
Coordinated Execution of Heterogeneous

Service-Oriented Components
by Abstract State Machines�

Davide Brugali2, Luca Gherardi2, Elvinia Riccobene1, and Patrizia Scandurra2

1 Università degli Studi di Milano, DTI, Crema (CR), Italy
elvinia.riccobene@unimi.it

2 Università degli Studi di Bergamo, DIIMM, Dalmine (BG), Italy
{brugali,luca.gherardi,patrizia.scandurra}@unibg.it

Abstract. Early design and validation of service-oriented applications
is hardly feasible due to their distributed, dynamic, and heterogeneous
nature. In order to support the engineering of such applications and dis-
cover faults early, foundational theories, modeling notations and analysis
techniques for component-based development should be revisited. This
paper presents a formal framework for coordinated execution of service-
oriented applications based on the OSOA open standard Service Compo-
nent Architecture (SCA) for heterogeneous service assembly and on the
formal method Abstract State Machines (ASMs) for modeling notions of
service behavior, interactions, and orchestration in an abstract but exe-
cutable way. The proposed framework is exemplified through a Robotics
Task Coordination case study of the EU project BRICS.

1 Introduction

Service-oriented applications are playing so far an important role in several ap-
plication domains (e.g., information technology, health care, robotics, defense
and aerospace, to name a few) since they offer complex and flexible functionali-
ties in widely distributed environments by composing, possibly dynamically “on
demand”, different types of services. Web Services is the most notable example of
technology for implementing such components. On top of these service-oriented
components, business processes and workflows can be (re-)implemented as com-
position of services – service orchestration or service coordination1. Examples of
composition languages are WS-BPEL2 and XLANG3.

This emerging paradigm raises a bundle of problems, which did not exist in
traditional component-based design, where abstraction, encapsulation, and mod-
ularity were the main concerns. Early designing, prototyping, and testing of the

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no. FP7-ICT-231940-BRICS (Best Practice in Robotics).

1 Throughout the paper, the terms coordination and orchestration are interchangeable.
2 www.oasis-open.org
3 www.ebpml.org/xlang.htm

F. Arbab and P.C. Ölveczky (Eds.): FACS 2011, LNCS 7253, pp. 331–349, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

332 D. Brugali et al.

functionality of such assembled service-oriented applications is hardly feasible
since services are discoverable, loosely-coupled, and heterogeneous (i.e. they dif-
fer in their implementation/middleware technology) components that can only
interact with others on compatible interfaces. Concurrency and coordination
aspects [4] that are already difficult to address in component-based system de-
sign (though extensively studied), are even more exacerbated in service-oriented
system design. Components encapsulate and hide to the rest of the system how
computations are ordered in sequential threads and how and when computations
alter the system state. The consequence of improper management of the order
and containment relationships or the total absence of an explicit coordination
model in a complex, concurrent system leads to deadlock and starvation [17].

In order to support the engineering of service-oriented applications, to dis-
cover faults early, and to improve the service quality (such as efficiency and
reliability), foundational theories and high-level formal notations and analysis
techniques traditionally used for component-based systems should be revisited
and integrated with emerging service development technologies. In the Robotics
context, in particular, as the Internet is leveraged to connect humans to robots
and robots to the physical world, there is a strong requirement to investigate
service-oriented engineering approaches and knowledge representations to effec-
tively distribute the capabilities offered by robots: service-oriented robots [9].

This paper proposes a formal framework for coordinated execution of hetero-
geneous service-oriented applications. It relies on the SCA-ASM language [30]
that combines the OSOA open standard model Service Component Architecture
(SCA) [28] for heterogeneous service assembly in a technology agnostic way,
with the formal method Abstract State Machines (ASMs) [12] able to model no-
tions of service behavior, interactions, and orchestration [11,7,10] in an abstract
but executable way. A designer may use the proposed framework to provide
abstract implementations in SCA-ASM of (i) mock components (possibly not
yet implemented in code or available as off-the-shelf) or of (ii) core components
containing the main service composition or process that coordinates the exe-
cution of other components (possibly implemented using different technologies)
providing the real computation. He/she can then validate the behavior of the
overall assembled application, by configuring these SCA-ASM models in place
within an SCA-compliant runtime platform as implementation of (mock or core)
components, and then execute them together with the other (local or remote)
components implementations according to the chosen SCA assembly.

We, in particular, show the usage of our framework through a Robotics Task
Coordination scenario from a case study [26] of the EU project BRICS [13]. In
Robotics, service-oriented components embed the control logic of the application.
They cooperate with each other locally or remotely through a communication
network to achieve a common goal and compete for the use of shared resources,
such as a robot sensors and actuators, the robot functionality, and the processing
and communication resources. Cooperation and competition are forms of inter-
actions among concurrent activities. So, in this domain, applications are very
workflow-oriented and require developing coordination models explicitly [15].

Coordinated Execution of Heterogeneous Service-Oriented Components 333

ASMs provide a general method to combine specifications on any desired level
of abstraction, ground modeling (requirements capture) techniques and stepwise
refinement to executable code providing the basis for experimental validation
and mathematical verification [12]. ASM rigorousness, expressiveness, and ex-
ecutability allow for the definition and analysis of complex structured services
interaction protocols in a formal way but without overkill. Moreover, the ASM
design method is supported by several tools [21,5], useful for validation and
verification of ASM-based models of services.

This paper is organized as follows. Section 2 provides background on SCA and
ASMs. Section 3 presents the Robotics Task Coordination case study that will
be used throughout the paper. Section 4 describes the proposed framework for
coordinated execution of service-oriented applications. Section 5 describes some
related works, while Section 6 reports our lesson learned in developing the case
study. Finally, Section 7 concludes the paper and sketches some future work.

2 Background on SCA and ASMs

Service Component Architecture. SCA is an XML-based metadata model
that describes the relationships and the deployment of services independently
from SOA platforms and middleware programming APIs (as Java, C++, Spring,
PHP, BPEL, Web services, etc.). SCA is supported by a graphical notation (a
metamodel-based language developed with the Eclipse-EMF) and runtime en-
vironments (like Apache Tuscany and FRAscaTI) that enable to create service
components, assemble them into a composite application, provide an implemen-
tation for them, and then run/debug the resulting composite application.

Fig. 1 shows an SCA composite (or SCA assembly) as a collection of SCA
components. Following the principles of SOA, loosely coupled service components
are used as atomic units or building blocks to build an application.

An SCA component is a piece of software that has been configured to provide
its business functions (operations) for interaction with the outside world. This
interaction is accomplished through: services that are externally visible functions
provided by the component; references (functions required by the component)

Fig. 1. An SCA composite (adapted from the SCA Assembly Model V1.00 spec)

334 D. Brugali et al.

wired to services provided by other components; properties allowing for the con-
figuration of a component implementation with externally set data values; and
bindings that specify access mechanisms used by services and references accord-
ing to some technology/protocol (e.g. WSDL binding to consume/expose web
services, JMS binding to receive/send Java Message Service, etc.). Services and
references are typed by interfaces. An interface describes a set of related oper-
ations (or business functions) which as a whole make up the service offered or
required by a component. The provider may respond to the requester client of
an operation invocation with zero or more messages. These messages may be
returned synchronously or asynchronously.

Assemblies of service components deployed together are composite compo-
nents consisting of: properties, services, sub-components, required services as
references, and wires connecting sub-components.

Abstract State Machines. ASMs are an extension of FSMs [12] where un-
structured control states are replaced by states comprising arbitrary complex
data. The states of an ASM are multi-sorted first-order structures, i.e. domains
of objects with functions and predicates (boolean functions) defined on them.
The transition relation is specified by rules describing how functions change
from one state to the next. There is a limited but powerful set of ASM rule
constructors, but the basic transition rule has the form of guarded update “if
Condition then Updates” where Updates is a set of function updates of the
form f(t1, . . . , tn) := t which are simultaneously executed4 when Condition is
true.

Dynamic functions are those changing as a consequence of agent actions (or
updates). They are classified as: monitored (only read, as events provided by the
environment), controlled (read and write), shared (read and write by an agent
and by the environment or by another agent) and out (only write) functions.

Distributed computation can be modeled by means of multi-agent ASMs :
multiple agents interact in parallel in a synchronous/asynchronous way. Each
agent’s behavior is specified by a basic ASM. The predefined variable (or 0-ary
function) self can occur in the model and is interpreted by each agent as itself.

Besides ASMs comes with a rigorous mathematical foundation [12], ASMs
can be read as pseudocode on arbitrary data structures, and can be defined as
the tuple (header, body, main rule, initialization): header contains the signature5

(i.e. domain, function and predicate declarations); body consists of domain and
function definitions, state invariants declarations, and transition rules; main rule
represents the starting point of the machine program (i.e. it calls all the other
ASM transition rules defined in the body); initialization defines initial values for
domains and functions declared in the signature.

4 f is an arbitrary n-ary function and t1, . . . , tn, t are first-order terms. To fire this
rule in a state Si, i ≥ 0, evaluate all terms t1, . . . , tn, t at Si and update the function
f to t on parameters t1, . . . , tn. This produces another state Si+1 which differs from
Si only in the new interpretation of the function f .

5 Import and export clauses can be also specified for modularization.

Coordinated Execution of Heterogeneous Service-Oriented Components 335

Executing an ASM M means executing its main rule starting from a specified
initial state. A computation M is a finite or infinite sequence S0, S1, . . . , Sn, . . .
of states of M , where S0 is an initial state and each Sn+1 is obtained from Sn

by firing simultaneously all of the transition rules which are enabled in Sn.
A lightweight notion of module is also supported. An ASM module is an ASM

(header, body) without a main rule, without a characterization of the set of initial
states, and the body may have no rule declarations.

An open framework, the ASMETA tool set [5], based on the Eclipse/EMF
platform and developed around the ASM Metamodel, is also available for editing,
exchanging, simulating, testing, and model checking models. AsmetaL is the
textual notation to write ASM models within the ASMETA tool-set.

The SCA-ASM modeling language. By adopting a suitable subset of the
SCA standard for modeling service-oriented components assemblies and exploit-
ing the notion of distributed multi-agent ASMs, the SCA-ASM modeling lan-
guage [30] complements the SCA component model with the ASM model of
computation to provide ASM-based formal and executable description of the
services internal behavior, services orchestration and interactions. According to
this implementation type, a service-oriented component is an ASM endowed
with (at least) one agent (a business partner or role instance) able to be engaged
in conversational interactions with other agents by providing and requiring ser-
vices to/from other service-oriented components’ agents. The service behaviors
encapsulated in an SCA-ASM component are captured by ASM transition rules.

The ASM rule constructors and predefined ASM rules (i.e. named ASM rules
made available as model library) used as basic SCA-ASM behavioral primitives
are recalled in Table 1 by separating them according to the separation of con-
cerns computation, communication and coordination. In particular, communica-
tion primitives provide both synchronous and asynchronous interaction styles
(corresponding, respectively, to the request-response and one-way interaction
patterns of the SCA standard). Communication relies on a dynamic domainMes-
sage that represents message instances managed by an abstract message-passing
mechanism: components communicate over wires according to the semantics of
the communication commands reported above and a message encapsulates in-
formation about the partner link and the referenced service name and data
transferred. We abstract, therefore, from the SCA notion of binding6.

Fault/compensation handling is also supported (see [30]), but their SCA-ASM
constructs are not reported here since they are not used in the case study.

3 Running Case Study: A Robotics Tasks Coordination

We propose a simple scenario where a laser scanner offers its scan service to
different clients, which compete for the use of this shared resource. The scenario
is defined by three participants:

6 Indeed, we adopt the default SCA binding (binding.sca) for message delivering, i.e.
the SOAP/HTTP or the Java method invocations (via a Java proxy) depending if
the invoked services are remote or local, respectively.

336 D. Brugali et al.

Table 1. SCA-ASM rule constructors for computation, coordination, communication

computation and coordination

Skip rule skip do nothing

Update rule f(t1, . . . , tn) := t update the value of f at t1, . . . , tn to t

Call rule R[x1, . . . , xn] call rule R with parameters x1, . . . , xn

Let rule let x = t in R assign the value of t to x and then execute
R

Conditional it φ then R1 else R2 if φ is true, then execute rule R1,
rule endif otherwise R2

Iterate rule while φ do R execute rule R until φ is true

Seq rule seq R1 . . . Rn endseq rules R1 . . .Rn are executed in sequence
without exposing intermediate updates

Parallel rule par R1 . . . Rn endpar rules R1 . . .Rn are executed in parallel

Forall rule forall x with φ do R(x) forall x satisfying φ execute R

Choose rule choose x with φ do R(x) choose an x satisfying φ and then execute
R

Split rule forall n ∈ N do R(n) split N times the execution of R

Spawn rule spawn child with R create a child agent with program R

communication

Send rule wsend[lnk,R,snd] send data snd to lnk in reference to rule R
(no blocking, no acknowledgment)

Receive rule wreceive[lnk,R,rcv] receive data rcv from lnk in reference to
R (blocks until data are received, no ack)

SendReceive wsendreceive send data snd to lnk in reference to R
rule [lnk,R,snd,rcv] waits for data rcv to be sent back (no ack)

Reply rule wreplay[lnk,R,snd] returns data snd to lnk, as response of R
request received from lnk (no ack)

– A Laser Scanner, which executes scans of the environment on demand and
writes the acquired values on a data buffer. A scan is a sequence of measures
executed in a single task (for example 360 values, one for each degree). The Laser
Scanner allows its client to request a scan from an initial angle (start) to a finale
one (end) defined as the number of steps between start and end.
– A 3D Perception application, which requests the measures to the Laser Scanner
in order to generate a set of meshes that describe the surface of the objects
present in the environment.
– An Obstacle Avoidance application, which requests the measures to the Laser
Scanner in order to detect the obstacles along the robot path.

The proposed scenario is subjected to the following requirements:
1. The laser scan activity requires a certain amount of time to be completed.
This time is not fixed, and depends on the number of measures requested by
the client. During this time the client could have the need of executing other
activities and so it does not have to wait for the scan termination.
2. A client could request a single scan or multiple scans (for example 4 scans
composed each one by 20 measures).

Coordinated Execution of Heterogeneous Service-Oriented Components 337

3. While the Laser Scanner is executing a scan requested by a client A, a client
B could require another scan. These requests have to be managed according to
one of the following policies:

– Policy 1: Discard the scan request.
– Policy 2: Queue the scan request.

Moreover, it is assumed that different clients could simultaneously access to the
services offered by the Laser Scanner and that client requests are asynchronous,
i.e. a client requests a scan to the Laser Scanner and then it continues to execute
its work. In this case the interactions between the clients and the Laser Scanner
have to be managed by a third entity: a coordinator. This coordinator, Sensor
Coordinator, is in charge of forwarding the clients requests to the Laser Scanner
and so it has to manage the concurrent access of the clients.

High-level Solution. In order to keep the example simple to expose, we assume
in this paper7 to address only the request management policy 1, i.e. if a request
is received while the laser is already scanning the new request will be discarded.
With this assumption, the Sensor Coordinator behavior can be captured, as first
high-level model, by the finite state machine shown in Fig. 2.

Essentially, the Sensor Coordina-

Fig. 2. Sensor Coordinator FSM

tor receives a request of one or n scans
from a client. According to the fol-
lowed policy (see above) the new re-
quest could be discarded, or queued
or forwarded (the normal case) to the
Laser Scanner. When the request is
forwarded, the Laser Scanner starts
the scanning work and sends a noti-
fication (Ack) to the Sensor Coordi-
nator in order to inform it that the

scan has started. Depending on the number of scan requested, the Sensor Co-
ordinator will forward to the Laser Scanner one or more single scans. In case of
multiple scans, the Sensor Coordinator will forward n single scan requests to the
Laser Scanner (to this purpose, the count variable remScans, initially set to n,
is used and decremented at each forward). The Laser Scanner then writes each
measure on the Measures Buffer until the final angle is reached, and it finally
sends a notification (Done) to the Sensor Coordinator in order to inform it that
the scan is finished. At this point, if there are not remaining scans to execute
(remScans is equal to 0) it sends a notification to the client in order to inform
it that the new measures are available on the Buffer. The client then can access
the Measures Buffer to read the measures.

SCA Modeling. The application is heterogeneous: by the icons attached to
components, the Sensor Coordinator is implemented in ASM, while the other
two components in Java. The clients are considered external entities interacting

7 Details on different variants of this scenario can be found in [26].

338 D. Brugali et al.

with the Sensor Coordinator and with the Measures Buffer through the services
offered (promoted) by the composite. More precisely, a client could request a
scan by means of the service SensorCoordinating and could access the Measures
Buffer by means of the service MeasuresBufferReading.

Fig. 3. The Sensor Composite

The definition of the service interfaces is reported in the listing 1.1 using the
Java interface construct as IDL (Interface Definition Language). Note that, the
interface EventObserving is implemented by the Sensor Coordinator to manage
the notification received from the Laser Scanner8.

The ASM (abstract) implementation of the SCA Sensor coordinator’s behav-
ior will be provided later in Sect. 4.1. For the sake of space, the Java implemen-
tation code of the other components is not reported.

Listing 1.1. Service interfaces definition in Java

public interface MeasuresBufferReading { public LaserScan getScan(); }
public interface MeasuresBufferWriting { public void writeMeasure(LaserMeasure measure); }
public interface LaserScanning {

/∗∗@param from: point from which the laser starts the scan
∗ @param numOfSteps: number of steps of the scan ∗/
@OneWay public void scan(int from, int numOfSteps); }

public interface SensorCoordinating {
/∗∗@param from: point from which the laser starts the scan
∗ @param numOfSteps: number of steps of the scan
∗ @param numOfScans: number of scans required ∗/
@OneWay public void request(int from, int numOfSteps, int numOfScans); }

public interface EventObserving {
/∗∗@param event: it describe the type of event.
∗ For the laser scanner valid values are Ack and Done ∗/
public void update(String event); }

8 So far it is used as a service to resemble a callback (not yet supported in SCA-ASM).

Coordinated Execution of Heterogeneous Service-Oriented Components 339

4 Coordinated Execution Framework

The proposed framework relies on the SCA-ASM language originally presented
in [30] as a formal and abstract component implementation type to cover com-
putation, communication, and coordination aspects during early execution (or
simulation) of an SCA assembly of an heterogeneous service-oriented applica-
tion. ASMs can be adopted to provide abstract implementations (or prototypes)
of mock components, or to implement “core” components that contain the main
service composition or coordination process that guides the application’s execu-
tion. The framework relies also on other SCA component implementation types
(such as Java, Spring, C++, etc., see [28]) to include components providing the
real computation services used by the core component(s) and these components
can themselves require services provided by other local or remote components.

The framework was developed by integrating the Eclipse-based SCA Compos-
ite Designer, the SCA runtime platform Tuscany [33], and the simulator AsmetaS
of the ASM toolset ASMETA [5]. This environment9 allows us to graphically
model, compose, analyze, deploy, and execute heterogeneous service-oriented ap-
plications in a technologically agnostic way. As described and exemplified below,
an heterogeneous SCA assembly (or composition) of service-oriented components
(implemented in ASM or in another implementation language) can be graphi-
cally produced using the SCA Composite Designer and also stored or exchanged
in terms of an XML-based configuration file. This last file is then used by the
SCA runtime to instantiate and execute the system by instrumenting AsmetaS
and other execution infrastructures in an unique environment (see Fig. 5).

4.1 Service Component Implementation and Configuration

Through the considered case study, we here show the use of the ASM implemen-
tation type (i.e. of the SCA-ASM language) for SCA components.

Service Component Implementation. The following listings report the ASM
(abstract) implementation of the Sensor Coordinator component (request man-
agement policy 1). To this purpose, the AsmetaL textual notation to write ASM
models within the ASMETA tool-set is used. Two grammatical conventions must
be recalled: a variable identifier starts with $; a rule identifier begins with “r ”.

Listing 1.2 shows the header of the ASM. The import clauses include the ASM
modules of the provided service interfaces (SensorCoordinating and EventOb-
serving) and required interfaces (the LaserScanning interface) of the component,
annotated, respectively, with @Provided and @Required. The @MainService

annotation on the import clause for the SensorCoordinating interface denotes the
main service (read: main component’s agent) that is responsible for initializing
the component’s state (in the predefined r init rule). The signature of the
machine contains declarations for: references (shared functions annotated with
@Reference) as abstract access endpoints to services, back references to requester

9 https://asmeta.svn.sourceforge.net/svnroot/asmeta/code/experimental/SCAASM

340 D. Brugali et al.

agents (shared functions annotated with @Backref), and declarations of ASM
domains and functions used by the component for internal computation only.
In particular, the variable (a controlled 0-ary function) ctl state stores the
current control state of the ASM.

Listing 1.2. ASM header of the Sensor Coordinator component

module SensorCoordinator
import STDL/StandardLibrary
import STDL/CommonBehavior
//@MainService
import SensorCoordinating
//@Provided
import EventObserving
//@Required
import LaserScanning
export ∗
signature:
//@Reference
shared laserScanning : Agent −> LaserScanning
//@Backref
shared clientSensorCoordinating : Agent −> Agent
//@Backref
shared clientEventObserving : Agent −> Agent
enum domain State = {IDLE | BUSY | SCANNING}
//Internal properties
controlled ctl state : Agent −> State //stores the current control state
controlled paramScan : Agent −> Prod(Integer,Integer,Integer) //arguments of an scan request
controlled from : Agent −> Integer //stores the start position of an scan request
controlled steps : Agent −> Integer //stores the number of measures of an scan request
controlled remScans : Agent −> Integer //stores the number of scans requested by a client
controlled event : Agent −> String //stores the argument of an update request.

The body of the ASM (see Listing 1.3) includes definitions of the services
(transition rules annotated with @Service) r request and r update, the main
transition rule r SensorCoordinator (that takes by convention the same name
of the component), the transition rule with the predefined name r init that is
invoked to initially set up the internal component state (i.e. values of controlled
functions), and another utility rule named r acceptRequest.

The service r request is in charge of requesting a scan to the laser scanner.
When the rule is called, it executes in parallel the following actions: sets the
state of the ASM to BUSY, stores the arguments of the requested scan, invokes
(by a send action) the service scan provided by the service Laser Scanning.

The service r update is in charge of receiving the notification from the laser
scanner and updating the control state by resembling the FSM shown in Fig. 2.

The rule r acceptRequest advances the control state of the machine properly
according to the incoming service request (the input parameter $r). In case of
a new scan request (r request), this is removed from the requests queue (by
invoking r wreceive) and the input is stored in the variable paramScan. A
direct invocation of the service r request then follows if the input is defined. In
case, instead, of a notification (r update) from the laser scanner, the request is
removed from the requests queue (by r wreceive) and in case the input (stored
in the variable event) is defined the service r update is invoked. Note that all

Coordinated Execution of Heterogeneous Service-Oriented Components 341

the scan requests received while the scanner is already scanning are discarded
(what the policy 1 defines).

The rule r SensorCoordinator is the program of the main component’s agent
and is invoked when a client requests a service offered by the Sensor Coordinator.
The rule r acceptRequest is then invoked to handle the request depending on
the specific service required.

Listing 1.3. ASM body of the Sensor Coordinator component

definitions:
//State invariant: Number of scans required by a client must be non negative
invariant inv neverNeg over remScans(): not(remScans < 0)
//@Service
rule r request($a in Agent,$from in Integer,$steps in Integer, $nScans in Integer)=

par
ctl state($a) := BUSY
from($a) := $from
steps($a) := $steps
remScans($a) := $nScans − 1
r wsend[laserScanning($a),”r scan(Agent,Integer,Integer)”,($from,$steps)]

endpar

//@Service
rule r update($a in Agent, $event in String) =
if (ctl state($a)=BUSY and $event=”Ack”) then ctl state($a) := SCANNING
else if (ctl state($a)=SCANNING and $event=”Done” and remScans($a)>0)

then par //continue with next scan
ctl state($a) := BUSY
remScans($a) := remScans($a)−1
r wsend[laserScanning($a),”r scan(Agent,Integer,Integer)”,(from($a),steps($a))] endpar

else if (ctl state($a)=SCANNING and $event=”Done” and remScans($a)=0)
then ctl state($a) := IDLE endif endif endif

rule r acceptRequest ($a in Agent, $r in String) =
if (ctl state($a)=IDLE and $r=”r request(Agent,Integer,Integer,Integer)”)
then seq //first scan

r wreceive[clientSensorCoordinating($a),”r request(Agent,Integer,Integer,Integer)”,paramScan
($a)]

if (isDef(paramScan($a))) then
r request[$a,first(paramScan($a)),second(paramScan($a)),third(paramScan($a))] endif

endseq
else if (not ctl state($a)=IDLE and $r=”r update(Agent,String)”)

then seq
r wreceive[clientEventObserving($a),”r update(Agent,String)”,event($a)]
if (isDef(event($a))) then r update[self,event($a)] endif

endseq endif endif

//Main agent’s program
rule r SensorCoordinator =

let($r = nextRequest(self)) //Select the next request(if any)
in if isDef($r) then r acceptRequest[self,$r] endif endlet //Handle the request $r

rule r init($a in SensorCoordinating) = //for the startup of the component
par

status($a) := READY
ctl state($a) := IDLE
from($a) := 0
steps($a) := 0
remScans($a) := 0

endpar

342 D. Brugali et al.

Finally, the rule r init is called during initialization of the component’s state.
This rule simply sets the status of the agent to READY, the control state to
IDLE and the scan parameters to 0.

The ASM definitions of the sensor coordinator’s provided interfaces are re-
ported in the listing 1.4 using the AsmetaL notation. They are ASM modules
containing only declarations of business agent types (subdomains of the prede-
fined ASM domain Agent), and of business functions (ASM out functions).

Service Component Configuration. Component metadata, describing which
services are required and provided by a component, and information that allow
the SCA runtime to locate (locally or remotely) the component implementation,
must be provided in the SCA XML composite file. Listing 1.5 shows a fragment
of the SCA XML composite file regarding the metadata of the component Sensor
Coordinator that is implemented (by the tag implementation.asm) in ASM.

Listing 1.4. ASM definition of the Sensor Coordinating interface

//@Remotable
module SensorCoordinating
import STDL/StandardLibrary
import STDL/CommonBehavior
export ∗
signature:
// the domain defines the type of this agent
domain SensorCoordinating subsetof Agent
// out is a function that implements the provided service
out request: Prod(Agent,Integer,Integer,Integer) −> Rule
definitions:
//@Remotable
module EventObserving
import STDL/StandardLibrary
import STDL/CommonBehavior
export ∗
signature:
domain EventObserving subsetof Agent
out update: Prod(Agent,String) −> Rule
definitions:

Listing 1.5. XML configuration file

<?xml version=”1.0” encoding=”UTF−8” standalone=”no”?>
<sca:composite xmlns:sca=”http://www.osoa.org/xmlns/sca/1.0” xmlns:asm=”http://asm”
name=”Sensor” targetNamespace=”http://eclipse.org/CaseStudy/src/Sensor”>

...
<sca:component name=”SensorCoordinator”>

<asm:implementation.asm location=”SensorCoordinator.asm”/>
<sca:reference name=”laserScanning”/>
<sca:service name=”SensorCoordinating”>

<asm:interface.asm location=”SensorCoordinating.asm”/>
</sca:service>

</sca:component>
...

</sca:composite>

Coordinated Execution of Heterogeneous Service-Oriented Components 343

4.2 In-place Simulation of SCA-ASM Models

SCA-ASM components use annotations to denote services, references, properties,
etc. With this information, as better described below, an SCA runtime platform
(Tuscany in our case) can create a composition (an application) by tracking ser-
vice references (i.e. required services) at runtime and injecting required services
into a component when they become available.

Fig. 4. Instantiating and invoking ASM implementation instances within Tuscany

In-place ASM Simulation Mechanism. Fig. 4 illustrates how the ASM im-
plementation provider10 sets up the environment (the container) within Tus-
cany for instantiating and handle incoming/outgoing service requests to/from
an ASM component implementation instance (like component A in the figure)
by instrumenting the ASM simulator AsmetaS. Currently, the implementation
scope of an SCA-ASM component is composite, i.e. a single component instance
– a single main ASM instance (see the main ASM for component A in Fig. 4)
– is created within AsmetaS for all service calls of the component11. This main
ASM is automatically created during the setting up of the connections and it is
responsible for instantiating the component agent and related resources, and for
listening for service requests incoming from the protocol layer and forward them
to the component’agent instance (see component A in Fig. 4). Executing an ASM
component implementation means executing its main ASM. For each reference,
another entity (i.e. another ASM module) is automatically created (and instan-
tiated as ASM agent within the main ASM of the component) as “proxy” for a
remote component (see the ASM proxy for component B in Fig. 4) for making
an outbound service call from the component. Using a terminology adopted in
the Java Remote Method Invocation (RMI) API, this proxy ASM plays the role

10 The Tuscany core delegates the start/stop of component implementation instances
and related resources, and the service/reference invocations, to specific implementa-
tion providers that typically respond to these life-cycle events.

11 We postpone as future work the implementation of the other two SCA implementa-
tion scopes, stateless (to create a new component instance on each service call) and
conversation (to create a component instance for each conversation).

344 D. Brugali et al.

of stub to forward a service invocation (and their associated arguments) to an
external component’s agent, and to send back (through the ASM rule r replay)
the result (if any) to the invoker component’s agent (the agent of the component
A in Fig. 4). The main ASM, instead, plays the role of skeleton, i.e. a proxy
for a remote entity that runs on the provider and forwards (through the ASM
rule r sendreceive) client’s remote service requests (and their associated ar-
guments) to the appropriate component’s agent (usually the main agent of the
component), and then the result (if any) of the invoked service is returned to the
client component’agent (via stubs). For the sake of space, the ASM implemen-
tation of the stub and skeleton (as generated by the runtime) for the component
Sensor Coordinator is not reported.

When an ASM implementation component is instantiated, the Tuscany run-
time also creates a value for each (if any) externally settable property (i.e. ASM
monitored functions, or shared functions when promoted as a composite prop-
erty, annotated with @Property). Such values or proxies are then injected into
the component implementation instance. A data binding mechanism also guar-
antees a matching between ASM data types and Java data types, including
structured data, since we assume the Java interface as IDL for SCA interfaces.

Fig. 5 shows a simulation snapshot of the considered case study where the
Sensor Coordinator changes state from IDLE to BUSY (see also the rule r request

in the Listing 1.3) after receiving a first scan request from a client.

Fig. 5. Simulation of the Sensor Composite application

Other ASM Execution Features. Useful features are currently supported
by the AsmetaS simulator when running within the SCA Tuscany platform.

Coordinated Execution of Heterogeneous Service-Oriented Components 345

State invariant checker : AsmetaS implements an invariant checker, which at
the end of each transition execution checks if the invariants (if any) expressed
over the state of the currently executed SCA-ASM component are satisfied or
not. If an invariant is not satisfied, AsmetaS throws an InvalidInvariant-

Exception, which keeps track of the violated invariant. Listing 1.3 shows an
example of state invariant (inv neverNeg) for the Sensor Coordinator. It states
that the number of scans required by a client must be non negative.

Consistent Updates checking: The simulator also includes a checker for reveal-
ing inconsistent updates. In case of inconsistent updates an UpdateClashExcep-

tion is thrown by reporting the location which is being inconsistently updated
and the two different values which are assigned to that location. The user, ana-
lyzing this error, can detect the fault in the ASM component implementation.

Logging: The user can inspect how AsmetaS performs some tasks (e.g. terms
evaluation, building of updates set, variables substitution) by a log4j12 file.

Other ASM Functional Analysis Features. In addition to simulation, the
ASMETA toolset [5] supports other model validation techniques useful for SCA-
ASM models. These validation techniques include: scenario-based validation by
the ASM validator AsmetaV, when the user builds scenarios describing the be-
havior of a system by looking at the observable interactions between the system
and its environment in specific situations; model-based testing by the ASMETA
ATGT tool, when the specification is used as oracle to compute test cases for
a given critical behavior of the system at the same level of the specification.
Executable test cases must be then derived from the abstract ones and executed
at code level to guarantee conformance between model and code. Another tech-
nique for model validation is model inspection and review by the AsmetaMA
tool, which is able to identify defects early in the system development, by de-
termining if a model satisfies some quality properties (called meta-properties).
Property verification is also supported by the AsmetaSMV tool, a model checker
for ASM. Formal verification should be performed later, once one has a sufficient
confidence about model correctness, and it has to be intended as the mathemat-
ical proof of system properties, which can be performed by hand or by the aid
of model checkers (which are usable when the variable ranges are finite) or of
theorem provers (which require strong user skills to drive the proof).

5 Related Work

Some works devoted to provide software developers with formal methods and
techniques tailored to the service domain exist (see, e.g., the survey in [8] for the
service composition problem), mostly developed within the EU projects SEN-
SORIA [31] and S-Cube [27]. Several process calculi for the specification of SOA
systems have been designed (see, e.g., [22,24,16]). They provide linguistic primi-
tives supported by mathematical semantics, and verification techniques for qual-
itative and quantitative properties [31]. Still within the SENSORIA project, a
declarative modeling language for service-oriented systems, named SRML [32],

12 http://logging.apache.org/

346 D. Brugali et al.

has been developed. SRML supports qualitative and quantitative analysis tech-
niques using the UMC model checker[1] and the PEPA stochastic analyzer13.

Compared to the formal notations mentioned above, the ASM method has
the advantage of being executable. On the formalization of the SCA assembly
model, some previous works, like [18,19] to name a few, exist. However, they
do not rely on a practical and executable formal method like ASMs. In [25], an
analysis tool,Wombat, for SCA applications is presented; this approach is similar
to our as the tool is used for simulation and verification tasks by transforming
SCA modules into composed Petri nets. There is not proven evidence, however,
that this methodology scales effectively to large systems.

An abstract service-oriented component model, named Kmelia, is formally
defined in [6,3] and is supported by a prototype tool (COSTO). In the Kmelia
model, services are used as composition units and service behavior is modeled
by a labeled transition system. Our proposal is similar to the Kmelia approach;
however, we have the advantage of having integrated our SCA-ASM component
model and the ASM-related tools with an SCA runtime platform for a more
practical use and an easier adoption by developers.

Within the ASM community, the ASM method has been used for the purpose
of formalizing business process notations and middleware technologies related
to web services, such as [10,11,20,2] to name a few. Some of these previous
formalization efforts, as explained in [30], are at the basis of our work.

Concerning the Robotics domain, in [23] a new approach for coordinating the
behavior of Orocos RTT (Open Robot Control Software Real Time Toolkit) [29]
components is proposed. Orocos RTT is a C++ framework that allows the design
and the deployment of component-based robotics control systems. The proposed
approach defines the behavior of single components and of entire systems by
means of a variant of the UML hierarchical state-charts, which is called reduced
FSM (rFSM). The main advantages of the rFSM are their hierarchical com-
posability and their applicability in hard-real time applications. Furthermore,
despite they are currently used only with Orocos, rFSM are totally framework
independent. The main differences between ASMs and rFSMs are that rFSMs do
not allow the execution of parallel agent actions and parallel states; moreover,
they do not have the universality and broad application of ASMs, and do not
offer the same flexibility and tools provided by ASMs.

6 Lesson Learned

We have shown how formal high-level ASM models of service-oriented compo-
nents can be assembled together with real components through the SCA frame-
work and how we manage the coordination of the overall resulting application
by means of the ASM formalism for prototyping and simulation purposes. We
experienced that the use of two different frameworks for modeling two different
concerns (SCA and its various implementation types for computation, and ASM
for coordination) improves the level of flexibility and reusability.

13 http://www.dcs.ed.ac.uk/pepa/

Coordinated Execution of Heterogeneous Service-Oriented Components 347

We have shown this by means of a use case in the Robotics field, where flex-
ibility and reusability are very challenging issues [13,14,15]. In general, robotic
software applications require and provide a number of different functionalities,
which are typically encapsulated in components that cooperate and compete in
order to control the behavior of a robot. Cooperation and competition are forms
of interaction among concurrent activities and so they have to be coordinated.
In order to achieve a good level of reusability and flexibility the coordination and
the computation (how the component provides the service) need to be managed
separately. So by our experience, the service paradigm seems promising also in
the Robotics domain. In particular, we appreciated the possibility to change
the coordination policies (see [26]) without modifying the implementation of
the services provided by components merely dedicated to computation (such as
sophisticated algorithms), thus improving the level of flexibility and reusability.

7 Conclusion and Future Directions

We presented a practical framework for early service design and prototyping
that combines the standard SCA and the ASM formal support to assemble
service-oriented components as well as intra- and inter- service behavior. The
framework is supported by a tool based on the SCA runtime Tuscany and the
toolset ASMETA for model execution and functional analysis. The effectiveness
of our framework was experimented through various case studies of different
complexity and heterogeneity. These include examples taken from the SCA Tus-
cany distribution, the case study of the EU project BRICS [13] presented here,
and also a scenario of the Finance case study of the EU project SENSORIA [31].

We plan to support more useful SCA concepts, such as the SCA callback in-
terface for bidirectional services and an event-based style of interaction. We want
also to enrich the SCA-ASM language with interaction and workflow patterns
based on the BPMN specification. We also plan to support pre/post-conditions
defined on services for contract correctness checking in component assemblies.

On the functional analysis side, we want to integrate further ASMETA anal-
ysis techniques with the SCA runtime Tuscany.

References

1. Abreu, J., Mazzanti, F., Fiadeiro, J.L., Gnesi, S.: A Model-Checking Approach
for Service Component Architectures. In: Lee, D., Lopes, A., Poetzsch-Heffter, A.
(eds.) FMOODS/FORTE 2009. LNCS, vol. 5522, pp. 219–224. Springer, Heidelberg
(2009)

2. Altenhofen, M., Friesen, A., Lemcke, J.: ASMs in Service Oriented Architectures.
Journal of Universal Computer Science 14(12), 2034–2058 (2008)

3. André, P., Ardourel, G., Attiogbé, C.: Composing Components with Shared Ser-
vices in the Kmelia Model. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS,
vol. 4954, pp. 125–140. Springer, Heidelberg (2008)

4. Arbab, F.: What do you mean, coordination? Bulletin of the Dutch Association
for Theoretical Computer Science, 11–22 (March 1998)

348 D. Brugali et al.

5. The ASMETA toolset website (2006), http://asmeta.sf.net/

6. Attiogbé, C., André, P., Ardourel, G.: Checking Component Composability. In:
Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 18–33. Springer,
Heidelberg (2006)

7. Barros, A.P., Börger, E.: A Compositional Framework for Service Interaction Pat-
terns and Interaction Flows. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS,
vol. 3785, pp. 5–35. Springer, Heidelberg (2005)

8. Beek, M.T., Bucchiarone, A., Gnesi, S.: Formal Methods for Service Composition.
Annals of Mathematics, Computing & Teleinformatics 1(5), 1–10 (2007)

9. Blake, M.B., Remy, S.L., Wei, Y., Howard, A.M.: Robots on the Web: Service-
Oriented Computing and Web Interfaces. IEEE Robotics & Automation Magazine
(June 2011)

10. Börger Sörensen, O., Thalheim, B.: On Defining the Behavior of OR-joins in Busi-
ness Process Models. J. UCS 15(1), 3–32 (2009)

11. Börger, E.: Modeling Workflow Patterns from First Principles. In: Parent, C.,
Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp.
1–20. Springer, Heidelberg (2007)

12. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer (2003)

13. EU project BRICS (Best Practice in Robotics), www.best-of-robotics.org/

14. Brugali, D., Scandurra, P.: Component-based robotic engineering (Part I) [Tuto-
rial]. IEEE Robotics & Automation Magazine 16(4), 84–96 (2009)

15. Brugali, D., Shakhimardanov, A.: Component-based Robotic Engineering (Part
II): Systems and Models. Robotics XX(1), 1–12 (2010)

16. Bruni, R.: Calculi for Service-Oriented Computing. In: Bernardo, M., Padovani, L.,
Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 1–41. Springer, Heidelberg
(2009)

17. Davis, J.S.: Order and containment in concurrent system design. PhD thesis. Univ.
of California, Berkeley (2000)

18. Ding, Z., Chen, Z., Liu, J.: A rigorous model of service component architecture.
Electr. Notes Theor. Comput. Sci. 207, 33–48 (2008)

19. Du, D., Liu, J., Cao, H.: A rigorous model of contract-based service component
architecture. In: CSSE (2), pp. 409–412. IEEE Computer Society (2008)

20. Farahbod, R., Glässer, U., Vajihollahi, M.: A formal semantics for the business
process execution language for web services. In: Bevinakoppa, S., Pires, L.F., Ham-
moudi, S. (eds.) WSMDEIS, pp. 122–133. INSTICC Press (2005)

21. ASMs web site (2008), http://www.eecs.umich.edu/gasm/

22. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus
for Service Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

23. Klotzbuecher, M., Soetens, P., Bruyninckx, H.: OROCOS RTT-Lua: an Execution
Environment for building Real-time Robotic Domain Specific Languages. In: Int.
Workshop on Dynamic Languages for RObotic and Sensors (2010)

24. Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining orchestration
and conversation in service-oriented computing. In: SEFM 2007, pp. 305–314. IEEE
(2007)

25. Martens, A., Moser, S.: Diagnosing SCA Components UsingWombat. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 378–388.
Springer, Heidelberg (2006)

http://asmeta.sf.net/
www.best-of-robotics.org/
http://www.eecs.umich.edu/gasm/

Coordinated Execution of Heterogeneous Service-Oriented Components 349

26. EU project BRICS, Tech. Rep. A Coordination Use Case (March 24, 2011),
www.best-of-robotics.org/wiki/images/e/e0/

coordinationusecaseubergamo.pdf

27. EU project S-Cube, http://www.s-cube-network.eu/
28. Service Component Architecture (SCA), www.osoa.org
29. The Orocos Project, http://www.orocos.org
30. Riccobene, E., Scandurra, P.: A modeling and executable language for designing

and prototyping service-oriented applications. In: EUROMICRO Conf. on Software
Engineering and Advanced Applications, SEAA 2011 (2011)

31. EU project SENSORIA, www.sensoria-ist.eu/
32. SRML: A Service Modeling Language (2009), http://www.cs.le.ac.uk/srml/
33. Apache Tuscany, http://tuscany.apache.org/

http://www.s-cube-network.eu/
www.osoa.org
http://www.orocos.org
www.sensoria-ist.eu/
http://www.cs.le.ac.uk/srml/
http://tuscany.apache.org/

	Coordinated Execution of Heterogeneous Service-Oriented Components by Abstract State Machines
	Introduction
	Background on SCA and ASMs
	Running Case Study: A Robotics Tasks Coordination
	Coordinated Execution Framework
	Service Component Implementation and Configuration
	In-place Simulation of SCA-ASM Models

	Related Work
	Lesson Learned
	Conclusion and Future Directions
	References

