ASM must be provided ((1) in Fig. 11.1) in order to
describe the conformance relation; a set of annotations is used to this purpose. The monitor is
composed of: an observer that evaluates when the Java (observed) state is changed ((2) in the
figure), and leads the ASM to perform a machine step ((3) in the figure), and an analyser that
evaluates the step conformance between the Java execution and the ASM behaviour ((4) in the
figure). When the monitor detects a violation of conformance, it reports the error. It can also
produce a trace in form of counterexample, which may be useful for debugging. Note that the
use of CoMA can be twofold: also faults in the specification can be discovered by monitoring
software. For instance, by analysing and re-executing counterexamples, faults in the model can
be exposed.

In the following sections, we introduce the theoretical basis of our monitoring system. We,
therefore, formally define what is an observed Java state, how to establish a conformance relation
between Java and ASM states and, therefore, step conformance and runtime conformance between
Java and ASM executions.

11.1.1 Observable Java elements

In order to mathematically represent a class and the state of its objects, we introduce the following
definitions.
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Definition 11.1 (Class). A class C is a tuple {c, f,m) where ¢ denotes the non-empty set of
constructors, f is the set of all the fields, m is the set of methods.

We denote the public fields of C' as fP"’ while the public methods are denoted as mP“®.
Among the methods of a class, we distinguish also the pure methods:

Definition 11.2 (Pure method). Pure methods mpy.. are side effect free, with respect to the
object/program state. They return a value but do not assign values to fields. m%fe denotes the
set of all pure public methods in m.

Pure methods [54] are useful and common specification constructs. By marking a method as
pure, the specifier indicates that it can be treated as a function of the state (as in JML [122]).
We consider only pure methods without arguments.

Definition 11.3 (Virtual state). Given a class C = {c, f, m), the virtual state, VS(C'), is given
by VS(C) = frub U mpub

pure *

Definition 11.4 (Observed state). We define observed state, OS(C) < VS(C), as the subset
of the virtual state consisting of all public fields, and pure public methods of the class C' the user
wants to observe.

Therefore, OS(C) is the set of Java elements monitored at runtime. For convenience, we can
see 0S(C) = OF(C)u OM (C) to distinguish between the subset of observed fields OF (C) and the
subset of observed methods OM(C) of 0S(C). Note that OF(C) < fP** and OM(C) < m2ub,.
The (returned) values of the elements of OS(C') can change by executing any not pure method

(in Mo pyre = M — Mpyre)-

Definition 11.5 (Changing method). Given a Java class C, we define changing methods,
changingMethods(C') S m-—pure, all methods of C' whose execution is responsible for changing
an element of OS(C) and that the user wants to observe.

Definition 11.6 (Observed constructor). We define observed constructors, OC(C) < ¢, the set
of constructors whose execution the user wants to monitor.

Since the observed constructors represent the points of the program execution in which the
monitoring must start, we require that OC(C) # .

Definition 11.7 (Observed input). We define observed inputs, OI(C), all the formal parameters
of methods in OC(C) v changingMethods(C) that the user wants to monitor.

11.1.2 Link between the Java program and the ASM

Linking observable Java elements to ASM entities In order to be runtime monitored,
a Java class C' should have a corresponding ASM model, ASM ¢, abstractly specifying the be-
haviour of an instance of the class C.

Observable elements of the observed state of class C' must be linked to the controlled functions
ContrFuncs(ASM¢) of the ASM model ASM . The function

linkOS : OS(C) — ContrFuncs(ASMc¢) (11.1)

yields the set of the ASM controlled functions' linked to the observable Java elements of C. The
function linkOS is not surjective because there are ASM controlled functions that are not used
in the conformance analysis. The function in neither injective, since different elements of OS(C)
can be linked to the same ASM function.

LCoMA also permits to link elements of OS(C) to locations, rather than functions: in order to keep the
explanation as simple as possible, we do not include this feature in the formal definitions. However, all the
definitions given in terms of functions can be adapted to locations.
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The observed inputs OI(C) must be linked to the monitored functions MonFuncs(ASM¢) of
the ASM model. The function

linkOI : OI(C) — MonFuncs(ASM¢) (11.2)

establishes the link. Monitored functions are suitable to represent the constructors/methods pa-
rameters because, in an ASM, they represent the part of the dynamic state that is determined by
the external environment and not by the machine, as the actual parameters do in a program. The
function linkOI must be bijective because each monitored function must have a corresponding
parameter in the Java code? (i.e., surjective) and, moreover, different elements of OI(C) must
be linked to different functions (i.e., injective).

Execution step in Java and in the ASM In order to define a step of a Java class execution,
we rely on the concept of machine step and last state of execution sequence defined in the Unifying
Theories of Programming (UTP) [97]. A Java state of an instance of a class C' is the set of the
actual values of its fields.

Definition 11.8 (Java Step). Let m be a method of a Java class. A Java step is defined as the
relation (s,m,s’) where s is the starting state of the execution of m and s’ the last state of this
execution.

Definition 11.9 (Change Step). Let C be a Java class. A change step is defined as a Java step
for m € changingMethods(C).

Note that, choosing the granularity of the Java step at the level of class method and not at the
level of single assignment, allows the designer to tune the desired granularity of the monitoring.
ASM state and ASM computation step have been defined in Section 2.1.

11.1.3 State conformance, step conformance and runtime conformance

We now formally relate the execution of a Java class instance with a simulation of the corre-
sponding ASM model.

In the following definitions, let C' be a Java class, O¢ any instance of C, and ASM¢ its
corresponding ASM abstract model.

We assume that the function wvalja. (e, s) yields the value of a Java element e € VS(C') of
C in a given state s of O¢, while the value of an ASM function a in a state S is given by

valasy (a, S )3. Moreover we assume that there exists a conformance conf relation among Java
and ASM values [8].

Definition 11.10 (State Conformance). We say that a state s of O¢ conforms to a state S of
ASM¢ if all observed elements of C have values in O¢ conforming to the values of the functions
i ASM¢ linked to them, i.e.,

conf(s,S) =Vee 0S(C) : valjaal(e, s) cont valagy (linkOS(e), S) (11.3)

Definition 11.11 (Step Conformance). We say that a change step (s,m,s’) of an instance O¢
(i.e., m € changingMethods(C) ) conforms with a step (S,.5") of ASM¢ if conf (s, S) A conf(s',S5").

simulation step

ASM¢ S S’
A A
conf conf
invocation of method m
O¢ s s

2 Actually, in Section 11.2.1 we will see that it is possible to add another monitored function (not linked through
linkOI) in the ASM model, to deal with a particular kind of nondeterminism of the Java code. However, in the
current definition, we can avoid considering that particular situation.

3The value of an ASM function is composed by the values of its locations. So, in order to have a finite number
of locations, we require that the function is either 0-ary or that the cardinality of its domain is finite.
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Figure 11.2: Runtime conformance

Definition 11.12 (Runtime Conformance). Given an observed computation of a Java instance
O¢, we say that C' is runtime conforming to its specification ASM¢ if the following conditions
hold:

1. the initial state sg of the computation of Oc conforms to the initial state Sy of the compu-
tation of ASMc¢, i.e., it yields conf(sg,So);

2. every observed change step (s, m,s’) with s the current state of O¢, conforms with the step
(S,5") of ASM¢ with S the current state of ASMe;

3. no specification invariant of ASM¢ is ever violated.

Fig. 11.2 depicts the co-simulation of an instance O¢ and its specification ASM¢. Def. 11.12
requires conformance between sy and Sy. If O¢ is in state si, executes a changing method CM,
and moves to state sp41, then s, must conform to the current ASM state S; and sp4q must
conform to the next ASM state S;11. Then, no conformance check is performed until the next
observed state s;2 when a changing method is invoked again. Note that the final state of a Java
change step and the initial state of the subsequent change step are both state conforming to the
same abstract state of the ASM (e.g., sy+1 and sg42 are both state conforming to S;41).

11.1.3.1 Runtime conformance in the presence of nondeterminism

Definition 11.12 assumes that, in any computation, the next state of a Java class instance O¢ and
of its specification ASM¢ are unique. Thus, the definition is adequate for deterministic systems
in which the nondeterminism is external, i.e., it is limited to monitored (external) quantities (e.g.,
which method has been called or what values have been used as actual parameters). Once these
quantities are fixed by the environment, the evolution of the system is, however, deterministic.

For dealing with internal nondeterminism (e.g., a method behaves nondeterministically), we
have to extend our conceptual framework. From now on we always intend nondeterminism as
internal.

We have identified the following two scenarios:

e Nondeterministic Java class and nondeterministic ASM specification. A class method
has nondeterministic behaviour (for instance it contains a call to a method in the class
java.util.Random), and so also the abstract specification.

e Deterministic Java class and nondeterministic ASM specification. This situation arises
when the ASM model is more abstract (with less implementation details) than the corre-
sponding Java code.

In case a class C or its model ASM¢ are nondeterministic, the next computational state of O¢
or ASM¢ is not always uniquely determined and, therefore, their conformance, according to Def.
11.12, may fail not because of a non-conformant behaviour of the implementation, but because
Oc¢ and ASM¢s may choose two next states which are not conformant. We here refine points
1 and 2 of Def. 11.12 of runtime conformance for dealing with nondeterminism, distinguishing
between weak and strong conformance. For the weak conformance, we require that the next step
of O¢ is state-conforming with at least one of the next states of the specification ASM¢. For
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the strong conformance, we require that the next step of O¢ is state-conforming with one and
only one of the next states of the specification.

Definition 11.13 (Weak [Strong] runtime conformance). We say that C is weakly [strongly]
runtime conforming to its specification ASM¢ if the following conditions hold:

1. the initial state sy of the computation of O¢ conforms to at least one [one and only one]
initial state Sy of the computation of ASM¢, i.e., 3 [I] Sp initial state of ASM¢ such that
conf (s0,50);

2. for every change step (s,m,s’) with s the current state of Oc, 3 [3!] (S, S") step of ASMc¢
with S the current state of ASM¢, such that (s, m,s") is step conforming with (S, S’);

3. no specification invariant of ASM¢ is ever violated.

Note that, in case of deterministic systems, Def. 11.13 (both the weak and the strong versions)
coincides with Def. 11.12. So, we can adopt Def. 11.13 as the general notion of runtime
conformance of our framework.

Our monitoring system can only deal with strong conformance. Therefore, in case of non-
determinism, during the runtime monitoring our system chooses, among the next states of the
ASM, the unique state that conforms to the Java state. Fig. 11.3 depicts this situation: given
the Java state s’ produced by the execution of the method m, only one of the next states of the
ASM (S}) is state conformant with s'.

Oc¢ ASM¢
conf . g
. step step step
s \S{—/ S; .. S
conf(s',S!)

Figure 11.3: Strong conformant step

If there is more than one next state conformant (weak conformance), instead, the system does
not know which one to choose and rises an exception.

11.2 CoMA implementation

We here describe how CoMA works. We provide technical details on how the runtime monitor
has been implemented by exploiting the mechanism of Java annotations to link observable Java
elements to corresponding ASM entities (Section 11.2.1), and AspectJ to observe code execution
and establish conformance relation (Section 11.2.2).

As a supporting example we introduce the Java class Counter, shown in Code 11.1. It
implements a counter that can be initialised to any value, is incremented through the method
inc, and is read through the pure method getCounter.

We also introduce the ASM specification counterMaz10, shown in Code 11.2. It models a
counter limited to 10 and initialised to the monitored value init Value; counter and initValue are
both 0-ary functions. The invariant checks that the counter is always less or equal to 10; note
that the transition rules always respect the invariant, but the value taken by initValue in the
initial states could produce a violation.
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import org.asmeta.monitoring.x;

@Asm(asmFile = ”models/counterMax10.asm”)
public class Counter {
@FieldToFunction(func = ”counter”)
public int counter;

@StartMonitoring
public Counter(@Param(func = ”initValue”) int x) {
counter = x;

}

@RunStep
public void inc() {
counter 4+

}

@MethodToFunction(func = ”counter”)
public int getCounter() {
return counter;

}

}

Code 11.1: Java class Counter annotated for monitoring

11.2.1 Linking the Java code and the ASM with Java Annotations

Java annotations [102] are meta-data tags that can be used to add some information to code
elements as class declarations, field declarations, etc.

In addition to the standard ones, annotations can be defined by the user similarly as classes.
For our purposes we have defined a set of annotations in order to link the Java code to its
abstract specification. The retention policy, i.e., the way to signal how and when the annotation
can be accessed, of all of our annotations is RUNTIME — annotations can be read by the compiler
and by the monitor at runtime through reflection. In Java, thanks to reflection, an executing
program can examine itself at runtime, and manipulate some of its internal properties. In this
case reflection give us the ability of parsing a Java class that must be monitored and reading the
annotations of its members.

In the following we review the annotations we currently use in our monitoring framework.

@Asm In order to link a Java class C with its corresponding ASM model ASM¢, the class must
be annotated with the @Asm annotation having the path of the ASM model as string attribute.
The class Counter, shown in Code 11.1, is linked to the ASM specification counterMazi10, shown
in Code 11.2.

@FieldToFunction, @MethodToFunction To establish the mapping defined by the func-
tion linkOS (see Formula 11.1), we annotate each observed field f € OF (C') by @FieldToFunction,
and each observed method m € OM(C') by @QMethodToFunction; both these annotations have
a string attribute yielding the name of the corresponding ASM function. In the example, the
Java field counter and the Java pure method getCounter are both linked to the ASM function
counter (obviously this double linking is redundant, but it is only for demonstration purposes).

@FieldToLocation, @MethodToLocation Actually the approach also permits to link fields
and pure methods to locations, rather than functions. Annotations @QFieldToLocation and
@MethodToLocation permit to identify a location using two attributes: a string attribute to
specify the name of the corresponding function, and another attribute (an array of strings) to
specify the values for the function arguments.
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asm counterMax10
import StandardLibrary

signature:
dynamic controlled counter: Integer
dynamic monitored initValue: Integer

definitions:
invariant inv_max10 over counter: counter <= 10
main rule r-Main =
if counter < 10 then
counter := counter + 1

endif

default init s0:
function counter = initValue

Code 11.2: ASM model of a counter limited to 10

@Param To establish the mapping defined by the function linkOI (see Formula 11.2), we
annotate each observed constructor/method formal parameter with @Param. This annotation
has a string attribute for specifying the name of a monitored function of the ASM. At runtime,
when the constructor/method is executed, the value of the actual parameter is used to set the
linked monitored function.

@StartMonitoring In order to define the set of observed constructors OC(C') (see Def. 11.6),
i.e., defining the starting points of the monitoring, the user has to annotate a not empty subset
of constructors through the annotation @StartMonitoring?. In the example there is just one
constructor whose parameter is linked (through the annotation @Param) with the ASM monitored
function init Value which fixes the initial value of the counter (see the specification in Code 11.2).

@RunStep All methods of changingMethods(C) are annotated with the annotation @RunStep.
In the example, the only observed method is inc().

If the Java class has more than a changing method, the code is externally nondeterministic, that
is the order in which the methods are called is not predictable. If we want to use a deterministic
specification for monitoring externally nondeterministic programs, we must provide a mechanism
to inform the formal specification about which method has been selected. For this purpose,
the annotation @QRunStep has two optional arguments that permit to signal to the ASM which
changing method has been executed: setFunction specifies the name of a 0-ary monitored function
of the ASM model, and to Value the value to whom it must be set. Code 11.3 shows the Java class
CounterDec with two changing methods, inc and dec that permit to increment and decrement
a counter; the corresponding ASM in Code 11.4 increments or decrements the function counter
according to the value of the monitored function action (INC or DEC). In the Java code, the
@RunStep annotations of the changing methods inc and dec specify that the monitored function
action must be set, respectively, to INC and DEC.

Considerations on the use of annotations

Our use of the annotation mechanism requires a very limited code modification and differs from
that usually exploited in other approaches for system monitoring. Usually annotations are used
to enrich the code with extra formal specifications to obtain behavioural information about the
target program [43, 108]. This leads to the lack of separation between the implementation of
the system and its high-level requirements specification. In our approach, the few annotations

4We do not consider the default constructor. If the class does not have any constructor, the user has to specify
an empty constructor and annotate it with @StartMonitoring.
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import org.asmeta.monitoring.*; asm CounterDec
import StandardLibrary
@Asm(asmFile = ”CounterDec.asm”)
public class CounterDec { signature:
@FieldToFunction(func = ”counter”) controlled counter: Integer
public int counter; monitored action: {INC | DEC}
@RunStep(setFunction = ”action”, toValue = ”"INC”) definitions:
public void inc() {
counter ++; main rule r_Main =
if action = INC then
counter := counter + 1
@RunStep(setFunction = ”action”, toValue = "DEC”) else
public void dec() { if action = DEC then
counter ——; counter := counter —1
} endif
} endif
Code 11.3: Java — Counter with decrement Code 11.4: ASM - Counter with
decrement

are only used to link the code to its specification, but keeping them separate. Furthermore,
annotations are statically type checked and since the annotations are read reflectively at runtime,
the monitoring setup can be carried out very easily. This is much more convenient than inserting
special comments (like JML) and writing our own parser for them. Moreover, Java annotations
make the links more robust when code refactoring is applied. Our approach fosters the reuse of
specifications when code changes.

11.2.2 Implementation of the runtime monitor through AspectJ

The runtime monitor (see Fig. 11.1) is implemented through the facilities of AspectJ that
permits to easily observe the execution of Java objects. In Section 11.2.2.1 we see the structure
of the AspectJ aspect we use in our framework, and in Section 11.2.2.2 how it orchestrates the
monitoring process.

11.2.2.1 Development of the aspect

AspectJ allows programmers to define special constructs called aspects. By means of an aspect,
AspectJ allows to specify different pointcuts, that are points of the program execution one wants
to capture; for each pointcut it is possible to specify an advice, that is the actions that must be
executed when the pointcut is reached during the execution of the program. AspectJ permits
to specify when to execute the advice: before or after the execution of the code specified by the
pointcut.

The CoMA tool supports two different ways, built-in and compiled, of obtaining the aspect
to be used for monitoring.

Built-in In this approach there is just one aspect that permits to monitor all the objects of
the classes that must be monitored:

(i) the pointcuts are general enough to capture the instantiations and the method executions
of all the objects that must be monitored;

(ii) the advices are able to dynamically inspect the Java and the ASM state in order to do
the conformance checking.

The main advantage of this approach is that the developer does not have to care about
building the aspect. After having written the Java class and the ASM specification, she simply
has to link them properly and add to the build path the general aspect we provide. Then she
can execute the code immediately.

The main disadvantage of this approach is that, since the provided aspect is very general,
it introduces an overhead in the pointcuts and in the advices that execute the conformance
checking. For instance, the pointcuts to detect the creation of an observed object and to capture
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the execution of a changing method (we do not consider changing methods that are executed in
the scope of other changing methods) are reported below.

pointcut objCreated(): call(@StartMonitoring *.new(..));
pointcut runStepCalled(): call(@RunStep * *.x(..)) && !cflowbelow(call(@RunStep * *.x(..)));

These pointcuts capture the calls of any method annotated with the specified annotations (i.e.,
@StartMonitoring and @RunStep).

In this approach, in order to obtain the observed state (see Def. 11.4), we use Java reflection:
we read the values of the observed fields (those in OF(C)), and we execute the observed methods
(those in OM(C)) and read the returned values.

Actually, in order to read the values of the observed fields, we have implemented (and exper-
imented) two techniques®:

1) reading them through reflection at the beginning and at the end of the execution of a changing
method;

2) using the AspectJ pointcut set in order to capture all their updates. In the following we report
the pointcut we developed to capture the updates (and the values specified in the updates)
of all the fields annotated with @FieldToFunction or @FieldToLocation.

pointcut observedFieldSet(Object value, Object field):
(set(@FieldToFunction %) || set(@FieldToLocation * %)) &&
args(value) && target(field);

The main advantage of using the first technique is that we can get their values only once for
each changing method execution; using the second technique, instead, every time an observed
field is updated we collect its value: if a field is updated frequently (e.g., in a loop), using the set
pointcut the performances of the monitoring module can get worse. However, the set pointcut
can read private fields without programmatically changing their visibility.

Compiled In this approach, for each Java class that must be monitored, a suitable aspect is
built.

The main advantage of this approach is that the pointcuts definitions can be more precise.
For example, the pointcut that captures the execution of the changing methods can specify
exactly the methods whose execution must be captured. In the built-in approach, instead, we
can only specify that the methods must be annotated with @StartMonitoring or @RunStep.
For instance, the pointcuts for the class Counter are

pointcut objCreated(): call (Counter.new(int));

pointcut methodCalled(): call (public void Counter.inc ());

pointcut runStepCalled(Counter target ): methodCalled() && !cflowbelow(methodCalled()) &&
target (target );

where we can exactly specify that we want to capture the creation of an object of the class
Counter made through the constructor with an integer parameter (pointcut objCreated), and
the calls to method inc (pointcut runStepCalled).
Also the advices definitions can be more precise. For example, to obtain the observed state, we do
not need any more to reflectively access to the observed fields and methods, but we can directly
read the values of the observed fields and invoke the observed methods using their identifiers.
The main disadvantage of the approach is that the developer, before running her code, must
build the aspect: if the Java code and/or the ASM specification change, the aspect may need to
be rebuilt.

5Note that the difference between the two techniques is only related to the way in which the observed fields
are read: indeed, in both techniques, the returned values of the observed methods are always obtained through
reflection.
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11.2.2.2 Monitoring execution

Let’s see how the aspect described in Section 11.2.2.1 permits to implement the monitoring
framework depicted in Fig. 11.1.

Observer The pointcuts objCreated and runStepCalled permits to implement the Observer:
when they detect that an observed constructor or a changing method has been called, a proper
advice is activated.

Simulator When the Observer detects that an object that must be monitored has been created
(pointcut objCreated), an instance of the AsmetaS simulator (see Section 4.1) is created for
the corresponding ASM and, if any parameter is annotated with @Param, the corresponding
monitored function is set with the value of the actual parameter.

Upon the execution of a changing method m signaled by the Observer (pointcut runStepCalled),
the Simulator performs an ASM step by AsmetaS:

1. before the execution of m, an advice executes the following activities:

(a) if the QRunStep annotation of m defines the arguments setFunction and toValue, it
sets, in the ASM simulation, the monitored function specified by setFunction to the
value specified by toValue; moreover, for any parameter annotated with @QParam, the
corresponding monitored function is set with the value of the actual parameter;

(b) it requests the Analyser to do a state conformance check (conf (s, S) in Def. 11.11);
2. after the execution of m, another advice executes the following activities:

- if the ASM is deterministic:
(a) it simulates a step of the ASM;

(b) it asks the Analyser for checking again the state conformance (conf(s’,S’) in Def.
11.11).

- if the ASM is nondeterministic:

(a) it asks the Simulator for all the next states nextStates(s) of the ASMY;

(b) it asks the Analyser for checking if it exists a unique s’ € nextStates(s) such that state
conformance holds (conf(s’,S’) in Def. 11.11);

(c) if a single s is found, it moves the ASM under simulation to s’.

Analyser The Analyser compares the Java and the ASM states. To check state conformance

(see Def. 11.10), we have implemented the conformance relation et among Java and ASM
values as a string comparison. Therefore, the Java and the ASM values are both transformed into
strings for comparison. If the conformance does not hold it raises an exception of non-conformity.
For example, an object of the Java class Counter (see Code 11.1) could result non-conformant
since the field counter can assume a value greater than 10, whereas in the corresponding ASM
specification (see Code 11.2) the value of the linked function counter is bounded to 10.

As seen previously, in case of nondeterministic systems, the Analyser also checks if, among
the next states of the ASM, there is one and only one state that is state conforming with the
Java state. If it does not find any state, it raises an exception of non-conformity. If more that
a state is found, it raises another kind of exception, indicating that it can not ensure strong
conformance.

6In order to obtain all the next states of a state during simulation, we had to extend the AsmetaS simulator.
The only source of nondeterminism, that can result in having more than a possible next state, is the presence of
at least a choose rule in the model. The number of next states is determined by the degree of nondeterminism of
the choose rules of the model (i.e., the number of values for which the choose rules guards are satisfied). Since
the normal version of the simulator already requires that the domains of the logical variables in the choose rules
are finite, we are sure that the number of next states is finite (although it may be big).

A similar extension to an ASM simulator has been made in [23], where the CoreASM simulator is used to do
model checking of ASMs.
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Java | JML JavaMOP CoMA
AsmetaS aspect

built-in - | built-in - | compiled

reflection | set
Counter 4 280 | (FSM) 109 4837 | + 898 + 825 + 783
Iterator 8 | N/A | (FSM) 91 866306 | + 1820 + 1812 + 1439
Init. Order 7| N/A | (LTL) 72 870719 | + 2366 + 2235 + 1914
Fiasco

Table 11.1: Execution time in the experiments (in secs)

11.3 Evaluation

In order to assess the viability of our approach, we have taken several examples in literature and
checked whether we were able to apply our approach to existing runtime case studies, including
the Railroad Gate [53], the Static Initialisation Order Fiasco problem [22], a robotic assembly
system [126], the Knight’s Tour problem [166]. We have written the Java code, if not available,
and their ASM specifications (see [8] for details). We applied also CoOMA to several Java programs
borrowed from JavaMOP (see Section 10.2.2), like Iterator and FileWriter. Overall we found
our approach applicable to all the considered case studies.

11.3.0.3 Execution time

In order to evaluate the runtime overhead of our approach, we have considered three examples,
the Counter, the Iterator and the Initialisation Order Fiasco”, and we have monitored them
with CoMA, JavaMOP (using FSM or LTL specifications), and JML (when applicable). A
comparison with the approach we have presented in Section 10.2.3 is not possible. They use, like
CoMA, interpretation of formal specifications, but their tool is not available and no time data
are published.

All the Java programs are correct and accessed correctly, i.e., if monitored, they conform to
their formal specifications. Indeed, our aim here is to measure the overhead introduced by our
runtime framework in a normal program execution.

Table 11.1 reports the average time over 20 runs of the experiment in which 100 instances of
the class under monitoring run in parallel for 1000 steps. JML can not be used with the Iterator
and the Init. Order Fiasco since it is not able to express the required properties. Column Java
reports the time taken by the code under analysis.

For the CoMA, Table 11.1 reports the overall time divided between the time taken by the sim-
ulator (column AsmetaS), and the time taken by the monitor (column aspect). For the time taken
by the monitor, we report the times of the three kinds of aspects described in Section 11.2.2.1:
built-in (using reflection or the set pointcut for reading the observed fields) and compiled.

It is apparent that most of the time is taken by the simulator, which has never been optimized
for performances and, instead, uses technologies that can be time consuming (e.g., it has been
built on the top of the Eclipse Modelling Framework, and it widely uses design patterns for
visiting the ASM under simulation). A solution for this problem could be to translate the ASM
machine directly into Java code (similarly of what is done in JavaMOP [45] and in LIME [108]).
However, encoding ASMs into Java would require the proof of the semantic correctness of the
translation.

We discovered that, if we use the built-in aspect, using reflection or the pointcut set for
reading the observed fields is almost equivalent. However, in another experiment we discovered

"We have described the Static Initialisation Order Fiasco problem in Section 10.2.1. It is a problem that arises
in C++ programs, and it is caused by the fact the initialisation of static objects is executed in a nondeterministic
order. In our experiments we have provided a Java simulation of the setting in which the problem can arise.
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CheckCounter(Counter c) {
int count = 0;// counter value

// inc call event

event inc before(Counter c): call(x Counter.inc()) && target(c)
{count ++;}

// error event

event err after(Counter c): call(x Counter.inc()) && target(c) &&
condition(c.getCounter() != count) {}

// the FSM
fsm: safe [inc —> safe err —> error] error ]
@error {
System.out.println(” Counter not incremented”);
}

}

Code 11.5: JavaMOP — FSM specification for the Java class Counter

that the pointcut set performs worst when an observed field is updated frequently (e.g., in a
loop). Instead, as expected, compiled aspects provide the best results since they are tailored on
the specific classes under monitoring.

Compared to JML and JavaMOP our approach is always more slow. However, although our
approach is not competitive with others in terms of time overhead, we believe that it provides
several advantages (explained in the next sections) and it can be used when performances are
not critical.

11.3.0.4 Usability and expressiveness

Although any comparison of our approach with others in terms of usability and expressiveness
may be disputable, since it may depend on the expertise and taste of the user, some general
considerations follow.

In comparison with JML, CoMA can be used to express the behaviour of a single method call
and also the interaction among calls, while JML concentrates on single methods. There exist,
however, JML extensions that allow the specification of temporal aspects of Java interfaces (like
LIME [108] and trace assertions of Jass [35]). Another difference is that CoMA has a model
separated from the implementation, while JML follows a unique model paradigm in which the
code itself contains its specification. The advantage of CoMA is that the specification can exist
even before its implementation and can be used for several preliminary activities (like model
simulation, model review, and formal verification).

The expressiveness of CoMA is greater than approaches using plain FSMs, since ASMs can
have infinite states and can be viewed as pseudo-code over abstract data type. In many ap-
proaches, like in JavaMOP and in JavaMAC (which uses automata with auxiliary variables) [123],
FSMs need to be enriched with state variables. For instance, the FSM specification for the class
Counter that must be used in JavaMOP is shown in Code 11.5. In order to check if the counter is
incremented correctly, a variable count must be used to record the expected value of the counter
(as we did in the ASM model 11.2 using the function counter).

Since JavaMOP specifications are compiled into AspectJ®, JavaMOP can include and use
all the power of Aspect] (e.g., they can define events as Aspect] pointcuts). However, we
believe that mixing implementation and specification notations may encourage the user to insert
implementation details in the specification at the expense of abstractness. An important feature
of our methodology is the clear separation between the monitored implementation and the high
level specification also in terms of notation, as in [123, 126].

8Note that we use AspectJ only to drive the monitoring, not to encode the specification.
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11.3.0.5 Comparison with approaches using declarative notations

In this work, we assume that the specification is given in operational style instead of the more
classical declarative style.

An objective comparison with approaches that specify correctness properties using declara-
tive notations is questionable. There has been an endless debate about which style fits better the
designer needs: some argue that with an operational style the designers tend to insert implemen-
tation details in the abstract specifications, others observe that practitioners feel uncomfortable
with declarative notations like temporal logics.

The scope of our work is to provide evidence that also abstract operational notations can
be effectively used for runtime monitoring. Sometimes, operational specifications are easier to
write and understand; other times, declarative specifications are preferable. For instance, LTL
and PTLTL (Past Time LTL) can describe correct sequences of method calls with ease. As seen
in Section 10.2.2 for JavaMOP, the correct order of calls for an Iterator (the method next can
be called only if, previously, the method hasNext has been called and it has returned true), is
specified by the following PTLTL formula:

O(next = () hasNext True)

where the operator () means “in the previous time step”, the atomic predicate next signals
if the method next has been called, and hasNeztTrue signals if the method hasNext has been
called and it has returned true. In this case, the property is very concise: expressing it with an
operational specification would be less concise and it would require to add supporting variables
to memorize which methods have been called. However, properties about states are more diffi-
cult (and sometimes impossible) to write. For instance, the fact that an unbounded counter is
correctly incremented is not expressible by LTL. Indeed, LTL does not allow variable quantifiers
and, therefore, formulae like

Vo O(counter = x = O(counter = z + 1))
are incorrect. In ASMs, instead, such property is expressible very easily.

11.4 Monitoring web services through CoMA

In order to test our approach in a real application setting, we applied it to the web services
scenario.

Web services can be seen as particular component-based systems. Component-based software
engineering (CBSE) is a reuse-based approach to software systems development [157] whose aim
is to produce independent components that are completely specified by their interfaces. The
implementation of a component should be separated from its interface so allowing to substitute
a component without affecting the overall system. A problem that arises in CBSE is how to
assure that components behave as expected. As stated in [157], a viable solution is to certify that
components conform to a formal specification. We want to show here that runtime monitoring
(through CoMA) can be a solution for certifying the conformance. Our approach permits to
check, not only the correctness of the implementation, but also that the component is accessed in
the right way (e.g., interface contracts on the calling order of the interface services are respected).

We have developed an e-commerce web service using Apache Axis2 [148, 4], a framework for
the development of web applications in Java. The web service, shown in Code 11.6, exposes two
operations®, createCart to create a cart, and addItem to add an item to the cart.

A correct usage of the web service requires that:

PROP1: the operation addltem is called only if the operation createCart has already been
called, i.e., one item can be added to the cart only if the cart exists;

9In web services the provided interfaces are called operations. So, in the following, we refer to the changing
methods as operations.
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package org.ecommerce;
import org.asmeta.monitoring.x;

@Asm(asmFile="models/eshop.asm”)
public class Eshop {
private static int counter = 0;
private String clientID;
private int numberOfElements;

@StartMonitoring

public Eshop() {
clientID = ”client.” + counter;
counter++;
numberOfElements = 0;

}

@RunStep(setFunction = ”operationCalled”, toValue = ”CC”)
public String createCart() {

//creation of the cart (not reported here)

return clientID + ” — cart created”;

}

@RunStep(setFunction = ”operationCalled”, toValue = ”ATC”)
public String addItem() {
numOfEls++;
return clientID 4+ 7 — item added — ” 4 ”# elements = ” + numberOfElements;

}

@MethodToFunction(func = ”elementsInCart”)
public int getNumberOfElements() {

return numberOfElements;
}

}

Code 11.6: E-shop web service

PROP2: no more than 5 items are added to the cart.

The assurance of both correctness properties is not guaranteed by the web service implemen-
tation. However their violations can be discovered if the web service is runtime monitored using,
as formal specification, the ASM shown in Code 11.7.

In the ASM model, the operation chosen by the user is modeled through the monitored
function operationCalled that can take value CC if the user wants to create a cart, and ATC if
she wants to add one item to the cart. The controlled part of the ASM state is composed of the
boolean function cartCreated, that records if a cart has been created, and the integer function
elementsInCart that records how many items have been added to the cart. An invariant checks
that items are added to the cart only if the cart has already been created.

In order to test the web service, we have developed a client application for the Android
platform [3]: the application is composed of two buttons that invoke the operations addItem and
createCart, and a text box where the result of an operation execution is shown. As suggested
in [89], the developed client is faulty since its usage can lead to the violation of the two correctness
properties required by the web service. Indeed, we do not hide a button when it should not be
called: in such way it is possible that the conversation with the web service is executed wrongly
(e.g., an item is added to the cart before the cart has been created). Fig. 11.4a shows the client
application when a connection with the web service has been established. Fig. 11.4b and 11.4c
show the application when, respectively, the creation of the cart has been executed and an item
has been added to the cart. In both cases the web service is invoked correctly and no correctness
property is violated.
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asm eshop
import StandardLibrary
signature:
enum domain OperationCalledDomain = {CC | ATC}
monitored operationCalled: OperationCalledDomain
controlled cartCreated: Boolean
controlled elementsInCart: Integer
definitions:
rule r_createCart =
if (operationCalled = CC) then
cartCreated := true
endif

rule r_addToCart =
if (operationCalled = ATC and elementsInCart < 5) then
elementsInCart := elementsInCart + 1
endif

invariant inv_calledOperationsOrder over operationCalled:
operationCalled = ATC implies cartCreated

main rule r_Main =
par
r_createCart ||
r-addToCart|]
endpar

default init s0O:
function cartCreated = false
function elementsInCart = 0

Code 11.7: ASM model of the e-shop web service
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Figure 11.4: Correct usage of the web service

Let’s see now how CoMA reveals the violation of PROP1 and PROP2.
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Violation of PROP1 The ASM has a boolean function cartCreated that records if a cart has
been created, that is if the operation createCart has been called. The invariant contained in the
machine checks that, when an item is added to the cart, the cart has already been created. Fig.
11.5a shows the error message that is shown when the ” Add Item to the cart” button is selected
firstly: the message is generated by the invariant violation during the ASM simulation.

Violation of PROP2 The violation of PROP2 can be discovered when the Analyser of the
runtime monitor checks for the state conformance after the execution of an operation. Fig. 11.5b
shows the error message that is obtained if, after the correct creation of the cart, the ”Add
Item to the cart” button is selected 6 times. The web service does not bound the value of
numberOfElements, whereas in the ASM the function elementsInCart is not incremented if it is
greater than or equal to 5.

Ml @ 12:440m
T —

Invariant violation inv_calledOperatic

Add item to the cart Add item to the cart

(a) Violation of PROP1 — Invariant exception (b) Violation of PROP2 — Conformance ex-
ception

Figure 11.5: Wrong usage of the web service






Chapter 12

Using runtime monitoring for testing nondeter-
ministic programs

In the software system life cycle, models are used to represent the system behaviour in a high-level
abstract way. In case of underspecification — for instance because some implementation choices
are left abstract — or not fully predictable systems, models result internally nondeterministic, i.e.,
given the same input sequences at different times, different output sequences can be produced.
This distinguishes from external nondeterminism that is due to the unknown behaviour of the
environment. The presence of internal nondeterminism makes all the common validation and
verification activities more complex, although they still need to be performed. From now on we
consider nondeterminism as internal nondeterminism.

Model-based testing (MBT) is accepted as a fully automated, flexible, and efficient technique to
generate test cases that can lead to more effective testing [96]. MBT overcomes some limitations
of the white box software testing. It addresses the test oracle problem, which is still an open
problem in the context of software testing: in MBT, specifications are used as oracles since
expected outputs are generated together with the inputs.

Research has resulted in numerous approaches differing in how test cases are generated from
models. While the presence of nondeterminism is not a problem for some techniques (e.g.,
labeled transition systems [162]), it is a challenge for those approaches where test cases are linear
sequences of execution states (e.g., approaches that derive test sequences from counterexamples
returned by model checkers).

We want now to consider these latter approaches. Adapting the definitions in [73], we can
define a test case t = {s1,82,...,5,) as a path in the specification spec where each s; (with
i=2,...,n)is anext state of s,_1 and $; an initial state. Let T'(spec) be the set of all the paths of
spec. Given a path ¢, In(t) = {In(s1), In(s2), ..., In(s,)) represents the input sequence (i.e., the
moves of the environment on the specification) and Out(t) = (Out(s1), Out(sa),. .., Out(s,)) the
output sequence (i.e., the reaction of the specification to the application of the inputs). Let’s call
Act(t) = (Act(s1), Act(sa),. .., Act(s,)) the output sequence produced by the implementation
when executed using In(t) as inputs.

The implementation passes a test ¢ (pass(t)) if, executed using inputs In(t), it returns the
expected outputs, i.e.,

pass(t) < Act(t) = Out(t) (12.1)

The definition of failure for deterministic systems derives straightforwardly from Formula
12.1. An implementation fails a test ¢ (fail(t)) if, executed using inputs In(t), it does not return
the expected outputs, i.e.,

fail(t) < Act(t) # Out(t) (12.2)

So, for deterministic systems, if the implementation does not pass a test, it means that it fails
it. However, if the specification is nondeterministic, definition of fail(t) as described in Formula
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12.2 is no more valid. In fact, the implementation could deviate from test case ¢, taking a different
but valid execution path ¢'. In this case, we say that the test case falsely fails (falselyFail(t)),
ie.,

falselyFail(t) <= (Act(t) # Out(t) A 3t' € T(spec) [Act(t) = Out(t)]) (12.3)

This means that the implementation has executed a path that is a valid path in the specification,
but that is different from the path selected as test case. These tests are usually called inconclusive.
So, in order to deal with nondeterministic specifications, definition of fail as given in Formula
12.2 must be refined in the following way:

fail(t) < (Act(t) # Out(t) A —3t" € T(spec) [t' # t A Act(t) = Out(t')]) (12.4)

During the test execution, at each step i, we observe if the actual output Act(s;) is as the
expected output Out(s;): if not, we say that there is a deviation. In case of deviation, since we
do not know if the implementation actually failed or if the test was inconclusive, we must stop
the test case execution without giving any response.

A technique that tries to address the problem of inconclusive tests is presented in [74, 73],
in which the test case generation process using model checkers is extended in order to deal with
nondeterminism. The authors present a technique that identifies what are the nondeterministic
choices taken in a counterexample: such technique permits to discover if a deviation exists from
the expected output during a test case execution due to a nondeterministic choice (inconclusive
test). Starting from an inconclusive test, the proposed process can iteratively build a tree-like
test case in which the alternative valid branches of a computation are considered. They also
extend common coverage criteria for deterministic systems to nondeterministic systems.

The approach we here present tries to address the problem of inconclusive tests in a different
way from that presented in [74, 73]. We combine model-based testing, used here to automatically
generate, from nondeterministic specifications, only the inputs of the test cases (test data), with
runtime monitoring (see Chapter 10) which is used to provide an oracle (the expected outputs)
that never bears inconclusive responses. So, the idea of our approach is to ignore the expected
outputs of a test sequence (since they could lead to inconclusive responses), and providing the
test oracle through a runtime monitoring technique that is able to assess conformance between
an implementation and a nondeterministic specification.

Among the different techniques existing for MBT, we here consider the technique that uses the
model checkers capability to generate a counterexample upon a trap property violation [75, 71],
and that interprets counterexamples as tests. Nondeterminism is not a problem for a model
checker itself, but this technique, since the counterexamples are sequences of states, suffers from
the problem of inconclusive tests in case of nondeterministic specifications. This is solved by
monitoring at runtime the execution of a test case by checking, at each step, the conformance of
the code w.r.t. its specification, even at the nondeterministic points. This permits us to avoid
stopping the test execution and discarding the test, when the test deviates from the expected
outputs. A further advantage is that we are able to check, at each step, which testing requirements
are achieved, so having a measure of adequacy and avoiding redundant tests.

On the other hand, also runtime monitoring can benefit from our approach. Runtime moni-
toring does not suffer from the test oracle issue, but, if one wants to use it for testing, there is
still the problem of selecting relevant inputs, and of measuring the confidence that the runtime
monitoring covered all the possible system behaviours.

We use ASMs (see Section 2.1) as formal method for specification purposes and Java as
implementation language. In [77] a model-based testing technique for deterministic ASM models
has been presented, while the runtime monitoring of Java programs w.r.t. corresponding ASM
specifications has been described in Chapter 11.
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We select the Tic-Tac-Toe game as example of a system with nondeterministic behaviour
(both at specification and code levels). To assess the quality of our approach and to measure its
fault detection capability, we apply mutation analysis.

The chapter is organized as follows: Section 12.1 introduces the running case study, its ASM
formal specification, a Java implementation, and their link using CoMA. Section 12.2 presents the
necessary background on model-based testing using model checker for deterministic ASMs [76, 77]
and its extension to deal with nondeterministic ASMs. Section 12.3 explains our approach to
combine model-based testing with runtime monitoring, while Section 12.4 reports our experiments
on the Tic-Tac-Toe example.

12.1 Running case study — A simple nondeterministic model

As motivating example and running case study, we consider a Tic-Tac-Toe game where a human
player challenges a computer program. The requirements include that only valid moves are
accepted, i.e., each player can put her symbol (nought or cross) only in an empty cell and when
it is her turn, until one wins. The system must be able to identify valid moves and ignore
invalid moves, check if one player wins and if the game is tie. The user moves are monitored by
the system, while the program decides its moves according to some strategies. At specification
level, the designer does not want to detail how the computer will play, since the strategy may
be complex, change in order to improve performances, and include some random choices. The
computer decisions will be left unspecified as nondeterministic choices. However, the designer
wants to be sure that the implementation satisfies the requirements of correctness listed above.

12.1.1 ASM formal specification

Code 12.1 shows the ASM specification of the Tic-Tac-Toe. The binary function board models
the board of the game: every location represents a cell of the board, and it can contain a sign
(CROSS or NOUGHT) or be empty (EMPTY). Function result records if there is a winner
(U_.WON or C_-WON), if the game is tie (TIE), or if the game is still running (PLAYING). The
monitored function action models the intention of a player to make a move. The move of the
player user is modeled through macro rule r-moveUser in which the coordinates of the chosen
cell are given to the machine through the monitored functions uSelRow and uSelCol. The move
of the player computer, instead, is done in the macro rule r_moveComp in which an empty cell
is nondeterministically chosen (no particular strategy is adopted).

Note that the ASM model correctly describes the requirements described above. In fact
only valid moves are accepted: a) if the wrong player wants to move (value of the monitored
function action), the request is ignored, b) if the player user chooses a not empty cell, the move
is refused. The identification of the winner and of the player that must play, and the moves of the
player computer are correct as well. Finally, as requested, the computer decisions are left totally
nondeterministic, so that any possible strategy for the player computer in the implementation
can be captured by the abstract specification.

12.1.2 Java implementation

Code 12.2 shows a possible Java implementation (unnecessary details have been omitted). The
board is represented with the two-dimensional array board whose type is the enumerative Sign =
{UNDEF, CROSS, NOUGHT}. Method execUserMove permits to execute a user move, by specifying
the selected cell in the method parameters. Method execUserMove executes a computer move,
by randomly choosing an empty cell. Note that here any strategy could have been implemented:
we choose this trivial strategy for the sake of conciseness.

It is easy to see that the Java code satisfies the requirements: no invalid moves are executed,
and a player can move only if it is its turn.

12.1.3 Runtime monitoring through CoMA

In order to be runtime monitored with CoMA (see Chapter 11), the Java implementation (Code
12.2) has been linked to its formal specification (Code 12.1) using Java annotations, as described
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asm ticTacToe
signature:
domain Coord subsetof Integer
enum domain Sign = {CROSS | NOUGHT | EMPTY}
enum domain Status = {TURN_USER | TURN_COMP}
enum domain ActionDomain = {U_MOVE | C_MOVE}
enum domain ResDom = {PLAYING | U_WON | C_ZWON | TIE}
// first argument is the row, second argument is the column
controlled board: Prod(Coord, Coord) —> Sign
controlled status: Status
monitored uSelCol: Coord
monitored uSelRow: Coord
monitored action: ActionDomain
controlled result: ResDom
controlled numOfMoves: Integer
derived winOnRow: Prod(Coord, Coord, Sign) —> Boolean
derived winOnCol: Prod(Coord, Coord, Sign) —> Boolean
derived winOnDiag: Prod(Coord, Coord, Sign) —> Boolean
definitions:
domain Coord = {0..2}
//derived functions definition

rule r_makeMove($r in Coord, $c in Coord, $s in Sign) =
par
board($r, $c) := $s
numOfMoves := numOfMoves + 1
if (winOnRow($r, $c, $s) or winOnCol($r, $c, $s) or winOnDiag($r, $c, $s)) then
if ($s = CROSS) then
result := U_-WON
else if($s = NOUGHT) then
result := C_ZWON
endif endif
else if (numOfMoves = 8) then
result := TIE
endif endif
endpar

rule r_moveUser =
if (status = TURN_USER and board(uSelRow, uSelCol) = EMPTY) then
par
r_makeMove[uSelRow, uSelCol, CROSS]
status := TURN_COMP
endpar
endif

rule r_-moveComp =
if (status = TURN_COMP) then
par
choose $r in Coord, $c in Coord with board($r, $c) = EMPTY do
r_makeMove[$r, $¢, NOUGHT]
status := TURN_USER
endpar
endif

main rule r_Main =
if (result = PLAYING) then
if (action = U_MOVE) then
r_moveUser|]
else
r_moveComp|]
endif
endif

default init s0:
function status = TURN_USER
function board($r in Coord, $c in Coord) = EMPTY
function result = PLAYING
function numOfMoves = 0

Code 12.1: ASM specification of Tic-Tac-Toe

in Section 11.2.1.

The observed state is composed of the fields board, movesExecuted, status, and the pure
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import org.asmeta.monitoring.*;

@Asm(asmFile = "models/ticTacToe.asm”)
public class TicTacToe {
@FieldToFunction(func = ”board”)
public Sign [][] board;
private Random rnd;
@FieldToFunction(func = ”"numOfMoves”)
public int movesExecuted = 0;
@FieldToFunction(func = ”status”)
public Status status;
private Sign winner;

@StartMonitoring
public TicTacToe() {...}

@RunStep(setFunction = ”action”, toValue = "U_MOVE”)

public void execUserMove(@Param(func="uSelRow”) int r, @Param (func="uSelCol”) int c¢) {
if (winner == null && status == Status. TURN_USER && board|[r][c] == Sign.UNDEF) {
board[r]|[c] = Sign.CROSS;
movesExecuted++;

status = Status. TURN_COMP;
if (checkWinner(r, ¢, Sign.CROSS))
winner = Sign.CROSS;

}

@RunStep(setFunction="action”, toValue = ”C_.MOVE”)
public void execComputerMove() {
if (winner == null && movesExecuted < 9 && status == Status. TURN_COMP) {
int r, c;
do {
r = rnd.nextInt(3);
¢ = rnd.nextInt(3);
} while(board[r][c] != Sign.UNDEF);
board[r]|[c] = Sign.NOUGHT;
movesExecuted++;
status = Status. TURN_USER;
if (checkWinner(r, ¢, Sign.NOUGHT))
winner = Sign. NOUGHT;

}

@MethodToFunction(func = ”result”)

public String getWinner() {
//depending on the values of "winner” and "numOfMoves”, it returns "USER_-WON?”,
//?COMPUTER_WON?”, "TIE” or "PLAYING”

private boolean checkWinner(int r, int ¢, Sign sign) { ... }

Code 12.2: Java code of Tic-Tac-Toe

method getWinner, that are linked to the ASM functions board, numOfMoves, status, and result.
The changing methods are execUserMove and execComputerMove; the ASM is aware of what
method has been executed thanks to the monitored function action linked in the annotations of
the two changing methods.

After having run the implementation with CoMA several times, we are confident that it is
conformant to the formal specification.

Note that, since both the Java code and the ASM are nondeterministic, the notion of runtime
conformance used is that given in Def. 11.13. The code is monitorable because each nondeter-
ministic choice is strongly conformant, i.e., it exists only one next state of the specification that is
conformant. Nondeterministic steps are caused by the execution of method execComputerMove.
Fig. 12.1 shows an example of Java execution in which the computer, given a board configura-
tion, chooses to place a nought in (2, 0): among the possible next states of the ASM, only one is
conformant.
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Instance of TicTacToe.java Simulation of ticTacToe.asm
O X |X O X |X
State i X X
(0) (0)
O X |X O | X |X
O | X X | O
State 0 § X 0 0
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Figure 12.1: Runtime monitoring of TicTacToe through CoMA — Strong conformant step

12.2 Model-based testing for ASMs

In the context of the ASMs, one of the main applications of MBT consists in automatically
generating tests from ASM models [76].
In the following we give some basic definitions about test generation from ASMs.

Definition 12.1 (Test sequence). A test sequence (or test) is a finite sequence of states s1,. .., sp
whose first element s1 is an initial state, and each state s; (with i # 1) follows the previous one
si—1 by applying the transition rules. The final state s, is the state where a test goal is achieved.

Definition 12.2 (Test suite). A test suite (or test set) is a finite set of test sequences.

Definition 12.3 (Test predicate). A test predicate is a formula over the state and determines
if a particular testing goal is reached. A coverage criterion C is a function that, given a formal
specification, produces a set of test predicates. A test suite TS satisfies a coverage criterion C' if
each test predicate generated with C' is satisfied in at least one state of a test sequence of TS.

Definition 12.4 (Rule guard). Given a rule r;, its guard g; is the conjunction of the guards of
the rules (conditional, forall and choose rules) that leads to the execution of r;.

For example, in the ASM model shown in Code 12.1, the guard of the macro call rule
r_moveUser(] in the main rule is result = PLAYING and action = U_.MOVE.

In [76] the choose rule is not considered. So we have to extend that work for dealing with
choose rules. In particular, we must define how a choose rule contributes to the building of the
guards of the rules that are in its scope. Let’s define a general choose rule as

choose $x_1 in D_1, ..., $x.n in D_n with cond($x-1, ..., $x.n) do
R[$x_1, ..., $x.n]

The guard of any rule contained in the scope of R (R included) must contain, as contribution
of the choose rule, the following logic expression:

\/ cond(d_1,...,dn) (12.5)

(d-1,...,d-n)e(D-1%...x D_n)

Formula 12.5 simply requires that it exits a tuple of values for the variables of the choose rule
such that its guard is satisfied (and so rule R can fire).

12.2.1 Coverage criteria for ASMs

Several coverage criteria have been defined for ASMs [76]. Some of them are more tailored on
ASMs (Section 12.2.1.1), while others are more general and have been derived by those used in
software coverage (Section 12.2.1.2).
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fTAfFAfF ;. result = PLAYING and action !'= U_MOVE and status != TURN_COMP

Figure 12.2: Test predicate for covering at false the guard of the conditional rule in r_moveComp

12.2.1.1 Criteria tailored on ASMs

One of the basic criteria for ASMs is the rule coverage. A test suite satisfies the rule coverage
criterion if, for every rule r; of the ASM, there exists at least one state in a test sequence in
which r; fires and there exists at least a state in a test sequence in which r; does not fire. So, for
each rule r;, two test predicates are produced, g; and —g;.

Other coverage criteria tailored on ASMs require that, for example, every update is executed
non-trivially (rule update coverage), or that every combination of n rules can be fired (n-parallel
rule coverage). The 2-parallel rule coverage criterion is useful for discovering inconsistent updates.

12.2.1.2 General criteria

Some other coverage criteria, instead, are more general and have been derived from those used
in software coverage, as decision coverage, condition coverage and modified decision condition
coverage (MCDC).

For example, a test suite satisfies the decision coverage criterion if, for every decision d; of a
rule r; (e.g., the guard of a conditional rule), there exists at least one state in a test sequence
in which r; fires and d; evaluates to true, and there exists at least a state in a test sequence in
which r; fires and d; evaluates to false. So, for each decision d;, two test predicates are produced,
g; A d; and g; A —d;.

For instance, the test predicate for the coverage at false of the guard of the conditional rule
in r_moveComp (see Code 12.1), is the predicate shown in Fig. 12.2. The test predicate requires
that the conditional rule of r_moveComp is executed: in the main rule, the guard of the outer
conditional rule must be true and the guard of the inner conditional must be false. Moreover,
since we are covering at false, the guard of the conditional rule in r_moveComp must be false.

12.2.2 Test generation by model checking

In order to build test suites satisfying some coverage criteria, we use a technique based on
the capability of the model checkers to produce counterexamples. The method consists of the
following steps:

1. The test predicates set {tp,} is derived from the ASM according to some desired coverage
criteria.

2. The ASM specification is translated into the language of the model checker.

3. For each test predicate tp;, the trap property never(tp,) is proved. If the model checker
finds a state s where tp, is true, it stops and returns as counterexample a state sequence
leading to s: from such sequence it is possible to build a test for covering ¢p,. If the model
checker explores the whole state space without finding any violation of the trap property,
then the test predicate is said unfeasible and it is ignored. In the worst case, the model
checker terminates without exploring the whole state space and without finding a violation
of the trap property (i.e., without producing any counterexample), usually because of the
state space explosion problem. In this case of model checker empty result, the user does
not know if the test predicate is unfeasible or if a test exists but it is too difficult to find.

In order to derive test sequences from ASM models, we here use the ATGT tool [77], based
on the model checker SPIN [99]. For this work, the tool has been extended in order to translate
also ASM models containing choose rules.
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result = PLAYING
status = TURN_USER
action = U_MOVE

result = PLAYING
status = TURN_COMP
action = C_.MOVE

result = PLAYING
status = TURN_USER
action = C_.MOVE

uSelRow = 1 uSelRow = 2 uSelRow = 2

uSelCol = 2 uSelCol = 2 uSelCol = 2

numOfMoves = 0 numOfMoves = 1 numOfMoves = 2
board(0, 0) = UNDEF board(0, 0) = NOUGHT

board(0, 0) = UNDEF
board(0, 1) = UNDEF
board(1, 2) = CROSS
board(2, 0) = UNDEF board(1, 2) = CROSS
board(2, 0) = UNDEF

Figure 12.3: Counterexample of the trap property for the test predicate ifT_ifF_ifF' (see Fig.
12.2)

Fig. 12.3 shows the counterexample produced by the violation of the trap property of the
test predicate shown in Fig. 12.2. It is easy to see that the first state in which the test predicate
is satisfied is the third one.

12.3 Combining model-based testing and runtime monitoring

In this section we explain how our approach combines model-based testing and runtime moni-
toring. Fig. 12.4 depicts the process we propose.

covTPS

cO+MA @

Coverage evaluator

ASM model Covered test

predicate

\/\

Test data

Test data
builder

uncovTPS

Test predicates Test predicate |I
builder Java code

Coverage
criteria
Test sequence ATS >

Figure 12.4: Process for testing Java programs by combining ATGT and CoMA

The process works as follows.

1. A set of test predicates uncovTPS is built from an ASM and a set of coverage criteria.

2. An uncovered test predicate tp is randomly chosen from uncovTPS. ATGT produces,
if possible, an abstract test sequence ATS that covers tp (see Section 12.2.2). If tp is
unfeasible, it is removed from the collection, while in case of model checker empty result
(maybe because of the state space explosion problem), the process continues with another
test predicate.

3. The test data builder translates ATS to a concrete input sequence (test data) for the Java
implementation (see Section 12.3.1).
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4. The test data are executed and runtime monitored through CoMA, which provides the
oracles for the test data and evaluates the test predicate coverage (see Section 12.3.2).
During the test data execution, the test predicates that are covered are removed from
uncovTPS and added to covTPS, the set of covered test predicates. The process restarts
from point 2 until the desired coverage is reached (see Section 12.3.3).

In our process the test data generation and the test execution are combined together: a
test is executed right after it has been constructed. Such approach permits to build only the
necessary test data. Sometimes this approach is called online (or on-the-fly) testing [165, 119],
that distinguishes from traditional offline testing where a complete test suite is built before the
test execution.

12.3.1 Test data construction

In Section 12.2.2 we have seen a procedure to derive, from a specification, test sequences that
cover some test predicates (step 2 in Fig. 12.4).

From each abstract test sequence ATS, our tool derives concrete Java test data, consisting of
a sequence of method calls (step 3 in Fig. 12.4). The expected outputs in the ATS are discarded
and so the concrete tests do not contain any oracle.

The procedure that identifies the inputs in an abstract test sequence and maps them in
method invocations with values for their parameters exploits the Java annotations mechanism
used by CoMA to link the implementation with its abstract specification!:

e The value of the monitored function in the @RunStep annotation (e.g., action in the
Tic-Tac-Toe example) identifies what method must be called.

e The values of the monitored functions linked in the @Param annotations of the (possible)
method formal parameters are used as actual parameters in the method invocation (e.g., the
formal parameters r and ¢ of method execComputerMove are connected to the monitored
functions uSelRow and uSelCol).

public void testIfTifFifF {
TicTacToe t = new TicTacToe();
t.execUserMove(1, 2);
t.execComputerMove();
t.execComputerMove();

}

Code 12.3: Test data derived from the counterexample for the test predicate if T_ifF_ifF' (see Fig.
12.3)

Code 12.3 shows the test data produced starting from the counterexample shown in Fig. 12.3.
In each state, the value of the monitored function action (that is linked in the @RunStep an-
notations) is used to identify what method must be executed: if its value is UMOVE, the method
execUserMove is executed; otherwise, if its value is C_MOVE, the method execComputerMove is
executed. When the method execUserMove must be executed, the values of the monitored func-
tions uSelRow and uSelCol, that are linked in the @Param annotations of its formal parameters
r and c, are used as actual parameters for r and c.

ILet’s recall from Section 11.2.1 that the annotation @RunStep identifies the changing methods of the imple-
mentation. The annotation has two attributes: setFunction specifying the name of a monitored function of the
ASM model, and to Value specifying the value that the function must be set to, when the corresponding method is
executed. The annotation @Param, instead, can annotate parameters of the changing methods and of the observed
constructors. It has an attribute func specifying the name of a monitored function of the ASM model: when the
corresponding method is executed, the function is set to the value of the actual parameter.
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12.3.2 Using CoMA as test oracle and coverage evaluator

In our approach we do not derive the oracle from the test sequence, as done in classical MBT for
deterministic systems, but we use runtime monitoring to provide the oracle (step 4 in Fig. 12.4).
If CoMA detects a not conforming behaviour during monitoring, it signals a failure.

At each Java step, CoMA also checks which test predicates are covered; note that a test
predicate may be not covered by its test: if the implementation, due to some internal nondeter-
minism, chooses a different behaviour, the observed behaviour may not cover the test predicate
which the test sequence is generated for. In this case, the test predicate is kept in the collection
of uncovered predicates uncovTPS. Note, however, that a test predicate can be removed from
the collection even during the execution of test cases generated for other test predicates.

12.3.3 Using test predicates as a measure of conformance

The aim of runtime monitoring techniques is to observe a system while it is running and determine
if it assures some properties. Empirically, the more the system is executed and monitored, the
higher is the confidence that the system is correct. But, how to measure such degree of confidence?
To do this we can use coverage criteria. The idea is using CoMA not only to verify that the
implementation is conformant with the specification, but also to identify what test predicates
generated by MBT have been covered (step 4 in Fig. 12.4).

We introduce a conformance index

_ #tpsCovered

Cl=—7—
#tpsFeasible

(12.6)
that provides an indication of how deeply a system has been monitored. CI could be used to
decide when to interrupt the runtime monitoring: when CI becomes greater than a threshold P,
we are confident enough that the system is correct, and we stop monitoring.

In our experiments we have used the conformance index shown in Formula 12.6. However we
could use a slightly different index, defined as follows

N #tpsCovered(C;)
Iw = i ;
¢ 2211 v #tpsFeasible(C;)

where C1, ..., C,, are the considered coverage criteria, tpsCovered(C;) the covered test predicates
of criterion Cy, tpsFeasible(C;) the feasible test predicates of criterion C;, w; >= 0 for each
i€ [i,n], and Y, w; = 1. w,; are weights that determine the importance of a criterion. If all
the criteria are considered equally, then w; = 1/n for each i € [i,n].

12.4 Experiments

To evaluate our approach we use the Tic-Tac-Toe as case study, previously described in Section
12.1.

We have run all the experiments on a Linux machine, Intel(R) Core(TM) i7, 4 GB Ram. In
order to obtain short counterexamples, we have used the breadth-first-search option in Spin.

We consider the following coverage criteria: rule coverage, update coverage, and MCDC.
Totally, we have generated 258 test predicates, 27 of which are unfeasible. For each test predicate,
we have always been able either to produce a counterexample or to prove its unfeasibility, since
Spin has always terminated with a not empty result.

As first experiment, we want to assess the viability of our method by applying the process
described in Section 12.3 and requesting that a given percentage P of (feasible) test predicates
is covered. We are interested in computing the following indicators:

1. Conformance Index (CI): the percentage of feasible test predicates actually covered (see
Section 12.3.3). CI may be greater than P because a test may cover more test predicates
than requested.
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P(%) 10%  20% 30% 40% 50% 60% 70%
Conformance Index (CI) (%) 19%  26% 37% 46% 57% 66% 74%
# Unfeasible 0.31  0.25 0.5 1 1.67 6 15.67
# Selected 1 1.5 3.67 6.75  12.33 28 71
# Checked and not covered 0.86 1.25 3.33 5 10.33 19.5 51
Java test length 19.43 42.25 162.33 183.5 379.33 781 2045.67
Mutation score (%) 74.58 84.60 84.99 85.39  85.56 85.70 86.21
Time (seconds) 30.49 58.49 139.14 248.79 453.66 1036.12 2412.28

Table 12.1: Experimental results

[\

. Unfeasible: the number of test predicates found unfeasible.

3. Selected: the number of test predicates selected, that is equal to the number of iterations
in the process depicted in Fig. 12.4. Note that a test predicate could be selected more than
once, in case it has not been covered by the tests previously generated for it and neither in
all the other tests.

4. Checked and not covered: the number of test predicates for which a test has been generated
but, due to some different choices in the implementation, they have not been covered by
their tests and neither by other tests.

5. Java test length: the total number of Java statements executed in the tests.

6. Mutation score: to evaluate the capability of our approach to detect faults, we have applied
mutation analysis by using the tool Javalanche [155]. The mutation score is the ratio
between the faults detected over all the faults injected in the code.

7. Time: the time taken to complete the process.

For different values of P, we have applied our technique for 20 times and computed the average
of the data. We have not been able to apply our technique with P greater or equal to 80% in a
reasonable time (we put a time limit of one hour for each experiment). Table 12.1 reports the
overall data.

As shown in the table, one test is enough to cover 10% of test predicates, and in this case only
around 20 Java instructions are executed with an already acceptable mutation score (74%). By
increasing P, all the quantities increase. The mutation score reaches a maximum around 86%.
We found that some test predicates represent behaviours which have a very low probability of
being executed by the implementation and, for this reason, they are not covered. The fact that
the mutation score reaches a maximum, is because some injected faults are not related to the
behaviour of the implementation, and special test cases should be developed for them. Finally,
we can see that the conformance index (CI) is a good index of the fault detection capability of
the monitoring activity, since it grows together with the mutation score.

Since we were already confident that the implementation actually conformed to its specifica-
tion, we expected no fault in the implementation, and this was the case.

12.4.1 Comparison with other approaches

We have compared our approach with other two state-of-the-art techniques that generate test
cases (with oracles), namely Evosuite and Randoop. Their results are shown in Table 12.2.
Evosuite [70] is a tool that automatically generates test cases by applying a search-based
approach that generates and optimizes whole test suites, rather than generating distinct test
cases directed towards distinct coverage goals. It is able to suggest oracles by adding small sets
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Tool EvoSuite Randoop
Options branch coverage mutation 100 1k 10k
assert no assert assert no assert -
Gen. time (sec.) 1004 154 943 605 1 5 20
Oracles auto+mod. No auto+mod. No auto+mod.
N. of tests 12 12 63 86 50 500 5000
Java test length 205 152 1070 1353 483 7305 87266
N. of asserts 27 N/A 125 N/A 89 1448 18618
Exec. time (sec.) 0.05 0.05 0.13 0.14 0.07 04 285
Mut. score avg (%) 29.84 30.65 54.04 26.82 39.94 45.16 70.56
Mut. score var 0.66 0.2 1.95 0.22 496 3.03 4.55

Table 12.2: EvoSuite and Randoop results

of assertions that summarize the current behaviour. Randoop [143] generates unit tests using
feedback-directed random testing, a technique inspired by random testing that uses execution
feedback gathered from executing test inputs as they are created, to avoid generating redundant
and illegal inputs. It allows annotation of the source code to identify methods to be omitted and
observer methods to be used for assertion generation.

Both methods are able to generate test suites together with oracles, by capturing the current
behaviour of the system. This works well in order to protect against future defects breaking the
current behaviour, but tends to generate falsely failing tests (Formula 12.3) in correspondence
of nondeterminism. For this reason, we had either to modify the generated tests in order to
make them pass (auto+mod. in the Table 12.2) or generating them without assertions (where
possible). Note that even without assertions a test has a residual fault detection capability due
to some implicit oracles (e.g., no NullPointer exception).

No test suite generated by Evosuite or by Randoop is able to reach the mutation score
obtained by our approach. Even the best Randoop test suite has a mutation score comparable
with our worst test suite, but it requires a much greater number of Java instructions and a
comparable time to generate it, ignoring the time required to modify the falsely failing tests.
Evosuite produces smaller tests, but with a reduced mutation score.
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Scalability issues






Dealing with memory and temporal constraints

When developing formal validation and verification techniques, one of the main problem is the
scalability of the approaches. Indeed, usually the memory consumption and execution time grow
exponentially with the size of the system, so that only small specifications can be analysed.

Model checking, for example, suffers from the well known state space explosion problem [16];
having n boolean variables in the model, the number of states is 2. Several techniques exist to
overcome this limitation, like symbolic representation of states, compact storing of states, and
efficient state space exploration. However, in model checking the dimension of the model remains
a limiting factor.

Execution time problems, instead, arise when the adopted techniques use algorithms that
are at least NP-complete. The problem of boolean satisfiability, i.e., discovering if a boolean
formula has a model, is the most known NP-complete problem. However, new algorithms and
better heuristics are constantly added to SAT/SMT solvers [153, 156], so that these tools can be
efficiently used in practice.

Sometimes, when developing a new formal analysis technique, there could be some character-
istics of the specifications and/or of the systems under analysis that can be exploited to address
memory and temporal constraints. We show how, in two techniques for test case generation,
which use model checkers and SAT/SMT solvers, the particular structure of the specifications
(ASM models or boolean formulae) is exploited to provide some optimizations that permit to
achieve better performances in the test generation processes.

In Chapter 13 we address the state space explosion problem for test generation from ASMs
using model checkers. In Chapter 14 we propose some optimizations for the process of test
generation for boolean expressions using SAT/SMT solvers.






Chapter 13

Addressing the state space explosion problem in
test generation for ASMs

In Chapter 12 we have already introduced the model-based testing technique that generates test
cases starting from ASM specifications. The technique derives, from coverage criteria, some test
predicates, representing particular test goals. For each test predicate tp, the ASM specification
is model checked against the trap property —ip. If a counterexample is found (i.e., the test
predicate is feasible), this represents the test case to be used to cover the test predicate. Since
the approach is based on model checking, its use is limited by the state space explosion problem.

In a MBT project in which we model web applications with ASMs and use the model checking
approach for test case generation, we quickly encountered this problem.

However we have noticed that the system under test may have some peculiarities that can be
exploited to limit the state space explosion problem. We focus on systems that are composed of
independent sub-systems that pass the control to each other, such that only one sub-system is
active at any time. In a web application, for instance, only one page is active at any time.

Such systems can be modeled as sequential nets of ASMs, defined in Section 13.1, that are
sets of ASMs having some features including that only one ASM is active at every time.

In Section 13.2 we present a technique that is able to generate tests for a sequential net of
ASMs, reducing the state space explosion problem. A test suite that covers every single machine
is generated. These test suites are combined in order to obtain a test suite for the whole system.
Under some assumptions, this technique preserves coverage of the entire system and considerably
reduces the effort required to generate the whole test suite, as reported in the experiments using
a benchmark example (in Section 13.3) and a simple web application (in Section 13.4).

13.1 Sequential nets of ASMs

We consider those systems that are composed of independent sub-systems that pass the control
to each other, so that only one sub-system is active at any time. Usually, in order to describe such
kind of systems, a model of each sub-system is developed. Moreover, a model of coordination
is needed for representing the execution of the entire system, i.e., the activation/deactivation of
sub-system models according to their local decisions.

A typical example is that of web applications. In a web application only one web page is
active at any time, and the active page decides which is the next page to be displayed. The
coordination is performed by the web browser and the web server that are responsible of closing
the current page and visualizing the next one (passing the control among pages).

13.1.1 Definition of sequential net of ASMs
We assume that each component of the system is modeled with an ASM and we introduce the

notion of sequential net of ASMs as follows.

Definition 13.1. A sequential net of machines is a set of Abstract State Machines My, ..., M,
such that:
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1. each machine has only one initial state,
2. the machine M; is the initial machine,
3. only one machine is active at any time,
4. the active machine decides when and to which machine the control is passed,
5. the net is connected, i.e., each machine is reachable from the initial machine.

A sequential net of ASMs allows one to model a set of machines that do not run in parallel,
pass the control to each other, and do not share information, although they share the same
environment. We call the net sequential because only one machine is running at any time, so the
machines are not concurrent; however, there may not be an unique sequence among the machines,
since every machine can decide the next machine depending on local decisions. A sequential net
is a graph, where each node is a machine and an arc is a transfer of control between two machines.

A possible way to model every single machine M; of the net, so that it can signal the transfer
of control, is the following:

1. add a domain AsmDomain = {My, ..., M,} to its signature;

2. add a 0-ary function currAsm of type AsmDomain to its signature; currAsm, in the initial
state, must assume the value M;;

3. write the main rule as follows:

if currdsm = M; then
r_mi]

endif
where r_mi[] is a macro rule that contains the actions of the machine.

Every machine M; can be independently executed. It executes some useful actions until it
changes the value of currAsm; after that any other step of execution does not produce any change
in the controlled part of the machine.

Consider, for instance, the three ASMs shown in Codes 13.1, 13.2 and 13.3. They constitute
a sequential net of ASMs (see Fig. 13.1). For the sake of brevity, we do not specify the internal
actions of the machines.

13.1.2 Product machine

Several validation and verification activities can be directly performed on the single machines.
However, if we want to do a more general evaluation of the system (e.g., simulation of the
transitions among machines, or test generation for the whole system), we must also provide a
model of the coordination.

One possible simple way is to merge all the machines in an unique product ASM as follows:

e the signatures of the machines are merged in a single signature; there is just one copy of
the AsmDomain domain and of the currAsm function in the product machine;

e all macro rules (except the main rules) of the single machines are included;

e in the main rule r_main, rules r_mi[] are individually called according to the value of the
function currAsm;

e the initial states are merged; the function currAsm is initialized to the value M; (the first
sub-system is active in the initial state).

Given the sequential net shown in Fig. 13.1, the product machine is the one shown in Code
13.4.
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asm M1 asm M2 asm M3
signature: signature: signature:
enum domain enum domain enum domain
AsmDomain = {M1, M2, M3} AsmDomain = {M1, M2, M3} AsmDomain = {M1, M2, M3}
monitored a: Integer monitored b: Integer monitored c: Integer
controlled currAsm: AsmDomain controlled currAsm: AsmDomain controlled currAsm: AsmDomain
definitions: definitions: definitions:
rule rrml = rule rrm2 = rule rrm3 =
if a = 2 then if b =2 or b = 30 then if ¢ = 2 then
currAsm := M2 currAsm := M1 currAsm := M2
else if a = 5 then else if b =5 or b = 100 then else if ¢ = 5 then
currAsm := M3 currAsm := M3 currAsm := M1
else else else
// do machine M1 actions // do machine M2 actions // do machine M3 actions
endif endif endif endif endif endif
main rule r.mainl = main rule r.main2 = main rule r.main3 =
if currAsm = M1 then if currAsm = M2 then if currAsm = M3 then
roml(] r-m2]] r-m3|]
endif endif endif
default init s0: default init sO: default init s0:
function currAsm = M1 function currAsm = M2 function currAsm = M3
Code 13.1: Machine M1 Code 13.2: Machine M2 Code 13.3: Machine M3

Figure 13.1: Three ASMs (Codes 13.1, 13.2 and 13.3) constituting a sequential net

13.2 Test generation for sequential nets of ASMs

In order to efficiently test a system modeled as a sequential net of ASMs, it is not enough to
test the single sub-systems, since also the interaction among them must be tested. So, we must
generate test sequences that cover the whole application and not just the single sub-systems.

The first idea is to derive the test sequences directly from the product machine that already
contains all the interactions among sub-systems (we call this approach naive). However, since
test generation algorithms based on model checking may need to visit the whole state space of
the model, the generation of test sequences from the product machine may suffer from the state
space explosion problem.

It would be desirable to have a method in which the model checking must be executed only
on the single machines and not on the product machine; indeed, it is computationally easier to
execute the model checker several times over small models, rather than executing it one time
over a big model. The method should also provide a mechanism for combining the test suites
produced for the single machines in an unique test suite to use for testing the whole system: the
time taken by the combination of the test suites should be negligible. The proposed approach is
depicted in Fig. 13.2.
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asm ProductM rule r-m3 =
if ¢ = 2 then
signature: currAsm := M2
enum domain AsmDomain = {M1, M2, M3} else if ¢ =5 then
monitored a: Integer currAsm := M1
monitored b: Integer else
monitored c: Integer // do machine M3 actions
controlled currAsm: AsmDomain endif endif
definitions: main rule r_.main =
rule rrml = if currAsm = M1 then
if a = 2 then roml[]
currAsm := M2 else if currAsm = M2 then
else if a = 5 then rom2]|
currAsm := M3 else
else r-m3]|
// do machine M1 actions endif endif
endif endif
default init s0:
rule rrm2 = function currAsm = M1
if b =2 or b = 30 then
currAsm := M1
else if b =5 or b = 100 then
currAsm := M3
else
// do machine M2 actions
endif endif

Code 13.4: Product machine of the ASMs in Codes 13.1, 13.2 and 13.3

13.2.1 Generating the test suites for every machine

We use model checking as described in Section 12.2 to generate a test suite for every ASM (step
1 in Fig. 13.2). Given the test sequences of a machine M;, we define inner those sequences that
terminate in a state in which currdAsm is M;, and exiting those sequences that terminate in a
state in which currdsm is M; (with j # ). Inner test sequences keep the control of the net in
the current machine, whereas exiting sequences pass the control to another machine.

13.2.2 Building the test sequence graph

Starting from the test suites produced for the ASMs, we build a graph (step 2 in Fig. 13.2),
called test sequence graph, where every node is a machine and every arc is a test sequence. Test
sequences that do not change the current machine (i.e., inner sequences in the single ASM) are
self loops of a node; test sequences that change the current machine (i.e., eziting sequences in
the single ASM), instead, are arcs between different nodes.

13.2.3 Combining the tests by visiting the test sequence graph

Finally, we must build the global test suite (step 3 in Fig. 13.2), i.e., a test suite for the entire
system. The algorithm used to visit the graph and build the combined test sequences of the
global test suite is shown in Alg. 1.

The procedure executes a depth-first search of the graph. It takes as argument a node n to
visit and a test sequence prefiz that permits to reach n; n is marked as wisited (line 1) in order
to not be visited again and prefiz is added to the test suite testSuite we are building (line 2).
Then, for each exiting arc of n

e the new prefix prefixToFn is built concatenating the current prefiz with testSeq(arc), i.e.,
the test sequence that brings to the final node of the arc (line 4);
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Figure 13.2: Test generation for sequential nets of ASMs

Require: the node n to visit
Require: a test sequence prefiz that permits to reach the node n
1: visitedNodes < visitedNodes U n
2: testSuite < testSuite U prefiz
3: for arc € outArcs(n) do
4:  prefizToFn < prefix + testSeq(arc)
5. if finalNode(arc) ¢ visitedNodes then
6 visitGraph(finalNode(arc), prefixToFn)
7. else
8 testSuite «— testSuite U prefizToFn
9 end if
10: end for

Algorithm 1: Visiting the test sequence graph. Procedure visitGraph.

e if the final node has not already been visited, it is visited using as prefix prefitToFn (line
6); otherwise, prefirToFn is added to the test suite (line 8).

The procedure visitGraph is invoked using as argument the initial machine M; of the net and
the empty test sequence e.

Note that the visit of the test sequence graph has linear complexity with the number of arcs
and nodes and it requires a negligible amount of time with respect to the generation of the test
suites.

It is straightforward to prove that the test sequences obtained with the presented algorithm
are valid sequences for the product machine.

The presented visiting procedure tends to create test suites with several short tests because,
when an already visited node is reached, the iterative visit is stopped and the built test is added
to the test suite. In order to create smaller test suites with longer tests, in the algorithm we
can modify the condition that stops the iterative visit. A first solution could be to impose a
bound K > 1 to the number of times that a node can be visited (in the procedure proposed here,
K is 1). Another solution could be to record the covered transitions (and not the states), and
stopping the iteration in the states in which there are no uncovered exiting transitions.
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13.2.4 Coverage

We are interested in investigating the relationship between the coverage provided by a test suite
obtained from the single machines using the proposed approach, and the coverage provided by
using the product machine instead (the naive approach).

Definition 13.2. A coverage criterion C is preservable if any test suite T'S, obtained by the
combination of tests suites T'S1, ..., TS, that satisfy C over the single machines M, ..., M,,
satisfies C' over the product machine.

If a criterion is preservable, we can satisfy it on the product machine deriving the test se-
quences from the single machines and combining them later. For instance, the rule coverage
criterion is preservable because of the following reasons:

1. by definition of sequential net, every machine is reachable starting from the initial machine;
in each single machine M;, every transition from M; to another machine is specified with
the update of the currAsm function;

2. if the rule coverage criterion is satisfied in every machine, it means that every rule is
executed, including all the updates of the function currAsm. So, for each transition, there
exists a test sequence that contains it;

3. by construction, the visitGraph algorithm assures that, if a node of the test sequence graph
is reachable, a test sequence that reaches that node is built;

4. in the main rule, the product machine describes the sequential net without adding or
removing any transition: at each step it simply executes the rule of the machine specified
by currAsm.

13.2.5 Limits of the approach

The major limit of the proposed approach is that not all criteria are preservable. A criterion, in
order to be preservable, must satisfy a necessary (but not sufficient) condition: it must require
that, for each machine M; (with i # 1), there exists a test sequence of another machine that
reaches M;. The rule coverage criterion satisfies such condition, since it covers all the transitions
to other machines. Let’s see a criterion that, since it does not satisfy such condition, is not
preservable:

Crnp: A test suite satisfies the criterion C,, if every macro rule r; is fired in at least
one test sequence.

Let’s see the test generation process using Cp,. Let Ma and Mb be two ASMs, shown,
respectively, in Codes 13.5 and 13.6, that constitute the net shown in Figure 13.3. The product
machine is shown in Code 13.7.

In the machine Ma, the criterion Cy, is satisfied if there exists a test sequence in which the
macro rule r_mA fires; C,, is satisfied, for example, by the test suite TSy = {tsi} = {[(yA =
0, currdsm = Ma), (gA = 0, currAsm = Ma)]}. In the machine Mb, C,, can be satisfied if there
exists a test sequence in which the macro rule r_mB fires; it is satisfied, for example, by the
test suite TSp = {ts}} = {[(¢B = 0, currAsm = Mb),(gB = 1, currAsm = Ma)]}?. The test
sequence graph obtained from test suites T'S4 and T'Sp is shown in Fig. 13.4.

The test suite obtained from the visit of the test sequence graph is T'Sxp = {[ts}l]md(gB)} =
{[(9A = 0,¢9B = 345, currAsm = Ma),(gA = 0,gB = T, currAsm = Ma)]}, that is the test

LA test suite satisfies the rule coverage criterion if, for every rule r; of the ASM, there exists at least one state
in a test sequence in which r; fires and there exists at least a state in a test sequence in which r; does not fire.

2Any not empty test suite (with any value for monitored functions gA and gB) satisfies the criterion over
machines Ma and Mb because the execution of macro rules r-mA and r_mB does not depend on the evaluation
of any guard.
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asm Ma

signature:
enum domain AsmDomain = {Ma, Mb}
monitored gA: Integer
controlled currAsm: AsmDomain

definitions:
rule rrmA =
if gA > 0 then
currAsm := Mb
endif

main rule r_mainA =
if currAsm = Ma then
r-mA(]|
endif

default init sO:
function currAsm = Ma

asm Mb

signature:
enum domain AsmDomain = {Ma, Mb}
monitored gB: Integer
controlled currAsm: AsmDomain

definitions:
rule rrmB =
if gB = 0 then
currAsm := Ma
endif

main rule r.mainB =
if currAsm = Mb then
r-mB]
endif

default init s0O:
function currAsm = Mb

Code 13.5: Machine Ma

Code 13.6: Machine Mb

gA>0
s
— Ma - = Mb
gB=0

Figure 13.3: Sequential net of machines Ma and Mb (Codes 13.5 and 13.6)

suite produced for Ma where the values of gB are randomly chosen. In the product machine
ProductMaMb, shown in Code 13.7, C,), is not satisfied using the test suite T'54p, since macro
rule r_mB never fires.

Nevertheless, it is possible to build a test suite that satisfies the criterion Cy,;, in ProductMaMb,
such as TSp = {[(g4 = 1, gB = 235, currAsm = Ma), (9A = 456, gB = 1, currAsm = Mb), (gA =
73, 9B = 3, currAsm = Mb)]}.

Another limit of our approach is that the model checker may fail to find any test sequence that
reaches one machine, although such sequence would be required by the (preservable) criterion.
This may happen, for instance, because of the state space explosion problem in a single machine.
Of course, if this case occurs, it would be even more likely that the model checker would fail on
the product machine as well.

The assumption that the machines do not share information limits the applicability of our
technique. It can be applied only if the different sub-systems modeled by different ASMs either
do not share any information or share information that does not influence the behaviour of the
machines. For instance, in a web-based application (as the case study application later introduced
in Section 13.4.1) all the pages share the username (which is shown in the web pages) and the
session information, which, however, do not appear in the ASMs since they do not influence the
behaviour. If the web pages shared behavioural information, then our approach would not be
applicable.

13.3 Initial experiment

In order to evaluate our approach, we have used a small system. It resembles the combination
lock finite state machine [134], for which generating a transition covering test suite becomes
exponentially expensive. The problem is that of discovering the key of an electronic combination
lock made of n digits having values from 1 to . We have modeled the system as a sequential net
of ASMs (see Fig. 13.5). The net is composed of n machines; every machine M; has a monitored
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asm ProductMaMb

signature:
enum domain AsmDomain = {Ma, Mb}
monitored gA: Integer
monitored gB: Integer
controlled currAsm: AsmDomain

definitions:
rule rr-mA =
if gA > 0 then
currAsm := Mb
endif

rule rrmB =
if gB = 0 then
currAsm := Ma
endif

main rule r_main =
if currAsm = Ma then
r-mA[|
else
r_mB]
endif

default init s0O:
function currAsm = Ma

Code 13.7: Product machine of the machines Ma and Mb (Codes 13.5 and 13.6)

[(gB =0, currAsm = Mb),

[(gA =0, currAsm = Ma), (9B =1, currAsm = Ma)]
(gA =0, currAsm = M_q)]....‘ ------------------------------------ ..
Ma Mb

Figure 13.4: Test sequence graph obtained with the criterion C,,, over Ma and Mb (Codes 13.5
and 13.6)

function a; in the range [1,z]. If a; (with ¢ = 1,...,n — 1) takes the specific value 1, then the
next machine M; 1 becomes active; if a; (with j = 2,...,n) becomes greater than /2 then the
system goes back to machine M, otherwise the machine M; remains active.

We have evaluated our method depending on the number of digits (machines) n and/or the
base x (the cardinality of the codomain of functions a;).

For each combination of n and x we have built n single machines, where each machine has nx
states since the signature of each machine M; is composed of two O-ary functions, a; and currAsm,
whose codomain sizes are, respectively, x and n. Then we have built the unique product machine
that has nz™ states, since there are n 0-ary functions whose codomain size is z, and a O-ary
function whose codomain size is n.

Then we have generated the test sequences both for the product machine (naive approach)
and for the sequential net of machines by the method introduced in Section 13.2; all the coverage
criteria introduced in [76] have been used. As expected, we discovered that it is easier to execute
n times the model checker over the single machines rather than executing the model checker
one time over the product machine. The results of the experiment are shown in Fig. 13.6; the
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Figure 13.5: Combination lock problem — Sequential net of ASMs

dependence between the execution time and the number of single machines n is reported.

If the single machines are used, the execution time grows linearly with the number of machines;
if the product machine is used, instead, the execution time grows exponentially with the number
of machines. We made several experiments with different values for = (the cardinality of the
codomain of functions a;); as expected, in the product machine the value of z influences the
execution time (even for small changes of x), whereas in the single machines it is irrelevant. We
report the experiments made with the product machine with = equal to 10, 20 and 50, and the
experiment made with the single machines with x equal to 50. We set a time limit of 1 hour
for each experiment setting. All the experiments were executed on a Linux PC with 8 Intel(R)
Xeon(R) CPUs E5430 @ 2.66GHz and 8 GB of RAM.

Test suite sizes In Table 13.1 we report the sizes of the test suites obtained using the sequential
net method and the product machine method (naive approach). We report the sizes obtained
with an increasing number of machines; we do not report the value of x because it does not
influence the test suite size.

#ASMs | 1 | 2 | 3 | 4 | 5 | 6
Sequentialmet | 3 | 5 | 7 | 9 [ 11 | 13
Product machine (naive approach) | 3 | 7 [ 11 [ 15 | 19 | n/a

Table 13.1: Combination lock problem — Test suite size

From our experiments it seems that the test suites derived from the test sequence graph are
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Figure 13.6: Combination lock problem — Model checker executions times (sec.)
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smaller than those obtained directly from the product machine. However, we must notice that
this can not be taken as a general law; additional experiments are needed to define more clearly
the relationship between the sizes of the test suites obtained with the two methods.

Code coverage As sanity check, we also measured the code coverage obtained by using the
two methods. We implemented the system, previously specified in ASM, into Java and translated
the test suites in JUnit. We obtained the same code (statement and branch) coverage by using
both the test sequences generated from the product ASM and from the sequential net.

13.4 Model-based testing of web-based applications

We have studied the test generation for sequential nets of ASMs in the context of MBT of web-
based applications [59]. In this context, every machine represents a single page of the application.
So, an ASM is created for each web page of the web application; in this scenario the AsmDomain
can be interpreted as the set of web pages and the currAsm function as the current active page.
The methodology introduced in Section 13.2 is applied to obtain a test suite for the whole web
application; finally, each test sequence can be mapped to a SAHI script [152] to exercise the tests
directly on the web application. In Section 13.4.1 we introduce the web application case study,
and in Section 13.4.2 the application of the proposed approach for test case generation.

13.4.1 Description of the web application case study

We describe the web application case study taken from [130] we used in our experiments. There
are six php pages in the web application under test and each of them, as well as their corre-
sponding ASMs, is described below.

e index.php — It serves as the login interface for the website. A user is required to enter a
username and a password in order to access the other three pages of the site. The Reset button
clears all text entries, while the Submit button opens up main.php, as long as the identification
credentials are correct. If any information is missing, an error message page is displayed.

e error_b.php — It is activated from index.php if any information is missing, or username
or password are wrong.

e main.php — It permits users to execute different actions. Specifically, users can click on a
link (at top left corner of page), upload a file by clicking on the Browse button, enter text into
a textbox, select a checkbox, and click on a Submit button which loads random.php.

e error_a.php — It is displayed if any information is missing in main.php.

e random.php — It permits users to execute actions not available in main.php. Two links
bring the user back to index.php and main.php. There are also drop-down lists, radio buttons,
and a Submit button which loads end.php.

e end.php — It serves as the end of the web application. The user has the option of closing
the web browser, or clicking on a link to return to index.php.

13.4.2 Test case generation

Modeling every page with an ASM At first, we modeled the complete web application
with an unique ASM, i.e., using the naive approach. The model construction was feasible but
the model checking was not able to complete the test generation. So, we modeled the web
application using a sequential net of ASMs where every page is represented by an ASM and the
domain AsmDomain is composed by the web pages. The obtained sequential net is shown in
Fig. 13.7.

For translating a web page behaviour into an ASM, we have put on a table the inputs of the
web page (e.g., the values of the text fields) and identified, for every combination of inputs, a
transition to another page or a set of state updates (i.e., a modification of the page content). In
this way we have built an ASM for each web page.

Test generation For the test generation we have used, as described in Section 13.2.1, the
ATGT tool over each ASM, using as coverage criteria all those described in [76].
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Figure 13.7: Web-based application case study — Sequential net of ASMs
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Figure 13.8: Web-based application case study — Test sequence graph

Test sequence graph construction Then we have built the test sequence graph (see Fig.
13.8) as described in Section 13.2.2. Each transition of the sequential net has been covered in
the test sequence graph.

Table 13.2 reports, for each ASM, the number of test sequences, divided between inner and
exiting.

index error_b main error_a random end
# tests 24 3 36 3 45 2
# inner - # exiting 18 -6 1-2 26 - 10 1-2 32 -13 1-1

Table 13.2: Web-based application case study — Test sequences number

Test sequence combination Then, we have applied the technique presented in Section 13.2.3
in order to obtain a single test suite for the whole web application. The obtained test suite
contains 212 test sequences and it satisfies all the coverage criteria used to generate the test
suites over the single machines.

Test of the web application Finally, each test sequence of the test suite has been automat-
ically mapped to a SAHI script; the execution of all the scripts has permitted us to test all the
aspects of the web application. Code 13.8 shows one of the produced SAHI scripts.
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_navigateTo(”index.php”);
_setValue(_textbox(”username”),”admin” );
_setValue(_textbox(”password”),” pwd”);
_click(_submit(”submit”));
_click(_checkbox(”agree”));
_setValue(_textarea(”text”),”someText”);

Code 13.8: Web-based application case study — SAHI script example




Chapter 14

Improving the test generation process for Boolean
expressions

Boolean expression testing plays an important role in model-based testing. Boolean expressions
frequently occur in complex conditions under which some specification actions are performed. In
ASMs, for example, boolean expressions can be used as guards of conditional, forall, and choose
rules. Coverage criteria for ASMs [76], described in Section 12.2, may require to deeply test the
boolean expressions that appear as guards in the model.

It is widely known [110, 167] that a Boolean expression may be affected by certain types of
errors known as fault classes of the expression. Exhaustive testing of Boolean conditions is not
feasible in practice, since a Boolean expression f with n variables requires 2" test cases and this
n is normally very big. Therefore, testing criteria are usually applied to select only subsets of all
possible test cases having, obviously, a reduced fault detection capability. Traditional approaches
build a test suite from the syntactical structure of the Boolean expression. A limitation of these
approaches is that they do not explicitly consider the expression fault classes. They also require
expressions to be in a particular normal (usually disjunctive) form.

To overcome these limitations of traditional algorithmic testing generation methods, recent
results [72] show how it is possible to reduce the problem of finding fault detecting test cases for
Boolean expressions to a logical satisfiability problem, which can be solved by a SAT/SMT-based
algorithm. This approach has several advantages:

a) it does not require the specifications under test to be expressed in a particular normal form,
so avoiding possible overhead due to the formula transformation;

b) it generates test cases directly targeting specific fault classes;
¢) it uses several reduction policies to minimize the size of resulting test suites.

The process of automatic test generation by SAT/SMT techniques, however, requires more
time and memory than standard generation algorithms and this fact limits its use in practice.
The contribution of this work is to improve this process by proposing a number of optimizations
that promise to make SAT/SMT techniques as efficient as standard methods for test generation
purposes with the mentioned benefits.

Note that SAT solvers are increasingly used for solving practical problems where one needs to
satisfy several potentially conflicting constraints, and satisfiability solvers can now be effectively
deployed in practical applications [128].

Also SMT solvers are increasingly used in applications. Although they are far more complex
tools than SAT solvers, we here consider also the use of SMT solvers for several reasons. SMT
solvers should be as powerful as SAT solvers when applied to satisfiability problems, with a min-
imum overhead. While most SAT solvers take as input only formulas in conjunctive normal form
(CNF), SMT solvers accept as input generic Boolean formula, allowing some pre-transformations
of the predicates in order to increase their efficiency. Moreover, most SMT solvers have a richer
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command interface, allowing, for instance, adding and retracting assertions, and this can be
exploited to optimize the test generation process.

We here propose a broad range of optimizations. Some optimizations regard the actual
use of the tools (e.g., avoiding exchanging files with the external solver and using native libraries
instead). Other optimizations improve the SAT /SMT-based process of automatic test generation,
independently from a specific input specification and selected testing criterion. Others are specific
to the process instantiated for testing Boolean expressions.

The most powerful optimizations regard the collecting process, which proved to be most
effective in building compact test suites [72].

We also propose a comparison of different SAT and SMT solvers that can be used in the test
generation process and that are able to support (not necessarily all) the proposed optimizations.
On the base of the best (among those used) tool, we show evidence that the proposed optimiza-
tions are effective. And, on the base of our experiments, we conclude that SMT-solvers may have
better performance than SAT solvers.

Overall, we show that SAT/SMT solvers can be successfully applied to Boolean testing and
that a well engineered process for test generation based on SMT solvers is capable of generating
the tests for complex fault based criteria in a reasonable time without losing the advantages of
the approach. We claim that the proposed optimized test generation method might be applied
to other testing approaches (e.g., constrained combinatorial interaction testing [52]).

The chapter is organized as follows. The general process of test generation by using SAT/SMT
solvers is described in Section 14.1, and its instantiation for testing Boolean expressions is intro-
duced in Section 14.2. Process optimizations are presented in Section 14.3. Experimental results
which bring evidence of the improvements due to the proposed optimizations are reported in
Section 14.4 where several experiments, conducted by means of different SAT/SMT solvers and
on diverse Boolean specifications, are presented.

14.1 Model-based test generation by SAT and SMT

In [38, 72], an approach is presented for model-based generation of tests by means of SAT and
SMT solvers. This automatic test generation process is described here, recalling some basic
definitions already given for the test case generation using model checkers. We assume that the
input space is complete, i.e., every input can take any value in its domain.

Definition 14.1. A testing criterion TC is a function that, given a specification S, returns a
set of predicates which must be satisfied (or covered). Each predicate represents a test goal and
is called test predicate.

Definition 14.2. We say that a test t satisfies or covers a test predicate tp iff t is a model of
tp, i.e., t = tp. A test predicate tp is said infeasible if there is no test that satisfies it, i.e., ¥ tp.

Definition 14.3. Given a testing criterion TC and a specification S, we say that a test suite
TS is adequate to test S according to TC, iff

Vipe TC(S) [(3te TS t |=tp) v # tp]

Upon the assumption of having an algorithmic way for generating the test predicates given
a specification and a testing criterion, to discover if a test predicate is infeasible or to find a test
that covers it, a SAT/SMT solver can be used (assuming that the solver terminates, otherwise
it is not known whether the test predicate is feasible or not).

The naive approach for obtaining an adequate test suite (according to Def. 14.3) requires to
generate a test for each test predicate tp € TC(S) or discovering that the ¢p is infeasible. This
naive approach requires a high amount of time and generates huge test suites. It can be improved

by several techniques: here we only consider collecting, monitoring, and post reduction!. The

1The order in which the test predicates are considered may impact the size of the final test suite. Some
heuristics (e.g., subsuming order in [72]) aim at providing orders that minimize the size of the test suite. Here we
do not apply any optimization to the test predicates order and we assume random ordering.
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Figure 14.1: Test generation process through SAT/SMT solvers

overall test generation process by SAT/SMT solvers is depicted in Fig. 14.1.

Given some testing criteria, a set TPS of test predicates is generated from the specification
(step 1 in Fig. 14.1) according to the Def. 14.1. Then, the process of test suite generation (step
2 in Fig. 14.1) is iteratively executed until, for each feasible test predicate, a model is found.
The three steps of this iterative process are described in Section 14.1.1, while the last step of the
process is described in Section 14.1.2.

14.1.1 Test suite generator

The test suite generation process is composed of three steps: collecting, model computation, and
coverage evaluation.

Collecting A core optimization employed in this work consists in finding tests that cover as
many test predicates as possible instead of single test predicates. We call collection the set of
test predicates sharing the same model, and collecting the process of grouping test predicates.
The collecting phase is the third step in Fig. 14.1.

From a theoretical point of view, the problem of collecting consists in partitioning the set of
feasible test predicates with the minimal number of partition classes. Each class contains only
test predicates sharing the same model. The number of possible partitions of a set is given by
the Bell number B,, which grows exponentially? with n. For this reason, in order to keep the
search of the optimal solution still feasible in practice, we accomplish such partition by using the
greedy algorithm reported in Alg. 2 and explained in the following.

The algorithm starts with an empty collection C' (line 1). Then, it tries to add every test
predicate tp to C'. This is possible only if ¢p is compatible with the other already collected test
predicates. A SAT/SMT solver is called to the purpose of discovering if there exits a common
model for ¢p and all the other collected test predicates by trying to satisfy their conjunction
(line 3). If the test predicate is not compatible, it is checked if it is satisfiable (line 6); if it is
unsatisfiable, it is removed from TPS in order to avoid trying to collect a test predicate which
is actually infeasible. Note that infeasible test predicates consume computing resources without
producing usable tests.

The collecting process is very expensive in terms of solver calls, but it is able to produce

2 Asymptotic estimates giving the following lower and upper limits are known: 2" < Bell(n) < n! < 21087
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Require: TPS : set of all the test predicates to be considered
C—{}
: for tp € TPS do
if sat(/\ o c A tp) then
C — Cu{ip}
TPS «— TPS\{tp} {tp is collected}
else if sat(¢p) then
{tp is feasible but it cannot be collected in C'}
else
TPS «— TPS\{tp} {tp is infeasible}
end if
: end for
: return Ipc = N\ o

== e

Algorithm 2: Collecting process

very compact test suites [72]. An example of application of the Alg. 2 for a Boolean formula is
reported in Example 14.1.

Model computation Once a collection tpc is built, the SAT/SMT solver is invoked (step 4 in
Fig. 14.1) to find a model for tpc and, therefore, for all the test predicates collected in tpc.

Coverage evaluation The coverage evaluation is then performed (step 5 in Fig. 14.1) on the
newly generated model to check if it also covers other test predicates among those previously
covered by other models or those that have not yet been collected and are not known to be
unsatisfiable. This technique is also called monitoring. Note that, thanks to monitoring, a test
predicate can be covered by more than one model.

14.1.2 Post reduction

The resulting test suite may contain tests which are not necessary, i.e., removing them from the
test suite will lead to all test predicates still being covered (as in [91]). The problem of finding
the optimal subset of the original test suite that still covers all the test goals is NP-hard, but can
be efficiently solved by a simple greedy heuristic [47]. Post reduction (step 6 in Fig. 14.1) is the
last step of the process; it removes unnecessary test predicates (if any) and it can be performed
in a negligible amount of time.

14.2 Test generation process for Boolean expressions

We here assume that the specifications under test are Boolean expressions. Operands are atomic
Boolean terms, i.e., atomic because they cannot be further decomposed in simpler Boolean
expressions. We call the operands inputs or variables and use symbols like 1,25 .... The
occurrence of an input in a expression is referred to as a condition. For example, the formula
Z1 A T vV 1 contains two variables (z7 and z3) and three conditions (two x1’s and one zq). If
the expression is not normalized, i.e., no restrictions exist on how operators and conditions are
joined together, we say that the expression is in a general form (GF). In this work we consider
GF Boolean expressions. In the context of testing Boolean predicates, a test case is a value
assignment to every Boolean variable in the formula. A test suite is a set of test cases.

When the specifications under test are Boolean expressions, a testing criterion T'C' is repre-
sented by a function that given a Boolean expression ¢ returns a set of predicates which must
be covered (i.e., satisfied).

There exist several ways proposed in literature on how to determine the set of test predicates
that must be covered in order to test ¢. In the following, we briefly present the technique
described in [72] that generates test predicates from GF Boolean expressions whose tests are
guaranteed to detect faults in specific fault classes (as in [120, 109]).
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Fault-based testing criteria Given a Boolean specification ¢ and a fault class F, we can
easily derive all the possible faulty implementations ¢} of ¢. Several fault classes for Boolean
expressions have been defined and a hierarchy among them has been established [110]. According
to the faulty-based testing criteria approach, given an expression ¢ and ranging over all the
fault classes, the testing criteria compute all the test predicates tp; = ¢ @ ¢} (called detection
conditions), where @ denotes the exclusive or (xor). Finding the tests t; of ¢ means computing
models of the test predicates tp;, i.e., t; = tp;.

The process in Fig. 14.1 is still valid for Boolean expressions, by reading “fault classes” in
place of “testing criteria”, and “Boolean expression” in place of “specification”. Below, we report
an example of running the collecting process in Alg. 2 for a Boolean expression.

Ezample 14.1. Let be p = av (aAb) and TPS = {(av (anb))D(arb),(av (anbd))@®(—av(an
b)),(av (and)®(av (—arbd)),(av(and)®(av (an—b))} obtained by using various fault
classes. Alg. 2 collects the first two test predicates since their conjunction has a model. The
third test predicate can not be added to the collection because it is not compatible; nonetheless,
it is feasible, so it is not removed from TPS and it will be considered in subsequent runs of the
collecting algorithm. The fourth test predicate is infeasible and it is removed from TPS.

14.3 Optimizations

In this section we present the optimizations we have devised in the test generation process. Some
optimizations are purely technological since they regard the use of the solvers, like avoiding the
use of files (0.4). Others exploit some logical equivalences to simplify the test predicates, like
0O.1. Most of them refer to optimization of the collecting process: how to speed up the collecting
of test predicates (those presented in Section 14.3.1) and how to quit the collecting in advance
(those presented in Section 14.3.2).

0.1 Simplification of the test predicate

Considering that our test predicates have form ¢ @ ¢’ and that ¢ and ¢’ often have a common
subexpression, it may be useful to apply some kind of simplification of a test predicate before
running the solver in order to reduce the number of conditions (i.e., occurrences of literals). We
have used the following two equivalences that allow to factor a part of the formula and to push
the @ operator near the literals: Let a, b, and ¢ be any predicate:

(anb)@(anc)=an(b®c)
(avb)@®(ave)=—an (bdc)

Ezample 14.2. Consider for instance the expression ¢ = (z1 A 23) v x3 and apply the negation
fault [72] to x5 obtaining ¢’ = (1 A 22) v —x3 . The test predicate ¢ @ ¢’ becomes:

((x1 A x2) vas)® (1 A x2) v —a3) = —(21 A 22) A (23D —x3)

While the original test predicate has 6 conditions, the simplified version contains only 4
conditions.

0.2 Optimizing the transformation to CNF

Almost all SAT solvers require CNF input formulas, while Boolean expressions we consider
and their test predicates have general form. Efficient transformation to CNF is still a research
topic [150]. There are at least two classical possible alternatives: one that preserves equivalence
and consists in applying several logical equivalences (double negative law, De Morgan’s laws,
distributive law), and the classical transformation proposed by Tseitin [163] that preserves sat-
isfiability, avoids the size explosion of the resulting CNF, but introduces a linear number of new
variables.
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1: C {}

2: for tp € TPS do

3. if sat(/\ o c A tp) then

4 C — Cu{tp}

5 TPS «— TPS\{tp} {tp is collected}

6: elseif tp ¢ TPS_FEASIBLE then

7 if sat(tp) then

8 TPS_FEASIBLE «— TPS_FEASIBLE v {tp} {tp is feasible but not collectable in C'}
9

else
10: TPS «— TPS\{tp} {tp is infeasible}
11: end if
12:  else
13: {tp is known to be feasible but it cannot be collected}
14:  end if
15: end for

16: return tpc = A ¢

Algorithm 3: Collecting process with feasible predicates recording

0.3 Awoiding the transformation to clausal form

As argued by Jain and Clarke [101], converting a non-clausal formula to CNF requires a great
effort (it can grow exponentially in length) and it may destroy the initial structure of the for-
mula, which could be used for efficient satisfiability checking. SAT/SMT solvers taking Boolean
expressions in general forms (GF) may perform better.

0.4 Using the API and avoiding the exchange of files

A simple optimization regards the way the solvers are invoked. The previous version of our
prototype tool runs solvers by command line interface. Each invocation of the solver is done by
creating a new external process at every time and the interaction with it is performed by means
of files and command line strings. That solution requires that the solver is fed with input files;
in this way the read/write speeds of the hard disk can increase the time taken just to invoke the
tool. Since the SAT/SMT solver is repetitively called when collecting, the number of invocations
of the solver rapidly increases and the tool invocation time becomes a critical factor. A simple
yet critical optimization consists in avoiding this use and embedding the solver in the process
itself.

14.3.1 Collecting optimizations

Since collecting (see Alg. 2) is the most powerful technique to generate small test suites, but it is
also the most expensive [72], a great effort should be spent to improve this part of the generation
process. In this section, we devise several techniques to speed up the collecting process.

0.5 Marking feasible test predicates

With respect to Alg. 2, a first optimization consists in marking not only if a test predicate is
infeasible but also if it is feasible. Therefore, every test predicate in TPS can be either marked
infeasible and removed from TPS, or marked feasible and added to TPS_FEASIBLE. The
modified version of the algorithm is reported in Alg. 3. When a fp is incompatible with the
other test predicates, if it is not already known to be feasible (line 6 in Alg. 3), it is checked if it
is feasible by calling the solver (line 7): if #p is feasible, it is added to TPS_FEASIBLE (line 8),
otherwise it is removed from TPS (line 10). The set TPS_FEASIBLE is initialized to the empty
set before the iterative test suite generation process begins (right before step 2 in Fig 14.1).
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0.6 Collection with witness

The collection algorithm (both the versions in Alg. 2 and 3) returns the collected test predicates
and the SAT/SMT solver is called after the collecting process to find a model for the conjunction
of the collected test predicates (step 4 in Fig. 14.1). Since the solver has been already invoked to
check if the last test predicate added to the collection is compatible with the other test predicates
previously collected, a further call to the SMT solver is useless. The collecting algorithm can be
modified in a way that it returns the collected test predicates together with the model found for
the collection. This model is a witness, since it is the proof that the collected test predicates can
be actually collected together.

O.7 Checking if the witness is a model

When trying to add the current test predicate tp to the collection C' (line 3 in Alg. 3), one could
check if the witness for the collection C is already a model for tp. In this case tp can be added
to C' without any further call of the SAT/SMT solver.

0.8 Collecting incrementally

Most modern SAT/SMT solvers maintain the logical context of a given problem and allow in-
cremental satisfiability checking. Although this concept is not uniquely defined, it means that
it is possible to add expressions incrementally to the current context? and that satisfiability is
checked after each addition. If the expression is a conjunction e; A --- A e,, the sat predicate
can be computed in the following way:

sat(e1 A ... Aep) =

fori €[1. n] do
add(e;);
if !solve()

return false;

end if

end for

return true;

In SAT solvers that requires the formulas to be in CNF, each e; must be a clause and add(e;)
must be addClause(e;).

0.9 Collecting incrementally with backtracking

Besides the incremental satisfiability, most SMT solvers, like Yices [60] and Z3 [55], have the
further feature of removing an added formula from the context when this becomes inconsistent.
Therefore, SMT solvers allow incremental collecting (0O.8), but also backtracking of assertions.

Normally, to prove that a collection of test predicates has a model, we build a new context
and we search for a model of the formula A\ . ¢ A tp (line 3 in Alg. 3). Thanks to the capability
of adding and removing assertions to the context, by the Alg. 4, we can incrementally collect
all the test predicates having a common model. The Alg. 4 exploits the SMT operations push
saving the current context and pop restoring the previous saved context. Before adding a single
candidate test predicate tp to the collection, the context is saved with a push statement, then tp
is added by an assert instruction. If the context has still a model (solve returns true), then tp
is added to the collection, otherwise the context is restored by a pop.

0.10 Double incremental collecting

3For instance, MiniSAT [63] provides the method addClause, Yices [60] and Z3 [55] have the instruction assert.
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C—{
for tp e TPS do
push {save current context}
assert tp {add tp to the current context}
if solve() then
C«— Cu{tp};
TPS « TPS\{tp}
else
{check if tp is unfeasible}
if tp ¢ TPS_FEASIBLE then
if sat(¢p) then

end if
end if
pop {restore previous context}

end if
end for

Algorithm 4: Incrementally collecting

In case all the test predicates have the form ¢ @ 90; (if the @ is not pushed), one can use the
following Xor elimination logical equivalence:

(so A /\wé) v (ﬂo A /\wé)
i=1 i=1

to simplify the collecting process. Thanks to this equivalence, one can start with two contexts:
cT initially containing only ¢, and c; containing —¢. When a test predicate tp; = ¢ @ ¢} must
be checked for compatibility with all the test predicates already collected, —¢) is added to ct (if
still valid), while ¢} is added to c  (if still valid). We can distinguish the following three cases:

(p @)
=1

K3

(1) if both contexts are still satisfiable, then tp, is accepted;

(2) if only one context is satisfiable, then ¢p, is still accepted but the context without model is
invalidated and no longer considered for the collection until the next new collection;

(3) if no valid context is satisfiable, then tp, is refused and the valid contexts are restored.

14.3.2 Limiting collecting

To make the collecting process of test predicates faster, another approach consists in limiting the
test predicates that can be possibly collected. In this case, instead of reducing the time necessary
to collect every possible test predicate, one could try to limit the number of test predicates that
are collected. The collection could not contain all the uncovered test predicates which can be
possibly collected together (we can say that it is a partial collection), and this may reduce the
effectiveness of the collecting process itself. However, this negative effect could be reduced in the
coverage evaluation phase (step 5 in Fig. 14.1): if the test generated for a collection also covers
test predicates which could have been collected together, then these test predicates are marked
as covered and no longer considered.

0.11 Quit after N

A first limitation is about the maximum number of test predicates to be possibly added to a
collection. Once that the collection contains N test predicates, the collecting process stops. This
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policy is very easy to implement. With very small N, it makes the collecting process very fast,
but it may produce bigger test suites. By increasing N, it behaves similarly to the unlimited
collection, but also the time may increase.

0.12 Collecting until useful

Another policy consists in performing the collecting until it is useful, but stopping it as soon
as it becomes useless. Indeed, when the collected test predicates have only one unique model,
collecting could be stopped without losing anything: any new test predicate that would be added
to the collection would be in any case covered, in the monitoring phase (step 5 in Fig. 14.1), by
the test produced by the SAT/SMT solver for the collection. We devise the following technique
in order to discover if a model of a predicate is unique.

Let asFxpr be a function that given a model m returns a Boolean predicate having m as
unique model. The simplest asFzpr is the function that returns the conjunction of the variables
having value true in m and the negation of the variables having value false in m.

Ezample 14.3. It m = {a = true, b = true, ¢ = false} is the model, then asEzpr(m) = anba —c

The following proposition indicates how to check if a model of a Boolean predicate is unique.

Proposition 14.1. Let ¥ be a feasible predicate and m be a model of 1b. m is the unique model
of ¥ if b A —asExpr(m) is not satisfiable.

We can use Prop. 14.1 to check if the model of the collection is unique right after a tp is
added to the collection. If the model is unique, the collection process can be stopped.

Ezample 14.4. Let tpc = ((avbd)@(av —b)) A ((avb)®(—a v b)) be a collection of test predicates
and m = {a = false, b = false} be one of its models. The predicate tpc A —asExpr(m) =
((avd)@(av —b)) A((avbd)®(—avb)) A —(—an —b) is unfeasible, therefore m is the unique
model of tpc.

Note that while optimization O.11 may produce bigger test suites because it may leave out of
the collection some uncovered test predicates that should be collected, this optimization collects
all the useful test predicates and, therefore, it does not impact over the test suite size.

0.13 Checking uniqueness after N

This optimization starts checking the uniqueness of the model only after IV test predicates are
added to the collection. The first N predicates are added (if possible) in the classic way. After
that, the witness of the collection is checked for its uniqueness: if it is unique, the collecting
stops.

14.4 Experimental results

To evaluate the approach described in this work, we perform a set of experiments, trying to
measure the effects of the described optimizations (except O.5 which is always applied).

We first present the set of benchmarks we consider and the SAT and SMT solvers selected.
In Section 14.4.1, we describe some basic results about those trivial optimizations that, when
possible, must be applied. In Section 14.4.2, we compare the different solvers, evaluating the effi-
ciency of optimizations O.3 and O.4: we first compare all the solvers and then we compare those
three that, in the first step, performed better. In Section 14.4.3, we evaluate the optimizations
0.1, 0.6, 0.7, 0.9 and 0.10, using the solver that had the best performances in experiment of
Section 14.4.2. In Section 14.4.4, we evaluate the optimizations O.11, O.12 and 0O.13 regarding
the limiting of the collecting process. Finally, in Section 14.4.5, we evaluate how good is our
collecting algorithm compared to the minimal solution.

We run all the experiments on a Linux PC with 8 Intel(R) Xeon(R) CPUs E5430 @ 2.66GHz
and 8 GB of RAM.



196 Improving the test generation process for Boolean expressions

Solver API  GF (vs CNF) incremental backtracking
Optimization 0.4 0.3 0.8 0.9

SAT4J Y N Y N

MiniSAT Y/N N Y N

NFLSAT N Y N N

PicoSAT Y/N N Y N

Yices Y/N Y Y Y

Table 14.1: Solver features

Boolean expressions For experimentation, we consider the same set of predicates introduced
by [167], who selected 13 Boolean conditions from the specification of TCAS II, an aircraft
collision avoidance system. They also added 7 specifications after having identified variable
dependencies. This set was originally used by [167] to evaluate several testing criteria and gen-
eration techniques, and the same set is still commonly used as benchmark for test generation
techniques. Although SAT and SMT solvers can deal with much more complex Boolean expres-
sions than those of TCAS, we decide to consider the latter as benchmark since we believe the
TCAS specifications are a meaningful sample of the complexity of Boolean conditions usually
occurring in actual software. In any case, besides the TCAS specifications, we also consider
Boolean expressions randomly generated. The complexity of these random expressions grows
increasing the number of variables occurring in the expression and the expression depth, namely
the height of the expression syntactic tree.

SAT/SMT solvers As SAT solvers we select SAT4J [121], MiniSAT [63], PicoSAT [28] and
NFLSAT [101]. SAT4J [121] is a mature, open source library of SAT-based solvers for Java,
SAT4J can be embedded in Java and does not require any exchange of file. However, it requires
that the test predicates are transformed into CNF. MiniSAT is a minimalistic, open-source SAT
solver, which proved to be very effective in all the SAT competitions over the past years. We add
also PicoSAT since it claims to support incremental SAT checking. As SMT solver, we decide
to use Yices [60], which we have also used in the past and which includes a very efficient SAT
solver; it claims to be competitive as an ordinary SAT and MaxSAT solver [60]. To implement
optimization O.4, we use the solvers (if possible) together with the Java Native Access (JNA)
libraries, which simply require native shared libraries.

A brief comparison of the capabilities of the solvers is reported in Table 14.1; Y/N in the
column API means that the solver can be used both with the command line version, or accessed
through its APIs. MiniSAT and PicoSAT support a limited form of backtracking when all
the added constraints are unit clauses and this is not enough for implementing O.8. SAT4J
incremental does not work as expected. NFLSAT does not require inputs as CNF, but it cannot
work with JNA since it comes as executable binary. Yices has a very rich API, accepts GF
Boolean expressions and supports a very efficient backtracking technique.

14.4.1 Basic optimizations

First of all, we want to assess the influence of O.1 and of the transformations to CNF (0.2). We
test two CNF transformations, one that preserves equivalence and the Tseitin transformation.
The experiment reveals that O.1 always speeds up the generation process and that the test
generation made with the Tseitin algorithm is faster (by around 75%) than the generation made
with a normal CNF translation algorithm, even if it increases the number of literals.

For the rest of reported experimentations, we assume the use of O.1 and of the Tseitin
transformation to CNF (if applicable), unless stated otherwise.
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14.4.2 Comparing the solvers

The second set of experiments aims at comparing all the solvers using only optimizations O.3
and O.4 whenever possible. The goal is to provide evidence of the effectiveness of the two options
and to identify the best solver.

Regarding 0.3, Yices and NFLSAT accept Boolean predicates in general form, while the
others require inputs in CNF. We apply 0.4 to Yices, MiniSAT, and PicoSAT by using two
versions: one at command line (CLI) and the other one using JNA. SAT4J can be used only as
Java library, while NFLSAT can be used only at command line.

For the 8 possible solver configurations, Fig. 14.2 reports the time taken to generate the
complete test suite for the 20 TCAS specifications for 50 runs with a timeout of 1 hour for
every run. NFLSAT completes all the specifications without any timeout with an average time
of 189 mins; MiniSAT and PicoSAT in the command line version, instead, run out of time for 2
specifications and they take, respectively, an average time of 259 mins and 280 mins. Yices in
CLI complete all the specifications without any timeout with an average time of 215 mins.

Optimization 0.3 has a positive effect: NFLSAT and Yices, which take GF predicates, perform
better than the other solvers that accept only CNF. The SAT solver NFLAST performs even better
than the SMT solver Yices.

However, NFLSAT is much slower than the other solvers when applying O.4 which is not
supported by NFLSAT. Unfortunately NFLSAT is closed source, but it would be interesting to
experiment a library version of NFLSAT.

All the solvers with JNA perform considerably better than the CLI counterparts: O.4 drasti-
cally reduces the time necessary to generate the tests. With O.4, only PicoSAT runs out of time
for the TCAS specifications.

In order to thoroughly compare the best solvers (SAT4J, Yices and MiniSAT with JNA), we
perform another experiment. We select 12200 random specifications in the following way: we
identify 610 combinations (#ids, depth) where #ids is the number of variables in the formula. To
avoid having complex expressions with few variables, we impose the constraints: 1 < #ids < 20
and 1 < depth < min(50,7 - #ids). For each combination (#ids, depth), we select 20 specifica-
tions.

Fig. 14.3 reports the total time for the test generation. Yices performs better than the other
two SAT solvers: SMT solving is competitive even for test generation for Boolean expressions.

In conclusion, experiments reveal that probably what is lost by using an SMT solver, is
gained by avoiding the conversion to CNF. We, therefore, choose Yices to perform the remain-
ing experiments carried out to compare more deeply the optimizations regarding the collecting
algorithm.

14.4.3 Optimization evaluation

We run the test generation algorithm over 40 specifications (the 20 TCAS specifications and those
20 random specifications that, in the experiment described in Section 14.4.2, were the toughest to
solve) for 50 runs applying the optimizations O.1, 0.6, O.7, and incremental collecting in three
variants: not applied, single incremental collecting (0.9), and double incremental collecting
(0.10). Totally, there are 24 possible combinations of optimizations, but only 14 are feasible:
indeed, the optimization O.1 cannot be applied together with the double collecting O.10 because
double collecting requires the test predicates in the zor form, and optimization O.7 cannot be
applied with incremental collecting because a test predicate must be added in any case to the
logical context in order to allow incremental construction. We do not experiment O.8 since it is
superseded by 0.9 and because it has proved to be ineffective in experiments not reported here.
Fig. 14.4 reports the time required to complete the test generation for all the 40 specifications
depending on the optimizations used. The grey box enlarges the cases in which incremental
collecting is applied. It is evident that the incremental collecting significantly improves the
performances.
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Figure 14.3: Comparing the best solvers with random specifications

Table 14.2 reports the observed improvements due to every single optimization O.i. It com-
pares the time (as average and deviation) required to complete the test generation for all the
specifications when O.i is not applied (column without) with the time when O.: is applied (col-
umn with), considering all the combinations of the other optimizations where O.i is applicable.

The only ineffective optimization is O.6: it seems that an extra call of the SMT solver after
the collecting phase does not impact over the final time.

The other options are effective. Checking if the witness of the collection is also a valid model
for the test predicate being added to the collection (O.7) is the least effective. The simplification
of the zor operator (O.1) significantly improves the performance, as we already experimented
using all the solvers in the first experiment set. This optimization could be directly embedded
in the SMT solver, which probably does not apply this form of simplification because it is rarely
applicable for generic Boolean expressions. The incremental collecting (0.9 and 0.10) boosts the
performances by significantly reducing the time. It seems that double incremental collecting is
slightly more efficient than single incremental collecting.

Optimization Avg. time (min:sec)  Improvement

without with avg. dev.

O.1: zor simplification 16:54 11:04  34.5% 0.64%
0.6: Collection with witness 12:06 12:10  -0.4% 0.96%
O.7: Checking if the witness is a model 22:12 18:34  16.3% 0.76%
0.9: Single incremental collecting 20:23 1:11 94.2%  0.15%
0.10: Double incremental collecting 20:23 1:02  94.9% 0.14%

Table 14.2: Optimization improvements
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Figure 14.4: Optimization evaluation with Yices
Optimizations Time (secs)
Collecting others average min deviation
Single (0.9) 0.1 57.6 56.0 + 0.82
Double (0.10) 61.9 57.7 + 2.57

Table 14.3: Time for best optimizations

However, double collecting cannot be used in conjunction with the zor simplification (0O.1)
and this has the effect that the best performances are obtained when the single collecting (0.9)
is applied together with O.1 (as reported in Table 14.3). In this case, the generation for all
the test suites for all the 40 specifications requires only 57.6 secs, with an average of 1.44 secs
for specification. This proofs that a well engineered and optimized SMT-based test generation
process can be used in practice for Boolean specifications instead of the classical algorithms.

14.4.4 Limiting collecting

In this experiment, we test how all the limiting policies introduced in Section 14.3.2 may affect
the test generation process (used together with 0.9). We run the test generation for all the 40
specifications for 50 runs with O.11, O.12, and O.13 with N from 1 to 60. Table 14.4 reports
the test suite size and the time (average and deviation). These policies are compared (column +
wrt §) with the best results obtained by single incremental collecting (reported again in the first
row § in the table).

Fig. 14.5 depicts the effects of O.11. As the figure shows and as expected, the size of the test
suite decreases with increasing N, but the time required increases as well. For small NV, the size
rapidly decreases, but after a threshold (around 15) the test suite size is reduced only marginally.
This option gives the user more control over the collecting process: a suitable value of N can be
chosen to balance between test suite compactness and test generation time. Note that the test
suite becomes of comparable size w.r.t. the case without limiting when N approaches 60, but
the generation time still remains smaller.

0.12 can find a test suite as small as the best combination §, but the time required is almost

tripled.
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Figure 14.6: Checking uniqueness after N (0.13)

Fig. 14.6 depicts the effects of O.13 which is capable of finding test suites as small as the
best combination §; for values of N lower than around 20 the time is greater, for values of IV
greater than 20 the time is lower. We can argue that the collections contain, on average, 20 test
predicates. Indeed, for values of N lower than 20 the times for O.13 are greater than the time
of the best combination §: this means that, most of the times, the uniqueness check fails (the
model is not unique) and the time taken by the check is wasted. For values of N greater than
20, instead, the times for O.13 are lower than the time of the best combination §: this means
that, most of the times, the uniqueness check succeed (the model is unique) and the collecting
can be interrupted, while in the best combination § the collecting must be executed on all the
test predicates.

Overall, we can state that limiting the collecting is effective in reducing the time for test
generation with possible no negative effects over the test suite size.

14.4.5 Optimality of the collecting process

As mentioned in Section 14.1.1, the optimal partition of the test predicate set would guarantee
the minimal number of partitions and this would ensure the minimality of the final test suite. The
proposed greedy collecting process depends on the order in which test predicates are considered
and it may not find the optimal partition of the test predicates. We are interested in measuring
how much the solutions computed by such greedy algorithm differ from the optimal ones.

With this goal, we run the test generation process 2000 times for all the 40 specifications.
For each specification we identify, among the 2000 runs, the smallest value for the test suite
size which is likely very close or equal to the minimal optimal value. Then we measure, in all
the runs, the distances between the obtained values and the minimum. In Fig. 14.7 we show
the cumulative distribution of the difference of the test suite size for every run and for every
specification w.r.t. its minimum. As shown by Fig. 14.7, for the 43% of the cases we obtain the
minimum, for the 90% of the cases the size of the test suite is maximum 20% bigger than the
(optimal) smallest test suite. In particular cases, it may be necessary to use some heuristics in
test predicate ordering to guarantee better results.
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Policy Test suite Size Time (secs)
average dev. + wrt§ average dev. + wrt§
§ 1o limits (0.9) 73145 5.37 57.65 0.82
Fixed N (O.11)
1 1169.42 5.16 59.88% 8.53 0.35 -85.21%
3 890.18 6.75  21.7% 17.06 043 -70.41%
7 815.6 5.79 11.5% 24.1  0.54 -58.2%
10 796.34 6.53 8.87% 2791 0.75 -51.58%
15 762.54 5.16  4.25% 3294 0.77 -42.87%
20 743.56 6.42  1.66% 37.35 0.88 -35.2%
30 734 5.2 0.35% 43.29 1.1 -24.91%
50 732.18 5.34 0.1% 4893 1.06 -15.12%
60 730.64 5.18 -0.11% 51.08 1.31 -11.39%
Until unique (0.12) 731.54 4.52 0.01% 158.2 7.36 174.42%
Mixed (0.13)
1 729.94  4.27 -0.21% 150.11  6.31 160.38%
3 732.18 4.37 0.1% 143.93 6.89 149.68%
7 732 5.18 0.08%  117.47 6.02 103.77%
10 730.36  4.54 -0.15% 98.64 7.7 71.11%
15 731.5 5.21 0.01% 70.22 5.9 21.81%
20 732.08 5.38  0.09% 54.08 3.91 -6.2%
30 731.7 445 0.03% 46.15 2.13  -19.94%
50 730.78 4.59  -0.09% 48.41 1.39 -16.02%
60 731.68 4.33  0.03% 49.45 1.17 -14.21%

Table 14.4: Comparison of limiting policies
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Figure 14.7: Optimality of the Collecting Process






Conclusions

The works presented in this thesis have been published in different forms in journal papers,
conference papers, technical reports, and book chapters. The list of publications is reported in
Appendix A.

In the following, we recap the contribution of the thesis and describe some possible future
work.

Contribution of the thesis

With the aim of achieving the principal four goals presented in Section 1.2, the current thesis
has proposed the following contributions.

1. A process, based on Model-Driven Engineering, for the development of a toolset around
a formal method. The proposed process permits to obtain (in a (semi)-automatic way)
several tools, which support different activities of a system development process, from
system specification to system analysis; it also fosters software reuse, since several software
artifacts are reused by all the tools. The proposed approach has been instantiated for ASMs
and FSMs, but it can be used for any FM.

2. A model checker for ASMs. This works fosters the integration between formal methods,
by providing a mapping between Asmetal. models and NuSMV models, so that the model
checking can be executed directly on the high-level notation provided by ASMs.

3. A model review approach for state-based formal methods to check that a model of a FM
has some quality attributes that any model of that FM should have. The general technique
has been instantiated for NuSMV models and ASMs. These works address the goal of
helping the user in writing correct specifications.

(a) The approach has been evaluated with a new technique that we propose to assess the
fault detection capability of a static analysis technique using mutation analysis.

4. A runtime monitoring technique which uses ASMs as specification language of the expected
behaviour. This work addresses the goal of reducing the distance between the formal
specification and the actual implementation of the system, by providing a mechanism to
link them, and an approach for checking if they are conformant.

(a) The approach has been combined with Model-Based Testing to test nondeterministic
Java programs.

Moreover, two approaches for addressing scalability issues in formal analysis techniques have
been proposed: an approach to mitigate the state space explosion problem in the contest of
test generation from ASMs using model checkers, and some optimizations for the process of test
generation for boolean expressions using SAT/SMT solvers.

Future work

We here describe some of the possible improvements of the works presented in this thesis.
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Model review The model review techniques could be extended by adding new meta-properties
addressing particular errors that a user would like to look for. In the ASMs, for example, one of
the typical shortcomings introduced by a not ASM-expert is the use of the sequential rule when
the block (parallel) rule could be used instead. This is usually due to a wrong understanding of
the simultaneous parallel execution of function updates. The correct use of a parallel rule, instead
of a sequential rule, can improve the quality of a model in terms of abstraction and minimality.
So we plan to investigate this kind of defect and define suitable meta-properties able to detect
it.

Assessing fault detection capability using mutation analysis In the proposed approach
we have used only first order mutants, i.e., mutants obtained from the injection of a single fault
in the original specification. We plan to experiment our methodology using higher order mutants,
i.e., mutants obtained by the injection of more than a fault. Since the number of obtained mutants
could be very high, we should define some heuristics to select only some of them. Moreover we
should try to avoid checking the equivalence for all the considered mutants, establishing some
relations between first order and higher order mutants: the idea is that, if a first order mutant
is not equivalent, we should be able to establish that some of the higher order mutants obtained
from it are not equivalent as well.

The presented approach has furnished us a lot of statistical data that relate the meta-
properties with the considered faults. Starting from these data, we plan to define a procedure
that, given some meta-properties violations, provides the user with an estimate of the kind of
faults occurring in the specification, and possibly advises her on how to correct them. This
procedure could improve the quality of the results returned by the model advisor.

Model checking ASMs The AsmetaSMV tool can currently translate only a limited set of
ASMs into NuSMV. In particular it does not permit to translate turbo rules, except a limited
support of the sequential rule. In order to handle turbo rules, rather than trying to map them
directly into NuSMV, we could implement a mechanism that maps ASMs containing turbo rules
into equivalent ASMs containing only basic rules: these kind of ASMs is fully supported by the
tool.

The NuSMV models produced by the tool are often not minimal, i.e., they contain elements
that have been introduced by the mapping process but are never used (e.g., some values of a
variable type). In order to achieve minimality of the obtained models, we plan to integrate
AsmetaSMV with the NuSMV model advisor, so that the results of the model review over the
NuSMYV model can be used to identify unnecessary elements and remove them.

Runtime monitoring The proposed runtime monitoring approach has some limits. Since
each class is linked to its specification, monitoring safety properties involving collections of two
or more objects [46] is not possible, but we plan to extend CoMA to support also these scenarios.
Moreover, monitoring real time requirements seems problematic: we believe that a monitored
function ¢t#me may model the real time and would allow its measurement, but further experiences
are needed. Finally, the main limitation of CoMA is that, since it currently checks conformance
by interpreting the ASM, it performs much slower than other approaches. We plan to optimize
the monitoring process to reduce the temporal overhead by, for example, encoding the ASM
directly in Java.

Currently CoMA | in case of nondeterministic specification, only supports strong conformance,
i.e., it requires that it exists only one next state of the ASM that is conformant with the Java
state. Weak conformance, requiring that it exists at least one next conformant state, is currently
not supported. An extension of CoMA could support weak conformance; to do this we should,
when more than one next state is conformant, create different simulations of the ASM, one for
each next conformant state. However, this approach would introduce too much time execution
overhead when a lot of weak conformant steps are executed.
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Refereed International Journals Articles

1. A Model Advisor for NuSMYV Specifications
(co-authors: A. Gargantini, E. Riccobene)
in Innovations in Systems and Software Engineering, Springer London, vol. 7 (2011): 97-
107

Abstract: Among possible model validation techniques able to identify defects early in
the system development, model review aims also at determining if a model is of sufficient
quality, where quality is measured as the absence of certain faults. In this paper, we tackle
the problem of automatic reviewing NuSMV formal specifications by developing a model
advisor which helps to assure given model qualities for NuSMV programs. Vulnerabilities
and defects a developer can introduce during the modeling activity using NuSMV are ex-
pressed as the violation of formal meta-properties. These meta-properties are then mapped
to temporal logic formulas, and the NuSMV model-checker itself is used as the engine of
our model advisor to notify meta-properties violations, so revealing the absence of some
quality attributes of the specification. As a proof of concept, we also report the result of
applying this review process to several NuSMV specifications.

2. A model-driven process for engineering a tool-set for a formal method
(co-authors: A. Gargantini, E. Riccobene, P. Scandurra)
in Software: Practice and Ezperience, John Wiley & Sons, Ltd., vol. 41, n. 2 (2011):
155-166

Abstract: This paper presents a model-driven software process suitable to develop a set
of integrated tools around a formal method. This process exploits concepts and technolo-
gies of the Model-Driven Engineering (MDE) approach, like metamodelling and automatic
generation of software artifacts from models. We describe the requirements to fulfill and
the development steps of this model-driven process. As a proof-of-concepts, we apply it to
the Finite State Machines and we report our experience in engineering a metamodel-based
language and a toolset for the Abstract State Machine formal method.

Refereed Papers in Proceedings of International Conference and Work-
shops

1. Components monitoring through formal specifications
(co-authors: A. Gargantini, E. Riccobene)
in Proc. of the Seventeenth International Doctoral Symposium on Components and Archi-
tecture (WCOP 2012), Bertinoro, Italy, June 25, 2012

Abstract: The paper presents a specification-based approach for runtime monitoring of
components in the field of component-based software engineering. The conformance of a
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component is checked with respect to a formal specification given in terms of Abstract
State Machines. The validity of the approach is proved showing how the technique can be
used for the monitoring of web services developed using Axis2. The theoretical approach
is implemented in a technical framework where Java annotations are used to link the web
service with its formal specification, and AspectJ is used to check the conformance runtime.

Test Generation for Sequential Nets of Abstract State Machines

(co-authors: F. Bolis, A. Gargantini)

in Proc. of the Third International Conference on Abstract State Machines, Alloy, B and
Z (ABZ 2012), Pisa, Italy, June 18-21, 2012

Abstract: Test generation techniques based on model checking suffer from the state
space explosion problem. However, for a family of systems that can be easily decomposed
in sub-systems, we devise a technique to cope with this problem. To model such systems, we
introduce the notion of sequential net of Abstract State Machines (ASMs), which represents
a system constituted by a set of ASMs such that only one ASM is active at every time.
Given a net of ASMs, we first generate a test suite for every ASM in the net, then we
combine the tests in order to obtain a test suite for the entire system. We prove that,
under some assumptions, the technique preserves coverage of the entire system. We test
our approach on a benchmark and we report a web application example for which we are
able to generate complete test suites.

Optimizing the Automatic Test Generation by SAT and SMT Solving for Boolean
Expressions

(co-authors: A. Gargantini, E. Riccobene)

in Proc. of the 26th International Conference on Automated Software Engineering (ASE
2011), Lawrence, Kansas, November 6 - 12, 2011

Abstract: Recent advances in propositional satisfiability (SAT) and Satisfiability Modulo
Theories (SMT) solvers are increasingly rendering SAT and SMT-based automatic test
generation an attractive alternative to traditional algorithmic test generation methods.
The use of SAT/SMT solvers is particularly appealing when testing Boolean expressions:
These tools are able to deal with constraints over the models, generate compact test suites,
and they support fault-based test generation methods. However, these solvers normally
require more time and greater amount of memory than classical test generation algorithms,
limiting their applicability. In this paper we propose several ways to optimize the process of
test generation and we compare several SAT/SMT solvers and propositional transformation
rules. These optimizations promise to make SAT/SMT-based techniques as efficient as
standard methods for testing purposes, especially when dealing with Boolean expressions,
as proved by our experiments.

CoMA: Conformance Monitoring of Java programs by Abstract State Machines
(co-authors: A. Gargantini, E. Riccobene)

in Proc. of the Second International Conference on Runtime Verification (RV 2011), San
Francisco, California, September 27 - 30, 2011

Abstract: We present CoMA (Conformance Monitoring by Abstract State Machines), a
specification-based approach and its supporting tool for runtime monitoring of Java soft-
ware. Based on the information obtained from code execution and model simulation, the
conformance of the concrete implementation is checked with respect to its formal specifica-
tion given in terms of Abstract State Machines. At runtime, undesirable behaviours of the
implementation, as well as incorrect specifications of the system behaviour are recognized.
The technique we propose makes use of Java annotations, which link the concrete imple-
mentation to its formal model, without enriching the code with behavioural information
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contained only in the abstract specification. The approach fosters the separation between
implementation and specification, and allows the reuse of specifications for other purposes
(formal verification, simulation, model-based testing, etc.).

5. Automatic review of Abstract State Machines by Meta Property Verification
(co-authors: A. Gargantini, E. Riccobene)
in Proc. of the Second NASA Formal Methods Symposium (NFM 2010), Washington D.C.,
USA, April 13 - 15, 2010

Abstract: A model review is a validation technique aimed at determining if a model is
of sufficient quality and allows defects to be identified early in the system development, re-
ducing the cost of fixing them. In this paper we propose a technique to perform automatic
review of Abstract State Machine (ASM) formal specifications. We first detect a family of
typical vulnerabilities and defects a developer can introduce during the modeling activity
using the ASMs and we express such faults as the violation of meta-properties that guaran-
tee certain quality attributes of the specification. These meta-properties are then mapped
to temporal logic formulas and model checked for their violation. As a proof of concept,
we also report the result of applying this ASM review process to several specifications.

6. AsmetaSMYV: A Way to Link High-Level ASM Models to Low-Level NuSMV
Specifications
(co-authors: A. Gargantini, E. Riccobene)
in Proc. of the Second International Conference on Abstract State Machines, Alloy, B and
Z (ABZ 2010), Orford, QC, Canada, February 22-25, 2010

Abstract: This paper presents AsmetaSMYV, a model checker for Abstract State Ma-
chines (ASMs). It has been developed with the aim of enriching the ASMETA (ASM
mETAmodeling) toolset — a set of tools for ASMs — with the capabilities of the model
checker NuSMYV to verify properties of ASM models written in the Asmetal. language. We
describe the general architecture of AsmetaSMV and the process of automatically mapping
ASM models into NuSMV programs. As a proof of concepts, we report the results of using
AsmetaSMYV to verify temporal properties of various case studies of different characteristics
and complexity.

7. A model-driven process for engineering a tool set for a formal method
(co-authors: A. Carioni, A. Gargantini, E. Riccobene, P. Scandurra)
in Workshop on Tool Building in Formal Methods (WS-TBFM 2010), Orford, QC, Canada,
February 22, 2010

Abstract: We present a model-based software process suitable to develop a set of tools
around a formal method. This process is based on the Model-Driven Engineering (MDE)
and exploits several concepts and technologies of the MDE, like metamodelling and auto-
matic generation of software artifacts starting from models. The process is the result of
our experience in engineering a metamodel-based language and a toolset for the Abstract
State Machine formal method.

Chapters in books

1. Formal Semantics for Metamodel-Based Domain Specific Languages
(co-authors: A. Gargantini, E. Riccobene, P.Scandurra)
in Formal and Practical Aspects of Domain-Specific Languages: Recent Developments (Eds.
Dr. Marjan Mernik). IGI Global (2012)
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Abstract: Domain Specific Languages (DSLs) are often defined in terms of metamodels
capturing the abstract syntax of the language. For a complete definition of a DSL, both
syntactic and semantic aspects of the language have to be specified. Metamodeling envi-
ronments support syntactic definition issues, but they do not provide any help in defining
the semantics of metamodels, which is usually given in natural language. In this chapter,
we present an approach to formally define the semantics of metamodel-based languages. It
is based on a translational technique that hooks to the language metamodel its precise and
executable semantics expressed in terms of the Abstract State Machine formal method. We
also show how different techniques can be used for formal analysis of models (i.e., instance
of the language metamodel). We exemplify the use of our approach on a language for Petri
nets.

Technical reports

1.

Equivalence checking of NuSMYV specifications

(co-authors: A. Gargantini, E. Riccobene)

Technical report of Universita degli Studi di Milano, Dipartimento di Tecnologie dell’Infor-
mazione, no 134 (November 2011)

. Runtime monitoring of Java programs by Abstract State Machines

(co-authors: A. Gargantini, E. Riccobene)
Technical report of Universita degli Studi di Milano, Dipartimento di Tecnologie dell’Infor-
mazione, no 131 (November 2010)

AsmetaSMYV : a model checker for AsmetalL models. Tutorial

(co-authors: A. Gargantini, E. Riccobene)

Technical report of Universita degli Studi di Milano, Dipartimento di Tecnologie dell’Infor-
mazione, no 120 (July 2009)

Papers under submission to international journals

1.

Using Mutation to Assess Fault Detection Capability of Model Review
(co-authors: A. Gargantini, E. Riccobene)

Papers under submission to international conferences

1.

Combining Model-Based Testing and Runtime Monitoring for Dealing with
Nondeterminism
(co-authors: A. Gargantini, E. Riccobene)
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